aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/clocksource.h
diff options
context:
space:
mode:
authorjohn stultz <johnstul@us.ibm.com>2006-06-26 03:25:07 -0400
committerLinus Torvalds <torvalds@g5.osdl.org>2006-06-26 12:58:20 -0400
commit5eb6d20533d14a432df714520939a6181e28f099 (patch)
treeb032147620a8e213356658783f8037d2f5623b57 /include/linux/clocksource.h
parent260a42309b31cbc54eb4b6b85649e412bcad053f (diff)
[PATCH] Time: Use clocksource abstraction for NTP adjustments
Instead of incrementing xtime by tick_nsec + ntp adjustments, use the clocksource abstraction to increment and scale time. Using the clocksource abstraction allows other clocksources to be used consistently in the face of late or lost ticks, while preserving the existing behavior via the jiffies clocksource. This removes the need to keep time_phase adjustments as we just use the current_tick_length() function as the NTP interface and accumulate time using shifted nanoseconds. The basics of this design was by Roman Zippel, however it is my own interpretation and implementation, so the credit should go to him and the blame to me. Signed-off-by: John Stultz <johnstul@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Diffstat (limited to 'include/linux/clocksource.h')
-rw-r--r--include/linux/clocksource.h97
1 files changed, 97 insertions, 0 deletions
diff --git a/include/linux/clocksource.h b/include/linux/clocksource.h
index c4187cda0ee4..c4739c4e3039 100644
--- a/include/linux/clocksource.h
+++ b/include/linux/clocksource.h
@@ -173,6 +173,103 @@ static inline void calculate_clocksource_interval(struct clocksource *c,
173 c->interval_snsecs = (u64)c->interval_cycles * c->mult; 173 c->interval_snsecs = (u64)c->interval_cycles * c->mult;
174} 174}
175 175
176
177/**
178 * error_aproximation - calculates an error adjustment for a given error
179 *
180 * @error: Error value (unsigned)
181 * @unit: Adjustment unit
182 *
183 * For a given error value, this function takes the adjustment unit
184 * and uses binary approximation to return a power of two adjustment value.
185 *
186 * This function is only for use by the the make_ntp_adj() function
187 * and you must hold a write on the xtime_lock when calling.
188 */
189static inline int error_aproximation(u64 error, u64 unit)
190{
191 static int saved_adj = 0;
192 u64 adjusted_unit = unit << saved_adj;
193
194 if (error > (adjusted_unit * 2)) {
195 /* large error, so increment the adjustment factor */
196 saved_adj++;
197 } else if (error > adjusted_unit) {
198 /* just right, don't touch it */
199 } else if (saved_adj) {
200 /* small error, so drop the adjustment factor */
201 saved_adj--;
202 return 0;
203 }
204
205 return saved_adj;
206}
207
208
209/**
210 * make_ntp_adj - Adjusts the specified clocksource for a given error
211 *
212 * @clock: Pointer to clock to be adjusted
213 * @cycles_delta: Current unacounted cycle delta
214 * @error: Pointer to current error value
215 *
216 * Returns clock shifted nanosecond adjustment to be applied against
217 * the accumulated time value (ie: xtime).
218 *
219 * If the error value is large enough, this function calulates the
220 * (power of two) adjustment value, and adjusts the clock's mult and
221 * interval_snsecs values accordingly.
222 *
223 * However, since there may be some unaccumulated cycles, to avoid
224 * time inconsistencies we must adjust the accumulation value
225 * accordingly.
226 *
227 * This is not very intuitive, so the following proof should help:
228 * The basic timeofday algorithm: base + cycle * mult
229 * Thus:
230 * new_base + cycle * new_mult = old_base + cycle * old_mult
231 * new_base = old_base + cycle * old_mult - cycle * new_mult
232 * new_base = old_base + cycle * (old_mult - new_mult)
233 * new_base - old_base = cycle * (old_mult - new_mult)
234 * base_delta = cycle * (old_mult - new_mult)
235 * base_delta = cycle * (mult_delta)
236 *
237 * Where mult_delta is the adjustment value made to mult
238 *
239 */
240static inline s64 make_ntp_adj(struct clocksource *clock,
241 cycles_t cycles_delta, s64* error)
242{
243 s64 ret = 0;
244 if (*error > ((s64)clock->interval_cycles+1)/2) {
245 /* calculate adjustment value */
246 int adjustment = error_aproximation(*error,
247 clock->interval_cycles);
248 /* adjust clock */
249 clock->mult += 1 << adjustment;
250 clock->interval_snsecs += clock->interval_cycles << adjustment;
251
252 /* adjust the base and error for the adjustment */
253 ret = -(cycles_delta << adjustment);
254 *error -= clock->interval_cycles << adjustment;
255 /* XXX adj error for cycle_delta offset? */
256 } else if ((-(*error)) > ((s64)clock->interval_cycles+1)/2) {
257 /* calculate adjustment value */
258 int adjustment = error_aproximation(-(*error),
259 clock->interval_cycles);
260 /* adjust clock */
261 clock->mult -= 1 << adjustment;
262 clock->interval_snsecs -= clock->interval_cycles << adjustment;
263
264 /* adjust the base and error for the adjustment */
265 ret = cycles_delta << adjustment;
266 *error += clock->interval_cycles << adjustment;
267 /* XXX adj error for cycle_delta offset? */
268 }
269 return ret;
270}
271
272
176/* used to install a new clocksource */ 273/* used to install a new clocksource */
177int register_clocksource(struct clocksource*); 274int register_clocksource(struct clocksource*);
178void reselect_clocksource(void); 275void reselect_clocksource(void);