aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/drbd_limits.h
diff options
context:
space:
mode:
authorBenjamin Herrenschmidt <benh@kernel.crashing.org>2010-02-26 02:29:17 -0500
committerBenjamin Herrenschmidt <benh@kernel.crashing.org>2010-02-26 02:29:17 -0500
commit3d98ffbffb16f2a1569b83cb78db0b5100e6c937 (patch)
tree3604899600b8ce7c95d67b9299e1fb6b91005773 /include/linux/drbd_limits.h
parent874f2f997dbe041a6c6e509dae8656ed9022d65d (diff)
powerpc: Fix lwsync feature fixup vs. modules on 64-bit
Anton's commit enabling the use of the lwsync fixup mechanism on 64-bit breaks modules. The lwsync fixup section uses .long instead of the FTR_ENTRY_OFFSET macro used by other fixups sections, and thus will generate 32-bit relocations that our module loader cannot resolve. This changes it to use the same type as other feature sections. Note however that we might want to consider using 32-bit for all the feature fixup offsets and add support for R_PPC_REL32 to module_64.c instead as that would reduce the size of the kernel image. I'll leave that as an exercise for the reader for now... Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Diffstat (limited to 'include/linux/drbd_limits.h')
0 files changed, 0 insertions, 0 deletions
href='#n278'>278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
/*
 * Copyright (c) 2015-2017, NVIDIA CORPORATION.  All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

#include <nvgpu/bios.h>
#include <nvgpu/hw/gp106/hw_gc6_gp106.h>

#include "gk20a/gk20a.h"

#define BIT_HEADER_ID 0xb8ff
#define BIT_HEADER_SIGNATURE 0x00544942
#define PCI_EXP_ROM_SIG 0xaa55
#define PCI_EXP_ROM_SIG_NV 0x4e56

#define INIT_DONE 0x71
#define INIT_RESUME 0x72
#define INIT_CONDITION 0x75
#define INIT_XMEMSEL_ZM_NV_REG_ARRAY 0x8f

struct condition_entry {
	u32 cond_addr;
	u32 cond_mask;
	u32 cond_compare;
} __packed;

static u16 nvgpu_bios_rdu16(struct gk20a *g, int offset)
{
	u16 val = (g->bios.data[offset+1] << 8) + g->bios.data[offset];
	return val;
}

static u32 nvgpu_bios_rdu32(struct gk20a *g, int offset)
{
	u32 val = (g->bios.data[offset+3] << 24) +
		  (g->bios.data[offset+2] << 16) +
		  (g->bios.data[offset+1] << 8) +
		  g->bios.data[offset];
	return val;
}

struct bit {
	u16 id;
	u32 signature;
	u16 bcd_version;
	u8 header_size;
	u8 token_size;
	u8 token_entries;
	u8 header_checksum;
} __packed;

#define TOKEN_ID_BIOSDATA 0x42
#define TOKEN_ID_NVINIT_PTRS 0x49
#define TOKEN_ID_FALCON_DATA 0x70
#define TOKEN_ID_PERF_PTRS 0x50
#define TOKEN_ID_CLOCK_PTRS 0x43
#define TOKEN_ID_VIRT_PTRS 0x56
#define TOKEN_ID_MEMORY_PTRS 0x4D

#define MEMORY_PTRS_V1 1
#define MEMORY_PTRS_V2 2

struct memory_ptrs_v1 {
	u8 rsvd0[2];
	u8 mem_strap_data_count;
	u16 mem_strap_xlat_tbl_ptr;
	u8 rsvd1[8];
} __packed;

struct memory_ptrs_v2 {
	u8 mem_strap_data_count;
	u16 mem_strap_xlat_tbl_ptr;
	u8 rsvd[14];
} __packed;

struct biosdata {
	u32 version;
	u8 oem_version;
	u8 checksum;
	u16 int15callbackspost;
	u16 int16callbackssystem;
	u16 boardid;
	u16 framecount;
	u8 biosmoddate[8];
} __packed;

struct nvinit_ptrs {
	u16 initscript_table_ptr;
	u16 macro_index_table_ptr;
	u16 macro_table_ptr;
	u16 condition_table_ptr;
	u16 io_condition_table_ptr;
	u16 io_flag_condition_table_ptr;
	u16 init_function_table_ptr;
	u16 vbios_private_table_ptr;
	u16 data_arrays_table_ptr;
	u16 pcie_settings_script_ptr;
	u16 devinit_tables_ptr;
	u16 devinit_tables_size;
	u16 bootscripts_ptr;
	u16 bootscripts_size;
	u16 nvlink_config_data_ptr;
} __packed;

struct falcon_data_v2 {
	u32 falcon_ucode_table_ptr;
} __packed;

struct falcon_ucode_table_hdr_v1 {
	u8 version;
	u8 header_size;
	u8 entry_size;
	u8 entry_count;
	u8 desc_version;
	u8 desc_size;
} __packed;

struct falcon_ucode_table_entry_v1 {
	u8 application_id;
	u8 target_id;
	u32 desc_ptr;
} __packed;

#define TARGET_ID_PMU 0x01
#define APPLICATION_ID_DEVINIT 0x04
#define APPLICATION_ID_PRE_OS 0x01

#define FALCON_UCODE_FLAGS_VERSION_AVAILABLE 0x1
#define FALCON_UCODE_IS_VERSION_AVAILABLE(hdr)           \
	((hdr.v2.v_desc & FALCON_UCODE_FLAGS_VERSION_AVAILABLE) == \
	FALCON_UCODE_FLAGS_VERSION_AVAILABLE)

/*
 * version is embedded in bits 8:15 of the header on version 2+
 * and the header length in bits 16:31
 */

#define FALCON_UCODE_GET_VERSION(hdr) \
	((hdr.v2.v_desc >> 8) & 0xff)

#define FALCON_UCODE_GET_DESC_SIZE(hdr) \
	((hdr.v2.v_desc >> 16) & 0xffff)

struct falcon_ucode_desc_v1 {
	union {
		u32 v_desc;
		u32 stored_size;
	} hdr_size;
	u32 uncompressed_size;
	u32 virtual_entry;
	u32 interface_offset;
	u32 imem_phys_base;
	u32 imem_load_size;
	u32 imem_virt_base;
	u32 imem_sec_base;
	u32 imem_sec_size;
	u32 dmem_offset;
	u32 dmem_phys_base;
	u32 dmem_load_size;
} __packed;

struct falcon_ucode_desc_v2 {
	u32 v_desc;
	u32 stored_size;
	u32 uncompressed_size;
	u32 virtual_entry;
	u32 interface_offset;
	u32 imem_phys_base;
	u32 imem_load_size;
	u32 imem_virt_base;
	u32 imem_sec_base;
	u32 imem_sec_size;
	u32 dmem_offset;
	u32 dmem_phys_base;
	u32 dmem_load_size;
	u32 alt_imem_load_size;
	u32 alt_dmem_load_size;
} __packed;

union falcon_ucode_desc {
	struct falcon_ucode_desc_v1 v1;
	struct falcon_ucode_desc_v2 v2;
};

struct application_interface_table_hdr_v1 {
	u8 version;
	u8 header_size;
	u8 entry_size;
	u8 entry_count;
} __packed;

struct application_interface_entry_v1 {
	u32 id;
	u32 dmem_offset;
} __packed;

#define APPINFO_ID_DEVINIT 0x01

struct devinit_engine_interface {
	u16 version;
	u16 size;
	u16 application_version;
	u16 application_features;
	u32 tables_phys_base;
	u32 tables_virt_base;
	u32 script_phys_base;
	u32 script_virt_base;
	u32 script_virt_entry;
	u16 script_size;
	u8 memory_strap_count;
	u8 reserved;
	u32 memory_information_table_virt_base;
	u32 empty_script_virt_base;
	u32 cond_table_virt_base;
	u32 io_cond_table_virt_base;
	u32 data_arrays_table_virt_base;
	u32 gpio_assignment_table_virt_base;
} __packed;

struct pci_exp_rom {
	u16 sig;
	u8 reserved[0x16];
	u16 pci_data_struct_ptr;
	u32 size_of_block;
} __packed;

struct pci_data_struct {
	u32 sig;
	u16 vendor_id;
	u16 device_id;
	u16 device_list_ptr;
	u16 pci_data_struct_len;
	u8 pci_data_struct_rev;
	u8 class_code[3];
	u16 image_len;
	u16 vendor_rom_rev;
	u8 code_type;
	u8 last_image;
	u16 max_runtime_image_len;
} __packed;

struct pci_ext_data_struct {
	u32 sig;
	u16 nv_pci_data_ext_rev;
	u16 nv_pci_data_ext_len;
	u16 sub_image_len;
	u8 priv_last_image;
	u8 flags;
} __packed;

static void nvgpu_bios_parse_bit(struct gk20a *g, int offset);

int nvgpu_bios_parse_rom(struct gk20a *g)
{
	int offset = 0;
	int last = 0;
	bool found = false;
	unsigned int i;

	while (!last) {
		struct pci_exp_rom *pci_rom;
		struct pci_data_struct *pci_data;
		struct pci_ext_data_struct *pci_ext_data;

		pci_rom = (struct pci_exp_rom *)&g->bios.data[offset];
		gk20a_dbg_fn("pci rom sig %04x ptr %04x block %x",
				pci_rom->sig, pci_rom->pci_data_struct_ptr,
				pci_rom->size_of_block);

		if (pci_rom->sig != PCI_EXP_ROM_SIG &&
		    pci_rom->sig != PCI_EXP_ROM_SIG_NV) {
			nvgpu_err(g, "invalid VBIOS signature");
			return -EINVAL;
		}

		pci_data =
			(struct pci_data_struct *)
			&g->bios.data[offset + pci_rom->pci_data_struct_ptr];
		gk20a_dbg_fn("pci data sig %08x len %d image len %x type %x last %d max %08x",
				pci_data->sig, pci_data->pci_data_struct_len,
				pci_data->image_len, pci_data->code_type,
				pci_data->last_image,
				pci_data->max_runtime_image_len);

		if (pci_data->code_type == 0x3) {
			pci_ext_data = (struct pci_ext_data_struct *)
				&g->bios.data[(offset +
					       pci_rom->pci_data_struct_ptr +
					       pci_data->pci_data_struct_len +
					       0xf)
					      & ~0xf];
			gk20a_dbg_fn("pci ext data sig %08x rev %x len %x sub_image_len %x priv_last %d flags %x",
					pci_ext_data->sig,
					pci_ext_data->nv_pci_data_ext_rev,
					pci_ext_data->nv_pci_data_ext_len,
					pci_ext_data->sub_image_len,
					pci_ext_data->priv_last_image,
					pci_ext_data->flags);

			gk20a_dbg_fn("expansion rom offset %x",
					pci_data->image_len * 512);
			g->bios.expansion_rom_offset =
				pci_data->image_len * 512;
			offset += pci_ext_data->sub_image_len * 512;
			last = pci_ext_data->priv_last_image;
		} else {
			offset += pci_data->image_len * 512;
			last = pci_data->last_image;
		}
	}

	gk20a_dbg_info("read bios");
	for (i = 0; i < g->bios.size - 6; i++) {
		if (nvgpu_bios_rdu16(g, i) == BIT_HEADER_ID &&
		    nvgpu_bios_rdu32(g, i+2) ==  BIT_HEADER_SIGNATURE) {
			nvgpu_bios_parse_bit(g, i);
			found = true;
		}
	}

	if (!found)
		return -EINVAL;
	else
		return 0;
}

static void nvgpu_bios_parse_biosdata(struct gk20a *g, int offset)
{
	struct biosdata biosdata;

	memcpy(&biosdata, &g->bios.data[offset], sizeof(biosdata));
	gk20a_dbg_fn("bios version %x, oem version %x",
			biosdata.version,
			biosdata.oem_version);

	g->bios.vbios_version = biosdata.version;
	g->bios.vbios_oem_version = biosdata.oem_version;
}

static void nvgpu_bios_parse_nvinit_ptrs(struct gk20a *g, int offset)
{
	struct nvinit_ptrs nvinit_ptrs;

	memcpy(&nvinit_ptrs, &g->bios.data[offset], sizeof(nvinit_ptrs));
	gk20a_dbg_fn("devinit ptr %x size %d", nvinit_ptrs.devinit_tables_ptr,
			nvinit_ptrs.devinit_tables_size);
	gk20a_dbg_fn("bootscripts ptr %x size %d", nvinit_ptrs.bootscripts_ptr,
			nvinit_ptrs.bootscripts_size);

	g->bios.devinit_tables = &g->bios.data[nvinit_ptrs.devinit_tables_ptr];
	g->bios.devinit_tables_size = nvinit_ptrs.devinit_tables_size;
	g->bios.bootscripts = &g->bios.data[nvinit_ptrs.bootscripts_ptr];
	g->bios.bootscripts_size = nvinit_ptrs.bootscripts_size;
	g->bios.condition_table_ptr = nvinit_ptrs.condition_table_ptr;
}

static void nvgpu_bios_parse_memory_ptrs(struct gk20a *g, int offset, u8 version)
{
	struct memory_ptrs_v1 v1;
	struct memory_ptrs_v2 v2;

	switch (version) {
	case MEMORY_PTRS_V1:
		memcpy(&v1, &g->bios.data[offset], sizeof(v1));
		g->bios.mem_strap_data_count = v1.mem_strap_data_count;
		g->bios.mem_strap_xlat_tbl_ptr = v1.mem_strap_xlat_tbl_ptr;
		return;
	case MEMORY_PTRS_V2:
		memcpy(&v2, &g->bios.data[offset], sizeof(v2));
		g->bios.mem_strap_data_count = v2.mem_strap_data_count;
		g->bios.mem_strap_xlat_tbl_ptr = v2.mem_strap_xlat_tbl_ptr;
		return;
	default:
		nvgpu_err(g, "unknown vbios memory table version %x", version);
		return;
	}
}

static void nvgpu_bios_parse_devinit_appinfo(struct gk20a *g, int dmem_offset)
{
	struct devinit_engine_interface interface;

	memcpy(&interface, &g->bios.devinit.dmem[dmem_offset], sizeof(interface));
	gk20a_dbg_fn("devinit version %x tables phys %x script phys %x size %d",
			interface.version,
			interface.tables_phys_base,
			interface.script_phys_base,
			interface.script_size);

	if (interface.version != 1)
		return;
	g->bios.devinit_tables_phys_base = interface.tables_phys_base;
	g->bios.devinit_script_phys_base = interface.script_phys_base;
}

static int nvgpu_bios_parse_appinfo_table(struct gk20a *g, int offset)
{
	struct application_interface_table_hdr_v1 hdr;
	int i;

	memcpy(&hdr, &g->bios.data[offset], sizeof(hdr));

	gk20a_dbg_fn("appInfoHdr ver %d size %d entrySize %d entryCount %d",
			hdr.version, hdr.header_size,
			hdr.entry_size, hdr.entry_count);

	if (hdr.version != 1)
		return 0;

	offset += sizeof(hdr);
	for (i = 0; i < hdr.entry_count; i++) {
		struct application_interface_entry_v1 entry;

		memcpy(&entry, &g->bios.data[offset], sizeof(entry));

		gk20a_dbg_fn("appInfo id %d dmem_offset %d",
				entry.id, entry.dmem_offset);

		if (entry.id == APPINFO_ID_DEVINIT)
			nvgpu_bios_parse_devinit_appinfo(g, entry.dmem_offset);

		offset += hdr.entry_size;
	}

	return 0;
}

static int nvgpu_bios_parse_falcon_ucode_desc(struct gk20a *g,
		struct nvgpu_bios_ucode *ucode, int offset)
{
	union falcon_ucode_desc udesc;
	struct falcon_ucode_desc_v2 desc;
	u8 version;
	u16 desc_size;

	memcpy(&udesc, &g->bios.data[offset], sizeof(udesc));

	if (FALCON_UCODE_IS_VERSION_AVAILABLE(udesc)) {
		version = FALCON_UCODE_GET_VERSION(udesc);
		desc_size = FALCON_UCODE_GET_DESC_SIZE(udesc);
	} else {
		version = 1;
		desc_size = sizeof(udesc.v1);
	}

	switch (version) {
	case 1:
		desc.stored_size = udesc.v1.hdr_size.stored_size;
		desc.uncompressed_size = udesc.v1.uncompressed_size;
		desc.virtual_entry = udesc.v1.virtual_entry;
		desc.interface_offset = udesc.v1.interface_offset;
		desc.imem_phys_base = udesc.v1.imem_phys_base;
		desc.imem_load_size = udesc.v1.imem_load_size;
		desc.imem_virt_base = udesc.v1.imem_virt_base;
		desc.imem_sec_base = udesc.v1.imem_sec_base;
		desc.imem_sec_size = udesc.v1.imem_sec_size;
		desc.dmem_offset = udesc.v1.dmem_offset;
		desc.dmem_phys_base = udesc.v1.dmem_phys_base;
		desc.dmem_load_size = udesc.v1.dmem_load_size;
		break;
	case 2:
		memcpy(&desc, &udesc, sizeof(udesc.v2));
		break;
	default:
		gk20a_dbg_info("invalid version");
		return -EINVAL;
	}

	gk20a_dbg_info("falcon ucode desc version %x len %x", version, desc_size);

	gk20a_dbg_info("falcon ucode desc stored size %x uncompressed size %x",
			desc.stored_size, desc.uncompressed_size);
	gk20a_dbg_info("falcon ucode desc virtualEntry %x, interfaceOffset %x",
			desc.virtual_entry, desc.interface_offset);
	gk20a_dbg_info("falcon ucode IMEM phys base %x, load size %x virt base %x sec base %x sec size %x",
			desc.imem_phys_base, desc.imem_load_size,
			desc.imem_virt_base, desc.imem_sec_base,
			desc.imem_sec_size);
	gk20a_dbg_info("falcon ucode DMEM offset %x phys base %x, load size %x",
			desc.dmem_offset, desc.dmem_phys_base,
			desc.dmem_load_size);

	if (desc.stored_size != desc.uncompressed_size) {
		gk20a_dbg_info("does not match");
		return -EINVAL;
	}

	ucode->code_entry_point = desc.virtual_entry;
	ucode->bootloader = &g->bios.data[offset] + desc_size;
	ucode->bootloader_phys_base = desc.imem_phys_base;
	ucode->bootloader_size = desc.imem_load_size - desc.imem_sec_size;
	ucode->ucode = ucode->bootloader + ucode->bootloader_size;
	ucode->phys_base = ucode->bootloader_phys_base + ucode->bootloader_size;
	ucode->size = desc.imem_sec_size;
	ucode->dmem = ucode->bootloader + desc.dmem_offset;
	ucode->dmem_phys_base = desc.dmem_phys_base;
	ucode->dmem_size = desc.dmem_load_size;

	return nvgpu_bios_parse_appinfo_table(g,
			offset + desc_size +
			desc.dmem_offset + desc.interface_offset);
}

static int nvgpu_bios_parse_falcon_ucode_table(struct gk20a *g, int offset)
{
	struct falcon_ucode_table_hdr_v1 hdr;
	int i;

	memcpy(&hdr, &g->bios.data[offset], sizeof(hdr));
	gk20a_dbg_fn("falcon ucode table ver %d size %d entrySize %d entryCount %d descVer %d descSize %d",
			hdr.version, hdr.header_size,
			hdr.entry_size, hdr.entry_count,
			hdr.desc_version, hdr.desc_size);

	if (hdr.version != 1)
		return -EINVAL;

	offset += hdr.header_size;

	for (i = 0; i < hdr.entry_count; i++) {
		struct falcon_ucode_table_entry_v1 entry;

		memcpy(&entry, &g->bios.data[offset], sizeof(entry));

		gk20a_dbg_fn("falcon ucode table entry appid %x targetId %x descPtr %x",
				entry.application_id, entry.target_id,
				entry.desc_ptr);

		if (entry.target_id == TARGET_ID_PMU &&
		    entry.application_id == APPLICATION_ID_DEVINIT) {
			int err;

			err = nvgpu_bios_parse_falcon_ucode_desc(g,
					&g->bios.devinit, entry.desc_ptr);
			if (err)
				err = nvgpu_bios_parse_falcon_ucode_desc(g,
					&g->bios.devinit,
					entry.desc_ptr +
					 g->bios.expansion_rom_offset);

			if (err)
				nvgpu_err(g,
					  "could not parse devinit ucode desc");
		} else if (entry.target_id == TARGET_ID_PMU &&
		    entry.application_id == APPLICATION_ID_PRE_OS) {
			int err;

			err = nvgpu_bios_parse_falcon_ucode_desc(g,
					&g->bios.preos, entry.desc_ptr);
			if (err)
				err = nvgpu_bios_parse_falcon_ucode_desc(g,
					&g->bios.preos,
					entry.desc_ptr +
					 g->bios.expansion_rom_offset);

			if (err)
				nvgpu_err(g,
					  "could not parse preos ucode desc");
		}

		offset += hdr.entry_size;
	}

	return 0;
}

static void nvgpu_bios_parse_falcon_data_v2(struct gk20a *g, int offset)
{
	struct falcon_data_v2 falcon_data;
	int err;

	memcpy(&falcon_data, &g->bios.data[offset], sizeof(falcon_data));
	gk20a_dbg_fn("falcon ucode table ptr %x",
			falcon_data.falcon_ucode_table_ptr);
	err = nvgpu_bios_parse_falcon_ucode_table(g,
			falcon_data.falcon_ucode_table_ptr);
	if (err)
		err = nvgpu_bios_parse_falcon_ucode_table(g,
				falcon_data.falcon_ucode_table_ptr +
			g->bios.expansion_rom_offset);

	if (err)
		nvgpu_err(g, "could not parse falcon ucode table");
}

void *nvgpu_bios_get_perf_table_ptrs(struct gk20a *g,
		struct bit_token *ptoken, u8 table_id)
{
	u32 perf_table_id_offset = 0;
	u8 *perf_table_ptr = NULL;
	u8 data_size = 4;

	if (ptoken != NULL) {

		if (ptoken->token_id == TOKEN_ID_VIRT_PTRS) {
			perf_table_id_offset = *((u16 *)&g->bios.data[
				ptoken->data_ptr +
				(table_id * PERF_PTRS_WIDTH_16)]);
			data_size = PERF_PTRS_WIDTH_16;
		} else {
			perf_table_id_offset = *((u32 *)&g->bios.data[
				ptoken->data_ptr +
				(table_id * PERF_PTRS_WIDTH)]);
			data_size = PERF_PTRS_WIDTH;
		}
	} else
		return (void *)perf_table_ptr;

	if (table_id < (ptoken->data_size/data_size)) {

		gk20a_dbg_info("Perf_Tbl_ID-offset 0x%x Tbl_ID_Ptr-offset- 0x%x",
					(ptoken->data_ptr +
					(table_id * data_size)),
					perf_table_id_offset);

		if (perf_table_id_offset != 0) {
			/* check is perf_table_id_offset is > 64k */
			if (perf_table_id_offset & ~0xFFFF)
				perf_table_ptr =
					&g->bios.data[g->bios.expansion_rom_offset +
						perf_table_id_offset];
			else
				perf_table_ptr =
					&g->bios.data[perf_table_id_offset];
		} else
			nvgpu_warn(g, "PERF TABLE ID %d is NULL",
					table_id);
	} else
		nvgpu_warn(g, "INVALID PERF TABLE ID - %d ", table_id);

	return (void *)perf_table_ptr;
}

static void nvgpu_bios_parse_bit(struct gk20a *g, int offset)
{
	struct bit bit;
	struct bit_token bit_token;
	int i;

	gk20a_dbg_fn("");
	memcpy(&bit, &g->bios.data[offset], sizeof(bit));

	gk20a_dbg_info("BIT header: %04x %08x", bit.id, bit.signature);
	gk20a_dbg_info("tokens: %d entries * %d bytes",
			bit.token_entries, bit.token_size);

	offset += bit.header_size;
	for (i = 0; i < bit.token_entries; i++) {
		memcpy(&bit_token, &g->bios.data[offset], sizeof(bit_token));

		gk20a_dbg_info("BIT token id %d ptr %d size %d ver %d",
				bit_token.token_id, bit_token.data_ptr,
				bit_token.data_size, bit_token.data_version);

		switch (bit_token.token_id) {
		case TOKEN_ID_BIOSDATA:
			nvgpu_bios_parse_biosdata(g, bit_token.data_ptr);
			break;
		case TOKEN_ID_NVINIT_PTRS:
			nvgpu_bios_parse_nvinit_ptrs(g, bit_token.data_ptr);
			break;
		case TOKEN_ID_FALCON_DATA:
			if (bit_token.data_version == 2)
				nvgpu_bios_parse_falcon_data_v2(g,
						bit_token.data_ptr);
			break;
		case TOKEN_ID_PERF_PTRS:
			g->bios.perf_token =
				(struct bit_token *)&g->bios.data[offset];
			break;
		case TOKEN_ID_CLOCK_PTRS:
			g->bios.clock_token =
				(struct bit_token *)&g->bios.data[offset];
			break;
		case TOKEN_ID_VIRT_PTRS:
			g->bios.virt_token =
				(struct bit_token *)&g->bios.data[offset];
			break;
		case TOKEN_ID_MEMORY_PTRS:
			nvgpu_bios_parse_memory_ptrs(g, bit_token.data_ptr,
				bit_token.data_version);
		default:
			break;
		}

		offset += bit.token_size;
	}
	gk20a_dbg_fn("done");
}

static u32 __nvgpu_bios_readbyte(struct gk20a *g, u32 offset)
{
	return (u32) g->bios.data[offset];
}

u8 nvgpu_bios_read_u8(struct gk20a *g, u32 offset)
{
	return (u8) __nvgpu_bios_readbyte(g, offset);
}

s8 nvgpu_bios_read_s8(struct gk20a *g, u32 offset)
{
	u32 val;
	val = __nvgpu_bios_readbyte(g, offset);
	val = val & 0x80 ? (val | ~0xff) : val;

	return (s8) val;
}

u16 nvgpu_bios_read_u16(struct gk20a *g, u32 offset)
{
	u16 val;

	val = __nvgpu_bios_readbyte(g, offset) |
		(__nvgpu_bios_readbyte(g, offset+1) << 8);

	return val;
}

u32 nvgpu_bios_read_u32(struct gk20a *g, u32 offset)
{
	u32 val;

	val = __nvgpu_bios_readbyte(g, offset) |
		(__nvgpu_bios_readbyte(g, offset+1) << 8) |
		(__nvgpu_bios_readbyte(g, offset+2) << 16) |
		(__nvgpu_bios_readbyte(g, offset+3) << 24);

	return val;
}

static void nvgpu_bios_init_xmemsel_zm_nv_reg_array(struct gk20a *g, bool *condition,
	u32 reg, u32 stride, u32 count, u32 data_table_offset)
{
	u8 i;
	u32 data, strap, index;

	if (*condition) {

		strap = gk20a_readl(g, gc6_sci_strap_r()) & 0xf;

		index = g->bios.mem_strap_xlat_tbl_ptr ?
			nvgpu_bios_read_u8(g, g->bios.mem_strap_xlat_tbl_ptr +
				strap) : strap;

		for (i = 0; i < count; i++) {
			data = nvgpu_bios_read_u32(g, data_table_offset + ((i *
				g->bios.mem_strap_data_count + index) *
				sizeof(u32)));
			gk20a_writel(g, reg, data);
			reg += stride;
		}
	}
}

static void gp106_init_condition(struct gk20a *g, bool *condition,
	u32 condition_id)
{
	struct condition_entry entry;

	entry.cond_addr = nvgpu_bios_read_u32(g, g->bios.condition_table_ptr +
		sizeof(entry)*condition_id);
	entry.cond_mask = nvgpu_bios_read_u32(g, g->bios.condition_table_ptr +
		sizeof(entry)*condition_id + 4);
	entry.cond_compare = nvgpu_bios_read_u32(g, g->bios.condition_table_ptr +
		sizeof(entry)*condition_id + 8);

	if ((gk20a_readl(g, entry.cond_addr) & entry.cond_mask)
		!= entry.cond_compare) {
		*condition = false;
	}
}

int nvgpu_bios_execute_script(struct gk20a *g, u32 offset)
{
	u8 opcode;
	u32 ip;
	u32 operand[8];
	bool condition, end;
	int status = 0;

	ip = offset;
	condition = true;
	end = false;

	while (!end) {

		opcode = nvgpu_bios_read_u8(g, ip++);

		switch (opcode) {

		case INIT_XMEMSEL_ZM_NV_REG_ARRAY:
			operand[0] = nvgpu_bios_read_u32(g, ip);
			operand[1] = nvgpu_bios_read_u8(g, ip+4);
			operand[2] = nvgpu_bios_read_u8(g, ip+5);
			ip += 6;

			nvgpu_bios_init_xmemsel_zm_nv_reg_array(g, &condition,
				operand[0], operand[1], operand[2], ip);
			ip += operand[2] * sizeof(u32) *
				g->bios.mem_strap_data_count;
			break;

		case INIT_CONDITION:
			operand[0] = nvgpu_bios_read_u8(g, ip);
			ip++;

			gp106_init_condition(g, &condition, operand[0]);
			break;

		case INIT_RESUME:
			condition = true;
			break;

		case INIT_DONE:
			end = true;
			break;

		default:
			nvgpu_err(g, "opcode: 0x%02x", opcode);
			end = true;
			status = -EINVAL;
			break;
		}
	}

	return status;
}