aboutsummaryrefslogtreecommitdiffstats
path: root/drivers
diff options
context:
space:
mode:
authorIngo Molnar <mingo@elte.hu>2008-01-30 07:31:09 -0500
committerIngo Molnar <mingo@elte.hu>2008-01-30 07:31:09 -0500
commit5fd1fe9c582e00ca0a98f852cd693dc3caf607a0 (patch)
treef7965a80e784b659568dbd41e9773e812e550880 /drivers
parent6b4b05bd790389962e6fcfc862562e7fa239c9d2 (diff)
x86: clean up drivers/char/rtc.c
tons of style cleanup in drivers/char/rtc.c - no code changed: text data bss dec hex filename 6400 384 32 6816 1aa0 rtc.o.before 6400 384 32 6816 1aa0 rtc.o.after since we seem to have a number of open breakages in this code we might as well start with making the code more readable and maintainable. Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Diffstat (limited to 'drivers')
-rw-r--r--drivers/char/rtc.c238
1 files changed, 129 insertions, 109 deletions
diff --git a/drivers/char/rtc.c b/drivers/char/rtc.c
index 0c66b802736a..3ac7952fe086 100644
--- a/drivers/char/rtc.c
+++ b/drivers/char/rtc.c
@@ -1,5 +1,5 @@
1/* 1/*
2 * Real Time Clock interface for Linux 2 * Real Time Clock interface for Linux
3 * 3 *
4 * Copyright (C) 1996 Paul Gortmaker 4 * Copyright (C) 1996 Paul Gortmaker
5 * 5 *
@@ -17,7 +17,7 @@
17 * has been received. If a RTC interrupt has already happened, 17 * has been received. If a RTC interrupt has already happened,
18 * it will output an unsigned long and then block. The output value 18 * it will output an unsigned long and then block. The output value
19 * contains the interrupt status in the low byte and the number of 19 * contains the interrupt status in the low byte and the number of
20 * interrupts since the last read in the remaining high bytes. The 20 * interrupts since the last read in the remaining high bytes. The
21 * /dev/rtc interface can also be used with the select(2) call. 21 * /dev/rtc interface can also be used with the select(2) call.
22 * 22 *
23 * This program is free software; you can redistribute it and/or 23 * This program is free software; you can redistribute it and/or
@@ -104,12 +104,12 @@ static int rtc_has_irq = 1;
104 104
105#ifndef CONFIG_HPET_EMULATE_RTC 105#ifndef CONFIG_HPET_EMULATE_RTC
106#define is_hpet_enabled() 0 106#define is_hpet_enabled() 0
107#define hpet_set_alarm_time(hrs, min, sec) 0 107#define hpet_set_alarm_time(hrs, min, sec) 0
108#define hpet_set_periodic_freq(arg) 0 108#define hpet_set_periodic_freq(arg) 0
109#define hpet_mask_rtc_irq_bit(arg) 0 109#define hpet_mask_rtc_irq_bit(arg) 0
110#define hpet_set_rtc_irq_bit(arg) 0 110#define hpet_set_rtc_irq_bit(arg) 0
111#define hpet_rtc_timer_init() do { } while (0) 111#define hpet_rtc_timer_init() do { } while (0)
112#define hpet_rtc_dropped_irq() 0 112#define hpet_rtc_dropped_irq() 0
113#ifdef RTC_IRQ 113#ifdef RTC_IRQ
114static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id) 114static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
115{ 115{
@@ -147,7 +147,7 @@ static int rtc_ioctl(struct inode *inode, struct file *file,
147static unsigned int rtc_poll(struct file *file, poll_table *wait); 147static unsigned int rtc_poll(struct file *file, poll_table *wait);
148#endif 148#endif
149 149
150static void get_rtc_alm_time (struct rtc_time *alm_tm); 150static void get_rtc_alm_time(struct rtc_time *alm_tm);
151#ifdef RTC_IRQ 151#ifdef RTC_IRQ
152static void set_rtc_irq_bit_locked(unsigned char bit); 152static void set_rtc_irq_bit_locked(unsigned char bit);
153static void mask_rtc_irq_bit_locked(unsigned char bit); 153static void mask_rtc_irq_bit_locked(unsigned char bit);
@@ -185,9 +185,9 @@ static int rtc_proc_open(struct inode *inode, struct file *file);
185 * rtc_status but before mod_timer is called, which would then reenable the 185 * rtc_status but before mod_timer is called, which would then reenable the
186 * timer (but you would need to have an awful timing before you'd trip on it) 186 * timer (but you would need to have an awful timing before you'd trip on it)
187 */ 187 */
188static unsigned long rtc_status = 0; /* bitmapped status byte. */ 188static unsigned long rtc_status; /* bitmapped status byte. */
189static unsigned long rtc_freq = 0; /* Current periodic IRQ rate */ 189static unsigned long rtc_freq; /* Current periodic IRQ rate */
190static unsigned long rtc_irq_data = 0; /* our output to the world */ 190static unsigned long rtc_irq_data; /* our output to the world */
191static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */ 191static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
192 192
193#ifdef RTC_IRQ 193#ifdef RTC_IRQ
@@ -195,7 +195,7 @@ static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
195 * rtc_task_lock nests inside rtc_lock. 195 * rtc_task_lock nests inside rtc_lock.
196 */ 196 */
197static DEFINE_SPINLOCK(rtc_task_lock); 197static DEFINE_SPINLOCK(rtc_task_lock);
198static rtc_task_t *rtc_callback = NULL; 198static rtc_task_t *rtc_callback;
199#endif 199#endif
200 200
201/* 201/*
@@ -205,7 +205,7 @@ static rtc_task_t *rtc_callback = NULL;
205 205
206static unsigned long epoch = 1900; /* year corresponding to 0x00 */ 206static unsigned long epoch = 1900; /* year corresponding to 0x00 */
207 207
208static const unsigned char days_in_mo[] = 208static const unsigned char days_in_mo[] =
209{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; 209{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
210 210
211/* 211/*
@@ -242,7 +242,7 @@ irqreturn_t rtc_interrupt(int irq, void *dev_id)
242 * the last read in the remainder of rtc_irq_data. 242 * the last read in the remainder of rtc_irq_data.
243 */ 243 */
244 244
245 spin_lock (&rtc_lock); 245 spin_lock(&rtc_lock);
246 rtc_irq_data += 0x100; 246 rtc_irq_data += 0x100;
247 rtc_irq_data &= ~0xff; 247 rtc_irq_data &= ~0xff;
248 if (is_hpet_enabled()) { 248 if (is_hpet_enabled()) {
@@ -259,16 +259,16 @@ irqreturn_t rtc_interrupt(int irq, void *dev_id)
259 if (rtc_status & RTC_TIMER_ON) 259 if (rtc_status & RTC_TIMER_ON)
260 mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100); 260 mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
261 261
262 spin_unlock (&rtc_lock); 262 spin_unlock(&rtc_lock);
263 263
264 /* Now do the rest of the actions */ 264 /* Now do the rest of the actions */
265 spin_lock(&rtc_task_lock); 265 spin_lock(&rtc_task_lock);
266 if (rtc_callback) 266 if (rtc_callback)
267 rtc_callback->func(rtc_callback->private_data); 267 rtc_callback->func(rtc_callback->private_data);
268 spin_unlock(&rtc_task_lock); 268 spin_unlock(&rtc_task_lock);
269 wake_up_interruptible(&rtc_wait); 269 wake_up_interruptible(&rtc_wait);
270 270
271 kill_fasync (&rtc_async_queue, SIGIO, POLL_IN); 271 kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
272 272
273 return IRQ_HANDLED; 273 return IRQ_HANDLED;
274} 274}
@@ -335,7 +335,7 @@ static ssize_t rtc_read(struct file *file, char __user *buf,
335 DECLARE_WAITQUEUE(wait, current); 335 DECLARE_WAITQUEUE(wait, current);
336 unsigned long data; 336 unsigned long data;
337 ssize_t retval; 337 ssize_t retval;
338 338
339 if (rtc_has_irq == 0) 339 if (rtc_has_irq == 0)
340 return -EIO; 340 return -EIO;
341 341
@@ -358,11 +358,11 @@ static ssize_t rtc_read(struct file *file, char __user *buf,
358 * confusing. And no, xchg() is not the answer. */ 358 * confusing. And no, xchg() is not the answer. */
359 359
360 __set_current_state(TASK_INTERRUPTIBLE); 360 __set_current_state(TASK_INTERRUPTIBLE);
361 361
362 spin_lock_irq (&rtc_lock); 362 spin_lock_irq(&rtc_lock);
363 data = rtc_irq_data; 363 data = rtc_irq_data;
364 rtc_irq_data = 0; 364 rtc_irq_data = 0;
365 spin_unlock_irq (&rtc_lock); 365 spin_unlock_irq(&rtc_lock);
366 366
367 if (data != 0) 367 if (data != 0)
368 break; 368 break;
@@ -378,10 +378,13 @@ static ssize_t rtc_read(struct file *file, char __user *buf,
378 schedule(); 378 schedule();
379 } while (1); 379 } while (1);
380 380
381 if (count == sizeof(unsigned int)) 381 if (count == sizeof(unsigned int)) {
382 retval = put_user(data, (unsigned int __user *)buf) ?: sizeof(int); 382 retval = put_user(data,
383 else 383 (unsigned int __user *)buf) ?: sizeof(int);
384 retval = put_user(data, (unsigned long __user *)buf) ?: sizeof(long); 384 } else {
385 retval = put_user(data,
386 (unsigned long __user *)buf) ?: sizeof(long);
387 }
385 if (!retval) 388 if (!retval)
386 retval = count; 389 retval = count;
387 out: 390 out:
@@ -394,7 +397,7 @@ static ssize_t rtc_read(struct file *file, char __user *buf,
394 397
395static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel) 398static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
396{ 399{
397 struct rtc_time wtime; 400 struct rtc_time wtime;
398 401
399#ifdef RTC_IRQ 402#ifdef RTC_IRQ
400 if (rtc_has_irq == 0) { 403 if (rtc_has_irq == 0) {
@@ -426,35 +429,41 @@ static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
426 } 429 }
427 case RTC_PIE_OFF: /* Mask periodic int. enab. bit */ 430 case RTC_PIE_OFF: /* Mask periodic int. enab. bit */
428 { 431 {
429 unsigned long flags; /* can be called from isr via rtc_control() */ 432 /* can be called from isr via rtc_control() */
430 spin_lock_irqsave (&rtc_lock, flags); 433 unsigned long flags;
434
435 spin_lock_irqsave(&rtc_lock, flags);
431 mask_rtc_irq_bit_locked(RTC_PIE); 436 mask_rtc_irq_bit_locked(RTC_PIE);
432 if (rtc_status & RTC_TIMER_ON) { 437 if (rtc_status & RTC_TIMER_ON) {
433 rtc_status &= ~RTC_TIMER_ON; 438 rtc_status &= ~RTC_TIMER_ON;
434 del_timer(&rtc_irq_timer); 439 del_timer(&rtc_irq_timer);
435 } 440 }
436 spin_unlock_irqrestore (&rtc_lock, flags); 441 spin_unlock_irqrestore(&rtc_lock, flags);
442
437 return 0; 443 return 0;
438 } 444 }
439 case RTC_PIE_ON: /* Allow periodic ints */ 445 case RTC_PIE_ON: /* Allow periodic ints */
440 { 446 {
441 unsigned long flags; /* can be called from isr via rtc_control() */ 447 /* can be called from isr via rtc_control() */
448 unsigned long flags;
449
442 /* 450 /*
443 * We don't really want Joe User enabling more 451 * We don't really want Joe User enabling more
444 * than 64Hz of interrupts on a multi-user machine. 452 * than 64Hz of interrupts on a multi-user machine.
445 */ 453 */
446 if (!kernel && (rtc_freq > rtc_max_user_freq) && 454 if (!kernel && (rtc_freq > rtc_max_user_freq) &&
447 (!capable(CAP_SYS_RESOURCE))) 455 (!capable(CAP_SYS_RESOURCE)))
448 return -EACCES; 456 return -EACCES;
449 457
450 spin_lock_irqsave (&rtc_lock, flags); 458 spin_lock_irqsave(&rtc_lock, flags);
451 if (!(rtc_status & RTC_TIMER_ON)) { 459 if (!(rtc_status & RTC_TIMER_ON)) {
452 mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 460 mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq +
453 2*HZ/100); 461 2*HZ/100);
454 rtc_status |= RTC_TIMER_ON; 462 rtc_status |= RTC_TIMER_ON;
455 } 463 }
456 set_rtc_irq_bit_locked(RTC_PIE); 464 set_rtc_irq_bit_locked(RTC_PIE);
457 spin_unlock_irqrestore (&rtc_lock, flags); 465 spin_unlock_irqrestore(&rtc_lock, flags);
466
458 return 0; 467 return 0;
459 } 468 }
460 case RTC_UIE_OFF: /* Mask ints from RTC updates. */ 469 case RTC_UIE_OFF: /* Mask ints from RTC updates. */
@@ -477,7 +486,7 @@ static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
477 */ 486 */
478 memset(&wtime, 0, sizeof(struct rtc_time)); 487 memset(&wtime, 0, sizeof(struct rtc_time));
479 get_rtc_alm_time(&wtime); 488 get_rtc_alm_time(&wtime);
480 break; 489 break;
481 } 490 }
482 case RTC_ALM_SET: /* Store a time into the alarm */ 491 case RTC_ALM_SET: /* Store a time into the alarm */
483 { 492 {
@@ -505,16 +514,21 @@ static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
505 */ 514 */
506 } 515 }
507 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || 516 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
508 RTC_ALWAYS_BCD) 517 RTC_ALWAYS_BCD) {
509 { 518 if (sec < 60)
510 if (sec < 60) BIN_TO_BCD(sec); 519 BIN_TO_BCD(sec);
511 else sec = 0xff; 520 else
512 521 sec = 0xff;
513 if (min < 60) BIN_TO_BCD(min); 522
514 else min = 0xff; 523 if (min < 60)
515 524 BIN_TO_BCD(min);
516 if (hrs < 24) BIN_TO_BCD(hrs); 525 else
517 else hrs = 0xff; 526 min = 0xff;
527
528 if (hrs < 24)
529 BIN_TO_BCD(hrs);
530 else
531 hrs = 0xff;
518 } 532 }
519 CMOS_WRITE(hrs, RTC_HOURS_ALARM); 533 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
520 CMOS_WRITE(min, RTC_MINUTES_ALARM); 534 CMOS_WRITE(min, RTC_MINUTES_ALARM);
@@ -563,11 +577,12 @@ static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
563 577
564 if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr))) 578 if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
565 return -EINVAL; 579 return -EINVAL;
566 580
567 if ((hrs >= 24) || (min >= 60) || (sec >= 60)) 581 if ((hrs >= 24) || (min >= 60) || (sec >= 60))
568 return -EINVAL; 582 return -EINVAL;
569 583
570 if ((yrs -= epoch) > 255) /* They are unsigned */ 584 yrs -= epoch;
585 if (yrs > 255) /* They are unsigned */
571 return -EINVAL; 586 return -EINVAL;
572 587
573 spin_lock_irq(&rtc_lock); 588 spin_lock_irq(&rtc_lock);
@@ -635,9 +650,10 @@ static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
635 { 650 {
636 int tmp = 0; 651 int tmp = 0;
637 unsigned char val; 652 unsigned char val;
638 unsigned long flags; /* can be called from isr via rtc_control() */ 653 /* can be called from isr via rtc_control() */
654 unsigned long flags;
639 655
640 /* 656 /*
641 * The max we can do is 8192Hz. 657 * The max we can do is 8192Hz.
642 */ 658 */
643 if ((arg < 2) || (arg > 8192)) 659 if ((arg < 2) || (arg > 8192))
@@ -646,7 +662,8 @@ static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
646 * We don't really want Joe User generating more 662 * We don't really want Joe User generating more
647 * than 64Hz of interrupts on a multi-user machine. 663 * than 64Hz of interrupts on a multi-user machine.
648 */ 664 */
649 if (!kernel && (arg > rtc_max_user_freq) && (!capable(CAP_SYS_RESOURCE))) 665 if (!kernel && (arg > rtc_max_user_freq) &&
666 !capable(CAP_SYS_RESOURCE))
650 return -EACCES; 667 return -EACCES;
651 668
652 while (arg > (1<<tmp)) 669 while (arg > (1<<tmp))
@@ -674,11 +691,11 @@ static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
674#endif 691#endif
675 case RTC_EPOCH_READ: /* Read the epoch. */ 692 case RTC_EPOCH_READ: /* Read the epoch. */
676 { 693 {
677 return put_user (epoch, (unsigned long __user *)arg); 694 return put_user(epoch, (unsigned long __user *)arg);
678 } 695 }
679 case RTC_EPOCH_SET: /* Set the epoch. */ 696 case RTC_EPOCH_SET: /* Set the epoch. */
680 { 697 {
681 /* 698 /*
682 * There were no RTC clocks before 1900. 699 * There were no RTC clocks before 1900.
683 */ 700 */
684 if (arg < 1900) 701 if (arg < 1900)
@@ -693,7 +710,8 @@ static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
693 default: 710 default:
694 return -ENOTTY; 711 return -ENOTTY;
695 } 712 }
696 return copy_to_user((void __user *)arg, &wtime, sizeof wtime) ? -EFAULT : 0; 713 return copy_to_user((void __user *)arg,
714 &wtime, sizeof wtime) ? -EFAULT : 0;
697} 715}
698 716
699static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd, 717static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
@@ -712,26 +730,25 @@ static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
712 * needed here. Or anywhere else in this driver. */ 730 * needed here. Or anywhere else in this driver. */
713static int rtc_open(struct inode *inode, struct file *file) 731static int rtc_open(struct inode *inode, struct file *file)
714{ 732{
715 spin_lock_irq (&rtc_lock); 733 spin_lock_irq(&rtc_lock);
716 734
717 if(rtc_status & RTC_IS_OPEN) 735 if (rtc_status & RTC_IS_OPEN)
718 goto out_busy; 736 goto out_busy;
719 737
720 rtc_status |= RTC_IS_OPEN; 738 rtc_status |= RTC_IS_OPEN;
721 739
722 rtc_irq_data = 0; 740 rtc_irq_data = 0;
723 spin_unlock_irq (&rtc_lock); 741 spin_unlock_irq(&rtc_lock);
724 return 0; 742 return 0;
725 743
726out_busy: 744out_busy:
727 spin_unlock_irq (&rtc_lock); 745 spin_unlock_irq(&rtc_lock);
728 return -EBUSY; 746 return -EBUSY;
729} 747}
730 748
731static int rtc_fasync (int fd, struct file *filp, int on) 749static int rtc_fasync(int fd, struct file *filp, int on)
732
733{ 750{
734 return fasync_helper (fd, filp, on, &rtc_async_queue); 751 return fasync_helper(fd, filp, on, &rtc_async_queue);
735} 752}
736 753
737static int rtc_release(struct inode *inode, struct file *file) 754static int rtc_release(struct inode *inode, struct file *file)
@@ -762,16 +779,16 @@ static int rtc_release(struct inode *inode, struct file *file)
762 } 779 }
763 spin_unlock_irq(&rtc_lock); 780 spin_unlock_irq(&rtc_lock);
764 781
765 if (file->f_flags & FASYNC) { 782 if (file->f_flags & FASYNC)
766 rtc_fasync (-1, file, 0); 783 rtc_fasync(-1, file, 0);
767 }
768no_irq: 784no_irq:
769#endif 785#endif
770 786
771 spin_lock_irq (&rtc_lock); 787 spin_lock_irq(&rtc_lock);
772 rtc_irq_data = 0; 788 rtc_irq_data = 0;
773 rtc_status &= ~RTC_IS_OPEN; 789 rtc_status &= ~RTC_IS_OPEN;
774 spin_unlock_irq (&rtc_lock); 790 spin_unlock_irq(&rtc_lock);
791
775 return 0; 792 return 0;
776} 793}
777 794
@@ -786,9 +803,9 @@ static unsigned int rtc_poll(struct file *file, poll_table *wait)
786 803
787 poll_wait(file, &rtc_wait, wait); 804 poll_wait(file, &rtc_wait, wait);
788 805
789 spin_lock_irq (&rtc_lock); 806 spin_lock_irq(&rtc_lock);
790 l = rtc_irq_data; 807 l = rtc_irq_data;
791 spin_unlock_irq (&rtc_lock); 808 spin_unlock_irq(&rtc_lock);
792 809
793 if (l != 0) 810 if (l != 0)
794 return POLLIN | POLLRDNORM; 811 return POLLIN | POLLRDNORM;
@@ -796,14 +813,6 @@ static unsigned int rtc_poll(struct file *file, poll_table *wait)
796} 813}
797#endif 814#endif
798 815
799/*
800 * exported stuffs
801 */
802
803EXPORT_SYMBOL(rtc_register);
804EXPORT_SYMBOL(rtc_unregister);
805EXPORT_SYMBOL(rtc_control);
806
807int rtc_register(rtc_task_t *task) 816int rtc_register(rtc_task_t *task)
808{ 817{
809#ifndef RTC_IRQ 818#ifndef RTC_IRQ
@@ -829,6 +838,7 @@ int rtc_register(rtc_task_t *task)
829 return 0; 838 return 0;
830#endif 839#endif
831} 840}
841EXPORT_SYMBOL(rtc_register);
832 842
833int rtc_unregister(rtc_task_t *task) 843int rtc_unregister(rtc_task_t *task)
834{ 844{
@@ -845,7 +855,7 @@ int rtc_unregister(rtc_task_t *task)
845 return -ENXIO; 855 return -ENXIO;
846 } 856 }
847 rtc_callback = NULL; 857 rtc_callback = NULL;
848 858
849 /* disable controls */ 859 /* disable controls */
850 if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) { 860 if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
851 tmp = CMOS_READ(RTC_CONTROL); 861 tmp = CMOS_READ(RTC_CONTROL);
@@ -865,6 +875,7 @@ int rtc_unregister(rtc_task_t *task)
865 return 0; 875 return 0;
866#endif 876#endif
867} 877}
878EXPORT_SYMBOL(rtc_unregister);
868 879
869int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg) 880int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
870{ 881{
@@ -883,7 +894,7 @@ int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
883 return rtc_do_ioctl(cmd, arg, 1); 894 return rtc_do_ioctl(cmd, arg, 1);
884#endif 895#endif
885} 896}
886 897EXPORT_SYMBOL(rtc_control);
887 898
888/* 899/*
889 * The various file operations we support. 900 * The various file operations we support.
@@ -910,11 +921,11 @@ static struct miscdevice rtc_dev = {
910 921
911#ifdef CONFIG_PROC_FS 922#ifdef CONFIG_PROC_FS
912static const struct file_operations rtc_proc_fops = { 923static const struct file_operations rtc_proc_fops = {
913 .owner = THIS_MODULE, 924 .owner = THIS_MODULE,
914 .open = rtc_proc_open, 925 .open = rtc_proc_open,
915 .read = seq_read, 926 .read = seq_read,
916 .llseek = seq_lseek, 927 .llseek = seq_lseek,
917 .release = single_release, 928 .release = single_release,
918}; 929};
919#endif 930#endif
920 931
@@ -965,7 +976,7 @@ static int __init rtc_init(void)
965#ifdef CONFIG_SPARC32 976#ifdef CONFIG_SPARC32
966 for_each_ebus(ebus) { 977 for_each_ebus(ebus) {
967 for_each_ebusdev(edev, ebus) { 978 for_each_ebusdev(edev, ebus) {
968 if(strcmp(edev->prom_node->name, "rtc") == 0) { 979 if (strcmp(edev->prom_node->name, "rtc") == 0) {
969 rtc_port = edev->resource[0].start; 980 rtc_port = edev->resource[0].start;
970 rtc_irq = edev->irqs[0]; 981 rtc_irq = edev->irqs[0];
971 goto found; 982 goto found;
@@ -986,7 +997,8 @@ found:
986 * XXX Interrupt pin #7 in Espresso is shared between RTC and 997 * XXX Interrupt pin #7 in Espresso is shared between RTC and
987 * PCI Slot 2 INTA# (and some INTx# in Slot 1). 998 * PCI Slot 2 INTA# (and some INTx# in Slot 1).
988 */ 999 */
989 if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc", (void *)&rtc_port)) { 1000 if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc",
1001 (void *)&rtc_port)) {
990 rtc_has_irq = 0; 1002 rtc_has_irq = 0;
991 printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq); 1003 printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
992 return -EIO; 1004 return -EIO;
@@ -1020,11 +1032,13 @@ no_irq:
1020 rtc_int_handler_ptr = rtc_interrupt; 1032 rtc_int_handler_ptr = rtc_interrupt;
1021 } 1033 }
1022 1034
1023 if(request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED, "rtc", NULL)) { 1035 if (request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED,
1036 "rtc", NULL)) {
1024 /* Yeah right, seeing as irq 8 doesn't even hit the bus. */ 1037 /* Yeah right, seeing as irq 8 doesn't even hit the bus. */
1025 rtc_has_irq = 0; 1038 rtc_has_irq = 0;
1026 printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ); 1039 printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
1027 rtc_release_region(); 1040 rtc_release_region();
1041
1028 return -EIO; 1042 return -EIO;
1029 } 1043 }
1030 hpet_rtc_timer_init(); 1044 hpet_rtc_timer_init();
@@ -1052,21 +1066,21 @@ no_irq:
1052 1066
1053#if defined(__alpha__) || defined(__mips__) 1067#if defined(__alpha__) || defined(__mips__)
1054 rtc_freq = HZ; 1068 rtc_freq = HZ;
1055 1069
1056 /* Each operating system on an Alpha uses its own epoch. 1070 /* Each operating system on an Alpha uses its own epoch.
1057 Let's try to guess which one we are using now. */ 1071 Let's try to guess which one we are using now. */
1058 1072
1059 if (rtc_is_updating() != 0) 1073 if (rtc_is_updating() != 0)
1060 msleep(20); 1074 msleep(20);
1061 1075
1062 spin_lock_irq(&rtc_lock); 1076 spin_lock_irq(&rtc_lock);
1063 year = CMOS_READ(RTC_YEAR); 1077 year = CMOS_READ(RTC_YEAR);
1064 ctrl = CMOS_READ(RTC_CONTROL); 1078 ctrl = CMOS_READ(RTC_CONTROL);
1065 spin_unlock_irq(&rtc_lock); 1079 spin_unlock_irq(&rtc_lock);
1066 1080
1067 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) 1081 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1068 BCD_TO_BIN(year); /* This should never happen... */ 1082 BCD_TO_BIN(year); /* This should never happen... */
1069 1083
1070 if (year < 20) { 1084 if (year < 20) {
1071 epoch = 2000; 1085 epoch = 2000;
1072 guess = "SRM (post-2000)"; 1086 guess = "SRM (post-2000)";
@@ -1087,7 +1101,8 @@ no_irq:
1087#endif 1101#endif
1088 } 1102 }
1089 if (guess) 1103 if (guess)
1090 printk(KERN_INFO "rtc: %s epoch (%lu) detected\n", guess, epoch); 1104 printk(KERN_INFO "rtc: %s epoch (%lu) detected\n",
1105 guess, epoch);
1091#endif 1106#endif
1092#ifdef RTC_IRQ 1107#ifdef RTC_IRQ
1093 if (rtc_has_irq == 0) 1108 if (rtc_has_irq == 0)
@@ -1096,8 +1111,12 @@ no_irq:
1096 spin_lock_irq(&rtc_lock); 1111 spin_lock_irq(&rtc_lock);
1097 rtc_freq = 1024; 1112 rtc_freq = 1024;
1098 if (!hpet_set_periodic_freq(rtc_freq)) { 1113 if (!hpet_set_periodic_freq(rtc_freq)) {
1099 /* Initialize periodic freq. to CMOS reset default, which is 1024Hz */ 1114 /*
1100 CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06), RTC_FREQ_SELECT); 1115 * Initialize periodic frequency to CMOS reset default,
1116 * which is 1024Hz
1117 */
1118 CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06),
1119 RTC_FREQ_SELECT);
1101 } 1120 }
1102 spin_unlock_irq(&rtc_lock); 1121 spin_unlock_irq(&rtc_lock);
1103no_irq2: 1122no_irq2:
@@ -1110,20 +1129,20 @@ no_irq2:
1110 return 0; 1129 return 0;
1111} 1130}
1112 1131
1113static void __exit rtc_exit (void) 1132static void __exit rtc_exit(void)
1114{ 1133{
1115 cleanup_sysctl(); 1134 cleanup_sysctl();
1116 remove_proc_entry ("driver/rtc", NULL); 1135 remove_proc_entry("driver/rtc", NULL);
1117 misc_deregister(&rtc_dev); 1136 misc_deregister(&rtc_dev);
1118 1137
1119#ifdef CONFIG_SPARC32 1138#ifdef CONFIG_SPARC32
1120 if (rtc_has_irq) 1139 if (rtc_has_irq)
1121 free_irq (rtc_irq, &rtc_port); 1140 free_irq(rtc_irq, &rtc_port);
1122#else 1141#else
1123 rtc_release_region(); 1142 rtc_release_region();
1124#ifdef RTC_IRQ 1143#ifdef RTC_IRQ
1125 if (rtc_has_irq) 1144 if (rtc_has_irq)
1126 free_irq (RTC_IRQ, NULL); 1145 free_irq(RTC_IRQ, NULL);
1127#endif 1146#endif
1128#endif /* CONFIG_SPARC32 */ 1147#endif /* CONFIG_SPARC32 */
1129} 1148}
@@ -1133,14 +1152,14 @@ module_exit(rtc_exit);
1133 1152
1134#ifdef RTC_IRQ 1153#ifdef RTC_IRQ
1135/* 1154/*
1136 * At IRQ rates >= 4096Hz, an interrupt may get lost altogether. 1155 * At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1137 * (usually during an IDE disk interrupt, with IRQ unmasking off) 1156 * (usually during an IDE disk interrupt, with IRQ unmasking off)
1138 * Since the interrupt handler doesn't get called, the IRQ status 1157 * Since the interrupt handler doesn't get called, the IRQ status
1139 * byte doesn't get read, and the RTC stops generating interrupts. 1158 * byte doesn't get read, and the RTC stops generating interrupts.
1140 * A timer is set, and will call this function if/when that happens. 1159 * A timer is set, and will call this function if/when that happens.
1141 * To get it out of this stalled state, we just read the status. 1160 * To get it out of this stalled state, we just read the status.
1142 * At least a jiffy of interrupts (rtc_freq/HZ) will have been lost. 1161 * At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1143 * (You *really* shouldn't be trying to use a non-realtime system 1162 * (You *really* shouldn't be trying to use a non-realtime system
1144 * for something that requires a steady > 1KHz signal anyways.) 1163 * for something that requires a steady > 1KHz signal anyways.)
1145 */ 1164 */
1146 1165
@@ -1148,7 +1167,7 @@ static void rtc_dropped_irq(unsigned long data)
1148{ 1167{
1149 unsigned long freq; 1168 unsigned long freq;
1150 1169
1151 spin_lock_irq (&rtc_lock); 1170 spin_lock_irq(&rtc_lock);
1152 1171
1153 if (hpet_rtc_dropped_irq()) { 1172 if (hpet_rtc_dropped_irq()) {
1154 spin_unlock_irq(&rtc_lock); 1173 spin_unlock_irq(&rtc_lock);
@@ -1167,13 +1186,15 @@ static void rtc_dropped_irq(unsigned long data)
1167 1186
1168 spin_unlock_irq(&rtc_lock); 1187 spin_unlock_irq(&rtc_lock);
1169 1188
1170 if (printk_ratelimit()) 1189 if (printk_ratelimit()) {
1171 printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n", freq); 1190 printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
1191 freq);
1192 }
1172 1193
1173 /* Now we have new data */ 1194 /* Now we have new data */
1174 wake_up_interruptible(&rtc_wait); 1195 wake_up_interruptible(&rtc_wait);
1175 1196
1176 kill_fasync (&rtc_async_queue, SIGIO, POLL_IN); 1197 kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
1177} 1198}
1178#endif 1199#endif
1179 1200
@@ -1277,7 +1298,7 @@ void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1277 * can take just over 2ms. We wait 20ms. There is no need to 1298 * can take just over 2ms. We wait 20ms. There is no need to
1278 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP. 1299 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1279 * If you need to know *exactly* when a second has started, enable 1300 * If you need to know *exactly* when a second has started, enable
1280 * periodic update complete interrupts, (via ioctl) and then 1301 * periodic update complete interrupts, (via ioctl) and then
1281 * immediately read /dev/rtc which will block until you get the IRQ. 1302 * immediately read /dev/rtc which will block until you get the IRQ.
1282 * Once the read clears, read the RTC time (again via ioctl). Easy. 1303 * Once the read clears, read the RTC time (again via ioctl). Easy.
1283 */ 1304 */
@@ -1307,8 +1328,7 @@ void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1307 ctrl = CMOS_READ(RTC_CONTROL); 1328 ctrl = CMOS_READ(RTC_CONTROL);
1308 spin_unlock_irqrestore(&rtc_lock, flags); 1329 spin_unlock_irqrestore(&rtc_lock, flags);
1309 1330
1310 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) 1331 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1311 {
1312 BCD_TO_BIN(rtc_tm->tm_sec); 1332 BCD_TO_BIN(rtc_tm->tm_sec);
1313 BCD_TO_BIN(rtc_tm->tm_min); 1333 BCD_TO_BIN(rtc_tm->tm_min);
1314 BCD_TO_BIN(rtc_tm->tm_hour); 1334 BCD_TO_BIN(rtc_tm->tm_hour);
@@ -1326,7 +1346,8 @@ void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1326 * Account for differences between how the RTC uses the values 1346 * Account for differences between how the RTC uses the values
1327 * and how they are defined in a struct rtc_time; 1347 * and how they are defined in a struct rtc_time;
1328 */ 1348 */
1329 if ((rtc_tm->tm_year += (epoch - 1900)) <= 69) 1349 rtc_tm->tm_year += epoch - 1900;
1350 if (rtc_tm->tm_year <= 69)
1330 rtc_tm->tm_year += 100; 1351 rtc_tm->tm_year += 100;
1331 1352
1332 rtc_tm->tm_mon--; 1353 rtc_tm->tm_mon--;
@@ -1347,8 +1368,7 @@ static void get_rtc_alm_time(struct rtc_time *alm_tm)
1347 ctrl = CMOS_READ(RTC_CONTROL); 1368 ctrl = CMOS_READ(RTC_CONTROL);
1348 spin_unlock_irq(&rtc_lock); 1369 spin_unlock_irq(&rtc_lock);
1349 1370
1350 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) 1371 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1351 {
1352 BCD_TO_BIN(alm_tm->tm_sec); 1372 BCD_TO_BIN(alm_tm->tm_sec);
1353 BCD_TO_BIN(alm_tm->tm_min); 1373 BCD_TO_BIN(alm_tm->tm_min);
1354 BCD_TO_BIN(alm_tm->tm_hour); 1374 BCD_TO_BIN(alm_tm->tm_hour);