aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/sched
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2013-02-19 21:19:48 -0500
committerLinus Torvalds <torvalds@linux-foundation.org>2013-02-19 21:19:48 -0500
commitd652e1eb8e7b739fccbfb503a3da3e9f640fbf3d (patch)
tree55ab77bad0cbb045eac0b84b80d63f88f1ae09e6 /kernel/sched
parent8f55cea410dbc56114bb71a3742032070c8108d0 (diff)
parent77852fea6e2442a0e654a9292060489895de18c7 (diff)
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler changes from Ingo Molnar: "Main changes: - scheduler side full-dynticks (user-space execution is undisturbed and receives no timer IRQs) preparation changes that convert the cputime accounting code to be full-dynticks ready, from Frederic Weisbecker. - Initial sched.h split-up changes, by Clark Williams - select_idle_sibling() performance improvement by Mike Galbraith: " 1 tbench pair (worst case) in a 10 core + SMT package: pre 15.22 MB/sec 1 procs post 252.01 MB/sec 1 procs " - sched_rr_get_interval() ABI fix/change. We think this detail is not used by apps (so it's not an ABI in practice), but lets keep it under observation. - misc RT scheduling cleanups, optimizations" * 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits) sched/rt: Add <linux/sched/rt.h> header to <linux/init_task.h> cputime: Remove irqsave from seqlock readers sched, powerpc: Fix sched.h split-up build failure cputime: Restore CPU_ACCOUNTING config defaults for PPC64 sched/rt: Move rt specific bits into new header file sched/rt: Add a tuning knob to allow changing SCHED_RR timeslice sched: Move sched.h sysctl bits into separate header sched: Fix signedness bug in yield_to() sched: Fix select_idle_sibling() bouncing cow syndrome sched/rt: Further simplify pick_rt_task() sched/rt: Do not account zero delta_exec in update_curr_rt() cputime: Safely read cputime of full dynticks CPUs kvm: Prepare to add generic guest entry/exit callbacks cputime: Use accessors to read task cputime stats cputime: Allow dynamic switch between tick/virtual based cputime accounting cputime: Generic on-demand virtual cputime accounting cputime: Move default nsecs_to_cputime() to jiffies based cputime file cputime: Librarize per nsecs resolution cputime definitions cputime: Avoid multiplication overflow on utime scaling context_tracking: Export context state for generic vtime ... Fix up conflict in kernel/context_tracking.c due to comment additions.
Diffstat (limited to 'kernel/sched')
-rw-r--r--kernel/sched/core.c22
-rw-r--r--kernel/sched/cpupri.c2
-rw-r--r--kernel/sched/cputime.c314
-rw-r--r--kernel/sched/fair.c27
-rw-r--r--kernel/sched/rt.c26
-rw-r--r--kernel/sched/sched.h2
6 files changed, 322 insertions, 71 deletions
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index 26058d0bebba..4a88f1d51563 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -4371,7 +4371,7 @@ bool __sched yield_to(struct task_struct *p, bool preempt)
4371 struct task_struct *curr = current; 4371 struct task_struct *curr = current;
4372 struct rq *rq, *p_rq; 4372 struct rq *rq, *p_rq;
4373 unsigned long flags; 4373 unsigned long flags;
4374 bool yielded = 0; 4374 int yielded = 0;
4375 4375
4376 local_irq_save(flags); 4376 local_irq_save(flags);
4377 rq = this_rq(); 4377 rq = this_rq();
@@ -4667,6 +4667,7 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu)
4667 */ 4667 */
4668 idle->sched_class = &idle_sched_class; 4668 idle->sched_class = &idle_sched_class;
4669 ftrace_graph_init_idle_task(idle, cpu); 4669 ftrace_graph_init_idle_task(idle, cpu);
4670 vtime_init_idle(idle);
4670#if defined(CONFIG_SMP) 4671#if defined(CONFIG_SMP)
4671 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 4672 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4672#endif 4673#endif
@@ -7508,6 +7509,25 @@ static int sched_rt_global_constraints(void)
7508} 7509}
7509#endif /* CONFIG_RT_GROUP_SCHED */ 7510#endif /* CONFIG_RT_GROUP_SCHED */
7510 7511
7512int sched_rr_handler(struct ctl_table *table, int write,
7513 void __user *buffer, size_t *lenp,
7514 loff_t *ppos)
7515{
7516 int ret;
7517 static DEFINE_MUTEX(mutex);
7518
7519 mutex_lock(&mutex);
7520 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7521 /* make sure that internally we keep jiffies */
7522 /* also, writing zero resets timeslice to default */
7523 if (!ret && write) {
7524 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7525 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7526 }
7527 mutex_unlock(&mutex);
7528 return ret;
7529}
7530
7511int sched_rt_handler(struct ctl_table *table, int write, 7531int sched_rt_handler(struct ctl_table *table, int write,
7512 void __user *buffer, size_t *lenp, 7532 void __user *buffer, size_t *lenp,
7513 loff_t *ppos) 7533 loff_t *ppos)
diff --git a/kernel/sched/cpupri.c b/kernel/sched/cpupri.c
index 23aa789c53ee..1095e878a46f 100644
--- a/kernel/sched/cpupri.c
+++ b/kernel/sched/cpupri.c
@@ -28,6 +28,8 @@
28 */ 28 */
29 29
30#include <linux/gfp.h> 30#include <linux/gfp.h>
31#include <linux/sched.h>
32#include <linux/sched/rt.h>
31#include "cpupri.h" 33#include "cpupri.h"
32 34
33/* Convert between a 140 based task->prio, and our 102 based cpupri */ 35/* Convert between a 140 based task->prio, and our 102 based cpupri */
diff --git a/kernel/sched/cputime.c b/kernel/sched/cputime.c
index 293b202fcf79..9857329ed280 100644
--- a/kernel/sched/cputime.c
+++ b/kernel/sched/cputime.c
@@ -3,6 +3,7 @@
3#include <linux/tsacct_kern.h> 3#include <linux/tsacct_kern.h>
4#include <linux/kernel_stat.h> 4#include <linux/kernel_stat.h>
5#include <linux/static_key.h> 5#include <linux/static_key.h>
6#include <linux/context_tracking.h>
6#include "sched.h" 7#include "sched.h"
7 8
8 9
@@ -163,7 +164,7 @@ void account_user_time(struct task_struct *p, cputime_t cputime,
163 task_group_account_field(p, index, (__force u64) cputime); 164 task_group_account_field(p, index, (__force u64) cputime);
164 165
165 /* Account for user time used */ 166 /* Account for user time used */
166 acct_update_integrals(p); 167 acct_account_cputime(p);
167} 168}
168 169
169/* 170/*
@@ -213,7 +214,7 @@ void __account_system_time(struct task_struct *p, cputime_t cputime,
213 task_group_account_field(p, index, (__force u64) cputime); 214 task_group_account_field(p, index, (__force u64) cputime);
214 215
215 /* Account for system time used */ 216 /* Account for system time used */
216 acct_update_integrals(p); 217 acct_account_cputime(p);
217} 218}
218 219
219/* 220/*
@@ -295,6 +296,7 @@ static __always_inline bool steal_account_process_tick(void)
295void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times) 296void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
296{ 297{
297 struct signal_struct *sig = tsk->signal; 298 struct signal_struct *sig = tsk->signal;
299 cputime_t utime, stime;
298 struct task_struct *t; 300 struct task_struct *t;
299 301
300 times->utime = sig->utime; 302 times->utime = sig->utime;
@@ -308,16 +310,15 @@ void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
308 310
309 t = tsk; 311 t = tsk;
310 do { 312 do {
311 times->utime += t->utime; 313 task_cputime(tsk, &utime, &stime);
312 times->stime += t->stime; 314 times->utime += utime;
315 times->stime += stime;
313 times->sum_exec_runtime += task_sched_runtime(t); 316 times->sum_exec_runtime += task_sched_runtime(t);
314 } while_each_thread(tsk, t); 317 } while_each_thread(tsk, t);
315out: 318out:
316 rcu_read_unlock(); 319 rcu_read_unlock();
317} 320}
318 321
319#ifndef CONFIG_VIRT_CPU_ACCOUNTING
320
321#ifdef CONFIG_IRQ_TIME_ACCOUNTING 322#ifdef CONFIG_IRQ_TIME_ACCOUNTING
322/* 323/*
323 * Account a tick to a process and cpustat 324 * Account a tick to a process and cpustat
@@ -382,11 +383,12 @@ static void irqtime_account_idle_ticks(int ticks)
382 irqtime_account_process_tick(current, 0, rq); 383 irqtime_account_process_tick(current, 0, rq);
383} 384}
384#else /* CONFIG_IRQ_TIME_ACCOUNTING */ 385#else /* CONFIG_IRQ_TIME_ACCOUNTING */
385static void irqtime_account_idle_ticks(int ticks) {} 386static inline void irqtime_account_idle_ticks(int ticks) {}
386static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 387static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
387 struct rq *rq) {} 388 struct rq *rq) {}
388#endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 389#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
389 390
391#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
390/* 392/*
391 * Account a single tick of cpu time. 393 * Account a single tick of cpu time.
392 * @p: the process that the cpu time gets accounted to 394 * @p: the process that the cpu time gets accounted to
@@ -397,6 +399,9 @@ void account_process_tick(struct task_struct *p, int user_tick)
397 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); 399 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
398 struct rq *rq = this_rq(); 400 struct rq *rq = this_rq();
399 401
402 if (vtime_accounting_enabled())
403 return;
404
400 if (sched_clock_irqtime) { 405 if (sched_clock_irqtime) {
401 irqtime_account_process_tick(p, user_tick, rq); 406 irqtime_account_process_tick(p, user_tick, rq);
402 return; 407 return;
@@ -438,8 +443,7 @@ void account_idle_ticks(unsigned long ticks)
438 443
439 account_idle_time(jiffies_to_cputime(ticks)); 444 account_idle_time(jiffies_to_cputime(ticks));
440} 445}
441 446#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
442#endif
443 447
444/* 448/*
445 * Use precise platform statistics if available: 449 * Use precise platform statistics if available:
@@ -461,25 +465,20 @@ void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime
461 *st = cputime.stime; 465 *st = cputime.stime;
462} 466}
463 467
464void vtime_account_system_irqsafe(struct task_struct *tsk)
465{
466 unsigned long flags;
467
468 local_irq_save(flags);
469 vtime_account_system(tsk);
470 local_irq_restore(flags);
471}
472EXPORT_SYMBOL_GPL(vtime_account_system_irqsafe);
473
474#ifndef __ARCH_HAS_VTIME_TASK_SWITCH 468#ifndef __ARCH_HAS_VTIME_TASK_SWITCH
475void vtime_task_switch(struct task_struct *prev) 469void vtime_task_switch(struct task_struct *prev)
476{ 470{
471 if (!vtime_accounting_enabled())
472 return;
473
477 if (is_idle_task(prev)) 474 if (is_idle_task(prev))
478 vtime_account_idle(prev); 475 vtime_account_idle(prev);
479 else 476 else
480 vtime_account_system(prev); 477 vtime_account_system(prev);
481 478
479#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
482 vtime_account_user(prev); 480 vtime_account_user(prev);
481#endif
483 arch_vtime_task_switch(prev); 482 arch_vtime_task_switch(prev);
484} 483}
485#endif 484#endif
@@ -493,27 +492,40 @@ void vtime_task_switch(struct task_struct *prev)
493 * vtime_account(). 492 * vtime_account().
494 */ 493 */
495#ifndef __ARCH_HAS_VTIME_ACCOUNT 494#ifndef __ARCH_HAS_VTIME_ACCOUNT
496void vtime_account(struct task_struct *tsk) 495void vtime_account_irq_enter(struct task_struct *tsk)
497{ 496{
498 if (in_interrupt() || !is_idle_task(tsk)) 497 if (!vtime_accounting_enabled())
499 vtime_account_system(tsk); 498 return;
500 else 499
501 vtime_account_idle(tsk); 500 if (!in_interrupt()) {
501 /*
502 * If we interrupted user, context_tracking_in_user()
503 * is 1 because the context tracking don't hook
504 * on irq entry/exit. This way we know if
505 * we need to flush user time on kernel entry.
506 */
507 if (context_tracking_in_user()) {
508 vtime_account_user(tsk);
509 return;
510 }
511
512 if (is_idle_task(tsk)) {
513 vtime_account_idle(tsk);
514 return;
515 }
516 }
517 vtime_account_system(tsk);
502} 518}
503EXPORT_SYMBOL_GPL(vtime_account); 519EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
504#endif /* __ARCH_HAS_VTIME_ACCOUNT */ 520#endif /* __ARCH_HAS_VTIME_ACCOUNT */
505 521
506#else 522#else /* !CONFIG_VIRT_CPU_ACCOUNTING */
507
508#ifndef nsecs_to_cputime
509# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
510#endif
511 523
512static cputime_t scale_utime(cputime_t utime, cputime_t rtime, cputime_t total) 524static cputime_t scale_stime(cputime_t stime, cputime_t rtime, cputime_t total)
513{ 525{
514 u64 temp = (__force u64) rtime; 526 u64 temp = (__force u64) rtime;
515 527
516 temp *= (__force u64) utime; 528 temp *= (__force u64) stime;
517 529
518 if (sizeof(cputime_t) == 4) 530 if (sizeof(cputime_t) == 4)
519 temp = div_u64(temp, (__force u32) total); 531 temp = div_u64(temp, (__force u32) total);
@@ -531,10 +543,10 @@ static void cputime_adjust(struct task_cputime *curr,
531 struct cputime *prev, 543 struct cputime *prev,
532 cputime_t *ut, cputime_t *st) 544 cputime_t *ut, cputime_t *st)
533{ 545{
534 cputime_t rtime, utime, total; 546 cputime_t rtime, stime, total;
535 547
536 utime = curr->utime; 548 stime = curr->stime;
537 total = utime + curr->stime; 549 total = stime + curr->utime;
538 550
539 /* 551 /*
540 * Tick based cputime accounting depend on random scheduling 552 * Tick based cputime accounting depend on random scheduling
@@ -549,17 +561,17 @@ static void cputime_adjust(struct task_cputime *curr,
549 rtime = nsecs_to_cputime(curr->sum_exec_runtime); 561 rtime = nsecs_to_cputime(curr->sum_exec_runtime);
550 562
551 if (total) 563 if (total)
552 utime = scale_utime(utime, rtime, total); 564 stime = scale_stime(stime, rtime, total);
553 else 565 else
554 utime = rtime; 566 stime = rtime;
555 567
556 /* 568 /*
557 * If the tick based count grows faster than the scheduler one, 569 * If the tick based count grows faster than the scheduler one,
558 * the result of the scaling may go backward. 570 * the result of the scaling may go backward.
559 * Let's enforce monotonicity. 571 * Let's enforce monotonicity.
560 */ 572 */
561 prev->utime = max(prev->utime, utime); 573 prev->stime = max(prev->stime, stime);
562 prev->stime = max(prev->stime, rtime - prev->utime); 574 prev->utime = max(prev->utime, rtime - prev->stime);
563 575
564 *ut = prev->utime; 576 *ut = prev->utime;
565 *st = prev->stime; 577 *st = prev->stime;
@@ -568,11 +580,10 @@ static void cputime_adjust(struct task_cputime *curr,
568void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) 580void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
569{ 581{
570 struct task_cputime cputime = { 582 struct task_cputime cputime = {
571 .utime = p->utime,
572 .stime = p->stime,
573 .sum_exec_runtime = p->se.sum_exec_runtime, 583 .sum_exec_runtime = p->se.sum_exec_runtime,
574 }; 584 };
575 585
586 task_cputime(p, &cputime.utime, &cputime.stime);
576 cputime_adjust(&cputime, &p->prev_cputime, ut, st); 587 cputime_adjust(&cputime, &p->prev_cputime, ut, st);
577} 588}
578 589
@@ -586,4 +597,221 @@ void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime
586 thread_group_cputime(p, &cputime); 597 thread_group_cputime(p, &cputime);
587 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st); 598 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
588} 599}
589#endif 600#endif /* !CONFIG_VIRT_CPU_ACCOUNTING */
601
602#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
603static unsigned long long vtime_delta(struct task_struct *tsk)
604{
605 unsigned long long clock;
606
607 clock = sched_clock();
608 if (clock < tsk->vtime_snap)
609 return 0;
610
611 return clock - tsk->vtime_snap;
612}
613
614static cputime_t get_vtime_delta(struct task_struct *tsk)
615{
616 unsigned long long delta = vtime_delta(tsk);
617
618 WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING);
619 tsk->vtime_snap += delta;
620
621 /* CHECKME: always safe to convert nsecs to cputime? */
622 return nsecs_to_cputime(delta);
623}
624
625static void __vtime_account_system(struct task_struct *tsk)
626{
627 cputime_t delta_cpu = get_vtime_delta(tsk);
628
629 account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
630}
631
632void vtime_account_system(struct task_struct *tsk)
633{
634 if (!vtime_accounting_enabled())
635 return;
636
637 write_seqlock(&tsk->vtime_seqlock);
638 __vtime_account_system(tsk);
639 write_sequnlock(&tsk->vtime_seqlock);
640}
641
642void vtime_account_irq_exit(struct task_struct *tsk)
643{
644 if (!vtime_accounting_enabled())
645 return;
646
647 write_seqlock(&tsk->vtime_seqlock);
648 if (context_tracking_in_user())
649 tsk->vtime_snap_whence = VTIME_USER;
650 __vtime_account_system(tsk);
651 write_sequnlock(&tsk->vtime_seqlock);
652}
653
654void vtime_account_user(struct task_struct *tsk)
655{
656 cputime_t delta_cpu;
657
658 if (!vtime_accounting_enabled())
659 return;
660
661 delta_cpu = get_vtime_delta(tsk);
662
663 write_seqlock(&tsk->vtime_seqlock);
664 tsk->vtime_snap_whence = VTIME_SYS;
665 account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
666 write_sequnlock(&tsk->vtime_seqlock);
667}
668
669void vtime_user_enter(struct task_struct *tsk)
670{
671 if (!vtime_accounting_enabled())
672 return;
673
674 write_seqlock(&tsk->vtime_seqlock);
675 tsk->vtime_snap_whence = VTIME_USER;
676 __vtime_account_system(tsk);
677 write_sequnlock(&tsk->vtime_seqlock);
678}
679
680void vtime_guest_enter(struct task_struct *tsk)
681{
682 write_seqlock(&tsk->vtime_seqlock);
683 __vtime_account_system(tsk);
684 current->flags |= PF_VCPU;
685 write_sequnlock(&tsk->vtime_seqlock);
686}
687
688void vtime_guest_exit(struct task_struct *tsk)
689{
690 write_seqlock(&tsk->vtime_seqlock);
691 __vtime_account_system(tsk);
692 current->flags &= ~PF_VCPU;
693 write_sequnlock(&tsk->vtime_seqlock);
694}
695
696void vtime_account_idle(struct task_struct *tsk)
697{
698 cputime_t delta_cpu = get_vtime_delta(tsk);
699
700 account_idle_time(delta_cpu);
701}
702
703bool vtime_accounting_enabled(void)
704{
705 return context_tracking_active();
706}
707
708void arch_vtime_task_switch(struct task_struct *prev)
709{
710 write_seqlock(&prev->vtime_seqlock);
711 prev->vtime_snap_whence = VTIME_SLEEPING;
712 write_sequnlock(&prev->vtime_seqlock);
713
714 write_seqlock(&current->vtime_seqlock);
715 current->vtime_snap_whence = VTIME_SYS;
716 current->vtime_snap = sched_clock();
717 write_sequnlock(&current->vtime_seqlock);
718}
719
720void vtime_init_idle(struct task_struct *t)
721{
722 unsigned long flags;
723
724 write_seqlock_irqsave(&t->vtime_seqlock, flags);
725 t->vtime_snap_whence = VTIME_SYS;
726 t->vtime_snap = sched_clock();
727 write_sequnlock_irqrestore(&t->vtime_seqlock, flags);
728}
729
730cputime_t task_gtime(struct task_struct *t)
731{
732 unsigned int seq;
733 cputime_t gtime;
734
735 do {
736 seq = read_seqbegin(&t->vtime_seqlock);
737
738 gtime = t->gtime;
739 if (t->flags & PF_VCPU)
740 gtime += vtime_delta(t);
741
742 } while (read_seqretry(&t->vtime_seqlock, seq));
743
744 return gtime;
745}
746
747/*
748 * Fetch cputime raw values from fields of task_struct and
749 * add up the pending nohz execution time since the last
750 * cputime snapshot.
751 */
752static void
753fetch_task_cputime(struct task_struct *t,
754 cputime_t *u_dst, cputime_t *s_dst,
755 cputime_t *u_src, cputime_t *s_src,
756 cputime_t *udelta, cputime_t *sdelta)
757{
758 unsigned int seq;
759 unsigned long long delta;
760
761 do {
762 *udelta = 0;
763 *sdelta = 0;
764
765 seq = read_seqbegin(&t->vtime_seqlock);
766
767 if (u_dst)
768 *u_dst = *u_src;
769 if (s_dst)
770 *s_dst = *s_src;
771
772 /* Task is sleeping, nothing to add */
773 if (t->vtime_snap_whence == VTIME_SLEEPING ||
774 is_idle_task(t))
775 continue;
776
777 delta = vtime_delta(t);
778
779 /*
780 * Task runs either in user or kernel space, add pending nohz time to
781 * the right place.
782 */
783 if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
784 *udelta = delta;
785 } else {
786 if (t->vtime_snap_whence == VTIME_SYS)
787 *sdelta = delta;
788 }
789 } while (read_seqretry(&t->vtime_seqlock, seq));
790}
791
792
793void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
794{
795 cputime_t udelta, sdelta;
796
797 fetch_task_cputime(t, utime, stime, &t->utime,
798 &t->stime, &udelta, &sdelta);
799 if (utime)
800 *utime += udelta;
801 if (stime)
802 *stime += sdelta;
803}
804
805void task_cputime_scaled(struct task_struct *t,
806 cputime_t *utimescaled, cputime_t *stimescaled)
807{
808 cputime_t udelta, sdelta;
809
810 fetch_task_cputime(t, utimescaled, stimescaled,
811 &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
812 if (utimescaled)
813 *utimescaled += cputime_to_scaled(udelta);
814 if (stimescaled)
815 *stimescaled += cputime_to_scaled(sdelta);
816}
817#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index 81fa53643409..7a33e5986fc5 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -1680,9 +1680,7 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1680 } 1680 }
1681 1681
1682 /* ensure we never gain time by being placed backwards. */ 1682 /* ensure we never gain time by being placed backwards. */
1683 vruntime = max_vruntime(se->vruntime, vruntime); 1683 se->vruntime = max_vruntime(se->vruntime, vruntime);
1684
1685 se->vruntime = vruntime;
1686} 1684}
1687 1685
1688static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 1686static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
@@ -3254,25 +3252,18 @@ find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3254 */ 3252 */
3255static int select_idle_sibling(struct task_struct *p, int target) 3253static int select_idle_sibling(struct task_struct *p, int target)
3256{ 3254{
3257 int cpu = smp_processor_id();
3258 int prev_cpu = task_cpu(p);
3259 struct sched_domain *sd; 3255 struct sched_domain *sd;
3260 struct sched_group *sg; 3256 struct sched_group *sg;
3261 int i; 3257 int i = task_cpu(p);
3262 3258
3263 /* 3259 if (idle_cpu(target))
3264 * If the task is going to be woken-up on this cpu and if it is 3260 return target;
3265 * already idle, then it is the right target.
3266 */
3267 if (target == cpu && idle_cpu(cpu))
3268 return cpu;
3269 3261
3270 /* 3262 /*
3271 * If the task is going to be woken-up on the cpu where it previously 3263 * If the prevous cpu is cache affine and idle, don't be stupid.
3272 * ran and if it is currently idle, then it the right target.
3273 */ 3264 */
3274 if (target == prev_cpu && idle_cpu(prev_cpu)) 3265 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3275 return prev_cpu; 3266 return i;
3276 3267
3277 /* 3268 /*
3278 * Otherwise, iterate the domains and find an elegible idle cpu. 3269 * Otherwise, iterate the domains and find an elegible idle cpu.
@@ -3286,7 +3277,7 @@ static int select_idle_sibling(struct task_struct *p, int target)
3286 goto next; 3277 goto next;
3287 3278
3288 for_each_cpu(i, sched_group_cpus(sg)) { 3279 for_each_cpu(i, sched_group_cpus(sg)) {
3289 if (!idle_cpu(i)) 3280 if (i == target || !idle_cpu(i))
3290 goto next; 3281 goto next;
3291 } 3282 }
3292 3283
@@ -6101,7 +6092,7 @@ static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task
6101 * idle runqueue: 6092 * idle runqueue:
6102 */ 6093 */
6103 if (rq->cfs.load.weight) 6094 if (rq->cfs.load.weight)
6104 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); 6095 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
6105 6096
6106 return rr_interval; 6097 return rr_interval;
6107} 6098}
diff --git a/kernel/sched/rt.c b/kernel/sched/rt.c
index 4f02b2847357..127a2c4cf4ab 100644
--- a/kernel/sched/rt.c
+++ b/kernel/sched/rt.c
@@ -7,6 +7,8 @@
7 7
8#include <linux/slab.h> 8#include <linux/slab.h>
9 9
10int sched_rr_timeslice = RR_TIMESLICE;
11
10static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); 12static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
11 13
12struct rt_bandwidth def_rt_bandwidth; 14struct rt_bandwidth def_rt_bandwidth;
@@ -925,8 +927,8 @@ static void update_curr_rt(struct rq *rq)
925 return; 927 return;
926 928
927 delta_exec = rq->clock_task - curr->se.exec_start; 929 delta_exec = rq->clock_task - curr->se.exec_start;
928 if (unlikely((s64)delta_exec < 0)) 930 if (unlikely((s64)delta_exec <= 0))
929 delta_exec = 0; 931 return;
930 932
931 schedstat_set(curr->se.statistics.exec_max, 933 schedstat_set(curr->se.statistics.exec_max,
932 max(curr->se.statistics.exec_max, delta_exec)); 934 max(curr->se.statistics.exec_max, delta_exec));
@@ -1427,8 +1429,7 @@ static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1427static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) 1429static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1428{ 1430{
1429 if (!task_running(rq, p) && 1431 if (!task_running(rq, p) &&
1430 (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) && 1432 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1431 (p->nr_cpus_allowed > 1))
1432 return 1; 1433 return 1;
1433 return 0; 1434 return 0;
1434} 1435}
@@ -1889,8 +1890,11 @@ static void switched_from_rt(struct rq *rq, struct task_struct *p)
1889 * we may need to handle the pulling of RT tasks 1890 * we may need to handle the pulling of RT tasks
1890 * now. 1891 * now.
1891 */ 1892 */
1892 if (p->on_rq && !rq->rt.rt_nr_running) 1893 if (!p->on_rq || rq->rt.rt_nr_running)
1893 pull_rt_task(rq); 1894 return;
1895
1896 if (pull_rt_task(rq))
1897 resched_task(rq->curr);
1894} 1898}
1895 1899
1896void init_sched_rt_class(void) 1900void init_sched_rt_class(void)
@@ -1985,7 +1989,11 @@ static void watchdog(struct rq *rq, struct task_struct *p)
1985 if (soft != RLIM_INFINITY) { 1989 if (soft != RLIM_INFINITY) {
1986 unsigned long next; 1990 unsigned long next;
1987 1991
1988 p->rt.timeout++; 1992 if (p->rt.watchdog_stamp != jiffies) {
1993 p->rt.timeout++;
1994 p->rt.watchdog_stamp = jiffies;
1995 }
1996
1989 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); 1997 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1990 if (p->rt.timeout > next) 1998 if (p->rt.timeout > next)
1991 p->cputime_expires.sched_exp = p->se.sum_exec_runtime; 1999 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
@@ -2010,7 +2018,7 @@ static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2010 if (--p->rt.time_slice) 2018 if (--p->rt.time_slice)
2011 return; 2019 return;
2012 2020
2013 p->rt.time_slice = RR_TIMESLICE; 2021 p->rt.time_slice = sched_rr_timeslice;
2014 2022
2015 /* 2023 /*
2016 * Requeue to the end of queue if we (and all of our ancestors) are the 2024 * Requeue to the end of queue if we (and all of our ancestors) are the
@@ -2041,7 +2049,7 @@ static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2041 * Time slice is 0 for SCHED_FIFO tasks 2049 * Time slice is 0 for SCHED_FIFO tasks
2042 */ 2050 */
2043 if (task->policy == SCHED_RR) 2051 if (task->policy == SCHED_RR)
2044 return RR_TIMESLICE; 2052 return sched_rr_timeslice;
2045 else 2053 else
2046 return 0; 2054 return 0;
2047} 2055}
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index fc886441436a..cc03cfdf469f 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -1,5 +1,7 @@
1 1
2#include <linux/sched.h> 2#include <linux/sched.h>
3#include <linux/sched/sysctl.h>
4#include <linux/sched/rt.h>
3#include <linux/mutex.h> 5#include <linux/mutex.h>
4#include <linux/spinlock.h> 6#include <linux/spinlock.h>
5#include <linux/stop_machine.h> 7#include <linux/stop_machine.h>