diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /include/linux/jiffies.h |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'include/linux/jiffies.h')
-rw-r--r-- | include/linux/jiffies.h | 450 |
1 files changed, 450 insertions, 0 deletions
diff --git a/include/linux/jiffies.h b/include/linux/jiffies.h new file mode 100644 index 000000000000..d7a2555a886c --- /dev/null +++ b/include/linux/jiffies.h | |||
@@ -0,0 +1,450 @@ | |||
1 | #ifndef _LINUX_JIFFIES_H | ||
2 | #define _LINUX_JIFFIES_H | ||
3 | |||
4 | #include <linux/kernel.h> | ||
5 | #include <linux/types.h> | ||
6 | #include <linux/time.h> | ||
7 | #include <linux/timex.h> | ||
8 | #include <asm/param.h> /* for HZ */ | ||
9 | #include <asm/div64.h> | ||
10 | |||
11 | #ifndef div_long_long_rem | ||
12 | #define div_long_long_rem(dividend,divisor,remainder) \ | ||
13 | ({ \ | ||
14 | u64 result = dividend; \ | ||
15 | *remainder = do_div(result,divisor); \ | ||
16 | result; \ | ||
17 | }) | ||
18 | #endif | ||
19 | |||
20 | /* | ||
21 | * The following defines establish the engineering parameters of the PLL | ||
22 | * model. The HZ variable establishes the timer interrupt frequency, 100 Hz | ||
23 | * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the | ||
24 | * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the | ||
25 | * nearest power of two in order to avoid hardware multiply operations. | ||
26 | */ | ||
27 | #if HZ >= 12 && HZ < 24 | ||
28 | # define SHIFT_HZ 4 | ||
29 | #elif HZ >= 24 && HZ < 48 | ||
30 | # define SHIFT_HZ 5 | ||
31 | #elif HZ >= 48 && HZ < 96 | ||
32 | # define SHIFT_HZ 6 | ||
33 | #elif HZ >= 96 && HZ < 192 | ||
34 | # define SHIFT_HZ 7 | ||
35 | #elif HZ >= 192 && HZ < 384 | ||
36 | # define SHIFT_HZ 8 | ||
37 | #elif HZ >= 384 && HZ < 768 | ||
38 | # define SHIFT_HZ 9 | ||
39 | #elif HZ >= 768 && HZ < 1536 | ||
40 | # define SHIFT_HZ 10 | ||
41 | #else | ||
42 | # error You lose. | ||
43 | #endif | ||
44 | |||
45 | /* LATCH is used in the interval timer and ftape setup. */ | ||
46 | #define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */ | ||
47 | |||
48 | /* Suppose we want to devide two numbers NOM and DEN: NOM/DEN, the we can | ||
49 | * improve accuracy by shifting LSH bits, hence calculating: | ||
50 | * (NOM << LSH) / DEN | ||
51 | * This however means trouble for large NOM, because (NOM << LSH) may no | ||
52 | * longer fit in 32 bits. The following way of calculating this gives us | ||
53 | * some slack, under the following conditions: | ||
54 | * - (NOM / DEN) fits in (32 - LSH) bits. | ||
55 | * - (NOM % DEN) fits in (32 - LSH) bits. | ||
56 | */ | ||
57 | #define SH_DIV(NOM,DEN,LSH) ( ((NOM / DEN) << LSH) \ | ||
58 | + (((NOM % DEN) << LSH) + DEN / 2) / DEN) | ||
59 | |||
60 | /* HZ is the requested value. ACTHZ is actual HZ ("<< 8" is for accuracy) */ | ||
61 | #define ACTHZ (SH_DIV (CLOCK_TICK_RATE, LATCH, 8)) | ||
62 | |||
63 | /* TICK_NSEC is the time between ticks in nsec assuming real ACTHZ */ | ||
64 | #define TICK_NSEC (SH_DIV (1000000UL * 1000, ACTHZ, 8)) | ||
65 | |||
66 | /* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */ | ||
67 | #define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ) | ||
68 | |||
69 | /* TICK_USEC_TO_NSEC is the time between ticks in nsec assuming real ACTHZ and */ | ||
70 | /* a value TUSEC for TICK_USEC (can be set bij adjtimex) */ | ||
71 | #define TICK_USEC_TO_NSEC(TUSEC) (SH_DIV (TUSEC * USER_HZ * 1000, ACTHZ, 8)) | ||
72 | |||
73 | /* some arch's have a small-data section that can be accessed register-relative | ||
74 | * but that can only take up to, say, 4-byte variables. jiffies being part of | ||
75 | * an 8-byte variable may not be correctly accessed unless we force the issue | ||
76 | */ | ||
77 | #define __jiffy_data __attribute__((section(".data"))) | ||
78 | |||
79 | /* | ||
80 | * The 64-bit value is not volatile - you MUST NOT read it | ||
81 | * without sampling the sequence number in xtime_lock. | ||
82 | * get_jiffies_64() will do this for you as appropriate. | ||
83 | */ | ||
84 | extern u64 __jiffy_data jiffies_64; | ||
85 | extern unsigned long volatile __jiffy_data jiffies; | ||
86 | |||
87 | #if (BITS_PER_LONG < 64) | ||
88 | u64 get_jiffies_64(void); | ||
89 | #else | ||
90 | static inline u64 get_jiffies_64(void) | ||
91 | { | ||
92 | return (u64)jiffies; | ||
93 | } | ||
94 | #endif | ||
95 | |||
96 | /* | ||
97 | * These inlines deal with timer wrapping correctly. You are | ||
98 | * strongly encouraged to use them | ||
99 | * 1. Because people otherwise forget | ||
100 | * 2. Because if the timer wrap changes in future you won't have to | ||
101 | * alter your driver code. | ||
102 | * | ||
103 | * time_after(a,b) returns true if the time a is after time b. | ||
104 | * | ||
105 | * Do this with "<0" and ">=0" to only test the sign of the result. A | ||
106 | * good compiler would generate better code (and a really good compiler | ||
107 | * wouldn't care). Gcc is currently neither. | ||
108 | */ | ||
109 | #define time_after(a,b) \ | ||
110 | (typecheck(unsigned long, a) && \ | ||
111 | typecheck(unsigned long, b) && \ | ||
112 | ((long)(b) - (long)(a) < 0)) | ||
113 | #define time_before(a,b) time_after(b,a) | ||
114 | |||
115 | #define time_after_eq(a,b) \ | ||
116 | (typecheck(unsigned long, a) && \ | ||
117 | typecheck(unsigned long, b) && \ | ||
118 | ((long)(a) - (long)(b) >= 0)) | ||
119 | #define time_before_eq(a,b) time_after_eq(b,a) | ||
120 | |||
121 | /* | ||
122 | * Have the 32 bit jiffies value wrap 5 minutes after boot | ||
123 | * so jiffies wrap bugs show up earlier. | ||
124 | */ | ||
125 | #define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ)) | ||
126 | |||
127 | /* | ||
128 | * Change timeval to jiffies, trying to avoid the | ||
129 | * most obvious overflows.. | ||
130 | * | ||
131 | * And some not so obvious. | ||
132 | * | ||
133 | * Note that we don't want to return MAX_LONG, because | ||
134 | * for various timeout reasons we often end up having | ||
135 | * to wait "jiffies+1" in order to guarantee that we wait | ||
136 | * at _least_ "jiffies" - so "jiffies+1" had better still | ||
137 | * be positive. | ||
138 | */ | ||
139 | #define MAX_JIFFY_OFFSET ((~0UL >> 1)-1) | ||
140 | |||
141 | /* | ||
142 | * We want to do realistic conversions of time so we need to use the same | ||
143 | * values the update wall clock code uses as the jiffies size. This value | ||
144 | * is: TICK_NSEC (which is defined in timex.h). This | ||
145 | * is a constant and is in nanoseconds. We will used scaled math | ||
146 | * with a set of scales defined here as SEC_JIFFIE_SC, USEC_JIFFIE_SC and | ||
147 | * NSEC_JIFFIE_SC. Note that these defines contain nothing but | ||
148 | * constants and so are computed at compile time. SHIFT_HZ (computed in | ||
149 | * timex.h) adjusts the scaling for different HZ values. | ||
150 | |||
151 | * Scaled math??? What is that? | ||
152 | * | ||
153 | * Scaled math is a way to do integer math on values that would, | ||
154 | * otherwise, either overflow, underflow, or cause undesired div | ||
155 | * instructions to appear in the execution path. In short, we "scale" | ||
156 | * up the operands so they take more bits (more precision, less | ||
157 | * underflow), do the desired operation and then "scale" the result back | ||
158 | * by the same amount. If we do the scaling by shifting we avoid the | ||
159 | * costly mpy and the dastardly div instructions. | ||
160 | |||
161 | * Suppose, for example, we want to convert from seconds to jiffies | ||
162 | * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE. The | ||
163 | * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We | ||
164 | * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we | ||
165 | * might calculate at compile time, however, the result will only have | ||
166 | * about 3-4 bits of precision (less for smaller values of HZ). | ||
167 | * | ||
168 | * So, we scale as follows: | ||
169 | * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE); | ||
170 | * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE; | ||
171 | * Then we make SCALE a power of two so: | ||
172 | * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE; | ||
173 | * Now we define: | ||
174 | * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) | ||
175 | * jiff = (sec * SEC_CONV) >> SCALE; | ||
176 | * | ||
177 | * Often the math we use will expand beyond 32-bits so we tell C how to | ||
178 | * do this and pass the 64-bit result of the mpy through the ">> SCALE" | ||
179 | * which should take the result back to 32-bits. We want this expansion | ||
180 | * to capture as much precision as possible. At the same time we don't | ||
181 | * want to overflow so we pick the SCALE to avoid this. In this file, | ||
182 | * that means using a different scale for each range of HZ values (as | ||
183 | * defined in timex.h). | ||
184 | * | ||
185 | * For those who want to know, gcc will give a 64-bit result from a "*" | ||
186 | * operator if the result is a long long AND at least one of the | ||
187 | * operands is cast to long long (usually just prior to the "*" so as | ||
188 | * not to confuse it into thinking it really has a 64-bit operand, | ||
189 | * which, buy the way, it can do, but it take more code and at least 2 | ||
190 | * mpys). | ||
191 | |||
192 | * We also need to be aware that one second in nanoseconds is only a | ||
193 | * couple of bits away from overflowing a 32-bit word, so we MUST use | ||
194 | * 64-bits to get the full range time in nanoseconds. | ||
195 | |||
196 | */ | ||
197 | |||
198 | /* | ||
199 | * Here are the scales we will use. One for seconds, nanoseconds and | ||
200 | * microseconds. | ||
201 | * | ||
202 | * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and | ||
203 | * check if the sign bit is set. If not, we bump the shift count by 1. | ||
204 | * (Gets an extra bit of precision where we can use it.) | ||
205 | * We know it is set for HZ = 1024 and HZ = 100 not for 1000. | ||
206 | * Haven't tested others. | ||
207 | |||
208 | * Limits of cpp (for #if expressions) only long (no long long), but | ||
209 | * then we only need the most signicant bit. | ||
210 | */ | ||
211 | |||
212 | #define SEC_JIFFIE_SC (31 - SHIFT_HZ) | ||
213 | #if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000) | ||
214 | #undef SEC_JIFFIE_SC | ||
215 | #define SEC_JIFFIE_SC (32 - SHIFT_HZ) | ||
216 | #endif | ||
217 | #define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29) | ||
218 | #define USEC_JIFFIE_SC (SEC_JIFFIE_SC + 19) | ||
219 | #define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\ | ||
220 | TICK_NSEC -1) / (u64)TICK_NSEC)) | ||
221 | |||
222 | #define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\ | ||
223 | TICK_NSEC -1) / (u64)TICK_NSEC)) | ||
224 | #define USEC_CONVERSION \ | ||
225 | ((unsigned long)((((u64)NSEC_PER_USEC << USEC_JIFFIE_SC) +\ | ||
226 | TICK_NSEC -1) / (u64)TICK_NSEC)) | ||
227 | /* | ||
228 | * USEC_ROUND is used in the timeval to jiffie conversion. See there | ||
229 | * for more details. It is the scaled resolution rounding value. Note | ||
230 | * that it is a 64-bit value. Since, when it is applied, we are already | ||
231 | * in jiffies (albit scaled), it is nothing but the bits we will shift | ||
232 | * off. | ||
233 | */ | ||
234 | #define USEC_ROUND (u64)(((u64)1 << USEC_JIFFIE_SC) - 1) | ||
235 | /* | ||
236 | * The maximum jiffie value is (MAX_INT >> 1). Here we translate that | ||
237 | * into seconds. The 64-bit case will overflow if we are not careful, | ||
238 | * so use the messy SH_DIV macro to do it. Still all constants. | ||
239 | */ | ||
240 | #if BITS_PER_LONG < 64 | ||
241 | # define MAX_SEC_IN_JIFFIES \ | ||
242 | (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC) | ||
243 | #else /* take care of overflow on 64 bits machines */ | ||
244 | # define MAX_SEC_IN_JIFFIES \ | ||
245 | (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1) | ||
246 | |||
247 | #endif | ||
248 | |||
249 | /* | ||
250 | * Convert jiffies to milliseconds and back. | ||
251 | * | ||
252 | * Avoid unnecessary multiplications/divisions in the | ||
253 | * two most common HZ cases: | ||
254 | */ | ||
255 | static inline unsigned int jiffies_to_msecs(const unsigned long j) | ||
256 | { | ||
257 | #if HZ <= 1000 && !(1000 % HZ) | ||
258 | return (1000 / HZ) * j; | ||
259 | #elif HZ > 1000 && !(HZ % 1000) | ||
260 | return (j + (HZ / 1000) - 1)/(HZ / 1000); | ||
261 | #else | ||
262 | return (j * 1000) / HZ; | ||
263 | #endif | ||
264 | } | ||
265 | |||
266 | static inline unsigned int jiffies_to_usecs(const unsigned long j) | ||
267 | { | ||
268 | #if HZ <= 1000000 && !(1000000 % HZ) | ||
269 | return (1000000 / HZ) * j; | ||
270 | #elif HZ > 1000000 && !(HZ % 1000000) | ||
271 | return (j + (HZ / 1000000) - 1)/(HZ / 1000000); | ||
272 | #else | ||
273 | return (j * 1000000) / HZ; | ||
274 | #endif | ||
275 | } | ||
276 | |||
277 | static inline unsigned long msecs_to_jiffies(const unsigned int m) | ||
278 | { | ||
279 | if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) | ||
280 | return MAX_JIFFY_OFFSET; | ||
281 | #if HZ <= 1000 && !(1000 % HZ) | ||
282 | return (m + (1000 / HZ) - 1) / (1000 / HZ); | ||
283 | #elif HZ > 1000 && !(HZ % 1000) | ||
284 | return m * (HZ / 1000); | ||
285 | #else | ||
286 | return (m * HZ + 999) / 1000; | ||
287 | #endif | ||
288 | } | ||
289 | |||
290 | static inline unsigned long usecs_to_jiffies(const unsigned int u) | ||
291 | { | ||
292 | if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET)) | ||
293 | return MAX_JIFFY_OFFSET; | ||
294 | #if HZ <= 1000000 && !(1000000 % HZ) | ||
295 | return (u + (1000000 / HZ) - 1) / (1000000 / HZ); | ||
296 | #elif HZ > 1000000 && !(HZ % 1000000) | ||
297 | return u * (HZ / 1000000); | ||
298 | #else | ||
299 | return (u * HZ + 999999) / 1000000; | ||
300 | #endif | ||
301 | } | ||
302 | |||
303 | /* | ||
304 | * The TICK_NSEC - 1 rounds up the value to the next resolution. Note | ||
305 | * that a remainder subtract here would not do the right thing as the | ||
306 | * resolution values don't fall on second boundries. I.e. the line: | ||
307 | * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding. | ||
308 | * | ||
309 | * Rather, we just shift the bits off the right. | ||
310 | * | ||
311 | * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec | ||
312 | * value to a scaled second value. | ||
313 | */ | ||
314 | static __inline__ unsigned long | ||
315 | timespec_to_jiffies(const struct timespec *value) | ||
316 | { | ||
317 | unsigned long sec = value->tv_sec; | ||
318 | long nsec = value->tv_nsec + TICK_NSEC - 1; | ||
319 | |||
320 | if (sec >= MAX_SEC_IN_JIFFIES){ | ||
321 | sec = MAX_SEC_IN_JIFFIES; | ||
322 | nsec = 0; | ||
323 | } | ||
324 | return (((u64)sec * SEC_CONVERSION) + | ||
325 | (((u64)nsec * NSEC_CONVERSION) >> | ||
326 | (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; | ||
327 | |||
328 | } | ||
329 | |||
330 | static __inline__ void | ||
331 | jiffies_to_timespec(const unsigned long jiffies, struct timespec *value) | ||
332 | { | ||
333 | /* | ||
334 | * Convert jiffies to nanoseconds and separate with | ||
335 | * one divide. | ||
336 | */ | ||
337 | u64 nsec = (u64)jiffies * TICK_NSEC; | ||
338 | value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec); | ||
339 | } | ||
340 | |||
341 | /* Same for "timeval" | ||
342 | * | ||
343 | * Well, almost. The problem here is that the real system resolution is | ||
344 | * in nanoseconds and the value being converted is in micro seconds. | ||
345 | * Also for some machines (those that use HZ = 1024, in-particular), | ||
346 | * there is a LARGE error in the tick size in microseconds. | ||
347 | |||
348 | * The solution we use is to do the rounding AFTER we convert the | ||
349 | * microsecond part. Thus the USEC_ROUND, the bits to be shifted off. | ||
350 | * Instruction wise, this should cost only an additional add with carry | ||
351 | * instruction above the way it was done above. | ||
352 | */ | ||
353 | static __inline__ unsigned long | ||
354 | timeval_to_jiffies(const struct timeval *value) | ||
355 | { | ||
356 | unsigned long sec = value->tv_sec; | ||
357 | long usec = value->tv_usec; | ||
358 | |||
359 | if (sec >= MAX_SEC_IN_JIFFIES){ | ||
360 | sec = MAX_SEC_IN_JIFFIES; | ||
361 | usec = 0; | ||
362 | } | ||
363 | return (((u64)sec * SEC_CONVERSION) + | ||
364 | (((u64)usec * USEC_CONVERSION + USEC_ROUND) >> | ||
365 | (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; | ||
366 | } | ||
367 | |||
368 | static __inline__ void | ||
369 | jiffies_to_timeval(const unsigned long jiffies, struct timeval *value) | ||
370 | { | ||
371 | /* | ||
372 | * Convert jiffies to nanoseconds and separate with | ||
373 | * one divide. | ||
374 | */ | ||
375 | u64 nsec = (u64)jiffies * TICK_NSEC; | ||
376 | value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_usec); | ||
377 | value->tv_usec /= NSEC_PER_USEC; | ||
378 | } | ||
379 | |||
380 | /* | ||
381 | * Convert jiffies/jiffies_64 to clock_t and back. | ||
382 | */ | ||
383 | static inline clock_t jiffies_to_clock_t(long x) | ||
384 | { | ||
385 | #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 | ||
386 | return x / (HZ / USER_HZ); | ||
387 | #else | ||
388 | u64 tmp = (u64)x * TICK_NSEC; | ||
389 | do_div(tmp, (NSEC_PER_SEC / USER_HZ)); | ||
390 | return (long)tmp; | ||
391 | #endif | ||
392 | } | ||
393 | |||
394 | static inline unsigned long clock_t_to_jiffies(unsigned long x) | ||
395 | { | ||
396 | #if (HZ % USER_HZ)==0 | ||
397 | if (x >= ~0UL / (HZ / USER_HZ)) | ||
398 | return ~0UL; | ||
399 | return x * (HZ / USER_HZ); | ||
400 | #else | ||
401 | u64 jif; | ||
402 | |||
403 | /* Don't worry about loss of precision here .. */ | ||
404 | if (x >= ~0UL / HZ * USER_HZ) | ||
405 | return ~0UL; | ||
406 | |||
407 | /* .. but do try to contain it here */ | ||
408 | jif = x * (u64) HZ; | ||
409 | do_div(jif, USER_HZ); | ||
410 | return jif; | ||
411 | #endif | ||
412 | } | ||
413 | |||
414 | static inline u64 jiffies_64_to_clock_t(u64 x) | ||
415 | { | ||
416 | #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 | ||
417 | do_div(x, HZ / USER_HZ); | ||
418 | #else | ||
419 | /* | ||
420 | * There are better ways that don't overflow early, | ||
421 | * but even this doesn't overflow in hundreds of years | ||
422 | * in 64 bits, so.. | ||
423 | */ | ||
424 | x *= TICK_NSEC; | ||
425 | do_div(x, (NSEC_PER_SEC / USER_HZ)); | ||
426 | #endif | ||
427 | return x; | ||
428 | } | ||
429 | |||
430 | static inline u64 nsec_to_clock_t(u64 x) | ||
431 | { | ||
432 | #if (NSEC_PER_SEC % USER_HZ) == 0 | ||
433 | do_div(x, (NSEC_PER_SEC / USER_HZ)); | ||
434 | #elif (USER_HZ % 512) == 0 | ||
435 | x *= USER_HZ/512; | ||
436 | do_div(x, (NSEC_PER_SEC / 512)); | ||
437 | #else | ||
438 | /* | ||
439 | * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024, | ||
440 | * overflow after 64.99 years. | ||
441 | * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ... | ||
442 | */ | ||
443 | x *= 9; | ||
444 | do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) | ||
445 | / USER_HZ)); | ||
446 | #endif | ||
447 | return x; | ||
448 | } | ||
449 | |||
450 | #endif | ||