diff options
author | Thomas Gleixner <tglx@linutronix.de> | 2011-05-20 14:06:24 -0400 |
---|---|---|
committer | Thomas Gleixner <tglx@linutronix.de> | 2011-05-20 14:08:05 -0400 |
commit | 250f972d85effad5b6e10da4bbd877e6a4b503b6 (patch) | |
tree | 007393a6fc6439af7e0121dd99a6f9f9fb8405bc /kernel/events | |
parent | 7372b0b122af0f6675f3ab65bfd91c8a438e0480 (diff) | |
parent | bbe7b8bef48c567f5ff3f6041c1fb011292e8f12 (diff) |
Merge branch 'timers/urgent' into timers/core
Reason: Get upstream fixes and kfree_rcu which is necessary for a
follow up patch.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Diffstat (limited to 'kernel/events')
-rw-r--r-- | kernel/events/Makefile | 6 | ||||
-rw-r--r-- | kernel/events/core.c | 7439 | ||||
-rw-r--r-- | kernel/events/hw_breakpoint.c | 659 |
3 files changed, 8104 insertions, 0 deletions
diff --git a/kernel/events/Makefile b/kernel/events/Makefile new file mode 100644 index 000000000000..1ce23d3d8394 --- /dev/null +++ b/kernel/events/Makefile | |||
@@ -0,0 +1,6 @@ | |||
1 | ifdef CONFIG_FUNCTION_TRACER | ||
2 | CFLAGS_REMOVE_core.o = -pg | ||
3 | endif | ||
4 | |||
5 | obj-y := core.o | ||
6 | obj-$(CONFIG_HAVE_HW_BREAKPOINT) += hw_breakpoint.o | ||
diff --git a/kernel/events/core.c b/kernel/events/core.c new file mode 100644 index 000000000000..c09767f7db3e --- /dev/null +++ b/kernel/events/core.c | |||
@@ -0,0 +1,7439 @@ | |||
1 | /* | ||
2 | * Performance events core code: | ||
3 | * | ||
4 | * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> | ||
5 | * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar | ||
6 | * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | ||
7 | * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> | ||
8 | * | ||
9 | * For licensing details see kernel-base/COPYING | ||
10 | */ | ||
11 | |||
12 | #include <linux/fs.h> | ||
13 | #include <linux/mm.h> | ||
14 | #include <linux/cpu.h> | ||
15 | #include <linux/smp.h> | ||
16 | #include <linux/idr.h> | ||
17 | #include <linux/file.h> | ||
18 | #include <linux/poll.h> | ||
19 | #include <linux/slab.h> | ||
20 | #include <linux/hash.h> | ||
21 | #include <linux/sysfs.h> | ||
22 | #include <linux/dcache.h> | ||
23 | #include <linux/percpu.h> | ||
24 | #include <linux/ptrace.h> | ||
25 | #include <linux/reboot.h> | ||
26 | #include <linux/vmstat.h> | ||
27 | #include <linux/device.h> | ||
28 | #include <linux/vmalloc.h> | ||
29 | #include <linux/hardirq.h> | ||
30 | #include <linux/rculist.h> | ||
31 | #include <linux/uaccess.h> | ||
32 | #include <linux/syscalls.h> | ||
33 | #include <linux/anon_inodes.h> | ||
34 | #include <linux/kernel_stat.h> | ||
35 | #include <linux/perf_event.h> | ||
36 | #include <linux/ftrace_event.h> | ||
37 | #include <linux/hw_breakpoint.h> | ||
38 | |||
39 | #include <asm/irq_regs.h> | ||
40 | |||
41 | struct remote_function_call { | ||
42 | struct task_struct *p; | ||
43 | int (*func)(void *info); | ||
44 | void *info; | ||
45 | int ret; | ||
46 | }; | ||
47 | |||
48 | static void remote_function(void *data) | ||
49 | { | ||
50 | struct remote_function_call *tfc = data; | ||
51 | struct task_struct *p = tfc->p; | ||
52 | |||
53 | if (p) { | ||
54 | tfc->ret = -EAGAIN; | ||
55 | if (task_cpu(p) != smp_processor_id() || !task_curr(p)) | ||
56 | return; | ||
57 | } | ||
58 | |||
59 | tfc->ret = tfc->func(tfc->info); | ||
60 | } | ||
61 | |||
62 | /** | ||
63 | * task_function_call - call a function on the cpu on which a task runs | ||
64 | * @p: the task to evaluate | ||
65 | * @func: the function to be called | ||
66 | * @info: the function call argument | ||
67 | * | ||
68 | * Calls the function @func when the task is currently running. This might | ||
69 | * be on the current CPU, which just calls the function directly | ||
70 | * | ||
71 | * returns: @func return value, or | ||
72 | * -ESRCH - when the process isn't running | ||
73 | * -EAGAIN - when the process moved away | ||
74 | */ | ||
75 | static int | ||
76 | task_function_call(struct task_struct *p, int (*func) (void *info), void *info) | ||
77 | { | ||
78 | struct remote_function_call data = { | ||
79 | .p = p, | ||
80 | .func = func, | ||
81 | .info = info, | ||
82 | .ret = -ESRCH, /* No such (running) process */ | ||
83 | }; | ||
84 | |||
85 | if (task_curr(p)) | ||
86 | smp_call_function_single(task_cpu(p), remote_function, &data, 1); | ||
87 | |||
88 | return data.ret; | ||
89 | } | ||
90 | |||
91 | /** | ||
92 | * cpu_function_call - call a function on the cpu | ||
93 | * @func: the function to be called | ||
94 | * @info: the function call argument | ||
95 | * | ||
96 | * Calls the function @func on the remote cpu. | ||
97 | * | ||
98 | * returns: @func return value or -ENXIO when the cpu is offline | ||
99 | */ | ||
100 | static int cpu_function_call(int cpu, int (*func) (void *info), void *info) | ||
101 | { | ||
102 | struct remote_function_call data = { | ||
103 | .p = NULL, | ||
104 | .func = func, | ||
105 | .info = info, | ||
106 | .ret = -ENXIO, /* No such CPU */ | ||
107 | }; | ||
108 | |||
109 | smp_call_function_single(cpu, remote_function, &data, 1); | ||
110 | |||
111 | return data.ret; | ||
112 | } | ||
113 | |||
114 | #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ | ||
115 | PERF_FLAG_FD_OUTPUT |\ | ||
116 | PERF_FLAG_PID_CGROUP) | ||
117 | |||
118 | enum event_type_t { | ||
119 | EVENT_FLEXIBLE = 0x1, | ||
120 | EVENT_PINNED = 0x2, | ||
121 | EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, | ||
122 | }; | ||
123 | |||
124 | /* | ||
125 | * perf_sched_events : >0 events exist | ||
126 | * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu | ||
127 | */ | ||
128 | struct jump_label_key perf_sched_events __read_mostly; | ||
129 | static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); | ||
130 | |||
131 | static atomic_t nr_mmap_events __read_mostly; | ||
132 | static atomic_t nr_comm_events __read_mostly; | ||
133 | static atomic_t nr_task_events __read_mostly; | ||
134 | |||
135 | static LIST_HEAD(pmus); | ||
136 | static DEFINE_MUTEX(pmus_lock); | ||
137 | static struct srcu_struct pmus_srcu; | ||
138 | |||
139 | /* | ||
140 | * perf event paranoia level: | ||
141 | * -1 - not paranoid at all | ||
142 | * 0 - disallow raw tracepoint access for unpriv | ||
143 | * 1 - disallow cpu events for unpriv | ||
144 | * 2 - disallow kernel profiling for unpriv | ||
145 | */ | ||
146 | int sysctl_perf_event_paranoid __read_mostly = 1; | ||
147 | |||
148 | /* Minimum for 512 kiB + 1 user control page */ | ||
149 | int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ | ||
150 | |||
151 | /* | ||
152 | * max perf event sample rate | ||
153 | */ | ||
154 | #define DEFAULT_MAX_SAMPLE_RATE 100000 | ||
155 | int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; | ||
156 | static int max_samples_per_tick __read_mostly = | ||
157 | DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); | ||
158 | |||
159 | int perf_proc_update_handler(struct ctl_table *table, int write, | ||
160 | void __user *buffer, size_t *lenp, | ||
161 | loff_t *ppos) | ||
162 | { | ||
163 | int ret = proc_dointvec(table, write, buffer, lenp, ppos); | ||
164 | |||
165 | if (ret || !write) | ||
166 | return ret; | ||
167 | |||
168 | max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); | ||
169 | |||
170 | return 0; | ||
171 | } | ||
172 | |||
173 | static atomic64_t perf_event_id; | ||
174 | |||
175 | static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, | ||
176 | enum event_type_t event_type); | ||
177 | |||
178 | static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, | ||
179 | enum event_type_t event_type, | ||
180 | struct task_struct *task); | ||
181 | |||
182 | static void update_context_time(struct perf_event_context *ctx); | ||
183 | static u64 perf_event_time(struct perf_event *event); | ||
184 | |||
185 | void __weak perf_event_print_debug(void) { } | ||
186 | |||
187 | extern __weak const char *perf_pmu_name(void) | ||
188 | { | ||
189 | return "pmu"; | ||
190 | } | ||
191 | |||
192 | static inline u64 perf_clock(void) | ||
193 | { | ||
194 | return local_clock(); | ||
195 | } | ||
196 | |||
197 | static inline struct perf_cpu_context * | ||
198 | __get_cpu_context(struct perf_event_context *ctx) | ||
199 | { | ||
200 | return this_cpu_ptr(ctx->pmu->pmu_cpu_context); | ||
201 | } | ||
202 | |||
203 | #ifdef CONFIG_CGROUP_PERF | ||
204 | |||
205 | /* | ||
206 | * Must ensure cgroup is pinned (css_get) before calling | ||
207 | * this function. In other words, we cannot call this function | ||
208 | * if there is no cgroup event for the current CPU context. | ||
209 | */ | ||
210 | static inline struct perf_cgroup * | ||
211 | perf_cgroup_from_task(struct task_struct *task) | ||
212 | { | ||
213 | return container_of(task_subsys_state(task, perf_subsys_id), | ||
214 | struct perf_cgroup, css); | ||
215 | } | ||
216 | |||
217 | static inline bool | ||
218 | perf_cgroup_match(struct perf_event *event) | ||
219 | { | ||
220 | struct perf_event_context *ctx = event->ctx; | ||
221 | struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); | ||
222 | |||
223 | return !event->cgrp || event->cgrp == cpuctx->cgrp; | ||
224 | } | ||
225 | |||
226 | static inline void perf_get_cgroup(struct perf_event *event) | ||
227 | { | ||
228 | css_get(&event->cgrp->css); | ||
229 | } | ||
230 | |||
231 | static inline void perf_put_cgroup(struct perf_event *event) | ||
232 | { | ||
233 | css_put(&event->cgrp->css); | ||
234 | } | ||
235 | |||
236 | static inline void perf_detach_cgroup(struct perf_event *event) | ||
237 | { | ||
238 | perf_put_cgroup(event); | ||
239 | event->cgrp = NULL; | ||
240 | } | ||
241 | |||
242 | static inline int is_cgroup_event(struct perf_event *event) | ||
243 | { | ||
244 | return event->cgrp != NULL; | ||
245 | } | ||
246 | |||
247 | static inline u64 perf_cgroup_event_time(struct perf_event *event) | ||
248 | { | ||
249 | struct perf_cgroup_info *t; | ||
250 | |||
251 | t = per_cpu_ptr(event->cgrp->info, event->cpu); | ||
252 | return t->time; | ||
253 | } | ||
254 | |||
255 | static inline void __update_cgrp_time(struct perf_cgroup *cgrp) | ||
256 | { | ||
257 | struct perf_cgroup_info *info; | ||
258 | u64 now; | ||
259 | |||
260 | now = perf_clock(); | ||
261 | |||
262 | info = this_cpu_ptr(cgrp->info); | ||
263 | |||
264 | info->time += now - info->timestamp; | ||
265 | info->timestamp = now; | ||
266 | } | ||
267 | |||
268 | static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) | ||
269 | { | ||
270 | struct perf_cgroup *cgrp_out = cpuctx->cgrp; | ||
271 | if (cgrp_out) | ||
272 | __update_cgrp_time(cgrp_out); | ||
273 | } | ||
274 | |||
275 | static inline void update_cgrp_time_from_event(struct perf_event *event) | ||
276 | { | ||
277 | struct perf_cgroup *cgrp; | ||
278 | |||
279 | /* | ||
280 | * ensure we access cgroup data only when needed and | ||
281 | * when we know the cgroup is pinned (css_get) | ||
282 | */ | ||
283 | if (!is_cgroup_event(event)) | ||
284 | return; | ||
285 | |||
286 | cgrp = perf_cgroup_from_task(current); | ||
287 | /* | ||
288 | * Do not update time when cgroup is not active | ||
289 | */ | ||
290 | if (cgrp == event->cgrp) | ||
291 | __update_cgrp_time(event->cgrp); | ||
292 | } | ||
293 | |||
294 | static inline void | ||
295 | perf_cgroup_set_timestamp(struct task_struct *task, | ||
296 | struct perf_event_context *ctx) | ||
297 | { | ||
298 | struct perf_cgroup *cgrp; | ||
299 | struct perf_cgroup_info *info; | ||
300 | |||
301 | /* | ||
302 | * ctx->lock held by caller | ||
303 | * ensure we do not access cgroup data | ||
304 | * unless we have the cgroup pinned (css_get) | ||
305 | */ | ||
306 | if (!task || !ctx->nr_cgroups) | ||
307 | return; | ||
308 | |||
309 | cgrp = perf_cgroup_from_task(task); | ||
310 | info = this_cpu_ptr(cgrp->info); | ||
311 | info->timestamp = ctx->timestamp; | ||
312 | } | ||
313 | |||
314 | #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ | ||
315 | #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ | ||
316 | |||
317 | /* | ||
318 | * reschedule events based on the cgroup constraint of task. | ||
319 | * | ||
320 | * mode SWOUT : schedule out everything | ||
321 | * mode SWIN : schedule in based on cgroup for next | ||
322 | */ | ||
323 | void perf_cgroup_switch(struct task_struct *task, int mode) | ||
324 | { | ||
325 | struct perf_cpu_context *cpuctx; | ||
326 | struct pmu *pmu; | ||
327 | unsigned long flags; | ||
328 | |||
329 | /* | ||
330 | * disable interrupts to avoid geting nr_cgroup | ||
331 | * changes via __perf_event_disable(). Also | ||
332 | * avoids preemption. | ||
333 | */ | ||
334 | local_irq_save(flags); | ||
335 | |||
336 | /* | ||
337 | * we reschedule only in the presence of cgroup | ||
338 | * constrained events. | ||
339 | */ | ||
340 | rcu_read_lock(); | ||
341 | |||
342 | list_for_each_entry_rcu(pmu, &pmus, entry) { | ||
343 | |||
344 | cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); | ||
345 | |||
346 | perf_pmu_disable(cpuctx->ctx.pmu); | ||
347 | |||
348 | /* | ||
349 | * perf_cgroup_events says at least one | ||
350 | * context on this CPU has cgroup events. | ||
351 | * | ||
352 | * ctx->nr_cgroups reports the number of cgroup | ||
353 | * events for a context. | ||
354 | */ | ||
355 | if (cpuctx->ctx.nr_cgroups > 0) { | ||
356 | |||
357 | if (mode & PERF_CGROUP_SWOUT) { | ||
358 | cpu_ctx_sched_out(cpuctx, EVENT_ALL); | ||
359 | /* | ||
360 | * must not be done before ctxswout due | ||
361 | * to event_filter_match() in event_sched_out() | ||
362 | */ | ||
363 | cpuctx->cgrp = NULL; | ||
364 | } | ||
365 | |||
366 | if (mode & PERF_CGROUP_SWIN) { | ||
367 | WARN_ON_ONCE(cpuctx->cgrp); | ||
368 | /* set cgrp before ctxsw in to | ||
369 | * allow event_filter_match() to not | ||
370 | * have to pass task around | ||
371 | */ | ||
372 | cpuctx->cgrp = perf_cgroup_from_task(task); | ||
373 | cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); | ||
374 | } | ||
375 | } | ||
376 | |||
377 | perf_pmu_enable(cpuctx->ctx.pmu); | ||
378 | } | ||
379 | |||
380 | rcu_read_unlock(); | ||
381 | |||
382 | local_irq_restore(flags); | ||
383 | } | ||
384 | |||
385 | static inline void perf_cgroup_sched_out(struct task_struct *task) | ||
386 | { | ||
387 | perf_cgroup_switch(task, PERF_CGROUP_SWOUT); | ||
388 | } | ||
389 | |||
390 | static inline void perf_cgroup_sched_in(struct task_struct *task) | ||
391 | { | ||
392 | perf_cgroup_switch(task, PERF_CGROUP_SWIN); | ||
393 | } | ||
394 | |||
395 | static inline int perf_cgroup_connect(int fd, struct perf_event *event, | ||
396 | struct perf_event_attr *attr, | ||
397 | struct perf_event *group_leader) | ||
398 | { | ||
399 | struct perf_cgroup *cgrp; | ||
400 | struct cgroup_subsys_state *css; | ||
401 | struct file *file; | ||
402 | int ret = 0, fput_needed; | ||
403 | |||
404 | file = fget_light(fd, &fput_needed); | ||
405 | if (!file) | ||
406 | return -EBADF; | ||
407 | |||
408 | css = cgroup_css_from_dir(file, perf_subsys_id); | ||
409 | if (IS_ERR(css)) { | ||
410 | ret = PTR_ERR(css); | ||
411 | goto out; | ||
412 | } | ||
413 | |||
414 | cgrp = container_of(css, struct perf_cgroup, css); | ||
415 | event->cgrp = cgrp; | ||
416 | |||
417 | /* must be done before we fput() the file */ | ||
418 | perf_get_cgroup(event); | ||
419 | |||
420 | /* | ||
421 | * all events in a group must monitor | ||
422 | * the same cgroup because a task belongs | ||
423 | * to only one perf cgroup at a time | ||
424 | */ | ||
425 | if (group_leader && group_leader->cgrp != cgrp) { | ||
426 | perf_detach_cgroup(event); | ||
427 | ret = -EINVAL; | ||
428 | } | ||
429 | out: | ||
430 | fput_light(file, fput_needed); | ||
431 | return ret; | ||
432 | } | ||
433 | |||
434 | static inline void | ||
435 | perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) | ||
436 | { | ||
437 | struct perf_cgroup_info *t; | ||
438 | t = per_cpu_ptr(event->cgrp->info, event->cpu); | ||
439 | event->shadow_ctx_time = now - t->timestamp; | ||
440 | } | ||
441 | |||
442 | static inline void | ||
443 | perf_cgroup_defer_enabled(struct perf_event *event) | ||
444 | { | ||
445 | /* | ||
446 | * when the current task's perf cgroup does not match | ||
447 | * the event's, we need to remember to call the | ||
448 | * perf_mark_enable() function the first time a task with | ||
449 | * a matching perf cgroup is scheduled in. | ||
450 | */ | ||
451 | if (is_cgroup_event(event) && !perf_cgroup_match(event)) | ||
452 | event->cgrp_defer_enabled = 1; | ||
453 | } | ||
454 | |||
455 | static inline void | ||
456 | perf_cgroup_mark_enabled(struct perf_event *event, | ||
457 | struct perf_event_context *ctx) | ||
458 | { | ||
459 | struct perf_event *sub; | ||
460 | u64 tstamp = perf_event_time(event); | ||
461 | |||
462 | if (!event->cgrp_defer_enabled) | ||
463 | return; | ||
464 | |||
465 | event->cgrp_defer_enabled = 0; | ||
466 | |||
467 | event->tstamp_enabled = tstamp - event->total_time_enabled; | ||
468 | list_for_each_entry(sub, &event->sibling_list, group_entry) { | ||
469 | if (sub->state >= PERF_EVENT_STATE_INACTIVE) { | ||
470 | sub->tstamp_enabled = tstamp - sub->total_time_enabled; | ||
471 | sub->cgrp_defer_enabled = 0; | ||
472 | } | ||
473 | } | ||
474 | } | ||
475 | #else /* !CONFIG_CGROUP_PERF */ | ||
476 | |||
477 | static inline bool | ||
478 | perf_cgroup_match(struct perf_event *event) | ||
479 | { | ||
480 | return true; | ||
481 | } | ||
482 | |||
483 | static inline void perf_detach_cgroup(struct perf_event *event) | ||
484 | {} | ||
485 | |||
486 | static inline int is_cgroup_event(struct perf_event *event) | ||
487 | { | ||
488 | return 0; | ||
489 | } | ||
490 | |||
491 | static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) | ||
492 | { | ||
493 | return 0; | ||
494 | } | ||
495 | |||
496 | static inline void update_cgrp_time_from_event(struct perf_event *event) | ||
497 | { | ||
498 | } | ||
499 | |||
500 | static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) | ||
501 | { | ||
502 | } | ||
503 | |||
504 | static inline void perf_cgroup_sched_out(struct task_struct *task) | ||
505 | { | ||
506 | } | ||
507 | |||
508 | static inline void perf_cgroup_sched_in(struct task_struct *task) | ||
509 | { | ||
510 | } | ||
511 | |||
512 | static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, | ||
513 | struct perf_event_attr *attr, | ||
514 | struct perf_event *group_leader) | ||
515 | { | ||
516 | return -EINVAL; | ||
517 | } | ||
518 | |||
519 | static inline void | ||
520 | perf_cgroup_set_timestamp(struct task_struct *task, | ||
521 | struct perf_event_context *ctx) | ||
522 | { | ||
523 | } | ||
524 | |||
525 | void | ||
526 | perf_cgroup_switch(struct task_struct *task, struct task_struct *next) | ||
527 | { | ||
528 | } | ||
529 | |||
530 | static inline void | ||
531 | perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) | ||
532 | { | ||
533 | } | ||
534 | |||
535 | static inline u64 perf_cgroup_event_time(struct perf_event *event) | ||
536 | { | ||
537 | return 0; | ||
538 | } | ||
539 | |||
540 | static inline void | ||
541 | perf_cgroup_defer_enabled(struct perf_event *event) | ||
542 | { | ||
543 | } | ||
544 | |||
545 | static inline void | ||
546 | perf_cgroup_mark_enabled(struct perf_event *event, | ||
547 | struct perf_event_context *ctx) | ||
548 | { | ||
549 | } | ||
550 | #endif | ||
551 | |||
552 | void perf_pmu_disable(struct pmu *pmu) | ||
553 | { | ||
554 | int *count = this_cpu_ptr(pmu->pmu_disable_count); | ||
555 | if (!(*count)++) | ||
556 | pmu->pmu_disable(pmu); | ||
557 | } | ||
558 | |||
559 | void perf_pmu_enable(struct pmu *pmu) | ||
560 | { | ||
561 | int *count = this_cpu_ptr(pmu->pmu_disable_count); | ||
562 | if (!--(*count)) | ||
563 | pmu->pmu_enable(pmu); | ||
564 | } | ||
565 | |||
566 | static DEFINE_PER_CPU(struct list_head, rotation_list); | ||
567 | |||
568 | /* | ||
569 | * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized | ||
570 | * because they're strictly cpu affine and rotate_start is called with IRQs | ||
571 | * disabled, while rotate_context is called from IRQ context. | ||
572 | */ | ||
573 | static void perf_pmu_rotate_start(struct pmu *pmu) | ||
574 | { | ||
575 | struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); | ||
576 | struct list_head *head = &__get_cpu_var(rotation_list); | ||
577 | |||
578 | WARN_ON(!irqs_disabled()); | ||
579 | |||
580 | if (list_empty(&cpuctx->rotation_list)) | ||
581 | list_add(&cpuctx->rotation_list, head); | ||
582 | } | ||
583 | |||
584 | static void get_ctx(struct perf_event_context *ctx) | ||
585 | { | ||
586 | WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); | ||
587 | } | ||
588 | |||
589 | static void put_ctx(struct perf_event_context *ctx) | ||
590 | { | ||
591 | if (atomic_dec_and_test(&ctx->refcount)) { | ||
592 | if (ctx->parent_ctx) | ||
593 | put_ctx(ctx->parent_ctx); | ||
594 | if (ctx->task) | ||
595 | put_task_struct(ctx->task); | ||
596 | kfree_rcu(ctx, rcu_head); | ||
597 | } | ||
598 | } | ||
599 | |||
600 | static void unclone_ctx(struct perf_event_context *ctx) | ||
601 | { | ||
602 | if (ctx->parent_ctx) { | ||
603 | put_ctx(ctx->parent_ctx); | ||
604 | ctx->parent_ctx = NULL; | ||
605 | } | ||
606 | } | ||
607 | |||
608 | static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) | ||
609 | { | ||
610 | /* | ||
611 | * only top level events have the pid namespace they were created in | ||
612 | */ | ||
613 | if (event->parent) | ||
614 | event = event->parent; | ||
615 | |||
616 | return task_tgid_nr_ns(p, event->ns); | ||
617 | } | ||
618 | |||
619 | static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) | ||
620 | { | ||
621 | /* | ||
622 | * only top level events have the pid namespace they were created in | ||
623 | */ | ||
624 | if (event->parent) | ||
625 | event = event->parent; | ||
626 | |||
627 | return task_pid_nr_ns(p, event->ns); | ||
628 | } | ||
629 | |||
630 | /* | ||
631 | * If we inherit events we want to return the parent event id | ||
632 | * to userspace. | ||
633 | */ | ||
634 | static u64 primary_event_id(struct perf_event *event) | ||
635 | { | ||
636 | u64 id = event->id; | ||
637 | |||
638 | if (event->parent) | ||
639 | id = event->parent->id; | ||
640 | |||
641 | return id; | ||
642 | } | ||
643 | |||
644 | /* | ||
645 | * Get the perf_event_context for a task and lock it. | ||
646 | * This has to cope with with the fact that until it is locked, | ||
647 | * the context could get moved to another task. | ||
648 | */ | ||
649 | static struct perf_event_context * | ||
650 | perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) | ||
651 | { | ||
652 | struct perf_event_context *ctx; | ||
653 | |||
654 | rcu_read_lock(); | ||
655 | retry: | ||
656 | ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); | ||
657 | if (ctx) { | ||
658 | /* | ||
659 | * If this context is a clone of another, it might | ||
660 | * get swapped for another underneath us by | ||
661 | * perf_event_task_sched_out, though the | ||
662 | * rcu_read_lock() protects us from any context | ||
663 | * getting freed. Lock the context and check if it | ||
664 | * got swapped before we could get the lock, and retry | ||
665 | * if so. If we locked the right context, then it | ||
666 | * can't get swapped on us any more. | ||
667 | */ | ||
668 | raw_spin_lock_irqsave(&ctx->lock, *flags); | ||
669 | if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { | ||
670 | raw_spin_unlock_irqrestore(&ctx->lock, *flags); | ||
671 | goto retry; | ||
672 | } | ||
673 | |||
674 | if (!atomic_inc_not_zero(&ctx->refcount)) { | ||
675 | raw_spin_unlock_irqrestore(&ctx->lock, *flags); | ||
676 | ctx = NULL; | ||
677 | } | ||
678 | } | ||
679 | rcu_read_unlock(); | ||
680 | return ctx; | ||
681 | } | ||
682 | |||
683 | /* | ||
684 | * Get the context for a task and increment its pin_count so it | ||
685 | * can't get swapped to another task. This also increments its | ||
686 | * reference count so that the context can't get freed. | ||
687 | */ | ||
688 | static struct perf_event_context * | ||
689 | perf_pin_task_context(struct task_struct *task, int ctxn) | ||
690 | { | ||
691 | struct perf_event_context *ctx; | ||
692 | unsigned long flags; | ||
693 | |||
694 | ctx = perf_lock_task_context(task, ctxn, &flags); | ||
695 | if (ctx) { | ||
696 | ++ctx->pin_count; | ||
697 | raw_spin_unlock_irqrestore(&ctx->lock, flags); | ||
698 | } | ||
699 | return ctx; | ||
700 | } | ||
701 | |||
702 | static void perf_unpin_context(struct perf_event_context *ctx) | ||
703 | { | ||
704 | unsigned long flags; | ||
705 | |||
706 | raw_spin_lock_irqsave(&ctx->lock, flags); | ||
707 | --ctx->pin_count; | ||
708 | raw_spin_unlock_irqrestore(&ctx->lock, flags); | ||
709 | } | ||
710 | |||
711 | /* | ||
712 | * Update the record of the current time in a context. | ||
713 | */ | ||
714 | static void update_context_time(struct perf_event_context *ctx) | ||
715 | { | ||
716 | u64 now = perf_clock(); | ||
717 | |||
718 | ctx->time += now - ctx->timestamp; | ||
719 | ctx->timestamp = now; | ||
720 | } | ||
721 | |||
722 | static u64 perf_event_time(struct perf_event *event) | ||
723 | { | ||
724 | struct perf_event_context *ctx = event->ctx; | ||
725 | |||
726 | if (is_cgroup_event(event)) | ||
727 | return perf_cgroup_event_time(event); | ||
728 | |||
729 | return ctx ? ctx->time : 0; | ||
730 | } | ||
731 | |||
732 | /* | ||
733 | * Update the total_time_enabled and total_time_running fields for a event. | ||
734 | */ | ||
735 | static void update_event_times(struct perf_event *event) | ||
736 | { | ||
737 | struct perf_event_context *ctx = event->ctx; | ||
738 | u64 run_end; | ||
739 | |||
740 | if (event->state < PERF_EVENT_STATE_INACTIVE || | ||
741 | event->group_leader->state < PERF_EVENT_STATE_INACTIVE) | ||
742 | return; | ||
743 | /* | ||
744 | * in cgroup mode, time_enabled represents | ||
745 | * the time the event was enabled AND active | ||
746 | * tasks were in the monitored cgroup. This is | ||
747 | * independent of the activity of the context as | ||
748 | * there may be a mix of cgroup and non-cgroup events. | ||
749 | * | ||
750 | * That is why we treat cgroup events differently | ||
751 | * here. | ||
752 | */ | ||
753 | if (is_cgroup_event(event)) | ||
754 | run_end = perf_event_time(event); | ||
755 | else if (ctx->is_active) | ||
756 | run_end = ctx->time; | ||
757 | else | ||
758 | run_end = event->tstamp_stopped; | ||
759 | |||
760 | event->total_time_enabled = run_end - event->tstamp_enabled; | ||
761 | |||
762 | if (event->state == PERF_EVENT_STATE_INACTIVE) | ||
763 | run_end = event->tstamp_stopped; | ||
764 | else | ||
765 | run_end = perf_event_time(event); | ||
766 | |||
767 | event->total_time_running = run_end - event->tstamp_running; | ||
768 | |||
769 | } | ||
770 | |||
771 | /* | ||
772 | * Update total_time_enabled and total_time_running for all events in a group. | ||
773 | */ | ||
774 | static void update_group_times(struct perf_event *leader) | ||
775 | { | ||
776 | struct perf_event *event; | ||
777 | |||
778 | update_event_times(leader); | ||
779 | list_for_each_entry(event, &leader->sibling_list, group_entry) | ||
780 | update_event_times(event); | ||
781 | } | ||
782 | |||
783 | static struct list_head * | ||
784 | ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) | ||
785 | { | ||
786 | if (event->attr.pinned) | ||
787 | return &ctx->pinned_groups; | ||
788 | else | ||
789 | return &ctx->flexible_groups; | ||
790 | } | ||
791 | |||
792 | /* | ||
793 | * Add a event from the lists for its context. | ||
794 | * Must be called with ctx->mutex and ctx->lock held. | ||
795 | */ | ||
796 | static void | ||
797 | list_add_event(struct perf_event *event, struct perf_event_context *ctx) | ||
798 | { | ||
799 | WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); | ||
800 | event->attach_state |= PERF_ATTACH_CONTEXT; | ||
801 | |||
802 | /* | ||
803 | * If we're a stand alone event or group leader, we go to the context | ||
804 | * list, group events are kept attached to the group so that | ||
805 | * perf_group_detach can, at all times, locate all siblings. | ||
806 | */ | ||
807 | if (event->group_leader == event) { | ||
808 | struct list_head *list; | ||
809 | |||
810 | if (is_software_event(event)) | ||
811 | event->group_flags |= PERF_GROUP_SOFTWARE; | ||
812 | |||
813 | list = ctx_group_list(event, ctx); | ||
814 | list_add_tail(&event->group_entry, list); | ||
815 | } | ||
816 | |||
817 | if (is_cgroup_event(event)) | ||
818 | ctx->nr_cgroups++; | ||
819 | |||
820 | list_add_rcu(&event->event_entry, &ctx->event_list); | ||
821 | if (!ctx->nr_events) | ||
822 | perf_pmu_rotate_start(ctx->pmu); | ||
823 | ctx->nr_events++; | ||
824 | if (event->attr.inherit_stat) | ||
825 | ctx->nr_stat++; | ||
826 | } | ||
827 | |||
828 | /* | ||
829 | * Called at perf_event creation and when events are attached/detached from a | ||
830 | * group. | ||
831 | */ | ||
832 | static void perf_event__read_size(struct perf_event *event) | ||
833 | { | ||
834 | int entry = sizeof(u64); /* value */ | ||
835 | int size = 0; | ||
836 | int nr = 1; | ||
837 | |||
838 | if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
839 | size += sizeof(u64); | ||
840 | |||
841 | if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
842 | size += sizeof(u64); | ||
843 | |||
844 | if (event->attr.read_format & PERF_FORMAT_ID) | ||
845 | entry += sizeof(u64); | ||
846 | |||
847 | if (event->attr.read_format & PERF_FORMAT_GROUP) { | ||
848 | nr += event->group_leader->nr_siblings; | ||
849 | size += sizeof(u64); | ||
850 | } | ||
851 | |||
852 | size += entry * nr; | ||
853 | event->read_size = size; | ||
854 | } | ||
855 | |||
856 | static void perf_event__header_size(struct perf_event *event) | ||
857 | { | ||
858 | struct perf_sample_data *data; | ||
859 | u64 sample_type = event->attr.sample_type; | ||
860 | u16 size = 0; | ||
861 | |||
862 | perf_event__read_size(event); | ||
863 | |||
864 | if (sample_type & PERF_SAMPLE_IP) | ||
865 | size += sizeof(data->ip); | ||
866 | |||
867 | if (sample_type & PERF_SAMPLE_ADDR) | ||
868 | size += sizeof(data->addr); | ||
869 | |||
870 | if (sample_type & PERF_SAMPLE_PERIOD) | ||
871 | size += sizeof(data->period); | ||
872 | |||
873 | if (sample_type & PERF_SAMPLE_READ) | ||
874 | size += event->read_size; | ||
875 | |||
876 | event->header_size = size; | ||
877 | } | ||
878 | |||
879 | static void perf_event__id_header_size(struct perf_event *event) | ||
880 | { | ||
881 | struct perf_sample_data *data; | ||
882 | u64 sample_type = event->attr.sample_type; | ||
883 | u16 size = 0; | ||
884 | |||
885 | if (sample_type & PERF_SAMPLE_TID) | ||
886 | size += sizeof(data->tid_entry); | ||
887 | |||
888 | if (sample_type & PERF_SAMPLE_TIME) | ||
889 | size += sizeof(data->time); | ||
890 | |||
891 | if (sample_type & PERF_SAMPLE_ID) | ||
892 | size += sizeof(data->id); | ||
893 | |||
894 | if (sample_type & PERF_SAMPLE_STREAM_ID) | ||
895 | size += sizeof(data->stream_id); | ||
896 | |||
897 | if (sample_type & PERF_SAMPLE_CPU) | ||
898 | size += sizeof(data->cpu_entry); | ||
899 | |||
900 | event->id_header_size = size; | ||
901 | } | ||
902 | |||
903 | static void perf_group_attach(struct perf_event *event) | ||
904 | { | ||
905 | struct perf_event *group_leader = event->group_leader, *pos; | ||
906 | |||
907 | /* | ||
908 | * We can have double attach due to group movement in perf_event_open. | ||
909 | */ | ||
910 | if (event->attach_state & PERF_ATTACH_GROUP) | ||
911 | return; | ||
912 | |||
913 | event->attach_state |= PERF_ATTACH_GROUP; | ||
914 | |||
915 | if (group_leader == event) | ||
916 | return; | ||
917 | |||
918 | if (group_leader->group_flags & PERF_GROUP_SOFTWARE && | ||
919 | !is_software_event(event)) | ||
920 | group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; | ||
921 | |||
922 | list_add_tail(&event->group_entry, &group_leader->sibling_list); | ||
923 | group_leader->nr_siblings++; | ||
924 | |||
925 | perf_event__header_size(group_leader); | ||
926 | |||
927 | list_for_each_entry(pos, &group_leader->sibling_list, group_entry) | ||
928 | perf_event__header_size(pos); | ||
929 | } | ||
930 | |||
931 | /* | ||
932 | * Remove a event from the lists for its context. | ||
933 | * Must be called with ctx->mutex and ctx->lock held. | ||
934 | */ | ||
935 | static void | ||
936 | list_del_event(struct perf_event *event, struct perf_event_context *ctx) | ||
937 | { | ||
938 | struct perf_cpu_context *cpuctx; | ||
939 | /* | ||
940 | * We can have double detach due to exit/hot-unplug + close. | ||
941 | */ | ||
942 | if (!(event->attach_state & PERF_ATTACH_CONTEXT)) | ||
943 | return; | ||
944 | |||
945 | event->attach_state &= ~PERF_ATTACH_CONTEXT; | ||
946 | |||
947 | if (is_cgroup_event(event)) { | ||
948 | ctx->nr_cgroups--; | ||
949 | cpuctx = __get_cpu_context(ctx); | ||
950 | /* | ||
951 | * if there are no more cgroup events | ||
952 | * then cler cgrp to avoid stale pointer | ||
953 | * in update_cgrp_time_from_cpuctx() | ||
954 | */ | ||
955 | if (!ctx->nr_cgroups) | ||
956 | cpuctx->cgrp = NULL; | ||
957 | } | ||
958 | |||
959 | ctx->nr_events--; | ||
960 | if (event->attr.inherit_stat) | ||
961 | ctx->nr_stat--; | ||
962 | |||
963 | list_del_rcu(&event->event_entry); | ||
964 | |||
965 | if (event->group_leader == event) | ||
966 | list_del_init(&event->group_entry); | ||
967 | |||
968 | update_group_times(event); | ||
969 | |||
970 | /* | ||
971 | * If event was in error state, then keep it | ||
972 | * that way, otherwise bogus counts will be | ||
973 | * returned on read(). The only way to get out | ||
974 | * of error state is by explicit re-enabling | ||
975 | * of the event | ||
976 | */ | ||
977 | if (event->state > PERF_EVENT_STATE_OFF) | ||
978 | event->state = PERF_EVENT_STATE_OFF; | ||
979 | } | ||
980 | |||
981 | static void perf_group_detach(struct perf_event *event) | ||
982 | { | ||
983 | struct perf_event *sibling, *tmp; | ||
984 | struct list_head *list = NULL; | ||
985 | |||
986 | /* | ||
987 | * We can have double detach due to exit/hot-unplug + close. | ||
988 | */ | ||
989 | if (!(event->attach_state & PERF_ATTACH_GROUP)) | ||
990 | return; | ||
991 | |||
992 | event->attach_state &= ~PERF_ATTACH_GROUP; | ||
993 | |||
994 | /* | ||
995 | * If this is a sibling, remove it from its group. | ||
996 | */ | ||
997 | if (event->group_leader != event) { | ||
998 | list_del_init(&event->group_entry); | ||
999 | event->group_leader->nr_siblings--; | ||
1000 | goto out; | ||
1001 | } | ||
1002 | |||
1003 | if (!list_empty(&event->group_entry)) | ||
1004 | list = &event->group_entry; | ||
1005 | |||
1006 | /* | ||
1007 | * If this was a group event with sibling events then | ||
1008 | * upgrade the siblings to singleton events by adding them | ||
1009 | * to whatever list we are on. | ||
1010 | */ | ||
1011 | list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { | ||
1012 | if (list) | ||
1013 | list_move_tail(&sibling->group_entry, list); | ||
1014 | sibling->group_leader = sibling; | ||
1015 | |||
1016 | /* Inherit group flags from the previous leader */ | ||
1017 | sibling->group_flags = event->group_flags; | ||
1018 | } | ||
1019 | |||
1020 | out: | ||
1021 | perf_event__header_size(event->group_leader); | ||
1022 | |||
1023 | list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) | ||
1024 | perf_event__header_size(tmp); | ||
1025 | } | ||
1026 | |||
1027 | static inline int | ||
1028 | event_filter_match(struct perf_event *event) | ||
1029 | { | ||
1030 | return (event->cpu == -1 || event->cpu == smp_processor_id()) | ||
1031 | && perf_cgroup_match(event); | ||
1032 | } | ||
1033 | |||
1034 | static void | ||
1035 | event_sched_out(struct perf_event *event, | ||
1036 | struct perf_cpu_context *cpuctx, | ||
1037 | struct perf_event_context *ctx) | ||
1038 | { | ||
1039 | u64 tstamp = perf_event_time(event); | ||
1040 | u64 delta; | ||
1041 | /* | ||
1042 | * An event which could not be activated because of | ||
1043 | * filter mismatch still needs to have its timings | ||
1044 | * maintained, otherwise bogus information is return | ||
1045 | * via read() for time_enabled, time_running: | ||
1046 | */ | ||
1047 | if (event->state == PERF_EVENT_STATE_INACTIVE | ||
1048 | && !event_filter_match(event)) { | ||
1049 | delta = tstamp - event->tstamp_stopped; | ||
1050 | event->tstamp_running += delta; | ||
1051 | event->tstamp_stopped = tstamp; | ||
1052 | } | ||
1053 | |||
1054 | if (event->state != PERF_EVENT_STATE_ACTIVE) | ||
1055 | return; | ||
1056 | |||
1057 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
1058 | if (event->pending_disable) { | ||
1059 | event->pending_disable = 0; | ||
1060 | event->state = PERF_EVENT_STATE_OFF; | ||
1061 | } | ||
1062 | event->tstamp_stopped = tstamp; | ||
1063 | event->pmu->del(event, 0); | ||
1064 | event->oncpu = -1; | ||
1065 | |||
1066 | if (!is_software_event(event)) | ||
1067 | cpuctx->active_oncpu--; | ||
1068 | ctx->nr_active--; | ||
1069 | if (event->attr.exclusive || !cpuctx->active_oncpu) | ||
1070 | cpuctx->exclusive = 0; | ||
1071 | } | ||
1072 | |||
1073 | static void | ||
1074 | group_sched_out(struct perf_event *group_event, | ||
1075 | struct perf_cpu_context *cpuctx, | ||
1076 | struct perf_event_context *ctx) | ||
1077 | { | ||
1078 | struct perf_event *event; | ||
1079 | int state = group_event->state; | ||
1080 | |||
1081 | event_sched_out(group_event, cpuctx, ctx); | ||
1082 | |||
1083 | /* | ||
1084 | * Schedule out siblings (if any): | ||
1085 | */ | ||
1086 | list_for_each_entry(event, &group_event->sibling_list, group_entry) | ||
1087 | event_sched_out(event, cpuctx, ctx); | ||
1088 | |||
1089 | if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) | ||
1090 | cpuctx->exclusive = 0; | ||
1091 | } | ||
1092 | |||
1093 | /* | ||
1094 | * Cross CPU call to remove a performance event | ||
1095 | * | ||
1096 | * We disable the event on the hardware level first. After that we | ||
1097 | * remove it from the context list. | ||
1098 | */ | ||
1099 | static int __perf_remove_from_context(void *info) | ||
1100 | { | ||
1101 | struct perf_event *event = info; | ||
1102 | struct perf_event_context *ctx = event->ctx; | ||
1103 | struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); | ||
1104 | |||
1105 | raw_spin_lock(&ctx->lock); | ||
1106 | event_sched_out(event, cpuctx, ctx); | ||
1107 | list_del_event(event, ctx); | ||
1108 | raw_spin_unlock(&ctx->lock); | ||
1109 | |||
1110 | return 0; | ||
1111 | } | ||
1112 | |||
1113 | |||
1114 | /* | ||
1115 | * Remove the event from a task's (or a CPU's) list of events. | ||
1116 | * | ||
1117 | * CPU events are removed with a smp call. For task events we only | ||
1118 | * call when the task is on a CPU. | ||
1119 | * | ||
1120 | * If event->ctx is a cloned context, callers must make sure that | ||
1121 | * every task struct that event->ctx->task could possibly point to | ||
1122 | * remains valid. This is OK when called from perf_release since | ||
1123 | * that only calls us on the top-level context, which can't be a clone. | ||
1124 | * When called from perf_event_exit_task, it's OK because the | ||
1125 | * context has been detached from its task. | ||
1126 | */ | ||
1127 | static void perf_remove_from_context(struct perf_event *event) | ||
1128 | { | ||
1129 | struct perf_event_context *ctx = event->ctx; | ||
1130 | struct task_struct *task = ctx->task; | ||
1131 | |||
1132 | lockdep_assert_held(&ctx->mutex); | ||
1133 | |||
1134 | if (!task) { | ||
1135 | /* | ||
1136 | * Per cpu events are removed via an smp call and | ||
1137 | * the removal is always successful. | ||
1138 | */ | ||
1139 | cpu_function_call(event->cpu, __perf_remove_from_context, event); | ||
1140 | return; | ||
1141 | } | ||
1142 | |||
1143 | retry: | ||
1144 | if (!task_function_call(task, __perf_remove_from_context, event)) | ||
1145 | return; | ||
1146 | |||
1147 | raw_spin_lock_irq(&ctx->lock); | ||
1148 | /* | ||
1149 | * If we failed to find a running task, but find the context active now | ||
1150 | * that we've acquired the ctx->lock, retry. | ||
1151 | */ | ||
1152 | if (ctx->is_active) { | ||
1153 | raw_spin_unlock_irq(&ctx->lock); | ||
1154 | goto retry; | ||
1155 | } | ||
1156 | |||
1157 | /* | ||
1158 | * Since the task isn't running, its safe to remove the event, us | ||
1159 | * holding the ctx->lock ensures the task won't get scheduled in. | ||
1160 | */ | ||
1161 | list_del_event(event, ctx); | ||
1162 | raw_spin_unlock_irq(&ctx->lock); | ||
1163 | } | ||
1164 | |||
1165 | /* | ||
1166 | * Cross CPU call to disable a performance event | ||
1167 | */ | ||
1168 | static int __perf_event_disable(void *info) | ||
1169 | { | ||
1170 | struct perf_event *event = info; | ||
1171 | struct perf_event_context *ctx = event->ctx; | ||
1172 | struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); | ||
1173 | |||
1174 | /* | ||
1175 | * If this is a per-task event, need to check whether this | ||
1176 | * event's task is the current task on this cpu. | ||
1177 | * | ||
1178 | * Can trigger due to concurrent perf_event_context_sched_out() | ||
1179 | * flipping contexts around. | ||
1180 | */ | ||
1181 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
1182 | return -EINVAL; | ||
1183 | |||
1184 | raw_spin_lock(&ctx->lock); | ||
1185 | |||
1186 | /* | ||
1187 | * If the event is on, turn it off. | ||
1188 | * If it is in error state, leave it in error state. | ||
1189 | */ | ||
1190 | if (event->state >= PERF_EVENT_STATE_INACTIVE) { | ||
1191 | update_context_time(ctx); | ||
1192 | update_cgrp_time_from_event(event); | ||
1193 | update_group_times(event); | ||
1194 | if (event == event->group_leader) | ||
1195 | group_sched_out(event, cpuctx, ctx); | ||
1196 | else | ||
1197 | event_sched_out(event, cpuctx, ctx); | ||
1198 | event->state = PERF_EVENT_STATE_OFF; | ||
1199 | } | ||
1200 | |||
1201 | raw_spin_unlock(&ctx->lock); | ||
1202 | |||
1203 | return 0; | ||
1204 | } | ||
1205 | |||
1206 | /* | ||
1207 | * Disable a event. | ||
1208 | * | ||
1209 | * If event->ctx is a cloned context, callers must make sure that | ||
1210 | * every task struct that event->ctx->task could possibly point to | ||
1211 | * remains valid. This condition is satisifed when called through | ||
1212 | * perf_event_for_each_child or perf_event_for_each because they | ||
1213 | * hold the top-level event's child_mutex, so any descendant that | ||
1214 | * goes to exit will block in sync_child_event. | ||
1215 | * When called from perf_pending_event it's OK because event->ctx | ||
1216 | * is the current context on this CPU and preemption is disabled, | ||
1217 | * hence we can't get into perf_event_task_sched_out for this context. | ||
1218 | */ | ||
1219 | void perf_event_disable(struct perf_event *event) | ||
1220 | { | ||
1221 | struct perf_event_context *ctx = event->ctx; | ||
1222 | struct task_struct *task = ctx->task; | ||
1223 | |||
1224 | if (!task) { | ||
1225 | /* | ||
1226 | * Disable the event on the cpu that it's on | ||
1227 | */ | ||
1228 | cpu_function_call(event->cpu, __perf_event_disable, event); | ||
1229 | return; | ||
1230 | } | ||
1231 | |||
1232 | retry: | ||
1233 | if (!task_function_call(task, __perf_event_disable, event)) | ||
1234 | return; | ||
1235 | |||
1236 | raw_spin_lock_irq(&ctx->lock); | ||
1237 | /* | ||
1238 | * If the event is still active, we need to retry the cross-call. | ||
1239 | */ | ||
1240 | if (event->state == PERF_EVENT_STATE_ACTIVE) { | ||
1241 | raw_spin_unlock_irq(&ctx->lock); | ||
1242 | /* | ||
1243 | * Reload the task pointer, it might have been changed by | ||
1244 | * a concurrent perf_event_context_sched_out(). | ||
1245 | */ | ||
1246 | task = ctx->task; | ||
1247 | goto retry; | ||
1248 | } | ||
1249 | |||
1250 | /* | ||
1251 | * Since we have the lock this context can't be scheduled | ||
1252 | * in, so we can change the state safely. | ||
1253 | */ | ||
1254 | if (event->state == PERF_EVENT_STATE_INACTIVE) { | ||
1255 | update_group_times(event); | ||
1256 | event->state = PERF_EVENT_STATE_OFF; | ||
1257 | } | ||
1258 | raw_spin_unlock_irq(&ctx->lock); | ||
1259 | } | ||
1260 | |||
1261 | static void perf_set_shadow_time(struct perf_event *event, | ||
1262 | struct perf_event_context *ctx, | ||
1263 | u64 tstamp) | ||
1264 | { | ||
1265 | /* | ||
1266 | * use the correct time source for the time snapshot | ||
1267 | * | ||
1268 | * We could get by without this by leveraging the | ||
1269 | * fact that to get to this function, the caller | ||
1270 | * has most likely already called update_context_time() | ||
1271 | * and update_cgrp_time_xx() and thus both timestamp | ||
1272 | * are identical (or very close). Given that tstamp is, | ||
1273 | * already adjusted for cgroup, we could say that: | ||
1274 | * tstamp - ctx->timestamp | ||
1275 | * is equivalent to | ||
1276 | * tstamp - cgrp->timestamp. | ||
1277 | * | ||
1278 | * Then, in perf_output_read(), the calculation would | ||
1279 | * work with no changes because: | ||
1280 | * - event is guaranteed scheduled in | ||
1281 | * - no scheduled out in between | ||
1282 | * - thus the timestamp would be the same | ||
1283 | * | ||
1284 | * But this is a bit hairy. | ||
1285 | * | ||
1286 | * So instead, we have an explicit cgroup call to remain | ||
1287 | * within the time time source all along. We believe it | ||
1288 | * is cleaner and simpler to understand. | ||
1289 | */ | ||
1290 | if (is_cgroup_event(event)) | ||
1291 | perf_cgroup_set_shadow_time(event, tstamp); | ||
1292 | else | ||
1293 | event->shadow_ctx_time = tstamp - ctx->timestamp; | ||
1294 | } | ||
1295 | |||
1296 | #define MAX_INTERRUPTS (~0ULL) | ||
1297 | |||
1298 | static void perf_log_throttle(struct perf_event *event, int enable); | ||
1299 | |||
1300 | static int | ||
1301 | event_sched_in(struct perf_event *event, | ||
1302 | struct perf_cpu_context *cpuctx, | ||
1303 | struct perf_event_context *ctx) | ||
1304 | { | ||
1305 | u64 tstamp = perf_event_time(event); | ||
1306 | |||
1307 | if (event->state <= PERF_EVENT_STATE_OFF) | ||
1308 | return 0; | ||
1309 | |||
1310 | event->state = PERF_EVENT_STATE_ACTIVE; | ||
1311 | event->oncpu = smp_processor_id(); | ||
1312 | |||
1313 | /* | ||
1314 | * Unthrottle events, since we scheduled we might have missed several | ||
1315 | * ticks already, also for a heavily scheduling task there is little | ||
1316 | * guarantee it'll get a tick in a timely manner. | ||
1317 | */ | ||
1318 | if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { | ||
1319 | perf_log_throttle(event, 1); | ||
1320 | event->hw.interrupts = 0; | ||
1321 | } | ||
1322 | |||
1323 | /* | ||
1324 | * The new state must be visible before we turn it on in the hardware: | ||
1325 | */ | ||
1326 | smp_wmb(); | ||
1327 | |||
1328 | if (event->pmu->add(event, PERF_EF_START)) { | ||
1329 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
1330 | event->oncpu = -1; | ||
1331 | return -EAGAIN; | ||
1332 | } | ||
1333 | |||
1334 | event->tstamp_running += tstamp - event->tstamp_stopped; | ||
1335 | |||
1336 | perf_set_shadow_time(event, ctx, tstamp); | ||
1337 | |||
1338 | if (!is_software_event(event)) | ||
1339 | cpuctx->active_oncpu++; | ||
1340 | ctx->nr_active++; | ||
1341 | |||
1342 | if (event->attr.exclusive) | ||
1343 | cpuctx->exclusive = 1; | ||
1344 | |||
1345 | return 0; | ||
1346 | } | ||
1347 | |||
1348 | static int | ||
1349 | group_sched_in(struct perf_event *group_event, | ||
1350 | struct perf_cpu_context *cpuctx, | ||
1351 | struct perf_event_context *ctx) | ||
1352 | { | ||
1353 | struct perf_event *event, *partial_group = NULL; | ||
1354 | struct pmu *pmu = group_event->pmu; | ||
1355 | u64 now = ctx->time; | ||
1356 | bool simulate = false; | ||
1357 | |||
1358 | if (group_event->state == PERF_EVENT_STATE_OFF) | ||
1359 | return 0; | ||
1360 | |||
1361 | pmu->start_txn(pmu); | ||
1362 | |||
1363 | if (event_sched_in(group_event, cpuctx, ctx)) { | ||
1364 | pmu->cancel_txn(pmu); | ||
1365 | return -EAGAIN; | ||
1366 | } | ||
1367 | |||
1368 | /* | ||
1369 | * Schedule in siblings as one group (if any): | ||
1370 | */ | ||
1371 | list_for_each_entry(event, &group_event->sibling_list, group_entry) { | ||
1372 | if (event_sched_in(event, cpuctx, ctx)) { | ||
1373 | partial_group = event; | ||
1374 | goto group_error; | ||
1375 | } | ||
1376 | } | ||
1377 | |||
1378 | if (!pmu->commit_txn(pmu)) | ||
1379 | return 0; | ||
1380 | |||
1381 | group_error: | ||
1382 | /* | ||
1383 | * Groups can be scheduled in as one unit only, so undo any | ||
1384 | * partial group before returning: | ||
1385 | * The events up to the failed event are scheduled out normally, | ||
1386 | * tstamp_stopped will be updated. | ||
1387 | * | ||
1388 | * The failed events and the remaining siblings need to have | ||
1389 | * their timings updated as if they had gone thru event_sched_in() | ||
1390 | * and event_sched_out(). This is required to get consistent timings | ||
1391 | * across the group. This also takes care of the case where the group | ||
1392 | * could never be scheduled by ensuring tstamp_stopped is set to mark | ||
1393 | * the time the event was actually stopped, such that time delta | ||
1394 | * calculation in update_event_times() is correct. | ||
1395 | */ | ||
1396 | list_for_each_entry(event, &group_event->sibling_list, group_entry) { | ||
1397 | if (event == partial_group) | ||
1398 | simulate = true; | ||
1399 | |||
1400 | if (simulate) { | ||
1401 | event->tstamp_running += now - event->tstamp_stopped; | ||
1402 | event->tstamp_stopped = now; | ||
1403 | } else { | ||
1404 | event_sched_out(event, cpuctx, ctx); | ||
1405 | } | ||
1406 | } | ||
1407 | event_sched_out(group_event, cpuctx, ctx); | ||
1408 | |||
1409 | pmu->cancel_txn(pmu); | ||
1410 | |||
1411 | return -EAGAIN; | ||
1412 | } | ||
1413 | |||
1414 | /* | ||
1415 | * Work out whether we can put this event group on the CPU now. | ||
1416 | */ | ||
1417 | static int group_can_go_on(struct perf_event *event, | ||
1418 | struct perf_cpu_context *cpuctx, | ||
1419 | int can_add_hw) | ||
1420 | { | ||
1421 | /* | ||
1422 | * Groups consisting entirely of software events can always go on. | ||
1423 | */ | ||
1424 | if (event->group_flags & PERF_GROUP_SOFTWARE) | ||
1425 | return 1; | ||
1426 | /* | ||
1427 | * If an exclusive group is already on, no other hardware | ||
1428 | * events can go on. | ||
1429 | */ | ||
1430 | if (cpuctx->exclusive) | ||
1431 | return 0; | ||
1432 | /* | ||
1433 | * If this group is exclusive and there are already | ||
1434 | * events on the CPU, it can't go on. | ||
1435 | */ | ||
1436 | if (event->attr.exclusive && cpuctx->active_oncpu) | ||
1437 | return 0; | ||
1438 | /* | ||
1439 | * Otherwise, try to add it if all previous groups were able | ||
1440 | * to go on. | ||
1441 | */ | ||
1442 | return can_add_hw; | ||
1443 | } | ||
1444 | |||
1445 | static void add_event_to_ctx(struct perf_event *event, | ||
1446 | struct perf_event_context *ctx) | ||
1447 | { | ||
1448 | u64 tstamp = perf_event_time(event); | ||
1449 | |||
1450 | list_add_event(event, ctx); | ||
1451 | perf_group_attach(event); | ||
1452 | event->tstamp_enabled = tstamp; | ||
1453 | event->tstamp_running = tstamp; | ||
1454 | event->tstamp_stopped = tstamp; | ||
1455 | } | ||
1456 | |||
1457 | static void perf_event_context_sched_in(struct perf_event_context *ctx, | ||
1458 | struct task_struct *tsk); | ||
1459 | |||
1460 | /* | ||
1461 | * Cross CPU call to install and enable a performance event | ||
1462 | * | ||
1463 | * Must be called with ctx->mutex held | ||
1464 | */ | ||
1465 | static int __perf_install_in_context(void *info) | ||
1466 | { | ||
1467 | struct perf_event *event = info; | ||
1468 | struct perf_event_context *ctx = event->ctx; | ||
1469 | struct perf_event *leader = event->group_leader; | ||
1470 | struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); | ||
1471 | int err; | ||
1472 | |||
1473 | /* | ||
1474 | * In case we're installing a new context to an already running task, | ||
1475 | * could also happen before perf_event_task_sched_in() on architectures | ||
1476 | * which do context switches with IRQs enabled. | ||
1477 | */ | ||
1478 | if (ctx->task && !cpuctx->task_ctx) | ||
1479 | perf_event_context_sched_in(ctx, ctx->task); | ||
1480 | |||
1481 | raw_spin_lock(&ctx->lock); | ||
1482 | ctx->is_active = 1; | ||
1483 | update_context_time(ctx); | ||
1484 | /* | ||
1485 | * update cgrp time only if current cgrp | ||
1486 | * matches event->cgrp. Must be done before | ||
1487 | * calling add_event_to_ctx() | ||
1488 | */ | ||
1489 | update_cgrp_time_from_event(event); | ||
1490 | |||
1491 | add_event_to_ctx(event, ctx); | ||
1492 | |||
1493 | if (!event_filter_match(event)) | ||
1494 | goto unlock; | ||
1495 | |||
1496 | /* | ||
1497 | * Don't put the event on if it is disabled or if | ||
1498 | * it is in a group and the group isn't on. | ||
1499 | */ | ||
1500 | if (event->state != PERF_EVENT_STATE_INACTIVE || | ||
1501 | (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)) | ||
1502 | goto unlock; | ||
1503 | |||
1504 | /* | ||
1505 | * An exclusive event can't go on if there are already active | ||
1506 | * hardware events, and no hardware event can go on if there | ||
1507 | * is already an exclusive event on. | ||
1508 | */ | ||
1509 | if (!group_can_go_on(event, cpuctx, 1)) | ||
1510 | err = -EEXIST; | ||
1511 | else | ||
1512 | err = event_sched_in(event, cpuctx, ctx); | ||
1513 | |||
1514 | if (err) { | ||
1515 | /* | ||
1516 | * This event couldn't go on. If it is in a group | ||
1517 | * then we have to pull the whole group off. | ||
1518 | * If the event group is pinned then put it in error state. | ||
1519 | */ | ||
1520 | if (leader != event) | ||
1521 | group_sched_out(leader, cpuctx, ctx); | ||
1522 | if (leader->attr.pinned) { | ||
1523 | update_group_times(leader); | ||
1524 | leader->state = PERF_EVENT_STATE_ERROR; | ||
1525 | } | ||
1526 | } | ||
1527 | |||
1528 | unlock: | ||
1529 | raw_spin_unlock(&ctx->lock); | ||
1530 | |||
1531 | return 0; | ||
1532 | } | ||
1533 | |||
1534 | /* | ||
1535 | * Attach a performance event to a context | ||
1536 | * | ||
1537 | * First we add the event to the list with the hardware enable bit | ||
1538 | * in event->hw_config cleared. | ||
1539 | * | ||
1540 | * If the event is attached to a task which is on a CPU we use a smp | ||
1541 | * call to enable it in the task context. The task might have been | ||
1542 | * scheduled away, but we check this in the smp call again. | ||
1543 | */ | ||
1544 | static void | ||
1545 | perf_install_in_context(struct perf_event_context *ctx, | ||
1546 | struct perf_event *event, | ||
1547 | int cpu) | ||
1548 | { | ||
1549 | struct task_struct *task = ctx->task; | ||
1550 | |||
1551 | lockdep_assert_held(&ctx->mutex); | ||
1552 | |||
1553 | event->ctx = ctx; | ||
1554 | |||
1555 | if (!task) { | ||
1556 | /* | ||
1557 | * Per cpu events are installed via an smp call and | ||
1558 | * the install is always successful. | ||
1559 | */ | ||
1560 | cpu_function_call(cpu, __perf_install_in_context, event); | ||
1561 | return; | ||
1562 | } | ||
1563 | |||
1564 | retry: | ||
1565 | if (!task_function_call(task, __perf_install_in_context, event)) | ||
1566 | return; | ||
1567 | |||
1568 | raw_spin_lock_irq(&ctx->lock); | ||
1569 | /* | ||
1570 | * If we failed to find a running task, but find the context active now | ||
1571 | * that we've acquired the ctx->lock, retry. | ||
1572 | */ | ||
1573 | if (ctx->is_active) { | ||
1574 | raw_spin_unlock_irq(&ctx->lock); | ||
1575 | goto retry; | ||
1576 | } | ||
1577 | |||
1578 | /* | ||
1579 | * Since the task isn't running, its safe to add the event, us holding | ||
1580 | * the ctx->lock ensures the task won't get scheduled in. | ||
1581 | */ | ||
1582 | add_event_to_ctx(event, ctx); | ||
1583 | raw_spin_unlock_irq(&ctx->lock); | ||
1584 | } | ||
1585 | |||
1586 | /* | ||
1587 | * Put a event into inactive state and update time fields. | ||
1588 | * Enabling the leader of a group effectively enables all | ||
1589 | * the group members that aren't explicitly disabled, so we | ||
1590 | * have to update their ->tstamp_enabled also. | ||
1591 | * Note: this works for group members as well as group leaders | ||
1592 | * since the non-leader members' sibling_lists will be empty. | ||
1593 | */ | ||
1594 | static void __perf_event_mark_enabled(struct perf_event *event, | ||
1595 | struct perf_event_context *ctx) | ||
1596 | { | ||
1597 | struct perf_event *sub; | ||
1598 | u64 tstamp = perf_event_time(event); | ||
1599 | |||
1600 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
1601 | event->tstamp_enabled = tstamp - event->total_time_enabled; | ||
1602 | list_for_each_entry(sub, &event->sibling_list, group_entry) { | ||
1603 | if (sub->state >= PERF_EVENT_STATE_INACTIVE) | ||
1604 | sub->tstamp_enabled = tstamp - sub->total_time_enabled; | ||
1605 | } | ||
1606 | } | ||
1607 | |||
1608 | /* | ||
1609 | * Cross CPU call to enable a performance event | ||
1610 | */ | ||
1611 | static int __perf_event_enable(void *info) | ||
1612 | { | ||
1613 | struct perf_event *event = info; | ||
1614 | struct perf_event_context *ctx = event->ctx; | ||
1615 | struct perf_event *leader = event->group_leader; | ||
1616 | struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); | ||
1617 | int err; | ||
1618 | |||
1619 | if (WARN_ON_ONCE(!ctx->is_active)) | ||
1620 | return -EINVAL; | ||
1621 | |||
1622 | raw_spin_lock(&ctx->lock); | ||
1623 | update_context_time(ctx); | ||
1624 | |||
1625 | if (event->state >= PERF_EVENT_STATE_INACTIVE) | ||
1626 | goto unlock; | ||
1627 | |||
1628 | /* | ||
1629 | * set current task's cgroup time reference point | ||
1630 | */ | ||
1631 | perf_cgroup_set_timestamp(current, ctx); | ||
1632 | |||
1633 | __perf_event_mark_enabled(event, ctx); | ||
1634 | |||
1635 | if (!event_filter_match(event)) { | ||
1636 | if (is_cgroup_event(event)) | ||
1637 | perf_cgroup_defer_enabled(event); | ||
1638 | goto unlock; | ||
1639 | } | ||
1640 | |||
1641 | /* | ||
1642 | * If the event is in a group and isn't the group leader, | ||
1643 | * then don't put it on unless the group is on. | ||
1644 | */ | ||
1645 | if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) | ||
1646 | goto unlock; | ||
1647 | |||
1648 | if (!group_can_go_on(event, cpuctx, 1)) { | ||
1649 | err = -EEXIST; | ||
1650 | } else { | ||
1651 | if (event == leader) | ||
1652 | err = group_sched_in(event, cpuctx, ctx); | ||
1653 | else | ||
1654 | err = event_sched_in(event, cpuctx, ctx); | ||
1655 | } | ||
1656 | |||
1657 | if (err) { | ||
1658 | /* | ||
1659 | * If this event can't go on and it's part of a | ||
1660 | * group, then the whole group has to come off. | ||
1661 | */ | ||
1662 | if (leader != event) | ||
1663 | group_sched_out(leader, cpuctx, ctx); | ||
1664 | if (leader->attr.pinned) { | ||
1665 | update_group_times(leader); | ||
1666 | leader->state = PERF_EVENT_STATE_ERROR; | ||
1667 | } | ||
1668 | } | ||
1669 | |||
1670 | unlock: | ||
1671 | raw_spin_unlock(&ctx->lock); | ||
1672 | |||
1673 | return 0; | ||
1674 | } | ||
1675 | |||
1676 | /* | ||
1677 | * Enable a event. | ||
1678 | * | ||
1679 | * If event->ctx is a cloned context, callers must make sure that | ||
1680 | * every task struct that event->ctx->task could possibly point to | ||
1681 | * remains valid. This condition is satisfied when called through | ||
1682 | * perf_event_for_each_child or perf_event_for_each as described | ||
1683 | * for perf_event_disable. | ||
1684 | */ | ||
1685 | void perf_event_enable(struct perf_event *event) | ||
1686 | { | ||
1687 | struct perf_event_context *ctx = event->ctx; | ||
1688 | struct task_struct *task = ctx->task; | ||
1689 | |||
1690 | if (!task) { | ||
1691 | /* | ||
1692 | * Enable the event on the cpu that it's on | ||
1693 | */ | ||
1694 | cpu_function_call(event->cpu, __perf_event_enable, event); | ||
1695 | return; | ||
1696 | } | ||
1697 | |||
1698 | raw_spin_lock_irq(&ctx->lock); | ||
1699 | if (event->state >= PERF_EVENT_STATE_INACTIVE) | ||
1700 | goto out; | ||
1701 | |||
1702 | /* | ||
1703 | * If the event is in error state, clear that first. | ||
1704 | * That way, if we see the event in error state below, we | ||
1705 | * know that it has gone back into error state, as distinct | ||
1706 | * from the task having been scheduled away before the | ||
1707 | * cross-call arrived. | ||
1708 | */ | ||
1709 | if (event->state == PERF_EVENT_STATE_ERROR) | ||
1710 | event->state = PERF_EVENT_STATE_OFF; | ||
1711 | |||
1712 | retry: | ||
1713 | if (!ctx->is_active) { | ||
1714 | __perf_event_mark_enabled(event, ctx); | ||
1715 | goto out; | ||
1716 | } | ||
1717 | |||
1718 | raw_spin_unlock_irq(&ctx->lock); | ||
1719 | |||
1720 | if (!task_function_call(task, __perf_event_enable, event)) | ||
1721 | return; | ||
1722 | |||
1723 | raw_spin_lock_irq(&ctx->lock); | ||
1724 | |||
1725 | /* | ||
1726 | * If the context is active and the event is still off, | ||
1727 | * we need to retry the cross-call. | ||
1728 | */ | ||
1729 | if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { | ||
1730 | /* | ||
1731 | * task could have been flipped by a concurrent | ||
1732 | * perf_event_context_sched_out() | ||
1733 | */ | ||
1734 | task = ctx->task; | ||
1735 | goto retry; | ||
1736 | } | ||
1737 | |||
1738 | out: | ||
1739 | raw_spin_unlock_irq(&ctx->lock); | ||
1740 | } | ||
1741 | |||
1742 | static int perf_event_refresh(struct perf_event *event, int refresh) | ||
1743 | { | ||
1744 | /* | ||
1745 | * not supported on inherited events | ||
1746 | */ | ||
1747 | if (event->attr.inherit || !is_sampling_event(event)) | ||
1748 | return -EINVAL; | ||
1749 | |||
1750 | atomic_add(refresh, &event->event_limit); | ||
1751 | perf_event_enable(event); | ||
1752 | |||
1753 | return 0; | ||
1754 | } | ||
1755 | |||
1756 | static void ctx_sched_out(struct perf_event_context *ctx, | ||
1757 | struct perf_cpu_context *cpuctx, | ||
1758 | enum event_type_t event_type) | ||
1759 | { | ||
1760 | struct perf_event *event; | ||
1761 | |||
1762 | raw_spin_lock(&ctx->lock); | ||
1763 | perf_pmu_disable(ctx->pmu); | ||
1764 | ctx->is_active = 0; | ||
1765 | if (likely(!ctx->nr_events)) | ||
1766 | goto out; | ||
1767 | update_context_time(ctx); | ||
1768 | update_cgrp_time_from_cpuctx(cpuctx); | ||
1769 | |||
1770 | if (!ctx->nr_active) | ||
1771 | goto out; | ||
1772 | |||
1773 | if (event_type & EVENT_PINNED) { | ||
1774 | list_for_each_entry(event, &ctx->pinned_groups, group_entry) | ||
1775 | group_sched_out(event, cpuctx, ctx); | ||
1776 | } | ||
1777 | |||
1778 | if (event_type & EVENT_FLEXIBLE) { | ||
1779 | list_for_each_entry(event, &ctx->flexible_groups, group_entry) | ||
1780 | group_sched_out(event, cpuctx, ctx); | ||
1781 | } | ||
1782 | out: | ||
1783 | perf_pmu_enable(ctx->pmu); | ||
1784 | raw_spin_unlock(&ctx->lock); | ||
1785 | } | ||
1786 | |||
1787 | /* | ||
1788 | * Test whether two contexts are equivalent, i.e. whether they | ||
1789 | * have both been cloned from the same version of the same context | ||
1790 | * and they both have the same number of enabled events. | ||
1791 | * If the number of enabled events is the same, then the set | ||
1792 | * of enabled events should be the same, because these are both | ||
1793 | * inherited contexts, therefore we can't access individual events | ||
1794 | * in them directly with an fd; we can only enable/disable all | ||
1795 | * events via prctl, or enable/disable all events in a family | ||
1796 | * via ioctl, which will have the same effect on both contexts. | ||
1797 | */ | ||
1798 | static int context_equiv(struct perf_event_context *ctx1, | ||
1799 | struct perf_event_context *ctx2) | ||
1800 | { | ||
1801 | return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx | ||
1802 | && ctx1->parent_gen == ctx2->parent_gen | ||
1803 | && !ctx1->pin_count && !ctx2->pin_count; | ||
1804 | } | ||
1805 | |||
1806 | static void __perf_event_sync_stat(struct perf_event *event, | ||
1807 | struct perf_event *next_event) | ||
1808 | { | ||
1809 | u64 value; | ||
1810 | |||
1811 | if (!event->attr.inherit_stat) | ||
1812 | return; | ||
1813 | |||
1814 | /* | ||
1815 | * Update the event value, we cannot use perf_event_read() | ||
1816 | * because we're in the middle of a context switch and have IRQs | ||
1817 | * disabled, which upsets smp_call_function_single(), however | ||
1818 | * we know the event must be on the current CPU, therefore we | ||
1819 | * don't need to use it. | ||
1820 | */ | ||
1821 | switch (event->state) { | ||
1822 | case PERF_EVENT_STATE_ACTIVE: | ||
1823 | event->pmu->read(event); | ||
1824 | /* fall-through */ | ||
1825 | |||
1826 | case PERF_EVENT_STATE_INACTIVE: | ||
1827 | update_event_times(event); | ||
1828 | break; | ||
1829 | |||
1830 | default: | ||
1831 | break; | ||
1832 | } | ||
1833 | |||
1834 | /* | ||
1835 | * In order to keep per-task stats reliable we need to flip the event | ||
1836 | * values when we flip the contexts. | ||
1837 | */ | ||
1838 | value = local64_read(&next_event->count); | ||
1839 | value = local64_xchg(&event->count, value); | ||
1840 | local64_set(&next_event->count, value); | ||
1841 | |||
1842 | swap(event->total_time_enabled, next_event->total_time_enabled); | ||
1843 | swap(event->total_time_running, next_event->total_time_running); | ||
1844 | |||
1845 | /* | ||
1846 | * Since we swizzled the values, update the user visible data too. | ||
1847 | */ | ||
1848 | perf_event_update_userpage(event); | ||
1849 | perf_event_update_userpage(next_event); | ||
1850 | } | ||
1851 | |||
1852 | #define list_next_entry(pos, member) \ | ||
1853 | list_entry(pos->member.next, typeof(*pos), member) | ||
1854 | |||
1855 | static void perf_event_sync_stat(struct perf_event_context *ctx, | ||
1856 | struct perf_event_context *next_ctx) | ||
1857 | { | ||
1858 | struct perf_event *event, *next_event; | ||
1859 | |||
1860 | if (!ctx->nr_stat) | ||
1861 | return; | ||
1862 | |||
1863 | update_context_time(ctx); | ||
1864 | |||
1865 | event = list_first_entry(&ctx->event_list, | ||
1866 | struct perf_event, event_entry); | ||
1867 | |||
1868 | next_event = list_first_entry(&next_ctx->event_list, | ||
1869 | struct perf_event, event_entry); | ||
1870 | |||
1871 | while (&event->event_entry != &ctx->event_list && | ||
1872 | &next_event->event_entry != &next_ctx->event_list) { | ||
1873 | |||
1874 | __perf_event_sync_stat(event, next_event); | ||
1875 | |||
1876 | event = list_next_entry(event, event_entry); | ||
1877 | next_event = list_next_entry(next_event, event_entry); | ||
1878 | } | ||
1879 | } | ||
1880 | |||
1881 | static void perf_event_context_sched_out(struct task_struct *task, int ctxn, | ||
1882 | struct task_struct *next) | ||
1883 | { | ||
1884 | struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; | ||
1885 | struct perf_event_context *next_ctx; | ||
1886 | struct perf_event_context *parent; | ||
1887 | struct perf_cpu_context *cpuctx; | ||
1888 | int do_switch = 1; | ||
1889 | |||
1890 | if (likely(!ctx)) | ||
1891 | return; | ||
1892 | |||
1893 | cpuctx = __get_cpu_context(ctx); | ||
1894 | if (!cpuctx->task_ctx) | ||
1895 | return; | ||
1896 | |||
1897 | rcu_read_lock(); | ||
1898 | parent = rcu_dereference(ctx->parent_ctx); | ||
1899 | next_ctx = next->perf_event_ctxp[ctxn]; | ||
1900 | if (parent && next_ctx && | ||
1901 | rcu_dereference(next_ctx->parent_ctx) == parent) { | ||
1902 | /* | ||
1903 | * Looks like the two contexts are clones, so we might be | ||
1904 | * able to optimize the context switch. We lock both | ||
1905 | * contexts and check that they are clones under the | ||
1906 | * lock (including re-checking that neither has been | ||
1907 | * uncloned in the meantime). It doesn't matter which | ||
1908 | * order we take the locks because no other cpu could | ||
1909 | * be trying to lock both of these tasks. | ||
1910 | */ | ||
1911 | raw_spin_lock(&ctx->lock); | ||
1912 | raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); | ||
1913 | if (context_equiv(ctx, next_ctx)) { | ||
1914 | /* | ||
1915 | * XXX do we need a memory barrier of sorts | ||
1916 | * wrt to rcu_dereference() of perf_event_ctxp | ||
1917 | */ | ||
1918 | task->perf_event_ctxp[ctxn] = next_ctx; | ||
1919 | next->perf_event_ctxp[ctxn] = ctx; | ||
1920 | ctx->task = next; | ||
1921 | next_ctx->task = task; | ||
1922 | do_switch = 0; | ||
1923 | |||
1924 | perf_event_sync_stat(ctx, next_ctx); | ||
1925 | } | ||
1926 | raw_spin_unlock(&next_ctx->lock); | ||
1927 | raw_spin_unlock(&ctx->lock); | ||
1928 | } | ||
1929 | rcu_read_unlock(); | ||
1930 | |||
1931 | if (do_switch) { | ||
1932 | ctx_sched_out(ctx, cpuctx, EVENT_ALL); | ||
1933 | cpuctx->task_ctx = NULL; | ||
1934 | } | ||
1935 | } | ||
1936 | |||
1937 | #define for_each_task_context_nr(ctxn) \ | ||
1938 | for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) | ||
1939 | |||
1940 | /* | ||
1941 | * Called from scheduler to remove the events of the current task, | ||
1942 | * with interrupts disabled. | ||
1943 | * | ||
1944 | * We stop each event and update the event value in event->count. | ||
1945 | * | ||
1946 | * This does not protect us against NMI, but disable() | ||
1947 | * sets the disabled bit in the control field of event _before_ | ||
1948 | * accessing the event control register. If a NMI hits, then it will | ||
1949 | * not restart the event. | ||
1950 | */ | ||
1951 | void __perf_event_task_sched_out(struct task_struct *task, | ||
1952 | struct task_struct *next) | ||
1953 | { | ||
1954 | int ctxn; | ||
1955 | |||
1956 | for_each_task_context_nr(ctxn) | ||
1957 | perf_event_context_sched_out(task, ctxn, next); | ||
1958 | |||
1959 | /* | ||
1960 | * if cgroup events exist on this CPU, then we need | ||
1961 | * to check if we have to switch out PMU state. | ||
1962 | * cgroup event are system-wide mode only | ||
1963 | */ | ||
1964 | if (atomic_read(&__get_cpu_var(perf_cgroup_events))) | ||
1965 | perf_cgroup_sched_out(task); | ||
1966 | } | ||
1967 | |||
1968 | static void task_ctx_sched_out(struct perf_event_context *ctx, | ||
1969 | enum event_type_t event_type) | ||
1970 | { | ||
1971 | struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); | ||
1972 | |||
1973 | if (!cpuctx->task_ctx) | ||
1974 | return; | ||
1975 | |||
1976 | if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) | ||
1977 | return; | ||
1978 | |||
1979 | ctx_sched_out(ctx, cpuctx, event_type); | ||
1980 | cpuctx->task_ctx = NULL; | ||
1981 | } | ||
1982 | |||
1983 | /* | ||
1984 | * Called with IRQs disabled | ||
1985 | */ | ||
1986 | static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, | ||
1987 | enum event_type_t event_type) | ||
1988 | { | ||
1989 | ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); | ||
1990 | } | ||
1991 | |||
1992 | static void | ||
1993 | ctx_pinned_sched_in(struct perf_event_context *ctx, | ||
1994 | struct perf_cpu_context *cpuctx) | ||
1995 | { | ||
1996 | struct perf_event *event; | ||
1997 | |||
1998 | list_for_each_entry(event, &ctx->pinned_groups, group_entry) { | ||
1999 | if (event->state <= PERF_EVENT_STATE_OFF) | ||
2000 | continue; | ||
2001 | if (!event_filter_match(event)) | ||
2002 | continue; | ||
2003 | |||
2004 | /* may need to reset tstamp_enabled */ | ||
2005 | if (is_cgroup_event(event)) | ||
2006 | perf_cgroup_mark_enabled(event, ctx); | ||
2007 | |||
2008 | if (group_can_go_on(event, cpuctx, 1)) | ||
2009 | group_sched_in(event, cpuctx, ctx); | ||
2010 | |||
2011 | /* | ||
2012 | * If this pinned group hasn't been scheduled, | ||
2013 | * put it in error state. | ||
2014 | */ | ||
2015 | if (event->state == PERF_EVENT_STATE_INACTIVE) { | ||
2016 | update_group_times(event); | ||
2017 | event->state = PERF_EVENT_STATE_ERROR; | ||
2018 | } | ||
2019 | } | ||
2020 | } | ||
2021 | |||
2022 | static void | ||
2023 | ctx_flexible_sched_in(struct perf_event_context *ctx, | ||
2024 | struct perf_cpu_context *cpuctx) | ||
2025 | { | ||
2026 | struct perf_event *event; | ||
2027 | int can_add_hw = 1; | ||
2028 | |||
2029 | list_for_each_entry(event, &ctx->flexible_groups, group_entry) { | ||
2030 | /* Ignore events in OFF or ERROR state */ | ||
2031 | if (event->state <= PERF_EVENT_STATE_OFF) | ||
2032 | continue; | ||
2033 | /* | ||
2034 | * Listen to the 'cpu' scheduling filter constraint | ||
2035 | * of events: | ||
2036 | */ | ||
2037 | if (!event_filter_match(event)) | ||
2038 | continue; | ||
2039 | |||
2040 | /* may need to reset tstamp_enabled */ | ||
2041 | if (is_cgroup_event(event)) | ||
2042 | perf_cgroup_mark_enabled(event, ctx); | ||
2043 | |||
2044 | if (group_can_go_on(event, cpuctx, can_add_hw)) { | ||
2045 | if (group_sched_in(event, cpuctx, ctx)) | ||
2046 | can_add_hw = 0; | ||
2047 | } | ||
2048 | } | ||
2049 | } | ||
2050 | |||
2051 | static void | ||
2052 | ctx_sched_in(struct perf_event_context *ctx, | ||
2053 | struct perf_cpu_context *cpuctx, | ||
2054 | enum event_type_t event_type, | ||
2055 | struct task_struct *task) | ||
2056 | { | ||
2057 | u64 now; | ||
2058 | |||
2059 | raw_spin_lock(&ctx->lock); | ||
2060 | ctx->is_active = 1; | ||
2061 | if (likely(!ctx->nr_events)) | ||
2062 | goto out; | ||
2063 | |||
2064 | now = perf_clock(); | ||
2065 | ctx->timestamp = now; | ||
2066 | perf_cgroup_set_timestamp(task, ctx); | ||
2067 | /* | ||
2068 | * First go through the list and put on any pinned groups | ||
2069 | * in order to give them the best chance of going on. | ||
2070 | */ | ||
2071 | if (event_type & EVENT_PINNED) | ||
2072 | ctx_pinned_sched_in(ctx, cpuctx); | ||
2073 | |||
2074 | /* Then walk through the lower prio flexible groups */ | ||
2075 | if (event_type & EVENT_FLEXIBLE) | ||
2076 | ctx_flexible_sched_in(ctx, cpuctx); | ||
2077 | |||
2078 | out: | ||
2079 | raw_spin_unlock(&ctx->lock); | ||
2080 | } | ||
2081 | |||
2082 | static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, | ||
2083 | enum event_type_t event_type, | ||
2084 | struct task_struct *task) | ||
2085 | { | ||
2086 | struct perf_event_context *ctx = &cpuctx->ctx; | ||
2087 | |||
2088 | ctx_sched_in(ctx, cpuctx, event_type, task); | ||
2089 | } | ||
2090 | |||
2091 | static void task_ctx_sched_in(struct perf_event_context *ctx, | ||
2092 | enum event_type_t event_type) | ||
2093 | { | ||
2094 | struct perf_cpu_context *cpuctx; | ||
2095 | |||
2096 | cpuctx = __get_cpu_context(ctx); | ||
2097 | if (cpuctx->task_ctx == ctx) | ||
2098 | return; | ||
2099 | |||
2100 | ctx_sched_in(ctx, cpuctx, event_type, NULL); | ||
2101 | cpuctx->task_ctx = ctx; | ||
2102 | } | ||
2103 | |||
2104 | static void perf_event_context_sched_in(struct perf_event_context *ctx, | ||
2105 | struct task_struct *task) | ||
2106 | { | ||
2107 | struct perf_cpu_context *cpuctx; | ||
2108 | |||
2109 | cpuctx = __get_cpu_context(ctx); | ||
2110 | if (cpuctx->task_ctx == ctx) | ||
2111 | return; | ||
2112 | |||
2113 | perf_pmu_disable(ctx->pmu); | ||
2114 | /* | ||
2115 | * We want to keep the following priority order: | ||
2116 | * cpu pinned (that don't need to move), task pinned, | ||
2117 | * cpu flexible, task flexible. | ||
2118 | */ | ||
2119 | cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); | ||
2120 | |||
2121 | ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); | ||
2122 | cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); | ||
2123 | ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); | ||
2124 | |||
2125 | cpuctx->task_ctx = ctx; | ||
2126 | |||
2127 | /* | ||
2128 | * Since these rotations are per-cpu, we need to ensure the | ||
2129 | * cpu-context we got scheduled on is actually rotating. | ||
2130 | */ | ||
2131 | perf_pmu_rotate_start(ctx->pmu); | ||
2132 | perf_pmu_enable(ctx->pmu); | ||
2133 | } | ||
2134 | |||
2135 | /* | ||
2136 | * Called from scheduler to add the events of the current task | ||
2137 | * with interrupts disabled. | ||
2138 | * | ||
2139 | * We restore the event value and then enable it. | ||
2140 | * | ||
2141 | * This does not protect us against NMI, but enable() | ||
2142 | * sets the enabled bit in the control field of event _before_ | ||
2143 | * accessing the event control register. If a NMI hits, then it will | ||
2144 | * keep the event running. | ||
2145 | */ | ||
2146 | void __perf_event_task_sched_in(struct task_struct *task) | ||
2147 | { | ||
2148 | struct perf_event_context *ctx; | ||
2149 | int ctxn; | ||
2150 | |||
2151 | for_each_task_context_nr(ctxn) { | ||
2152 | ctx = task->perf_event_ctxp[ctxn]; | ||
2153 | if (likely(!ctx)) | ||
2154 | continue; | ||
2155 | |||
2156 | perf_event_context_sched_in(ctx, task); | ||
2157 | } | ||
2158 | /* | ||
2159 | * if cgroup events exist on this CPU, then we need | ||
2160 | * to check if we have to switch in PMU state. | ||
2161 | * cgroup event are system-wide mode only | ||
2162 | */ | ||
2163 | if (atomic_read(&__get_cpu_var(perf_cgroup_events))) | ||
2164 | perf_cgroup_sched_in(task); | ||
2165 | } | ||
2166 | |||
2167 | static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) | ||
2168 | { | ||
2169 | u64 frequency = event->attr.sample_freq; | ||
2170 | u64 sec = NSEC_PER_SEC; | ||
2171 | u64 divisor, dividend; | ||
2172 | |||
2173 | int count_fls, nsec_fls, frequency_fls, sec_fls; | ||
2174 | |||
2175 | count_fls = fls64(count); | ||
2176 | nsec_fls = fls64(nsec); | ||
2177 | frequency_fls = fls64(frequency); | ||
2178 | sec_fls = 30; | ||
2179 | |||
2180 | /* | ||
2181 | * We got @count in @nsec, with a target of sample_freq HZ | ||
2182 | * the target period becomes: | ||
2183 | * | ||
2184 | * @count * 10^9 | ||
2185 | * period = ------------------- | ||
2186 | * @nsec * sample_freq | ||
2187 | * | ||
2188 | */ | ||
2189 | |||
2190 | /* | ||
2191 | * Reduce accuracy by one bit such that @a and @b converge | ||
2192 | * to a similar magnitude. | ||
2193 | */ | ||
2194 | #define REDUCE_FLS(a, b) \ | ||
2195 | do { \ | ||
2196 | if (a##_fls > b##_fls) { \ | ||
2197 | a >>= 1; \ | ||
2198 | a##_fls--; \ | ||
2199 | } else { \ | ||
2200 | b >>= 1; \ | ||
2201 | b##_fls--; \ | ||
2202 | } \ | ||
2203 | } while (0) | ||
2204 | |||
2205 | /* | ||
2206 | * Reduce accuracy until either term fits in a u64, then proceed with | ||
2207 | * the other, so that finally we can do a u64/u64 division. | ||
2208 | */ | ||
2209 | while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { | ||
2210 | REDUCE_FLS(nsec, frequency); | ||
2211 | REDUCE_FLS(sec, count); | ||
2212 | } | ||
2213 | |||
2214 | if (count_fls + sec_fls > 64) { | ||
2215 | divisor = nsec * frequency; | ||
2216 | |||
2217 | while (count_fls + sec_fls > 64) { | ||
2218 | REDUCE_FLS(count, sec); | ||
2219 | divisor >>= 1; | ||
2220 | } | ||
2221 | |||
2222 | dividend = count * sec; | ||
2223 | } else { | ||
2224 | dividend = count * sec; | ||
2225 | |||
2226 | while (nsec_fls + frequency_fls > 64) { | ||
2227 | REDUCE_FLS(nsec, frequency); | ||
2228 | dividend >>= 1; | ||
2229 | } | ||
2230 | |||
2231 | divisor = nsec * frequency; | ||
2232 | } | ||
2233 | |||
2234 | if (!divisor) | ||
2235 | return dividend; | ||
2236 | |||
2237 | return div64_u64(dividend, divisor); | ||
2238 | } | ||
2239 | |||
2240 | static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count) | ||
2241 | { | ||
2242 | struct hw_perf_event *hwc = &event->hw; | ||
2243 | s64 period, sample_period; | ||
2244 | s64 delta; | ||
2245 | |||
2246 | period = perf_calculate_period(event, nsec, count); | ||
2247 | |||
2248 | delta = (s64)(period - hwc->sample_period); | ||
2249 | delta = (delta + 7) / 8; /* low pass filter */ | ||
2250 | |||
2251 | sample_period = hwc->sample_period + delta; | ||
2252 | |||
2253 | if (!sample_period) | ||
2254 | sample_period = 1; | ||
2255 | |||
2256 | hwc->sample_period = sample_period; | ||
2257 | |||
2258 | if (local64_read(&hwc->period_left) > 8*sample_period) { | ||
2259 | event->pmu->stop(event, PERF_EF_UPDATE); | ||
2260 | local64_set(&hwc->period_left, 0); | ||
2261 | event->pmu->start(event, PERF_EF_RELOAD); | ||
2262 | } | ||
2263 | } | ||
2264 | |||
2265 | static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period) | ||
2266 | { | ||
2267 | struct perf_event *event; | ||
2268 | struct hw_perf_event *hwc; | ||
2269 | u64 interrupts, now; | ||
2270 | s64 delta; | ||
2271 | |||
2272 | raw_spin_lock(&ctx->lock); | ||
2273 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
2274 | if (event->state != PERF_EVENT_STATE_ACTIVE) | ||
2275 | continue; | ||
2276 | |||
2277 | if (!event_filter_match(event)) | ||
2278 | continue; | ||
2279 | |||
2280 | hwc = &event->hw; | ||
2281 | |||
2282 | interrupts = hwc->interrupts; | ||
2283 | hwc->interrupts = 0; | ||
2284 | |||
2285 | /* | ||
2286 | * unthrottle events on the tick | ||
2287 | */ | ||
2288 | if (interrupts == MAX_INTERRUPTS) { | ||
2289 | perf_log_throttle(event, 1); | ||
2290 | event->pmu->start(event, 0); | ||
2291 | } | ||
2292 | |||
2293 | if (!event->attr.freq || !event->attr.sample_freq) | ||
2294 | continue; | ||
2295 | |||
2296 | event->pmu->read(event); | ||
2297 | now = local64_read(&event->count); | ||
2298 | delta = now - hwc->freq_count_stamp; | ||
2299 | hwc->freq_count_stamp = now; | ||
2300 | |||
2301 | if (delta > 0) | ||
2302 | perf_adjust_period(event, period, delta); | ||
2303 | } | ||
2304 | raw_spin_unlock(&ctx->lock); | ||
2305 | } | ||
2306 | |||
2307 | /* | ||
2308 | * Round-robin a context's events: | ||
2309 | */ | ||
2310 | static void rotate_ctx(struct perf_event_context *ctx) | ||
2311 | { | ||
2312 | raw_spin_lock(&ctx->lock); | ||
2313 | |||
2314 | /* | ||
2315 | * Rotate the first entry last of non-pinned groups. Rotation might be | ||
2316 | * disabled by the inheritance code. | ||
2317 | */ | ||
2318 | if (!ctx->rotate_disable) | ||
2319 | list_rotate_left(&ctx->flexible_groups); | ||
2320 | |||
2321 | raw_spin_unlock(&ctx->lock); | ||
2322 | } | ||
2323 | |||
2324 | /* | ||
2325 | * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized | ||
2326 | * because they're strictly cpu affine and rotate_start is called with IRQs | ||
2327 | * disabled, while rotate_context is called from IRQ context. | ||
2328 | */ | ||
2329 | static void perf_rotate_context(struct perf_cpu_context *cpuctx) | ||
2330 | { | ||
2331 | u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC; | ||
2332 | struct perf_event_context *ctx = NULL; | ||
2333 | int rotate = 0, remove = 1; | ||
2334 | |||
2335 | if (cpuctx->ctx.nr_events) { | ||
2336 | remove = 0; | ||
2337 | if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) | ||
2338 | rotate = 1; | ||
2339 | } | ||
2340 | |||
2341 | ctx = cpuctx->task_ctx; | ||
2342 | if (ctx && ctx->nr_events) { | ||
2343 | remove = 0; | ||
2344 | if (ctx->nr_events != ctx->nr_active) | ||
2345 | rotate = 1; | ||
2346 | } | ||
2347 | |||
2348 | perf_pmu_disable(cpuctx->ctx.pmu); | ||
2349 | perf_ctx_adjust_freq(&cpuctx->ctx, interval); | ||
2350 | if (ctx) | ||
2351 | perf_ctx_adjust_freq(ctx, interval); | ||
2352 | |||
2353 | if (!rotate) | ||
2354 | goto done; | ||
2355 | |||
2356 | cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); | ||
2357 | if (ctx) | ||
2358 | task_ctx_sched_out(ctx, EVENT_FLEXIBLE); | ||
2359 | |||
2360 | rotate_ctx(&cpuctx->ctx); | ||
2361 | if (ctx) | ||
2362 | rotate_ctx(ctx); | ||
2363 | |||
2364 | cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, current); | ||
2365 | if (ctx) | ||
2366 | task_ctx_sched_in(ctx, EVENT_FLEXIBLE); | ||
2367 | |||
2368 | done: | ||
2369 | if (remove) | ||
2370 | list_del_init(&cpuctx->rotation_list); | ||
2371 | |||
2372 | perf_pmu_enable(cpuctx->ctx.pmu); | ||
2373 | } | ||
2374 | |||
2375 | void perf_event_task_tick(void) | ||
2376 | { | ||
2377 | struct list_head *head = &__get_cpu_var(rotation_list); | ||
2378 | struct perf_cpu_context *cpuctx, *tmp; | ||
2379 | |||
2380 | WARN_ON(!irqs_disabled()); | ||
2381 | |||
2382 | list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) { | ||
2383 | if (cpuctx->jiffies_interval == 1 || | ||
2384 | !(jiffies % cpuctx->jiffies_interval)) | ||
2385 | perf_rotate_context(cpuctx); | ||
2386 | } | ||
2387 | } | ||
2388 | |||
2389 | static int event_enable_on_exec(struct perf_event *event, | ||
2390 | struct perf_event_context *ctx) | ||
2391 | { | ||
2392 | if (!event->attr.enable_on_exec) | ||
2393 | return 0; | ||
2394 | |||
2395 | event->attr.enable_on_exec = 0; | ||
2396 | if (event->state >= PERF_EVENT_STATE_INACTIVE) | ||
2397 | return 0; | ||
2398 | |||
2399 | __perf_event_mark_enabled(event, ctx); | ||
2400 | |||
2401 | return 1; | ||
2402 | } | ||
2403 | |||
2404 | /* | ||
2405 | * Enable all of a task's events that have been marked enable-on-exec. | ||
2406 | * This expects task == current. | ||
2407 | */ | ||
2408 | static void perf_event_enable_on_exec(struct perf_event_context *ctx) | ||
2409 | { | ||
2410 | struct perf_event *event; | ||
2411 | unsigned long flags; | ||
2412 | int enabled = 0; | ||
2413 | int ret; | ||
2414 | |||
2415 | local_irq_save(flags); | ||
2416 | if (!ctx || !ctx->nr_events) | ||
2417 | goto out; | ||
2418 | |||
2419 | /* | ||
2420 | * We must ctxsw out cgroup events to avoid conflict | ||
2421 | * when invoking perf_task_event_sched_in() later on | ||
2422 | * in this function. Otherwise we end up trying to | ||
2423 | * ctxswin cgroup events which are already scheduled | ||
2424 | * in. | ||
2425 | */ | ||
2426 | perf_cgroup_sched_out(current); | ||
2427 | task_ctx_sched_out(ctx, EVENT_ALL); | ||
2428 | |||
2429 | raw_spin_lock(&ctx->lock); | ||
2430 | |||
2431 | list_for_each_entry(event, &ctx->pinned_groups, group_entry) { | ||
2432 | ret = event_enable_on_exec(event, ctx); | ||
2433 | if (ret) | ||
2434 | enabled = 1; | ||
2435 | } | ||
2436 | |||
2437 | list_for_each_entry(event, &ctx->flexible_groups, group_entry) { | ||
2438 | ret = event_enable_on_exec(event, ctx); | ||
2439 | if (ret) | ||
2440 | enabled = 1; | ||
2441 | } | ||
2442 | |||
2443 | /* | ||
2444 | * Unclone this context if we enabled any event. | ||
2445 | */ | ||
2446 | if (enabled) | ||
2447 | unclone_ctx(ctx); | ||
2448 | |||
2449 | raw_spin_unlock(&ctx->lock); | ||
2450 | |||
2451 | /* | ||
2452 | * Also calls ctxswin for cgroup events, if any: | ||
2453 | */ | ||
2454 | perf_event_context_sched_in(ctx, ctx->task); | ||
2455 | out: | ||
2456 | local_irq_restore(flags); | ||
2457 | } | ||
2458 | |||
2459 | /* | ||
2460 | * Cross CPU call to read the hardware event | ||
2461 | */ | ||
2462 | static void __perf_event_read(void *info) | ||
2463 | { | ||
2464 | struct perf_event *event = info; | ||
2465 | struct perf_event_context *ctx = event->ctx; | ||
2466 | struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); | ||
2467 | |||
2468 | /* | ||
2469 | * If this is a task context, we need to check whether it is | ||
2470 | * the current task context of this cpu. If not it has been | ||
2471 | * scheduled out before the smp call arrived. In that case | ||
2472 | * event->count would have been updated to a recent sample | ||
2473 | * when the event was scheduled out. | ||
2474 | */ | ||
2475 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
2476 | return; | ||
2477 | |||
2478 | raw_spin_lock(&ctx->lock); | ||
2479 | if (ctx->is_active) { | ||
2480 | update_context_time(ctx); | ||
2481 | update_cgrp_time_from_event(event); | ||
2482 | } | ||
2483 | update_event_times(event); | ||
2484 | if (event->state == PERF_EVENT_STATE_ACTIVE) | ||
2485 | event->pmu->read(event); | ||
2486 | raw_spin_unlock(&ctx->lock); | ||
2487 | } | ||
2488 | |||
2489 | static inline u64 perf_event_count(struct perf_event *event) | ||
2490 | { | ||
2491 | return local64_read(&event->count) + atomic64_read(&event->child_count); | ||
2492 | } | ||
2493 | |||
2494 | static u64 perf_event_read(struct perf_event *event) | ||
2495 | { | ||
2496 | /* | ||
2497 | * If event is enabled and currently active on a CPU, update the | ||
2498 | * value in the event structure: | ||
2499 | */ | ||
2500 | if (event->state == PERF_EVENT_STATE_ACTIVE) { | ||
2501 | smp_call_function_single(event->oncpu, | ||
2502 | __perf_event_read, event, 1); | ||
2503 | } else if (event->state == PERF_EVENT_STATE_INACTIVE) { | ||
2504 | struct perf_event_context *ctx = event->ctx; | ||
2505 | unsigned long flags; | ||
2506 | |||
2507 | raw_spin_lock_irqsave(&ctx->lock, flags); | ||
2508 | /* | ||
2509 | * may read while context is not active | ||
2510 | * (e.g., thread is blocked), in that case | ||
2511 | * we cannot update context time | ||
2512 | */ | ||
2513 | if (ctx->is_active) { | ||
2514 | update_context_time(ctx); | ||
2515 | update_cgrp_time_from_event(event); | ||
2516 | } | ||
2517 | update_event_times(event); | ||
2518 | raw_spin_unlock_irqrestore(&ctx->lock, flags); | ||
2519 | } | ||
2520 | |||
2521 | return perf_event_count(event); | ||
2522 | } | ||
2523 | |||
2524 | /* | ||
2525 | * Callchain support | ||
2526 | */ | ||
2527 | |||
2528 | struct callchain_cpus_entries { | ||
2529 | struct rcu_head rcu_head; | ||
2530 | struct perf_callchain_entry *cpu_entries[0]; | ||
2531 | }; | ||
2532 | |||
2533 | static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]); | ||
2534 | static atomic_t nr_callchain_events; | ||
2535 | static DEFINE_MUTEX(callchain_mutex); | ||
2536 | struct callchain_cpus_entries *callchain_cpus_entries; | ||
2537 | |||
2538 | |||
2539 | __weak void perf_callchain_kernel(struct perf_callchain_entry *entry, | ||
2540 | struct pt_regs *regs) | ||
2541 | { | ||
2542 | } | ||
2543 | |||
2544 | __weak void perf_callchain_user(struct perf_callchain_entry *entry, | ||
2545 | struct pt_regs *regs) | ||
2546 | { | ||
2547 | } | ||
2548 | |||
2549 | static void release_callchain_buffers_rcu(struct rcu_head *head) | ||
2550 | { | ||
2551 | struct callchain_cpus_entries *entries; | ||
2552 | int cpu; | ||
2553 | |||
2554 | entries = container_of(head, struct callchain_cpus_entries, rcu_head); | ||
2555 | |||
2556 | for_each_possible_cpu(cpu) | ||
2557 | kfree(entries->cpu_entries[cpu]); | ||
2558 | |||
2559 | kfree(entries); | ||
2560 | } | ||
2561 | |||
2562 | static void release_callchain_buffers(void) | ||
2563 | { | ||
2564 | struct callchain_cpus_entries *entries; | ||
2565 | |||
2566 | entries = callchain_cpus_entries; | ||
2567 | rcu_assign_pointer(callchain_cpus_entries, NULL); | ||
2568 | call_rcu(&entries->rcu_head, release_callchain_buffers_rcu); | ||
2569 | } | ||
2570 | |||
2571 | static int alloc_callchain_buffers(void) | ||
2572 | { | ||
2573 | int cpu; | ||
2574 | int size; | ||
2575 | struct callchain_cpus_entries *entries; | ||
2576 | |||
2577 | /* | ||
2578 | * We can't use the percpu allocation API for data that can be | ||
2579 | * accessed from NMI. Use a temporary manual per cpu allocation | ||
2580 | * until that gets sorted out. | ||
2581 | */ | ||
2582 | size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]); | ||
2583 | |||
2584 | entries = kzalloc(size, GFP_KERNEL); | ||
2585 | if (!entries) | ||
2586 | return -ENOMEM; | ||
2587 | |||
2588 | size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS; | ||
2589 | |||
2590 | for_each_possible_cpu(cpu) { | ||
2591 | entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL, | ||
2592 | cpu_to_node(cpu)); | ||
2593 | if (!entries->cpu_entries[cpu]) | ||
2594 | goto fail; | ||
2595 | } | ||
2596 | |||
2597 | rcu_assign_pointer(callchain_cpus_entries, entries); | ||
2598 | |||
2599 | return 0; | ||
2600 | |||
2601 | fail: | ||
2602 | for_each_possible_cpu(cpu) | ||
2603 | kfree(entries->cpu_entries[cpu]); | ||
2604 | kfree(entries); | ||
2605 | |||
2606 | return -ENOMEM; | ||
2607 | } | ||
2608 | |||
2609 | static int get_callchain_buffers(void) | ||
2610 | { | ||
2611 | int err = 0; | ||
2612 | int count; | ||
2613 | |||
2614 | mutex_lock(&callchain_mutex); | ||
2615 | |||
2616 | count = atomic_inc_return(&nr_callchain_events); | ||
2617 | if (WARN_ON_ONCE(count < 1)) { | ||
2618 | err = -EINVAL; | ||
2619 | goto exit; | ||
2620 | } | ||
2621 | |||
2622 | if (count > 1) { | ||
2623 | /* If the allocation failed, give up */ | ||
2624 | if (!callchain_cpus_entries) | ||
2625 | err = -ENOMEM; | ||
2626 | goto exit; | ||
2627 | } | ||
2628 | |||
2629 | err = alloc_callchain_buffers(); | ||
2630 | if (err) | ||
2631 | release_callchain_buffers(); | ||
2632 | exit: | ||
2633 | mutex_unlock(&callchain_mutex); | ||
2634 | |||
2635 | return err; | ||
2636 | } | ||
2637 | |||
2638 | static void put_callchain_buffers(void) | ||
2639 | { | ||
2640 | if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) { | ||
2641 | release_callchain_buffers(); | ||
2642 | mutex_unlock(&callchain_mutex); | ||
2643 | } | ||
2644 | } | ||
2645 | |||
2646 | static int get_recursion_context(int *recursion) | ||
2647 | { | ||
2648 | int rctx; | ||
2649 | |||
2650 | if (in_nmi()) | ||
2651 | rctx = 3; | ||
2652 | else if (in_irq()) | ||
2653 | rctx = 2; | ||
2654 | else if (in_softirq()) | ||
2655 | rctx = 1; | ||
2656 | else | ||
2657 | rctx = 0; | ||
2658 | |||
2659 | if (recursion[rctx]) | ||
2660 | return -1; | ||
2661 | |||
2662 | recursion[rctx]++; | ||
2663 | barrier(); | ||
2664 | |||
2665 | return rctx; | ||
2666 | } | ||
2667 | |||
2668 | static inline void put_recursion_context(int *recursion, int rctx) | ||
2669 | { | ||
2670 | barrier(); | ||
2671 | recursion[rctx]--; | ||
2672 | } | ||
2673 | |||
2674 | static struct perf_callchain_entry *get_callchain_entry(int *rctx) | ||
2675 | { | ||
2676 | int cpu; | ||
2677 | struct callchain_cpus_entries *entries; | ||
2678 | |||
2679 | *rctx = get_recursion_context(__get_cpu_var(callchain_recursion)); | ||
2680 | if (*rctx == -1) | ||
2681 | return NULL; | ||
2682 | |||
2683 | entries = rcu_dereference(callchain_cpus_entries); | ||
2684 | if (!entries) | ||
2685 | return NULL; | ||
2686 | |||
2687 | cpu = smp_processor_id(); | ||
2688 | |||
2689 | return &entries->cpu_entries[cpu][*rctx]; | ||
2690 | } | ||
2691 | |||
2692 | static void | ||
2693 | put_callchain_entry(int rctx) | ||
2694 | { | ||
2695 | put_recursion_context(__get_cpu_var(callchain_recursion), rctx); | ||
2696 | } | ||
2697 | |||
2698 | static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs) | ||
2699 | { | ||
2700 | int rctx; | ||
2701 | struct perf_callchain_entry *entry; | ||
2702 | |||
2703 | |||
2704 | entry = get_callchain_entry(&rctx); | ||
2705 | if (rctx == -1) | ||
2706 | return NULL; | ||
2707 | |||
2708 | if (!entry) | ||
2709 | goto exit_put; | ||
2710 | |||
2711 | entry->nr = 0; | ||
2712 | |||
2713 | if (!user_mode(regs)) { | ||
2714 | perf_callchain_store(entry, PERF_CONTEXT_KERNEL); | ||
2715 | perf_callchain_kernel(entry, regs); | ||
2716 | if (current->mm) | ||
2717 | regs = task_pt_regs(current); | ||
2718 | else | ||
2719 | regs = NULL; | ||
2720 | } | ||
2721 | |||
2722 | if (regs) { | ||
2723 | perf_callchain_store(entry, PERF_CONTEXT_USER); | ||
2724 | perf_callchain_user(entry, regs); | ||
2725 | } | ||
2726 | |||
2727 | exit_put: | ||
2728 | put_callchain_entry(rctx); | ||
2729 | |||
2730 | return entry; | ||
2731 | } | ||
2732 | |||
2733 | /* | ||
2734 | * Initialize the perf_event context in a task_struct: | ||
2735 | */ | ||
2736 | static void __perf_event_init_context(struct perf_event_context *ctx) | ||
2737 | { | ||
2738 | raw_spin_lock_init(&ctx->lock); | ||
2739 | mutex_init(&ctx->mutex); | ||
2740 | INIT_LIST_HEAD(&ctx->pinned_groups); | ||
2741 | INIT_LIST_HEAD(&ctx->flexible_groups); | ||
2742 | INIT_LIST_HEAD(&ctx->event_list); | ||
2743 | atomic_set(&ctx->refcount, 1); | ||
2744 | } | ||
2745 | |||
2746 | static struct perf_event_context * | ||
2747 | alloc_perf_context(struct pmu *pmu, struct task_struct *task) | ||
2748 | { | ||
2749 | struct perf_event_context *ctx; | ||
2750 | |||
2751 | ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); | ||
2752 | if (!ctx) | ||
2753 | return NULL; | ||
2754 | |||
2755 | __perf_event_init_context(ctx); | ||
2756 | if (task) { | ||
2757 | ctx->task = task; | ||
2758 | get_task_struct(task); | ||
2759 | } | ||
2760 | ctx->pmu = pmu; | ||
2761 | |||
2762 | return ctx; | ||
2763 | } | ||
2764 | |||
2765 | static struct task_struct * | ||
2766 | find_lively_task_by_vpid(pid_t vpid) | ||
2767 | { | ||
2768 | struct task_struct *task; | ||
2769 | int err; | ||
2770 | |||
2771 | rcu_read_lock(); | ||
2772 | if (!vpid) | ||
2773 | task = current; | ||
2774 | else | ||
2775 | task = find_task_by_vpid(vpid); | ||
2776 | if (task) | ||
2777 | get_task_struct(task); | ||
2778 | rcu_read_unlock(); | ||
2779 | |||
2780 | if (!task) | ||
2781 | return ERR_PTR(-ESRCH); | ||
2782 | |||
2783 | /* Reuse ptrace permission checks for now. */ | ||
2784 | err = -EACCES; | ||
2785 | if (!ptrace_may_access(task, PTRACE_MODE_READ)) | ||
2786 | goto errout; | ||
2787 | |||
2788 | return task; | ||
2789 | errout: | ||
2790 | put_task_struct(task); | ||
2791 | return ERR_PTR(err); | ||
2792 | |||
2793 | } | ||
2794 | |||
2795 | /* | ||
2796 | * Returns a matching context with refcount and pincount. | ||
2797 | */ | ||
2798 | static struct perf_event_context * | ||
2799 | find_get_context(struct pmu *pmu, struct task_struct *task, int cpu) | ||
2800 | { | ||
2801 | struct perf_event_context *ctx; | ||
2802 | struct perf_cpu_context *cpuctx; | ||
2803 | unsigned long flags; | ||
2804 | int ctxn, err; | ||
2805 | |||
2806 | if (!task) { | ||
2807 | /* Must be root to operate on a CPU event: */ | ||
2808 | if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) | ||
2809 | return ERR_PTR(-EACCES); | ||
2810 | |||
2811 | /* | ||
2812 | * We could be clever and allow to attach a event to an | ||
2813 | * offline CPU and activate it when the CPU comes up, but | ||
2814 | * that's for later. | ||
2815 | */ | ||
2816 | if (!cpu_online(cpu)) | ||
2817 | return ERR_PTR(-ENODEV); | ||
2818 | |||
2819 | cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); | ||
2820 | ctx = &cpuctx->ctx; | ||
2821 | get_ctx(ctx); | ||
2822 | ++ctx->pin_count; | ||
2823 | |||
2824 | return ctx; | ||
2825 | } | ||
2826 | |||
2827 | err = -EINVAL; | ||
2828 | ctxn = pmu->task_ctx_nr; | ||
2829 | if (ctxn < 0) | ||
2830 | goto errout; | ||
2831 | |||
2832 | retry: | ||
2833 | ctx = perf_lock_task_context(task, ctxn, &flags); | ||
2834 | if (ctx) { | ||
2835 | unclone_ctx(ctx); | ||
2836 | ++ctx->pin_count; | ||
2837 | raw_spin_unlock_irqrestore(&ctx->lock, flags); | ||
2838 | } | ||
2839 | |||
2840 | if (!ctx) { | ||
2841 | ctx = alloc_perf_context(pmu, task); | ||
2842 | err = -ENOMEM; | ||
2843 | if (!ctx) | ||
2844 | goto errout; | ||
2845 | |||
2846 | get_ctx(ctx); | ||
2847 | |||
2848 | err = 0; | ||
2849 | mutex_lock(&task->perf_event_mutex); | ||
2850 | /* | ||
2851 | * If it has already passed perf_event_exit_task(). | ||
2852 | * we must see PF_EXITING, it takes this mutex too. | ||
2853 | */ | ||
2854 | if (task->flags & PF_EXITING) | ||
2855 | err = -ESRCH; | ||
2856 | else if (task->perf_event_ctxp[ctxn]) | ||
2857 | err = -EAGAIN; | ||
2858 | else { | ||
2859 | ++ctx->pin_count; | ||
2860 | rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); | ||
2861 | } | ||
2862 | mutex_unlock(&task->perf_event_mutex); | ||
2863 | |||
2864 | if (unlikely(err)) { | ||
2865 | put_task_struct(task); | ||
2866 | kfree(ctx); | ||
2867 | |||
2868 | if (err == -EAGAIN) | ||
2869 | goto retry; | ||
2870 | goto errout; | ||
2871 | } | ||
2872 | } | ||
2873 | |||
2874 | return ctx; | ||
2875 | |||
2876 | errout: | ||
2877 | return ERR_PTR(err); | ||
2878 | } | ||
2879 | |||
2880 | static void perf_event_free_filter(struct perf_event *event); | ||
2881 | |||
2882 | static void free_event_rcu(struct rcu_head *head) | ||
2883 | { | ||
2884 | struct perf_event *event; | ||
2885 | |||
2886 | event = container_of(head, struct perf_event, rcu_head); | ||
2887 | if (event->ns) | ||
2888 | put_pid_ns(event->ns); | ||
2889 | perf_event_free_filter(event); | ||
2890 | kfree(event); | ||
2891 | } | ||
2892 | |||
2893 | static void perf_buffer_put(struct perf_buffer *buffer); | ||
2894 | |||
2895 | static void free_event(struct perf_event *event) | ||
2896 | { | ||
2897 | irq_work_sync(&event->pending); | ||
2898 | |||
2899 | if (!event->parent) { | ||
2900 | if (event->attach_state & PERF_ATTACH_TASK) | ||
2901 | jump_label_dec(&perf_sched_events); | ||
2902 | if (event->attr.mmap || event->attr.mmap_data) | ||
2903 | atomic_dec(&nr_mmap_events); | ||
2904 | if (event->attr.comm) | ||
2905 | atomic_dec(&nr_comm_events); | ||
2906 | if (event->attr.task) | ||
2907 | atomic_dec(&nr_task_events); | ||
2908 | if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) | ||
2909 | put_callchain_buffers(); | ||
2910 | if (is_cgroup_event(event)) { | ||
2911 | atomic_dec(&per_cpu(perf_cgroup_events, event->cpu)); | ||
2912 | jump_label_dec(&perf_sched_events); | ||
2913 | } | ||
2914 | } | ||
2915 | |||
2916 | if (event->buffer) { | ||
2917 | perf_buffer_put(event->buffer); | ||
2918 | event->buffer = NULL; | ||
2919 | } | ||
2920 | |||
2921 | if (is_cgroup_event(event)) | ||
2922 | perf_detach_cgroup(event); | ||
2923 | |||
2924 | if (event->destroy) | ||
2925 | event->destroy(event); | ||
2926 | |||
2927 | if (event->ctx) | ||
2928 | put_ctx(event->ctx); | ||
2929 | |||
2930 | call_rcu(&event->rcu_head, free_event_rcu); | ||
2931 | } | ||
2932 | |||
2933 | int perf_event_release_kernel(struct perf_event *event) | ||
2934 | { | ||
2935 | struct perf_event_context *ctx = event->ctx; | ||
2936 | |||
2937 | /* | ||
2938 | * Remove from the PMU, can't get re-enabled since we got | ||
2939 | * here because the last ref went. | ||
2940 | */ | ||
2941 | perf_event_disable(event); | ||
2942 | |||
2943 | WARN_ON_ONCE(ctx->parent_ctx); | ||
2944 | /* | ||
2945 | * There are two ways this annotation is useful: | ||
2946 | * | ||
2947 | * 1) there is a lock recursion from perf_event_exit_task | ||
2948 | * see the comment there. | ||
2949 | * | ||
2950 | * 2) there is a lock-inversion with mmap_sem through | ||
2951 | * perf_event_read_group(), which takes faults while | ||
2952 | * holding ctx->mutex, however this is called after | ||
2953 | * the last filedesc died, so there is no possibility | ||
2954 | * to trigger the AB-BA case. | ||
2955 | */ | ||
2956 | mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING); | ||
2957 | raw_spin_lock_irq(&ctx->lock); | ||
2958 | perf_group_detach(event); | ||
2959 | list_del_event(event, ctx); | ||
2960 | raw_spin_unlock_irq(&ctx->lock); | ||
2961 | mutex_unlock(&ctx->mutex); | ||
2962 | |||
2963 | free_event(event); | ||
2964 | |||
2965 | return 0; | ||
2966 | } | ||
2967 | EXPORT_SYMBOL_GPL(perf_event_release_kernel); | ||
2968 | |||
2969 | /* | ||
2970 | * Called when the last reference to the file is gone. | ||
2971 | */ | ||
2972 | static int perf_release(struct inode *inode, struct file *file) | ||
2973 | { | ||
2974 | struct perf_event *event = file->private_data; | ||
2975 | struct task_struct *owner; | ||
2976 | |||
2977 | file->private_data = NULL; | ||
2978 | |||
2979 | rcu_read_lock(); | ||
2980 | owner = ACCESS_ONCE(event->owner); | ||
2981 | /* | ||
2982 | * Matches the smp_wmb() in perf_event_exit_task(). If we observe | ||
2983 | * !owner it means the list deletion is complete and we can indeed | ||
2984 | * free this event, otherwise we need to serialize on | ||
2985 | * owner->perf_event_mutex. | ||
2986 | */ | ||
2987 | smp_read_barrier_depends(); | ||
2988 | if (owner) { | ||
2989 | /* | ||
2990 | * Since delayed_put_task_struct() also drops the last | ||
2991 | * task reference we can safely take a new reference | ||
2992 | * while holding the rcu_read_lock(). | ||
2993 | */ | ||
2994 | get_task_struct(owner); | ||
2995 | } | ||
2996 | rcu_read_unlock(); | ||
2997 | |||
2998 | if (owner) { | ||
2999 | mutex_lock(&owner->perf_event_mutex); | ||
3000 | /* | ||
3001 | * We have to re-check the event->owner field, if it is cleared | ||
3002 | * we raced with perf_event_exit_task(), acquiring the mutex | ||
3003 | * ensured they're done, and we can proceed with freeing the | ||
3004 | * event. | ||
3005 | */ | ||
3006 | if (event->owner) | ||
3007 | list_del_init(&event->owner_entry); | ||
3008 | mutex_unlock(&owner->perf_event_mutex); | ||
3009 | put_task_struct(owner); | ||
3010 | } | ||
3011 | |||
3012 | return perf_event_release_kernel(event); | ||
3013 | } | ||
3014 | |||
3015 | u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) | ||
3016 | { | ||
3017 | struct perf_event *child; | ||
3018 | u64 total = 0; | ||
3019 | |||
3020 | *enabled = 0; | ||
3021 | *running = 0; | ||
3022 | |||
3023 | mutex_lock(&event->child_mutex); | ||
3024 | total += perf_event_read(event); | ||
3025 | *enabled += event->total_time_enabled + | ||
3026 | atomic64_read(&event->child_total_time_enabled); | ||
3027 | *running += event->total_time_running + | ||
3028 | atomic64_read(&event->child_total_time_running); | ||
3029 | |||
3030 | list_for_each_entry(child, &event->child_list, child_list) { | ||
3031 | total += perf_event_read(child); | ||
3032 | *enabled += child->total_time_enabled; | ||
3033 | *running += child->total_time_running; | ||
3034 | } | ||
3035 | mutex_unlock(&event->child_mutex); | ||
3036 | |||
3037 | return total; | ||
3038 | } | ||
3039 | EXPORT_SYMBOL_GPL(perf_event_read_value); | ||
3040 | |||
3041 | static int perf_event_read_group(struct perf_event *event, | ||
3042 | u64 read_format, char __user *buf) | ||
3043 | { | ||
3044 | struct perf_event *leader = event->group_leader, *sub; | ||
3045 | int n = 0, size = 0, ret = -EFAULT; | ||
3046 | struct perf_event_context *ctx = leader->ctx; | ||
3047 | u64 values[5]; | ||
3048 | u64 count, enabled, running; | ||
3049 | |||
3050 | mutex_lock(&ctx->mutex); | ||
3051 | count = perf_event_read_value(leader, &enabled, &running); | ||
3052 | |||
3053 | values[n++] = 1 + leader->nr_siblings; | ||
3054 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
3055 | values[n++] = enabled; | ||
3056 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
3057 | values[n++] = running; | ||
3058 | values[n++] = count; | ||
3059 | if (read_format & PERF_FORMAT_ID) | ||
3060 | values[n++] = primary_event_id(leader); | ||
3061 | |||
3062 | size = n * sizeof(u64); | ||
3063 | |||
3064 | if (copy_to_user(buf, values, size)) | ||
3065 | goto unlock; | ||
3066 | |||
3067 | ret = size; | ||
3068 | |||
3069 | list_for_each_entry(sub, &leader->sibling_list, group_entry) { | ||
3070 | n = 0; | ||
3071 | |||
3072 | values[n++] = perf_event_read_value(sub, &enabled, &running); | ||
3073 | if (read_format & PERF_FORMAT_ID) | ||
3074 | values[n++] = primary_event_id(sub); | ||
3075 | |||
3076 | size = n * sizeof(u64); | ||
3077 | |||
3078 | if (copy_to_user(buf + ret, values, size)) { | ||
3079 | ret = -EFAULT; | ||
3080 | goto unlock; | ||
3081 | } | ||
3082 | |||
3083 | ret += size; | ||
3084 | } | ||
3085 | unlock: | ||
3086 | mutex_unlock(&ctx->mutex); | ||
3087 | |||
3088 | return ret; | ||
3089 | } | ||
3090 | |||
3091 | static int perf_event_read_one(struct perf_event *event, | ||
3092 | u64 read_format, char __user *buf) | ||
3093 | { | ||
3094 | u64 enabled, running; | ||
3095 | u64 values[4]; | ||
3096 | int n = 0; | ||
3097 | |||
3098 | values[n++] = perf_event_read_value(event, &enabled, &running); | ||
3099 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
3100 | values[n++] = enabled; | ||
3101 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
3102 | values[n++] = running; | ||
3103 | if (read_format & PERF_FORMAT_ID) | ||
3104 | values[n++] = primary_event_id(event); | ||
3105 | |||
3106 | if (copy_to_user(buf, values, n * sizeof(u64))) | ||
3107 | return -EFAULT; | ||
3108 | |||
3109 | return n * sizeof(u64); | ||
3110 | } | ||
3111 | |||
3112 | /* | ||
3113 | * Read the performance event - simple non blocking version for now | ||
3114 | */ | ||
3115 | static ssize_t | ||
3116 | perf_read_hw(struct perf_event *event, char __user *buf, size_t count) | ||
3117 | { | ||
3118 | u64 read_format = event->attr.read_format; | ||
3119 | int ret; | ||
3120 | |||
3121 | /* | ||
3122 | * Return end-of-file for a read on a event that is in | ||
3123 | * error state (i.e. because it was pinned but it couldn't be | ||
3124 | * scheduled on to the CPU at some point). | ||
3125 | */ | ||
3126 | if (event->state == PERF_EVENT_STATE_ERROR) | ||
3127 | return 0; | ||
3128 | |||
3129 | if (count < event->read_size) | ||
3130 | return -ENOSPC; | ||
3131 | |||
3132 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
3133 | if (read_format & PERF_FORMAT_GROUP) | ||
3134 | ret = perf_event_read_group(event, read_format, buf); | ||
3135 | else | ||
3136 | ret = perf_event_read_one(event, read_format, buf); | ||
3137 | |||
3138 | return ret; | ||
3139 | } | ||
3140 | |||
3141 | static ssize_t | ||
3142 | perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) | ||
3143 | { | ||
3144 | struct perf_event *event = file->private_data; | ||
3145 | |||
3146 | return perf_read_hw(event, buf, count); | ||
3147 | } | ||
3148 | |||
3149 | static unsigned int perf_poll(struct file *file, poll_table *wait) | ||
3150 | { | ||
3151 | struct perf_event *event = file->private_data; | ||
3152 | struct perf_buffer *buffer; | ||
3153 | unsigned int events = POLL_HUP; | ||
3154 | |||
3155 | rcu_read_lock(); | ||
3156 | buffer = rcu_dereference(event->buffer); | ||
3157 | if (buffer) | ||
3158 | events = atomic_xchg(&buffer->poll, 0); | ||
3159 | rcu_read_unlock(); | ||
3160 | |||
3161 | poll_wait(file, &event->waitq, wait); | ||
3162 | |||
3163 | return events; | ||
3164 | } | ||
3165 | |||
3166 | static void perf_event_reset(struct perf_event *event) | ||
3167 | { | ||
3168 | (void)perf_event_read(event); | ||
3169 | local64_set(&event->count, 0); | ||
3170 | perf_event_update_userpage(event); | ||
3171 | } | ||
3172 | |||
3173 | /* | ||
3174 | * Holding the top-level event's child_mutex means that any | ||
3175 | * descendant process that has inherited this event will block | ||
3176 | * in sync_child_event if it goes to exit, thus satisfying the | ||
3177 | * task existence requirements of perf_event_enable/disable. | ||
3178 | */ | ||
3179 | static void perf_event_for_each_child(struct perf_event *event, | ||
3180 | void (*func)(struct perf_event *)) | ||
3181 | { | ||
3182 | struct perf_event *child; | ||
3183 | |||
3184 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
3185 | mutex_lock(&event->child_mutex); | ||
3186 | func(event); | ||
3187 | list_for_each_entry(child, &event->child_list, child_list) | ||
3188 | func(child); | ||
3189 | mutex_unlock(&event->child_mutex); | ||
3190 | } | ||
3191 | |||
3192 | static void perf_event_for_each(struct perf_event *event, | ||
3193 | void (*func)(struct perf_event *)) | ||
3194 | { | ||
3195 | struct perf_event_context *ctx = event->ctx; | ||
3196 | struct perf_event *sibling; | ||
3197 | |||
3198 | WARN_ON_ONCE(ctx->parent_ctx); | ||
3199 | mutex_lock(&ctx->mutex); | ||
3200 | event = event->group_leader; | ||
3201 | |||
3202 | perf_event_for_each_child(event, func); | ||
3203 | func(event); | ||
3204 | list_for_each_entry(sibling, &event->sibling_list, group_entry) | ||
3205 | perf_event_for_each_child(event, func); | ||
3206 | mutex_unlock(&ctx->mutex); | ||
3207 | } | ||
3208 | |||
3209 | static int perf_event_period(struct perf_event *event, u64 __user *arg) | ||
3210 | { | ||
3211 | struct perf_event_context *ctx = event->ctx; | ||
3212 | int ret = 0; | ||
3213 | u64 value; | ||
3214 | |||
3215 | if (!is_sampling_event(event)) | ||
3216 | return -EINVAL; | ||
3217 | |||
3218 | if (copy_from_user(&value, arg, sizeof(value))) | ||
3219 | return -EFAULT; | ||
3220 | |||
3221 | if (!value) | ||
3222 | return -EINVAL; | ||
3223 | |||
3224 | raw_spin_lock_irq(&ctx->lock); | ||
3225 | if (event->attr.freq) { | ||
3226 | if (value > sysctl_perf_event_sample_rate) { | ||
3227 | ret = -EINVAL; | ||
3228 | goto unlock; | ||
3229 | } | ||
3230 | |||
3231 | event->attr.sample_freq = value; | ||
3232 | } else { | ||
3233 | event->attr.sample_period = value; | ||
3234 | event->hw.sample_period = value; | ||
3235 | } | ||
3236 | unlock: | ||
3237 | raw_spin_unlock_irq(&ctx->lock); | ||
3238 | |||
3239 | return ret; | ||
3240 | } | ||
3241 | |||
3242 | static const struct file_operations perf_fops; | ||
3243 | |||
3244 | static struct perf_event *perf_fget_light(int fd, int *fput_needed) | ||
3245 | { | ||
3246 | struct file *file; | ||
3247 | |||
3248 | file = fget_light(fd, fput_needed); | ||
3249 | if (!file) | ||
3250 | return ERR_PTR(-EBADF); | ||
3251 | |||
3252 | if (file->f_op != &perf_fops) { | ||
3253 | fput_light(file, *fput_needed); | ||
3254 | *fput_needed = 0; | ||
3255 | return ERR_PTR(-EBADF); | ||
3256 | } | ||
3257 | |||
3258 | return file->private_data; | ||
3259 | } | ||
3260 | |||
3261 | static int perf_event_set_output(struct perf_event *event, | ||
3262 | struct perf_event *output_event); | ||
3263 | static int perf_event_set_filter(struct perf_event *event, void __user *arg); | ||
3264 | |||
3265 | static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) | ||
3266 | { | ||
3267 | struct perf_event *event = file->private_data; | ||
3268 | void (*func)(struct perf_event *); | ||
3269 | u32 flags = arg; | ||
3270 | |||
3271 | switch (cmd) { | ||
3272 | case PERF_EVENT_IOC_ENABLE: | ||
3273 | func = perf_event_enable; | ||
3274 | break; | ||
3275 | case PERF_EVENT_IOC_DISABLE: | ||
3276 | func = perf_event_disable; | ||
3277 | break; | ||
3278 | case PERF_EVENT_IOC_RESET: | ||
3279 | func = perf_event_reset; | ||
3280 | break; | ||
3281 | |||
3282 | case PERF_EVENT_IOC_REFRESH: | ||
3283 | return perf_event_refresh(event, arg); | ||
3284 | |||
3285 | case PERF_EVENT_IOC_PERIOD: | ||
3286 | return perf_event_period(event, (u64 __user *)arg); | ||
3287 | |||
3288 | case PERF_EVENT_IOC_SET_OUTPUT: | ||
3289 | { | ||
3290 | struct perf_event *output_event = NULL; | ||
3291 | int fput_needed = 0; | ||
3292 | int ret; | ||
3293 | |||
3294 | if (arg != -1) { | ||
3295 | output_event = perf_fget_light(arg, &fput_needed); | ||
3296 | if (IS_ERR(output_event)) | ||
3297 | return PTR_ERR(output_event); | ||
3298 | } | ||
3299 | |||
3300 | ret = perf_event_set_output(event, output_event); | ||
3301 | if (output_event) | ||
3302 | fput_light(output_event->filp, fput_needed); | ||
3303 | |||
3304 | return ret; | ||
3305 | } | ||
3306 | |||
3307 | case PERF_EVENT_IOC_SET_FILTER: | ||
3308 | return perf_event_set_filter(event, (void __user *)arg); | ||
3309 | |||
3310 | default: | ||
3311 | return -ENOTTY; | ||
3312 | } | ||
3313 | |||
3314 | if (flags & PERF_IOC_FLAG_GROUP) | ||
3315 | perf_event_for_each(event, func); | ||
3316 | else | ||
3317 | perf_event_for_each_child(event, func); | ||
3318 | |||
3319 | return 0; | ||
3320 | } | ||
3321 | |||
3322 | int perf_event_task_enable(void) | ||
3323 | { | ||
3324 | struct perf_event *event; | ||
3325 | |||
3326 | mutex_lock(¤t->perf_event_mutex); | ||
3327 | list_for_each_entry(event, ¤t->perf_event_list, owner_entry) | ||
3328 | perf_event_for_each_child(event, perf_event_enable); | ||
3329 | mutex_unlock(¤t->perf_event_mutex); | ||
3330 | |||
3331 | return 0; | ||
3332 | } | ||
3333 | |||
3334 | int perf_event_task_disable(void) | ||
3335 | { | ||
3336 | struct perf_event *event; | ||
3337 | |||
3338 | mutex_lock(¤t->perf_event_mutex); | ||
3339 | list_for_each_entry(event, ¤t->perf_event_list, owner_entry) | ||
3340 | perf_event_for_each_child(event, perf_event_disable); | ||
3341 | mutex_unlock(¤t->perf_event_mutex); | ||
3342 | |||
3343 | return 0; | ||
3344 | } | ||
3345 | |||
3346 | #ifndef PERF_EVENT_INDEX_OFFSET | ||
3347 | # define PERF_EVENT_INDEX_OFFSET 0 | ||
3348 | #endif | ||
3349 | |||
3350 | static int perf_event_index(struct perf_event *event) | ||
3351 | { | ||
3352 | if (event->hw.state & PERF_HES_STOPPED) | ||
3353 | return 0; | ||
3354 | |||
3355 | if (event->state != PERF_EVENT_STATE_ACTIVE) | ||
3356 | return 0; | ||
3357 | |||
3358 | return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET; | ||
3359 | } | ||
3360 | |||
3361 | /* | ||
3362 | * Callers need to ensure there can be no nesting of this function, otherwise | ||
3363 | * the seqlock logic goes bad. We can not serialize this because the arch | ||
3364 | * code calls this from NMI context. | ||
3365 | */ | ||
3366 | void perf_event_update_userpage(struct perf_event *event) | ||
3367 | { | ||
3368 | struct perf_event_mmap_page *userpg; | ||
3369 | struct perf_buffer *buffer; | ||
3370 | |||
3371 | rcu_read_lock(); | ||
3372 | buffer = rcu_dereference(event->buffer); | ||
3373 | if (!buffer) | ||
3374 | goto unlock; | ||
3375 | |||
3376 | userpg = buffer->user_page; | ||
3377 | |||
3378 | /* | ||
3379 | * Disable preemption so as to not let the corresponding user-space | ||
3380 | * spin too long if we get preempted. | ||
3381 | */ | ||
3382 | preempt_disable(); | ||
3383 | ++userpg->lock; | ||
3384 | barrier(); | ||
3385 | userpg->index = perf_event_index(event); | ||
3386 | userpg->offset = perf_event_count(event); | ||
3387 | if (event->state == PERF_EVENT_STATE_ACTIVE) | ||
3388 | userpg->offset -= local64_read(&event->hw.prev_count); | ||
3389 | |||
3390 | userpg->time_enabled = event->total_time_enabled + | ||
3391 | atomic64_read(&event->child_total_time_enabled); | ||
3392 | |||
3393 | userpg->time_running = event->total_time_running + | ||
3394 | atomic64_read(&event->child_total_time_running); | ||
3395 | |||
3396 | barrier(); | ||
3397 | ++userpg->lock; | ||
3398 | preempt_enable(); | ||
3399 | unlock: | ||
3400 | rcu_read_unlock(); | ||
3401 | } | ||
3402 | |||
3403 | static unsigned long perf_data_size(struct perf_buffer *buffer); | ||
3404 | |||
3405 | static void | ||
3406 | perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags) | ||
3407 | { | ||
3408 | long max_size = perf_data_size(buffer); | ||
3409 | |||
3410 | if (watermark) | ||
3411 | buffer->watermark = min(max_size, watermark); | ||
3412 | |||
3413 | if (!buffer->watermark) | ||
3414 | buffer->watermark = max_size / 2; | ||
3415 | |||
3416 | if (flags & PERF_BUFFER_WRITABLE) | ||
3417 | buffer->writable = 1; | ||
3418 | |||
3419 | atomic_set(&buffer->refcount, 1); | ||
3420 | } | ||
3421 | |||
3422 | #ifndef CONFIG_PERF_USE_VMALLOC | ||
3423 | |||
3424 | /* | ||
3425 | * Back perf_mmap() with regular GFP_KERNEL-0 pages. | ||
3426 | */ | ||
3427 | |||
3428 | static struct page * | ||
3429 | perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff) | ||
3430 | { | ||
3431 | if (pgoff > buffer->nr_pages) | ||
3432 | return NULL; | ||
3433 | |||
3434 | if (pgoff == 0) | ||
3435 | return virt_to_page(buffer->user_page); | ||
3436 | |||
3437 | return virt_to_page(buffer->data_pages[pgoff - 1]); | ||
3438 | } | ||
3439 | |||
3440 | static void *perf_mmap_alloc_page(int cpu) | ||
3441 | { | ||
3442 | struct page *page; | ||
3443 | int node; | ||
3444 | |||
3445 | node = (cpu == -1) ? cpu : cpu_to_node(cpu); | ||
3446 | page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); | ||
3447 | if (!page) | ||
3448 | return NULL; | ||
3449 | |||
3450 | return page_address(page); | ||
3451 | } | ||
3452 | |||
3453 | static struct perf_buffer * | ||
3454 | perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags) | ||
3455 | { | ||
3456 | struct perf_buffer *buffer; | ||
3457 | unsigned long size; | ||
3458 | int i; | ||
3459 | |||
3460 | size = sizeof(struct perf_buffer); | ||
3461 | size += nr_pages * sizeof(void *); | ||
3462 | |||
3463 | buffer = kzalloc(size, GFP_KERNEL); | ||
3464 | if (!buffer) | ||
3465 | goto fail; | ||
3466 | |||
3467 | buffer->user_page = perf_mmap_alloc_page(cpu); | ||
3468 | if (!buffer->user_page) | ||
3469 | goto fail_user_page; | ||
3470 | |||
3471 | for (i = 0; i < nr_pages; i++) { | ||
3472 | buffer->data_pages[i] = perf_mmap_alloc_page(cpu); | ||
3473 | if (!buffer->data_pages[i]) | ||
3474 | goto fail_data_pages; | ||
3475 | } | ||
3476 | |||
3477 | buffer->nr_pages = nr_pages; | ||
3478 | |||
3479 | perf_buffer_init(buffer, watermark, flags); | ||
3480 | |||
3481 | return buffer; | ||
3482 | |||
3483 | fail_data_pages: | ||
3484 | for (i--; i >= 0; i--) | ||
3485 | free_page((unsigned long)buffer->data_pages[i]); | ||
3486 | |||
3487 | free_page((unsigned long)buffer->user_page); | ||
3488 | |||
3489 | fail_user_page: | ||
3490 | kfree(buffer); | ||
3491 | |||
3492 | fail: | ||
3493 | return NULL; | ||
3494 | } | ||
3495 | |||
3496 | static void perf_mmap_free_page(unsigned long addr) | ||
3497 | { | ||
3498 | struct page *page = virt_to_page((void *)addr); | ||
3499 | |||
3500 | page->mapping = NULL; | ||
3501 | __free_page(page); | ||
3502 | } | ||
3503 | |||
3504 | static void perf_buffer_free(struct perf_buffer *buffer) | ||
3505 | { | ||
3506 | int i; | ||
3507 | |||
3508 | perf_mmap_free_page((unsigned long)buffer->user_page); | ||
3509 | for (i = 0; i < buffer->nr_pages; i++) | ||
3510 | perf_mmap_free_page((unsigned long)buffer->data_pages[i]); | ||
3511 | kfree(buffer); | ||
3512 | } | ||
3513 | |||
3514 | static inline int page_order(struct perf_buffer *buffer) | ||
3515 | { | ||
3516 | return 0; | ||
3517 | } | ||
3518 | |||
3519 | #else | ||
3520 | |||
3521 | /* | ||
3522 | * Back perf_mmap() with vmalloc memory. | ||
3523 | * | ||
3524 | * Required for architectures that have d-cache aliasing issues. | ||
3525 | */ | ||
3526 | |||
3527 | static inline int page_order(struct perf_buffer *buffer) | ||
3528 | { | ||
3529 | return buffer->page_order; | ||
3530 | } | ||
3531 | |||
3532 | static struct page * | ||
3533 | perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff) | ||
3534 | { | ||
3535 | if (pgoff > (1UL << page_order(buffer))) | ||
3536 | return NULL; | ||
3537 | |||
3538 | return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE); | ||
3539 | } | ||
3540 | |||
3541 | static void perf_mmap_unmark_page(void *addr) | ||
3542 | { | ||
3543 | struct page *page = vmalloc_to_page(addr); | ||
3544 | |||
3545 | page->mapping = NULL; | ||
3546 | } | ||
3547 | |||
3548 | static void perf_buffer_free_work(struct work_struct *work) | ||
3549 | { | ||
3550 | struct perf_buffer *buffer; | ||
3551 | void *base; | ||
3552 | int i, nr; | ||
3553 | |||
3554 | buffer = container_of(work, struct perf_buffer, work); | ||
3555 | nr = 1 << page_order(buffer); | ||
3556 | |||
3557 | base = buffer->user_page; | ||
3558 | for (i = 0; i < nr + 1; i++) | ||
3559 | perf_mmap_unmark_page(base + (i * PAGE_SIZE)); | ||
3560 | |||
3561 | vfree(base); | ||
3562 | kfree(buffer); | ||
3563 | } | ||
3564 | |||
3565 | static void perf_buffer_free(struct perf_buffer *buffer) | ||
3566 | { | ||
3567 | schedule_work(&buffer->work); | ||
3568 | } | ||
3569 | |||
3570 | static struct perf_buffer * | ||
3571 | perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags) | ||
3572 | { | ||
3573 | struct perf_buffer *buffer; | ||
3574 | unsigned long size; | ||
3575 | void *all_buf; | ||
3576 | |||
3577 | size = sizeof(struct perf_buffer); | ||
3578 | size += sizeof(void *); | ||
3579 | |||
3580 | buffer = kzalloc(size, GFP_KERNEL); | ||
3581 | if (!buffer) | ||
3582 | goto fail; | ||
3583 | |||
3584 | INIT_WORK(&buffer->work, perf_buffer_free_work); | ||
3585 | |||
3586 | all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE); | ||
3587 | if (!all_buf) | ||
3588 | goto fail_all_buf; | ||
3589 | |||
3590 | buffer->user_page = all_buf; | ||
3591 | buffer->data_pages[0] = all_buf + PAGE_SIZE; | ||
3592 | buffer->page_order = ilog2(nr_pages); | ||
3593 | buffer->nr_pages = 1; | ||
3594 | |||
3595 | perf_buffer_init(buffer, watermark, flags); | ||
3596 | |||
3597 | return buffer; | ||
3598 | |||
3599 | fail_all_buf: | ||
3600 | kfree(buffer); | ||
3601 | |||
3602 | fail: | ||
3603 | return NULL; | ||
3604 | } | ||
3605 | |||
3606 | #endif | ||
3607 | |||
3608 | static unsigned long perf_data_size(struct perf_buffer *buffer) | ||
3609 | { | ||
3610 | return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer)); | ||
3611 | } | ||
3612 | |||
3613 | static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | ||
3614 | { | ||
3615 | struct perf_event *event = vma->vm_file->private_data; | ||
3616 | struct perf_buffer *buffer; | ||
3617 | int ret = VM_FAULT_SIGBUS; | ||
3618 | |||
3619 | if (vmf->flags & FAULT_FLAG_MKWRITE) { | ||
3620 | if (vmf->pgoff == 0) | ||
3621 | ret = 0; | ||
3622 | return ret; | ||
3623 | } | ||
3624 | |||
3625 | rcu_read_lock(); | ||
3626 | buffer = rcu_dereference(event->buffer); | ||
3627 | if (!buffer) | ||
3628 | goto unlock; | ||
3629 | |||
3630 | if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) | ||
3631 | goto unlock; | ||
3632 | |||
3633 | vmf->page = perf_mmap_to_page(buffer, vmf->pgoff); | ||
3634 | if (!vmf->page) | ||
3635 | goto unlock; | ||
3636 | |||
3637 | get_page(vmf->page); | ||
3638 | vmf->page->mapping = vma->vm_file->f_mapping; | ||
3639 | vmf->page->index = vmf->pgoff; | ||
3640 | |||
3641 | ret = 0; | ||
3642 | unlock: | ||
3643 | rcu_read_unlock(); | ||
3644 | |||
3645 | return ret; | ||
3646 | } | ||
3647 | |||
3648 | static void perf_buffer_free_rcu(struct rcu_head *rcu_head) | ||
3649 | { | ||
3650 | struct perf_buffer *buffer; | ||
3651 | |||
3652 | buffer = container_of(rcu_head, struct perf_buffer, rcu_head); | ||
3653 | perf_buffer_free(buffer); | ||
3654 | } | ||
3655 | |||
3656 | static struct perf_buffer *perf_buffer_get(struct perf_event *event) | ||
3657 | { | ||
3658 | struct perf_buffer *buffer; | ||
3659 | |||
3660 | rcu_read_lock(); | ||
3661 | buffer = rcu_dereference(event->buffer); | ||
3662 | if (buffer) { | ||
3663 | if (!atomic_inc_not_zero(&buffer->refcount)) | ||
3664 | buffer = NULL; | ||
3665 | } | ||
3666 | rcu_read_unlock(); | ||
3667 | |||
3668 | return buffer; | ||
3669 | } | ||
3670 | |||
3671 | static void perf_buffer_put(struct perf_buffer *buffer) | ||
3672 | { | ||
3673 | if (!atomic_dec_and_test(&buffer->refcount)) | ||
3674 | return; | ||
3675 | |||
3676 | call_rcu(&buffer->rcu_head, perf_buffer_free_rcu); | ||
3677 | } | ||
3678 | |||
3679 | static void perf_mmap_open(struct vm_area_struct *vma) | ||
3680 | { | ||
3681 | struct perf_event *event = vma->vm_file->private_data; | ||
3682 | |||
3683 | atomic_inc(&event->mmap_count); | ||
3684 | } | ||
3685 | |||
3686 | static void perf_mmap_close(struct vm_area_struct *vma) | ||
3687 | { | ||
3688 | struct perf_event *event = vma->vm_file->private_data; | ||
3689 | |||
3690 | if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) { | ||
3691 | unsigned long size = perf_data_size(event->buffer); | ||
3692 | struct user_struct *user = event->mmap_user; | ||
3693 | struct perf_buffer *buffer = event->buffer; | ||
3694 | |||
3695 | atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm); | ||
3696 | vma->vm_mm->locked_vm -= event->mmap_locked; | ||
3697 | rcu_assign_pointer(event->buffer, NULL); | ||
3698 | mutex_unlock(&event->mmap_mutex); | ||
3699 | |||
3700 | perf_buffer_put(buffer); | ||
3701 | free_uid(user); | ||
3702 | } | ||
3703 | } | ||
3704 | |||
3705 | static const struct vm_operations_struct perf_mmap_vmops = { | ||
3706 | .open = perf_mmap_open, | ||
3707 | .close = perf_mmap_close, | ||
3708 | .fault = perf_mmap_fault, | ||
3709 | .page_mkwrite = perf_mmap_fault, | ||
3710 | }; | ||
3711 | |||
3712 | static int perf_mmap(struct file *file, struct vm_area_struct *vma) | ||
3713 | { | ||
3714 | struct perf_event *event = file->private_data; | ||
3715 | unsigned long user_locked, user_lock_limit; | ||
3716 | struct user_struct *user = current_user(); | ||
3717 | unsigned long locked, lock_limit; | ||
3718 | struct perf_buffer *buffer; | ||
3719 | unsigned long vma_size; | ||
3720 | unsigned long nr_pages; | ||
3721 | long user_extra, extra; | ||
3722 | int ret = 0, flags = 0; | ||
3723 | |||
3724 | /* | ||
3725 | * Don't allow mmap() of inherited per-task counters. This would | ||
3726 | * create a performance issue due to all children writing to the | ||
3727 | * same buffer. | ||
3728 | */ | ||
3729 | if (event->cpu == -1 && event->attr.inherit) | ||
3730 | return -EINVAL; | ||
3731 | |||
3732 | if (!(vma->vm_flags & VM_SHARED)) | ||
3733 | return -EINVAL; | ||
3734 | |||
3735 | vma_size = vma->vm_end - vma->vm_start; | ||
3736 | nr_pages = (vma_size / PAGE_SIZE) - 1; | ||
3737 | |||
3738 | /* | ||
3739 | * If we have buffer pages ensure they're a power-of-two number, so we | ||
3740 | * can do bitmasks instead of modulo. | ||
3741 | */ | ||
3742 | if (nr_pages != 0 && !is_power_of_2(nr_pages)) | ||
3743 | return -EINVAL; | ||
3744 | |||
3745 | if (vma_size != PAGE_SIZE * (1 + nr_pages)) | ||
3746 | return -EINVAL; | ||
3747 | |||
3748 | if (vma->vm_pgoff != 0) | ||
3749 | return -EINVAL; | ||
3750 | |||
3751 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
3752 | mutex_lock(&event->mmap_mutex); | ||
3753 | if (event->buffer) { | ||
3754 | if (event->buffer->nr_pages == nr_pages) | ||
3755 | atomic_inc(&event->buffer->refcount); | ||
3756 | else | ||
3757 | ret = -EINVAL; | ||
3758 | goto unlock; | ||
3759 | } | ||
3760 | |||
3761 | user_extra = nr_pages + 1; | ||
3762 | user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); | ||
3763 | |||
3764 | /* | ||
3765 | * Increase the limit linearly with more CPUs: | ||
3766 | */ | ||
3767 | user_lock_limit *= num_online_cpus(); | ||
3768 | |||
3769 | user_locked = atomic_long_read(&user->locked_vm) + user_extra; | ||
3770 | |||
3771 | extra = 0; | ||
3772 | if (user_locked > user_lock_limit) | ||
3773 | extra = user_locked - user_lock_limit; | ||
3774 | |||
3775 | lock_limit = rlimit(RLIMIT_MEMLOCK); | ||
3776 | lock_limit >>= PAGE_SHIFT; | ||
3777 | locked = vma->vm_mm->locked_vm + extra; | ||
3778 | |||
3779 | if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && | ||
3780 | !capable(CAP_IPC_LOCK)) { | ||
3781 | ret = -EPERM; | ||
3782 | goto unlock; | ||
3783 | } | ||
3784 | |||
3785 | WARN_ON(event->buffer); | ||
3786 | |||
3787 | if (vma->vm_flags & VM_WRITE) | ||
3788 | flags |= PERF_BUFFER_WRITABLE; | ||
3789 | |||
3790 | buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark, | ||
3791 | event->cpu, flags); | ||
3792 | if (!buffer) { | ||
3793 | ret = -ENOMEM; | ||
3794 | goto unlock; | ||
3795 | } | ||
3796 | rcu_assign_pointer(event->buffer, buffer); | ||
3797 | |||
3798 | atomic_long_add(user_extra, &user->locked_vm); | ||
3799 | event->mmap_locked = extra; | ||
3800 | event->mmap_user = get_current_user(); | ||
3801 | vma->vm_mm->locked_vm += event->mmap_locked; | ||
3802 | |||
3803 | unlock: | ||
3804 | if (!ret) | ||
3805 | atomic_inc(&event->mmap_count); | ||
3806 | mutex_unlock(&event->mmap_mutex); | ||
3807 | |||
3808 | vma->vm_flags |= VM_RESERVED; | ||
3809 | vma->vm_ops = &perf_mmap_vmops; | ||
3810 | |||
3811 | return ret; | ||
3812 | } | ||
3813 | |||
3814 | static int perf_fasync(int fd, struct file *filp, int on) | ||
3815 | { | ||
3816 | struct inode *inode = filp->f_path.dentry->d_inode; | ||
3817 | struct perf_event *event = filp->private_data; | ||
3818 | int retval; | ||
3819 | |||
3820 | mutex_lock(&inode->i_mutex); | ||
3821 | retval = fasync_helper(fd, filp, on, &event->fasync); | ||
3822 | mutex_unlock(&inode->i_mutex); | ||
3823 | |||
3824 | if (retval < 0) | ||
3825 | return retval; | ||
3826 | |||
3827 | return 0; | ||
3828 | } | ||
3829 | |||
3830 | static const struct file_operations perf_fops = { | ||
3831 | .llseek = no_llseek, | ||
3832 | .release = perf_release, | ||
3833 | .read = perf_read, | ||
3834 | .poll = perf_poll, | ||
3835 | .unlocked_ioctl = perf_ioctl, | ||
3836 | .compat_ioctl = perf_ioctl, | ||
3837 | .mmap = perf_mmap, | ||
3838 | .fasync = perf_fasync, | ||
3839 | }; | ||
3840 | |||
3841 | /* | ||
3842 | * Perf event wakeup | ||
3843 | * | ||
3844 | * If there's data, ensure we set the poll() state and publish everything | ||
3845 | * to user-space before waking everybody up. | ||
3846 | */ | ||
3847 | |||
3848 | void perf_event_wakeup(struct perf_event *event) | ||
3849 | { | ||
3850 | wake_up_all(&event->waitq); | ||
3851 | |||
3852 | if (event->pending_kill) { | ||
3853 | kill_fasync(&event->fasync, SIGIO, event->pending_kill); | ||
3854 | event->pending_kill = 0; | ||
3855 | } | ||
3856 | } | ||
3857 | |||
3858 | static void perf_pending_event(struct irq_work *entry) | ||
3859 | { | ||
3860 | struct perf_event *event = container_of(entry, | ||
3861 | struct perf_event, pending); | ||
3862 | |||
3863 | if (event->pending_disable) { | ||
3864 | event->pending_disable = 0; | ||
3865 | __perf_event_disable(event); | ||
3866 | } | ||
3867 | |||
3868 | if (event->pending_wakeup) { | ||
3869 | event->pending_wakeup = 0; | ||
3870 | perf_event_wakeup(event); | ||
3871 | } | ||
3872 | } | ||
3873 | |||
3874 | /* | ||
3875 | * We assume there is only KVM supporting the callbacks. | ||
3876 | * Later on, we might change it to a list if there is | ||
3877 | * another virtualization implementation supporting the callbacks. | ||
3878 | */ | ||
3879 | struct perf_guest_info_callbacks *perf_guest_cbs; | ||
3880 | |||
3881 | int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) | ||
3882 | { | ||
3883 | perf_guest_cbs = cbs; | ||
3884 | return 0; | ||
3885 | } | ||
3886 | EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); | ||
3887 | |||
3888 | int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) | ||
3889 | { | ||
3890 | perf_guest_cbs = NULL; | ||
3891 | return 0; | ||
3892 | } | ||
3893 | EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); | ||
3894 | |||
3895 | /* | ||
3896 | * Output | ||
3897 | */ | ||
3898 | static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail, | ||
3899 | unsigned long offset, unsigned long head) | ||
3900 | { | ||
3901 | unsigned long mask; | ||
3902 | |||
3903 | if (!buffer->writable) | ||
3904 | return true; | ||
3905 | |||
3906 | mask = perf_data_size(buffer) - 1; | ||
3907 | |||
3908 | offset = (offset - tail) & mask; | ||
3909 | head = (head - tail) & mask; | ||
3910 | |||
3911 | if ((int)(head - offset) < 0) | ||
3912 | return false; | ||
3913 | |||
3914 | return true; | ||
3915 | } | ||
3916 | |||
3917 | static void perf_output_wakeup(struct perf_output_handle *handle) | ||
3918 | { | ||
3919 | atomic_set(&handle->buffer->poll, POLL_IN); | ||
3920 | |||
3921 | if (handle->nmi) { | ||
3922 | handle->event->pending_wakeup = 1; | ||
3923 | irq_work_queue(&handle->event->pending); | ||
3924 | } else | ||
3925 | perf_event_wakeup(handle->event); | ||
3926 | } | ||
3927 | |||
3928 | /* | ||
3929 | * We need to ensure a later event_id doesn't publish a head when a former | ||
3930 | * event isn't done writing. However since we need to deal with NMIs we | ||
3931 | * cannot fully serialize things. | ||
3932 | * | ||
3933 | * We only publish the head (and generate a wakeup) when the outer-most | ||
3934 | * event completes. | ||
3935 | */ | ||
3936 | static void perf_output_get_handle(struct perf_output_handle *handle) | ||
3937 | { | ||
3938 | struct perf_buffer *buffer = handle->buffer; | ||
3939 | |||
3940 | preempt_disable(); | ||
3941 | local_inc(&buffer->nest); | ||
3942 | handle->wakeup = local_read(&buffer->wakeup); | ||
3943 | } | ||
3944 | |||
3945 | static void perf_output_put_handle(struct perf_output_handle *handle) | ||
3946 | { | ||
3947 | struct perf_buffer *buffer = handle->buffer; | ||
3948 | unsigned long head; | ||
3949 | |||
3950 | again: | ||
3951 | head = local_read(&buffer->head); | ||
3952 | |||
3953 | /* | ||
3954 | * IRQ/NMI can happen here, which means we can miss a head update. | ||
3955 | */ | ||
3956 | |||
3957 | if (!local_dec_and_test(&buffer->nest)) | ||
3958 | goto out; | ||
3959 | |||
3960 | /* | ||
3961 | * Publish the known good head. Rely on the full barrier implied | ||
3962 | * by atomic_dec_and_test() order the buffer->head read and this | ||
3963 | * write. | ||
3964 | */ | ||
3965 | buffer->user_page->data_head = head; | ||
3966 | |||
3967 | /* | ||
3968 | * Now check if we missed an update, rely on the (compiler) | ||
3969 | * barrier in atomic_dec_and_test() to re-read buffer->head. | ||
3970 | */ | ||
3971 | if (unlikely(head != local_read(&buffer->head))) { | ||
3972 | local_inc(&buffer->nest); | ||
3973 | goto again; | ||
3974 | } | ||
3975 | |||
3976 | if (handle->wakeup != local_read(&buffer->wakeup)) | ||
3977 | perf_output_wakeup(handle); | ||
3978 | |||
3979 | out: | ||
3980 | preempt_enable(); | ||
3981 | } | ||
3982 | |||
3983 | __always_inline void perf_output_copy(struct perf_output_handle *handle, | ||
3984 | const void *buf, unsigned int len) | ||
3985 | { | ||
3986 | do { | ||
3987 | unsigned long size = min_t(unsigned long, handle->size, len); | ||
3988 | |||
3989 | memcpy(handle->addr, buf, size); | ||
3990 | |||
3991 | len -= size; | ||
3992 | handle->addr += size; | ||
3993 | buf += size; | ||
3994 | handle->size -= size; | ||
3995 | if (!handle->size) { | ||
3996 | struct perf_buffer *buffer = handle->buffer; | ||
3997 | |||
3998 | handle->page++; | ||
3999 | handle->page &= buffer->nr_pages - 1; | ||
4000 | handle->addr = buffer->data_pages[handle->page]; | ||
4001 | handle->size = PAGE_SIZE << page_order(buffer); | ||
4002 | } | ||
4003 | } while (len); | ||
4004 | } | ||
4005 | |||
4006 | static void __perf_event_header__init_id(struct perf_event_header *header, | ||
4007 | struct perf_sample_data *data, | ||
4008 | struct perf_event *event) | ||
4009 | { | ||
4010 | u64 sample_type = event->attr.sample_type; | ||
4011 | |||
4012 | data->type = sample_type; | ||
4013 | header->size += event->id_header_size; | ||
4014 | |||
4015 | if (sample_type & PERF_SAMPLE_TID) { | ||
4016 | /* namespace issues */ | ||
4017 | data->tid_entry.pid = perf_event_pid(event, current); | ||
4018 | data->tid_entry.tid = perf_event_tid(event, current); | ||
4019 | } | ||
4020 | |||
4021 | if (sample_type & PERF_SAMPLE_TIME) | ||
4022 | data->time = perf_clock(); | ||
4023 | |||
4024 | if (sample_type & PERF_SAMPLE_ID) | ||
4025 | data->id = primary_event_id(event); | ||
4026 | |||
4027 | if (sample_type & PERF_SAMPLE_STREAM_ID) | ||
4028 | data->stream_id = event->id; | ||
4029 | |||
4030 | if (sample_type & PERF_SAMPLE_CPU) { | ||
4031 | data->cpu_entry.cpu = raw_smp_processor_id(); | ||
4032 | data->cpu_entry.reserved = 0; | ||
4033 | } | ||
4034 | } | ||
4035 | |||
4036 | static void perf_event_header__init_id(struct perf_event_header *header, | ||
4037 | struct perf_sample_data *data, | ||
4038 | struct perf_event *event) | ||
4039 | { | ||
4040 | if (event->attr.sample_id_all) | ||
4041 | __perf_event_header__init_id(header, data, event); | ||
4042 | } | ||
4043 | |||
4044 | static void __perf_event__output_id_sample(struct perf_output_handle *handle, | ||
4045 | struct perf_sample_data *data) | ||
4046 | { | ||
4047 | u64 sample_type = data->type; | ||
4048 | |||
4049 | if (sample_type & PERF_SAMPLE_TID) | ||
4050 | perf_output_put(handle, data->tid_entry); | ||
4051 | |||
4052 | if (sample_type & PERF_SAMPLE_TIME) | ||
4053 | perf_output_put(handle, data->time); | ||
4054 | |||
4055 | if (sample_type & PERF_SAMPLE_ID) | ||
4056 | perf_output_put(handle, data->id); | ||
4057 | |||
4058 | if (sample_type & PERF_SAMPLE_STREAM_ID) | ||
4059 | perf_output_put(handle, data->stream_id); | ||
4060 | |||
4061 | if (sample_type & PERF_SAMPLE_CPU) | ||
4062 | perf_output_put(handle, data->cpu_entry); | ||
4063 | } | ||
4064 | |||
4065 | static void perf_event__output_id_sample(struct perf_event *event, | ||
4066 | struct perf_output_handle *handle, | ||
4067 | struct perf_sample_data *sample) | ||
4068 | { | ||
4069 | if (event->attr.sample_id_all) | ||
4070 | __perf_event__output_id_sample(handle, sample); | ||
4071 | } | ||
4072 | |||
4073 | int perf_output_begin(struct perf_output_handle *handle, | ||
4074 | struct perf_event *event, unsigned int size, | ||
4075 | int nmi, int sample) | ||
4076 | { | ||
4077 | struct perf_buffer *buffer; | ||
4078 | unsigned long tail, offset, head; | ||
4079 | int have_lost; | ||
4080 | struct perf_sample_data sample_data; | ||
4081 | struct { | ||
4082 | struct perf_event_header header; | ||
4083 | u64 id; | ||
4084 | u64 lost; | ||
4085 | } lost_event; | ||
4086 | |||
4087 | rcu_read_lock(); | ||
4088 | /* | ||
4089 | * For inherited events we send all the output towards the parent. | ||
4090 | */ | ||
4091 | if (event->parent) | ||
4092 | event = event->parent; | ||
4093 | |||
4094 | buffer = rcu_dereference(event->buffer); | ||
4095 | if (!buffer) | ||
4096 | goto out; | ||
4097 | |||
4098 | handle->buffer = buffer; | ||
4099 | handle->event = event; | ||
4100 | handle->nmi = nmi; | ||
4101 | handle->sample = sample; | ||
4102 | |||
4103 | if (!buffer->nr_pages) | ||
4104 | goto out; | ||
4105 | |||
4106 | have_lost = local_read(&buffer->lost); | ||
4107 | if (have_lost) { | ||
4108 | lost_event.header.size = sizeof(lost_event); | ||
4109 | perf_event_header__init_id(&lost_event.header, &sample_data, | ||
4110 | event); | ||
4111 | size += lost_event.header.size; | ||
4112 | } | ||
4113 | |||
4114 | perf_output_get_handle(handle); | ||
4115 | |||
4116 | do { | ||
4117 | /* | ||
4118 | * Userspace could choose to issue a mb() before updating the | ||
4119 | * tail pointer. So that all reads will be completed before the | ||
4120 | * write is issued. | ||
4121 | */ | ||
4122 | tail = ACCESS_ONCE(buffer->user_page->data_tail); | ||
4123 | smp_rmb(); | ||
4124 | offset = head = local_read(&buffer->head); | ||
4125 | head += size; | ||
4126 | if (unlikely(!perf_output_space(buffer, tail, offset, head))) | ||
4127 | goto fail; | ||
4128 | } while (local_cmpxchg(&buffer->head, offset, head) != offset); | ||
4129 | |||
4130 | if (head - local_read(&buffer->wakeup) > buffer->watermark) | ||
4131 | local_add(buffer->watermark, &buffer->wakeup); | ||
4132 | |||
4133 | handle->page = offset >> (PAGE_SHIFT + page_order(buffer)); | ||
4134 | handle->page &= buffer->nr_pages - 1; | ||
4135 | handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1); | ||
4136 | handle->addr = buffer->data_pages[handle->page]; | ||
4137 | handle->addr += handle->size; | ||
4138 | handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size; | ||
4139 | |||
4140 | if (have_lost) { | ||
4141 | lost_event.header.type = PERF_RECORD_LOST; | ||
4142 | lost_event.header.misc = 0; | ||
4143 | lost_event.id = event->id; | ||
4144 | lost_event.lost = local_xchg(&buffer->lost, 0); | ||
4145 | |||
4146 | perf_output_put(handle, lost_event); | ||
4147 | perf_event__output_id_sample(event, handle, &sample_data); | ||
4148 | } | ||
4149 | |||
4150 | return 0; | ||
4151 | |||
4152 | fail: | ||
4153 | local_inc(&buffer->lost); | ||
4154 | perf_output_put_handle(handle); | ||
4155 | out: | ||
4156 | rcu_read_unlock(); | ||
4157 | |||
4158 | return -ENOSPC; | ||
4159 | } | ||
4160 | |||
4161 | void perf_output_end(struct perf_output_handle *handle) | ||
4162 | { | ||
4163 | struct perf_event *event = handle->event; | ||
4164 | struct perf_buffer *buffer = handle->buffer; | ||
4165 | |||
4166 | int wakeup_events = event->attr.wakeup_events; | ||
4167 | |||
4168 | if (handle->sample && wakeup_events) { | ||
4169 | int events = local_inc_return(&buffer->events); | ||
4170 | if (events >= wakeup_events) { | ||
4171 | local_sub(wakeup_events, &buffer->events); | ||
4172 | local_inc(&buffer->wakeup); | ||
4173 | } | ||
4174 | } | ||
4175 | |||
4176 | perf_output_put_handle(handle); | ||
4177 | rcu_read_unlock(); | ||
4178 | } | ||
4179 | |||
4180 | static void perf_output_read_one(struct perf_output_handle *handle, | ||
4181 | struct perf_event *event, | ||
4182 | u64 enabled, u64 running) | ||
4183 | { | ||
4184 | u64 read_format = event->attr.read_format; | ||
4185 | u64 values[4]; | ||
4186 | int n = 0; | ||
4187 | |||
4188 | values[n++] = perf_event_count(event); | ||
4189 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
4190 | values[n++] = enabled + | ||
4191 | atomic64_read(&event->child_total_time_enabled); | ||
4192 | } | ||
4193 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
4194 | values[n++] = running + | ||
4195 | atomic64_read(&event->child_total_time_running); | ||
4196 | } | ||
4197 | if (read_format & PERF_FORMAT_ID) | ||
4198 | values[n++] = primary_event_id(event); | ||
4199 | |||
4200 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
4201 | } | ||
4202 | |||
4203 | /* | ||
4204 | * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. | ||
4205 | */ | ||
4206 | static void perf_output_read_group(struct perf_output_handle *handle, | ||
4207 | struct perf_event *event, | ||
4208 | u64 enabled, u64 running) | ||
4209 | { | ||
4210 | struct perf_event *leader = event->group_leader, *sub; | ||
4211 | u64 read_format = event->attr.read_format; | ||
4212 | u64 values[5]; | ||
4213 | int n = 0; | ||
4214 | |||
4215 | values[n++] = 1 + leader->nr_siblings; | ||
4216 | |||
4217 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
4218 | values[n++] = enabled; | ||
4219 | |||
4220 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
4221 | values[n++] = running; | ||
4222 | |||
4223 | if (leader != event) | ||
4224 | leader->pmu->read(leader); | ||
4225 | |||
4226 | values[n++] = perf_event_count(leader); | ||
4227 | if (read_format & PERF_FORMAT_ID) | ||
4228 | values[n++] = primary_event_id(leader); | ||
4229 | |||
4230 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
4231 | |||
4232 | list_for_each_entry(sub, &leader->sibling_list, group_entry) { | ||
4233 | n = 0; | ||
4234 | |||
4235 | if (sub != event) | ||
4236 | sub->pmu->read(sub); | ||
4237 | |||
4238 | values[n++] = perf_event_count(sub); | ||
4239 | if (read_format & PERF_FORMAT_ID) | ||
4240 | values[n++] = primary_event_id(sub); | ||
4241 | |||
4242 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
4243 | } | ||
4244 | } | ||
4245 | |||
4246 | #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ | ||
4247 | PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
4248 | |||
4249 | static void perf_output_read(struct perf_output_handle *handle, | ||
4250 | struct perf_event *event) | ||
4251 | { | ||
4252 | u64 enabled = 0, running = 0, now, ctx_time; | ||
4253 | u64 read_format = event->attr.read_format; | ||
4254 | |||
4255 | /* | ||
4256 | * compute total_time_enabled, total_time_running | ||
4257 | * based on snapshot values taken when the event | ||
4258 | * was last scheduled in. | ||
4259 | * | ||
4260 | * we cannot simply called update_context_time() | ||
4261 | * because of locking issue as we are called in | ||
4262 | * NMI context | ||
4263 | */ | ||
4264 | if (read_format & PERF_FORMAT_TOTAL_TIMES) { | ||
4265 | now = perf_clock(); | ||
4266 | ctx_time = event->shadow_ctx_time + now; | ||
4267 | enabled = ctx_time - event->tstamp_enabled; | ||
4268 | running = ctx_time - event->tstamp_running; | ||
4269 | } | ||
4270 | |||
4271 | if (event->attr.read_format & PERF_FORMAT_GROUP) | ||
4272 | perf_output_read_group(handle, event, enabled, running); | ||
4273 | else | ||
4274 | perf_output_read_one(handle, event, enabled, running); | ||
4275 | } | ||
4276 | |||
4277 | void perf_output_sample(struct perf_output_handle *handle, | ||
4278 | struct perf_event_header *header, | ||
4279 | struct perf_sample_data *data, | ||
4280 | struct perf_event *event) | ||
4281 | { | ||
4282 | u64 sample_type = data->type; | ||
4283 | |||
4284 | perf_output_put(handle, *header); | ||
4285 | |||
4286 | if (sample_type & PERF_SAMPLE_IP) | ||
4287 | perf_output_put(handle, data->ip); | ||
4288 | |||
4289 | if (sample_type & PERF_SAMPLE_TID) | ||
4290 | perf_output_put(handle, data->tid_entry); | ||
4291 | |||
4292 | if (sample_type & PERF_SAMPLE_TIME) | ||
4293 | perf_output_put(handle, data->time); | ||
4294 | |||
4295 | if (sample_type & PERF_SAMPLE_ADDR) | ||
4296 | perf_output_put(handle, data->addr); | ||
4297 | |||
4298 | if (sample_type & PERF_SAMPLE_ID) | ||
4299 | perf_output_put(handle, data->id); | ||
4300 | |||
4301 | if (sample_type & PERF_SAMPLE_STREAM_ID) | ||
4302 | perf_output_put(handle, data->stream_id); | ||
4303 | |||
4304 | if (sample_type & PERF_SAMPLE_CPU) | ||
4305 | perf_output_put(handle, data->cpu_entry); | ||
4306 | |||
4307 | if (sample_type & PERF_SAMPLE_PERIOD) | ||
4308 | perf_output_put(handle, data->period); | ||
4309 | |||
4310 | if (sample_type & PERF_SAMPLE_READ) | ||
4311 | perf_output_read(handle, event); | ||
4312 | |||
4313 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | ||
4314 | if (data->callchain) { | ||
4315 | int size = 1; | ||
4316 | |||
4317 | if (data->callchain) | ||
4318 | size += data->callchain->nr; | ||
4319 | |||
4320 | size *= sizeof(u64); | ||
4321 | |||
4322 | perf_output_copy(handle, data->callchain, size); | ||
4323 | } else { | ||
4324 | u64 nr = 0; | ||
4325 | perf_output_put(handle, nr); | ||
4326 | } | ||
4327 | } | ||
4328 | |||
4329 | if (sample_type & PERF_SAMPLE_RAW) { | ||
4330 | if (data->raw) { | ||
4331 | perf_output_put(handle, data->raw->size); | ||
4332 | perf_output_copy(handle, data->raw->data, | ||
4333 | data->raw->size); | ||
4334 | } else { | ||
4335 | struct { | ||
4336 | u32 size; | ||
4337 | u32 data; | ||
4338 | } raw = { | ||
4339 | .size = sizeof(u32), | ||
4340 | .data = 0, | ||
4341 | }; | ||
4342 | perf_output_put(handle, raw); | ||
4343 | } | ||
4344 | } | ||
4345 | } | ||
4346 | |||
4347 | void perf_prepare_sample(struct perf_event_header *header, | ||
4348 | struct perf_sample_data *data, | ||
4349 | struct perf_event *event, | ||
4350 | struct pt_regs *regs) | ||
4351 | { | ||
4352 | u64 sample_type = event->attr.sample_type; | ||
4353 | |||
4354 | header->type = PERF_RECORD_SAMPLE; | ||
4355 | header->size = sizeof(*header) + event->header_size; | ||
4356 | |||
4357 | header->misc = 0; | ||
4358 | header->misc |= perf_misc_flags(regs); | ||
4359 | |||
4360 | __perf_event_header__init_id(header, data, event); | ||
4361 | |||
4362 | if (sample_type & PERF_SAMPLE_IP) | ||
4363 | data->ip = perf_instruction_pointer(regs); | ||
4364 | |||
4365 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | ||
4366 | int size = 1; | ||
4367 | |||
4368 | data->callchain = perf_callchain(regs); | ||
4369 | |||
4370 | if (data->callchain) | ||
4371 | size += data->callchain->nr; | ||
4372 | |||
4373 | header->size += size * sizeof(u64); | ||
4374 | } | ||
4375 | |||
4376 | if (sample_type & PERF_SAMPLE_RAW) { | ||
4377 | int size = sizeof(u32); | ||
4378 | |||
4379 | if (data->raw) | ||
4380 | size += data->raw->size; | ||
4381 | else | ||
4382 | size += sizeof(u32); | ||
4383 | |||
4384 | WARN_ON_ONCE(size & (sizeof(u64)-1)); | ||
4385 | header->size += size; | ||
4386 | } | ||
4387 | } | ||
4388 | |||
4389 | static void perf_event_output(struct perf_event *event, int nmi, | ||
4390 | struct perf_sample_data *data, | ||
4391 | struct pt_regs *regs) | ||
4392 | { | ||
4393 | struct perf_output_handle handle; | ||
4394 | struct perf_event_header header; | ||
4395 | |||
4396 | /* protect the callchain buffers */ | ||
4397 | rcu_read_lock(); | ||
4398 | |||
4399 | perf_prepare_sample(&header, data, event, regs); | ||
4400 | |||
4401 | if (perf_output_begin(&handle, event, header.size, nmi, 1)) | ||
4402 | goto exit; | ||
4403 | |||
4404 | perf_output_sample(&handle, &header, data, event); | ||
4405 | |||
4406 | perf_output_end(&handle); | ||
4407 | |||
4408 | exit: | ||
4409 | rcu_read_unlock(); | ||
4410 | } | ||
4411 | |||
4412 | /* | ||
4413 | * read event_id | ||
4414 | */ | ||
4415 | |||
4416 | struct perf_read_event { | ||
4417 | struct perf_event_header header; | ||
4418 | |||
4419 | u32 pid; | ||
4420 | u32 tid; | ||
4421 | }; | ||
4422 | |||
4423 | static void | ||
4424 | perf_event_read_event(struct perf_event *event, | ||
4425 | struct task_struct *task) | ||
4426 | { | ||
4427 | struct perf_output_handle handle; | ||
4428 | struct perf_sample_data sample; | ||
4429 | struct perf_read_event read_event = { | ||
4430 | .header = { | ||
4431 | .type = PERF_RECORD_READ, | ||
4432 | .misc = 0, | ||
4433 | .size = sizeof(read_event) + event->read_size, | ||
4434 | }, | ||
4435 | .pid = perf_event_pid(event, task), | ||
4436 | .tid = perf_event_tid(event, task), | ||
4437 | }; | ||
4438 | int ret; | ||
4439 | |||
4440 | perf_event_header__init_id(&read_event.header, &sample, event); | ||
4441 | ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0); | ||
4442 | if (ret) | ||
4443 | return; | ||
4444 | |||
4445 | perf_output_put(&handle, read_event); | ||
4446 | perf_output_read(&handle, event); | ||
4447 | perf_event__output_id_sample(event, &handle, &sample); | ||
4448 | |||
4449 | perf_output_end(&handle); | ||
4450 | } | ||
4451 | |||
4452 | /* | ||
4453 | * task tracking -- fork/exit | ||
4454 | * | ||
4455 | * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task | ||
4456 | */ | ||
4457 | |||
4458 | struct perf_task_event { | ||
4459 | struct task_struct *task; | ||
4460 | struct perf_event_context *task_ctx; | ||
4461 | |||
4462 | struct { | ||
4463 | struct perf_event_header header; | ||
4464 | |||
4465 | u32 pid; | ||
4466 | u32 ppid; | ||
4467 | u32 tid; | ||
4468 | u32 ptid; | ||
4469 | u64 time; | ||
4470 | } event_id; | ||
4471 | }; | ||
4472 | |||
4473 | static void perf_event_task_output(struct perf_event *event, | ||
4474 | struct perf_task_event *task_event) | ||
4475 | { | ||
4476 | struct perf_output_handle handle; | ||
4477 | struct perf_sample_data sample; | ||
4478 | struct task_struct *task = task_event->task; | ||
4479 | int ret, size = task_event->event_id.header.size; | ||
4480 | |||
4481 | perf_event_header__init_id(&task_event->event_id.header, &sample, event); | ||
4482 | |||
4483 | ret = perf_output_begin(&handle, event, | ||
4484 | task_event->event_id.header.size, 0, 0); | ||
4485 | if (ret) | ||
4486 | goto out; | ||
4487 | |||
4488 | task_event->event_id.pid = perf_event_pid(event, task); | ||
4489 | task_event->event_id.ppid = perf_event_pid(event, current); | ||
4490 | |||
4491 | task_event->event_id.tid = perf_event_tid(event, task); | ||
4492 | task_event->event_id.ptid = perf_event_tid(event, current); | ||
4493 | |||
4494 | perf_output_put(&handle, task_event->event_id); | ||
4495 | |||
4496 | perf_event__output_id_sample(event, &handle, &sample); | ||
4497 | |||
4498 | perf_output_end(&handle); | ||
4499 | out: | ||
4500 | task_event->event_id.header.size = size; | ||
4501 | } | ||
4502 | |||
4503 | static int perf_event_task_match(struct perf_event *event) | ||
4504 | { | ||
4505 | if (event->state < PERF_EVENT_STATE_INACTIVE) | ||
4506 | return 0; | ||
4507 | |||
4508 | if (!event_filter_match(event)) | ||
4509 | return 0; | ||
4510 | |||
4511 | if (event->attr.comm || event->attr.mmap || | ||
4512 | event->attr.mmap_data || event->attr.task) | ||
4513 | return 1; | ||
4514 | |||
4515 | return 0; | ||
4516 | } | ||
4517 | |||
4518 | static void perf_event_task_ctx(struct perf_event_context *ctx, | ||
4519 | struct perf_task_event *task_event) | ||
4520 | { | ||
4521 | struct perf_event *event; | ||
4522 | |||
4523 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
4524 | if (perf_event_task_match(event)) | ||
4525 | perf_event_task_output(event, task_event); | ||
4526 | } | ||
4527 | } | ||
4528 | |||
4529 | static void perf_event_task_event(struct perf_task_event *task_event) | ||
4530 | { | ||
4531 | struct perf_cpu_context *cpuctx; | ||
4532 | struct perf_event_context *ctx; | ||
4533 | struct pmu *pmu; | ||
4534 | int ctxn; | ||
4535 | |||
4536 | rcu_read_lock(); | ||
4537 | list_for_each_entry_rcu(pmu, &pmus, entry) { | ||
4538 | cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); | ||
4539 | if (cpuctx->active_pmu != pmu) | ||
4540 | goto next; | ||
4541 | perf_event_task_ctx(&cpuctx->ctx, task_event); | ||
4542 | |||
4543 | ctx = task_event->task_ctx; | ||
4544 | if (!ctx) { | ||
4545 | ctxn = pmu->task_ctx_nr; | ||
4546 | if (ctxn < 0) | ||
4547 | goto next; | ||
4548 | ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); | ||
4549 | } | ||
4550 | if (ctx) | ||
4551 | perf_event_task_ctx(ctx, task_event); | ||
4552 | next: | ||
4553 | put_cpu_ptr(pmu->pmu_cpu_context); | ||
4554 | } | ||
4555 | rcu_read_unlock(); | ||
4556 | } | ||
4557 | |||
4558 | static void perf_event_task(struct task_struct *task, | ||
4559 | struct perf_event_context *task_ctx, | ||
4560 | int new) | ||
4561 | { | ||
4562 | struct perf_task_event task_event; | ||
4563 | |||
4564 | if (!atomic_read(&nr_comm_events) && | ||
4565 | !atomic_read(&nr_mmap_events) && | ||
4566 | !atomic_read(&nr_task_events)) | ||
4567 | return; | ||
4568 | |||
4569 | task_event = (struct perf_task_event){ | ||
4570 | .task = task, | ||
4571 | .task_ctx = task_ctx, | ||
4572 | .event_id = { | ||
4573 | .header = { | ||
4574 | .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, | ||
4575 | .misc = 0, | ||
4576 | .size = sizeof(task_event.event_id), | ||
4577 | }, | ||
4578 | /* .pid */ | ||
4579 | /* .ppid */ | ||
4580 | /* .tid */ | ||
4581 | /* .ptid */ | ||
4582 | .time = perf_clock(), | ||
4583 | }, | ||
4584 | }; | ||
4585 | |||
4586 | perf_event_task_event(&task_event); | ||
4587 | } | ||
4588 | |||
4589 | void perf_event_fork(struct task_struct *task) | ||
4590 | { | ||
4591 | perf_event_task(task, NULL, 1); | ||
4592 | } | ||
4593 | |||
4594 | /* | ||
4595 | * comm tracking | ||
4596 | */ | ||
4597 | |||
4598 | struct perf_comm_event { | ||
4599 | struct task_struct *task; | ||
4600 | char *comm; | ||
4601 | int comm_size; | ||
4602 | |||
4603 | struct { | ||
4604 | struct perf_event_header header; | ||
4605 | |||
4606 | u32 pid; | ||
4607 | u32 tid; | ||
4608 | } event_id; | ||
4609 | }; | ||
4610 | |||
4611 | static void perf_event_comm_output(struct perf_event *event, | ||
4612 | struct perf_comm_event *comm_event) | ||
4613 | { | ||
4614 | struct perf_output_handle handle; | ||
4615 | struct perf_sample_data sample; | ||
4616 | int size = comm_event->event_id.header.size; | ||
4617 | int ret; | ||
4618 | |||
4619 | perf_event_header__init_id(&comm_event->event_id.header, &sample, event); | ||
4620 | ret = perf_output_begin(&handle, event, | ||
4621 | comm_event->event_id.header.size, 0, 0); | ||
4622 | |||
4623 | if (ret) | ||
4624 | goto out; | ||
4625 | |||
4626 | comm_event->event_id.pid = perf_event_pid(event, comm_event->task); | ||
4627 | comm_event->event_id.tid = perf_event_tid(event, comm_event->task); | ||
4628 | |||
4629 | perf_output_put(&handle, comm_event->event_id); | ||
4630 | perf_output_copy(&handle, comm_event->comm, | ||
4631 | comm_event->comm_size); | ||
4632 | |||
4633 | perf_event__output_id_sample(event, &handle, &sample); | ||
4634 | |||
4635 | perf_output_end(&handle); | ||
4636 | out: | ||
4637 | comm_event->event_id.header.size = size; | ||
4638 | } | ||
4639 | |||
4640 | static int perf_event_comm_match(struct perf_event *event) | ||
4641 | { | ||
4642 | if (event->state < PERF_EVENT_STATE_INACTIVE) | ||
4643 | return 0; | ||
4644 | |||
4645 | if (!event_filter_match(event)) | ||
4646 | return 0; | ||
4647 | |||
4648 | if (event->attr.comm) | ||
4649 | return 1; | ||
4650 | |||
4651 | return 0; | ||
4652 | } | ||
4653 | |||
4654 | static void perf_event_comm_ctx(struct perf_event_context *ctx, | ||
4655 | struct perf_comm_event *comm_event) | ||
4656 | { | ||
4657 | struct perf_event *event; | ||
4658 | |||
4659 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
4660 | if (perf_event_comm_match(event)) | ||
4661 | perf_event_comm_output(event, comm_event); | ||
4662 | } | ||
4663 | } | ||
4664 | |||
4665 | static void perf_event_comm_event(struct perf_comm_event *comm_event) | ||
4666 | { | ||
4667 | struct perf_cpu_context *cpuctx; | ||
4668 | struct perf_event_context *ctx; | ||
4669 | char comm[TASK_COMM_LEN]; | ||
4670 | unsigned int size; | ||
4671 | struct pmu *pmu; | ||
4672 | int ctxn; | ||
4673 | |||
4674 | memset(comm, 0, sizeof(comm)); | ||
4675 | strlcpy(comm, comm_event->task->comm, sizeof(comm)); | ||
4676 | size = ALIGN(strlen(comm)+1, sizeof(u64)); | ||
4677 | |||
4678 | comm_event->comm = comm; | ||
4679 | comm_event->comm_size = size; | ||
4680 | |||
4681 | comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; | ||
4682 | rcu_read_lock(); | ||
4683 | list_for_each_entry_rcu(pmu, &pmus, entry) { | ||
4684 | cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); | ||
4685 | if (cpuctx->active_pmu != pmu) | ||
4686 | goto next; | ||
4687 | perf_event_comm_ctx(&cpuctx->ctx, comm_event); | ||
4688 | |||
4689 | ctxn = pmu->task_ctx_nr; | ||
4690 | if (ctxn < 0) | ||
4691 | goto next; | ||
4692 | |||
4693 | ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); | ||
4694 | if (ctx) | ||
4695 | perf_event_comm_ctx(ctx, comm_event); | ||
4696 | next: | ||
4697 | put_cpu_ptr(pmu->pmu_cpu_context); | ||
4698 | } | ||
4699 | rcu_read_unlock(); | ||
4700 | } | ||
4701 | |||
4702 | void perf_event_comm(struct task_struct *task) | ||
4703 | { | ||
4704 | struct perf_comm_event comm_event; | ||
4705 | struct perf_event_context *ctx; | ||
4706 | int ctxn; | ||
4707 | |||
4708 | for_each_task_context_nr(ctxn) { | ||
4709 | ctx = task->perf_event_ctxp[ctxn]; | ||
4710 | if (!ctx) | ||
4711 | continue; | ||
4712 | |||
4713 | perf_event_enable_on_exec(ctx); | ||
4714 | } | ||
4715 | |||
4716 | if (!atomic_read(&nr_comm_events)) | ||
4717 | return; | ||
4718 | |||
4719 | comm_event = (struct perf_comm_event){ | ||
4720 | .task = task, | ||
4721 | /* .comm */ | ||
4722 | /* .comm_size */ | ||
4723 | .event_id = { | ||
4724 | .header = { | ||
4725 | .type = PERF_RECORD_COMM, | ||
4726 | .misc = 0, | ||
4727 | /* .size */ | ||
4728 | }, | ||
4729 | /* .pid */ | ||
4730 | /* .tid */ | ||
4731 | }, | ||
4732 | }; | ||
4733 | |||
4734 | perf_event_comm_event(&comm_event); | ||
4735 | } | ||
4736 | |||
4737 | /* | ||
4738 | * mmap tracking | ||
4739 | */ | ||
4740 | |||
4741 | struct perf_mmap_event { | ||
4742 | struct vm_area_struct *vma; | ||
4743 | |||
4744 | const char *file_name; | ||
4745 | int file_size; | ||
4746 | |||
4747 | struct { | ||
4748 | struct perf_event_header header; | ||
4749 | |||
4750 | u32 pid; | ||
4751 | u32 tid; | ||
4752 | u64 start; | ||
4753 | u64 len; | ||
4754 | u64 pgoff; | ||
4755 | } event_id; | ||
4756 | }; | ||
4757 | |||
4758 | static void perf_event_mmap_output(struct perf_event *event, | ||
4759 | struct perf_mmap_event *mmap_event) | ||
4760 | { | ||
4761 | struct perf_output_handle handle; | ||
4762 | struct perf_sample_data sample; | ||
4763 | int size = mmap_event->event_id.header.size; | ||
4764 | int ret; | ||
4765 | |||
4766 | perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); | ||
4767 | ret = perf_output_begin(&handle, event, | ||
4768 | mmap_event->event_id.header.size, 0, 0); | ||
4769 | if (ret) | ||
4770 | goto out; | ||
4771 | |||
4772 | mmap_event->event_id.pid = perf_event_pid(event, current); | ||
4773 | mmap_event->event_id.tid = perf_event_tid(event, current); | ||
4774 | |||
4775 | perf_output_put(&handle, mmap_event->event_id); | ||
4776 | perf_output_copy(&handle, mmap_event->file_name, | ||
4777 | mmap_event->file_size); | ||
4778 | |||
4779 | perf_event__output_id_sample(event, &handle, &sample); | ||
4780 | |||
4781 | perf_output_end(&handle); | ||
4782 | out: | ||
4783 | mmap_event->event_id.header.size = size; | ||
4784 | } | ||
4785 | |||
4786 | static int perf_event_mmap_match(struct perf_event *event, | ||
4787 | struct perf_mmap_event *mmap_event, | ||
4788 | int executable) | ||
4789 | { | ||
4790 | if (event->state < PERF_EVENT_STATE_INACTIVE) | ||
4791 | return 0; | ||
4792 | |||
4793 | if (!event_filter_match(event)) | ||
4794 | return 0; | ||
4795 | |||
4796 | if ((!executable && event->attr.mmap_data) || | ||
4797 | (executable && event->attr.mmap)) | ||
4798 | return 1; | ||
4799 | |||
4800 | return 0; | ||
4801 | } | ||
4802 | |||
4803 | static void perf_event_mmap_ctx(struct perf_event_context *ctx, | ||
4804 | struct perf_mmap_event *mmap_event, | ||
4805 | int executable) | ||
4806 | { | ||
4807 | struct perf_event *event; | ||
4808 | |||
4809 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
4810 | if (perf_event_mmap_match(event, mmap_event, executable)) | ||
4811 | perf_event_mmap_output(event, mmap_event); | ||
4812 | } | ||
4813 | } | ||
4814 | |||
4815 | static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) | ||
4816 | { | ||
4817 | struct perf_cpu_context *cpuctx; | ||
4818 | struct perf_event_context *ctx; | ||
4819 | struct vm_area_struct *vma = mmap_event->vma; | ||
4820 | struct file *file = vma->vm_file; | ||
4821 | unsigned int size; | ||
4822 | char tmp[16]; | ||
4823 | char *buf = NULL; | ||
4824 | const char *name; | ||
4825 | struct pmu *pmu; | ||
4826 | int ctxn; | ||
4827 | |||
4828 | memset(tmp, 0, sizeof(tmp)); | ||
4829 | |||
4830 | if (file) { | ||
4831 | /* | ||
4832 | * d_path works from the end of the buffer backwards, so we | ||
4833 | * need to add enough zero bytes after the string to handle | ||
4834 | * the 64bit alignment we do later. | ||
4835 | */ | ||
4836 | buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); | ||
4837 | if (!buf) { | ||
4838 | name = strncpy(tmp, "//enomem", sizeof(tmp)); | ||
4839 | goto got_name; | ||
4840 | } | ||
4841 | name = d_path(&file->f_path, buf, PATH_MAX); | ||
4842 | if (IS_ERR(name)) { | ||
4843 | name = strncpy(tmp, "//toolong", sizeof(tmp)); | ||
4844 | goto got_name; | ||
4845 | } | ||
4846 | } else { | ||
4847 | if (arch_vma_name(mmap_event->vma)) { | ||
4848 | name = strncpy(tmp, arch_vma_name(mmap_event->vma), | ||
4849 | sizeof(tmp)); | ||
4850 | goto got_name; | ||
4851 | } | ||
4852 | |||
4853 | if (!vma->vm_mm) { | ||
4854 | name = strncpy(tmp, "[vdso]", sizeof(tmp)); | ||
4855 | goto got_name; | ||
4856 | } else if (vma->vm_start <= vma->vm_mm->start_brk && | ||
4857 | vma->vm_end >= vma->vm_mm->brk) { | ||
4858 | name = strncpy(tmp, "[heap]", sizeof(tmp)); | ||
4859 | goto got_name; | ||
4860 | } else if (vma->vm_start <= vma->vm_mm->start_stack && | ||
4861 | vma->vm_end >= vma->vm_mm->start_stack) { | ||
4862 | name = strncpy(tmp, "[stack]", sizeof(tmp)); | ||
4863 | goto got_name; | ||
4864 | } | ||
4865 | |||
4866 | name = strncpy(tmp, "//anon", sizeof(tmp)); | ||
4867 | goto got_name; | ||
4868 | } | ||
4869 | |||
4870 | got_name: | ||
4871 | size = ALIGN(strlen(name)+1, sizeof(u64)); | ||
4872 | |||
4873 | mmap_event->file_name = name; | ||
4874 | mmap_event->file_size = size; | ||
4875 | |||
4876 | mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; | ||
4877 | |||
4878 | rcu_read_lock(); | ||
4879 | list_for_each_entry_rcu(pmu, &pmus, entry) { | ||
4880 | cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); | ||
4881 | if (cpuctx->active_pmu != pmu) | ||
4882 | goto next; | ||
4883 | perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, | ||
4884 | vma->vm_flags & VM_EXEC); | ||
4885 | |||
4886 | ctxn = pmu->task_ctx_nr; | ||
4887 | if (ctxn < 0) | ||
4888 | goto next; | ||
4889 | |||
4890 | ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); | ||
4891 | if (ctx) { | ||
4892 | perf_event_mmap_ctx(ctx, mmap_event, | ||
4893 | vma->vm_flags & VM_EXEC); | ||
4894 | } | ||
4895 | next: | ||
4896 | put_cpu_ptr(pmu->pmu_cpu_context); | ||
4897 | } | ||
4898 | rcu_read_unlock(); | ||
4899 | |||
4900 | kfree(buf); | ||
4901 | } | ||
4902 | |||
4903 | void perf_event_mmap(struct vm_area_struct *vma) | ||
4904 | { | ||
4905 | struct perf_mmap_event mmap_event; | ||
4906 | |||
4907 | if (!atomic_read(&nr_mmap_events)) | ||
4908 | return; | ||
4909 | |||
4910 | mmap_event = (struct perf_mmap_event){ | ||
4911 | .vma = vma, | ||
4912 | /* .file_name */ | ||
4913 | /* .file_size */ | ||
4914 | .event_id = { | ||
4915 | .header = { | ||
4916 | .type = PERF_RECORD_MMAP, | ||
4917 | .misc = PERF_RECORD_MISC_USER, | ||
4918 | /* .size */ | ||
4919 | }, | ||
4920 | /* .pid */ | ||
4921 | /* .tid */ | ||
4922 | .start = vma->vm_start, | ||
4923 | .len = vma->vm_end - vma->vm_start, | ||
4924 | .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, | ||
4925 | }, | ||
4926 | }; | ||
4927 | |||
4928 | perf_event_mmap_event(&mmap_event); | ||
4929 | } | ||
4930 | |||
4931 | /* | ||
4932 | * IRQ throttle logging | ||
4933 | */ | ||
4934 | |||
4935 | static void perf_log_throttle(struct perf_event *event, int enable) | ||
4936 | { | ||
4937 | struct perf_output_handle handle; | ||
4938 | struct perf_sample_data sample; | ||
4939 | int ret; | ||
4940 | |||
4941 | struct { | ||
4942 | struct perf_event_header header; | ||
4943 | u64 time; | ||
4944 | u64 id; | ||
4945 | u64 stream_id; | ||
4946 | } throttle_event = { | ||
4947 | .header = { | ||
4948 | .type = PERF_RECORD_THROTTLE, | ||
4949 | .misc = 0, | ||
4950 | .size = sizeof(throttle_event), | ||
4951 | }, | ||
4952 | .time = perf_clock(), | ||
4953 | .id = primary_event_id(event), | ||
4954 | .stream_id = event->id, | ||
4955 | }; | ||
4956 | |||
4957 | if (enable) | ||
4958 | throttle_event.header.type = PERF_RECORD_UNTHROTTLE; | ||
4959 | |||
4960 | perf_event_header__init_id(&throttle_event.header, &sample, event); | ||
4961 | |||
4962 | ret = perf_output_begin(&handle, event, | ||
4963 | throttle_event.header.size, 1, 0); | ||
4964 | if (ret) | ||
4965 | return; | ||
4966 | |||
4967 | perf_output_put(&handle, throttle_event); | ||
4968 | perf_event__output_id_sample(event, &handle, &sample); | ||
4969 | perf_output_end(&handle); | ||
4970 | } | ||
4971 | |||
4972 | /* | ||
4973 | * Generic event overflow handling, sampling. | ||
4974 | */ | ||
4975 | |||
4976 | static int __perf_event_overflow(struct perf_event *event, int nmi, | ||
4977 | int throttle, struct perf_sample_data *data, | ||
4978 | struct pt_regs *regs) | ||
4979 | { | ||
4980 | int events = atomic_read(&event->event_limit); | ||
4981 | struct hw_perf_event *hwc = &event->hw; | ||
4982 | int ret = 0; | ||
4983 | |||
4984 | /* | ||
4985 | * Non-sampling counters might still use the PMI to fold short | ||
4986 | * hardware counters, ignore those. | ||
4987 | */ | ||
4988 | if (unlikely(!is_sampling_event(event))) | ||
4989 | return 0; | ||
4990 | |||
4991 | if (unlikely(hwc->interrupts >= max_samples_per_tick)) { | ||
4992 | if (throttle) { | ||
4993 | hwc->interrupts = MAX_INTERRUPTS; | ||
4994 | perf_log_throttle(event, 0); | ||
4995 | ret = 1; | ||
4996 | } | ||
4997 | } else | ||
4998 | hwc->interrupts++; | ||
4999 | |||
5000 | if (event->attr.freq) { | ||
5001 | u64 now = perf_clock(); | ||
5002 | s64 delta = now - hwc->freq_time_stamp; | ||
5003 | |||
5004 | hwc->freq_time_stamp = now; | ||
5005 | |||
5006 | if (delta > 0 && delta < 2*TICK_NSEC) | ||
5007 | perf_adjust_period(event, delta, hwc->last_period); | ||
5008 | } | ||
5009 | |||
5010 | /* | ||
5011 | * XXX event_limit might not quite work as expected on inherited | ||
5012 | * events | ||
5013 | */ | ||
5014 | |||
5015 | event->pending_kill = POLL_IN; | ||
5016 | if (events && atomic_dec_and_test(&event->event_limit)) { | ||
5017 | ret = 1; | ||
5018 | event->pending_kill = POLL_HUP; | ||
5019 | if (nmi) { | ||
5020 | event->pending_disable = 1; | ||
5021 | irq_work_queue(&event->pending); | ||
5022 | } else | ||
5023 | perf_event_disable(event); | ||
5024 | } | ||
5025 | |||
5026 | if (event->overflow_handler) | ||
5027 | event->overflow_handler(event, nmi, data, regs); | ||
5028 | else | ||
5029 | perf_event_output(event, nmi, data, regs); | ||
5030 | |||
5031 | return ret; | ||
5032 | } | ||
5033 | |||
5034 | int perf_event_overflow(struct perf_event *event, int nmi, | ||
5035 | struct perf_sample_data *data, | ||
5036 | struct pt_regs *regs) | ||
5037 | { | ||
5038 | return __perf_event_overflow(event, nmi, 1, data, regs); | ||
5039 | } | ||
5040 | |||
5041 | /* | ||
5042 | * Generic software event infrastructure | ||
5043 | */ | ||
5044 | |||
5045 | struct swevent_htable { | ||
5046 | struct swevent_hlist *swevent_hlist; | ||
5047 | struct mutex hlist_mutex; | ||
5048 | int hlist_refcount; | ||
5049 | |||
5050 | /* Recursion avoidance in each contexts */ | ||
5051 | int recursion[PERF_NR_CONTEXTS]; | ||
5052 | }; | ||
5053 | |||
5054 | static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); | ||
5055 | |||
5056 | /* | ||
5057 | * We directly increment event->count and keep a second value in | ||
5058 | * event->hw.period_left to count intervals. This period event | ||
5059 | * is kept in the range [-sample_period, 0] so that we can use the | ||
5060 | * sign as trigger. | ||
5061 | */ | ||
5062 | |||
5063 | static u64 perf_swevent_set_period(struct perf_event *event) | ||
5064 | { | ||
5065 | struct hw_perf_event *hwc = &event->hw; | ||
5066 | u64 period = hwc->last_period; | ||
5067 | u64 nr, offset; | ||
5068 | s64 old, val; | ||
5069 | |||
5070 | hwc->last_period = hwc->sample_period; | ||
5071 | |||
5072 | again: | ||
5073 | old = val = local64_read(&hwc->period_left); | ||
5074 | if (val < 0) | ||
5075 | return 0; | ||
5076 | |||
5077 | nr = div64_u64(period + val, period); | ||
5078 | offset = nr * period; | ||
5079 | val -= offset; | ||
5080 | if (local64_cmpxchg(&hwc->period_left, old, val) != old) | ||
5081 | goto again; | ||
5082 | |||
5083 | return nr; | ||
5084 | } | ||
5085 | |||
5086 | static void perf_swevent_overflow(struct perf_event *event, u64 overflow, | ||
5087 | int nmi, struct perf_sample_data *data, | ||
5088 | struct pt_regs *regs) | ||
5089 | { | ||
5090 | struct hw_perf_event *hwc = &event->hw; | ||
5091 | int throttle = 0; | ||
5092 | |||
5093 | data->period = event->hw.last_period; | ||
5094 | if (!overflow) | ||
5095 | overflow = perf_swevent_set_period(event); | ||
5096 | |||
5097 | if (hwc->interrupts == MAX_INTERRUPTS) | ||
5098 | return; | ||
5099 | |||
5100 | for (; overflow; overflow--) { | ||
5101 | if (__perf_event_overflow(event, nmi, throttle, | ||
5102 | data, regs)) { | ||
5103 | /* | ||
5104 | * We inhibit the overflow from happening when | ||
5105 | * hwc->interrupts == MAX_INTERRUPTS. | ||
5106 | */ | ||
5107 | break; | ||
5108 | } | ||
5109 | throttle = 1; | ||
5110 | } | ||
5111 | } | ||
5112 | |||
5113 | static void perf_swevent_event(struct perf_event *event, u64 nr, | ||
5114 | int nmi, struct perf_sample_data *data, | ||
5115 | struct pt_regs *regs) | ||
5116 | { | ||
5117 | struct hw_perf_event *hwc = &event->hw; | ||
5118 | |||
5119 | local64_add(nr, &event->count); | ||
5120 | |||
5121 | if (!regs) | ||
5122 | return; | ||
5123 | |||
5124 | if (!is_sampling_event(event)) | ||
5125 | return; | ||
5126 | |||
5127 | if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) | ||
5128 | return perf_swevent_overflow(event, 1, nmi, data, regs); | ||
5129 | |||
5130 | if (local64_add_negative(nr, &hwc->period_left)) | ||
5131 | return; | ||
5132 | |||
5133 | perf_swevent_overflow(event, 0, nmi, data, regs); | ||
5134 | } | ||
5135 | |||
5136 | static int perf_exclude_event(struct perf_event *event, | ||
5137 | struct pt_regs *regs) | ||
5138 | { | ||
5139 | if (event->hw.state & PERF_HES_STOPPED) | ||
5140 | return 1; | ||
5141 | |||
5142 | if (regs) { | ||
5143 | if (event->attr.exclude_user && user_mode(regs)) | ||
5144 | return 1; | ||
5145 | |||
5146 | if (event->attr.exclude_kernel && !user_mode(regs)) | ||
5147 | return 1; | ||
5148 | } | ||
5149 | |||
5150 | return 0; | ||
5151 | } | ||
5152 | |||
5153 | static int perf_swevent_match(struct perf_event *event, | ||
5154 | enum perf_type_id type, | ||
5155 | u32 event_id, | ||
5156 | struct perf_sample_data *data, | ||
5157 | struct pt_regs *regs) | ||
5158 | { | ||
5159 | if (event->attr.type != type) | ||
5160 | return 0; | ||
5161 | |||
5162 | if (event->attr.config != event_id) | ||
5163 | return 0; | ||
5164 | |||
5165 | if (perf_exclude_event(event, regs)) | ||
5166 | return 0; | ||
5167 | |||
5168 | return 1; | ||
5169 | } | ||
5170 | |||
5171 | static inline u64 swevent_hash(u64 type, u32 event_id) | ||
5172 | { | ||
5173 | u64 val = event_id | (type << 32); | ||
5174 | |||
5175 | return hash_64(val, SWEVENT_HLIST_BITS); | ||
5176 | } | ||
5177 | |||
5178 | static inline struct hlist_head * | ||
5179 | __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) | ||
5180 | { | ||
5181 | u64 hash = swevent_hash(type, event_id); | ||
5182 | |||
5183 | return &hlist->heads[hash]; | ||
5184 | } | ||
5185 | |||
5186 | /* For the read side: events when they trigger */ | ||
5187 | static inline struct hlist_head * | ||
5188 | find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) | ||
5189 | { | ||
5190 | struct swevent_hlist *hlist; | ||
5191 | |||
5192 | hlist = rcu_dereference(swhash->swevent_hlist); | ||
5193 | if (!hlist) | ||
5194 | return NULL; | ||
5195 | |||
5196 | return __find_swevent_head(hlist, type, event_id); | ||
5197 | } | ||
5198 | |||
5199 | /* For the event head insertion and removal in the hlist */ | ||
5200 | static inline struct hlist_head * | ||
5201 | find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) | ||
5202 | { | ||
5203 | struct swevent_hlist *hlist; | ||
5204 | u32 event_id = event->attr.config; | ||
5205 | u64 type = event->attr.type; | ||
5206 | |||
5207 | /* | ||
5208 | * Event scheduling is always serialized against hlist allocation | ||
5209 | * and release. Which makes the protected version suitable here. | ||
5210 | * The context lock guarantees that. | ||
5211 | */ | ||
5212 | hlist = rcu_dereference_protected(swhash->swevent_hlist, | ||
5213 | lockdep_is_held(&event->ctx->lock)); | ||
5214 | if (!hlist) | ||
5215 | return NULL; | ||
5216 | |||
5217 | return __find_swevent_head(hlist, type, event_id); | ||
5218 | } | ||
5219 | |||
5220 | static void do_perf_sw_event(enum perf_type_id type, u32 event_id, | ||
5221 | u64 nr, int nmi, | ||
5222 | struct perf_sample_data *data, | ||
5223 | struct pt_regs *regs) | ||
5224 | { | ||
5225 | struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); | ||
5226 | struct perf_event *event; | ||
5227 | struct hlist_node *node; | ||
5228 | struct hlist_head *head; | ||
5229 | |||
5230 | rcu_read_lock(); | ||
5231 | head = find_swevent_head_rcu(swhash, type, event_id); | ||
5232 | if (!head) | ||
5233 | goto end; | ||
5234 | |||
5235 | hlist_for_each_entry_rcu(event, node, head, hlist_entry) { | ||
5236 | if (perf_swevent_match(event, type, event_id, data, regs)) | ||
5237 | perf_swevent_event(event, nr, nmi, data, regs); | ||
5238 | } | ||
5239 | end: | ||
5240 | rcu_read_unlock(); | ||
5241 | } | ||
5242 | |||
5243 | int perf_swevent_get_recursion_context(void) | ||
5244 | { | ||
5245 | struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); | ||
5246 | |||
5247 | return get_recursion_context(swhash->recursion); | ||
5248 | } | ||
5249 | EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); | ||
5250 | |||
5251 | inline void perf_swevent_put_recursion_context(int rctx) | ||
5252 | { | ||
5253 | struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); | ||
5254 | |||
5255 | put_recursion_context(swhash->recursion, rctx); | ||
5256 | } | ||
5257 | |||
5258 | void __perf_sw_event(u32 event_id, u64 nr, int nmi, | ||
5259 | struct pt_regs *regs, u64 addr) | ||
5260 | { | ||
5261 | struct perf_sample_data data; | ||
5262 | int rctx; | ||
5263 | |||
5264 | preempt_disable_notrace(); | ||
5265 | rctx = perf_swevent_get_recursion_context(); | ||
5266 | if (rctx < 0) | ||
5267 | return; | ||
5268 | |||
5269 | perf_sample_data_init(&data, addr); | ||
5270 | |||
5271 | do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs); | ||
5272 | |||
5273 | perf_swevent_put_recursion_context(rctx); | ||
5274 | preempt_enable_notrace(); | ||
5275 | } | ||
5276 | |||
5277 | static void perf_swevent_read(struct perf_event *event) | ||
5278 | { | ||
5279 | } | ||
5280 | |||
5281 | static int perf_swevent_add(struct perf_event *event, int flags) | ||
5282 | { | ||
5283 | struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); | ||
5284 | struct hw_perf_event *hwc = &event->hw; | ||
5285 | struct hlist_head *head; | ||
5286 | |||
5287 | if (is_sampling_event(event)) { | ||
5288 | hwc->last_period = hwc->sample_period; | ||
5289 | perf_swevent_set_period(event); | ||
5290 | } | ||
5291 | |||
5292 | hwc->state = !(flags & PERF_EF_START); | ||
5293 | |||
5294 | head = find_swevent_head(swhash, event); | ||
5295 | if (WARN_ON_ONCE(!head)) | ||
5296 | return -EINVAL; | ||
5297 | |||
5298 | hlist_add_head_rcu(&event->hlist_entry, head); | ||
5299 | |||
5300 | return 0; | ||
5301 | } | ||
5302 | |||
5303 | static void perf_swevent_del(struct perf_event *event, int flags) | ||
5304 | { | ||
5305 | hlist_del_rcu(&event->hlist_entry); | ||
5306 | } | ||
5307 | |||
5308 | static void perf_swevent_start(struct perf_event *event, int flags) | ||
5309 | { | ||
5310 | event->hw.state = 0; | ||
5311 | } | ||
5312 | |||
5313 | static void perf_swevent_stop(struct perf_event *event, int flags) | ||
5314 | { | ||
5315 | event->hw.state = PERF_HES_STOPPED; | ||
5316 | } | ||
5317 | |||
5318 | /* Deref the hlist from the update side */ | ||
5319 | static inline struct swevent_hlist * | ||
5320 | swevent_hlist_deref(struct swevent_htable *swhash) | ||
5321 | { | ||
5322 | return rcu_dereference_protected(swhash->swevent_hlist, | ||
5323 | lockdep_is_held(&swhash->hlist_mutex)); | ||
5324 | } | ||
5325 | |||
5326 | static void swevent_hlist_release(struct swevent_htable *swhash) | ||
5327 | { | ||
5328 | struct swevent_hlist *hlist = swevent_hlist_deref(swhash); | ||
5329 | |||
5330 | if (!hlist) | ||
5331 | return; | ||
5332 | |||
5333 | rcu_assign_pointer(swhash->swevent_hlist, NULL); | ||
5334 | kfree_rcu(hlist, rcu_head); | ||
5335 | } | ||
5336 | |||
5337 | static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) | ||
5338 | { | ||
5339 | struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); | ||
5340 | |||
5341 | mutex_lock(&swhash->hlist_mutex); | ||
5342 | |||
5343 | if (!--swhash->hlist_refcount) | ||
5344 | swevent_hlist_release(swhash); | ||
5345 | |||
5346 | mutex_unlock(&swhash->hlist_mutex); | ||
5347 | } | ||
5348 | |||
5349 | static void swevent_hlist_put(struct perf_event *event) | ||
5350 | { | ||
5351 | int cpu; | ||
5352 | |||
5353 | if (event->cpu != -1) { | ||
5354 | swevent_hlist_put_cpu(event, event->cpu); | ||
5355 | return; | ||
5356 | } | ||
5357 | |||
5358 | for_each_possible_cpu(cpu) | ||
5359 | swevent_hlist_put_cpu(event, cpu); | ||
5360 | } | ||
5361 | |||
5362 | static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) | ||
5363 | { | ||
5364 | struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); | ||
5365 | int err = 0; | ||
5366 | |||
5367 | mutex_lock(&swhash->hlist_mutex); | ||
5368 | |||
5369 | if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { | ||
5370 | struct swevent_hlist *hlist; | ||
5371 | |||
5372 | hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); | ||
5373 | if (!hlist) { | ||
5374 | err = -ENOMEM; | ||
5375 | goto exit; | ||
5376 | } | ||
5377 | rcu_assign_pointer(swhash->swevent_hlist, hlist); | ||
5378 | } | ||
5379 | swhash->hlist_refcount++; | ||
5380 | exit: | ||
5381 | mutex_unlock(&swhash->hlist_mutex); | ||
5382 | |||
5383 | return err; | ||
5384 | } | ||
5385 | |||
5386 | static int swevent_hlist_get(struct perf_event *event) | ||
5387 | { | ||
5388 | int err; | ||
5389 | int cpu, failed_cpu; | ||
5390 | |||
5391 | if (event->cpu != -1) | ||
5392 | return swevent_hlist_get_cpu(event, event->cpu); | ||
5393 | |||
5394 | get_online_cpus(); | ||
5395 | for_each_possible_cpu(cpu) { | ||
5396 | err = swevent_hlist_get_cpu(event, cpu); | ||
5397 | if (err) { | ||
5398 | failed_cpu = cpu; | ||
5399 | goto fail; | ||
5400 | } | ||
5401 | } | ||
5402 | put_online_cpus(); | ||
5403 | |||
5404 | return 0; | ||
5405 | fail: | ||
5406 | for_each_possible_cpu(cpu) { | ||
5407 | if (cpu == failed_cpu) | ||
5408 | break; | ||
5409 | swevent_hlist_put_cpu(event, cpu); | ||
5410 | } | ||
5411 | |||
5412 | put_online_cpus(); | ||
5413 | return err; | ||
5414 | } | ||
5415 | |||
5416 | struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; | ||
5417 | |||
5418 | static void sw_perf_event_destroy(struct perf_event *event) | ||
5419 | { | ||
5420 | u64 event_id = event->attr.config; | ||
5421 | |||
5422 | WARN_ON(event->parent); | ||
5423 | |||
5424 | jump_label_dec(&perf_swevent_enabled[event_id]); | ||
5425 | swevent_hlist_put(event); | ||
5426 | } | ||
5427 | |||
5428 | static int perf_swevent_init(struct perf_event *event) | ||
5429 | { | ||
5430 | int event_id = event->attr.config; | ||
5431 | |||
5432 | if (event->attr.type != PERF_TYPE_SOFTWARE) | ||
5433 | return -ENOENT; | ||
5434 | |||
5435 | switch (event_id) { | ||
5436 | case PERF_COUNT_SW_CPU_CLOCK: | ||
5437 | case PERF_COUNT_SW_TASK_CLOCK: | ||
5438 | return -ENOENT; | ||
5439 | |||
5440 | default: | ||
5441 | break; | ||
5442 | } | ||
5443 | |||
5444 | if (event_id >= PERF_COUNT_SW_MAX) | ||
5445 | return -ENOENT; | ||
5446 | |||
5447 | if (!event->parent) { | ||
5448 | int err; | ||
5449 | |||
5450 | err = swevent_hlist_get(event); | ||
5451 | if (err) | ||
5452 | return err; | ||
5453 | |||
5454 | jump_label_inc(&perf_swevent_enabled[event_id]); | ||
5455 | event->destroy = sw_perf_event_destroy; | ||
5456 | } | ||
5457 | |||
5458 | return 0; | ||
5459 | } | ||
5460 | |||
5461 | static struct pmu perf_swevent = { | ||
5462 | .task_ctx_nr = perf_sw_context, | ||
5463 | |||
5464 | .event_init = perf_swevent_init, | ||
5465 | .add = perf_swevent_add, | ||
5466 | .del = perf_swevent_del, | ||
5467 | .start = perf_swevent_start, | ||
5468 | .stop = perf_swevent_stop, | ||
5469 | .read = perf_swevent_read, | ||
5470 | }; | ||
5471 | |||
5472 | #ifdef CONFIG_EVENT_TRACING | ||
5473 | |||
5474 | static int perf_tp_filter_match(struct perf_event *event, | ||
5475 | struct perf_sample_data *data) | ||
5476 | { | ||
5477 | void *record = data->raw->data; | ||
5478 | |||
5479 | if (likely(!event->filter) || filter_match_preds(event->filter, record)) | ||
5480 | return 1; | ||
5481 | return 0; | ||
5482 | } | ||
5483 | |||
5484 | static int perf_tp_event_match(struct perf_event *event, | ||
5485 | struct perf_sample_data *data, | ||
5486 | struct pt_regs *regs) | ||
5487 | { | ||
5488 | if (event->hw.state & PERF_HES_STOPPED) | ||
5489 | return 0; | ||
5490 | /* | ||
5491 | * All tracepoints are from kernel-space. | ||
5492 | */ | ||
5493 | if (event->attr.exclude_kernel) | ||
5494 | return 0; | ||
5495 | |||
5496 | if (!perf_tp_filter_match(event, data)) | ||
5497 | return 0; | ||
5498 | |||
5499 | return 1; | ||
5500 | } | ||
5501 | |||
5502 | void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, | ||
5503 | struct pt_regs *regs, struct hlist_head *head, int rctx) | ||
5504 | { | ||
5505 | struct perf_sample_data data; | ||
5506 | struct perf_event *event; | ||
5507 | struct hlist_node *node; | ||
5508 | |||
5509 | struct perf_raw_record raw = { | ||
5510 | .size = entry_size, | ||
5511 | .data = record, | ||
5512 | }; | ||
5513 | |||
5514 | perf_sample_data_init(&data, addr); | ||
5515 | data.raw = &raw; | ||
5516 | |||
5517 | hlist_for_each_entry_rcu(event, node, head, hlist_entry) { | ||
5518 | if (perf_tp_event_match(event, &data, regs)) | ||
5519 | perf_swevent_event(event, count, 1, &data, regs); | ||
5520 | } | ||
5521 | |||
5522 | perf_swevent_put_recursion_context(rctx); | ||
5523 | } | ||
5524 | EXPORT_SYMBOL_GPL(perf_tp_event); | ||
5525 | |||
5526 | static void tp_perf_event_destroy(struct perf_event *event) | ||
5527 | { | ||
5528 | perf_trace_destroy(event); | ||
5529 | } | ||
5530 | |||
5531 | static int perf_tp_event_init(struct perf_event *event) | ||
5532 | { | ||
5533 | int err; | ||
5534 | |||
5535 | if (event->attr.type != PERF_TYPE_TRACEPOINT) | ||
5536 | return -ENOENT; | ||
5537 | |||
5538 | err = perf_trace_init(event); | ||
5539 | if (err) | ||
5540 | return err; | ||
5541 | |||
5542 | event->destroy = tp_perf_event_destroy; | ||
5543 | |||
5544 | return 0; | ||
5545 | } | ||
5546 | |||
5547 | static struct pmu perf_tracepoint = { | ||
5548 | .task_ctx_nr = perf_sw_context, | ||
5549 | |||
5550 | .event_init = perf_tp_event_init, | ||
5551 | .add = perf_trace_add, | ||
5552 | .del = perf_trace_del, | ||
5553 | .start = perf_swevent_start, | ||
5554 | .stop = perf_swevent_stop, | ||
5555 | .read = perf_swevent_read, | ||
5556 | }; | ||
5557 | |||
5558 | static inline void perf_tp_register(void) | ||
5559 | { | ||
5560 | perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); | ||
5561 | } | ||
5562 | |||
5563 | static int perf_event_set_filter(struct perf_event *event, void __user *arg) | ||
5564 | { | ||
5565 | char *filter_str; | ||
5566 | int ret; | ||
5567 | |||
5568 | if (event->attr.type != PERF_TYPE_TRACEPOINT) | ||
5569 | return -EINVAL; | ||
5570 | |||
5571 | filter_str = strndup_user(arg, PAGE_SIZE); | ||
5572 | if (IS_ERR(filter_str)) | ||
5573 | return PTR_ERR(filter_str); | ||
5574 | |||
5575 | ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); | ||
5576 | |||
5577 | kfree(filter_str); | ||
5578 | return ret; | ||
5579 | } | ||
5580 | |||
5581 | static void perf_event_free_filter(struct perf_event *event) | ||
5582 | { | ||
5583 | ftrace_profile_free_filter(event); | ||
5584 | } | ||
5585 | |||
5586 | #else | ||
5587 | |||
5588 | static inline void perf_tp_register(void) | ||
5589 | { | ||
5590 | } | ||
5591 | |||
5592 | static int perf_event_set_filter(struct perf_event *event, void __user *arg) | ||
5593 | { | ||
5594 | return -ENOENT; | ||
5595 | } | ||
5596 | |||
5597 | static void perf_event_free_filter(struct perf_event *event) | ||
5598 | { | ||
5599 | } | ||
5600 | |||
5601 | #endif /* CONFIG_EVENT_TRACING */ | ||
5602 | |||
5603 | #ifdef CONFIG_HAVE_HW_BREAKPOINT | ||
5604 | void perf_bp_event(struct perf_event *bp, void *data) | ||
5605 | { | ||
5606 | struct perf_sample_data sample; | ||
5607 | struct pt_regs *regs = data; | ||
5608 | |||
5609 | perf_sample_data_init(&sample, bp->attr.bp_addr); | ||
5610 | |||
5611 | if (!bp->hw.state && !perf_exclude_event(bp, regs)) | ||
5612 | perf_swevent_event(bp, 1, 1, &sample, regs); | ||
5613 | } | ||
5614 | #endif | ||
5615 | |||
5616 | /* | ||
5617 | * hrtimer based swevent callback | ||
5618 | */ | ||
5619 | |||
5620 | static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) | ||
5621 | { | ||
5622 | enum hrtimer_restart ret = HRTIMER_RESTART; | ||
5623 | struct perf_sample_data data; | ||
5624 | struct pt_regs *regs; | ||
5625 | struct perf_event *event; | ||
5626 | u64 period; | ||
5627 | |||
5628 | event = container_of(hrtimer, struct perf_event, hw.hrtimer); | ||
5629 | |||
5630 | if (event->state != PERF_EVENT_STATE_ACTIVE) | ||
5631 | return HRTIMER_NORESTART; | ||
5632 | |||
5633 | event->pmu->read(event); | ||
5634 | |||
5635 | perf_sample_data_init(&data, 0); | ||
5636 | data.period = event->hw.last_period; | ||
5637 | regs = get_irq_regs(); | ||
5638 | |||
5639 | if (regs && !perf_exclude_event(event, regs)) { | ||
5640 | if (!(event->attr.exclude_idle && current->pid == 0)) | ||
5641 | if (perf_event_overflow(event, 0, &data, regs)) | ||
5642 | ret = HRTIMER_NORESTART; | ||
5643 | } | ||
5644 | |||
5645 | period = max_t(u64, 10000, event->hw.sample_period); | ||
5646 | hrtimer_forward_now(hrtimer, ns_to_ktime(period)); | ||
5647 | |||
5648 | return ret; | ||
5649 | } | ||
5650 | |||
5651 | static void perf_swevent_start_hrtimer(struct perf_event *event) | ||
5652 | { | ||
5653 | struct hw_perf_event *hwc = &event->hw; | ||
5654 | s64 period; | ||
5655 | |||
5656 | if (!is_sampling_event(event)) | ||
5657 | return; | ||
5658 | |||
5659 | period = local64_read(&hwc->period_left); | ||
5660 | if (period) { | ||
5661 | if (period < 0) | ||
5662 | period = 10000; | ||
5663 | |||
5664 | local64_set(&hwc->period_left, 0); | ||
5665 | } else { | ||
5666 | period = max_t(u64, 10000, hwc->sample_period); | ||
5667 | } | ||
5668 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
5669 | ns_to_ktime(period), 0, | ||
5670 | HRTIMER_MODE_REL_PINNED, 0); | ||
5671 | } | ||
5672 | |||
5673 | static void perf_swevent_cancel_hrtimer(struct perf_event *event) | ||
5674 | { | ||
5675 | struct hw_perf_event *hwc = &event->hw; | ||
5676 | |||
5677 | if (is_sampling_event(event)) { | ||
5678 | ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); | ||
5679 | local64_set(&hwc->period_left, ktime_to_ns(remaining)); | ||
5680 | |||
5681 | hrtimer_cancel(&hwc->hrtimer); | ||
5682 | } | ||
5683 | } | ||
5684 | |||
5685 | static void perf_swevent_init_hrtimer(struct perf_event *event) | ||
5686 | { | ||
5687 | struct hw_perf_event *hwc = &event->hw; | ||
5688 | |||
5689 | if (!is_sampling_event(event)) | ||
5690 | return; | ||
5691 | |||
5692 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
5693 | hwc->hrtimer.function = perf_swevent_hrtimer; | ||
5694 | |||
5695 | /* | ||
5696 | * Since hrtimers have a fixed rate, we can do a static freq->period | ||
5697 | * mapping and avoid the whole period adjust feedback stuff. | ||
5698 | */ | ||
5699 | if (event->attr.freq) { | ||
5700 | long freq = event->attr.sample_freq; | ||
5701 | |||
5702 | event->attr.sample_period = NSEC_PER_SEC / freq; | ||
5703 | hwc->sample_period = event->attr.sample_period; | ||
5704 | local64_set(&hwc->period_left, hwc->sample_period); | ||
5705 | event->attr.freq = 0; | ||
5706 | } | ||
5707 | } | ||
5708 | |||
5709 | /* | ||
5710 | * Software event: cpu wall time clock | ||
5711 | */ | ||
5712 | |||
5713 | static void cpu_clock_event_update(struct perf_event *event) | ||
5714 | { | ||
5715 | s64 prev; | ||
5716 | u64 now; | ||
5717 | |||
5718 | now = local_clock(); | ||
5719 | prev = local64_xchg(&event->hw.prev_count, now); | ||
5720 | local64_add(now - prev, &event->count); | ||
5721 | } | ||
5722 | |||
5723 | static void cpu_clock_event_start(struct perf_event *event, int flags) | ||
5724 | { | ||
5725 | local64_set(&event->hw.prev_count, local_clock()); | ||
5726 | perf_swevent_start_hrtimer(event); | ||
5727 | } | ||
5728 | |||
5729 | static void cpu_clock_event_stop(struct perf_event *event, int flags) | ||
5730 | { | ||
5731 | perf_swevent_cancel_hrtimer(event); | ||
5732 | cpu_clock_event_update(event); | ||
5733 | } | ||
5734 | |||
5735 | static int cpu_clock_event_add(struct perf_event *event, int flags) | ||
5736 | { | ||
5737 | if (flags & PERF_EF_START) | ||
5738 | cpu_clock_event_start(event, flags); | ||
5739 | |||
5740 | return 0; | ||
5741 | } | ||
5742 | |||
5743 | static void cpu_clock_event_del(struct perf_event *event, int flags) | ||
5744 | { | ||
5745 | cpu_clock_event_stop(event, flags); | ||
5746 | } | ||
5747 | |||
5748 | static void cpu_clock_event_read(struct perf_event *event) | ||
5749 | { | ||
5750 | cpu_clock_event_update(event); | ||
5751 | } | ||
5752 | |||
5753 | static int cpu_clock_event_init(struct perf_event *event) | ||
5754 | { | ||
5755 | if (event->attr.type != PERF_TYPE_SOFTWARE) | ||
5756 | return -ENOENT; | ||
5757 | |||
5758 | if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) | ||
5759 | return -ENOENT; | ||
5760 | |||
5761 | perf_swevent_init_hrtimer(event); | ||
5762 | |||
5763 | return 0; | ||
5764 | } | ||
5765 | |||
5766 | static struct pmu perf_cpu_clock = { | ||
5767 | .task_ctx_nr = perf_sw_context, | ||
5768 | |||
5769 | .event_init = cpu_clock_event_init, | ||
5770 | .add = cpu_clock_event_add, | ||
5771 | .del = cpu_clock_event_del, | ||
5772 | .start = cpu_clock_event_start, | ||
5773 | .stop = cpu_clock_event_stop, | ||
5774 | .read = cpu_clock_event_read, | ||
5775 | }; | ||
5776 | |||
5777 | /* | ||
5778 | * Software event: task time clock | ||
5779 | */ | ||
5780 | |||
5781 | static void task_clock_event_update(struct perf_event *event, u64 now) | ||
5782 | { | ||
5783 | u64 prev; | ||
5784 | s64 delta; | ||
5785 | |||
5786 | prev = local64_xchg(&event->hw.prev_count, now); | ||
5787 | delta = now - prev; | ||
5788 | local64_add(delta, &event->count); | ||
5789 | } | ||
5790 | |||
5791 | static void task_clock_event_start(struct perf_event *event, int flags) | ||
5792 | { | ||
5793 | local64_set(&event->hw.prev_count, event->ctx->time); | ||
5794 | perf_swevent_start_hrtimer(event); | ||
5795 | } | ||
5796 | |||
5797 | static void task_clock_event_stop(struct perf_event *event, int flags) | ||
5798 | { | ||
5799 | perf_swevent_cancel_hrtimer(event); | ||
5800 | task_clock_event_update(event, event->ctx->time); | ||
5801 | } | ||
5802 | |||
5803 | static int task_clock_event_add(struct perf_event *event, int flags) | ||
5804 | { | ||
5805 | if (flags & PERF_EF_START) | ||
5806 | task_clock_event_start(event, flags); | ||
5807 | |||
5808 | return 0; | ||
5809 | } | ||
5810 | |||
5811 | static void task_clock_event_del(struct perf_event *event, int flags) | ||
5812 | { | ||
5813 | task_clock_event_stop(event, PERF_EF_UPDATE); | ||
5814 | } | ||
5815 | |||
5816 | static void task_clock_event_read(struct perf_event *event) | ||
5817 | { | ||
5818 | u64 now = perf_clock(); | ||
5819 | u64 delta = now - event->ctx->timestamp; | ||
5820 | u64 time = event->ctx->time + delta; | ||
5821 | |||
5822 | task_clock_event_update(event, time); | ||
5823 | } | ||
5824 | |||
5825 | static int task_clock_event_init(struct perf_event *event) | ||
5826 | { | ||
5827 | if (event->attr.type != PERF_TYPE_SOFTWARE) | ||
5828 | return -ENOENT; | ||
5829 | |||
5830 | if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) | ||
5831 | return -ENOENT; | ||
5832 | |||
5833 | perf_swevent_init_hrtimer(event); | ||
5834 | |||
5835 | return 0; | ||
5836 | } | ||
5837 | |||
5838 | static struct pmu perf_task_clock = { | ||
5839 | .task_ctx_nr = perf_sw_context, | ||
5840 | |||
5841 | .event_init = task_clock_event_init, | ||
5842 | .add = task_clock_event_add, | ||
5843 | .del = task_clock_event_del, | ||
5844 | .start = task_clock_event_start, | ||
5845 | .stop = task_clock_event_stop, | ||
5846 | .read = task_clock_event_read, | ||
5847 | }; | ||
5848 | |||
5849 | static void perf_pmu_nop_void(struct pmu *pmu) | ||
5850 | { | ||
5851 | } | ||
5852 | |||
5853 | static int perf_pmu_nop_int(struct pmu *pmu) | ||
5854 | { | ||
5855 | return 0; | ||
5856 | } | ||
5857 | |||
5858 | static void perf_pmu_start_txn(struct pmu *pmu) | ||
5859 | { | ||
5860 | perf_pmu_disable(pmu); | ||
5861 | } | ||
5862 | |||
5863 | static int perf_pmu_commit_txn(struct pmu *pmu) | ||
5864 | { | ||
5865 | perf_pmu_enable(pmu); | ||
5866 | return 0; | ||
5867 | } | ||
5868 | |||
5869 | static void perf_pmu_cancel_txn(struct pmu *pmu) | ||
5870 | { | ||
5871 | perf_pmu_enable(pmu); | ||
5872 | } | ||
5873 | |||
5874 | /* | ||
5875 | * Ensures all contexts with the same task_ctx_nr have the same | ||
5876 | * pmu_cpu_context too. | ||
5877 | */ | ||
5878 | static void *find_pmu_context(int ctxn) | ||
5879 | { | ||
5880 | struct pmu *pmu; | ||
5881 | |||
5882 | if (ctxn < 0) | ||
5883 | return NULL; | ||
5884 | |||
5885 | list_for_each_entry(pmu, &pmus, entry) { | ||
5886 | if (pmu->task_ctx_nr == ctxn) | ||
5887 | return pmu->pmu_cpu_context; | ||
5888 | } | ||
5889 | |||
5890 | return NULL; | ||
5891 | } | ||
5892 | |||
5893 | static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) | ||
5894 | { | ||
5895 | int cpu; | ||
5896 | |||
5897 | for_each_possible_cpu(cpu) { | ||
5898 | struct perf_cpu_context *cpuctx; | ||
5899 | |||
5900 | cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); | ||
5901 | |||
5902 | if (cpuctx->active_pmu == old_pmu) | ||
5903 | cpuctx->active_pmu = pmu; | ||
5904 | } | ||
5905 | } | ||
5906 | |||
5907 | static void free_pmu_context(struct pmu *pmu) | ||
5908 | { | ||
5909 | struct pmu *i; | ||
5910 | |||
5911 | mutex_lock(&pmus_lock); | ||
5912 | /* | ||
5913 | * Like a real lame refcount. | ||
5914 | */ | ||
5915 | list_for_each_entry(i, &pmus, entry) { | ||
5916 | if (i->pmu_cpu_context == pmu->pmu_cpu_context) { | ||
5917 | update_pmu_context(i, pmu); | ||
5918 | goto out; | ||
5919 | } | ||
5920 | } | ||
5921 | |||
5922 | free_percpu(pmu->pmu_cpu_context); | ||
5923 | out: | ||
5924 | mutex_unlock(&pmus_lock); | ||
5925 | } | ||
5926 | static struct idr pmu_idr; | ||
5927 | |||
5928 | static ssize_t | ||
5929 | type_show(struct device *dev, struct device_attribute *attr, char *page) | ||
5930 | { | ||
5931 | struct pmu *pmu = dev_get_drvdata(dev); | ||
5932 | |||
5933 | return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); | ||
5934 | } | ||
5935 | |||
5936 | static struct device_attribute pmu_dev_attrs[] = { | ||
5937 | __ATTR_RO(type), | ||
5938 | __ATTR_NULL, | ||
5939 | }; | ||
5940 | |||
5941 | static int pmu_bus_running; | ||
5942 | static struct bus_type pmu_bus = { | ||
5943 | .name = "event_source", | ||
5944 | .dev_attrs = pmu_dev_attrs, | ||
5945 | }; | ||
5946 | |||
5947 | static void pmu_dev_release(struct device *dev) | ||
5948 | { | ||
5949 | kfree(dev); | ||
5950 | } | ||
5951 | |||
5952 | static int pmu_dev_alloc(struct pmu *pmu) | ||
5953 | { | ||
5954 | int ret = -ENOMEM; | ||
5955 | |||
5956 | pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); | ||
5957 | if (!pmu->dev) | ||
5958 | goto out; | ||
5959 | |||
5960 | device_initialize(pmu->dev); | ||
5961 | ret = dev_set_name(pmu->dev, "%s", pmu->name); | ||
5962 | if (ret) | ||
5963 | goto free_dev; | ||
5964 | |||
5965 | dev_set_drvdata(pmu->dev, pmu); | ||
5966 | pmu->dev->bus = &pmu_bus; | ||
5967 | pmu->dev->release = pmu_dev_release; | ||
5968 | ret = device_add(pmu->dev); | ||
5969 | if (ret) | ||
5970 | goto free_dev; | ||
5971 | |||
5972 | out: | ||
5973 | return ret; | ||
5974 | |||
5975 | free_dev: | ||
5976 | put_device(pmu->dev); | ||
5977 | goto out; | ||
5978 | } | ||
5979 | |||
5980 | static struct lock_class_key cpuctx_mutex; | ||
5981 | |||
5982 | int perf_pmu_register(struct pmu *pmu, char *name, int type) | ||
5983 | { | ||
5984 | int cpu, ret; | ||
5985 | |||
5986 | mutex_lock(&pmus_lock); | ||
5987 | ret = -ENOMEM; | ||
5988 | pmu->pmu_disable_count = alloc_percpu(int); | ||
5989 | if (!pmu->pmu_disable_count) | ||
5990 | goto unlock; | ||
5991 | |||
5992 | pmu->type = -1; | ||
5993 | if (!name) | ||
5994 | goto skip_type; | ||
5995 | pmu->name = name; | ||
5996 | |||
5997 | if (type < 0) { | ||
5998 | int err = idr_pre_get(&pmu_idr, GFP_KERNEL); | ||
5999 | if (!err) | ||
6000 | goto free_pdc; | ||
6001 | |||
6002 | err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type); | ||
6003 | if (err) { | ||
6004 | ret = err; | ||
6005 | goto free_pdc; | ||
6006 | } | ||
6007 | } | ||
6008 | pmu->type = type; | ||
6009 | |||
6010 | if (pmu_bus_running) { | ||
6011 | ret = pmu_dev_alloc(pmu); | ||
6012 | if (ret) | ||
6013 | goto free_idr; | ||
6014 | } | ||
6015 | |||
6016 | skip_type: | ||
6017 | pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); | ||
6018 | if (pmu->pmu_cpu_context) | ||
6019 | goto got_cpu_context; | ||
6020 | |||
6021 | pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); | ||
6022 | if (!pmu->pmu_cpu_context) | ||
6023 | goto free_dev; | ||
6024 | |||
6025 | for_each_possible_cpu(cpu) { | ||
6026 | struct perf_cpu_context *cpuctx; | ||
6027 | |||
6028 | cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); | ||
6029 | __perf_event_init_context(&cpuctx->ctx); | ||
6030 | lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); | ||
6031 | cpuctx->ctx.type = cpu_context; | ||
6032 | cpuctx->ctx.pmu = pmu; | ||
6033 | cpuctx->jiffies_interval = 1; | ||
6034 | INIT_LIST_HEAD(&cpuctx->rotation_list); | ||
6035 | cpuctx->active_pmu = pmu; | ||
6036 | } | ||
6037 | |||
6038 | got_cpu_context: | ||
6039 | if (!pmu->start_txn) { | ||
6040 | if (pmu->pmu_enable) { | ||
6041 | /* | ||
6042 | * If we have pmu_enable/pmu_disable calls, install | ||
6043 | * transaction stubs that use that to try and batch | ||
6044 | * hardware accesses. | ||
6045 | */ | ||
6046 | pmu->start_txn = perf_pmu_start_txn; | ||
6047 | pmu->commit_txn = perf_pmu_commit_txn; | ||
6048 | pmu->cancel_txn = perf_pmu_cancel_txn; | ||
6049 | } else { | ||
6050 | pmu->start_txn = perf_pmu_nop_void; | ||
6051 | pmu->commit_txn = perf_pmu_nop_int; | ||
6052 | pmu->cancel_txn = perf_pmu_nop_void; | ||
6053 | } | ||
6054 | } | ||
6055 | |||
6056 | if (!pmu->pmu_enable) { | ||
6057 | pmu->pmu_enable = perf_pmu_nop_void; | ||
6058 | pmu->pmu_disable = perf_pmu_nop_void; | ||
6059 | } | ||
6060 | |||
6061 | list_add_rcu(&pmu->entry, &pmus); | ||
6062 | ret = 0; | ||
6063 | unlock: | ||
6064 | mutex_unlock(&pmus_lock); | ||
6065 | |||
6066 | return ret; | ||
6067 | |||
6068 | free_dev: | ||
6069 | device_del(pmu->dev); | ||
6070 | put_device(pmu->dev); | ||
6071 | |||
6072 | free_idr: | ||
6073 | if (pmu->type >= PERF_TYPE_MAX) | ||
6074 | idr_remove(&pmu_idr, pmu->type); | ||
6075 | |||
6076 | free_pdc: | ||
6077 | free_percpu(pmu->pmu_disable_count); | ||
6078 | goto unlock; | ||
6079 | } | ||
6080 | |||
6081 | void perf_pmu_unregister(struct pmu *pmu) | ||
6082 | { | ||
6083 | mutex_lock(&pmus_lock); | ||
6084 | list_del_rcu(&pmu->entry); | ||
6085 | mutex_unlock(&pmus_lock); | ||
6086 | |||
6087 | /* | ||
6088 | * We dereference the pmu list under both SRCU and regular RCU, so | ||
6089 | * synchronize against both of those. | ||
6090 | */ | ||
6091 | synchronize_srcu(&pmus_srcu); | ||
6092 | synchronize_rcu(); | ||
6093 | |||
6094 | free_percpu(pmu->pmu_disable_count); | ||
6095 | if (pmu->type >= PERF_TYPE_MAX) | ||
6096 | idr_remove(&pmu_idr, pmu->type); | ||
6097 | device_del(pmu->dev); | ||
6098 | put_device(pmu->dev); | ||
6099 | free_pmu_context(pmu); | ||
6100 | } | ||
6101 | |||
6102 | struct pmu *perf_init_event(struct perf_event *event) | ||
6103 | { | ||
6104 | struct pmu *pmu = NULL; | ||
6105 | int idx; | ||
6106 | int ret; | ||
6107 | |||
6108 | idx = srcu_read_lock(&pmus_srcu); | ||
6109 | |||
6110 | rcu_read_lock(); | ||
6111 | pmu = idr_find(&pmu_idr, event->attr.type); | ||
6112 | rcu_read_unlock(); | ||
6113 | if (pmu) { | ||
6114 | ret = pmu->event_init(event); | ||
6115 | if (ret) | ||
6116 | pmu = ERR_PTR(ret); | ||
6117 | goto unlock; | ||
6118 | } | ||
6119 | |||
6120 | list_for_each_entry_rcu(pmu, &pmus, entry) { | ||
6121 | ret = pmu->event_init(event); | ||
6122 | if (!ret) | ||
6123 | goto unlock; | ||
6124 | |||
6125 | if (ret != -ENOENT) { | ||
6126 | pmu = ERR_PTR(ret); | ||
6127 | goto unlock; | ||
6128 | } | ||
6129 | } | ||
6130 | pmu = ERR_PTR(-ENOENT); | ||
6131 | unlock: | ||
6132 | srcu_read_unlock(&pmus_srcu, idx); | ||
6133 | |||
6134 | return pmu; | ||
6135 | } | ||
6136 | |||
6137 | /* | ||
6138 | * Allocate and initialize a event structure | ||
6139 | */ | ||
6140 | static struct perf_event * | ||
6141 | perf_event_alloc(struct perf_event_attr *attr, int cpu, | ||
6142 | struct task_struct *task, | ||
6143 | struct perf_event *group_leader, | ||
6144 | struct perf_event *parent_event, | ||
6145 | perf_overflow_handler_t overflow_handler) | ||
6146 | { | ||
6147 | struct pmu *pmu; | ||
6148 | struct perf_event *event; | ||
6149 | struct hw_perf_event *hwc; | ||
6150 | long err; | ||
6151 | |||
6152 | if ((unsigned)cpu >= nr_cpu_ids) { | ||
6153 | if (!task || cpu != -1) | ||
6154 | return ERR_PTR(-EINVAL); | ||
6155 | } | ||
6156 | |||
6157 | event = kzalloc(sizeof(*event), GFP_KERNEL); | ||
6158 | if (!event) | ||
6159 | return ERR_PTR(-ENOMEM); | ||
6160 | |||
6161 | /* | ||
6162 | * Single events are their own group leaders, with an | ||
6163 | * empty sibling list: | ||
6164 | */ | ||
6165 | if (!group_leader) | ||
6166 | group_leader = event; | ||
6167 | |||
6168 | mutex_init(&event->child_mutex); | ||
6169 | INIT_LIST_HEAD(&event->child_list); | ||
6170 | |||
6171 | INIT_LIST_HEAD(&event->group_entry); | ||
6172 | INIT_LIST_HEAD(&event->event_entry); | ||
6173 | INIT_LIST_HEAD(&event->sibling_list); | ||
6174 | init_waitqueue_head(&event->waitq); | ||
6175 | init_irq_work(&event->pending, perf_pending_event); | ||
6176 | |||
6177 | mutex_init(&event->mmap_mutex); | ||
6178 | |||
6179 | event->cpu = cpu; | ||
6180 | event->attr = *attr; | ||
6181 | event->group_leader = group_leader; | ||
6182 | event->pmu = NULL; | ||
6183 | event->oncpu = -1; | ||
6184 | |||
6185 | event->parent = parent_event; | ||
6186 | |||
6187 | event->ns = get_pid_ns(current->nsproxy->pid_ns); | ||
6188 | event->id = atomic64_inc_return(&perf_event_id); | ||
6189 | |||
6190 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
6191 | |||
6192 | if (task) { | ||
6193 | event->attach_state = PERF_ATTACH_TASK; | ||
6194 | #ifdef CONFIG_HAVE_HW_BREAKPOINT | ||
6195 | /* | ||
6196 | * hw_breakpoint is a bit difficult here.. | ||
6197 | */ | ||
6198 | if (attr->type == PERF_TYPE_BREAKPOINT) | ||
6199 | event->hw.bp_target = task; | ||
6200 | #endif | ||
6201 | } | ||
6202 | |||
6203 | if (!overflow_handler && parent_event) | ||
6204 | overflow_handler = parent_event->overflow_handler; | ||
6205 | |||
6206 | event->overflow_handler = overflow_handler; | ||
6207 | |||
6208 | if (attr->disabled) | ||
6209 | event->state = PERF_EVENT_STATE_OFF; | ||
6210 | |||
6211 | pmu = NULL; | ||
6212 | |||
6213 | hwc = &event->hw; | ||
6214 | hwc->sample_period = attr->sample_period; | ||
6215 | if (attr->freq && attr->sample_freq) | ||
6216 | hwc->sample_period = 1; | ||
6217 | hwc->last_period = hwc->sample_period; | ||
6218 | |||
6219 | local64_set(&hwc->period_left, hwc->sample_period); | ||
6220 | |||
6221 | /* | ||
6222 | * we currently do not support PERF_FORMAT_GROUP on inherited events | ||
6223 | */ | ||
6224 | if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) | ||
6225 | goto done; | ||
6226 | |||
6227 | pmu = perf_init_event(event); | ||
6228 | |||
6229 | done: | ||
6230 | err = 0; | ||
6231 | if (!pmu) | ||
6232 | err = -EINVAL; | ||
6233 | else if (IS_ERR(pmu)) | ||
6234 | err = PTR_ERR(pmu); | ||
6235 | |||
6236 | if (err) { | ||
6237 | if (event->ns) | ||
6238 | put_pid_ns(event->ns); | ||
6239 | kfree(event); | ||
6240 | return ERR_PTR(err); | ||
6241 | } | ||
6242 | |||
6243 | event->pmu = pmu; | ||
6244 | |||
6245 | if (!event->parent) { | ||
6246 | if (event->attach_state & PERF_ATTACH_TASK) | ||
6247 | jump_label_inc(&perf_sched_events); | ||
6248 | if (event->attr.mmap || event->attr.mmap_data) | ||
6249 | atomic_inc(&nr_mmap_events); | ||
6250 | if (event->attr.comm) | ||
6251 | atomic_inc(&nr_comm_events); | ||
6252 | if (event->attr.task) | ||
6253 | atomic_inc(&nr_task_events); | ||
6254 | if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { | ||
6255 | err = get_callchain_buffers(); | ||
6256 | if (err) { | ||
6257 | free_event(event); | ||
6258 | return ERR_PTR(err); | ||
6259 | } | ||
6260 | } | ||
6261 | } | ||
6262 | |||
6263 | return event; | ||
6264 | } | ||
6265 | |||
6266 | static int perf_copy_attr(struct perf_event_attr __user *uattr, | ||
6267 | struct perf_event_attr *attr) | ||
6268 | { | ||
6269 | u32 size; | ||
6270 | int ret; | ||
6271 | |||
6272 | if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) | ||
6273 | return -EFAULT; | ||
6274 | |||
6275 | /* | ||
6276 | * zero the full structure, so that a short copy will be nice. | ||
6277 | */ | ||
6278 | memset(attr, 0, sizeof(*attr)); | ||
6279 | |||
6280 | ret = get_user(size, &uattr->size); | ||
6281 | if (ret) | ||
6282 | return ret; | ||
6283 | |||
6284 | if (size > PAGE_SIZE) /* silly large */ | ||
6285 | goto err_size; | ||
6286 | |||
6287 | if (!size) /* abi compat */ | ||
6288 | size = PERF_ATTR_SIZE_VER0; | ||
6289 | |||
6290 | if (size < PERF_ATTR_SIZE_VER0) | ||
6291 | goto err_size; | ||
6292 | |||
6293 | /* | ||
6294 | * If we're handed a bigger struct than we know of, | ||
6295 | * ensure all the unknown bits are 0 - i.e. new | ||
6296 | * user-space does not rely on any kernel feature | ||
6297 | * extensions we dont know about yet. | ||
6298 | */ | ||
6299 | if (size > sizeof(*attr)) { | ||
6300 | unsigned char __user *addr; | ||
6301 | unsigned char __user *end; | ||
6302 | unsigned char val; | ||
6303 | |||
6304 | addr = (void __user *)uattr + sizeof(*attr); | ||
6305 | end = (void __user *)uattr + size; | ||
6306 | |||
6307 | for (; addr < end; addr++) { | ||
6308 | ret = get_user(val, addr); | ||
6309 | if (ret) | ||
6310 | return ret; | ||
6311 | if (val) | ||
6312 | goto err_size; | ||
6313 | } | ||
6314 | size = sizeof(*attr); | ||
6315 | } | ||
6316 | |||
6317 | ret = copy_from_user(attr, uattr, size); | ||
6318 | if (ret) | ||
6319 | return -EFAULT; | ||
6320 | |||
6321 | /* | ||
6322 | * If the type exists, the corresponding creation will verify | ||
6323 | * the attr->config. | ||
6324 | */ | ||
6325 | if (attr->type >= PERF_TYPE_MAX) | ||
6326 | return -EINVAL; | ||
6327 | |||
6328 | if (attr->__reserved_1) | ||
6329 | return -EINVAL; | ||
6330 | |||
6331 | if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) | ||
6332 | return -EINVAL; | ||
6333 | |||
6334 | if (attr->read_format & ~(PERF_FORMAT_MAX-1)) | ||
6335 | return -EINVAL; | ||
6336 | |||
6337 | out: | ||
6338 | return ret; | ||
6339 | |||
6340 | err_size: | ||
6341 | put_user(sizeof(*attr), &uattr->size); | ||
6342 | ret = -E2BIG; | ||
6343 | goto out; | ||
6344 | } | ||
6345 | |||
6346 | static int | ||
6347 | perf_event_set_output(struct perf_event *event, struct perf_event *output_event) | ||
6348 | { | ||
6349 | struct perf_buffer *buffer = NULL, *old_buffer = NULL; | ||
6350 | int ret = -EINVAL; | ||
6351 | |||
6352 | if (!output_event) | ||
6353 | goto set; | ||
6354 | |||
6355 | /* don't allow circular references */ | ||
6356 | if (event == output_event) | ||
6357 | goto out; | ||
6358 | |||
6359 | /* | ||
6360 | * Don't allow cross-cpu buffers | ||
6361 | */ | ||
6362 | if (output_event->cpu != event->cpu) | ||
6363 | goto out; | ||
6364 | |||
6365 | /* | ||
6366 | * If its not a per-cpu buffer, it must be the same task. | ||
6367 | */ | ||
6368 | if (output_event->cpu == -1 && output_event->ctx != event->ctx) | ||
6369 | goto out; | ||
6370 | |||
6371 | set: | ||
6372 | mutex_lock(&event->mmap_mutex); | ||
6373 | /* Can't redirect output if we've got an active mmap() */ | ||
6374 | if (atomic_read(&event->mmap_count)) | ||
6375 | goto unlock; | ||
6376 | |||
6377 | if (output_event) { | ||
6378 | /* get the buffer we want to redirect to */ | ||
6379 | buffer = perf_buffer_get(output_event); | ||
6380 | if (!buffer) | ||
6381 | goto unlock; | ||
6382 | } | ||
6383 | |||
6384 | old_buffer = event->buffer; | ||
6385 | rcu_assign_pointer(event->buffer, buffer); | ||
6386 | ret = 0; | ||
6387 | unlock: | ||
6388 | mutex_unlock(&event->mmap_mutex); | ||
6389 | |||
6390 | if (old_buffer) | ||
6391 | perf_buffer_put(old_buffer); | ||
6392 | out: | ||
6393 | return ret; | ||
6394 | } | ||
6395 | |||
6396 | /** | ||
6397 | * sys_perf_event_open - open a performance event, associate it to a task/cpu | ||
6398 | * | ||
6399 | * @attr_uptr: event_id type attributes for monitoring/sampling | ||
6400 | * @pid: target pid | ||
6401 | * @cpu: target cpu | ||
6402 | * @group_fd: group leader event fd | ||
6403 | */ | ||
6404 | SYSCALL_DEFINE5(perf_event_open, | ||
6405 | struct perf_event_attr __user *, attr_uptr, | ||
6406 | pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) | ||
6407 | { | ||
6408 | struct perf_event *group_leader = NULL, *output_event = NULL; | ||
6409 | struct perf_event *event, *sibling; | ||
6410 | struct perf_event_attr attr; | ||
6411 | struct perf_event_context *ctx; | ||
6412 | struct file *event_file = NULL; | ||
6413 | struct file *group_file = NULL; | ||
6414 | struct task_struct *task = NULL; | ||
6415 | struct pmu *pmu; | ||
6416 | int event_fd; | ||
6417 | int move_group = 0; | ||
6418 | int fput_needed = 0; | ||
6419 | int err; | ||
6420 | |||
6421 | /* for future expandability... */ | ||
6422 | if (flags & ~PERF_FLAG_ALL) | ||
6423 | return -EINVAL; | ||
6424 | |||
6425 | err = perf_copy_attr(attr_uptr, &attr); | ||
6426 | if (err) | ||
6427 | return err; | ||
6428 | |||
6429 | if (!attr.exclude_kernel) { | ||
6430 | if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) | ||
6431 | return -EACCES; | ||
6432 | } | ||
6433 | |||
6434 | if (attr.freq) { | ||
6435 | if (attr.sample_freq > sysctl_perf_event_sample_rate) | ||
6436 | return -EINVAL; | ||
6437 | } | ||
6438 | |||
6439 | /* | ||
6440 | * In cgroup mode, the pid argument is used to pass the fd | ||
6441 | * opened to the cgroup directory in cgroupfs. The cpu argument | ||
6442 | * designates the cpu on which to monitor threads from that | ||
6443 | * cgroup. | ||
6444 | */ | ||
6445 | if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) | ||
6446 | return -EINVAL; | ||
6447 | |||
6448 | event_fd = get_unused_fd_flags(O_RDWR); | ||
6449 | if (event_fd < 0) | ||
6450 | return event_fd; | ||
6451 | |||
6452 | if (group_fd != -1) { | ||
6453 | group_leader = perf_fget_light(group_fd, &fput_needed); | ||
6454 | if (IS_ERR(group_leader)) { | ||
6455 | err = PTR_ERR(group_leader); | ||
6456 | goto err_fd; | ||
6457 | } | ||
6458 | group_file = group_leader->filp; | ||
6459 | if (flags & PERF_FLAG_FD_OUTPUT) | ||
6460 | output_event = group_leader; | ||
6461 | if (flags & PERF_FLAG_FD_NO_GROUP) | ||
6462 | group_leader = NULL; | ||
6463 | } | ||
6464 | |||
6465 | if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { | ||
6466 | task = find_lively_task_by_vpid(pid); | ||
6467 | if (IS_ERR(task)) { | ||
6468 | err = PTR_ERR(task); | ||
6469 | goto err_group_fd; | ||
6470 | } | ||
6471 | } | ||
6472 | |||
6473 | event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL); | ||
6474 | if (IS_ERR(event)) { | ||
6475 | err = PTR_ERR(event); | ||
6476 | goto err_task; | ||
6477 | } | ||
6478 | |||
6479 | if (flags & PERF_FLAG_PID_CGROUP) { | ||
6480 | err = perf_cgroup_connect(pid, event, &attr, group_leader); | ||
6481 | if (err) | ||
6482 | goto err_alloc; | ||
6483 | /* | ||
6484 | * one more event: | ||
6485 | * - that has cgroup constraint on event->cpu | ||
6486 | * - that may need work on context switch | ||
6487 | */ | ||
6488 | atomic_inc(&per_cpu(perf_cgroup_events, event->cpu)); | ||
6489 | jump_label_inc(&perf_sched_events); | ||
6490 | } | ||
6491 | |||
6492 | /* | ||
6493 | * Special case software events and allow them to be part of | ||
6494 | * any hardware group. | ||
6495 | */ | ||
6496 | pmu = event->pmu; | ||
6497 | |||
6498 | if (group_leader && | ||
6499 | (is_software_event(event) != is_software_event(group_leader))) { | ||
6500 | if (is_software_event(event)) { | ||
6501 | /* | ||
6502 | * If event and group_leader are not both a software | ||
6503 | * event, and event is, then group leader is not. | ||
6504 | * | ||
6505 | * Allow the addition of software events to !software | ||
6506 | * groups, this is safe because software events never | ||
6507 | * fail to schedule. | ||
6508 | */ | ||
6509 | pmu = group_leader->pmu; | ||
6510 | } else if (is_software_event(group_leader) && | ||
6511 | (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { | ||
6512 | /* | ||
6513 | * In case the group is a pure software group, and we | ||
6514 | * try to add a hardware event, move the whole group to | ||
6515 | * the hardware context. | ||
6516 | */ | ||
6517 | move_group = 1; | ||
6518 | } | ||
6519 | } | ||
6520 | |||
6521 | /* | ||
6522 | * Get the target context (task or percpu): | ||
6523 | */ | ||
6524 | ctx = find_get_context(pmu, task, cpu); | ||
6525 | if (IS_ERR(ctx)) { | ||
6526 | err = PTR_ERR(ctx); | ||
6527 | goto err_alloc; | ||
6528 | } | ||
6529 | |||
6530 | if (task) { | ||
6531 | put_task_struct(task); | ||
6532 | task = NULL; | ||
6533 | } | ||
6534 | |||
6535 | /* | ||
6536 | * Look up the group leader (we will attach this event to it): | ||
6537 | */ | ||
6538 | if (group_leader) { | ||
6539 | err = -EINVAL; | ||
6540 | |||
6541 | /* | ||
6542 | * Do not allow a recursive hierarchy (this new sibling | ||
6543 | * becoming part of another group-sibling): | ||
6544 | */ | ||
6545 | if (group_leader->group_leader != group_leader) | ||
6546 | goto err_context; | ||
6547 | /* | ||
6548 | * Do not allow to attach to a group in a different | ||
6549 | * task or CPU context: | ||
6550 | */ | ||
6551 | if (move_group) { | ||
6552 | if (group_leader->ctx->type != ctx->type) | ||
6553 | goto err_context; | ||
6554 | } else { | ||
6555 | if (group_leader->ctx != ctx) | ||
6556 | goto err_context; | ||
6557 | } | ||
6558 | |||
6559 | /* | ||
6560 | * Only a group leader can be exclusive or pinned | ||
6561 | */ | ||
6562 | if (attr.exclusive || attr.pinned) | ||
6563 | goto err_context; | ||
6564 | } | ||
6565 | |||
6566 | if (output_event) { | ||
6567 | err = perf_event_set_output(event, output_event); | ||
6568 | if (err) | ||
6569 | goto err_context; | ||
6570 | } | ||
6571 | |||
6572 | event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR); | ||
6573 | if (IS_ERR(event_file)) { | ||
6574 | err = PTR_ERR(event_file); | ||
6575 | goto err_context; | ||
6576 | } | ||
6577 | |||
6578 | if (move_group) { | ||
6579 | struct perf_event_context *gctx = group_leader->ctx; | ||
6580 | |||
6581 | mutex_lock(&gctx->mutex); | ||
6582 | perf_remove_from_context(group_leader); | ||
6583 | list_for_each_entry(sibling, &group_leader->sibling_list, | ||
6584 | group_entry) { | ||
6585 | perf_remove_from_context(sibling); | ||
6586 | put_ctx(gctx); | ||
6587 | } | ||
6588 | mutex_unlock(&gctx->mutex); | ||
6589 | put_ctx(gctx); | ||
6590 | } | ||
6591 | |||
6592 | event->filp = event_file; | ||
6593 | WARN_ON_ONCE(ctx->parent_ctx); | ||
6594 | mutex_lock(&ctx->mutex); | ||
6595 | |||
6596 | if (move_group) { | ||
6597 | perf_install_in_context(ctx, group_leader, cpu); | ||
6598 | get_ctx(ctx); | ||
6599 | list_for_each_entry(sibling, &group_leader->sibling_list, | ||
6600 | group_entry) { | ||
6601 | perf_install_in_context(ctx, sibling, cpu); | ||
6602 | get_ctx(ctx); | ||
6603 | } | ||
6604 | } | ||
6605 | |||
6606 | perf_install_in_context(ctx, event, cpu); | ||
6607 | ++ctx->generation; | ||
6608 | perf_unpin_context(ctx); | ||
6609 | mutex_unlock(&ctx->mutex); | ||
6610 | |||
6611 | event->owner = current; | ||
6612 | |||
6613 | mutex_lock(¤t->perf_event_mutex); | ||
6614 | list_add_tail(&event->owner_entry, ¤t->perf_event_list); | ||
6615 | mutex_unlock(¤t->perf_event_mutex); | ||
6616 | |||
6617 | /* | ||
6618 | * Precalculate sample_data sizes | ||
6619 | */ | ||
6620 | perf_event__header_size(event); | ||
6621 | perf_event__id_header_size(event); | ||
6622 | |||
6623 | /* | ||
6624 | * Drop the reference on the group_event after placing the | ||
6625 | * new event on the sibling_list. This ensures destruction | ||
6626 | * of the group leader will find the pointer to itself in | ||
6627 | * perf_group_detach(). | ||
6628 | */ | ||
6629 | fput_light(group_file, fput_needed); | ||
6630 | fd_install(event_fd, event_file); | ||
6631 | return event_fd; | ||
6632 | |||
6633 | err_context: | ||
6634 | perf_unpin_context(ctx); | ||
6635 | put_ctx(ctx); | ||
6636 | err_alloc: | ||
6637 | free_event(event); | ||
6638 | err_task: | ||
6639 | if (task) | ||
6640 | put_task_struct(task); | ||
6641 | err_group_fd: | ||
6642 | fput_light(group_file, fput_needed); | ||
6643 | err_fd: | ||
6644 | put_unused_fd(event_fd); | ||
6645 | return err; | ||
6646 | } | ||
6647 | |||
6648 | /** | ||
6649 | * perf_event_create_kernel_counter | ||
6650 | * | ||
6651 | * @attr: attributes of the counter to create | ||
6652 | * @cpu: cpu in which the counter is bound | ||
6653 | * @task: task to profile (NULL for percpu) | ||
6654 | */ | ||
6655 | struct perf_event * | ||
6656 | perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, | ||
6657 | struct task_struct *task, | ||
6658 | perf_overflow_handler_t overflow_handler) | ||
6659 | { | ||
6660 | struct perf_event_context *ctx; | ||
6661 | struct perf_event *event; | ||
6662 | int err; | ||
6663 | |||
6664 | /* | ||
6665 | * Get the target context (task or percpu): | ||
6666 | */ | ||
6667 | |||
6668 | event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler); | ||
6669 | if (IS_ERR(event)) { | ||
6670 | err = PTR_ERR(event); | ||
6671 | goto err; | ||
6672 | } | ||
6673 | |||
6674 | ctx = find_get_context(event->pmu, task, cpu); | ||
6675 | if (IS_ERR(ctx)) { | ||
6676 | err = PTR_ERR(ctx); | ||
6677 | goto err_free; | ||
6678 | } | ||
6679 | |||
6680 | event->filp = NULL; | ||
6681 | WARN_ON_ONCE(ctx->parent_ctx); | ||
6682 | mutex_lock(&ctx->mutex); | ||
6683 | perf_install_in_context(ctx, event, cpu); | ||
6684 | ++ctx->generation; | ||
6685 | perf_unpin_context(ctx); | ||
6686 | mutex_unlock(&ctx->mutex); | ||
6687 | |||
6688 | return event; | ||
6689 | |||
6690 | err_free: | ||
6691 | free_event(event); | ||
6692 | err: | ||
6693 | return ERR_PTR(err); | ||
6694 | } | ||
6695 | EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); | ||
6696 | |||
6697 | static void sync_child_event(struct perf_event *child_event, | ||
6698 | struct task_struct *child) | ||
6699 | { | ||
6700 | struct perf_event *parent_event = child_event->parent; | ||
6701 | u64 child_val; | ||
6702 | |||
6703 | if (child_event->attr.inherit_stat) | ||
6704 | perf_event_read_event(child_event, child); | ||
6705 | |||
6706 | child_val = perf_event_count(child_event); | ||
6707 | |||
6708 | /* | ||
6709 | * Add back the child's count to the parent's count: | ||
6710 | */ | ||
6711 | atomic64_add(child_val, &parent_event->child_count); | ||
6712 | atomic64_add(child_event->total_time_enabled, | ||
6713 | &parent_event->child_total_time_enabled); | ||
6714 | atomic64_add(child_event->total_time_running, | ||
6715 | &parent_event->child_total_time_running); | ||
6716 | |||
6717 | /* | ||
6718 | * Remove this event from the parent's list | ||
6719 | */ | ||
6720 | WARN_ON_ONCE(parent_event->ctx->parent_ctx); | ||
6721 | mutex_lock(&parent_event->child_mutex); | ||
6722 | list_del_init(&child_event->child_list); | ||
6723 | mutex_unlock(&parent_event->child_mutex); | ||
6724 | |||
6725 | /* | ||
6726 | * Release the parent event, if this was the last | ||
6727 | * reference to it. | ||
6728 | */ | ||
6729 | fput(parent_event->filp); | ||
6730 | } | ||
6731 | |||
6732 | static void | ||
6733 | __perf_event_exit_task(struct perf_event *child_event, | ||
6734 | struct perf_event_context *child_ctx, | ||
6735 | struct task_struct *child) | ||
6736 | { | ||
6737 | if (child_event->parent) { | ||
6738 | raw_spin_lock_irq(&child_ctx->lock); | ||
6739 | perf_group_detach(child_event); | ||
6740 | raw_spin_unlock_irq(&child_ctx->lock); | ||
6741 | } | ||
6742 | |||
6743 | perf_remove_from_context(child_event); | ||
6744 | |||
6745 | /* | ||
6746 | * It can happen that the parent exits first, and has events | ||
6747 | * that are still around due to the child reference. These | ||
6748 | * events need to be zapped. | ||
6749 | */ | ||
6750 | if (child_event->parent) { | ||
6751 | sync_child_event(child_event, child); | ||
6752 | free_event(child_event); | ||
6753 | } | ||
6754 | } | ||
6755 | |||
6756 | static void perf_event_exit_task_context(struct task_struct *child, int ctxn) | ||
6757 | { | ||
6758 | struct perf_event *child_event, *tmp; | ||
6759 | struct perf_event_context *child_ctx; | ||
6760 | unsigned long flags; | ||
6761 | |||
6762 | if (likely(!child->perf_event_ctxp[ctxn])) { | ||
6763 | perf_event_task(child, NULL, 0); | ||
6764 | return; | ||
6765 | } | ||
6766 | |||
6767 | local_irq_save(flags); | ||
6768 | /* | ||
6769 | * We can't reschedule here because interrupts are disabled, | ||
6770 | * and either child is current or it is a task that can't be | ||
6771 | * scheduled, so we are now safe from rescheduling changing | ||
6772 | * our context. | ||
6773 | */ | ||
6774 | child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); | ||
6775 | task_ctx_sched_out(child_ctx, EVENT_ALL); | ||
6776 | |||
6777 | /* | ||
6778 | * Take the context lock here so that if find_get_context is | ||
6779 | * reading child->perf_event_ctxp, we wait until it has | ||
6780 | * incremented the context's refcount before we do put_ctx below. | ||
6781 | */ | ||
6782 | raw_spin_lock(&child_ctx->lock); | ||
6783 | child->perf_event_ctxp[ctxn] = NULL; | ||
6784 | /* | ||
6785 | * If this context is a clone; unclone it so it can't get | ||
6786 | * swapped to another process while we're removing all | ||
6787 | * the events from it. | ||
6788 | */ | ||
6789 | unclone_ctx(child_ctx); | ||
6790 | update_context_time(child_ctx); | ||
6791 | raw_spin_unlock_irqrestore(&child_ctx->lock, flags); | ||
6792 | |||
6793 | /* | ||
6794 | * Report the task dead after unscheduling the events so that we | ||
6795 | * won't get any samples after PERF_RECORD_EXIT. We can however still | ||
6796 | * get a few PERF_RECORD_READ events. | ||
6797 | */ | ||
6798 | perf_event_task(child, child_ctx, 0); | ||
6799 | |||
6800 | /* | ||
6801 | * We can recurse on the same lock type through: | ||
6802 | * | ||
6803 | * __perf_event_exit_task() | ||
6804 | * sync_child_event() | ||
6805 | * fput(parent_event->filp) | ||
6806 | * perf_release() | ||
6807 | * mutex_lock(&ctx->mutex) | ||
6808 | * | ||
6809 | * But since its the parent context it won't be the same instance. | ||
6810 | */ | ||
6811 | mutex_lock(&child_ctx->mutex); | ||
6812 | |||
6813 | again: | ||
6814 | list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups, | ||
6815 | group_entry) | ||
6816 | __perf_event_exit_task(child_event, child_ctx, child); | ||
6817 | |||
6818 | list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups, | ||
6819 | group_entry) | ||
6820 | __perf_event_exit_task(child_event, child_ctx, child); | ||
6821 | |||
6822 | /* | ||
6823 | * If the last event was a group event, it will have appended all | ||
6824 | * its siblings to the list, but we obtained 'tmp' before that which | ||
6825 | * will still point to the list head terminating the iteration. | ||
6826 | */ | ||
6827 | if (!list_empty(&child_ctx->pinned_groups) || | ||
6828 | !list_empty(&child_ctx->flexible_groups)) | ||
6829 | goto again; | ||
6830 | |||
6831 | mutex_unlock(&child_ctx->mutex); | ||
6832 | |||
6833 | put_ctx(child_ctx); | ||
6834 | } | ||
6835 | |||
6836 | /* | ||
6837 | * When a child task exits, feed back event values to parent events. | ||
6838 | */ | ||
6839 | void perf_event_exit_task(struct task_struct *child) | ||
6840 | { | ||
6841 | struct perf_event *event, *tmp; | ||
6842 | int ctxn; | ||
6843 | |||
6844 | mutex_lock(&child->perf_event_mutex); | ||
6845 | list_for_each_entry_safe(event, tmp, &child->perf_event_list, | ||
6846 | owner_entry) { | ||
6847 | list_del_init(&event->owner_entry); | ||
6848 | |||
6849 | /* | ||
6850 | * Ensure the list deletion is visible before we clear | ||
6851 | * the owner, closes a race against perf_release() where | ||
6852 | * we need to serialize on the owner->perf_event_mutex. | ||
6853 | */ | ||
6854 | smp_wmb(); | ||
6855 | event->owner = NULL; | ||
6856 | } | ||
6857 | mutex_unlock(&child->perf_event_mutex); | ||
6858 | |||
6859 | for_each_task_context_nr(ctxn) | ||
6860 | perf_event_exit_task_context(child, ctxn); | ||
6861 | } | ||
6862 | |||
6863 | static void perf_free_event(struct perf_event *event, | ||
6864 | struct perf_event_context *ctx) | ||
6865 | { | ||
6866 | struct perf_event *parent = event->parent; | ||
6867 | |||
6868 | if (WARN_ON_ONCE(!parent)) | ||
6869 | return; | ||
6870 | |||
6871 | mutex_lock(&parent->child_mutex); | ||
6872 | list_del_init(&event->child_list); | ||
6873 | mutex_unlock(&parent->child_mutex); | ||
6874 | |||
6875 | fput(parent->filp); | ||
6876 | |||
6877 | perf_group_detach(event); | ||
6878 | list_del_event(event, ctx); | ||
6879 | free_event(event); | ||
6880 | } | ||
6881 | |||
6882 | /* | ||
6883 | * free an unexposed, unused context as created by inheritance by | ||
6884 | * perf_event_init_task below, used by fork() in case of fail. | ||
6885 | */ | ||
6886 | void perf_event_free_task(struct task_struct *task) | ||
6887 | { | ||
6888 | struct perf_event_context *ctx; | ||
6889 | struct perf_event *event, *tmp; | ||
6890 | int ctxn; | ||
6891 | |||
6892 | for_each_task_context_nr(ctxn) { | ||
6893 | ctx = task->perf_event_ctxp[ctxn]; | ||
6894 | if (!ctx) | ||
6895 | continue; | ||
6896 | |||
6897 | mutex_lock(&ctx->mutex); | ||
6898 | again: | ||
6899 | list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, | ||
6900 | group_entry) | ||
6901 | perf_free_event(event, ctx); | ||
6902 | |||
6903 | list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, | ||
6904 | group_entry) | ||
6905 | perf_free_event(event, ctx); | ||
6906 | |||
6907 | if (!list_empty(&ctx->pinned_groups) || | ||
6908 | !list_empty(&ctx->flexible_groups)) | ||
6909 | goto again; | ||
6910 | |||
6911 | mutex_unlock(&ctx->mutex); | ||
6912 | |||
6913 | put_ctx(ctx); | ||
6914 | } | ||
6915 | } | ||
6916 | |||
6917 | void perf_event_delayed_put(struct task_struct *task) | ||
6918 | { | ||
6919 | int ctxn; | ||
6920 | |||
6921 | for_each_task_context_nr(ctxn) | ||
6922 | WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); | ||
6923 | } | ||
6924 | |||
6925 | /* | ||
6926 | * inherit a event from parent task to child task: | ||
6927 | */ | ||
6928 | static struct perf_event * | ||
6929 | inherit_event(struct perf_event *parent_event, | ||
6930 | struct task_struct *parent, | ||
6931 | struct perf_event_context *parent_ctx, | ||
6932 | struct task_struct *child, | ||
6933 | struct perf_event *group_leader, | ||
6934 | struct perf_event_context *child_ctx) | ||
6935 | { | ||
6936 | struct perf_event *child_event; | ||
6937 | unsigned long flags; | ||
6938 | |||
6939 | /* | ||
6940 | * Instead of creating recursive hierarchies of events, | ||
6941 | * we link inherited events back to the original parent, | ||
6942 | * which has a filp for sure, which we use as the reference | ||
6943 | * count: | ||
6944 | */ | ||
6945 | if (parent_event->parent) | ||
6946 | parent_event = parent_event->parent; | ||
6947 | |||
6948 | child_event = perf_event_alloc(&parent_event->attr, | ||
6949 | parent_event->cpu, | ||
6950 | child, | ||
6951 | group_leader, parent_event, | ||
6952 | NULL); | ||
6953 | if (IS_ERR(child_event)) | ||
6954 | return child_event; | ||
6955 | get_ctx(child_ctx); | ||
6956 | |||
6957 | /* | ||
6958 | * Make the child state follow the state of the parent event, | ||
6959 | * not its attr.disabled bit. We hold the parent's mutex, | ||
6960 | * so we won't race with perf_event_{en, dis}able_family. | ||
6961 | */ | ||
6962 | if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) | ||
6963 | child_event->state = PERF_EVENT_STATE_INACTIVE; | ||
6964 | else | ||
6965 | child_event->state = PERF_EVENT_STATE_OFF; | ||
6966 | |||
6967 | if (parent_event->attr.freq) { | ||
6968 | u64 sample_period = parent_event->hw.sample_period; | ||
6969 | struct hw_perf_event *hwc = &child_event->hw; | ||
6970 | |||
6971 | hwc->sample_period = sample_period; | ||
6972 | hwc->last_period = sample_period; | ||
6973 | |||
6974 | local64_set(&hwc->period_left, sample_period); | ||
6975 | } | ||
6976 | |||
6977 | child_event->ctx = child_ctx; | ||
6978 | child_event->overflow_handler = parent_event->overflow_handler; | ||
6979 | |||
6980 | /* | ||
6981 | * Precalculate sample_data sizes | ||
6982 | */ | ||
6983 | perf_event__header_size(child_event); | ||
6984 | perf_event__id_header_size(child_event); | ||
6985 | |||
6986 | /* | ||
6987 | * Link it up in the child's context: | ||
6988 | */ | ||
6989 | raw_spin_lock_irqsave(&child_ctx->lock, flags); | ||
6990 | add_event_to_ctx(child_event, child_ctx); | ||
6991 | raw_spin_unlock_irqrestore(&child_ctx->lock, flags); | ||
6992 | |||
6993 | /* | ||
6994 | * Get a reference to the parent filp - we will fput it | ||
6995 | * when the child event exits. This is safe to do because | ||
6996 | * we are in the parent and we know that the filp still | ||
6997 | * exists and has a nonzero count: | ||
6998 | */ | ||
6999 | atomic_long_inc(&parent_event->filp->f_count); | ||
7000 | |||
7001 | /* | ||
7002 | * Link this into the parent event's child list | ||
7003 | */ | ||
7004 | WARN_ON_ONCE(parent_event->ctx->parent_ctx); | ||
7005 | mutex_lock(&parent_event->child_mutex); | ||
7006 | list_add_tail(&child_event->child_list, &parent_event->child_list); | ||
7007 | mutex_unlock(&parent_event->child_mutex); | ||
7008 | |||
7009 | return child_event; | ||
7010 | } | ||
7011 | |||
7012 | static int inherit_group(struct perf_event *parent_event, | ||
7013 | struct task_struct *parent, | ||
7014 | struct perf_event_context *parent_ctx, | ||
7015 | struct task_struct *child, | ||
7016 | struct perf_event_context *child_ctx) | ||
7017 | { | ||
7018 | struct perf_event *leader; | ||
7019 | struct perf_event *sub; | ||
7020 | struct perf_event *child_ctr; | ||
7021 | |||
7022 | leader = inherit_event(parent_event, parent, parent_ctx, | ||
7023 | child, NULL, child_ctx); | ||
7024 | if (IS_ERR(leader)) | ||
7025 | return PTR_ERR(leader); | ||
7026 | list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { | ||
7027 | child_ctr = inherit_event(sub, parent, parent_ctx, | ||
7028 | child, leader, child_ctx); | ||
7029 | if (IS_ERR(child_ctr)) | ||
7030 | return PTR_ERR(child_ctr); | ||
7031 | } | ||
7032 | return 0; | ||
7033 | } | ||
7034 | |||
7035 | static int | ||
7036 | inherit_task_group(struct perf_event *event, struct task_struct *parent, | ||
7037 | struct perf_event_context *parent_ctx, | ||
7038 | struct task_struct *child, int ctxn, | ||
7039 | int *inherited_all) | ||
7040 | { | ||
7041 | int ret; | ||
7042 | struct perf_event_context *child_ctx; | ||
7043 | |||
7044 | if (!event->attr.inherit) { | ||
7045 | *inherited_all = 0; | ||
7046 | return 0; | ||
7047 | } | ||
7048 | |||
7049 | child_ctx = child->perf_event_ctxp[ctxn]; | ||
7050 | if (!child_ctx) { | ||
7051 | /* | ||
7052 | * This is executed from the parent task context, so | ||
7053 | * inherit events that have been marked for cloning. | ||
7054 | * First allocate and initialize a context for the | ||
7055 | * child. | ||
7056 | */ | ||
7057 | |||
7058 | child_ctx = alloc_perf_context(event->pmu, child); | ||
7059 | if (!child_ctx) | ||
7060 | return -ENOMEM; | ||
7061 | |||
7062 | child->perf_event_ctxp[ctxn] = child_ctx; | ||
7063 | } | ||
7064 | |||
7065 | ret = inherit_group(event, parent, parent_ctx, | ||
7066 | child, child_ctx); | ||
7067 | |||
7068 | if (ret) | ||
7069 | *inherited_all = 0; | ||
7070 | |||
7071 | return ret; | ||
7072 | } | ||
7073 | |||
7074 | /* | ||
7075 | * Initialize the perf_event context in task_struct | ||
7076 | */ | ||
7077 | int perf_event_init_context(struct task_struct *child, int ctxn) | ||
7078 | { | ||
7079 | struct perf_event_context *child_ctx, *parent_ctx; | ||
7080 | struct perf_event_context *cloned_ctx; | ||
7081 | struct perf_event *event; | ||
7082 | struct task_struct *parent = current; | ||
7083 | int inherited_all = 1; | ||
7084 | unsigned long flags; | ||
7085 | int ret = 0; | ||
7086 | |||
7087 | if (likely(!parent->perf_event_ctxp[ctxn])) | ||
7088 | return 0; | ||
7089 | |||
7090 | /* | ||
7091 | * If the parent's context is a clone, pin it so it won't get | ||
7092 | * swapped under us. | ||
7093 | */ | ||
7094 | parent_ctx = perf_pin_task_context(parent, ctxn); | ||
7095 | |||
7096 | /* | ||
7097 | * No need to check if parent_ctx != NULL here; since we saw | ||
7098 | * it non-NULL earlier, the only reason for it to become NULL | ||
7099 | * is if we exit, and since we're currently in the middle of | ||
7100 | * a fork we can't be exiting at the same time. | ||
7101 | */ | ||
7102 | |||
7103 | /* | ||
7104 | * Lock the parent list. No need to lock the child - not PID | ||
7105 | * hashed yet and not running, so nobody can access it. | ||
7106 | */ | ||
7107 | mutex_lock(&parent_ctx->mutex); | ||
7108 | |||
7109 | /* | ||
7110 | * We dont have to disable NMIs - we are only looking at | ||
7111 | * the list, not manipulating it: | ||
7112 | */ | ||
7113 | list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { | ||
7114 | ret = inherit_task_group(event, parent, parent_ctx, | ||
7115 | child, ctxn, &inherited_all); | ||
7116 | if (ret) | ||
7117 | break; | ||
7118 | } | ||
7119 | |||
7120 | /* | ||
7121 | * We can't hold ctx->lock when iterating the ->flexible_group list due | ||
7122 | * to allocations, but we need to prevent rotation because | ||
7123 | * rotate_ctx() will change the list from interrupt context. | ||
7124 | */ | ||
7125 | raw_spin_lock_irqsave(&parent_ctx->lock, flags); | ||
7126 | parent_ctx->rotate_disable = 1; | ||
7127 | raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); | ||
7128 | |||
7129 | list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { | ||
7130 | ret = inherit_task_group(event, parent, parent_ctx, | ||
7131 | child, ctxn, &inherited_all); | ||
7132 | if (ret) | ||
7133 | break; | ||
7134 | } | ||
7135 | |||
7136 | raw_spin_lock_irqsave(&parent_ctx->lock, flags); | ||
7137 | parent_ctx->rotate_disable = 0; | ||
7138 | |||
7139 | child_ctx = child->perf_event_ctxp[ctxn]; | ||
7140 | |||
7141 | if (child_ctx && inherited_all) { | ||
7142 | /* | ||
7143 | * Mark the child context as a clone of the parent | ||
7144 | * context, or of whatever the parent is a clone of. | ||
7145 | * | ||
7146 | * Note that if the parent is a clone, the holding of | ||
7147 | * parent_ctx->lock avoids it from being uncloned. | ||
7148 | */ | ||
7149 | cloned_ctx = parent_ctx->parent_ctx; | ||
7150 | if (cloned_ctx) { | ||
7151 | child_ctx->parent_ctx = cloned_ctx; | ||
7152 | child_ctx->parent_gen = parent_ctx->parent_gen; | ||
7153 | } else { | ||
7154 | child_ctx->parent_ctx = parent_ctx; | ||
7155 | child_ctx->parent_gen = parent_ctx->generation; | ||
7156 | } | ||
7157 | get_ctx(child_ctx->parent_ctx); | ||
7158 | } | ||
7159 | |||
7160 | raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); | ||
7161 | mutex_unlock(&parent_ctx->mutex); | ||
7162 | |||
7163 | perf_unpin_context(parent_ctx); | ||
7164 | put_ctx(parent_ctx); | ||
7165 | |||
7166 | return ret; | ||
7167 | } | ||
7168 | |||
7169 | /* | ||
7170 | * Initialize the perf_event context in task_struct | ||
7171 | */ | ||
7172 | int perf_event_init_task(struct task_struct *child) | ||
7173 | { | ||
7174 | int ctxn, ret; | ||
7175 | |||
7176 | memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); | ||
7177 | mutex_init(&child->perf_event_mutex); | ||
7178 | INIT_LIST_HEAD(&child->perf_event_list); | ||
7179 | |||
7180 | for_each_task_context_nr(ctxn) { | ||
7181 | ret = perf_event_init_context(child, ctxn); | ||
7182 | if (ret) | ||
7183 | return ret; | ||
7184 | } | ||
7185 | |||
7186 | return 0; | ||
7187 | } | ||
7188 | |||
7189 | static void __init perf_event_init_all_cpus(void) | ||
7190 | { | ||
7191 | struct swevent_htable *swhash; | ||
7192 | int cpu; | ||
7193 | |||
7194 | for_each_possible_cpu(cpu) { | ||
7195 | swhash = &per_cpu(swevent_htable, cpu); | ||
7196 | mutex_init(&swhash->hlist_mutex); | ||
7197 | INIT_LIST_HEAD(&per_cpu(rotation_list, cpu)); | ||
7198 | } | ||
7199 | } | ||
7200 | |||
7201 | static void __cpuinit perf_event_init_cpu(int cpu) | ||
7202 | { | ||
7203 | struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); | ||
7204 | |||
7205 | mutex_lock(&swhash->hlist_mutex); | ||
7206 | if (swhash->hlist_refcount > 0) { | ||
7207 | struct swevent_hlist *hlist; | ||
7208 | |||
7209 | hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); | ||
7210 | WARN_ON(!hlist); | ||
7211 | rcu_assign_pointer(swhash->swevent_hlist, hlist); | ||
7212 | } | ||
7213 | mutex_unlock(&swhash->hlist_mutex); | ||
7214 | } | ||
7215 | |||
7216 | #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC | ||
7217 | static void perf_pmu_rotate_stop(struct pmu *pmu) | ||
7218 | { | ||
7219 | struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); | ||
7220 | |||
7221 | WARN_ON(!irqs_disabled()); | ||
7222 | |||
7223 | list_del_init(&cpuctx->rotation_list); | ||
7224 | } | ||
7225 | |||
7226 | static void __perf_event_exit_context(void *__info) | ||
7227 | { | ||
7228 | struct perf_event_context *ctx = __info; | ||
7229 | struct perf_event *event, *tmp; | ||
7230 | |||
7231 | perf_pmu_rotate_stop(ctx->pmu); | ||
7232 | |||
7233 | list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry) | ||
7234 | __perf_remove_from_context(event); | ||
7235 | list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry) | ||
7236 | __perf_remove_from_context(event); | ||
7237 | } | ||
7238 | |||
7239 | static void perf_event_exit_cpu_context(int cpu) | ||
7240 | { | ||
7241 | struct perf_event_context *ctx; | ||
7242 | struct pmu *pmu; | ||
7243 | int idx; | ||
7244 | |||
7245 | idx = srcu_read_lock(&pmus_srcu); | ||
7246 | list_for_each_entry_rcu(pmu, &pmus, entry) { | ||
7247 | ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; | ||
7248 | |||
7249 | mutex_lock(&ctx->mutex); | ||
7250 | smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); | ||
7251 | mutex_unlock(&ctx->mutex); | ||
7252 | } | ||
7253 | srcu_read_unlock(&pmus_srcu, idx); | ||
7254 | } | ||
7255 | |||
7256 | static void perf_event_exit_cpu(int cpu) | ||
7257 | { | ||
7258 | struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); | ||
7259 | |||
7260 | mutex_lock(&swhash->hlist_mutex); | ||
7261 | swevent_hlist_release(swhash); | ||
7262 | mutex_unlock(&swhash->hlist_mutex); | ||
7263 | |||
7264 | perf_event_exit_cpu_context(cpu); | ||
7265 | } | ||
7266 | #else | ||
7267 | static inline void perf_event_exit_cpu(int cpu) { } | ||
7268 | #endif | ||
7269 | |||
7270 | static int | ||
7271 | perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) | ||
7272 | { | ||
7273 | int cpu; | ||
7274 | |||
7275 | for_each_online_cpu(cpu) | ||
7276 | perf_event_exit_cpu(cpu); | ||
7277 | |||
7278 | return NOTIFY_OK; | ||
7279 | } | ||
7280 | |||
7281 | /* | ||
7282 | * Run the perf reboot notifier at the very last possible moment so that | ||
7283 | * the generic watchdog code runs as long as possible. | ||
7284 | */ | ||
7285 | static struct notifier_block perf_reboot_notifier = { | ||
7286 | .notifier_call = perf_reboot, | ||
7287 | .priority = INT_MIN, | ||
7288 | }; | ||
7289 | |||
7290 | static int __cpuinit | ||
7291 | perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) | ||
7292 | { | ||
7293 | unsigned int cpu = (long)hcpu; | ||
7294 | |||
7295 | switch (action & ~CPU_TASKS_FROZEN) { | ||
7296 | |||
7297 | case CPU_UP_PREPARE: | ||
7298 | case CPU_DOWN_FAILED: | ||
7299 | perf_event_init_cpu(cpu); | ||
7300 | break; | ||
7301 | |||
7302 | case CPU_UP_CANCELED: | ||
7303 | case CPU_DOWN_PREPARE: | ||
7304 | perf_event_exit_cpu(cpu); | ||
7305 | break; | ||
7306 | |||
7307 | default: | ||
7308 | break; | ||
7309 | } | ||
7310 | |||
7311 | return NOTIFY_OK; | ||
7312 | } | ||
7313 | |||
7314 | void __init perf_event_init(void) | ||
7315 | { | ||
7316 | int ret; | ||
7317 | |||
7318 | idr_init(&pmu_idr); | ||
7319 | |||
7320 | perf_event_init_all_cpus(); | ||
7321 | init_srcu_struct(&pmus_srcu); | ||
7322 | perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); | ||
7323 | perf_pmu_register(&perf_cpu_clock, NULL, -1); | ||
7324 | perf_pmu_register(&perf_task_clock, NULL, -1); | ||
7325 | perf_tp_register(); | ||
7326 | perf_cpu_notifier(perf_cpu_notify); | ||
7327 | register_reboot_notifier(&perf_reboot_notifier); | ||
7328 | |||
7329 | ret = init_hw_breakpoint(); | ||
7330 | WARN(ret, "hw_breakpoint initialization failed with: %d", ret); | ||
7331 | } | ||
7332 | |||
7333 | static int __init perf_event_sysfs_init(void) | ||
7334 | { | ||
7335 | struct pmu *pmu; | ||
7336 | int ret; | ||
7337 | |||
7338 | mutex_lock(&pmus_lock); | ||
7339 | |||
7340 | ret = bus_register(&pmu_bus); | ||
7341 | if (ret) | ||
7342 | goto unlock; | ||
7343 | |||
7344 | list_for_each_entry(pmu, &pmus, entry) { | ||
7345 | if (!pmu->name || pmu->type < 0) | ||
7346 | continue; | ||
7347 | |||
7348 | ret = pmu_dev_alloc(pmu); | ||
7349 | WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); | ||
7350 | } | ||
7351 | pmu_bus_running = 1; | ||
7352 | ret = 0; | ||
7353 | |||
7354 | unlock: | ||
7355 | mutex_unlock(&pmus_lock); | ||
7356 | |||
7357 | return ret; | ||
7358 | } | ||
7359 | device_initcall(perf_event_sysfs_init); | ||
7360 | |||
7361 | #ifdef CONFIG_CGROUP_PERF | ||
7362 | static struct cgroup_subsys_state *perf_cgroup_create( | ||
7363 | struct cgroup_subsys *ss, struct cgroup *cont) | ||
7364 | { | ||
7365 | struct perf_cgroup *jc; | ||
7366 | |||
7367 | jc = kzalloc(sizeof(*jc), GFP_KERNEL); | ||
7368 | if (!jc) | ||
7369 | return ERR_PTR(-ENOMEM); | ||
7370 | |||
7371 | jc->info = alloc_percpu(struct perf_cgroup_info); | ||
7372 | if (!jc->info) { | ||
7373 | kfree(jc); | ||
7374 | return ERR_PTR(-ENOMEM); | ||
7375 | } | ||
7376 | |||
7377 | return &jc->css; | ||
7378 | } | ||
7379 | |||
7380 | static void perf_cgroup_destroy(struct cgroup_subsys *ss, | ||
7381 | struct cgroup *cont) | ||
7382 | { | ||
7383 | struct perf_cgroup *jc; | ||
7384 | jc = container_of(cgroup_subsys_state(cont, perf_subsys_id), | ||
7385 | struct perf_cgroup, css); | ||
7386 | free_percpu(jc->info); | ||
7387 | kfree(jc); | ||
7388 | } | ||
7389 | |||
7390 | static int __perf_cgroup_move(void *info) | ||
7391 | { | ||
7392 | struct task_struct *task = info; | ||
7393 | perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); | ||
7394 | return 0; | ||
7395 | } | ||
7396 | |||
7397 | static void perf_cgroup_move(struct task_struct *task) | ||
7398 | { | ||
7399 | task_function_call(task, __perf_cgroup_move, task); | ||
7400 | } | ||
7401 | |||
7402 | static void perf_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | ||
7403 | struct cgroup *old_cgrp, struct task_struct *task, | ||
7404 | bool threadgroup) | ||
7405 | { | ||
7406 | perf_cgroup_move(task); | ||
7407 | if (threadgroup) { | ||
7408 | struct task_struct *c; | ||
7409 | rcu_read_lock(); | ||
7410 | list_for_each_entry_rcu(c, &task->thread_group, thread_group) { | ||
7411 | perf_cgroup_move(c); | ||
7412 | } | ||
7413 | rcu_read_unlock(); | ||
7414 | } | ||
7415 | } | ||
7416 | |||
7417 | static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp, | ||
7418 | struct cgroup *old_cgrp, struct task_struct *task) | ||
7419 | { | ||
7420 | /* | ||
7421 | * cgroup_exit() is called in the copy_process() failure path. | ||
7422 | * Ignore this case since the task hasn't ran yet, this avoids | ||
7423 | * trying to poke a half freed task state from generic code. | ||
7424 | */ | ||
7425 | if (!(task->flags & PF_EXITING)) | ||
7426 | return; | ||
7427 | |||
7428 | perf_cgroup_move(task); | ||
7429 | } | ||
7430 | |||
7431 | struct cgroup_subsys perf_subsys = { | ||
7432 | .name = "perf_event", | ||
7433 | .subsys_id = perf_subsys_id, | ||
7434 | .create = perf_cgroup_create, | ||
7435 | .destroy = perf_cgroup_destroy, | ||
7436 | .exit = perf_cgroup_exit, | ||
7437 | .attach = perf_cgroup_attach, | ||
7438 | }; | ||
7439 | #endif /* CONFIG_CGROUP_PERF */ | ||
diff --git a/kernel/events/hw_breakpoint.c b/kernel/events/hw_breakpoint.c new file mode 100644 index 000000000000..086adf25a55e --- /dev/null +++ b/kernel/events/hw_breakpoint.c | |||
@@ -0,0 +1,659 @@ | |||
1 | /* | ||
2 | * This program is free software; you can redistribute it and/or modify | ||
3 | * it under the terms of the GNU General Public License as published by | ||
4 | * the Free Software Foundation; either version 2 of the License, or | ||
5 | * (at your option) any later version. | ||
6 | * | ||
7 | * This program is distributed in the hope that it will be useful, | ||
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
10 | * GNU General Public License for more details. | ||
11 | * | ||
12 | * You should have received a copy of the GNU General Public License | ||
13 | * along with this program; if not, write to the Free Software | ||
14 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
15 | * | ||
16 | * Copyright (C) 2007 Alan Stern | ||
17 | * Copyright (C) IBM Corporation, 2009 | ||
18 | * Copyright (C) 2009, Frederic Weisbecker <fweisbec@gmail.com> | ||
19 | * | ||
20 | * Thanks to Ingo Molnar for his many suggestions. | ||
21 | * | ||
22 | * Authors: Alan Stern <stern@rowland.harvard.edu> | ||
23 | * K.Prasad <prasad@linux.vnet.ibm.com> | ||
24 | * Frederic Weisbecker <fweisbec@gmail.com> | ||
25 | */ | ||
26 | |||
27 | /* | ||
28 | * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility, | ||
29 | * using the CPU's debug registers. | ||
30 | * This file contains the arch-independent routines. | ||
31 | */ | ||
32 | |||
33 | #include <linux/irqflags.h> | ||
34 | #include <linux/kallsyms.h> | ||
35 | #include <linux/notifier.h> | ||
36 | #include <linux/kprobes.h> | ||
37 | #include <linux/kdebug.h> | ||
38 | #include <linux/kernel.h> | ||
39 | #include <linux/module.h> | ||
40 | #include <linux/percpu.h> | ||
41 | #include <linux/sched.h> | ||
42 | #include <linux/init.h> | ||
43 | #include <linux/slab.h> | ||
44 | #include <linux/list.h> | ||
45 | #include <linux/cpu.h> | ||
46 | #include <linux/smp.h> | ||
47 | |||
48 | #include <linux/hw_breakpoint.h> | ||
49 | |||
50 | |||
51 | /* | ||
52 | * Constraints data | ||
53 | */ | ||
54 | |||
55 | /* Number of pinned cpu breakpoints in a cpu */ | ||
56 | static DEFINE_PER_CPU(unsigned int, nr_cpu_bp_pinned[TYPE_MAX]); | ||
57 | |||
58 | /* Number of pinned task breakpoints in a cpu */ | ||
59 | static DEFINE_PER_CPU(unsigned int *, nr_task_bp_pinned[TYPE_MAX]); | ||
60 | |||
61 | /* Number of non-pinned cpu/task breakpoints in a cpu */ | ||
62 | static DEFINE_PER_CPU(unsigned int, nr_bp_flexible[TYPE_MAX]); | ||
63 | |||
64 | static int nr_slots[TYPE_MAX]; | ||
65 | |||
66 | /* Keep track of the breakpoints attached to tasks */ | ||
67 | static LIST_HEAD(bp_task_head); | ||
68 | |||
69 | static int constraints_initialized; | ||
70 | |||
71 | /* Gather the number of total pinned and un-pinned bp in a cpuset */ | ||
72 | struct bp_busy_slots { | ||
73 | unsigned int pinned; | ||
74 | unsigned int flexible; | ||
75 | }; | ||
76 | |||
77 | /* Serialize accesses to the above constraints */ | ||
78 | static DEFINE_MUTEX(nr_bp_mutex); | ||
79 | |||
80 | __weak int hw_breakpoint_weight(struct perf_event *bp) | ||
81 | { | ||
82 | return 1; | ||
83 | } | ||
84 | |||
85 | static inline enum bp_type_idx find_slot_idx(struct perf_event *bp) | ||
86 | { | ||
87 | if (bp->attr.bp_type & HW_BREAKPOINT_RW) | ||
88 | return TYPE_DATA; | ||
89 | |||
90 | return TYPE_INST; | ||
91 | } | ||
92 | |||
93 | /* | ||
94 | * Report the maximum number of pinned breakpoints a task | ||
95 | * have in this cpu | ||
96 | */ | ||
97 | static unsigned int max_task_bp_pinned(int cpu, enum bp_type_idx type) | ||
98 | { | ||
99 | int i; | ||
100 | unsigned int *tsk_pinned = per_cpu(nr_task_bp_pinned[type], cpu); | ||
101 | |||
102 | for (i = nr_slots[type] - 1; i >= 0; i--) { | ||
103 | if (tsk_pinned[i] > 0) | ||
104 | return i + 1; | ||
105 | } | ||
106 | |||
107 | return 0; | ||
108 | } | ||
109 | |||
110 | /* | ||
111 | * Count the number of breakpoints of the same type and same task. | ||
112 | * The given event must be not on the list. | ||
113 | */ | ||
114 | static int task_bp_pinned(struct perf_event *bp, enum bp_type_idx type) | ||
115 | { | ||
116 | struct task_struct *tsk = bp->hw.bp_target; | ||
117 | struct perf_event *iter; | ||
118 | int count = 0; | ||
119 | |||
120 | list_for_each_entry(iter, &bp_task_head, hw.bp_list) { | ||
121 | if (iter->hw.bp_target == tsk && find_slot_idx(iter) == type) | ||
122 | count += hw_breakpoint_weight(iter); | ||
123 | } | ||
124 | |||
125 | return count; | ||
126 | } | ||
127 | |||
128 | /* | ||
129 | * Report the number of pinned/un-pinned breakpoints we have in | ||
130 | * a given cpu (cpu > -1) or in all of them (cpu = -1). | ||
131 | */ | ||
132 | static void | ||
133 | fetch_bp_busy_slots(struct bp_busy_slots *slots, struct perf_event *bp, | ||
134 | enum bp_type_idx type) | ||
135 | { | ||
136 | int cpu = bp->cpu; | ||
137 | struct task_struct *tsk = bp->hw.bp_target; | ||
138 | |||
139 | if (cpu >= 0) { | ||
140 | slots->pinned = per_cpu(nr_cpu_bp_pinned[type], cpu); | ||
141 | if (!tsk) | ||
142 | slots->pinned += max_task_bp_pinned(cpu, type); | ||
143 | else | ||
144 | slots->pinned += task_bp_pinned(bp, type); | ||
145 | slots->flexible = per_cpu(nr_bp_flexible[type], cpu); | ||
146 | |||
147 | return; | ||
148 | } | ||
149 | |||
150 | for_each_online_cpu(cpu) { | ||
151 | unsigned int nr; | ||
152 | |||
153 | nr = per_cpu(nr_cpu_bp_pinned[type], cpu); | ||
154 | if (!tsk) | ||
155 | nr += max_task_bp_pinned(cpu, type); | ||
156 | else | ||
157 | nr += task_bp_pinned(bp, type); | ||
158 | |||
159 | if (nr > slots->pinned) | ||
160 | slots->pinned = nr; | ||
161 | |||
162 | nr = per_cpu(nr_bp_flexible[type], cpu); | ||
163 | |||
164 | if (nr > slots->flexible) | ||
165 | slots->flexible = nr; | ||
166 | } | ||
167 | } | ||
168 | |||
169 | /* | ||
170 | * For now, continue to consider flexible as pinned, until we can | ||
171 | * ensure no flexible event can ever be scheduled before a pinned event | ||
172 | * in a same cpu. | ||
173 | */ | ||
174 | static void | ||
175 | fetch_this_slot(struct bp_busy_slots *slots, int weight) | ||
176 | { | ||
177 | slots->pinned += weight; | ||
178 | } | ||
179 | |||
180 | /* | ||
181 | * Add a pinned breakpoint for the given task in our constraint table | ||
182 | */ | ||
183 | static void toggle_bp_task_slot(struct perf_event *bp, int cpu, bool enable, | ||
184 | enum bp_type_idx type, int weight) | ||
185 | { | ||
186 | unsigned int *tsk_pinned; | ||
187 | int old_count = 0; | ||
188 | int old_idx = 0; | ||
189 | int idx = 0; | ||
190 | |||
191 | old_count = task_bp_pinned(bp, type); | ||
192 | old_idx = old_count - 1; | ||
193 | idx = old_idx + weight; | ||
194 | |||
195 | /* tsk_pinned[n] is the number of tasks having n breakpoints */ | ||
196 | tsk_pinned = per_cpu(nr_task_bp_pinned[type], cpu); | ||
197 | if (enable) { | ||
198 | tsk_pinned[idx]++; | ||
199 | if (old_count > 0) | ||
200 | tsk_pinned[old_idx]--; | ||
201 | } else { | ||
202 | tsk_pinned[idx]--; | ||
203 | if (old_count > 0) | ||
204 | tsk_pinned[old_idx]++; | ||
205 | } | ||
206 | } | ||
207 | |||
208 | /* | ||
209 | * Add/remove the given breakpoint in our constraint table | ||
210 | */ | ||
211 | static void | ||
212 | toggle_bp_slot(struct perf_event *bp, bool enable, enum bp_type_idx type, | ||
213 | int weight) | ||
214 | { | ||
215 | int cpu = bp->cpu; | ||
216 | struct task_struct *tsk = bp->hw.bp_target; | ||
217 | |||
218 | /* Pinned counter cpu profiling */ | ||
219 | if (!tsk) { | ||
220 | |||
221 | if (enable) | ||
222 | per_cpu(nr_cpu_bp_pinned[type], bp->cpu) += weight; | ||
223 | else | ||
224 | per_cpu(nr_cpu_bp_pinned[type], bp->cpu) -= weight; | ||
225 | return; | ||
226 | } | ||
227 | |||
228 | /* Pinned counter task profiling */ | ||
229 | |||
230 | if (!enable) | ||
231 | list_del(&bp->hw.bp_list); | ||
232 | |||
233 | if (cpu >= 0) { | ||
234 | toggle_bp_task_slot(bp, cpu, enable, type, weight); | ||
235 | } else { | ||
236 | for_each_online_cpu(cpu) | ||
237 | toggle_bp_task_slot(bp, cpu, enable, type, weight); | ||
238 | } | ||
239 | |||
240 | if (enable) | ||
241 | list_add_tail(&bp->hw.bp_list, &bp_task_head); | ||
242 | } | ||
243 | |||
244 | /* | ||
245 | * Function to perform processor-specific cleanup during unregistration | ||
246 | */ | ||
247 | __weak void arch_unregister_hw_breakpoint(struct perf_event *bp) | ||
248 | { | ||
249 | /* | ||
250 | * A weak stub function here for those archs that don't define | ||
251 | * it inside arch/.../kernel/hw_breakpoint.c | ||
252 | */ | ||
253 | } | ||
254 | |||
255 | /* | ||
256 | * Contraints to check before allowing this new breakpoint counter: | ||
257 | * | ||
258 | * == Non-pinned counter == (Considered as pinned for now) | ||
259 | * | ||
260 | * - If attached to a single cpu, check: | ||
261 | * | ||
262 | * (per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu) | ||
263 | * + max(per_cpu(nr_task_bp_pinned, cpu)))) < HBP_NUM | ||
264 | * | ||
265 | * -> If there are already non-pinned counters in this cpu, it means | ||
266 | * there is already a free slot for them. | ||
267 | * Otherwise, we check that the maximum number of per task | ||
268 | * breakpoints (for this cpu) plus the number of per cpu breakpoint | ||
269 | * (for this cpu) doesn't cover every registers. | ||
270 | * | ||
271 | * - If attached to every cpus, check: | ||
272 | * | ||
273 | * (per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *)) | ||
274 | * + max(per_cpu(nr_task_bp_pinned, *)))) < HBP_NUM | ||
275 | * | ||
276 | * -> This is roughly the same, except we check the number of per cpu | ||
277 | * bp for every cpu and we keep the max one. Same for the per tasks | ||
278 | * breakpoints. | ||
279 | * | ||
280 | * | ||
281 | * == Pinned counter == | ||
282 | * | ||
283 | * - If attached to a single cpu, check: | ||
284 | * | ||
285 | * ((per_cpu(nr_bp_flexible, cpu) > 1) + per_cpu(nr_cpu_bp_pinned, cpu) | ||
286 | * + max(per_cpu(nr_task_bp_pinned, cpu))) < HBP_NUM | ||
287 | * | ||
288 | * -> Same checks as before. But now the nr_bp_flexible, if any, must keep | ||
289 | * one register at least (or they will never be fed). | ||
290 | * | ||
291 | * - If attached to every cpus, check: | ||
292 | * | ||
293 | * ((per_cpu(nr_bp_flexible, *) > 1) + max(per_cpu(nr_cpu_bp_pinned, *)) | ||
294 | * + max(per_cpu(nr_task_bp_pinned, *))) < HBP_NUM | ||
295 | */ | ||
296 | static int __reserve_bp_slot(struct perf_event *bp) | ||
297 | { | ||
298 | struct bp_busy_slots slots = {0}; | ||
299 | enum bp_type_idx type; | ||
300 | int weight; | ||
301 | |||
302 | /* We couldn't initialize breakpoint constraints on boot */ | ||
303 | if (!constraints_initialized) | ||
304 | return -ENOMEM; | ||
305 | |||
306 | /* Basic checks */ | ||
307 | if (bp->attr.bp_type == HW_BREAKPOINT_EMPTY || | ||
308 | bp->attr.bp_type == HW_BREAKPOINT_INVALID) | ||
309 | return -EINVAL; | ||
310 | |||
311 | type = find_slot_idx(bp); | ||
312 | weight = hw_breakpoint_weight(bp); | ||
313 | |||
314 | fetch_bp_busy_slots(&slots, bp, type); | ||
315 | /* | ||
316 | * Simulate the addition of this breakpoint to the constraints | ||
317 | * and see the result. | ||
318 | */ | ||
319 | fetch_this_slot(&slots, weight); | ||
320 | |||
321 | /* Flexible counters need to keep at least one slot */ | ||
322 | if (slots.pinned + (!!slots.flexible) > nr_slots[type]) | ||
323 | return -ENOSPC; | ||
324 | |||
325 | toggle_bp_slot(bp, true, type, weight); | ||
326 | |||
327 | return 0; | ||
328 | } | ||
329 | |||
330 | int reserve_bp_slot(struct perf_event *bp) | ||
331 | { | ||
332 | int ret; | ||
333 | |||
334 | mutex_lock(&nr_bp_mutex); | ||
335 | |||
336 | ret = __reserve_bp_slot(bp); | ||
337 | |||
338 | mutex_unlock(&nr_bp_mutex); | ||
339 | |||
340 | return ret; | ||
341 | } | ||
342 | |||
343 | static void __release_bp_slot(struct perf_event *bp) | ||
344 | { | ||
345 | enum bp_type_idx type; | ||
346 | int weight; | ||
347 | |||
348 | type = find_slot_idx(bp); | ||
349 | weight = hw_breakpoint_weight(bp); | ||
350 | toggle_bp_slot(bp, false, type, weight); | ||
351 | } | ||
352 | |||
353 | void release_bp_slot(struct perf_event *bp) | ||
354 | { | ||
355 | mutex_lock(&nr_bp_mutex); | ||
356 | |||
357 | arch_unregister_hw_breakpoint(bp); | ||
358 | __release_bp_slot(bp); | ||
359 | |||
360 | mutex_unlock(&nr_bp_mutex); | ||
361 | } | ||
362 | |||
363 | /* | ||
364 | * Allow the kernel debugger to reserve breakpoint slots without | ||
365 | * taking a lock using the dbg_* variant of for the reserve and | ||
366 | * release breakpoint slots. | ||
367 | */ | ||
368 | int dbg_reserve_bp_slot(struct perf_event *bp) | ||
369 | { | ||
370 | if (mutex_is_locked(&nr_bp_mutex)) | ||
371 | return -1; | ||
372 | |||
373 | return __reserve_bp_slot(bp); | ||
374 | } | ||
375 | |||
376 | int dbg_release_bp_slot(struct perf_event *bp) | ||
377 | { | ||
378 | if (mutex_is_locked(&nr_bp_mutex)) | ||
379 | return -1; | ||
380 | |||
381 | __release_bp_slot(bp); | ||
382 | |||
383 | return 0; | ||
384 | } | ||
385 | |||
386 | static int validate_hw_breakpoint(struct perf_event *bp) | ||
387 | { | ||
388 | int ret; | ||
389 | |||
390 | ret = arch_validate_hwbkpt_settings(bp); | ||
391 | if (ret) | ||
392 | return ret; | ||
393 | |||
394 | if (arch_check_bp_in_kernelspace(bp)) { | ||
395 | if (bp->attr.exclude_kernel) | ||
396 | return -EINVAL; | ||
397 | /* | ||
398 | * Don't let unprivileged users set a breakpoint in the trap | ||
399 | * path to avoid trap recursion attacks. | ||
400 | */ | ||
401 | if (!capable(CAP_SYS_ADMIN)) | ||
402 | return -EPERM; | ||
403 | } | ||
404 | |||
405 | return 0; | ||
406 | } | ||
407 | |||
408 | int register_perf_hw_breakpoint(struct perf_event *bp) | ||
409 | { | ||
410 | int ret; | ||
411 | |||
412 | ret = reserve_bp_slot(bp); | ||
413 | if (ret) | ||
414 | return ret; | ||
415 | |||
416 | ret = validate_hw_breakpoint(bp); | ||
417 | |||
418 | /* if arch_validate_hwbkpt_settings() fails then release bp slot */ | ||
419 | if (ret) | ||
420 | release_bp_slot(bp); | ||
421 | |||
422 | return ret; | ||
423 | } | ||
424 | |||
425 | /** | ||
426 | * register_user_hw_breakpoint - register a hardware breakpoint for user space | ||
427 | * @attr: breakpoint attributes | ||
428 | * @triggered: callback to trigger when we hit the breakpoint | ||
429 | * @tsk: pointer to 'task_struct' of the process to which the address belongs | ||
430 | */ | ||
431 | struct perf_event * | ||
432 | register_user_hw_breakpoint(struct perf_event_attr *attr, | ||
433 | perf_overflow_handler_t triggered, | ||
434 | struct task_struct *tsk) | ||
435 | { | ||
436 | return perf_event_create_kernel_counter(attr, -1, tsk, triggered); | ||
437 | } | ||
438 | EXPORT_SYMBOL_GPL(register_user_hw_breakpoint); | ||
439 | |||
440 | /** | ||
441 | * modify_user_hw_breakpoint - modify a user-space hardware breakpoint | ||
442 | * @bp: the breakpoint structure to modify | ||
443 | * @attr: new breakpoint attributes | ||
444 | * @triggered: callback to trigger when we hit the breakpoint | ||
445 | * @tsk: pointer to 'task_struct' of the process to which the address belongs | ||
446 | */ | ||
447 | int modify_user_hw_breakpoint(struct perf_event *bp, struct perf_event_attr *attr) | ||
448 | { | ||
449 | u64 old_addr = bp->attr.bp_addr; | ||
450 | u64 old_len = bp->attr.bp_len; | ||
451 | int old_type = bp->attr.bp_type; | ||
452 | int err = 0; | ||
453 | |||
454 | perf_event_disable(bp); | ||
455 | |||
456 | bp->attr.bp_addr = attr->bp_addr; | ||
457 | bp->attr.bp_type = attr->bp_type; | ||
458 | bp->attr.bp_len = attr->bp_len; | ||
459 | |||
460 | if (attr->disabled) | ||
461 | goto end; | ||
462 | |||
463 | err = validate_hw_breakpoint(bp); | ||
464 | if (!err) | ||
465 | perf_event_enable(bp); | ||
466 | |||
467 | if (err) { | ||
468 | bp->attr.bp_addr = old_addr; | ||
469 | bp->attr.bp_type = old_type; | ||
470 | bp->attr.bp_len = old_len; | ||
471 | if (!bp->attr.disabled) | ||
472 | perf_event_enable(bp); | ||
473 | |||
474 | return err; | ||
475 | } | ||
476 | |||
477 | end: | ||
478 | bp->attr.disabled = attr->disabled; | ||
479 | |||
480 | return 0; | ||
481 | } | ||
482 | EXPORT_SYMBOL_GPL(modify_user_hw_breakpoint); | ||
483 | |||
484 | /** | ||
485 | * unregister_hw_breakpoint - unregister a user-space hardware breakpoint | ||
486 | * @bp: the breakpoint structure to unregister | ||
487 | */ | ||
488 | void unregister_hw_breakpoint(struct perf_event *bp) | ||
489 | { | ||
490 | if (!bp) | ||
491 | return; | ||
492 | perf_event_release_kernel(bp); | ||
493 | } | ||
494 | EXPORT_SYMBOL_GPL(unregister_hw_breakpoint); | ||
495 | |||
496 | /** | ||
497 | * register_wide_hw_breakpoint - register a wide breakpoint in the kernel | ||
498 | * @attr: breakpoint attributes | ||
499 | * @triggered: callback to trigger when we hit the breakpoint | ||
500 | * | ||
501 | * @return a set of per_cpu pointers to perf events | ||
502 | */ | ||
503 | struct perf_event * __percpu * | ||
504 | register_wide_hw_breakpoint(struct perf_event_attr *attr, | ||
505 | perf_overflow_handler_t triggered) | ||
506 | { | ||
507 | struct perf_event * __percpu *cpu_events, **pevent, *bp; | ||
508 | long err; | ||
509 | int cpu; | ||
510 | |||
511 | cpu_events = alloc_percpu(typeof(*cpu_events)); | ||
512 | if (!cpu_events) | ||
513 | return (void __percpu __force *)ERR_PTR(-ENOMEM); | ||
514 | |||
515 | get_online_cpus(); | ||
516 | for_each_online_cpu(cpu) { | ||
517 | pevent = per_cpu_ptr(cpu_events, cpu); | ||
518 | bp = perf_event_create_kernel_counter(attr, cpu, NULL, triggered); | ||
519 | |||
520 | *pevent = bp; | ||
521 | |||
522 | if (IS_ERR(bp)) { | ||
523 | err = PTR_ERR(bp); | ||
524 | goto fail; | ||
525 | } | ||
526 | } | ||
527 | put_online_cpus(); | ||
528 | |||
529 | return cpu_events; | ||
530 | |||
531 | fail: | ||
532 | for_each_online_cpu(cpu) { | ||
533 | pevent = per_cpu_ptr(cpu_events, cpu); | ||
534 | if (IS_ERR(*pevent)) | ||
535 | break; | ||
536 | unregister_hw_breakpoint(*pevent); | ||
537 | } | ||
538 | put_online_cpus(); | ||
539 | |||
540 | free_percpu(cpu_events); | ||
541 | return (void __percpu __force *)ERR_PTR(err); | ||
542 | } | ||
543 | EXPORT_SYMBOL_GPL(register_wide_hw_breakpoint); | ||
544 | |||
545 | /** | ||
546 | * unregister_wide_hw_breakpoint - unregister a wide breakpoint in the kernel | ||
547 | * @cpu_events: the per cpu set of events to unregister | ||
548 | */ | ||
549 | void unregister_wide_hw_breakpoint(struct perf_event * __percpu *cpu_events) | ||
550 | { | ||
551 | int cpu; | ||
552 | struct perf_event **pevent; | ||
553 | |||
554 | for_each_possible_cpu(cpu) { | ||
555 | pevent = per_cpu_ptr(cpu_events, cpu); | ||
556 | unregister_hw_breakpoint(*pevent); | ||
557 | } | ||
558 | free_percpu(cpu_events); | ||
559 | } | ||
560 | EXPORT_SYMBOL_GPL(unregister_wide_hw_breakpoint); | ||
561 | |||
562 | static struct notifier_block hw_breakpoint_exceptions_nb = { | ||
563 | .notifier_call = hw_breakpoint_exceptions_notify, | ||
564 | /* we need to be notified first */ | ||
565 | .priority = 0x7fffffff | ||
566 | }; | ||
567 | |||
568 | static void bp_perf_event_destroy(struct perf_event *event) | ||
569 | { | ||
570 | release_bp_slot(event); | ||
571 | } | ||
572 | |||
573 | static int hw_breakpoint_event_init(struct perf_event *bp) | ||
574 | { | ||
575 | int err; | ||
576 | |||
577 | if (bp->attr.type != PERF_TYPE_BREAKPOINT) | ||
578 | return -ENOENT; | ||
579 | |||
580 | err = register_perf_hw_breakpoint(bp); | ||
581 | if (err) | ||
582 | return err; | ||
583 | |||
584 | bp->destroy = bp_perf_event_destroy; | ||
585 | |||
586 | return 0; | ||
587 | } | ||
588 | |||
589 | static int hw_breakpoint_add(struct perf_event *bp, int flags) | ||
590 | { | ||
591 | if (!(flags & PERF_EF_START)) | ||
592 | bp->hw.state = PERF_HES_STOPPED; | ||
593 | |||
594 | return arch_install_hw_breakpoint(bp); | ||
595 | } | ||
596 | |||
597 | static void hw_breakpoint_del(struct perf_event *bp, int flags) | ||
598 | { | ||
599 | arch_uninstall_hw_breakpoint(bp); | ||
600 | } | ||
601 | |||
602 | static void hw_breakpoint_start(struct perf_event *bp, int flags) | ||
603 | { | ||
604 | bp->hw.state = 0; | ||
605 | } | ||
606 | |||
607 | static void hw_breakpoint_stop(struct perf_event *bp, int flags) | ||
608 | { | ||
609 | bp->hw.state = PERF_HES_STOPPED; | ||
610 | } | ||
611 | |||
612 | static struct pmu perf_breakpoint = { | ||
613 | .task_ctx_nr = perf_sw_context, /* could eventually get its own */ | ||
614 | |||
615 | .event_init = hw_breakpoint_event_init, | ||
616 | .add = hw_breakpoint_add, | ||
617 | .del = hw_breakpoint_del, | ||
618 | .start = hw_breakpoint_start, | ||
619 | .stop = hw_breakpoint_stop, | ||
620 | .read = hw_breakpoint_pmu_read, | ||
621 | }; | ||
622 | |||
623 | int __init init_hw_breakpoint(void) | ||
624 | { | ||
625 | unsigned int **task_bp_pinned; | ||
626 | int cpu, err_cpu; | ||
627 | int i; | ||
628 | |||
629 | for (i = 0; i < TYPE_MAX; i++) | ||
630 | nr_slots[i] = hw_breakpoint_slots(i); | ||
631 | |||
632 | for_each_possible_cpu(cpu) { | ||
633 | for (i = 0; i < TYPE_MAX; i++) { | ||
634 | task_bp_pinned = &per_cpu(nr_task_bp_pinned[i], cpu); | ||
635 | *task_bp_pinned = kzalloc(sizeof(int) * nr_slots[i], | ||
636 | GFP_KERNEL); | ||
637 | if (!*task_bp_pinned) | ||
638 | goto err_alloc; | ||
639 | } | ||
640 | } | ||
641 | |||
642 | constraints_initialized = 1; | ||
643 | |||
644 | perf_pmu_register(&perf_breakpoint, "breakpoint", PERF_TYPE_BREAKPOINT); | ||
645 | |||
646 | return register_die_notifier(&hw_breakpoint_exceptions_nb); | ||
647 | |||
648 | err_alloc: | ||
649 | for_each_possible_cpu(err_cpu) { | ||
650 | if (err_cpu == cpu) | ||
651 | break; | ||
652 | for (i = 0; i < TYPE_MAX; i++) | ||
653 | kfree(per_cpu(nr_task_bp_pinned[i], cpu)); | ||
654 | } | ||
655 | |||
656 | return -ENOMEM; | ||
657 | } | ||
658 | |||
659 | |||