aboutsummaryrefslogtreecommitdiffstats
path: root/fs
diff options
context:
space:
mode:
authorMichael Halcrow <mhalcrow@google.com>2015-04-12 00:43:56 -0400
committerTheodore Ts'o <tytso@mit.edu>2015-04-12 00:43:56 -0400
commitb30ab0e03407d2aa2d9316cba199c757e4bfc8ad (patch)
tree900754eb3fe069f90bb5ea2c1df1ed88cf701eb5 /fs
parent9bd8212f981ea6375911fe055382ad7529be5b28 (diff)
ext4 crypto: add ext4 encryption facilities
On encrypt, we will re-assign the buffer_heads to point to a bounce page rather than the control_page (which is the original page to write that contains the plaintext). The block I/O occurs against the bounce page. On write completion, we re-assign the buffer_heads to the original plaintext page. On decrypt, we will attach a read completion callback to the bio struct. This read completion will decrypt the read contents in-place prior to setting the page up-to-date. The current encryption mode, AES-256-XTS, lacks cryptographic integrity. AES-256-GCM is in-plan, but we will need to devise a mechanism for handling the integrity data. Signed-off-by: Michael Halcrow <mhalcrow@google.com> Signed-off-by: Ildar Muslukhov <ildarm@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Diffstat (limited to 'fs')
-rw-r--r--fs/ext4/Makefile2
-rw-r--r--fs/ext4/crypto.c558
-rw-r--r--fs/ext4/crypto_policy.c8
-rw-r--r--fs/ext4/ext4.h52
-rw-r--r--fs/ext4/ext4_crypto.h55
-rw-r--r--fs/ext4/super.c8
6 files changed, 682 insertions, 1 deletions
diff --git a/fs/ext4/Makefile b/fs/ext4/Makefile
index 3886ee45f556..1b1c5619523d 100644
--- a/fs/ext4/Makefile
+++ b/fs/ext4/Makefile
@@ -12,4 +12,4 @@ ext4-y := balloc.o bitmap.o dir.o file.o fsync.o ialloc.o inode.o page-io.o \
12 12
13ext4-$(CONFIG_EXT4_FS_POSIX_ACL) += acl.o 13ext4-$(CONFIG_EXT4_FS_POSIX_ACL) += acl.o
14ext4-$(CONFIG_EXT4_FS_SECURITY) += xattr_security.o 14ext4-$(CONFIG_EXT4_FS_SECURITY) += xattr_security.o
15ext4-$(CONFIG_EXT4_FS_ENCRYPTION) += crypto_policy.o 15ext4-$(CONFIG_EXT4_FS_ENCRYPTION) += crypto_policy.o crypto.o
diff --git a/fs/ext4/crypto.c b/fs/ext4/crypto.c
new file mode 100644
index 000000000000..8ff15273ab0c
--- /dev/null
+++ b/fs/ext4/crypto.c
@@ -0,0 +1,558 @@
1/*
2 * linux/fs/ext4/crypto.c
3 *
4 * Copyright (C) 2015, Google, Inc.
5 *
6 * This contains encryption functions for ext4
7 *
8 * Written by Michael Halcrow, 2014.
9 *
10 * Filename encryption additions
11 * Uday Savagaonkar, 2014
12 * Encryption policy handling additions
13 * Ildar Muslukhov, 2014
14 *
15 * This has not yet undergone a rigorous security audit.
16 *
17 * The usage of AES-XTS should conform to recommendations in NIST
18 * Special Publication 800-38E and IEEE P1619/D16.
19 */
20
21#include <crypto/hash.h>
22#include <crypto/sha.h>
23#include <keys/user-type.h>
24#include <keys/encrypted-type.h>
25#include <linux/crypto.h>
26#include <linux/ecryptfs.h>
27#include <linux/gfp.h>
28#include <linux/kernel.h>
29#include <linux/key.h>
30#include <linux/list.h>
31#include <linux/mempool.h>
32#include <linux/module.h>
33#include <linux/mutex.h>
34#include <linux/random.h>
35#include <linux/scatterlist.h>
36#include <linux/spinlock_types.h>
37
38#include "ext4_extents.h"
39#include "xattr.h"
40
41/* Encryption added and removed here! (L: */
42
43static unsigned int num_prealloc_crypto_pages = 32;
44static unsigned int num_prealloc_crypto_ctxs = 128;
45
46module_param(num_prealloc_crypto_pages, uint, 0444);
47MODULE_PARM_DESC(num_prealloc_crypto_pages,
48 "Number of crypto pages to preallocate");
49module_param(num_prealloc_crypto_ctxs, uint, 0444);
50MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
51 "Number of crypto contexts to preallocate");
52
53static mempool_t *ext4_bounce_page_pool;
54
55static LIST_HEAD(ext4_free_crypto_ctxs);
56static DEFINE_SPINLOCK(ext4_crypto_ctx_lock);
57
58/**
59 * ext4_release_crypto_ctx() - Releases an encryption context
60 * @ctx: The encryption context to release.
61 *
62 * If the encryption context was allocated from the pre-allocated pool, returns
63 * it to that pool. Else, frees it.
64 *
65 * If there's a bounce page in the context, this frees that.
66 */
67void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx)
68{
69 unsigned long flags;
70
71 if (ctx->bounce_page) {
72 if (ctx->flags & EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL)
73 __free_page(ctx->bounce_page);
74 else
75 mempool_free(ctx->bounce_page, ext4_bounce_page_pool);
76 ctx->bounce_page = NULL;
77 }
78 ctx->control_page = NULL;
79 if (ctx->flags & EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL) {
80 if (ctx->tfm)
81 crypto_free_tfm(ctx->tfm);
82 kfree(ctx);
83 } else {
84 spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
85 list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
86 spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
87 }
88}
89
90/**
91 * ext4_alloc_and_init_crypto_ctx() - Allocates and inits an encryption context
92 * @mask: The allocation mask.
93 *
94 * Return: An allocated and initialized encryption context on success. An error
95 * value or NULL otherwise.
96 */
97static struct ext4_crypto_ctx *ext4_alloc_and_init_crypto_ctx(gfp_t mask)
98{
99 struct ext4_crypto_ctx *ctx = kzalloc(sizeof(struct ext4_crypto_ctx),
100 mask);
101
102 if (!ctx)
103 return ERR_PTR(-ENOMEM);
104 return ctx;
105}
106
107/**
108 * ext4_get_crypto_ctx() - Gets an encryption context
109 * @inode: The inode for which we are doing the crypto
110 *
111 * Allocates and initializes an encryption context.
112 *
113 * Return: An allocated and initialized encryption context on success; error
114 * value or NULL otherwise.
115 */
116struct ext4_crypto_ctx *ext4_get_crypto_ctx(struct inode *inode)
117{
118 struct ext4_crypto_ctx *ctx = NULL;
119 int res = 0;
120 unsigned long flags;
121 struct ext4_encryption_key *key = &EXT4_I(inode)->i_encryption_key;
122
123 if (!ext4_read_workqueue)
124 ext4_init_crypto();
125
126 /*
127 * We first try getting the ctx from a free list because in
128 * the common case the ctx will have an allocated and
129 * initialized crypto tfm, so it's probably a worthwhile
130 * optimization. For the bounce page, we first try getting it
131 * from the kernel allocator because that's just about as fast
132 * as getting it from a list and because a cache of free pages
133 * should generally be a "last resort" option for a filesystem
134 * to be able to do its job.
135 */
136 spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
137 ctx = list_first_entry_or_null(&ext4_free_crypto_ctxs,
138 struct ext4_crypto_ctx, free_list);
139 if (ctx)
140 list_del(&ctx->free_list);
141 spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
142 if (!ctx) {
143 ctx = ext4_alloc_and_init_crypto_ctx(GFP_NOFS);
144 if (IS_ERR(ctx)) {
145 res = PTR_ERR(ctx);
146 goto out;
147 }
148 ctx->flags |= EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
149 } else {
150 ctx->flags &= ~EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
151 }
152
153 /* Allocate a new Crypto API context if we don't already have
154 * one or if it isn't the right mode. */
155 BUG_ON(key->mode == EXT4_ENCRYPTION_MODE_INVALID);
156 if (ctx->tfm && (ctx->mode != key->mode)) {
157 crypto_free_tfm(ctx->tfm);
158 ctx->tfm = NULL;
159 ctx->mode = EXT4_ENCRYPTION_MODE_INVALID;
160 }
161 if (!ctx->tfm) {
162 switch (key->mode) {
163 case EXT4_ENCRYPTION_MODE_AES_256_XTS:
164 ctx->tfm = crypto_ablkcipher_tfm(
165 crypto_alloc_ablkcipher("xts(aes)", 0, 0));
166 break;
167 case EXT4_ENCRYPTION_MODE_AES_256_GCM:
168 /* TODO(mhalcrow): AEAD w/ gcm(aes);
169 * crypto_aead_setauthsize() */
170 ctx->tfm = ERR_PTR(-ENOTSUPP);
171 break;
172 default:
173 BUG();
174 }
175 if (IS_ERR_OR_NULL(ctx->tfm)) {
176 res = PTR_ERR(ctx->tfm);
177 ctx->tfm = NULL;
178 goto out;
179 }
180 ctx->mode = key->mode;
181 }
182 BUG_ON(key->size != ext4_encryption_key_size(key->mode));
183
184 /* There shouldn't be a bounce page attached to the crypto
185 * context at this point. */
186 BUG_ON(ctx->bounce_page);
187
188out:
189 if (res) {
190 if (!IS_ERR_OR_NULL(ctx))
191 ext4_release_crypto_ctx(ctx);
192 ctx = ERR_PTR(res);
193 }
194 return ctx;
195}
196
197struct workqueue_struct *ext4_read_workqueue;
198static DEFINE_MUTEX(crypto_init);
199
200/**
201 * ext4_exit_crypto() - Shutdown the ext4 encryption system
202 */
203void ext4_exit_crypto(void)
204{
205 struct ext4_crypto_ctx *pos, *n;
206
207 list_for_each_entry_safe(pos, n, &ext4_free_crypto_ctxs, free_list) {
208 if (pos->bounce_page) {
209 if (pos->flags &
210 EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL) {
211 __free_page(pos->bounce_page);
212 } else {
213 mempool_free(pos->bounce_page,
214 ext4_bounce_page_pool);
215 }
216 }
217 if (pos->tfm)
218 crypto_free_tfm(pos->tfm);
219 kfree(pos);
220 }
221 INIT_LIST_HEAD(&ext4_free_crypto_ctxs);
222 if (ext4_bounce_page_pool)
223 mempool_destroy(ext4_bounce_page_pool);
224 ext4_bounce_page_pool = NULL;
225 if (ext4_read_workqueue)
226 destroy_workqueue(ext4_read_workqueue);
227 ext4_read_workqueue = NULL;
228}
229
230/**
231 * ext4_init_crypto() - Set up for ext4 encryption.
232 *
233 * We only call this when we start accessing encrypted files, since it
234 * results in memory getting allocated that wouldn't otherwise be used.
235 *
236 * Return: Zero on success, non-zero otherwise.
237 */
238int ext4_init_crypto(void)
239{
240 int i, res;
241
242 mutex_lock(&crypto_init);
243 if (ext4_read_workqueue)
244 goto already_initialized;
245 ext4_read_workqueue = alloc_workqueue("ext4_crypto", WQ_HIGHPRI, 0);
246 if (!ext4_read_workqueue) {
247 res = -ENOMEM;
248 goto fail;
249 }
250
251 for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
252 struct ext4_crypto_ctx *ctx;
253
254 ctx = ext4_alloc_and_init_crypto_ctx(GFP_KERNEL);
255 if (IS_ERR(ctx)) {
256 res = PTR_ERR(ctx);
257 goto fail;
258 }
259 list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
260 }
261
262 ext4_bounce_page_pool =
263 mempool_create_page_pool(num_prealloc_crypto_pages, 0);
264 if (!ext4_bounce_page_pool) {
265 res = -ENOMEM;
266 goto fail;
267 }
268already_initialized:
269 mutex_unlock(&crypto_init);
270 return 0;
271fail:
272 ext4_exit_crypto();
273 mutex_unlock(&crypto_init);
274 return res;
275}
276
277void ext4_restore_control_page(struct page *data_page)
278{
279 struct ext4_crypto_ctx *ctx =
280 (struct ext4_crypto_ctx *)page_private(data_page);
281
282 set_page_private(data_page, (unsigned long)NULL);
283 ClearPagePrivate(data_page);
284 unlock_page(data_page);
285 ext4_release_crypto_ctx(ctx);
286}
287
288/**
289 * ext4_crypt_complete() - The completion callback for page encryption
290 * @req: The asynchronous encryption request context
291 * @res: The result of the encryption operation
292 */
293static void ext4_crypt_complete(struct crypto_async_request *req, int res)
294{
295 struct ext4_completion_result *ecr = req->data;
296
297 if (res == -EINPROGRESS)
298 return;
299 ecr->res = res;
300 complete(&ecr->completion);
301}
302
303typedef enum {
304 EXT4_DECRYPT = 0,
305 EXT4_ENCRYPT,
306} ext4_direction_t;
307
308static int ext4_page_crypto(struct ext4_crypto_ctx *ctx,
309 struct inode *inode,
310 ext4_direction_t rw,
311 pgoff_t index,
312 struct page *src_page,
313 struct page *dest_page)
314
315{
316 u8 xts_tweak[EXT4_XTS_TWEAK_SIZE];
317 struct ablkcipher_request *req = NULL;
318 DECLARE_EXT4_COMPLETION_RESULT(ecr);
319 struct scatterlist dst, src;
320 struct ext4_inode_info *ei = EXT4_I(inode);
321 struct crypto_ablkcipher *atfm = __crypto_ablkcipher_cast(ctx->tfm);
322 int res = 0;
323
324 BUG_ON(!ctx->tfm);
325 BUG_ON(ctx->mode != ei->i_encryption_key.mode);
326
327 if (ctx->mode != EXT4_ENCRYPTION_MODE_AES_256_XTS) {
328 printk_ratelimited(KERN_ERR
329 "%s: unsupported crypto algorithm: %d\n",
330 __func__, ctx->mode);
331 return -ENOTSUPP;
332 }
333
334 crypto_ablkcipher_clear_flags(atfm, ~0);
335 crypto_tfm_set_flags(ctx->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
336
337 res = crypto_ablkcipher_setkey(atfm, ei->i_encryption_key.raw,
338 ei->i_encryption_key.size);
339 if (res) {
340 printk_ratelimited(KERN_ERR
341 "%s: crypto_ablkcipher_setkey() failed\n",
342 __func__);
343 return res;
344 }
345 req = ablkcipher_request_alloc(atfm, GFP_NOFS);
346 if (!req) {
347 printk_ratelimited(KERN_ERR
348 "%s: crypto_request_alloc() failed\n",
349 __func__);
350 return -ENOMEM;
351 }
352 ablkcipher_request_set_callback(
353 req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
354 ext4_crypt_complete, &ecr);
355
356 BUILD_BUG_ON(EXT4_XTS_TWEAK_SIZE < sizeof(index));
357 memcpy(xts_tweak, &index, sizeof(index));
358 memset(&xts_tweak[sizeof(index)], 0,
359 EXT4_XTS_TWEAK_SIZE - sizeof(index));
360
361 sg_init_table(&dst, 1);
362 sg_set_page(&dst, dest_page, PAGE_CACHE_SIZE, 0);
363 sg_init_table(&src, 1);
364 sg_set_page(&src, src_page, PAGE_CACHE_SIZE, 0);
365 ablkcipher_request_set_crypt(req, &src, &dst, PAGE_CACHE_SIZE,
366 xts_tweak);
367 if (rw == EXT4_DECRYPT)
368 res = crypto_ablkcipher_decrypt(req);
369 else
370 res = crypto_ablkcipher_encrypt(req);
371 if (res == -EINPROGRESS || res == -EBUSY) {
372 BUG_ON(req->base.data != &ecr);
373 wait_for_completion(&ecr.completion);
374 res = ecr.res;
375 }
376 ablkcipher_request_free(req);
377 if (res) {
378 printk_ratelimited(
379 KERN_ERR
380 "%s: crypto_ablkcipher_encrypt() returned %d\n",
381 __func__, res);
382 return res;
383 }
384 return 0;
385}
386
387/**
388 * ext4_encrypt() - Encrypts a page
389 * @inode: The inode for which the encryption should take place
390 * @plaintext_page: The page to encrypt. Must be locked.
391 *
392 * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
393 * encryption context.
394 *
395 * Called on the page write path. The caller must call
396 * ext4_restore_control_page() on the returned ciphertext page to
397 * release the bounce buffer and the encryption context.
398 *
399 * Return: An allocated page with the encrypted content on success. Else, an
400 * error value or NULL.
401 */
402struct page *ext4_encrypt(struct inode *inode,
403 struct page *plaintext_page)
404{
405 struct ext4_crypto_ctx *ctx;
406 struct page *ciphertext_page = NULL;
407 int err;
408
409 BUG_ON(!PageLocked(plaintext_page));
410
411 ctx = ext4_get_crypto_ctx(inode);
412 if (IS_ERR(ctx))
413 return (struct page *) ctx;
414
415 /* The encryption operation will require a bounce page. */
416 ciphertext_page = alloc_page(GFP_NOFS);
417 if (!ciphertext_page) {
418 /* This is a potential bottleneck, but at least we'll have
419 * forward progress. */
420 ciphertext_page = mempool_alloc(ext4_bounce_page_pool,
421 GFP_NOFS);
422 if (WARN_ON_ONCE(!ciphertext_page)) {
423 ciphertext_page = mempool_alloc(ext4_bounce_page_pool,
424 GFP_NOFS | __GFP_WAIT);
425 }
426 ctx->flags &= ~EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
427 } else {
428 ctx->flags |= EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
429 }
430 ctx->bounce_page = ciphertext_page;
431 ctx->control_page = plaintext_page;
432 err = ext4_page_crypto(ctx, inode, EXT4_ENCRYPT, plaintext_page->index,
433 plaintext_page, ciphertext_page);
434 if (err) {
435 ext4_release_crypto_ctx(ctx);
436 return ERR_PTR(err);
437 }
438 SetPagePrivate(ciphertext_page);
439 set_page_private(ciphertext_page, (unsigned long)ctx);
440 lock_page(ciphertext_page);
441 return ciphertext_page;
442}
443
444/**
445 * ext4_decrypt() - Decrypts a page in-place
446 * @ctx: The encryption context.
447 * @page: The page to decrypt. Must be locked.
448 *
449 * Decrypts page in-place using the ctx encryption context.
450 *
451 * Called from the read completion callback.
452 *
453 * Return: Zero on success, non-zero otherwise.
454 */
455int ext4_decrypt(struct ext4_crypto_ctx *ctx, struct page *page)
456{
457 BUG_ON(!PageLocked(page));
458
459 return ext4_page_crypto(ctx, page->mapping->host,
460 EXT4_DECRYPT, page->index, page, page);
461}
462
463/*
464 * Convenience function which takes care of allocating and
465 * deallocating the encryption context
466 */
467int ext4_decrypt_one(struct inode *inode, struct page *page)
468{
469 int ret;
470
471 struct ext4_crypto_ctx *ctx = ext4_get_crypto_ctx(inode);
472
473 if (!ctx)
474 return -ENOMEM;
475 ret = ext4_decrypt(ctx, page);
476 ext4_release_crypto_ctx(ctx);
477 return ret;
478}
479
480int ext4_encrypted_zeroout(struct inode *inode, struct ext4_extent *ex)
481{
482 struct ext4_crypto_ctx *ctx;
483 struct page *ciphertext_page = NULL;
484 struct bio *bio;
485 ext4_lblk_t lblk = ex->ee_block;
486 ext4_fsblk_t pblk = ext4_ext_pblock(ex);
487 unsigned int len = ext4_ext_get_actual_len(ex);
488 int err = 0;
489
490 BUG_ON(inode->i_sb->s_blocksize != PAGE_CACHE_SIZE);
491
492 ctx = ext4_get_crypto_ctx(inode);
493 if (IS_ERR(ctx))
494 return PTR_ERR(ctx);
495
496 ciphertext_page = alloc_page(GFP_NOFS);
497 if (!ciphertext_page) {
498 /* This is a potential bottleneck, but at least we'll have
499 * forward progress. */
500 ciphertext_page = mempool_alloc(ext4_bounce_page_pool,
501 GFP_NOFS);
502 if (WARN_ON_ONCE(!ciphertext_page)) {
503 ciphertext_page = mempool_alloc(ext4_bounce_page_pool,
504 GFP_NOFS | __GFP_WAIT);
505 }
506 ctx->flags &= ~EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
507 } else {
508 ctx->flags |= EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
509 }
510 ctx->bounce_page = ciphertext_page;
511
512 while (len--) {
513 err = ext4_page_crypto(ctx, inode, EXT4_ENCRYPT, lblk,
514 ZERO_PAGE(0), ciphertext_page);
515 if (err)
516 goto errout;
517
518 bio = bio_alloc(GFP_KERNEL, 1);
519 if (!bio) {
520 err = -ENOMEM;
521 goto errout;
522 }
523 bio->bi_bdev = inode->i_sb->s_bdev;
524 bio->bi_iter.bi_sector = pblk;
525 err = bio_add_page(bio, ciphertext_page,
526 inode->i_sb->s_blocksize, 0);
527 if (err) {
528 bio_put(bio);
529 goto errout;
530 }
531 err = submit_bio_wait(WRITE, bio);
532 if (err)
533 goto errout;
534 }
535 err = 0;
536errout:
537 ext4_release_crypto_ctx(ctx);
538 return err;
539}
540
541bool ext4_valid_contents_enc_mode(uint32_t mode)
542{
543 return (mode == EXT4_ENCRYPTION_MODE_AES_256_XTS);
544}
545
546/**
547 * ext4_validate_encryption_key_size() - Validate the encryption key size
548 * @mode: The key mode.
549 * @size: The key size to validate.
550 *
551 * Return: The validated key size for @mode. Zero if invalid.
552 */
553uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size)
554{
555 if (size == ext4_encryption_key_size(mode))
556 return size;
557 return 0;
558}
diff --git a/fs/ext4/crypto_policy.c b/fs/ext4/crypto_policy.c
index 532b69c0afab..a4bf762b3ba9 100644
--- a/fs/ext4/crypto_policy.c
+++ b/fs/ext4/crypto_policy.c
@@ -52,6 +52,13 @@ static int ext4_create_encryption_context_from_policy(
52 ctx.format = EXT4_ENCRYPTION_CONTEXT_FORMAT_V1; 52 ctx.format = EXT4_ENCRYPTION_CONTEXT_FORMAT_V1;
53 memcpy(ctx.master_key_descriptor, policy->master_key_descriptor, 53 memcpy(ctx.master_key_descriptor, policy->master_key_descriptor,
54 EXT4_KEY_DESCRIPTOR_SIZE); 54 EXT4_KEY_DESCRIPTOR_SIZE);
55 if (!ext4_valid_contents_enc_mode(policy->contents_encryption_mode)) {
56 printk(KERN_WARNING
57 "%s: Invalid contents encryption mode %d\n", __func__,
58 policy->contents_encryption_mode);
59 res = -EINVAL;
60 goto out;
61 }
55 ctx.contents_encryption_mode = policy->contents_encryption_mode; 62 ctx.contents_encryption_mode = policy->contents_encryption_mode;
56 ctx.filenames_encryption_mode = policy->filenames_encryption_mode; 63 ctx.filenames_encryption_mode = policy->filenames_encryption_mode;
57 BUILD_BUG_ON(sizeof(ctx.nonce) != EXT4_KEY_DERIVATION_NONCE_SIZE); 64 BUILD_BUG_ON(sizeof(ctx.nonce) != EXT4_KEY_DERIVATION_NONCE_SIZE);
@@ -60,6 +67,7 @@ static int ext4_create_encryption_context_from_policy(
60 res = ext4_xattr_set(inode, EXT4_XATTR_INDEX_ENCRYPTION, 67 res = ext4_xattr_set(inode, EXT4_XATTR_INDEX_ENCRYPTION,
61 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, &ctx, 68 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, &ctx,
62 sizeof(ctx), 0); 69 sizeof(ctx), 0);
70out:
63 if (!res) 71 if (!res)
64 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 72 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
65 return res; 73 return res;
diff --git a/fs/ext4/ext4.h b/fs/ext4/ext4.h
index ab873aa9955e..71619ef72225 100644
--- a/fs/ext4/ext4.h
+++ b/fs/ext4/ext4.h
@@ -951,6 +951,11 @@ struct ext4_inode_info {
951 951
952 /* Precomputed uuid+inum+igen checksum for seeding inode checksums */ 952 /* Precomputed uuid+inum+igen checksum for seeding inode checksums */
953 __u32 i_csum_seed; 953 __u32 i_csum_seed;
954
955#ifdef CONFIG_EXT4_FS_ENCRYPTION
956 /* Encryption params */
957 struct ext4_encryption_key i_encryption_key;
958#endif
954}; 959};
955 960
956/* 961/*
@@ -1366,6 +1371,12 @@ struct ext4_sb_info {
1366 struct ratelimit_state s_err_ratelimit_state; 1371 struct ratelimit_state s_err_ratelimit_state;
1367 struct ratelimit_state s_warning_ratelimit_state; 1372 struct ratelimit_state s_warning_ratelimit_state;
1368 struct ratelimit_state s_msg_ratelimit_state; 1373 struct ratelimit_state s_msg_ratelimit_state;
1374
1375#ifdef CONFIG_EXT4_FS_ENCRYPTION
1376 /* Encryption */
1377 uint32_t s_file_encryption_mode;
1378 uint32_t s_dir_encryption_mode;
1379#endif
1369}; 1380};
1370 1381
1371static inline struct ext4_sb_info *EXT4_SB(struct super_block *sb) 1382static inline struct ext4_sb_info *EXT4_SB(struct super_block *sb)
@@ -1481,6 +1492,18 @@ static inline void ext4_clear_state_flags(struct ext4_inode_info *ei)
1481#define EXT4_SB(sb) (sb) 1492#define EXT4_SB(sb) (sb)
1482#endif 1493#endif
1483 1494
1495/*
1496 * Returns true if the inode is inode is encrypted
1497 */
1498static inline int ext4_encrypted_inode(struct inode *inode)
1499{
1500#ifdef CONFIG_EXT4_FS_ENCRYPTION
1501 return ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT);
1502#else
1503 return 0;
1504#endif
1505}
1506
1484#define NEXT_ORPHAN(inode) EXT4_I(inode)->i_dtime 1507#define NEXT_ORPHAN(inode) EXT4_I(inode)->i_dtime
1485 1508
1486/* 1509/*
@@ -2026,6 +2049,35 @@ int ext4_process_policy(const struct ext4_encryption_policy *policy,
2026int ext4_get_policy(struct inode *inode, 2049int ext4_get_policy(struct inode *inode,
2027 struct ext4_encryption_policy *policy); 2050 struct ext4_encryption_policy *policy);
2028 2051
2052/* crypto.c */
2053bool ext4_valid_contents_enc_mode(uint32_t mode);
2054uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size);
2055extern struct workqueue_struct *ext4_read_workqueue;
2056struct ext4_crypto_ctx *ext4_get_crypto_ctx(struct inode *inode);
2057void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx);
2058void ext4_restore_control_page(struct page *data_page);
2059struct page *ext4_encrypt(struct inode *inode,
2060 struct page *plaintext_page);
2061int ext4_decrypt(struct ext4_crypto_ctx *ctx, struct page *page);
2062int ext4_decrypt_one(struct inode *inode, struct page *page);
2063int ext4_encrypted_zeroout(struct inode *inode, struct ext4_extent *ex);
2064
2065#ifdef CONFIG_EXT4_FS_ENCRYPTION
2066int ext4_init_crypto(void);
2067void ext4_exit_crypto(void);
2068static inline int ext4_sb_has_crypto(struct super_block *sb)
2069{
2070 return EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT);
2071}
2072#else
2073static inline int ext4_init_crypto(void) { return 0; }
2074static inline void ext4_exit_crypto(void) { }
2075static inline int ext4_sb_has_crypto(struct super_block *sb)
2076{
2077 return 0;
2078}
2079#endif
2080
2029/* dir.c */ 2081/* dir.c */
2030extern int __ext4_check_dir_entry(const char *, unsigned int, struct inode *, 2082extern int __ext4_check_dir_entry(const char *, unsigned int, struct inode *,
2031 struct file *, 2083 struct file *,
diff --git a/fs/ext4/ext4_crypto.h b/fs/ext4/ext4_crypto.h
index a69d2ba54bee..9d5d2e56cc46 100644
--- a/fs/ext4/ext4_crypto.h
+++ b/fs/ext4/ext4_crypto.h
@@ -46,4 +46,59 @@ struct ext4_encryption_context {
46 char nonce[EXT4_KEY_DERIVATION_NONCE_SIZE]; 46 char nonce[EXT4_KEY_DERIVATION_NONCE_SIZE];
47} __attribute__((__packed__)); 47} __attribute__((__packed__));
48 48
49/* Encryption parameters */
50#define EXT4_XTS_TWEAK_SIZE 16
51#define EXT4_AES_128_ECB_KEY_SIZE 16
52#define EXT4_AES_256_GCM_KEY_SIZE 32
53#define EXT4_AES_256_CBC_KEY_SIZE 32
54#define EXT4_AES_256_CTS_KEY_SIZE 32
55#define EXT4_AES_256_XTS_KEY_SIZE 64
56#define EXT4_MAX_KEY_SIZE 64
57
58struct ext4_encryption_key {
59 uint32_t mode;
60 char raw[EXT4_MAX_KEY_SIZE];
61 uint32_t size;
62};
63
64#define EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL 0x00000001
65#define EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL 0x00000002
66
67struct ext4_crypto_ctx {
68 struct crypto_tfm *tfm; /* Crypto API context */
69 struct page *bounce_page; /* Ciphertext page on write path */
70 struct page *control_page; /* Original page on write path */
71 struct bio *bio; /* The bio for this context */
72 struct work_struct work; /* Work queue for read complete path */
73 struct list_head free_list; /* Free list */
74 int flags; /* Flags */
75 int mode; /* Encryption mode for tfm */
76};
77
78struct ext4_completion_result {
79 struct completion completion;
80 int res;
81};
82
83#define DECLARE_EXT4_COMPLETION_RESULT(ecr) \
84 struct ext4_completion_result ecr = { \
85 COMPLETION_INITIALIZER((ecr).completion), 0 }
86
87static inline int ext4_encryption_key_size(int mode)
88{
89 switch (mode) {
90 case EXT4_ENCRYPTION_MODE_AES_256_XTS:
91 return EXT4_AES_256_XTS_KEY_SIZE;
92 case EXT4_ENCRYPTION_MODE_AES_256_GCM:
93 return EXT4_AES_256_GCM_KEY_SIZE;
94 case EXT4_ENCRYPTION_MODE_AES_256_CBC:
95 return EXT4_AES_256_CBC_KEY_SIZE;
96 case EXT4_ENCRYPTION_MODE_AES_256_CTS:
97 return EXT4_AES_256_CTS_KEY_SIZE;
98 default:
99 BUG();
100 }
101 return 0;
102}
103
49#endif /* _EXT4_CRYPTO_H */ 104#endif /* _EXT4_CRYPTO_H */
diff --git a/fs/ext4/super.c b/fs/ext4/super.c
index e47a552fea05..1008ca258de4 100644
--- a/fs/ext4/super.c
+++ b/fs/ext4/super.c
@@ -876,6 +876,9 @@ static struct inode *ext4_alloc_inode(struct super_block *sb)
876 atomic_set(&ei->i_ioend_count, 0); 876 atomic_set(&ei->i_ioend_count, 0);
877 atomic_set(&ei->i_unwritten, 0); 877 atomic_set(&ei->i_unwritten, 0);
878 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 878 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
879#ifdef CONFIG_EXT4_FS_ENCRYPTION
880 ei->i_encryption_key.mode = EXT4_ENCRYPTION_MODE_INVALID;
881#endif
879 882
880 return &ei->vfs_inode; 883 return &ei->vfs_inode;
881} 884}
@@ -3431,6 +3434,11 @@ static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3431 if (sb->s_bdev->bd_part) 3434 if (sb->s_bdev->bd_part)
3432 sbi->s_sectors_written_start = 3435 sbi->s_sectors_written_start =
3433 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3436 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3437#ifdef CONFIG_EXT4_FS_ENCRYPTION
3438 /* Modes of operations for file and directory encryption. */
3439 sbi->s_file_encryption_mode = EXT4_ENCRYPTION_MODE_AES_256_XTS;
3440 sbi->s_dir_encryption_mode = EXT4_ENCRYPTION_MODE_INVALID;
3441#endif
3434 3442
3435 /* Cleanup superblock name */ 3443 /* Cleanup superblock name */
3436 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 3444 for (cp = sb->s_id; (cp = strchr(cp, '/'));)