diff options
author | David Howells <dhowells@redhat.com> | 2009-04-03 11:42:35 -0400 |
---|---|---|
committer | David Howells <dhowells@redhat.com> | 2009-04-03 11:42:35 -0400 |
commit | 07fe7cb7c7c179f473fd9c823348fd3eb5dad369 (patch) | |
tree | 516c959de929a4c39870629e550b3307601fa73f /kernel/slow-work.c | |
parent | 8fe74cf053de7ad2124a894996f84fa890a81093 (diff) |
Create a dynamically sized pool of threads for doing very slow work items
Create a dynamically sized pool of threads for doing very slow work items, such
as invoking mkdir() or rmdir() - things that may take a long time and may
sleep, holding mutexes/semaphores and hogging a thread, and are thus unsuitable
for workqueues.
The number of threads is always at least a settable minimum, but more are
started when there's more work to do, up to a limit. Because of the nature of
the load, it's not suitable for a 1-thread-per-CPU type pool. A system with
one CPU may well want several threads.
This is used by FS-Cache to do slow caching operations in the background, such
as looking up, creating or deleting cache objects.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Diffstat (limited to 'kernel/slow-work.c')
-rw-r--r-- | kernel/slow-work.c | 388 |
1 files changed, 388 insertions, 0 deletions
diff --git a/kernel/slow-work.c b/kernel/slow-work.c new file mode 100644 index 000000000000..5a7392734c82 --- /dev/null +++ b/kernel/slow-work.c | |||
@@ -0,0 +1,388 @@ | |||
1 | /* Worker thread pool for slow items, such as filesystem lookups or mkdirs | ||
2 | * | ||
3 | * Copyright (C) 2008 Red Hat, Inc. All Rights Reserved. | ||
4 | * Written by David Howells (dhowells@redhat.com) | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or | ||
7 | * modify it under the terms of the GNU General Public Licence | ||
8 | * as published by the Free Software Foundation; either version | ||
9 | * 2 of the Licence, or (at your option) any later version. | ||
10 | */ | ||
11 | |||
12 | #include <linux/module.h> | ||
13 | #include <linux/slow-work.h> | ||
14 | #include <linux/kthread.h> | ||
15 | #include <linux/freezer.h> | ||
16 | #include <linux/wait.h> | ||
17 | #include <asm/system.h> | ||
18 | |||
19 | /* | ||
20 | * The pool of threads has at least min threads in it as long as someone is | ||
21 | * using the facility, and may have as many as max. | ||
22 | * | ||
23 | * A portion of the pool may be processing very slow operations. | ||
24 | */ | ||
25 | static unsigned slow_work_min_threads = 2; | ||
26 | static unsigned slow_work_max_threads = 4; | ||
27 | static unsigned vslow_work_proportion = 50; /* % of threads that may process | ||
28 | * very slow work */ | ||
29 | static atomic_t slow_work_thread_count; | ||
30 | static atomic_t vslow_work_executing_count; | ||
31 | |||
32 | /* | ||
33 | * The queues of work items and the lock governing access to them. These are | ||
34 | * shared between all the CPUs. It doesn't make sense to have per-CPU queues | ||
35 | * as the number of threads bears no relation to the number of CPUs. | ||
36 | * | ||
37 | * There are two queues of work items: one for slow work items, and one for | ||
38 | * very slow work items. | ||
39 | */ | ||
40 | static LIST_HEAD(slow_work_queue); | ||
41 | static LIST_HEAD(vslow_work_queue); | ||
42 | static DEFINE_SPINLOCK(slow_work_queue_lock); | ||
43 | |||
44 | /* | ||
45 | * The thread controls. A variable used to signal to the threads that they | ||
46 | * should exit when the queue is empty, a waitqueue used by the threads to wait | ||
47 | * for signals, and a completion set by the last thread to exit. | ||
48 | */ | ||
49 | static bool slow_work_threads_should_exit; | ||
50 | static DECLARE_WAIT_QUEUE_HEAD(slow_work_thread_wq); | ||
51 | static DECLARE_COMPLETION(slow_work_last_thread_exited); | ||
52 | |||
53 | /* | ||
54 | * The number of users of the thread pool and its lock. Whilst this is zero we | ||
55 | * have no threads hanging around, and when this reaches zero, we wait for all | ||
56 | * active or queued work items to complete and kill all the threads we do have. | ||
57 | */ | ||
58 | static int slow_work_user_count; | ||
59 | static DEFINE_MUTEX(slow_work_user_lock); | ||
60 | |||
61 | /* | ||
62 | * Calculate the maximum number of active threads in the pool that are | ||
63 | * permitted to process very slow work items. | ||
64 | * | ||
65 | * The answer is rounded up to at least 1, but may not equal or exceed the | ||
66 | * maximum number of the threads in the pool. This means we always have at | ||
67 | * least one thread that can process slow work items, and we always have at | ||
68 | * least one thread that won't get tied up doing so. | ||
69 | */ | ||
70 | static unsigned slow_work_calc_vsmax(void) | ||
71 | { | ||
72 | unsigned vsmax; | ||
73 | |||
74 | vsmax = atomic_read(&slow_work_thread_count) * vslow_work_proportion; | ||
75 | vsmax /= 100; | ||
76 | vsmax = max(vsmax, 1U); | ||
77 | return min(vsmax, slow_work_max_threads - 1); | ||
78 | } | ||
79 | |||
80 | /* | ||
81 | * Attempt to execute stuff queued on a slow thread. Return true if we managed | ||
82 | * it, false if there was nothing to do. | ||
83 | */ | ||
84 | static bool slow_work_execute(void) | ||
85 | { | ||
86 | struct slow_work *work = NULL; | ||
87 | unsigned vsmax; | ||
88 | bool very_slow; | ||
89 | |||
90 | vsmax = slow_work_calc_vsmax(); | ||
91 | |||
92 | /* find something to execute */ | ||
93 | spin_lock_irq(&slow_work_queue_lock); | ||
94 | if (!list_empty(&vslow_work_queue) && | ||
95 | atomic_read(&vslow_work_executing_count) < vsmax) { | ||
96 | work = list_entry(vslow_work_queue.next, | ||
97 | struct slow_work, link); | ||
98 | if (test_and_set_bit_lock(SLOW_WORK_EXECUTING, &work->flags)) | ||
99 | BUG(); | ||
100 | list_del_init(&work->link); | ||
101 | atomic_inc(&vslow_work_executing_count); | ||
102 | very_slow = true; | ||
103 | } else if (!list_empty(&slow_work_queue)) { | ||
104 | work = list_entry(slow_work_queue.next, | ||
105 | struct slow_work, link); | ||
106 | if (test_and_set_bit_lock(SLOW_WORK_EXECUTING, &work->flags)) | ||
107 | BUG(); | ||
108 | list_del_init(&work->link); | ||
109 | very_slow = false; | ||
110 | } else { | ||
111 | very_slow = false; /* avoid the compiler warning */ | ||
112 | } | ||
113 | spin_unlock_irq(&slow_work_queue_lock); | ||
114 | |||
115 | if (!work) | ||
116 | return false; | ||
117 | |||
118 | if (!test_and_clear_bit(SLOW_WORK_PENDING, &work->flags)) | ||
119 | BUG(); | ||
120 | |||
121 | work->ops->execute(work); | ||
122 | |||
123 | if (very_slow) | ||
124 | atomic_dec(&vslow_work_executing_count); | ||
125 | clear_bit_unlock(SLOW_WORK_EXECUTING, &work->flags); | ||
126 | |||
127 | /* if someone tried to enqueue the item whilst we were executing it, | ||
128 | * then it'll be left unenqueued to avoid multiple threads trying to | ||
129 | * execute it simultaneously | ||
130 | * | ||
131 | * there is, however, a race between us testing the pending flag and | ||
132 | * getting the spinlock, and between the enqueuer setting the pending | ||
133 | * flag and getting the spinlock, so we use a deferral bit to tell us | ||
134 | * if the enqueuer got there first | ||
135 | */ | ||
136 | if (test_bit(SLOW_WORK_PENDING, &work->flags)) { | ||
137 | spin_lock_irq(&slow_work_queue_lock); | ||
138 | |||
139 | if (!test_bit(SLOW_WORK_EXECUTING, &work->flags) && | ||
140 | test_and_clear_bit(SLOW_WORK_ENQ_DEFERRED, &work->flags)) | ||
141 | goto auto_requeue; | ||
142 | |||
143 | spin_unlock_irq(&slow_work_queue_lock); | ||
144 | } | ||
145 | |||
146 | work->ops->put_ref(work); | ||
147 | return true; | ||
148 | |||
149 | auto_requeue: | ||
150 | /* we must complete the enqueue operation | ||
151 | * - we transfer our ref on the item back to the appropriate queue | ||
152 | * - don't wake another thread up as we're awake already | ||
153 | */ | ||
154 | if (test_bit(SLOW_WORK_VERY_SLOW, &work->flags)) | ||
155 | list_add_tail(&work->link, &vslow_work_queue); | ||
156 | else | ||
157 | list_add_tail(&work->link, &slow_work_queue); | ||
158 | spin_unlock_irq(&slow_work_queue_lock); | ||
159 | return true; | ||
160 | } | ||
161 | |||
162 | /** | ||
163 | * slow_work_enqueue - Schedule a slow work item for processing | ||
164 | * @work: The work item to queue | ||
165 | * | ||
166 | * Schedule a slow work item for processing. If the item is already undergoing | ||
167 | * execution, this guarantees not to re-enter the execution routine until the | ||
168 | * first execution finishes. | ||
169 | * | ||
170 | * The item is pinned by this function as it retains a reference to it, managed | ||
171 | * through the item operations. The item is unpinned once it has been | ||
172 | * executed. | ||
173 | * | ||
174 | * An item may hog the thread that is running it for a relatively large amount | ||
175 | * of time, sufficient, for example, to perform several lookup, mkdir, create | ||
176 | * and setxattr operations. It may sleep on I/O and may sleep to obtain locks. | ||
177 | * | ||
178 | * Conversely, if a number of items are awaiting processing, it may take some | ||
179 | * time before any given item is given attention. The number of threads in the | ||
180 | * pool may be increased to deal with demand, but only up to a limit. | ||
181 | * | ||
182 | * If SLOW_WORK_VERY_SLOW is set on the work item, then it will be placed in | ||
183 | * the very slow queue, from which only a portion of the threads will be | ||
184 | * allowed to pick items to execute. This ensures that very slow items won't | ||
185 | * overly block ones that are just ordinarily slow. | ||
186 | * | ||
187 | * Returns 0 if successful, -EAGAIN if not. | ||
188 | */ | ||
189 | int slow_work_enqueue(struct slow_work *work) | ||
190 | { | ||
191 | unsigned long flags; | ||
192 | |||
193 | BUG_ON(slow_work_user_count <= 0); | ||
194 | BUG_ON(!work); | ||
195 | BUG_ON(!work->ops); | ||
196 | BUG_ON(!work->ops->get_ref); | ||
197 | |||
198 | /* when honouring an enqueue request, we only promise that we will run | ||
199 | * the work function in the future; we do not promise to run it once | ||
200 | * per enqueue request | ||
201 | * | ||
202 | * we use the PENDING bit to merge together repeat requests without | ||
203 | * having to disable IRQs and take the spinlock, whilst still | ||
204 | * maintaining our promise | ||
205 | */ | ||
206 | if (!test_and_set_bit_lock(SLOW_WORK_PENDING, &work->flags)) { | ||
207 | spin_lock_irqsave(&slow_work_queue_lock, flags); | ||
208 | |||
209 | /* we promise that we will not attempt to execute the work | ||
210 | * function in more than one thread simultaneously | ||
211 | * | ||
212 | * this, however, leaves us with a problem if we're asked to | ||
213 | * enqueue the work whilst someone is executing the work | ||
214 | * function as simply queueing the work immediately means that | ||
215 | * another thread may try executing it whilst it is already | ||
216 | * under execution | ||
217 | * | ||
218 | * to deal with this, we set the ENQ_DEFERRED bit instead of | ||
219 | * enqueueing, and the thread currently executing the work | ||
220 | * function will enqueue the work item when the work function | ||
221 | * returns and it has cleared the EXECUTING bit | ||
222 | */ | ||
223 | if (test_bit(SLOW_WORK_EXECUTING, &work->flags)) { | ||
224 | set_bit(SLOW_WORK_ENQ_DEFERRED, &work->flags); | ||
225 | } else { | ||
226 | if (work->ops->get_ref(work) < 0) | ||
227 | goto cant_get_ref; | ||
228 | if (test_bit(SLOW_WORK_VERY_SLOW, &work->flags)) | ||
229 | list_add_tail(&work->link, &vslow_work_queue); | ||
230 | else | ||
231 | list_add_tail(&work->link, &slow_work_queue); | ||
232 | wake_up(&slow_work_thread_wq); | ||
233 | } | ||
234 | |||
235 | spin_unlock_irqrestore(&slow_work_queue_lock, flags); | ||
236 | } | ||
237 | return 0; | ||
238 | |||
239 | cant_get_ref: | ||
240 | spin_unlock_irqrestore(&slow_work_queue_lock, flags); | ||
241 | return -EAGAIN; | ||
242 | } | ||
243 | EXPORT_SYMBOL(slow_work_enqueue); | ||
244 | |||
245 | /* | ||
246 | * Determine if there is slow work available for dispatch | ||
247 | */ | ||
248 | static inline bool slow_work_available(int vsmax) | ||
249 | { | ||
250 | return !list_empty(&slow_work_queue) || | ||
251 | (!list_empty(&vslow_work_queue) && | ||
252 | atomic_read(&vslow_work_executing_count) < vsmax); | ||
253 | } | ||
254 | |||
255 | /* | ||
256 | * Worker thread dispatcher | ||
257 | */ | ||
258 | static int slow_work_thread(void *_data) | ||
259 | { | ||
260 | int vsmax; | ||
261 | |||
262 | DEFINE_WAIT(wait); | ||
263 | |||
264 | set_freezable(); | ||
265 | set_user_nice(current, -5); | ||
266 | |||
267 | for (;;) { | ||
268 | vsmax = vslow_work_proportion; | ||
269 | vsmax *= atomic_read(&slow_work_thread_count); | ||
270 | vsmax /= 100; | ||
271 | |||
272 | prepare_to_wait(&slow_work_thread_wq, &wait, | ||
273 | TASK_INTERRUPTIBLE); | ||
274 | if (!freezing(current) && | ||
275 | !slow_work_threads_should_exit && | ||
276 | !slow_work_available(vsmax)) | ||
277 | schedule(); | ||
278 | finish_wait(&slow_work_thread_wq, &wait); | ||
279 | |||
280 | try_to_freeze(); | ||
281 | |||
282 | vsmax = vslow_work_proportion; | ||
283 | vsmax *= atomic_read(&slow_work_thread_count); | ||
284 | vsmax /= 100; | ||
285 | |||
286 | if (slow_work_available(vsmax) && slow_work_execute()) { | ||
287 | cond_resched(); | ||
288 | continue; | ||
289 | } | ||
290 | |||
291 | if (slow_work_threads_should_exit) | ||
292 | break; | ||
293 | } | ||
294 | |||
295 | if (atomic_dec_and_test(&slow_work_thread_count)) | ||
296 | complete_and_exit(&slow_work_last_thread_exited, 0); | ||
297 | return 0; | ||
298 | } | ||
299 | |||
300 | /** | ||
301 | * slow_work_register_user - Register a user of the facility | ||
302 | * | ||
303 | * Register a user of the facility, starting up the initial threads if there | ||
304 | * aren't any other users at this point. This will return 0 if successful, or | ||
305 | * an error if not. | ||
306 | */ | ||
307 | int slow_work_register_user(void) | ||
308 | { | ||
309 | struct task_struct *p; | ||
310 | int loop; | ||
311 | |||
312 | mutex_lock(&slow_work_user_lock); | ||
313 | |||
314 | if (slow_work_user_count == 0) { | ||
315 | printk(KERN_NOTICE "Slow work thread pool: Starting up\n"); | ||
316 | init_completion(&slow_work_last_thread_exited); | ||
317 | |||
318 | slow_work_threads_should_exit = false; | ||
319 | |||
320 | /* start the minimum number of threads */ | ||
321 | for (loop = 0; loop < slow_work_min_threads; loop++) { | ||
322 | atomic_inc(&slow_work_thread_count); | ||
323 | p = kthread_run(slow_work_thread, NULL, "kslowd"); | ||
324 | if (IS_ERR(p)) | ||
325 | goto error; | ||
326 | } | ||
327 | printk(KERN_NOTICE "Slow work thread pool: Ready\n"); | ||
328 | } | ||
329 | |||
330 | slow_work_user_count++; | ||
331 | mutex_unlock(&slow_work_user_lock); | ||
332 | return 0; | ||
333 | |||
334 | error: | ||
335 | if (atomic_dec_and_test(&slow_work_thread_count)) | ||
336 | complete(&slow_work_last_thread_exited); | ||
337 | if (loop > 0) { | ||
338 | printk(KERN_ERR "Slow work thread pool:" | ||
339 | " Aborting startup on ENOMEM\n"); | ||
340 | slow_work_threads_should_exit = true; | ||
341 | wake_up_all(&slow_work_thread_wq); | ||
342 | wait_for_completion(&slow_work_last_thread_exited); | ||
343 | printk(KERN_ERR "Slow work thread pool: Aborted\n"); | ||
344 | } | ||
345 | mutex_unlock(&slow_work_user_lock); | ||
346 | return PTR_ERR(p); | ||
347 | } | ||
348 | EXPORT_SYMBOL(slow_work_register_user); | ||
349 | |||
350 | /** | ||
351 | * slow_work_unregister_user - Unregister a user of the facility | ||
352 | * | ||
353 | * Unregister a user of the facility, killing all the threads if this was the | ||
354 | * last one. | ||
355 | */ | ||
356 | void slow_work_unregister_user(void) | ||
357 | { | ||
358 | mutex_lock(&slow_work_user_lock); | ||
359 | |||
360 | BUG_ON(slow_work_user_count <= 0); | ||
361 | |||
362 | slow_work_user_count--; | ||
363 | if (slow_work_user_count == 0) { | ||
364 | printk(KERN_NOTICE "Slow work thread pool: Shutting down\n"); | ||
365 | slow_work_threads_should_exit = true; | ||
366 | wake_up_all(&slow_work_thread_wq); | ||
367 | wait_for_completion(&slow_work_last_thread_exited); | ||
368 | printk(KERN_NOTICE "Slow work thread pool:" | ||
369 | " Shut down complete\n"); | ||
370 | } | ||
371 | |||
372 | mutex_unlock(&slow_work_user_lock); | ||
373 | } | ||
374 | EXPORT_SYMBOL(slow_work_unregister_user); | ||
375 | |||
376 | /* | ||
377 | * Initialise the slow work facility | ||
378 | */ | ||
379 | static int __init init_slow_work(void) | ||
380 | { | ||
381 | unsigned nr_cpus = num_possible_cpus(); | ||
382 | |||
383 | if (nr_cpus > slow_work_max_threads) | ||
384 | slow_work_max_threads = nr_cpus; | ||
385 | return 0; | ||
386 | } | ||
387 | |||
388 | subsys_initcall(init_slow_work); | ||