aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/perf_counter.h
diff options
context:
space:
mode:
authorJames Bottomley <James.Bottomley@HansenPartnership.com>2009-06-12 11:02:03 -0400
committerJames Bottomley <James.Bottomley@HansenPartnership.com>2009-06-12 11:02:03 -0400
commit82681a318f9f028ea64e61f24bbd9ac535531921 (patch)
tree529b6a5b4fd040fb54b7672b1a224ebd47445876 /include/linux/perf_counter.h
parent3860c97bd60a4525bb62eb90e3e7d2f02662ac59 (diff)
parent8ebf975608aaebd7feb33d77f07ba21a6380e086 (diff)
[SCSI] Merge branch 'linus'
Conflicts: drivers/message/fusion/mptsas.c fixed up conflict between req->data_len accessors and mptsas driver updates. Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Diffstat (limited to 'include/linux/perf_counter.h')
-rw-r--r--include/linux/perf_counter.h697
1 files changed, 697 insertions, 0 deletions
diff --git a/include/linux/perf_counter.h b/include/linux/perf_counter.h
new file mode 100644
index 000000000000..6e133954e2e4
--- /dev/null
+++ b/include/linux/perf_counter.h
@@ -0,0 +1,697 @@
1/*
2 * Performance counters:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14#ifndef _LINUX_PERF_COUNTER_H
15#define _LINUX_PERF_COUNTER_H
16
17#include <linux/types.h>
18#include <linux/ioctl.h>
19#include <asm/byteorder.h>
20
21/*
22 * User-space ABI bits:
23 */
24
25/*
26 * attr.type
27 */
28enum perf_type_id {
29 PERF_TYPE_HARDWARE = 0,
30 PERF_TYPE_SOFTWARE = 1,
31 PERF_TYPE_TRACEPOINT = 2,
32 PERF_TYPE_HW_CACHE = 3,
33 PERF_TYPE_RAW = 4,
34
35 PERF_TYPE_MAX, /* non-ABI */
36};
37
38/*
39 * Generalized performance counter event types, used by the
40 * attr.event_id parameter of the sys_perf_counter_open()
41 * syscall:
42 */
43enum perf_hw_id {
44 /*
45 * Common hardware events, generalized by the kernel:
46 */
47 PERF_COUNT_HW_CPU_CYCLES = 0,
48 PERF_COUNT_HW_INSTRUCTIONS = 1,
49 PERF_COUNT_HW_CACHE_REFERENCES = 2,
50 PERF_COUNT_HW_CACHE_MISSES = 3,
51 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
52 PERF_COUNT_HW_BRANCH_MISSES = 5,
53 PERF_COUNT_HW_BUS_CYCLES = 6,
54
55 PERF_COUNT_HW_MAX, /* non-ABI */
56};
57
58/*
59 * Generalized hardware cache counters:
60 *
61 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x
62 * { read, write, prefetch } x
63 * { accesses, misses }
64 */
65enum perf_hw_cache_id {
66 PERF_COUNT_HW_CACHE_L1D = 0,
67 PERF_COUNT_HW_CACHE_L1I = 1,
68 PERF_COUNT_HW_CACHE_LL = 2,
69 PERF_COUNT_HW_CACHE_DTLB = 3,
70 PERF_COUNT_HW_CACHE_ITLB = 4,
71 PERF_COUNT_HW_CACHE_BPU = 5,
72
73 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
74};
75
76enum perf_hw_cache_op_id {
77 PERF_COUNT_HW_CACHE_OP_READ = 0,
78 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
79 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
80
81 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
82};
83
84enum perf_hw_cache_op_result_id {
85 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
86 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
87
88 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
89};
90
91/*
92 * Special "software" counters provided by the kernel, even if the hardware
93 * does not support performance counters. These counters measure various
94 * physical and sw events of the kernel (and allow the profiling of them as
95 * well):
96 */
97enum perf_sw_ids {
98 PERF_COUNT_SW_CPU_CLOCK = 0,
99 PERF_COUNT_SW_TASK_CLOCK = 1,
100 PERF_COUNT_SW_PAGE_FAULTS = 2,
101 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
102 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
103 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
104 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
105
106 PERF_COUNT_SW_MAX, /* non-ABI */
107};
108
109/*
110 * Bits that can be set in attr.sample_type to request information
111 * in the overflow packets.
112 */
113enum perf_counter_sample_format {
114 PERF_SAMPLE_IP = 1U << 0,
115 PERF_SAMPLE_TID = 1U << 1,
116 PERF_SAMPLE_TIME = 1U << 2,
117 PERF_SAMPLE_ADDR = 1U << 3,
118 PERF_SAMPLE_GROUP = 1U << 4,
119 PERF_SAMPLE_CALLCHAIN = 1U << 5,
120 PERF_SAMPLE_ID = 1U << 6,
121 PERF_SAMPLE_CPU = 1U << 7,
122 PERF_SAMPLE_PERIOD = 1U << 8,
123};
124
125/*
126 * Bits that can be set in attr.read_format to request that
127 * reads on the counter should return the indicated quantities,
128 * in increasing order of bit value, after the counter value.
129 */
130enum perf_counter_read_format {
131 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
132 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
133 PERF_FORMAT_ID = 1U << 2,
134};
135
136/*
137 * Hardware event to monitor via a performance monitoring counter:
138 */
139struct perf_counter_attr {
140 /*
141 * Major type: hardware/software/tracepoint/etc.
142 */
143 __u32 type;
144 __u32 __reserved_1;
145
146 /*
147 * Type specific configuration information.
148 */
149 __u64 config;
150
151 union {
152 __u64 sample_period;
153 __u64 sample_freq;
154 };
155
156 __u64 sample_type;
157 __u64 read_format;
158
159 __u64 disabled : 1, /* off by default */
160 inherit : 1, /* children inherit it */
161 pinned : 1, /* must always be on PMU */
162 exclusive : 1, /* only group on PMU */
163 exclude_user : 1, /* don't count user */
164 exclude_kernel : 1, /* ditto kernel */
165 exclude_hv : 1, /* ditto hypervisor */
166 exclude_idle : 1, /* don't count when idle */
167 mmap : 1, /* include mmap data */
168 comm : 1, /* include comm data */
169 freq : 1, /* use freq, not period */
170
171 __reserved_2 : 53;
172
173 __u32 wakeup_events; /* wakeup every n events */
174 __u32 __reserved_3;
175
176 __u64 __reserved_4;
177};
178
179/*
180 * Ioctls that can be done on a perf counter fd:
181 */
182#define PERF_COUNTER_IOC_ENABLE _IO ('$', 0)
183#define PERF_COUNTER_IOC_DISABLE _IO ('$', 1)
184#define PERF_COUNTER_IOC_REFRESH _IO ('$', 2)
185#define PERF_COUNTER_IOC_RESET _IO ('$', 3)
186#define PERF_COUNTER_IOC_PERIOD _IOW('$', 4, u64)
187
188enum perf_counter_ioc_flags {
189 PERF_IOC_FLAG_GROUP = 1U << 0,
190};
191
192/*
193 * Structure of the page that can be mapped via mmap
194 */
195struct perf_counter_mmap_page {
196 __u32 version; /* version number of this structure */
197 __u32 compat_version; /* lowest version this is compat with */
198
199 /*
200 * Bits needed to read the hw counters in user-space.
201 *
202 * u32 seq;
203 * s64 count;
204 *
205 * do {
206 * seq = pc->lock;
207 *
208 * barrier()
209 * if (pc->index) {
210 * count = pmc_read(pc->index - 1);
211 * count += pc->offset;
212 * } else
213 * goto regular_read;
214 *
215 * barrier();
216 * } while (pc->lock != seq);
217 *
218 * NOTE: for obvious reason this only works on self-monitoring
219 * processes.
220 */
221 __u32 lock; /* seqlock for synchronization */
222 __u32 index; /* hardware counter identifier */
223 __s64 offset; /* add to hardware counter value */
224
225 /*
226 * Control data for the mmap() data buffer.
227 *
228 * User-space reading this value should issue an rmb(), on SMP capable
229 * platforms, after reading this value -- see perf_counter_wakeup().
230 */
231 __u64 data_head; /* head in the data section */
232};
233
234#define PERF_EVENT_MISC_CPUMODE_MASK (3 << 0)
235#define PERF_EVENT_MISC_CPUMODE_UNKNOWN (0 << 0)
236#define PERF_EVENT_MISC_KERNEL (1 << 0)
237#define PERF_EVENT_MISC_USER (2 << 0)
238#define PERF_EVENT_MISC_HYPERVISOR (3 << 0)
239#define PERF_EVENT_MISC_OVERFLOW (1 << 2)
240
241struct perf_event_header {
242 __u32 type;
243 __u16 misc;
244 __u16 size;
245};
246
247enum perf_event_type {
248
249 /*
250 * The MMAP events record the PROT_EXEC mappings so that we can
251 * correlate userspace IPs to code. They have the following structure:
252 *
253 * struct {
254 * struct perf_event_header header;
255 *
256 * u32 pid, tid;
257 * u64 addr;
258 * u64 len;
259 * u64 pgoff;
260 * char filename[];
261 * };
262 */
263 PERF_EVENT_MMAP = 1,
264
265 /*
266 * struct {
267 * struct perf_event_header header;
268 *
269 * u32 pid, tid;
270 * char comm[];
271 * };
272 */
273 PERF_EVENT_COMM = 3,
274
275 /*
276 * struct {
277 * struct perf_event_header header;
278 * u64 time;
279 * u64 id;
280 * u64 sample_period;
281 * };
282 */
283 PERF_EVENT_PERIOD = 4,
284
285 /*
286 * struct {
287 * struct perf_event_header header;
288 * u64 time;
289 * u64 id;
290 * };
291 */
292 PERF_EVENT_THROTTLE = 5,
293 PERF_EVENT_UNTHROTTLE = 6,
294
295 /*
296 * struct {
297 * struct perf_event_header header;
298 * u32 pid, ppid;
299 * };
300 */
301 PERF_EVENT_FORK = 7,
302
303 /*
304 * When header.misc & PERF_EVENT_MISC_OVERFLOW the event_type field
305 * will be PERF_RECORD_*
306 *
307 * struct {
308 * struct perf_event_header header;
309 *
310 * { u64 ip; } && PERF_RECORD_IP
311 * { u32 pid, tid; } && PERF_RECORD_TID
312 * { u64 time; } && PERF_RECORD_TIME
313 * { u64 addr; } && PERF_RECORD_ADDR
314 * { u64 config; } && PERF_RECORD_CONFIG
315 * { u32 cpu, res; } && PERF_RECORD_CPU
316 *
317 * { u64 nr;
318 * { u64 id, val; } cnt[nr]; } && PERF_RECORD_GROUP
319 *
320 * { u16 nr,
321 * hv,
322 * kernel,
323 * user;
324 * u64 ips[nr]; } && PERF_RECORD_CALLCHAIN
325 * };
326 */
327};
328
329#ifdef __KERNEL__
330/*
331 * Kernel-internal data types and definitions:
332 */
333
334#ifdef CONFIG_PERF_COUNTERS
335# include <asm/perf_counter.h>
336#endif
337
338#include <linux/list.h>
339#include <linux/mutex.h>
340#include <linux/rculist.h>
341#include <linux/rcupdate.h>
342#include <linux/spinlock.h>
343#include <linux/hrtimer.h>
344#include <linux/fs.h>
345#include <linux/pid_namespace.h>
346#include <asm/atomic.h>
347
348struct task_struct;
349
350/**
351 * struct hw_perf_counter - performance counter hardware details:
352 */
353struct hw_perf_counter {
354#ifdef CONFIG_PERF_COUNTERS
355 union {
356 struct { /* hardware */
357 u64 config;
358 unsigned long config_base;
359 unsigned long counter_base;
360 int idx;
361 };
362 union { /* software */
363 atomic64_t count;
364 struct hrtimer hrtimer;
365 };
366 };
367 atomic64_t prev_count;
368 u64 sample_period;
369 u64 last_period;
370 atomic64_t period_left;
371 u64 interrupts;
372
373 u64 freq_count;
374 u64 freq_interrupts;
375 u64 freq_stamp;
376#endif
377};
378
379struct perf_counter;
380
381/**
382 * struct pmu - generic performance monitoring unit
383 */
384struct pmu {
385 int (*enable) (struct perf_counter *counter);
386 void (*disable) (struct perf_counter *counter);
387 void (*read) (struct perf_counter *counter);
388 void (*unthrottle) (struct perf_counter *counter);
389};
390
391/**
392 * enum perf_counter_active_state - the states of a counter
393 */
394enum perf_counter_active_state {
395 PERF_COUNTER_STATE_ERROR = -2,
396 PERF_COUNTER_STATE_OFF = -1,
397 PERF_COUNTER_STATE_INACTIVE = 0,
398 PERF_COUNTER_STATE_ACTIVE = 1,
399};
400
401struct file;
402
403struct perf_mmap_data {
404 struct rcu_head rcu_head;
405 int nr_pages; /* nr of data pages */
406 int nr_locked; /* nr pages mlocked */
407
408 atomic_t poll; /* POLL_ for wakeups */
409 atomic_t events; /* event limit */
410
411 atomic_long_t head; /* write position */
412 atomic_long_t done_head; /* completed head */
413
414 atomic_t lock; /* concurrent writes */
415
416 atomic_t wakeup; /* needs a wakeup */
417
418 struct perf_counter_mmap_page *user_page;
419 void *data_pages[0];
420};
421
422struct perf_pending_entry {
423 struct perf_pending_entry *next;
424 void (*func)(struct perf_pending_entry *);
425};
426
427/**
428 * struct perf_counter - performance counter kernel representation:
429 */
430struct perf_counter {
431#ifdef CONFIG_PERF_COUNTERS
432 struct list_head list_entry;
433 struct list_head event_entry;
434 struct list_head sibling_list;
435 int nr_siblings;
436 struct perf_counter *group_leader;
437 const struct pmu *pmu;
438
439 enum perf_counter_active_state state;
440 atomic64_t count;
441
442 /*
443 * These are the total time in nanoseconds that the counter
444 * has been enabled (i.e. eligible to run, and the task has
445 * been scheduled in, if this is a per-task counter)
446 * and running (scheduled onto the CPU), respectively.
447 *
448 * They are computed from tstamp_enabled, tstamp_running and
449 * tstamp_stopped when the counter is in INACTIVE or ACTIVE state.
450 */
451 u64 total_time_enabled;
452 u64 total_time_running;
453
454 /*
455 * These are timestamps used for computing total_time_enabled
456 * and total_time_running when the counter is in INACTIVE or
457 * ACTIVE state, measured in nanoseconds from an arbitrary point
458 * in time.
459 * tstamp_enabled: the notional time when the counter was enabled
460 * tstamp_running: the notional time when the counter was scheduled on
461 * tstamp_stopped: in INACTIVE state, the notional time when the
462 * counter was scheduled off.
463 */
464 u64 tstamp_enabled;
465 u64 tstamp_running;
466 u64 tstamp_stopped;
467
468 struct perf_counter_attr attr;
469 struct hw_perf_counter hw;
470
471 struct perf_counter_context *ctx;
472 struct file *filp;
473
474 /*
475 * These accumulate total time (in nanoseconds) that children
476 * counters have been enabled and running, respectively.
477 */
478 atomic64_t child_total_time_enabled;
479 atomic64_t child_total_time_running;
480
481 /*
482 * Protect attach/detach and child_list:
483 */
484 struct mutex child_mutex;
485 struct list_head child_list;
486 struct perf_counter *parent;
487
488 int oncpu;
489 int cpu;
490
491 struct list_head owner_entry;
492 struct task_struct *owner;
493
494 /* mmap bits */
495 struct mutex mmap_mutex;
496 atomic_t mmap_count;
497 struct perf_mmap_data *data;
498
499 /* poll related */
500 wait_queue_head_t waitq;
501 struct fasync_struct *fasync;
502
503 /* delayed work for NMIs and such */
504 int pending_wakeup;
505 int pending_kill;
506 int pending_disable;
507 struct perf_pending_entry pending;
508
509 atomic_t event_limit;
510
511 void (*destroy)(struct perf_counter *);
512 struct rcu_head rcu_head;
513
514 struct pid_namespace *ns;
515 u64 id;
516#endif
517};
518
519/**
520 * struct perf_counter_context - counter context structure
521 *
522 * Used as a container for task counters and CPU counters as well:
523 */
524struct perf_counter_context {
525 /*
526 * Protect the states of the counters in the list,
527 * nr_active, and the list:
528 */
529 spinlock_t lock;
530 /*
531 * Protect the list of counters. Locking either mutex or lock
532 * is sufficient to ensure the list doesn't change; to change
533 * the list you need to lock both the mutex and the spinlock.
534 */
535 struct mutex mutex;
536
537 struct list_head counter_list;
538 struct list_head event_list;
539 int nr_counters;
540 int nr_active;
541 int is_active;
542 atomic_t refcount;
543 struct task_struct *task;
544
545 /*
546 * Context clock, runs when context enabled.
547 */
548 u64 time;
549 u64 timestamp;
550
551 /*
552 * These fields let us detect when two contexts have both
553 * been cloned (inherited) from a common ancestor.
554 */
555 struct perf_counter_context *parent_ctx;
556 u64 parent_gen;
557 u64 generation;
558 int pin_count;
559 struct rcu_head rcu_head;
560};
561
562/**
563 * struct perf_counter_cpu_context - per cpu counter context structure
564 */
565struct perf_cpu_context {
566 struct perf_counter_context ctx;
567 struct perf_counter_context *task_ctx;
568 int active_oncpu;
569 int max_pertask;
570 int exclusive;
571
572 /*
573 * Recursion avoidance:
574 *
575 * task, softirq, irq, nmi context
576 */
577 int recursion[4];
578};
579
580#ifdef CONFIG_PERF_COUNTERS
581
582/*
583 * Set by architecture code:
584 */
585extern int perf_max_counters;
586
587extern const struct pmu *hw_perf_counter_init(struct perf_counter *counter);
588
589extern void perf_counter_task_sched_in(struct task_struct *task, int cpu);
590extern void perf_counter_task_sched_out(struct task_struct *task,
591 struct task_struct *next, int cpu);
592extern void perf_counter_task_tick(struct task_struct *task, int cpu);
593extern int perf_counter_init_task(struct task_struct *child);
594extern void perf_counter_exit_task(struct task_struct *child);
595extern void perf_counter_free_task(struct task_struct *task);
596extern void perf_counter_do_pending(void);
597extern void perf_counter_print_debug(void);
598extern void __perf_disable(void);
599extern bool __perf_enable(void);
600extern void perf_disable(void);
601extern void perf_enable(void);
602extern int perf_counter_task_disable(void);
603extern int perf_counter_task_enable(void);
604extern int hw_perf_group_sched_in(struct perf_counter *group_leader,
605 struct perf_cpu_context *cpuctx,
606 struct perf_counter_context *ctx, int cpu);
607extern void perf_counter_update_userpage(struct perf_counter *counter);
608
609struct perf_sample_data {
610 struct pt_regs *regs;
611 u64 addr;
612 u64 period;
613};
614
615extern int perf_counter_overflow(struct perf_counter *counter, int nmi,
616 struct perf_sample_data *data);
617
618/*
619 * Return 1 for a software counter, 0 for a hardware counter
620 */
621static inline int is_software_counter(struct perf_counter *counter)
622{
623 return (counter->attr.type != PERF_TYPE_RAW) &&
624 (counter->attr.type != PERF_TYPE_HARDWARE);
625}
626
627extern void perf_swcounter_event(u32, u64, int, struct pt_regs *, u64);
628
629extern void __perf_counter_mmap(struct vm_area_struct *vma);
630
631static inline void perf_counter_mmap(struct vm_area_struct *vma)
632{
633 if (vma->vm_flags & VM_EXEC)
634 __perf_counter_mmap(vma);
635}
636
637extern void perf_counter_comm(struct task_struct *tsk);
638extern void perf_counter_fork(struct task_struct *tsk);
639
640extern void perf_counter_task_migration(struct task_struct *task, int cpu);
641
642#define MAX_STACK_DEPTH 255
643
644struct perf_callchain_entry {
645 u16 nr;
646 u16 hv;
647 u16 kernel;
648 u16 user;
649 u64 ip[MAX_STACK_DEPTH];
650};
651
652extern struct perf_callchain_entry *perf_callchain(struct pt_regs *regs);
653
654extern int sysctl_perf_counter_paranoid;
655extern int sysctl_perf_counter_mlock;
656extern int sysctl_perf_counter_sample_rate;
657
658extern void perf_counter_init(void);
659
660#ifndef perf_misc_flags
661#define perf_misc_flags(regs) (user_mode(regs) ? PERF_EVENT_MISC_USER : \
662 PERF_EVENT_MISC_KERNEL)
663#define perf_instruction_pointer(regs) instruction_pointer(regs)
664#endif
665
666#else
667static inline void
668perf_counter_task_sched_in(struct task_struct *task, int cpu) { }
669static inline void
670perf_counter_task_sched_out(struct task_struct *task,
671 struct task_struct *next, int cpu) { }
672static inline void
673perf_counter_task_tick(struct task_struct *task, int cpu) { }
674static inline int perf_counter_init_task(struct task_struct *child) { return 0; }
675static inline void perf_counter_exit_task(struct task_struct *child) { }
676static inline void perf_counter_free_task(struct task_struct *task) { }
677static inline void perf_counter_do_pending(void) { }
678static inline void perf_counter_print_debug(void) { }
679static inline void perf_disable(void) { }
680static inline void perf_enable(void) { }
681static inline int perf_counter_task_disable(void) { return -EINVAL; }
682static inline int perf_counter_task_enable(void) { return -EINVAL; }
683
684static inline void
685perf_swcounter_event(u32 event, u64 nr, int nmi,
686 struct pt_regs *regs, u64 addr) { }
687
688static inline void perf_counter_mmap(struct vm_area_struct *vma) { }
689static inline void perf_counter_comm(struct task_struct *tsk) { }
690static inline void perf_counter_fork(struct task_struct *tsk) { }
691static inline void perf_counter_init(void) { }
692static inline void perf_counter_task_migration(struct task_struct *task,
693 int cpu) { }
694#endif
695
696#endif /* __KERNEL__ */
697#endif /* _LINUX_PERF_COUNTER_H */