aboutsummaryrefslogtreecommitdiffstats
path: root/drivers
diff options
context:
space:
mode:
authorJeff Garzik <jgarzik@pobox.com>2005-10-03 22:06:19 -0400
committerJeff Garzik <jgarzik@pobox.com>2005-10-03 22:06:19 -0400
commit3c8c7b2f32c52b259daa7564fefd582146799b23 (patch)
tree59ff1ad0d6b7821d474d8fccafd884703684b6d7 /drivers
parent7cb3cd090c2725b80561958a362c2ba15a7a8c86 (diff)
parent9123e0d78990246304fe681167b8d8097f1e02d7 (diff)
Merge branch 'upstream-fixes'
Diffstat (limited to 'drivers')
-rw-r--r--drivers/char/drm/drm_drv.c2
-rw-r--r--drivers/char/drm/drm_proc.c2
-rw-r--r--drivers/char/hpet.c1
-rw-r--r--drivers/char/ipmi/ipmi_msghandler.c6
-rw-r--r--drivers/char/ipmi/ipmi_poweroff.c2
-rw-r--r--drivers/char/n_r3964.c84
-rw-r--r--drivers/char/watchdog/mv64x60_wdt.c14
-rw-r--r--drivers/connector/cn_queue.c32
-rw-r--r--drivers/connector/connector.c74
-rw-r--r--drivers/hwmon/Kconfig9
-rw-r--r--drivers/hwmon/hdaps.c21
-rw-r--r--drivers/i2c/busses/Kconfig12
-rw-r--r--drivers/i2c/busses/Makefile1
-rw-r--r--drivers/i2c/busses/i2c-pmac-smu.c316
-rw-r--r--drivers/ide/legacy/ide-cs.c2
-rw-r--r--drivers/ieee1394/amdtp.c1
-rw-r--r--drivers/ieee1394/csr1212.h1
-rw-r--r--drivers/ieee1394/dv1394.c1
-rw-r--r--drivers/ieee1394/eth1394.c12
-rw-r--r--drivers/ieee1394/eth1394.h6
-rw-r--r--drivers/ieee1394/hosts.c3
-rw-r--r--drivers/ieee1394/hosts.h8
-rw-r--r--drivers/ieee1394/ieee1394_core.c32
-rw-r--r--drivers/ieee1394/nodemgr.c23
-rw-r--r--drivers/ieee1394/ohci1394.c4
-rw-r--r--drivers/ieee1394/raw1394.c1
-rw-r--r--drivers/ieee1394/sbp2.c107
-rw-r--r--drivers/ieee1394/video1394.c1
-rw-r--r--drivers/infiniband/core/uverbs.h1
-rw-r--r--drivers/infiniband/core/uverbs_cmd.c120
-rw-r--r--drivers/infiniband/core/uverbs_main.c27
-rw-r--r--drivers/infiniband/hw/mthca/mthca_cmd.c4
-rw-r--r--drivers/infiniband/hw/mthca/mthca_eq.c2
-rw-r--r--drivers/infiniband/hw/mthca/mthca_memfree.c19
-rw-r--r--drivers/infiniband/hw/mthca/mthca_provider.c2
-rw-r--r--drivers/input/input.c1
-rw-r--r--drivers/isdn/divert/divert_procfs.c6
-rw-r--r--drivers/isdn/hardware/eicon/diva_didd.c6
-rw-r--r--drivers/isdn/hardware/eicon/divasproc.c2
-rw-r--r--drivers/isdn/hisax/st5481_b.c2
-rw-r--r--drivers/isdn/hisax/st5481_usb.c2
-rw-r--r--drivers/isdn/hysdn/hysdn_procconf.c2
-rw-r--r--drivers/macintosh/smu.c1032
-rw-r--r--drivers/macintosh/therm_adt746x.c2
-rw-r--r--drivers/macintosh/therm_pm72.c2
-rw-r--r--drivers/macintosh/therm_windtunnel.c2
-rw-r--r--drivers/md/dm-ioctl.c9
-rw-r--r--drivers/md/dm-mpath.c16
-rw-r--r--drivers/media/dvb/frontends/tda10021.c4
-rw-r--r--drivers/media/video/bttv-cards.c2
-rw-r--r--drivers/media/video/bttv-driver.c14
-rw-r--r--drivers/media/video/bttvp.h2
-rw-r--r--drivers/media/video/cpia.c2
-rw-r--r--drivers/media/video/rds.h2
-rw-r--r--drivers/media/video/saa6588.c4
-rw-r--r--drivers/mfd/ucb1x00-ts.c4
-rw-r--r--drivers/mtd/devices/docecc.c8
-rw-r--r--drivers/mtd/maps/bast-flash.c1
-rw-r--r--drivers/mtd/maps/ixp2000.c1
-rw-r--r--drivers/mtd/maps/ixp4xx.c3
-rw-r--r--drivers/mtd/maps/omap_nor.c1
-rw-r--r--drivers/mtd/maps/sa1100-flash.c1
-rw-r--r--drivers/mtd/nand/s3c2410.c1
-rw-r--r--drivers/net/8390.c2
-rw-r--r--drivers/net/Kconfig8
-rw-r--r--drivers/net/Makefile1
-rw-r--r--drivers/net/arm/am79c961a.c22
-rw-r--r--drivers/net/bmac.c2
-rw-r--r--drivers/net/bonding/bond_main.c2
-rw-r--r--drivers/net/cassini.c5237
-rw-r--r--drivers/net/cassini.h4425
-rw-r--r--drivers/net/cs89x0.c1
-rw-r--r--drivers/net/ibmveth.c6
-rw-r--r--drivers/net/irda/vlsi_ir.c4
-rw-r--r--drivers/net/ns83820.c2
-rw-r--r--drivers/net/pcmcia/smc91c92_cs.c2
-rw-r--r--drivers/net/pppoe.c4
-rw-r--r--drivers/net/r8169.c3
-rw-r--r--drivers/net/sk98lin/skge.c8
-rw-r--r--drivers/net/skge.c46
-rw-r--r--drivers/net/tg3.c117
-rw-r--r--drivers/net/tg3.h1
-rw-r--r--drivers/net/wan/sdlamain.c23
-rw-r--r--drivers/net/wan/syncppp.c2
-rw-r--r--drivers/net/wireless/strip.c4
-rw-r--r--drivers/parisc/led.c5
-rw-r--r--drivers/pci/probe.c18
-rw-r--r--drivers/pcmcia/Kconfig2
-rw-r--r--drivers/pcmcia/cardbus.c5
-rw-r--r--drivers/pcmcia/omap_cf.c1
-rw-r--r--drivers/pcmcia/rsrc_nonstatic.c10
-rw-r--r--drivers/pcmcia/ti113x.h115
-rw-r--r--drivers/pcmcia/yenta_socket.c62
-rw-r--r--drivers/s390/net/qeth.h2
-rw-r--r--drivers/s390/net/qeth_main.c41
-rw-r--r--drivers/scsi/3w-9xxx.c55
-rw-r--r--drivers/scsi/3w-9xxx.h17
-rw-r--r--drivers/scsi/Makefile1
-rw-r--r--drivers/scsi/aacraid/aachba.c283
-rw-r--r--drivers/scsi/aacraid/aacraid.h17
-rw-r--r--drivers/scsi/aacraid/comminit.c17
-rw-r--r--drivers/scsi/aacraid/commsup.c581
-rw-r--r--drivers/scsi/aacraid/linit.c12
-rw-r--r--drivers/scsi/aic7xxx/aic7770_osm.c3
-rw-r--r--drivers/scsi/aic7xxx/aic79xx_osm.c8
-rw-r--r--drivers/scsi/aic7xxx/aic79xx_osm_pci.c3
-rw-r--r--drivers/scsi/aic7xxx/aic7xxx_osm.c8
-rw-r--r--drivers/scsi/aic7xxx/aic7xxx_osm_pci.c3
-rw-r--r--drivers/scsi/ata_piix.c1
-rw-r--r--drivers/scsi/hosts.c2
-rw-r--r--drivers/scsi/libata-core.c81
-rw-r--r--drivers/scsi/lpfc/lpfc_attr.c8
-rw-r--r--drivers/scsi/lpfc/lpfc_hbadisc.c4
-rw-r--r--drivers/scsi/lpfc/lpfc_hw.h4
-rw-r--r--drivers/scsi/lpfc/lpfc_init.c6
-rw-r--r--drivers/scsi/megaraid.c70
-rw-r--r--drivers/scsi/megaraid/Kconfig.megaraid9
-rw-r--r--drivers/scsi/megaraid/Makefile1
-rw-r--r--drivers/scsi/megaraid/megaraid_sas.c2805
-rw-r--r--drivers/scsi/megaraid/megaraid_sas.h1142
-rw-r--r--drivers/scsi/mesh.c29
-rw-r--r--drivers/scsi/qla2xxx/qla_rscn.c2
-rw-r--r--drivers/scsi/sata_nv.c2
-rw-r--r--drivers/scsi/scsi_scan.c96
-rw-r--r--drivers/scsi/scsi_transport_sas.c9
-rw-r--r--drivers/scsi/sg.c3
-rw-r--r--drivers/serial/clps711x.c2
-rw-r--r--drivers/serial/imx.c2
-rw-r--r--drivers/serial/ioc4_serial.c12
-rw-r--r--drivers/serial/s3c2410.c6
-rw-r--r--drivers/serial/serial_cs.c1
-rw-r--r--drivers/usb/core/hcd-pci.c9
-rw-r--r--drivers/usb/host/ohci-lh7a404.c2
-rw-r--r--drivers/usb/host/ohci-omap.c1
-rw-r--r--drivers/usb/host/ohci-s3c2410.c1
-rw-r--r--drivers/usb/media/vicam.c4
-rw-r--r--drivers/video/Kconfig1
-rw-r--r--drivers/video/aty/radeon_base.c2
-rw-r--r--drivers/video/aty/radeon_pm.c14
-rw-r--r--drivers/video/aty/radeonfb.h2
-rw-r--r--drivers/video/aty/xlinit.c8
-rw-r--r--drivers/video/backlight/corgi_bl.c1
-rw-r--r--drivers/video/cyblafb.c11
-rw-r--r--drivers/video/i810/i810-i2c.c16
-rw-r--r--drivers/video/imxfb.c1
-rw-r--r--drivers/video/intelfb/intelfbdrv.c21
-rw-r--r--drivers/video/pxafb.c108
-rw-r--r--drivers/video/pxafb.h9
-rw-r--r--drivers/video/s3c2410fb.c4
149 files changed, 16673 insertions, 1117 deletions
diff --git a/drivers/char/drm/drm_drv.c b/drivers/char/drm/drm_drv.c
index 6ba48f346fcf..041bb47b5c39 100644
--- a/drivers/char/drm/drm_drv.c
+++ b/drivers/char/drm/drm_drv.c
@@ -376,7 +376,7 @@ static int __init drm_core_init(void)
376 goto err_p2; 376 goto err_p2;
377 } 377 }
378 378
379 drm_proc_root = create_proc_entry("dri", S_IFDIR, NULL); 379 drm_proc_root = proc_mkdir("dri", NULL);
380 if (!drm_proc_root) { 380 if (!drm_proc_root) {
381 DRM_ERROR("Cannot create /proc/dri\n"); 381 DRM_ERROR("Cannot create /proc/dri\n");
382 ret = -1; 382 ret = -1;
diff --git a/drivers/char/drm/drm_proc.c b/drivers/char/drm/drm_proc.c
index 32d2bb99462c..977961002488 100644
--- a/drivers/char/drm/drm_proc.c
+++ b/drivers/char/drm/drm_proc.c
@@ -95,7 +95,7 @@ int drm_proc_init(drm_device_t *dev, int minor,
95 char name[64]; 95 char name[64];
96 96
97 sprintf(name, "%d", minor); 97 sprintf(name, "%d", minor);
98 *dev_root = create_proc_entry(name, S_IFDIR, root); 98 *dev_root = proc_mkdir(name, root);
99 if (!*dev_root) { 99 if (!*dev_root) {
100 DRM_ERROR("Cannot create /proc/dri/%s\n", name); 100 DRM_ERROR("Cannot create /proc/dri/%s\n", name);
101 return -1; 101 return -1;
diff --git a/drivers/char/hpet.c b/drivers/char/hpet.c
index de0379b6d502..c055bb630ffc 100644
--- a/drivers/char/hpet.c
+++ b/drivers/char/hpet.c
@@ -273,7 +273,6 @@ static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
273 273
274 vma->vm_flags |= VM_IO; 274 vma->vm_flags |= VM_IO;
275 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 275 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
276 addr = __pa(addr);
277 276
278 if (io_remap_pfn_range(vma, vma->vm_start, addr >> PAGE_SHIFT, 277 if (io_remap_pfn_range(vma, vma->vm_start, addr >> PAGE_SHIFT,
279 PAGE_SIZE, vma->vm_page_prot)) { 278 PAGE_SIZE, vma->vm_page_prot)) {
diff --git a/drivers/char/ipmi/ipmi_msghandler.c b/drivers/char/ipmi/ipmi_msghandler.c
index 463351d4f942..32fa82c78c73 100644
--- a/drivers/char/ipmi/ipmi_msghandler.c
+++ b/drivers/char/ipmi/ipmi_msghandler.c
@@ -2620,7 +2620,7 @@ void ipmi_smi_msg_received(ipmi_smi_t intf,
2620 spin_lock_irqsave(&(intf->waiting_msgs_lock), flags); 2620 spin_lock_irqsave(&(intf->waiting_msgs_lock), flags);
2621 if (!list_empty(&(intf->waiting_msgs))) { 2621 if (!list_empty(&(intf->waiting_msgs))) {
2622 list_add_tail(&(msg->link), &(intf->waiting_msgs)); 2622 list_add_tail(&(msg->link), &(intf->waiting_msgs));
2623 spin_unlock(&(intf->waiting_msgs_lock)); 2623 spin_unlock_irqrestore(&(intf->waiting_msgs_lock), flags);
2624 goto out_unlock; 2624 goto out_unlock;
2625 } 2625 }
2626 spin_unlock_irqrestore(&(intf->waiting_msgs_lock), flags); 2626 spin_unlock_irqrestore(&(intf->waiting_msgs_lock), flags);
@@ -2629,9 +2629,9 @@ void ipmi_smi_msg_received(ipmi_smi_t intf,
2629 if (rv > 0) { 2629 if (rv > 0) {
2630 /* Could not handle the message now, just add it to a 2630 /* Could not handle the message now, just add it to a
2631 list to handle later. */ 2631 list to handle later. */
2632 spin_lock(&(intf->waiting_msgs_lock)); 2632 spin_lock_irqsave(&(intf->waiting_msgs_lock), flags);
2633 list_add_tail(&(msg->link), &(intf->waiting_msgs)); 2633 list_add_tail(&(msg->link), &(intf->waiting_msgs));
2634 spin_unlock(&(intf->waiting_msgs_lock)); 2634 spin_unlock_irqrestore(&(intf->waiting_msgs_lock), flags);
2635 } else if (rv == 0) { 2635 } else if (rv == 0) {
2636 ipmi_free_smi_msg(msg); 2636 ipmi_free_smi_msg(msg);
2637 } 2637 }
diff --git a/drivers/char/ipmi/ipmi_poweroff.c b/drivers/char/ipmi/ipmi_poweroff.c
index e82a96ba396b..f66947722e12 100644
--- a/drivers/char/ipmi/ipmi_poweroff.c
+++ b/drivers/char/ipmi/ipmi_poweroff.c
@@ -55,7 +55,7 @@ extern void (*pm_power_off)(void);
55static int poweroff_powercycle; 55static int poweroff_powercycle;
56 56
57/* parameter definition to allow user to flag power cycle */ 57/* parameter definition to allow user to flag power cycle */
58module_param(poweroff_powercycle, int, 0); 58module_param(poweroff_powercycle, int, 0644);
59MODULE_PARM_DESC(poweroff_powercycles, " Set to non-zero to enable power cycle instead of power down. Power cycle is contingent on hardware support, otherwise it defaults back to power down."); 59MODULE_PARM_DESC(poweroff_powercycles, " Set to non-zero to enable power cycle instead of power down. Power cycle is contingent on hardware support, otherwise it defaults back to power down.");
60 60
61/* Stuff from the get device id command. */ 61/* Stuff from the get device id command. */
diff --git a/drivers/char/n_r3964.c b/drivers/char/n_r3964.c
index 2291a87e8ada..97d6dc24b800 100644
--- a/drivers/char/n_r3964.c
+++ b/drivers/char/n_r3964.c
@@ -229,8 +229,8 @@ static int __init r3964_init(void)
229 TRACE_L("line discipline %d registered", N_R3964); 229 TRACE_L("line discipline %d registered", N_R3964);
230 TRACE_L("flags=%x num=%x", tty_ldisc_N_R3964.flags, 230 TRACE_L("flags=%x num=%x", tty_ldisc_N_R3964.flags,
231 tty_ldisc_N_R3964.num); 231 tty_ldisc_N_R3964.num);
232 TRACE_L("open=%x", (int)tty_ldisc_N_R3964.open); 232 TRACE_L("open=%p", tty_ldisc_N_R3964.open);
233 TRACE_L("tty_ldisc_N_R3964 = %x", (int)&tty_ldisc_N_R3964); 233 TRACE_L("tty_ldisc_N_R3964 = %p", &tty_ldisc_N_R3964);
234 } 234 }
235 else 235 else
236 { 236 {
@@ -267,8 +267,8 @@ static void add_tx_queue(struct r3964_info *pInfo, struct r3964_block_header *pH
267 267
268 spin_unlock_irqrestore(&pInfo->lock, flags); 268 spin_unlock_irqrestore(&pInfo->lock, flags);
269 269
270 TRACE_Q("add_tx_queue %x, length %d, tx_first = %x", 270 TRACE_Q("add_tx_queue %p, length %d, tx_first = %p",
271 (int)pHeader, pHeader->length, (int)pInfo->tx_first ); 271 pHeader, pHeader->length, pInfo->tx_first );
272} 272}
273 273
274static void remove_from_tx_queue(struct r3964_info *pInfo, int error_code) 274static void remove_from_tx_queue(struct r3964_info *pInfo, int error_code)
@@ -285,10 +285,10 @@ static void remove_from_tx_queue(struct r3964_info *pInfo, int error_code)
285 return; 285 return;
286 286
287#ifdef DEBUG_QUEUE 287#ifdef DEBUG_QUEUE
288 printk("r3964: remove_from_tx_queue: %x, length %d - ", 288 printk("r3964: remove_from_tx_queue: %p, length %u - ",
289 (int)pHeader, (int)pHeader->length ); 289 pHeader, pHeader->length );
290 for(pDump=pHeader;pDump;pDump=pDump->next) 290 for(pDump=pHeader;pDump;pDump=pDump->next)
291 printk("%x ", (int)pDump); 291 printk("%p ", pDump);
292 printk("\n"); 292 printk("\n");
293#endif 293#endif
294 294
@@ -319,10 +319,10 @@ static void remove_from_tx_queue(struct r3964_info *pInfo, int error_code)
319 spin_unlock_irqrestore(&pInfo->lock, flags); 319 spin_unlock_irqrestore(&pInfo->lock, flags);
320 320
321 kfree(pHeader); 321 kfree(pHeader);
322 TRACE_M("remove_from_tx_queue - kfree %x",(int)pHeader); 322 TRACE_M("remove_from_tx_queue - kfree %p",pHeader);
323 323
324 TRACE_Q("remove_from_tx_queue: tx_first = %x, tx_last = %x", 324 TRACE_Q("remove_from_tx_queue: tx_first = %p, tx_last = %p",
325 (int)pInfo->tx_first, (int)pInfo->tx_last ); 325 pInfo->tx_first, pInfo->tx_last );
326} 326}
327 327
328static void add_rx_queue(struct r3964_info *pInfo, struct r3964_block_header *pHeader) 328static void add_rx_queue(struct r3964_info *pInfo, struct r3964_block_header *pHeader)
@@ -346,9 +346,9 @@ static void add_rx_queue(struct r3964_info *pInfo, struct r3964_block_header *pH
346 346
347 spin_unlock_irqrestore(&pInfo->lock, flags); 347 spin_unlock_irqrestore(&pInfo->lock, flags);
348 348
349 TRACE_Q("add_rx_queue: %x, length = %d, rx_first = %x, count = %d", 349 TRACE_Q("add_rx_queue: %p, length = %d, rx_first = %p, count = %d",
350 (int)pHeader, pHeader->length, 350 pHeader, pHeader->length,
351 (int)pInfo->rx_first, pInfo->blocks_in_rx_queue); 351 pInfo->rx_first, pInfo->blocks_in_rx_queue);
352} 352}
353 353
354static void remove_from_rx_queue(struct r3964_info *pInfo, 354static void remove_from_rx_queue(struct r3964_info *pInfo,
@@ -360,10 +360,10 @@ static void remove_from_rx_queue(struct r3964_info *pInfo,
360 if(pHeader==NULL) 360 if(pHeader==NULL)
361 return; 361 return;
362 362
363 TRACE_Q("remove_from_rx_queue: rx_first = %x, rx_last = %x, count = %d", 363 TRACE_Q("remove_from_rx_queue: rx_first = %p, rx_last = %p, count = %d",
364 (int)pInfo->rx_first, (int)pInfo->rx_last, pInfo->blocks_in_rx_queue ); 364 pInfo->rx_first, pInfo->rx_last, pInfo->blocks_in_rx_queue );
365 TRACE_Q("remove_from_rx_queue: %x, length %d", 365 TRACE_Q("remove_from_rx_queue: %p, length %u",
366 (int)pHeader, (int)pHeader->length ); 366 pHeader, pHeader->length );
367 367
368 spin_lock_irqsave(&pInfo->lock, flags); 368 spin_lock_irqsave(&pInfo->lock, flags);
369 369
@@ -401,10 +401,10 @@ static void remove_from_rx_queue(struct r3964_info *pInfo,
401 spin_unlock_irqrestore(&pInfo->lock, flags); 401 spin_unlock_irqrestore(&pInfo->lock, flags);
402 402
403 kfree(pHeader); 403 kfree(pHeader);
404 TRACE_M("remove_from_rx_queue - kfree %x",(int)pHeader); 404 TRACE_M("remove_from_rx_queue - kfree %p",pHeader);
405 405
406 TRACE_Q("remove_from_rx_queue: rx_first = %x, rx_last = %x, count = %d", 406 TRACE_Q("remove_from_rx_queue: rx_first = %p, rx_last = %p, count = %d",
407 (int)pInfo->rx_first, (int)pInfo->rx_last, pInfo->blocks_in_rx_queue ); 407 pInfo->rx_first, pInfo->rx_last, pInfo->blocks_in_rx_queue );
408} 408}
409 409
410static void put_char(struct r3964_info *pInfo, unsigned char ch) 410static void put_char(struct r3964_info *pInfo, unsigned char ch)
@@ -506,8 +506,8 @@ static void transmit_block(struct r3964_info *pInfo)
506 if(tty->driver->write_room) 506 if(tty->driver->write_room)
507 room=tty->driver->write_room(tty); 507 room=tty->driver->write_room(tty);
508 508
509 TRACE_PS("transmit_block %x, room %d, length %d", 509 TRACE_PS("transmit_block %p, room %d, length %d",
510 (int)pBlock, room, pBlock->length); 510 pBlock, room, pBlock->length);
511 511
512 while(pInfo->tx_position < pBlock->length) 512 while(pInfo->tx_position < pBlock->length)
513 { 513 {
@@ -588,7 +588,7 @@ static void on_receive_block(struct r3964_info *pInfo)
588 588
589 /* prepare struct r3964_block_header: */ 589 /* prepare struct r3964_block_header: */
590 pBlock = kmalloc(length+sizeof(struct r3964_block_header), GFP_KERNEL); 590 pBlock = kmalloc(length+sizeof(struct r3964_block_header), GFP_KERNEL);
591 TRACE_M("on_receive_block - kmalloc %x",(int)pBlock); 591 TRACE_M("on_receive_block - kmalloc %p",pBlock);
592 592
593 if(pBlock==NULL) 593 if(pBlock==NULL)
594 return; 594 return;
@@ -868,11 +868,11 @@ static int enable_signals(struct r3964_info *pInfo, pid_t pid, int arg)
868 if(pMsg) 868 if(pMsg)
869 { 869 {
870 kfree(pMsg); 870 kfree(pMsg);
871 TRACE_M("enable_signals - msg kfree %x",(int)pMsg); 871 TRACE_M("enable_signals - msg kfree %p",pMsg);
872 } 872 }
873 } 873 }
874 kfree(pClient); 874 kfree(pClient);
875 TRACE_M("enable_signals - kfree %x",(int)pClient); 875 TRACE_M("enable_signals - kfree %p",pClient);
876 return 0; 876 return 0;
877 } 877 }
878 } 878 }
@@ -890,7 +890,7 @@ static int enable_signals(struct r3964_info *pInfo, pid_t pid, int arg)
890 { 890 {
891 /* add client to client list */ 891 /* add client to client list */
892 pClient=kmalloc(sizeof(struct r3964_client_info), GFP_KERNEL); 892 pClient=kmalloc(sizeof(struct r3964_client_info), GFP_KERNEL);
893 TRACE_M("enable_signals - kmalloc %x",(int)pClient); 893 TRACE_M("enable_signals - kmalloc %p",pClient);
894 if(pClient==NULL) 894 if(pClient==NULL)
895 return -ENOMEM; 895 return -ENOMEM;
896 896
@@ -954,7 +954,7 @@ static void add_msg(struct r3964_client_info *pClient, int msg_id, int arg,
954queue_the_message: 954queue_the_message:
955 955
956 pMsg = kmalloc(sizeof(struct r3964_message), GFP_KERNEL); 956 pMsg = kmalloc(sizeof(struct r3964_message), GFP_KERNEL);
957 TRACE_M("add_msg - kmalloc %x",(int)pMsg); 957 TRACE_M("add_msg - kmalloc %p",pMsg);
958 if(pMsg==NULL) { 958 if(pMsg==NULL) {
959 return; 959 return;
960 } 960 }
@@ -1067,11 +1067,11 @@ static int r3964_open(struct tty_struct *tty)
1067 struct r3964_info *pInfo; 1067 struct r3964_info *pInfo;
1068 1068
1069 TRACE_L("open"); 1069 TRACE_L("open");
1070 TRACE_L("tty=%x, PID=%d, disc_data=%x", 1070 TRACE_L("tty=%p, PID=%d, disc_data=%p",
1071 (int)tty, current->pid, (int)tty->disc_data); 1071 tty, current->pid, tty->disc_data);
1072 1072
1073 pInfo=kmalloc(sizeof(struct r3964_info), GFP_KERNEL); 1073 pInfo=kmalloc(sizeof(struct r3964_info), GFP_KERNEL);
1074 TRACE_M("r3964_open - info kmalloc %x",(int)pInfo); 1074 TRACE_M("r3964_open - info kmalloc %p",pInfo);
1075 1075
1076 if(!pInfo) 1076 if(!pInfo)
1077 { 1077 {
@@ -1080,26 +1080,26 @@ static int r3964_open(struct tty_struct *tty)
1080 } 1080 }
1081 1081
1082 pInfo->rx_buf = kmalloc(RX_BUF_SIZE, GFP_KERNEL); 1082 pInfo->rx_buf = kmalloc(RX_BUF_SIZE, GFP_KERNEL);
1083 TRACE_M("r3964_open - rx_buf kmalloc %x",(int)pInfo->rx_buf); 1083 TRACE_M("r3964_open - rx_buf kmalloc %p",pInfo->rx_buf);
1084 1084
1085 if(!pInfo->rx_buf) 1085 if(!pInfo->rx_buf)
1086 { 1086 {
1087 printk(KERN_ERR "r3964: failed to alloc receive buffer\n"); 1087 printk(KERN_ERR "r3964: failed to alloc receive buffer\n");
1088 kfree(pInfo); 1088 kfree(pInfo);
1089 TRACE_M("r3964_open - info kfree %x",(int)pInfo); 1089 TRACE_M("r3964_open - info kfree %p",pInfo);
1090 return -ENOMEM; 1090 return -ENOMEM;
1091 } 1091 }
1092 1092
1093 pInfo->tx_buf = kmalloc(TX_BUF_SIZE, GFP_KERNEL); 1093 pInfo->tx_buf = kmalloc(TX_BUF_SIZE, GFP_KERNEL);
1094 TRACE_M("r3964_open - tx_buf kmalloc %x",(int)pInfo->tx_buf); 1094 TRACE_M("r3964_open - tx_buf kmalloc %p",pInfo->tx_buf);
1095 1095
1096 if(!pInfo->tx_buf) 1096 if(!pInfo->tx_buf)
1097 { 1097 {
1098 printk(KERN_ERR "r3964: failed to alloc transmit buffer\n"); 1098 printk(KERN_ERR "r3964: failed to alloc transmit buffer\n");
1099 kfree(pInfo->rx_buf); 1099 kfree(pInfo->rx_buf);
1100 TRACE_M("r3964_open - rx_buf kfree %x",(int)pInfo->rx_buf); 1100 TRACE_M("r3964_open - rx_buf kfree %p",pInfo->rx_buf);
1101 kfree(pInfo); 1101 kfree(pInfo);
1102 TRACE_M("r3964_open - info kfree %x",(int)pInfo); 1102 TRACE_M("r3964_open - info kfree %p",pInfo);
1103 return -ENOMEM; 1103 return -ENOMEM;
1104 } 1104 }
1105 1105
@@ -1154,11 +1154,11 @@ static void r3964_close(struct tty_struct *tty)
1154 if(pMsg) 1154 if(pMsg)
1155 { 1155 {
1156 kfree(pMsg); 1156 kfree(pMsg);
1157 TRACE_M("r3964_close - msg kfree %x",(int)pMsg); 1157 TRACE_M("r3964_close - msg kfree %p",pMsg);
1158 } 1158 }
1159 } 1159 }
1160 kfree(pClient); 1160 kfree(pClient);
1161 TRACE_M("r3964_close - client kfree %x",(int)pClient); 1161 TRACE_M("r3964_close - client kfree %p",pClient);
1162 pClient=pNext; 1162 pClient=pNext;
1163 } 1163 }
1164 /* Remove jobs from tx_queue: */ 1164 /* Remove jobs from tx_queue: */
@@ -1177,11 +1177,11 @@ static void r3964_close(struct tty_struct *tty)
1177 /* Free buffers: */ 1177 /* Free buffers: */
1178 wake_up_interruptible(&pInfo->read_wait); 1178 wake_up_interruptible(&pInfo->read_wait);
1179 kfree(pInfo->rx_buf); 1179 kfree(pInfo->rx_buf);
1180 TRACE_M("r3964_close - rx_buf kfree %x",(int)pInfo->rx_buf); 1180 TRACE_M("r3964_close - rx_buf kfree %p",pInfo->rx_buf);
1181 kfree(pInfo->tx_buf); 1181 kfree(pInfo->tx_buf);
1182 TRACE_M("r3964_close - tx_buf kfree %x",(int)pInfo->tx_buf); 1182 TRACE_M("r3964_close - tx_buf kfree %p",pInfo->tx_buf);
1183 kfree(pInfo); 1183 kfree(pInfo);
1184 TRACE_M("r3964_close - info kfree %x",(int)pInfo); 1184 TRACE_M("r3964_close - info kfree %p",pInfo);
1185} 1185}
1186 1186
1187static ssize_t r3964_read(struct tty_struct *tty, struct file *file, 1187static ssize_t r3964_read(struct tty_struct *tty, struct file *file,
@@ -1234,7 +1234,7 @@ repeat:
1234 count = sizeof(struct r3964_client_message); 1234 count = sizeof(struct r3964_client_message);
1235 1235
1236 kfree(pMsg); 1236 kfree(pMsg);
1237 TRACE_M("r3964_read - msg kfree %x",(int)pMsg); 1237 TRACE_M("r3964_read - msg kfree %p",pMsg);
1238 1238
1239 if (copy_to_user(buf,&theMsg, count)) 1239 if (copy_to_user(buf,&theMsg, count))
1240 return -EFAULT; 1240 return -EFAULT;
@@ -1279,7 +1279,7 @@ static ssize_t r3964_write(struct tty_struct * tty, struct file * file,
1279 * Allocate a buffer for the data and copy it from the buffer with header prepended 1279 * Allocate a buffer for the data and copy it from the buffer with header prepended
1280 */ 1280 */
1281 new_data = kmalloc (count+sizeof(struct r3964_block_header), GFP_KERNEL); 1281 new_data = kmalloc (count+sizeof(struct r3964_block_header), GFP_KERNEL);
1282 TRACE_M("r3964_write - kmalloc %x",(int)new_data); 1282 TRACE_M("r3964_write - kmalloc %p",new_data);
1283 if (new_data == NULL) { 1283 if (new_data == NULL) {
1284 if (pInfo->flags & R3964_DEBUG) 1284 if (pInfo->flags & R3964_DEBUG)
1285 { 1285 {
diff --git a/drivers/char/watchdog/mv64x60_wdt.c b/drivers/char/watchdog/mv64x60_wdt.c
index 1436aea3b28f..6d3ff0836c44 100644
--- a/drivers/char/watchdog/mv64x60_wdt.c
+++ b/drivers/char/watchdog/mv64x60_wdt.c
@@ -87,6 +87,8 @@ static int mv64x60_wdt_open(struct inode *inode, struct file *file)
87 mv64x60_wdt_service(); 87 mv64x60_wdt_service();
88 mv64x60_wdt_handler_enable(); 88 mv64x60_wdt_handler_enable();
89 89
90 nonseekable_open(inode, file);
91
90 return 0; 92 return 0;
91} 93}
92 94
@@ -103,12 +105,9 @@ static int mv64x60_wdt_release(struct inode *inode, struct file *file)
103 return 0; 105 return 0;
104} 106}
105 107
106static ssize_t mv64x60_wdt_write(struct file *file, const char *data, 108static ssize_t mv64x60_wdt_write(struct file *file, const char __user *data,
107 size_t len, loff_t * ppos) 109 size_t len, loff_t * ppos)
108{ 110{
109 if (*ppos != file->f_pos)
110 return -ESPIPE;
111
112 if (len) 111 if (len)
113 mv64x60_wdt_service(); 112 mv64x60_wdt_service();
114 113
@@ -119,6 +118,7 @@ static int mv64x60_wdt_ioctl(struct inode *inode, struct file *file,
119 unsigned int cmd, unsigned long arg) 118 unsigned int cmd, unsigned long arg)
120{ 119{
121 int timeout; 120 int timeout;
121 void __user *argp = (void __user *)arg;
122 static struct watchdog_info info = { 122 static struct watchdog_info info = {
123 .options = WDIOF_KEEPALIVEPING, 123 .options = WDIOF_KEEPALIVEPING,
124 .firmware_version = 0, 124 .firmware_version = 0,
@@ -127,13 +127,13 @@ static int mv64x60_wdt_ioctl(struct inode *inode, struct file *file,
127 127
128 switch (cmd) { 128 switch (cmd) {
129 case WDIOC_GETSUPPORT: 129 case WDIOC_GETSUPPORT:
130 if (copy_to_user((void *)arg, &info, sizeof(info))) 130 if (copy_to_user(argp, &info, sizeof(info)))
131 return -EFAULT; 131 return -EFAULT;
132 break; 132 break;
133 133
134 case WDIOC_GETSTATUS: 134 case WDIOC_GETSTATUS:
135 case WDIOC_GETBOOTSTATUS: 135 case WDIOC_GETBOOTSTATUS:
136 if (put_user(wdt_status, (int *)arg)) 136 if (put_user(wdt_status, (int __user *)argp))
137 return -EFAULT; 137 return -EFAULT;
138 wdt_status &= ~WDIOF_KEEPALIVEPING; 138 wdt_status &= ~WDIOF_KEEPALIVEPING;
139 break; 139 break;
@@ -154,7 +154,7 @@ static int mv64x60_wdt_ioctl(struct inode *inode, struct file *file,
154 154
155 case WDIOC_GETTIMEOUT: 155 case WDIOC_GETTIMEOUT:
156 timeout = mv64x60_wdt_timeout * HZ; 156 timeout = mv64x60_wdt_timeout * HZ;
157 if (put_user(timeout, (int *)arg)) 157 if (put_user(timeout, (int __user *)argp))
158 return -EFAULT; 158 return -EFAULT;
159 break; 159 break;
160 160
diff --git a/drivers/connector/cn_queue.c b/drivers/connector/cn_queue.c
index 966632182e2d..9f2f00d82917 100644
--- a/drivers/connector/cn_queue.c
+++ b/drivers/connector/cn_queue.c
@@ -31,16 +31,19 @@
31#include <linux/connector.h> 31#include <linux/connector.h>
32#include <linux/delay.h> 32#include <linux/delay.h>
33 33
34static void cn_queue_wrapper(void *data) 34void cn_queue_wrapper(void *data)
35{ 35{
36 struct cn_callback_entry *cbq = data; 36 struct cn_callback_data *d = data;
37 37
38 cbq->cb->callback(cbq->cb->priv); 38 d->callback(d->callback_priv);
39 cbq->destruct_data(cbq->ddata); 39
40 cbq->ddata = NULL; 40 d->destruct_data(d->ddata);
41 d->ddata = NULL;
42
43 kfree(d->free);
41} 44}
42 45
43static struct cn_callback_entry *cn_queue_alloc_callback_entry(struct cn_callback *cb) 46static struct cn_callback_entry *cn_queue_alloc_callback_entry(char *name, struct cb_id *id, void (*callback)(void *))
44{ 47{
45 struct cn_callback_entry *cbq; 48 struct cn_callback_entry *cbq;
46 49
@@ -50,8 +53,11 @@ static struct cn_callback_entry *cn_queue_alloc_callback_entry(struct cn_callbac
50 return NULL; 53 return NULL;
51 } 54 }
52 55
53 cbq->cb = cb; 56 snprintf(cbq->id.name, sizeof(cbq->id.name), "%s", name);
54 INIT_WORK(&cbq->work, &cn_queue_wrapper, cbq); 57 memcpy(&cbq->id.id, id, sizeof(struct cb_id));
58 cbq->data.callback = callback;
59
60 INIT_WORK(&cbq->work, &cn_queue_wrapper, &cbq->data);
55 return cbq; 61 return cbq;
56} 62}
57 63
@@ -68,12 +74,12 @@ int cn_cb_equal(struct cb_id *i1, struct cb_id *i2)
68 return ((i1->idx == i2->idx) && (i1->val == i2->val)); 74 return ((i1->idx == i2->idx) && (i1->val == i2->val));
69} 75}
70 76
71int cn_queue_add_callback(struct cn_queue_dev *dev, struct cn_callback *cb) 77int cn_queue_add_callback(struct cn_queue_dev *dev, char *name, struct cb_id *id, void (*callback)(void *))
72{ 78{
73 struct cn_callback_entry *cbq, *__cbq; 79 struct cn_callback_entry *cbq, *__cbq;
74 int found = 0; 80 int found = 0;
75 81
76 cbq = cn_queue_alloc_callback_entry(cb); 82 cbq = cn_queue_alloc_callback_entry(name, id, callback);
77 if (!cbq) 83 if (!cbq)
78 return -ENOMEM; 84 return -ENOMEM;
79 85
@@ -82,7 +88,7 @@ int cn_queue_add_callback(struct cn_queue_dev *dev, struct cn_callback *cb)
82 88
83 spin_lock_bh(&dev->queue_lock); 89 spin_lock_bh(&dev->queue_lock);
84 list_for_each_entry(__cbq, &dev->queue_list, callback_entry) { 90 list_for_each_entry(__cbq, &dev->queue_list, callback_entry) {
85 if (cn_cb_equal(&__cbq->cb->id, &cb->id)) { 91 if (cn_cb_equal(&__cbq->id.id, id)) {
86 found = 1; 92 found = 1;
87 break; 93 break;
88 } 94 }
@@ -99,7 +105,7 @@ int cn_queue_add_callback(struct cn_queue_dev *dev, struct cn_callback *cb)
99 105
100 cbq->nls = dev->nls; 106 cbq->nls = dev->nls;
101 cbq->seq = 0; 107 cbq->seq = 0;
102 cbq->group = cbq->cb->id.idx; 108 cbq->group = cbq->id.id.idx;
103 109
104 return 0; 110 return 0;
105} 111}
@@ -111,7 +117,7 @@ void cn_queue_del_callback(struct cn_queue_dev *dev, struct cb_id *id)
111 117
112 spin_lock_bh(&dev->queue_lock); 118 spin_lock_bh(&dev->queue_lock);
113 list_for_each_entry_safe(cbq, n, &dev->queue_list, callback_entry) { 119 list_for_each_entry_safe(cbq, n, &dev->queue_list, callback_entry) {
114 if (cn_cb_equal(&cbq->cb->id, id)) { 120 if (cn_cb_equal(&cbq->id.id, id)) {
115 list_del(&cbq->callback_entry); 121 list_del(&cbq->callback_entry);
116 found = 1; 122 found = 1;
117 break; 123 break;
diff --git a/drivers/connector/connector.c b/drivers/connector/connector.c
index aaf6d468a8b9..bb0b3a8de14b 100644
--- a/drivers/connector/connector.c
+++ b/drivers/connector/connector.c
@@ -84,7 +84,7 @@ int cn_netlink_send(struct cn_msg *msg, u32 __group, int gfp_mask)
84 spin_lock_bh(&dev->cbdev->queue_lock); 84 spin_lock_bh(&dev->cbdev->queue_lock);
85 list_for_each_entry(__cbq, &dev->cbdev->queue_list, 85 list_for_each_entry(__cbq, &dev->cbdev->queue_list,
86 callback_entry) { 86 callback_entry) {
87 if (cn_cb_equal(&__cbq->cb->id, &msg->id)) { 87 if (cn_cb_equal(&__cbq->id.id, &msg->id)) {
88 found = 1; 88 found = 1;
89 group = __cbq->group; 89 group = __cbq->group;
90 } 90 }
@@ -127,42 +127,56 @@ static int cn_call_callback(struct cn_msg *msg, void (*destruct_data)(void *), v
127{ 127{
128 struct cn_callback_entry *__cbq; 128 struct cn_callback_entry *__cbq;
129 struct cn_dev *dev = &cdev; 129 struct cn_dev *dev = &cdev;
130 int found = 0; 130 int err = -ENODEV;
131 131
132 spin_lock_bh(&dev->cbdev->queue_lock); 132 spin_lock_bh(&dev->cbdev->queue_lock);
133 list_for_each_entry(__cbq, &dev->cbdev->queue_list, callback_entry) { 133 list_for_each_entry(__cbq, &dev->cbdev->queue_list, callback_entry) {
134 if (cn_cb_equal(&__cbq->cb->id, &msg->id)) { 134 if (cn_cb_equal(&__cbq->id.id, &msg->id)) {
135 /*
136 * Let's scream if there is some magic and the
137 * data will arrive asynchronously here.
138 * [i.e. netlink messages will be queued].
139 * After the first warning I will fix it
140 * quickly, but now I think it is
141 * impossible. --zbr (2004_04_27).
142 */
143 if (likely(!test_bit(0, &__cbq->work.pending) && 135 if (likely(!test_bit(0, &__cbq->work.pending) &&
144 __cbq->ddata == NULL)) { 136 __cbq->data.ddata == NULL)) {
145 __cbq->cb->priv = msg; 137 __cbq->data.callback_priv = msg;
146 138
147 __cbq->ddata = data; 139 __cbq->data.ddata = data;
148 __cbq->destruct_data = destruct_data; 140 __cbq->data.destruct_data = destruct_data;
149 141
150 if (queue_work(dev->cbdev->cn_queue, 142 if (queue_work(dev->cbdev->cn_queue,
151 &__cbq->work)) 143 &__cbq->work))
152 found = 1; 144 err = 0;
153 } else { 145 } else {
154 printk("%s: cbq->data=%p, " 146 struct work_struct *w;
155 "work->pending=%08lx.\n", 147 struct cn_callback_data *d;
156 __func__, __cbq->ddata, 148
157 __cbq->work.pending); 149 w = kzalloc(sizeof(*w) + sizeof(*d), GFP_ATOMIC);
158 WARN_ON(1); 150 if (w) {
151 d = (struct cn_callback_data *)(w+1);
152
153 d->callback_priv = msg;
154 d->callback = __cbq->data.callback;
155 d->ddata = data;
156 d->destruct_data = destruct_data;
157 d->free = w;
158
159 INIT_LIST_HEAD(&w->entry);
160 w->pending = 0;
161 w->func = &cn_queue_wrapper;
162 w->data = d;
163 init_timer(&w->timer);
164
165 if (queue_work(dev->cbdev->cn_queue, w))
166 err = 0;
167 else {
168 kfree(w);
169 err = -EINVAL;
170 }
171 } else
172 err = -ENOMEM;
159 } 173 }
160 break; 174 break;
161 } 175 }
162 } 176 }
163 spin_unlock_bh(&dev->cbdev->queue_lock); 177 spin_unlock_bh(&dev->cbdev->queue_lock);
164 178
165 return found ? 0 : -ENODEV; 179 return err;
166} 180}
167 181
168/* 182/*
@@ -291,22 +305,10 @@ int cn_add_callback(struct cb_id *id, char *name, void (*callback)(void *))
291{ 305{
292 int err; 306 int err;
293 struct cn_dev *dev = &cdev; 307 struct cn_dev *dev = &cdev;
294 struct cn_callback *cb;
295
296 cb = kzalloc(sizeof(*cb), GFP_KERNEL);
297 if (!cb)
298 return -ENOMEM;
299
300 scnprintf(cb->name, sizeof(cb->name), "%s", name);
301 308
302 memcpy(&cb->id, id, sizeof(cb->id)); 309 err = cn_queue_add_callback(dev->cbdev, name, id, callback);
303 cb->callback = callback; 310 if (err)
304
305 err = cn_queue_add_callback(dev->cbdev, cb);
306 if (err) {
307 kfree(cb);
308 return err; 311 return err;
309 }
310 312
311 cn_notify(id, 0); 313 cn_notify(id, 0);
312 314
diff --git a/drivers/hwmon/Kconfig b/drivers/hwmon/Kconfig
index 7e72e922b41c..db358cfa7cbf 100644
--- a/drivers/hwmon/Kconfig
+++ b/drivers/hwmon/Kconfig
@@ -418,12 +418,11 @@ config SENSORS_HDAPS
418 help 418 help
419 This driver provides support for the IBM Hard Drive Active Protection 419 This driver provides support for the IBM Hard Drive Active Protection
420 System (hdaps), which provides an accelerometer and other misc. data. 420 System (hdaps), which provides an accelerometer and other misc. data.
421 Supported laptops include the IBM ThinkPad T41, T42, T43, and R51. 421 ThinkPads starting with the R50, T41, and X40 are supported. The
422 The accelerometer data is readable via sysfs. 422 accelerometer data is readable via sysfs.
423 423
424 This driver also provides an input class device, allowing the 424 This driver also provides an absolute input class device, allowing
425 laptop to act as a pinball machine-esque mouse. This is off by 425 the laptop to act as a pinball machine-esque joystick.
426 default but enabled via sysfs or the module parameter "mousedev".
427 426
428 Say Y here if you have an applicable laptop and want to experience 427 Say Y here if you have an applicable laptop and want to experience
429 the awesome power of hdaps. 428 the awesome power of hdaps.
diff --git a/drivers/hwmon/hdaps.c b/drivers/hwmon/hdaps.c
index 4c56411f3993..7f0107613827 100644
--- a/drivers/hwmon/hdaps.c
+++ b/drivers/hwmon/hdaps.c
@@ -4,9 +4,9 @@
4 * Copyright (C) 2005 Robert Love <rml@novell.com> 4 * Copyright (C) 2005 Robert Love <rml@novell.com>
5 * Copyright (C) 2005 Jesper Juhl <jesper.juhl@gmail.com> 5 * Copyright (C) 2005 Jesper Juhl <jesper.juhl@gmail.com>
6 * 6 *
7 * The HardDisk Active Protection System (hdaps) is present in the IBM ThinkPad 7 * The HardDisk Active Protection System (hdaps) is present in IBM ThinkPads
8 * T41, T42, T43, R50, R50p, R51, and X40, at least. It provides a basic 8 * starting with the R40, T41, and X40. It provides a basic two-axis
9 * two-axis accelerometer and other data, such as the device's temperature. 9 * accelerometer and other data, such as the device's temperature.
10 * 10 *
11 * This driver is based on the document by Mark A. Smith available at 11 * This driver is based on the document by Mark A. Smith available at
12 * http://www.almaden.ibm.com/cs/people/marksmith/tpaps.html and a lot of trial 12 * http://www.almaden.ibm.com/cs/people/marksmith/tpaps.html and a lot of trial
@@ -487,24 +487,19 @@ static struct attribute_group hdaps_attribute_group = {
487 487
488/* Module stuff */ 488/* Module stuff */
489 489
490/* 490/* hdaps_dmi_match - found a match. return one, short-circuiting the hunt. */
491 * XXX: We should be able to return nonzero and halt the detection process.
492 * But there is a bug in dmi_check_system() where a nonzero return from the
493 * first match will result in a return of failure from dmi_check_system().
494 * I fixed this; the patch is 2.6-git. Once in a released tree, we can make
495 * hdaps_dmi_match_invert() return hdaps_dmi_match(), which in turn returns 1.
496 */
497static int hdaps_dmi_match(struct dmi_system_id *id) 491static int hdaps_dmi_match(struct dmi_system_id *id)
498{ 492{
499 printk(KERN_INFO "hdaps: %s detected.\n", id->ident); 493 printk(KERN_INFO "hdaps: %s detected.\n", id->ident);
500 return 0; 494 return 1;
501} 495}
502 496
497/* hdaps_dmi_match_invert - found an inverted match. */
503static int hdaps_dmi_match_invert(struct dmi_system_id *id) 498static int hdaps_dmi_match_invert(struct dmi_system_id *id)
504{ 499{
505 hdaps_invert = 1; 500 hdaps_invert = 1;
506 printk(KERN_INFO "hdaps: inverting axis readings.\n"); 501 printk(KERN_INFO "hdaps: inverting axis readings.\n");
507 return 0; 502 return hdaps_dmi_match(id);
508} 503}
509 504
510#define HDAPS_DMI_MATCH_NORMAL(model) { \ 505#define HDAPS_DMI_MATCH_NORMAL(model) { \
@@ -534,6 +529,7 @@ static int __init hdaps_init(void)
534 HDAPS_DMI_MATCH_INVERT("ThinkPad R50p"), 529 HDAPS_DMI_MATCH_INVERT("ThinkPad R50p"),
535 HDAPS_DMI_MATCH_NORMAL("ThinkPad R50"), 530 HDAPS_DMI_MATCH_NORMAL("ThinkPad R50"),
536 HDAPS_DMI_MATCH_NORMAL("ThinkPad R51"), 531 HDAPS_DMI_MATCH_NORMAL("ThinkPad R51"),
532 HDAPS_DMI_MATCH_NORMAL("ThinkPad R52"),
537 HDAPS_DMI_MATCH_INVERT("ThinkPad T41p"), 533 HDAPS_DMI_MATCH_INVERT("ThinkPad T41p"),
538 HDAPS_DMI_MATCH_NORMAL("ThinkPad T41"), 534 HDAPS_DMI_MATCH_NORMAL("ThinkPad T41"),
539 HDAPS_DMI_MATCH_INVERT("ThinkPad T42p"), 535 HDAPS_DMI_MATCH_INVERT("ThinkPad T42p"),
@@ -541,6 +537,7 @@ static int __init hdaps_init(void)
541 HDAPS_DMI_MATCH_NORMAL("ThinkPad T43"), 537 HDAPS_DMI_MATCH_NORMAL("ThinkPad T43"),
542 HDAPS_DMI_MATCH_NORMAL("ThinkPad X40"), 538 HDAPS_DMI_MATCH_NORMAL("ThinkPad X40"),
543 HDAPS_DMI_MATCH_NORMAL("ThinkPad X41 Tablet"), 539 HDAPS_DMI_MATCH_NORMAL("ThinkPad X41 Tablet"),
540 HDAPS_DMI_MATCH_NORMAL("ThinkPad X41"),
544 { .ident = NULL } 541 { .ident = NULL }
545 }; 542 };
546 543
diff --git a/drivers/i2c/busses/Kconfig b/drivers/i2c/busses/Kconfig
index 8334496a7e0a..3badfec75b1c 100644
--- a/drivers/i2c/busses/Kconfig
+++ b/drivers/i2c/busses/Kconfig
@@ -245,6 +245,18 @@ config I2C_KEYWEST
245 This support is also available as a module. If so, the module 245 This support is also available as a module. If so, the module
246 will be called i2c-keywest. 246 will be called i2c-keywest.
247 247
248config I2C_PMAC_SMU
249 tristate "Powermac SMU I2C interface"
250 depends on I2C && PMAC_SMU
251 help
252 This supports the use of the I2C interface in the SMU
253 chip on recent Apple machines like the iMac G5. It is used
254 among others by the thermal control driver for those machines.
255 Say Y if you have such a machine.
256
257 This support is also available as a module. If so, the module
258 will be called i2c-pmac-smu.
259
248config I2C_MPC 260config I2C_MPC
249 tristate "MPC107/824x/85xx/52xx" 261 tristate "MPC107/824x/85xx/52xx"
250 depends on I2C && PPC32 262 depends on I2C && PPC32
diff --git a/drivers/i2c/busses/Makefile b/drivers/i2c/busses/Makefile
index 980b3e983670..f1df00f66c6c 100644
--- a/drivers/i2c/busses/Makefile
+++ b/drivers/i2c/busses/Makefile
@@ -20,6 +20,7 @@ obj-$(CONFIG_I2C_ITE) += i2c-ite.o
20obj-$(CONFIG_I2C_IXP2000) += i2c-ixp2000.o 20obj-$(CONFIG_I2C_IXP2000) += i2c-ixp2000.o
21obj-$(CONFIG_I2C_IXP4XX) += i2c-ixp4xx.o 21obj-$(CONFIG_I2C_IXP4XX) += i2c-ixp4xx.o
22obj-$(CONFIG_I2C_KEYWEST) += i2c-keywest.o 22obj-$(CONFIG_I2C_KEYWEST) += i2c-keywest.o
23obj-$(CONFIG_I2C_PMAC_SMU) += i2c-pmac-smu.o
23obj-$(CONFIG_I2C_MPC) += i2c-mpc.o 24obj-$(CONFIG_I2C_MPC) += i2c-mpc.o
24obj-$(CONFIG_I2C_MV64XXX) += i2c-mv64xxx.o 25obj-$(CONFIG_I2C_MV64XXX) += i2c-mv64xxx.o
25obj-$(CONFIG_I2C_NFORCE2) += i2c-nforce2.o 26obj-$(CONFIG_I2C_NFORCE2) += i2c-nforce2.o
diff --git a/drivers/i2c/busses/i2c-pmac-smu.c b/drivers/i2c/busses/i2c-pmac-smu.c
new file mode 100644
index 000000000000..8a9f5648a23d
--- /dev/null
+++ b/drivers/i2c/busses/i2c-pmac-smu.c
@@ -0,0 +1,316 @@
1/*
2 i2c Support for Apple SMU Controller
3
4 Copyright (c) 2005 Benjamin Herrenschmidt, IBM Corp.
5 <benh@kernel.crashing.org>
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20
21*/
22
23#include <linux/config.h>
24#include <linux/module.h>
25#include <linux/kernel.h>
26#include <linux/types.h>
27#include <linux/i2c.h>
28#include <linux/init.h>
29#include <linux/completion.h>
30#include <linux/device.h>
31#include <asm/prom.h>
32#include <asm/of_device.h>
33#include <asm/smu.h>
34
35static int probe;
36
37MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
38MODULE_DESCRIPTION("I2C driver for Apple's SMU");
39MODULE_LICENSE("GPL");
40module_param(probe, bool, 0);
41
42
43/* Physical interface */
44struct smu_iface
45{
46 struct i2c_adapter adapter;
47 struct completion complete;
48 u32 busid;
49};
50
51static void smu_i2c_done(struct smu_i2c_cmd *cmd, void *misc)
52{
53 struct smu_iface *iface = misc;
54 complete(&iface->complete);
55}
56
57/*
58 * SMBUS-type transfer entrypoint
59 */
60static s32 smu_smbus_xfer( struct i2c_adapter* adap,
61 u16 addr,
62 unsigned short flags,
63 char read_write,
64 u8 command,
65 int size,
66 union i2c_smbus_data* data)
67{
68 struct smu_iface *iface = i2c_get_adapdata(adap);
69 struct smu_i2c_cmd cmd;
70 int rc = 0;
71 int read = (read_write == I2C_SMBUS_READ);
72
73 cmd.info.bus = iface->busid;
74 cmd.info.devaddr = (addr << 1) | (read ? 0x01 : 0x00);
75
76 /* Prepare datas & select mode */
77 switch (size) {
78 case I2C_SMBUS_QUICK:
79 cmd.info.type = SMU_I2C_TRANSFER_SIMPLE;
80 cmd.info.datalen = 0;
81 break;
82 case I2C_SMBUS_BYTE:
83 cmd.info.type = SMU_I2C_TRANSFER_SIMPLE;
84 cmd.info.datalen = 1;
85 if (!read)
86 cmd.info.data[0] = data->byte;
87 break;
88 case I2C_SMBUS_BYTE_DATA:
89 cmd.info.type = SMU_I2C_TRANSFER_STDSUB;
90 cmd.info.datalen = 1;
91 cmd.info.sublen = 1;
92 cmd.info.subaddr[0] = command;
93 cmd.info.subaddr[1] = 0;
94 cmd.info.subaddr[2] = 0;
95 if (!read)
96 cmd.info.data[0] = data->byte;
97 break;
98 case I2C_SMBUS_WORD_DATA:
99 cmd.info.type = SMU_I2C_TRANSFER_STDSUB;
100 cmd.info.datalen = 2;
101 cmd.info.sublen = 1;
102 cmd.info.subaddr[0] = command;
103 cmd.info.subaddr[1] = 0;
104 cmd.info.subaddr[2] = 0;
105 if (!read) {
106 cmd.info.data[0] = data->byte & 0xff;
107 cmd.info.data[1] = (data->byte >> 8) & 0xff;
108 }
109 break;
110 /* Note that these are broken vs. the expected smbus API where
111 * on reads, the lenght is actually returned from the function,
112 * but I think the current API makes no sense and I don't want
113 * any driver that I haven't verified for correctness to go
114 * anywhere near a pmac i2c bus anyway ...
115 */
116 case I2C_SMBUS_BLOCK_DATA:
117 cmd.info.type = SMU_I2C_TRANSFER_STDSUB;
118 cmd.info.datalen = data->block[0] + 1;
119 if (cmd.info.datalen > 6)
120 return -EINVAL;
121 if (!read)
122 memcpy(cmd.info.data, data->block, cmd.info.datalen);
123 cmd.info.sublen = 1;
124 cmd.info.subaddr[0] = command;
125 cmd.info.subaddr[1] = 0;
126 cmd.info.subaddr[2] = 0;
127 break;
128 case I2C_SMBUS_I2C_BLOCK_DATA:
129 cmd.info.type = SMU_I2C_TRANSFER_STDSUB;
130 cmd.info.datalen = data->block[0];
131 if (cmd.info.datalen > 7)
132 return -EINVAL;
133 if (!read)
134 memcpy(cmd.info.data, &data->block[1],
135 cmd.info.datalen);
136 cmd.info.sublen = 1;
137 cmd.info.subaddr[0] = command;
138 cmd.info.subaddr[1] = 0;
139 cmd.info.subaddr[2] = 0;
140 break;
141
142 default:
143 return -EINVAL;
144 }
145
146 /* Turn a standardsub read into a combined mode access */
147 if (read_write == I2C_SMBUS_READ &&
148 cmd.info.type == SMU_I2C_TRANSFER_STDSUB)
149 cmd.info.type = SMU_I2C_TRANSFER_COMBINED;
150
151 /* Finish filling command and submit it */
152 cmd.done = smu_i2c_done;
153 cmd.misc = iface;
154 rc = smu_queue_i2c(&cmd);
155 if (rc < 0)
156 return rc;
157 wait_for_completion(&iface->complete);
158 rc = cmd.status;
159
160 if (!read || rc < 0)
161 return rc;
162
163 switch (size) {
164 case I2C_SMBUS_BYTE:
165 case I2C_SMBUS_BYTE_DATA:
166 data->byte = cmd.info.data[0];
167 break;
168 case I2C_SMBUS_WORD_DATA:
169 data->word = ((u16)cmd.info.data[1]) << 8;
170 data->word |= cmd.info.data[0];
171 break;
172 /* Note that these are broken vs. the expected smbus API where
173 * on reads, the lenght is actually returned from the function,
174 * but I think the current API makes no sense and I don't want
175 * any driver that I haven't verified for correctness to go
176 * anywhere near a pmac i2c bus anyway ...
177 */
178 case I2C_SMBUS_BLOCK_DATA:
179 case I2C_SMBUS_I2C_BLOCK_DATA:
180 memcpy(&data->block[0], cmd.info.data, cmd.info.datalen);
181 break;
182 }
183
184 return rc;
185}
186
187static u32
188smu_smbus_func(struct i2c_adapter * adapter)
189{
190 return I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SMBUS_BYTE |
191 I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA |
192 I2C_FUNC_SMBUS_BLOCK_DATA;
193}
194
195/* For now, we only handle combined mode (smbus) */
196static struct i2c_algorithm smu_algorithm = {
197 .smbus_xfer = smu_smbus_xfer,
198 .functionality = smu_smbus_func,
199};
200
201static int create_iface(struct device_node *np, struct device *dev)
202{
203 struct smu_iface* iface;
204 u32 *reg, busid;
205 int rc;
206
207 reg = (u32 *)get_property(np, "reg", NULL);
208 if (reg == NULL) {
209 printk(KERN_ERR "i2c-pmac-smu: can't find bus number !\n");
210 return -ENXIO;
211 }
212 busid = *reg;
213
214 iface = kmalloc(sizeof(struct smu_iface), GFP_KERNEL);
215 if (iface == NULL) {
216 printk(KERN_ERR "i2c-pmac-smu: can't allocate inteface !\n");
217 return -ENOMEM;
218 }
219 memset(iface, 0, sizeof(struct smu_iface));
220 init_completion(&iface->complete);
221 iface->busid = busid;
222
223 dev_set_drvdata(dev, iface);
224
225 sprintf(iface->adapter.name, "smu-i2c-%02x", busid);
226 iface->adapter.algo = &smu_algorithm;
227 iface->adapter.algo_data = NULL;
228 iface->adapter.client_register = NULL;
229 iface->adapter.client_unregister = NULL;
230 i2c_set_adapdata(&iface->adapter, iface);
231 iface->adapter.dev.parent = dev;
232
233 rc = i2c_add_adapter(&iface->adapter);
234 if (rc) {
235 printk(KERN_ERR "i2c-pamc-smu.c: Adapter %s registration "
236 "failed\n", iface->adapter.name);
237 i2c_set_adapdata(&iface->adapter, NULL);
238 }
239
240 if (probe) {
241 unsigned char addr;
242 printk("Probe: ");
243 for (addr = 0x00; addr <= 0x7f; addr++) {
244 if (i2c_smbus_xfer(&iface->adapter,addr,
245 0,0,0,I2C_SMBUS_QUICK,NULL) >= 0)
246 printk("%02x ", addr);
247 }
248 printk("\n");
249 }
250
251 printk(KERN_INFO "SMU i2c bus %x registered\n", busid);
252
253 return 0;
254}
255
256static int dispose_iface(struct device *dev)
257{
258 struct smu_iface *iface = dev_get_drvdata(dev);
259 int rc;
260
261 rc = i2c_del_adapter(&iface->adapter);
262 i2c_set_adapdata(&iface->adapter, NULL);
263 /* We aren't that prepared to deal with this... */
264 if (rc)
265 printk("i2c-pmac-smu.c: Failed to remove bus %s !\n",
266 iface->adapter.name);
267 dev_set_drvdata(dev, NULL);
268 kfree(iface);
269
270 return 0;
271}
272
273
274static int create_iface_of_platform(struct of_device* dev,
275 const struct of_device_id *match)
276{
277 return create_iface(dev->node, &dev->dev);
278}
279
280
281static int dispose_iface_of_platform(struct of_device* dev)
282{
283 return dispose_iface(&dev->dev);
284}
285
286
287static struct of_device_id i2c_smu_match[] =
288{
289 {
290 .compatible = "smu-i2c",
291 },
292 {},
293};
294static struct of_platform_driver i2c_smu_of_platform_driver =
295{
296 .name = "i2c-smu",
297 .match_table = i2c_smu_match,
298 .probe = create_iface_of_platform,
299 .remove = dispose_iface_of_platform
300};
301
302
303static int __init i2c_pmac_smu_init(void)
304{
305 of_register_driver(&i2c_smu_of_platform_driver);
306 return 0;
307}
308
309
310static void __exit i2c_pmac_smu_cleanup(void)
311{
312 of_unregister_driver(&i2c_smu_of_platform_driver);
313}
314
315module_init(i2c_pmac_smu_init);
316module_exit(i2c_pmac_smu_cleanup);
diff --git a/drivers/ide/legacy/ide-cs.c b/drivers/ide/legacy/ide-cs.c
index 0ccf85fcee34..a35a58bef1a4 100644
--- a/drivers/ide/legacy/ide-cs.c
+++ b/drivers/ide/legacy/ide-cs.c
@@ -477,7 +477,7 @@ static struct pcmcia_device_id ide_ids[] = {
477 PCMCIA_DEVICE_PROD_ID12("IO DATA", "PCIDE", 0x547e66dc, 0x5c5ab149), 477 PCMCIA_DEVICE_PROD_ID12("IO DATA", "PCIDE", 0x547e66dc, 0x5c5ab149),
478 PCMCIA_DEVICE_PROD_ID12("IO DATA", "PCIDEII", 0x547e66dc, 0xb3662674), 478 PCMCIA_DEVICE_PROD_ID12("IO DATA", "PCIDEII", 0x547e66dc, 0xb3662674),
479 PCMCIA_DEVICE_PROD_ID12("LOOKMEET", "CBIDE2 ", 0xe37be2b5, 0x8671043b), 479 PCMCIA_DEVICE_PROD_ID12("LOOKMEET", "CBIDE2 ", 0xe37be2b5, 0x8671043b),
480 PCMCIA_DEVICE_PROD_ID12(" ", "NinjaATA-", 0x3b6e20c8, 0xebe0bd79), 480 PCMCIA_DEVICE_PROD_ID2("NinjaATA-", 0xebe0bd79),
481 PCMCIA_DEVICE_PROD_ID12("PCMCIA", "CD-ROM", 0x281f1c5d, 0x66536591), 481 PCMCIA_DEVICE_PROD_ID12("PCMCIA", "CD-ROM", 0x281f1c5d, 0x66536591),
482 PCMCIA_DEVICE_PROD_ID12("PCMCIA", "PnPIDE", 0x281f1c5d, 0x0c694728), 482 PCMCIA_DEVICE_PROD_ID12("PCMCIA", "PnPIDE", 0x281f1c5d, 0x0c694728),
483 PCMCIA_DEVICE_PROD_ID12("SHUTTLE TECHNOLOGY LTD.", "PCCARD-IDE/ATAPI Adapter", 0x4a3f0ba0, 0x322560e1), 483 PCMCIA_DEVICE_PROD_ID12("SHUTTLE TECHNOLOGY LTD.", "PCCARD-IDE/ATAPI Adapter", 0x4a3f0ba0, 0x322560e1),
diff --git a/drivers/ieee1394/amdtp.c b/drivers/ieee1394/amdtp.c
index 84ae027b021a..e8e28569a668 100644
--- a/drivers/ieee1394/amdtp.c
+++ b/drivers/ieee1394/amdtp.c
@@ -1297,4 +1297,3 @@ static void __exit amdtp_exit_module (void)
1297 1297
1298module_init(amdtp_init_module); 1298module_init(amdtp_init_module);
1299module_exit(amdtp_exit_module); 1299module_exit(amdtp_exit_module);
1300MODULE_ALIAS_CHARDEV(IEEE1394_MAJOR, IEEE1394_MINOR_BLOCK_AMDTP * 16);
diff --git a/drivers/ieee1394/csr1212.h b/drivers/ieee1394/csr1212.h
index e6734263a1d3..28c5f4b726e2 100644
--- a/drivers/ieee1394/csr1212.h
+++ b/drivers/ieee1394/csr1212.h
@@ -37,7 +37,6 @@
37#include <linux/types.h> 37#include <linux/types.h>
38#include <linux/slab.h> 38#include <linux/slab.h>
39#include <linux/interrupt.h> 39#include <linux/interrupt.h>
40#include <linux/sched.h>
41#include <linux/vmalloc.h> 40#include <linux/vmalloc.h>
42#include <asm/pgalloc.h> 41#include <asm/pgalloc.h>
43 42
diff --git a/drivers/ieee1394/dv1394.c b/drivers/ieee1394/dv1394.c
index 4538b0235ca3..e34730c7a874 100644
--- a/drivers/ieee1394/dv1394.c
+++ b/drivers/ieee1394/dv1394.c
@@ -2660,4 +2660,3 @@ static int __init dv1394_init_module(void)
2660 2660
2661module_init(dv1394_init_module); 2661module_init(dv1394_init_module);
2662module_exit(dv1394_exit_module); 2662module_exit(dv1394_exit_module);
2663MODULE_ALIAS_CHARDEV(IEEE1394_MAJOR, IEEE1394_MINOR_BLOCK_DV1394 * 16);
diff --git a/drivers/ieee1394/eth1394.c b/drivers/ieee1394/eth1394.c
index cd53c174ced1..4802bbbb6dc9 100644
--- a/drivers/ieee1394/eth1394.c
+++ b/drivers/ieee1394/eth1394.c
@@ -89,7 +89,7 @@
89#define TRACE() printk(KERN_ERR "%s:%s[%d] ---- TRACE\n", driver_name, __FUNCTION__, __LINE__) 89#define TRACE() printk(KERN_ERR "%s:%s[%d] ---- TRACE\n", driver_name, __FUNCTION__, __LINE__)
90 90
91static char version[] __devinitdata = 91static char version[] __devinitdata =
92 "$Rev: 1264 $ Ben Collins <bcollins@debian.org>"; 92 "$Rev: 1312 $ Ben Collins <bcollins@debian.org>";
93 93
94struct fragment_info { 94struct fragment_info {
95 struct list_head list; 95 struct list_head list;
@@ -221,9 +221,7 @@ static int ether1394_open (struct net_device *dev)
221 if (priv->bc_state == ETHER1394_BC_ERROR) { 221 if (priv->bc_state == ETHER1394_BC_ERROR) {
222 /* we'll try again */ 222 /* we'll try again */
223 priv->iso = hpsb_iso_recv_init(priv->host, 223 priv->iso = hpsb_iso_recv_init(priv->host,
224 ETHER1394_GASP_BUFFERS * 2 * 224 ETHER1394_ISO_BUF_SIZE,
225 (1 << (priv->host->csr.max_rec +
226 1)),
227 ETHER1394_GASP_BUFFERS, 225 ETHER1394_GASP_BUFFERS,
228 priv->broadcast_channel, 226 priv->broadcast_channel,
229 HPSB_ISO_DMA_PACKET_PER_BUFFER, 227 HPSB_ISO_DMA_PACKET_PER_BUFFER,
@@ -635,8 +633,8 @@ static void ether1394_add_host (struct hpsb_host *host)
635 * be checked when the eth device is opened. */ 633 * be checked when the eth device is opened. */
636 priv->broadcast_channel = host->csr.broadcast_channel & 0x3f; 634 priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
637 635
638 priv->iso = hpsb_iso_recv_init(host, (ETHER1394_GASP_BUFFERS * 2 * 636 priv->iso = hpsb_iso_recv_init(host,
639 (1 << (host->csr.max_rec + 1))), 637 ETHER1394_ISO_BUF_SIZE,
640 ETHER1394_GASP_BUFFERS, 638 ETHER1394_GASP_BUFFERS,
641 priv->broadcast_channel, 639 priv->broadcast_channel,
642 HPSB_ISO_DMA_PACKET_PER_BUFFER, 640 HPSB_ISO_DMA_PACKET_PER_BUFFER,
@@ -1770,7 +1768,7 @@ fail:
1770static void ether1394_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1768static void ether1394_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1771{ 1769{
1772 strcpy (info->driver, driver_name); 1770 strcpy (info->driver, driver_name);
1773 strcpy (info->version, "$Rev: 1264 $"); 1771 strcpy (info->version, "$Rev: 1312 $");
1774 /* FIXME XXX provide sane businfo */ 1772 /* FIXME XXX provide sane businfo */
1775 strcpy (info->bus_info, "ieee1394"); 1773 strcpy (info->bus_info, "ieee1394");
1776} 1774}
diff --git a/drivers/ieee1394/eth1394.h b/drivers/ieee1394/eth1394.h
index ed8f1c4b7fd8..a77213cfc483 100644
--- a/drivers/ieee1394/eth1394.h
+++ b/drivers/ieee1394/eth1394.h
@@ -44,6 +44,12 @@
44 44
45#define ETHER1394_GASP_BUFFERS 16 45#define ETHER1394_GASP_BUFFERS 16
46 46
47/* rawiso buffer size - due to a limitation in rawiso, we must limit each
48 * GASP buffer to be less than PAGE_SIZE. */
49#define ETHER1394_ISO_BUF_SIZE ETHER1394_GASP_BUFFERS * \
50 min((unsigned int)PAGE_SIZE, \
51 2 * (1U << (priv->host->csr.max_rec + 1)))
52
47/* Node set == 64 */ 53/* Node set == 64 */
48#define NODE_SET (ALL_NODES + 1) 54#define NODE_SET (ALL_NODES + 1)
49 55
diff --git a/drivers/ieee1394/hosts.c b/drivers/ieee1394/hosts.c
index c502c6e9c440..aeeaeb670d03 100644
--- a/drivers/ieee1394/hosts.c
+++ b/drivers/ieee1394/hosts.c
@@ -18,6 +18,7 @@
18#include <linux/slab.h> 18#include <linux/slab.h>
19#include <linux/pci.h> 19#include <linux/pci.h>
20#include <linux/timer.h> 20#include <linux/timer.h>
21#include <linux/jiffies.h>
21 22
22#include "csr1212.h" 23#include "csr1212.h"
23#include "ieee1394.h" 24#include "ieee1394.h"
@@ -217,7 +218,7 @@ int hpsb_update_config_rom_image(struct hpsb_host *host)
217 218
218 /* IEEE 1394a-2000 prohibits using the same generation number 219 /* IEEE 1394a-2000 prohibits using the same generation number
219 * twice in a 60 second period. */ 220 * twice in a 60 second period. */
220 if (jiffies - host->csr.gen_timestamp[next_gen] < 60 * HZ) 221 if (time_before(jiffies, host->csr.gen_timestamp[next_gen] + 60 * HZ))
221 /* Wait 60 seconds from the last time this generation number was 222 /* Wait 60 seconds from the last time this generation number was
222 * used. */ 223 * used. */
223 reset_delay = (60 * HZ) + host->csr.gen_timestamp[next_gen] - jiffies; 224 reset_delay = (60 * HZ) + host->csr.gen_timestamp[next_gen] - jiffies;
diff --git a/drivers/ieee1394/hosts.h b/drivers/ieee1394/hosts.h
index 739e76840d51..38f42112dff0 100644
--- a/drivers/ieee1394/hosts.h
+++ b/drivers/ieee1394/hosts.h
@@ -135,17 +135,17 @@ enum isoctl_cmd {
135 135
136enum reset_types { 136enum reset_types {
137 /* 166 microsecond reset -- only type of reset available on 137 /* 166 microsecond reset -- only type of reset available on
138 non-1394a capable IEEE 1394 controllers */ 138 non-1394a capable controllers */
139 LONG_RESET, 139 LONG_RESET,
140 140
141 /* Short (arbitrated) reset -- only available on 1394a capable 141 /* Short (arbitrated) reset -- only available on 1394a capable
142 IEEE 1394 capable controllers */ 142 controllers */
143 SHORT_RESET, 143 SHORT_RESET,
144 144
145 /* Variants, that set force_root before issueing the bus reset */ 145 /* Variants that set force_root before issueing the bus reset */
146 LONG_RESET_FORCE_ROOT, SHORT_RESET_FORCE_ROOT, 146 LONG_RESET_FORCE_ROOT, SHORT_RESET_FORCE_ROOT,
147 147
148 /* Variants, that clear force_root before issueing the bus reset */ 148 /* Variants that clear force_root before issueing the bus reset */
149 LONG_RESET_NO_FORCE_ROOT, SHORT_RESET_NO_FORCE_ROOT 149 LONG_RESET_NO_FORCE_ROOT, SHORT_RESET_NO_FORCE_ROOT
150}; 150};
151 151
diff --git a/drivers/ieee1394/ieee1394_core.c b/drivers/ieee1394/ieee1394_core.c
index d633770fac8e..32a1e016c85e 100644
--- a/drivers/ieee1394/ieee1394_core.c
+++ b/drivers/ieee1394/ieee1394_core.c
@@ -70,7 +70,7 @@ const char *hpsb_speedto_str[] = { "S100", "S200", "S400", "S800", "S1600", "S32
70struct class *hpsb_protocol_class; 70struct class *hpsb_protocol_class;
71 71
72#ifdef CONFIG_IEEE1394_VERBOSEDEBUG 72#ifdef CONFIG_IEEE1394_VERBOSEDEBUG
73static void dump_packet(const char *text, quadlet_t *data, int size) 73static void dump_packet(const char *text, quadlet_t *data, int size, int speed)
74{ 74{
75 int i; 75 int i;
76 76
@@ -78,12 +78,15 @@ static void dump_packet(const char *text, quadlet_t *data, int size)
78 size = (size > 4 ? 4 : size); 78 size = (size > 4 ? 4 : size);
79 79
80 printk(KERN_DEBUG "ieee1394: %s", text); 80 printk(KERN_DEBUG "ieee1394: %s", text);
81 if (speed > -1 && speed < 6)
82 printk(" at %s", hpsb_speedto_str[speed]);
83 printk(":");
81 for (i = 0; i < size; i++) 84 for (i = 0; i < size; i++)
82 printk(" %08x", data[i]); 85 printk(" %08x", data[i]);
83 printk("\n"); 86 printk("\n");
84} 87}
85#else 88#else
86#define dump_packet(x,y,z) 89#define dump_packet(a,b,c,d)
87#endif 90#endif
88 91
89static void abort_requests(struct hpsb_host *host); 92static void abort_requests(struct hpsb_host *host);
@@ -544,8 +547,7 @@ int hpsb_send_packet(struct hpsb_packet *packet)
544 if (packet->data_size) 547 if (packet->data_size)
545 memcpy(((u8*)data) + packet->header_size, packet->data, packet->data_size); 548 memcpy(((u8*)data) + packet->header_size, packet->data, packet->data_size);
546 549
547 dump_packet("send packet local:", packet->header, 550 dump_packet("send packet local", packet->header, packet->header_size, -1);
548 packet->header_size);
549 551
550 hpsb_packet_sent(host, packet, packet->expect_response ? ACK_PENDING : ACK_COMPLETE); 552 hpsb_packet_sent(host, packet, packet->expect_response ? ACK_PENDING : ACK_COMPLETE);
551 hpsb_packet_received(host, data, size, 0); 553 hpsb_packet_received(host, data, size, 0);
@@ -561,21 +563,7 @@ int hpsb_send_packet(struct hpsb_packet *packet)
561 + NODEID_TO_NODE(packet->node_id)]; 563 + NODEID_TO_NODE(packet->node_id)];
562 } 564 }
563 565
564#ifdef CONFIG_IEEE1394_VERBOSEDEBUG 566 dump_packet("send packet", packet->header, packet->header_size, packet->speed_code);
565 switch (packet->speed_code) {
566 case 2:
567 dump_packet("send packet 400:", packet->header,
568 packet->header_size);
569 break;
570 case 1:
571 dump_packet("send packet 200:", packet->header,
572 packet->header_size);
573 break;
574 default:
575 dump_packet("send packet 100:", packet->header,
576 packet->header_size);
577 }
578#endif
579 567
580 return host->driver->transmit_packet(host, packet); 568 return host->driver->transmit_packet(host, packet);
581} 569}
@@ -636,7 +624,7 @@ static void handle_packet_response(struct hpsb_host *host, int tcode,
636 624
637 if (packet == NULL) { 625 if (packet == NULL) {
638 HPSB_DEBUG("unsolicited response packet received - no tlabel match"); 626 HPSB_DEBUG("unsolicited response packet received - no tlabel match");
639 dump_packet("contents:", data, 16); 627 dump_packet("contents", data, 16, -1);
640 spin_unlock_irqrestore(&host->pending_packet_queue.lock, flags); 628 spin_unlock_irqrestore(&host->pending_packet_queue.lock, flags);
641 return; 629 return;
642 } 630 }
@@ -677,7 +665,7 @@ static void handle_packet_response(struct hpsb_host *host, int tcode,
677 if (!tcode_match) { 665 if (!tcode_match) {
678 spin_unlock_irqrestore(&host->pending_packet_queue.lock, flags); 666 spin_unlock_irqrestore(&host->pending_packet_queue.lock, flags);
679 HPSB_INFO("unsolicited response packet received - tcode mismatch"); 667 HPSB_INFO("unsolicited response packet received - tcode mismatch");
680 dump_packet("contents:", data, 16); 668 dump_packet("contents", data, 16, -1);
681 return; 669 return;
682 } 670 }
683 671
@@ -914,7 +902,7 @@ void hpsb_packet_received(struct hpsb_host *host, quadlet_t *data, size_t size,
914 return; 902 return;
915 } 903 }
916 904
917 dump_packet("received packet:", data, size); 905 dump_packet("received packet", data, size, -1);
918 906
919 tcode = (data[0] >> 4) & 0xf; 907 tcode = (data[0] >> 4) & 0xf;
920 908
diff --git a/drivers/ieee1394/nodemgr.c b/drivers/ieee1394/nodemgr.c
index b23322523ef5..347ece6b583c 100644
--- a/drivers/ieee1394/nodemgr.c
+++ b/drivers/ieee1394/nodemgr.c
@@ -64,10 +64,10 @@ static int nodemgr_bus_read(struct csr1212_csr *csr, u64 addr, u16 length,
64 struct nodemgr_csr_info *ci = (struct nodemgr_csr_info*)__ci; 64 struct nodemgr_csr_info *ci = (struct nodemgr_csr_info*)__ci;
65 int i, ret = 0; 65 int i, ret = 0;
66 66
67 for (i = 0; i < 3; i++) { 67 for (i = 1; ; i++) {
68 ret = hpsb_read(ci->host, ci->nodeid, ci->generation, addr, 68 ret = hpsb_read(ci->host, ci->nodeid, ci->generation, addr,
69 buffer, length); 69 buffer, length);
70 if (!ret) 70 if (!ret || i == 3)
71 break; 71 break;
72 72
73 if (msleep_interruptible(334)) 73 if (msleep_interruptible(334))
@@ -1438,9 +1438,13 @@ static int nodemgr_do_irm_duties(struct hpsb_host *host, int cycles)
1438 if (host->busmgr_id == 0xffff && host->node_count > 1) 1438 if (host->busmgr_id == 0xffff && host->node_count > 1)
1439 { 1439 {
1440 u16 root_node = host->node_count - 1; 1440 u16 root_node = host->node_count - 1;
1441 struct node_entry *ne = find_entry_by_nodeid(host, root_node | LOCAL_BUS);
1442 1441
1443 if (ne && ne->busopt.cmc) 1442 /* get cycle master capability flag from root node */
1443 if (host->is_cycmst ||
1444 (!hpsb_read(host, LOCAL_BUS | root_node, get_hpsb_generation(host),
1445 (CSR_REGISTER_BASE + CSR_CONFIG_ROM + 2 * sizeof(quadlet_t)),
1446 &bc, sizeof(quadlet_t)) &&
1447 be32_to_cpu(bc) & 1 << CSR_CMC_SHIFT))
1444 hpsb_send_phy_config(host, root_node, -1); 1448 hpsb_send_phy_config(host, root_node, -1);
1445 else { 1449 else {
1446 HPSB_DEBUG("The root node is not cycle master capable; " 1450 HPSB_DEBUG("The root node is not cycle master capable; "
@@ -1557,24 +1561,19 @@ static int nodemgr_host_thread(void *__hi)
1557 } 1561 }
1558 } 1562 }
1559 1563
1560 if (!nodemgr_check_irm_capability(host, reset_cycles)) { 1564 if (!nodemgr_check_irm_capability(host, reset_cycles) ||
1565 !nodemgr_do_irm_duties(host, reset_cycles)) {
1561 reset_cycles++; 1566 reset_cycles++;
1562 up(&nodemgr_serialize); 1567 up(&nodemgr_serialize);
1563 continue; 1568 continue;
1564 } 1569 }
1570 reset_cycles = 0;
1565 1571
1566 /* Scan our nodes to get the bus options and create node 1572 /* Scan our nodes to get the bus options and create node
1567 * entries. This does not do the sysfs stuff, since that 1573 * entries. This does not do the sysfs stuff, since that
1568 * would trigger hotplug callbacks and such, which is a 1574 * would trigger hotplug callbacks and such, which is a
1569 * bad idea at this point. */ 1575 * bad idea at this point. */
1570 nodemgr_node_scan(hi, generation); 1576 nodemgr_node_scan(hi, generation);
1571 if (!nodemgr_do_irm_duties(host, reset_cycles)) {
1572 reset_cycles++;
1573 up(&nodemgr_serialize);
1574 continue;
1575 }
1576
1577 reset_cycles = 0;
1578 1577
1579 /* This actually does the full probe, with sysfs 1578 /* This actually does the full probe, with sysfs
1580 * registration. */ 1579 * registration. */
diff --git a/drivers/ieee1394/ohci1394.c b/drivers/ieee1394/ohci1394.c
index 27018c8efc24..6a6acbd80af4 100644
--- a/drivers/ieee1394/ohci1394.c
+++ b/drivers/ieee1394/ohci1394.c
@@ -162,7 +162,7 @@ printk(level "%s: " fmt "\n" , OHCI1394_DRIVER_NAME , ## args)
162printk(level "%s: fw-host%d: " fmt "\n" , OHCI1394_DRIVER_NAME, ohci->host->id , ## args) 162printk(level "%s: fw-host%d: " fmt "\n" , OHCI1394_DRIVER_NAME, ohci->host->id , ## args)
163 163
164static char version[] __devinitdata = 164static char version[] __devinitdata =
165 "$Rev: 1299 $ Ben Collins <bcollins@debian.org>"; 165 "$Rev: 1313 $ Ben Collins <bcollins@debian.org>";
166 166
167/* Module Parameters */ 167/* Module Parameters */
168static int phys_dma = 1; 168static int phys_dma = 1;
@@ -1084,7 +1084,7 @@ static int ohci_devctl(struct hpsb_host *host, enum devctl_cmd cmd, int arg)
1084 initialize_dma_rcv_ctx(&ohci->ir_legacy_context, 1); 1084 initialize_dma_rcv_ctx(&ohci->ir_legacy_context, 1);
1085 1085
1086 if (printk_ratelimit()) 1086 if (printk_ratelimit())
1087 PRINT(KERN_ERR, "IR legacy activated"); 1087 DBGMSG("IR legacy activated");
1088 } 1088 }
1089 1089
1090 spin_lock_irqsave(&ohci->IR_channel_lock, flags); 1090 spin_lock_irqsave(&ohci->IR_channel_lock, flags);
diff --git a/drivers/ieee1394/raw1394.c b/drivers/ieee1394/raw1394.c
index b4fa14793fe5..5fe4f2ba0979 100644
--- a/drivers/ieee1394/raw1394.c
+++ b/drivers/ieee1394/raw1394.c
@@ -2958,4 +2958,3 @@ static void __exit cleanup_raw1394(void)
2958module_init(init_raw1394); 2958module_init(init_raw1394);
2959module_exit(cleanup_raw1394); 2959module_exit(cleanup_raw1394);
2960MODULE_LICENSE("GPL"); 2960MODULE_LICENSE("GPL");
2961MODULE_ALIAS_CHARDEV(IEEE1394_MAJOR, IEEE1394_MINOR_BLOCK_RAW1394 * 16);
diff --git a/drivers/ieee1394/sbp2.c b/drivers/ieee1394/sbp2.c
index de88218ef7cc..12cec7c4a342 100644
--- a/drivers/ieee1394/sbp2.c
+++ b/drivers/ieee1394/sbp2.c
@@ -97,16 +97,18 @@ static char version[] __devinitdata =
97 */ 97 */
98static int max_speed = IEEE1394_SPEED_MAX; 98static int max_speed = IEEE1394_SPEED_MAX;
99module_param(max_speed, int, 0644); 99module_param(max_speed, int, 0644);
100MODULE_PARM_DESC(max_speed, "Force max speed (3 = 800mb, 2 = 400mb default, 1 = 200mb, 0 = 100mb)"); 100MODULE_PARM_DESC(max_speed, "Force max speed (3 = 800mb, 2 = 400mb, 1 = 200mb, 0 = 100mb)");
101 101
102/* 102/*
103 * Set serialize_io to 1 if you'd like only one scsi command sent 103 * Set serialize_io to 1 if you'd like only one scsi command sent
104 * down to us at a time (debugging). This might be necessary for very 104 * down to us at a time (debugging). This might be necessary for very
105 * badly behaved sbp2 devices. 105 * badly behaved sbp2 devices.
106 *
107 * TODO: Make this configurable per device.
106 */ 108 */
107static int serialize_io; 109static int serialize_io = 1;
108module_param(serialize_io, int, 0444); 110module_param(serialize_io, int, 0444);
109MODULE_PARM_DESC(serialize_io, "Serialize all I/O coming down from the scsi drivers (default = 0)"); 111MODULE_PARM_DESC(serialize_io, "Serialize I/O coming from scsi drivers (default = 1, faster = 0)");
110 112
111/* 113/*
112 * Bump up max_sectors if you'd like to support very large sized 114 * Bump up max_sectors if you'd like to support very large sized
@@ -596,6 +598,14 @@ static void sbp2util_mark_command_completed(struct scsi_id_instance_data *scsi_i
596 spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags); 598 spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags);
597} 599}
598 600
601/*
602 * Is scsi_id valid? Is the 1394 node still present?
603 */
604static inline int sbp2util_node_is_available(struct scsi_id_instance_data *scsi_id)
605{
606 return scsi_id && scsi_id->ne && !scsi_id->ne->in_limbo;
607}
608
599 609
600 610
601/********************************************* 611/*********************************************
@@ -631,11 +641,23 @@ static int sbp2_remove(struct device *dev)
631{ 641{
632 struct unit_directory *ud; 642 struct unit_directory *ud;
633 struct scsi_id_instance_data *scsi_id; 643 struct scsi_id_instance_data *scsi_id;
644 struct scsi_device *sdev;
634 645
635 SBP2_DEBUG("sbp2_remove"); 646 SBP2_DEBUG("sbp2_remove");
636 647
637 ud = container_of(dev, struct unit_directory, device); 648 ud = container_of(dev, struct unit_directory, device);
638 scsi_id = ud->device.driver_data; 649 scsi_id = ud->device.driver_data;
650 if (!scsi_id)
651 return 0;
652
653 /* Trigger shutdown functions in scsi's highlevel. */
654 if (scsi_id->scsi_host)
655 scsi_unblock_requests(scsi_id->scsi_host);
656 sdev = scsi_id->sdev;
657 if (sdev) {
658 scsi_id->sdev = NULL;
659 scsi_remove_device(sdev);
660 }
639 661
640 sbp2_logout_device(scsi_id); 662 sbp2_logout_device(scsi_id);
641 sbp2_remove_device(scsi_id); 663 sbp2_remove_device(scsi_id);
@@ -2473,37 +2495,26 @@ static int sbp2scsi_queuecommand(struct scsi_cmnd *SCpnt,
2473 struct scsi_id_instance_data *scsi_id = 2495 struct scsi_id_instance_data *scsi_id =
2474 (struct scsi_id_instance_data *)SCpnt->device->host->hostdata[0]; 2496 (struct scsi_id_instance_data *)SCpnt->device->host->hostdata[0];
2475 struct sbp2scsi_host_info *hi; 2497 struct sbp2scsi_host_info *hi;
2498 int result = DID_NO_CONNECT << 16;
2476 2499
2477 SBP2_DEBUG("sbp2scsi_queuecommand"); 2500 SBP2_DEBUG("sbp2scsi_queuecommand");
2478 2501
2479 /* 2502 if (!sbp2util_node_is_available(scsi_id))
2480 * If scsi_id is null, it means there is no device in this slot, 2503 goto done;
2481 * so we should return selection timeout.
2482 */
2483 if (!scsi_id) {
2484 SCpnt->result = DID_NO_CONNECT << 16;
2485 done (SCpnt);
2486 return 0;
2487 }
2488 2504
2489 hi = scsi_id->hi; 2505 hi = scsi_id->hi;
2490 2506
2491 if (!hi) { 2507 if (!hi) {
2492 SBP2_ERR("sbp2scsi_host_info is NULL - this is bad!"); 2508 SBP2_ERR("sbp2scsi_host_info is NULL - this is bad!");
2493 SCpnt->result = DID_NO_CONNECT << 16; 2509 goto done;
2494 done (SCpnt);
2495 return(0);
2496 } 2510 }
2497 2511
2498 /* 2512 /*
2499 * Until we handle multiple luns, just return selection time-out 2513 * Until we handle multiple luns, just return selection time-out
2500 * to any IO directed at non-zero LUNs 2514 * to any IO directed at non-zero LUNs
2501 */ 2515 */
2502 if (SCpnt->device->lun) { 2516 if (SCpnt->device->lun)
2503 SCpnt->result = DID_NO_CONNECT << 16; 2517 goto done;
2504 done (SCpnt);
2505 return(0);
2506 }
2507 2518
2508 /* 2519 /*
2509 * Check for request sense command, and handle it here 2520 * Check for request sense command, and handle it here
@@ -2514,7 +2525,7 @@ static int sbp2scsi_queuecommand(struct scsi_cmnd *SCpnt,
2514 memcpy(SCpnt->request_buffer, SCpnt->sense_buffer, SCpnt->request_bufflen); 2525 memcpy(SCpnt->request_buffer, SCpnt->sense_buffer, SCpnt->request_bufflen);
2515 memset(SCpnt->sense_buffer, 0, sizeof(SCpnt->sense_buffer)); 2526 memset(SCpnt->sense_buffer, 0, sizeof(SCpnt->sense_buffer));
2516 sbp2scsi_complete_command(scsi_id, SBP2_SCSI_STATUS_GOOD, SCpnt, done); 2527 sbp2scsi_complete_command(scsi_id, SBP2_SCSI_STATUS_GOOD, SCpnt, done);
2517 return(0); 2528 return 0;
2518 } 2529 }
2519 2530
2520 /* 2531 /*
@@ -2522,9 +2533,8 @@ static int sbp2scsi_queuecommand(struct scsi_cmnd *SCpnt,
2522 */ 2533 */
2523 if (!hpsb_node_entry_valid(scsi_id->ne)) { 2534 if (!hpsb_node_entry_valid(scsi_id->ne)) {
2524 SBP2_ERR("Bus reset in progress - rejecting command"); 2535 SBP2_ERR("Bus reset in progress - rejecting command");
2525 SCpnt->result = DID_BUS_BUSY << 16; 2536 result = DID_BUS_BUSY << 16;
2526 done (SCpnt); 2537 goto done;
2527 return(0);
2528 } 2538 }
2529 2539
2530 /* 2540 /*
@@ -2535,8 +2545,12 @@ static int sbp2scsi_queuecommand(struct scsi_cmnd *SCpnt,
2535 sbp2scsi_complete_command(scsi_id, SBP2_SCSI_STATUS_SELECTION_TIMEOUT, 2545 sbp2scsi_complete_command(scsi_id, SBP2_SCSI_STATUS_SELECTION_TIMEOUT,
2536 SCpnt, done); 2546 SCpnt, done);
2537 } 2547 }
2548 return 0;
2538 2549
2539 return(0); 2550done:
2551 SCpnt->result = result;
2552 done(SCpnt);
2553 return 0;
2540} 2554}
2541 2555
2542/* 2556/*
@@ -2683,14 +2697,27 @@ static void sbp2scsi_complete_command(struct scsi_id_instance_data *scsi_id,
2683} 2697}
2684 2698
2685 2699
2686static int sbp2scsi_slave_configure (struct scsi_device *sdev) 2700static int sbp2scsi_slave_alloc(struct scsi_device *sdev)
2687{ 2701{
2688 blk_queue_dma_alignment(sdev->request_queue, (512 - 1)); 2702 ((struct scsi_id_instance_data *)sdev->host->hostdata[0])->sdev = sdev;
2703 return 0;
2704}
2705
2689 2706
2707static int sbp2scsi_slave_configure(struct scsi_device *sdev)
2708{
2709 blk_queue_dma_alignment(sdev->request_queue, (512 - 1));
2690 return 0; 2710 return 0;
2691} 2711}
2692 2712
2693 2713
2714static void sbp2scsi_slave_destroy(struct scsi_device *sdev)
2715{
2716 ((struct scsi_id_instance_data *)sdev->host->hostdata[0])->sdev = NULL;
2717 return;
2718}
2719
2720
2694/* 2721/*
2695 * Called by scsi stack when something has really gone wrong. Usually 2722 * Called by scsi stack when something has really gone wrong. Usually
2696 * called when a command has timed-out for some reason. 2723 * called when a command has timed-out for some reason.
@@ -2705,7 +2732,7 @@ static int sbp2scsi_abort(struct scsi_cmnd *SCpnt)
2705 SBP2_ERR("aborting sbp2 command"); 2732 SBP2_ERR("aborting sbp2 command");
2706 scsi_print_command(SCpnt); 2733 scsi_print_command(SCpnt);
2707 2734
2708 if (scsi_id) { 2735 if (sbp2util_node_is_available(scsi_id)) {
2709 2736
2710 /* 2737 /*
2711 * Right now, just return any matching command structures 2738 * Right now, just return any matching command structures
@@ -2742,31 +2769,24 @@ static int sbp2scsi_abort(struct scsi_cmnd *SCpnt)
2742/* 2769/*
2743 * Called by scsi stack when something has really gone wrong. 2770 * Called by scsi stack when something has really gone wrong.
2744 */ 2771 */
2745static int __sbp2scsi_reset(struct scsi_cmnd *SCpnt) 2772static int sbp2scsi_reset(struct scsi_cmnd *SCpnt)
2746{ 2773{
2747 struct scsi_id_instance_data *scsi_id = 2774 struct scsi_id_instance_data *scsi_id =
2748 (struct scsi_id_instance_data *)SCpnt->device->host->hostdata[0]; 2775 (struct scsi_id_instance_data *)SCpnt->device->host->hostdata[0];
2776 unsigned long flags;
2749 2777
2750 SBP2_ERR("reset requested"); 2778 SBP2_ERR("reset requested");
2751 2779
2752 if (scsi_id) { 2780 spin_lock_irqsave(SCpnt->device->host->host_lock, flags);
2781
2782 if (sbp2util_node_is_available(scsi_id)) {
2753 SBP2_ERR("Generating sbp2 fetch agent reset"); 2783 SBP2_ERR("Generating sbp2 fetch agent reset");
2754 sbp2_agent_reset(scsi_id, 0); 2784 sbp2_agent_reset(scsi_id, 0);
2755 } 2785 }
2756 2786
2757 return(SUCCESS);
2758}
2759
2760static int sbp2scsi_reset(struct scsi_cmnd *SCpnt)
2761{
2762 unsigned long flags;
2763 int rc;
2764
2765 spin_lock_irqsave(SCpnt->device->host->host_lock, flags);
2766 rc = __sbp2scsi_reset(SCpnt);
2767 spin_unlock_irqrestore(SCpnt->device->host->host_lock, flags); 2787 spin_unlock_irqrestore(SCpnt->device->host->host_lock, flags);
2768 2788
2769 return rc; 2789 return SUCCESS;
2770} 2790}
2771 2791
2772static const char *sbp2scsi_info (struct Scsi_Host *host) 2792static const char *sbp2scsi_info (struct Scsi_Host *host)
@@ -2817,7 +2837,9 @@ static struct scsi_host_template scsi_driver_template = {
2817 .eh_device_reset_handler = sbp2scsi_reset, 2837 .eh_device_reset_handler = sbp2scsi_reset,
2818 .eh_bus_reset_handler = sbp2scsi_reset, 2838 .eh_bus_reset_handler = sbp2scsi_reset,
2819 .eh_host_reset_handler = sbp2scsi_reset, 2839 .eh_host_reset_handler = sbp2scsi_reset,
2840 .slave_alloc = sbp2scsi_slave_alloc,
2820 .slave_configure = sbp2scsi_slave_configure, 2841 .slave_configure = sbp2scsi_slave_configure,
2842 .slave_destroy = sbp2scsi_slave_destroy,
2821 .this_id = -1, 2843 .this_id = -1,
2822 .sg_tablesize = SG_ALL, 2844 .sg_tablesize = SG_ALL,
2823 .use_clustering = ENABLE_CLUSTERING, 2845 .use_clustering = ENABLE_CLUSTERING,
@@ -2837,7 +2859,8 @@ static int sbp2_module_init(void)
2837 2859
2838 /* Module load debug option to force one command at a time (serializing I/O) */ 2860 /* Module load debug option to force one command at a time (serializing I/O) */
2839 if (serialize_io) { 2861 if (serialize_io) {
2840 SBP2_ERR("Driver forced to serialize I/O (serialize_io = 1)"); 2862 SBP2_INFO("Driver forced to serialize I/O (serialize_io=1)");
2863 SBP2_INFO("Try serialize_io=0 for better performance");
2841 scsi_driver_template.can_queue = 1; 2864 scsi_driver_template.can_queue = 1;
2842 scsi_driver_template.cmd_per_lun = 1; 2865 scsi_driver_template.cmd_per_lun = 1;
2843 } 2866 }
diff --git a/drivers/ieee1394/video1394.c b/drivers/ieee1394/video1394.c
index 9d6facf2f78f..11be9c9c82a8 100644
--- a/drivers/ieee1394/video1394.c
+++ b/drivers/ieee1394/video1394.c
@@ -1571,4 +1571,3 @@ static int __init video1394_init_module (void)
1571 1571
1572module_init(video1394_init_module); 1572module_init(video1394_init_module);
1573module_exit(video1394_exit_module); 1573module_exit(video1394_exit_module);
1574MODULE_ALIAS_CHARDEV(IEEE1394_MAJOR, IEEE1394_MINOR_BLOCK_VIDEO1394 * 16);
diff --git a/drivers/infiniband/core/uverbs.h b/drivers/infiniband/core/uverbs.h
index b1897bed14ad..cc124344dd2c 100644
--- a/drivers/infiniband/core/uverbs.h
+++ b/drivers/infiniband/core/uverbs.h
@@ -69,6 +69,7 @@ struct ib_uverbs_event_file {
69 69
70struct ib_uverbs_file { 70struct ib_uverbs_file {
71 struct kref ref; 71 struct kref ref;
72 struct semaphore mutex;
72 struct ib_uverbs_device *device; 73 struct ib_uverbs_device *device;
73 struct ib_ucontext *ucontext; 74 struct ib_ucontext *ucontext;
74 struct ib_event_handler event_handler; 75 struct ib_event_handler event_handler;
diff --git a/drivers/infiniband/core/uverbs_cmd.c b/drivers/infiniband/core/uverbs_cmd.c
index e91ebde46481..562445165d2b 100644
--- a/drivers/infiniband/core/uverbs_cmd.c
+++ b/drivers/infiniband/core/uverbs_cmd.c
@@ -76,8 +76,9 @@ ssize_t ib_uverbs_get_context(struct ib_uverbs_file *file,
76 struct ib_uverbs_get_context_resp resp; 76 struct ib_uverbs_get_context_resp resp;
77 struct ib_udata udata; 77 struct ib_udata udata;
78 struct ib_device *ibdev = file->device->ib_dev; 78 struct ib_device *ibdev = file->device->ib_dev;
79 struct ib_ucontext *ucontext;
79 int i; 80 int i;
80 int ret = in_len; 81 int ret;
81 82
82 if (out_len < sizeof resp) 83 if (out_len < sizeof resp)
83 return -ENOSPC; 84 return -ENOSPC;
@@ -85,45 +86,56 @@ ssize_t ib_uverbs_get_context(struct ib_uverbs_file *file,
85 if (copy_from_user(&cmd, buf, sizeof cmd)) 86 if (copy_from_user(&cmd, buf, sizeof cmd))
86 return -EFAULT; 87 return -EFAULT;
87 88
89 down(&file->mutex);
90
91 if (file->ucontext) {
92 ret = -EINVAL;
93 goto err;
94 }
95
88 INIT_UDATA(&udata, buf + sizeof cmd, 96 INIT_UDATA(&udata, buf + sizeof cmd,
89 (unsigned long) cmd.response + sizeof resp, 97 (unsigned long) cmd.response + sizeof resp,
90 in_len - sizeof cmd, out_len - sizeof resp); 98 in_len - sizeof cmd, out_len - sizeof resp);
91 99
92 file->ucontext = ibdev->alloc_ucontext(ibdev, &udata); 100 ucontext = ibdev->alloc_ucontext(ibdev, &udata);
93 if (IS_ERR(file->ucontext)) { 101 if (IS_ERR(ucontext))
94 ret = PTR_ERR(file->ucontext); 102 return PTR_ERR(file->ucontext);
95 file->ucontext = NULL;
96 return ret;
97 }
98 103
99 file->ucontext->device = ibdev; 104 ucontext->device = ibdev;
100 INIT_LIST_HEAD(&file->ucontext->pd_list); 105 INIT_LIST_HEAD(&ucontext->pd_list);
101 INIT_LIST_HEAD(&file->ucontext->mr_list); 106 INIT_LIST_HEAD(&ucontext->mr_list);
102 INIT_LIST_HEAD(&file->ucontext->mw_list); 107 INIT_LIST_HEAD(&ucontext->mw_list);
103 INIT_LIST_HEAD(&file->ucontext->cq_list); 108 INIT_LIST_HEAD(&ucontext->cq_list);
104 INIT_LIST_HEAD(&file->ucontext->qp_list); 109 INIT_LIST_HEAD(&ucontext->qp_list);
105 INIT_LIST_HEAD(&file->ucontext->srq_list); 110 INIT_LIST_HEAD(&ucontext->srq_list);
106 INIT_LIST_HEAD(&file->ucontext->ah_list); 111 INIT_LIST_HEAD(&ucontext->ah_list);
107 spin_lock_init(&file->ucontext->lock);
108 112
109 resp.async_fd = file->async_file.fd; 113 resp.async_fd = file->async_file.fd;
110 for (i = 0; i < file->device->num_comp; ++i) 114 for (i = 0; i < file->device->num_comp; ++i)
111 if (copy_to_user((void __user *) (unsigned long) cmd.cq_fd_tab + 115 if (copy_to_user((void __user *) (unsigned long) cmd.cq_fd_tab +
112 i * sizeof (__u32), 116 i * sizeof (__u32),
113 &file->comp_file[i].fd, sizeof (__u32))) 117 &file->comp_file[i].fd, sizeof (__u32))) {
114 goto err; 118 ret = -EFAULT;
119 goto err_free;
120 }
115 121
116 if (copy_to_user((void __user *) (unsigned long) cmd.response, 122 if (copy_to_user((void __user *) (unsigned long) cmd.response,
117 &resp, sizeof resp)) 123 &resp, sizeof resp)) {
118 goto err; 124 ret = -EFAULT;
125 goto err_free;
126 }
127
128 file->ucontext = ucontext;
129 up(&file->mutex);
119 130
120 return in_len; 131 return in_len;
121 132
122err: 133err_free:
123 ibdev->dealloc_ucontext(file->ucontext); 134 ibdev->dealloc_ucontext(ucontext);
124 file->ucontext = NULL;
125 135
126 return -EFAULT; 136err:
137 up(&file->mutex);
138 return ret;
127} 139}
128 140
129ssize_t ib_uverbs_query_device(struct ib_uverbs_file *file, 141ssize_t ib_uverbs_query_device(struct ib_uverbs_file *file,
@@ -352,9 +364,9 @@ retry:
352 if (ret) 364 if (ret)
353 goto err_pd; 365 goto err_pd;
354 366
355 spin_lock_irq(&file->ucontext->lock); 367 down(&file->mutex);
356 list_add_tail(&uobj->list, &file->ucontext->pd_list); 368 list_add_tail(&uobj->list, &file->ucontext->pd_list);
357 spin_unlock_irq(&file->ucontext->lock); 369 up(&file->mutex);
358 370
359 memset(&resp, 0, sizeof resp); 371 memset(&resp, 0, sizeof resp);
360 resp.pd_handle = uobj->id; 372 resp.pd_handle = uobj->id;
@@ -368,9 +380,9 @@ retry:
368 return in_len; 380 return in_len;
369 381
370err_list: 382err_list:
371 spin_lock_irq(&file->ucontext->lock); 383 down(&file->mutex);
372 list_del(&uobj->list); 384 list_del(&uobj->list);
373 spin_unlock_irq(&file->ucontext->lock); 385 up(&file->mutex);
374 386
375 down(&ib_uverbs_idr_mutex); 387 down(&ib_uverbs_idr_mutex);
376 idr_remove(&ib_uverbs_pd_idr, uobj->id); 388 idr_remove(&ib_uverbs_pd_idr, uobj->id);
@@ -410,9 +422,9 @@ ssize_t ib_uverbs_dealloc_pd(struct ib_uverbs_file *file,
410 422
411 idr_remove(&ib_uverbs_pd_idr, cmd.pd_handle); 423 idr_remove(&ib_uverbs_pd_idr, cmd.pd_handle);
412 424
413 spin_lock_irq(&file->ucontext->lock); 425 down(&file->mutex);
414 list_del(&uobj->list); 426 list_del(&uobj->list);
415 spin_unlock_irq(&file->ucontext->lock); 427 up(&file->mutex);
416 428
417 kfree(uobj); 429 kfree(uobj);
418 430
@@ -512,9 +524,9 @@ retry:
512 524
513 resp.mr_handle = obj->uobject.id; 525 resp.mr_handle = obj->uobject.id;
514 526
515 spin_lock_irq(&file->ucontext->lock); 527 down(&file->mutex);
516 list_add_tail(&obj->uobject.list, &file->ucontext->mr_list); 528 list_add_tail(&obj->uobject.list, &file->ucontext->mr_list);
517 spin_unlock_irq(&file->ucontext->lock); 529 up(&file->mutex);
518 530
519 if (copy_to_user((void __user *) (unsigned long) cmd.response, 531 if (copy_to_user((void __user *) (unsigned long) cmd.response,
520 &resp, sizeof resp)) { 532 &resp, sizeof resp)) {
@@ -527,9 +539,9 @@ retry:
527 return in_len; 539 return in_len;
528 540
529err_list: 541err_list:
530 spin_lock_irq(&file->ucontext->lock); 542 down(&file->mutex);
531 list_del(&obj->uobject.list); 543 list_del(&obj->uobject.list);
532 spin_unlock_irq(&file->ucontext->lock); 544 up(&file->mutex);
533 545
534err_unreg: 546err_unreg:
535 ib_dereg_mr(mr); 547 ib_dereg_mr(mr);
@@ -570,9 +582,9 @@ ssize_t ib_uverbs_dereg_mr(struct ib_uverbs_file *file,
570 582
571 idr_remove(&ib_uverbs_mr_idr, cmd.mr_handle); 583 idr_remove(&ib_uverbs_mr_idr, cmd.mr_handle);
572 584
573 spin_lock_irq(&file->ucontext->lock); 585 down(&file->mutex);
574 list_del(&memobj->uobject.list); 586 list_del(&memobj->uobject.list);
575 spin_unlock_irq(&file->ucontext->lock); 587 up(&file->mutex);
576 588
577 ib_umem_release(file->device->ib_dev, &memobj->umem); 589 ib_umem_release(file->device->ib_dev, &memobj->umem);
578 kfree(memobj); 590 kfree(memobj);
@@ -647,9 +659,9 @@ retry:
647 if (ret) 659 if (ret)
648 goto err_cq; 660 goto err_cq;
649 661
650 spin_lock_irq(&file->ucontext->lock); 662 down(&file->mutex);
651 list_add_tail(&uobj->uobject.list, &file->ucontext->cq_list); 663 list_add_tail(&uobj->uobject.list, &file->ucontext->cq_list);
652 spin_unlock_irq(&file->ucontext->lock); 664 up(&file->mutex);
653 665
654 memset(&resp, 0, sizeof resp); 666 memset(&resp, 0, sizeof resp);
655 resp.cq_handle = uobj->uobject.id; 667 resp.cq_handle = uobj->uobject.id;
@@ -664,9 +676,9 @@ retry:
664 return in_len; 676 return in_len;
665 677
666err_list: 678err_list:
667 spin_lock_irq(&file->ucontext->lock); 679 down(&file->mutex);
668 list_del(&uobj->uobject.list); 680 list_del(&uobj->uobject.list);
669 spin_unlock_irq(&file->ucontext->lock); 681 up(&file->mutex);
670 682
671 down(&ib_uverbs_idr_mutex); 683 down(&ib_uverbs_idr_mutex);
672 idr_remove(&ib_uverbs_cq_idr, uobj->uobject.id); 684 idr_remove(&ib_uverbs_cq_idr, uobj->uobject.id);
@@ -712,9 +724,9 @@ ssize_t ib_uverbs_destroy_cq(struct ib_uverbs_file *file,
712 724
713 idr_remove(&ib_uverbs_cq_idr, cmd.cq_handle); 725 idr_remove(&ib_uverbs_cq_idr, cmd.cq_handle);
714 726
715 spin_lock_irq(&file->ucontext->lock); 727 down(&file->mutex);
716 list_del(&uobj->uobject.list); 728 list_del(&uobj->uobject.list);
717 spin_unlock_irq(&file->ucontext->lock); 729 up(&file->mutex);
718 730
719 spin_lock_irq(&file->comp_file[0].lock); 731 spin_lock_irq(&file->comp_file[0].lock);
720 list_for_each_entry_safe(evt, tmp, &uobj->comp_list, obj_list) { 732 list_for_each_entry_safe(evt, tmp, &uobj->comp_list, obj_list) {
@@ -847,9 +859,9 @@ retry:
847 859
848 resp.qp_handle = uobj->uobject.id; 860 resp.qp_handle = uobj->uobject.id;
849 861
850 spin_lock_irq(&file->ucontext->lock); 862 down(&file->mutex);
851 list_add_tail(&uobj->uobject.list, &file->ucontext->qp_list); 863 list_add_tail(&uobj->uobject.list, &file->ucontext->qp_list);
852 spin_unlock_irq(&file->ucontext->lock); 864 up(&file->mutex);
853 865
854 if (copy_to_user((void __user *) (unsigned long) cmd.response, 866 if (copy_to_user((void __user *) (unsigned long) cmd.response,
855 &resp, sizeof resp)) { 867 &resp, sizeof resp)) {
@@ -862,9 +874,9 @@ retry:
862 return in_len; 874 return in_len;
863 875
864err_list: 876err_list:
865 spin_lock_irq(&file->ucontext->lock); 877 down(&file->mutex);
866 list_del(&uobj->uobject.list); 878 list_del(&uobj->uobject.list);
867 spin_unlock_irq(&file->ucontext->lock); 879 up(&file->mutex);
868 880
869err_destroy: 881err_destroy:
870 ib_destroy_qp(qp); 882 ib_destroy_qp(qp);
@@ -989,9 +1001,9 @@ ssize_t ib_uverbs_destroy_qp(struct ib_uverbs_file *file,
989 1001
990 idr_remove(&ib_uverbs_qp_idr, cmd.qp_handle); 1002 idr_remove(&ib_uverbs_qp_idr, cmd.qp_handle);
991 1003
992 spin_lock_irq(&file->ucontext->lock); 1004 down(&file->mutex);
993 list_del(&uobj->uobject.list); 1005 list_del(&uobj->uobject.list);
994 spin_unlock_irq(&file->ucontext->lock); 1006 up(&file->mutex);
995 1007
996 spin_lock_irq(&file->async_file.lock); 1008 spin_lock_irq(&file->async_file.lock);
997 list_for_each_entry_safe(evt, tmp, &uobj->event_list, obj_list) { 1009 list_for_each_entry_safe(evt, tmp, &uobj->event_list, obj_list) {
@@ -1136,9 +1148,9 @@ retry:
1136 1148
1137 resp.srq_handle = uobj->uobject.id; 1149 resp.srq_handle = uobj->uobject.id;
1138 1150
1139 spin_lock_irq(&file->ucontext->lock); 1151 down(&file->mutex);
1140 list_add_tail(&uobj->uobject.list, &file->ucontext->srq_list); 1152 list_add_tail(&uobj->uobject.list, &file->ucontext->srq_list);
1141 spin_unlock_irq(&file->ucontext->lock); 1153 up(&file->mutex);
1142 1154
1143 if (copy_to_user((void __user *) (unsigned long) cmd.response, 1155 if (copy_to_user((void __user *) (unsigned long) cmd.response,
1144 &resp, sizeof resp)) { 1156 &resp, sizeof resp)) {
@@ -1151,9 +1163,9 @@ retry:
1151 return in_len; 1163 return in_len;
1152 1164
1153err_list: 1165err_list:
1154 spin_lock_irq(&file->ucontext->lock); 1166 down(&file->mutex);
1155 list_del(&uobj->uobject.list); 1167 list_del(&uobj->uobject.list);
1156 spin_unlock_irq(&file->ucontext->lock); 1168 up(&file->mutex);
1157 1169
1158err_destroy: 1170err_destroy:
1159 ib_destroy_srq(srq); 1171 ib_destroy_srq(srq);
@@ -1227,9 +1239,9 @@ ssize_t ib_uverbs_destroy_srq(struct ib_uverbs_file *file,
1227 1239
1228 idr_remove(&ib_uverbs_srq_idr, cmd.srq_handle); 1240 idr_remove(&ib_uverbs_srq_idr, cmd.srq_handle);
1229 1241
1230 spin_lock_irq(&file->ucontext->lock); 1242 down(&file->mutex);
1231 list_del(&uobj->uobject.list); 1243 list_del(&uobj->uobject.list);
1232 spin_unlock_irq(&file->ucontext->lock); 1244 up(&file->mutex);
1233 1245
1234 spin_lock_irq(&file->async_file.lock); 1246 spin_lock_irq(&file->async_file.lock);
1235 list_for_each_entry_safe(evt, tmp, &uobj->event_list, obj_list) { 1247 list_for_each_entry_safe(evt, tmp, &uobj->event_list, obj_list) {
diff --git a/drivers/infiniband/core/uverbs_main.c b/drivers/infiniband/core/uverbs_main.c
index ce5bdb7af306..12511808de21 100644
--- a/drivers/infiniband/core/uverbs_main.c
+++ b/drivers/infiniband/core/uverbs_main.c
@@ -448,7 +448,9 @@ static ssize_t ib_uverbs_write(struct file *filp, const char __user *buf,
448 if (hdr.in_words * 4 != count) 448 if (hdr.in_words * 4 != count)
449 return -EINVAL; 449 return -EINVAL;
450 450
451 if (hdr.command < 0 || hdr.command >= ARRAY_SIZE(uverbs_cmd_table)) 451 if (hdr.command < 0 ||
452 hdr.command >= ARRAY_SIZE(uverbs_cmd_table) ||
453 !uverbs_cmd_table[hdr.command])
452 return -EINVAL; 454 return -EINVAL;
453 455
454 if (!file->ucontext && 456 if (!file->ucontext &&
@@ -484,27 +486,29 @@ static int ib_uverbs_open(struct inode *inode, struct file *filp)
484 file = kmalloc(sizeof *file + 486 file = kmalloc(sizeof *file +
485 (dev->num_comp - 1) * sizeof (struct ib_uverbs_event_file), 487 (dev->num_comp - 1) * sizeof (struct ib_uverbs_event_file),
486 GFP_KERNEL); 488 GFP_KERNEL);
487 if (!file) 489 if (!file) {
488 return -ENOMEM; 490 ret = -ENOMEM;
491 goto err;
492 }
489 493
490 file->device = dev; 494 file->device = dev;
491 kref_init(&file->ref); 495 kref_init(&file->ref);
496 init_MUTEX(&file->mutex);
492 497
493 file->ucontext = NULL; 498 file->ucontext = NULL;
494 499
500 kref_get(&file->ref);
495 ret = ib_uverbs_event_init(&file->async_file, file); 501 ret = ib_uverbs_event_init(&file->async_file, file);
496 if (ret) 502 if (ret)
497 goto err; 503 goto err_kref;
498 504
499 file->async_file.is_async = 1; 505 file->async_file.is_async = 1;
500 506
501 kref_get(&file->ref);
502
503 for (i = 0; i < dev->num_comp; ++i) { 507 for (i = 0; i < dev->num_comp; ++i) {
508 kref_get(&file->ref);
504 ret = ib_uverbs_event_init(&file->comp_file[i], file); 509 ret = ib_uverbs_event_init(&file->comp_file[i], file);
505 if (ret) 510 if (ret)
506 goto err_async; 511 goto err_async;
507 kref_get(&file->ref);
508 file->comp_file[i].is_async = 0; 512 file->comp_file[i].is_async = 0;
509 } 513 }
510 514
@@ -524,9 +528,16 @@ err_async:
524 528
525 ib_uverbs_event_release(&file->async_file); 529 ib_uverbs_event_release(&file->async_file);
526 530
527err: 531err_kref:
532 /*
533 * One extra kref_put() because we took a reference before the
534 * event file creation that failed and got us here.
535 */
536 kref_put(&file->ref, ib_uverbs_release_file);
528 kref_put(&file->ref, ib_uverbs_release_file); 537 kref_put(&file->ref, ib_uverbs_release_file);
529 538
539err:
540 module_put(dev->ib_dev->owner);
530 return ret; 541 return ret;
531} 542}
532 543
diff --git a/drivers/infiniband/hw/mthca/mthca_cmd.c b/drivers/infiniband/hw/mthca/mthca_cmd.c
index cc758a2d2bc6..f6a8ac026557 100644
--- a/drivers/infiniband/hw/mthca/mthca_cmd.c
+++ b/drivers/infiniband/hw/mthca/mthca_cmd.c
@@ -605,7 +605,7 @@ static int mthca_map_cmd(struct mthca_dev *dev, u16 op, struct mthca_icm *icm,
605 err = -EINVAL; 605 err = -EINVAL;
606 goto out; 606 goto out;
607 } 607 }
608 for (i = 0; i < mthca_icm_size(&iter) / (1 << lg); ++i, ++nent) { 608 for (i = 0; i < mthca_icm_size(&iter) / (1 << lg); ++i) {
609 if (virt != -1) { 609 if (virt != -1) {
610 pages[nent * 2] = cpu_to_be64(virt); 610 pages[nent * 2] = cpu_to_be64(virt);
611 virt += 1 << lg; 611 virt += 1 << lg;
@@ -616,7 +616,7 @@ static int mthca_map_cmd(struct mthca_dev *dev, u16 op, struct mthca_icm *icm,
616 ts += 1 << (lg - 10); 616 ts += 1 << (lg - 10);
617 ++tc; 617 ++tc;
618 618
619 if (nent == MTHCA_MAILBOX_SIZE / 16) { 619 if (++nent == MTHCA_MAILBOX_SIZE / 16) {
620 err = mthca_cmd(dev, mailbox->dma, nent, 0, op, 620 err = mthca_cmd(dev, mailbox->dma, nent, 0, op,
621 CMD_TIME_CLASS_B, status); 621 CMD_TIME_CLASS_B, status);
622 if (err || *status) 622 if (err || *status)
diff --git a/drivers/infiniband/hw/mthca/mthca_eq.c b/drivers/infiniband/hw/mthca/mthca_eq.c
index 78152a8ad17d..c81fa8e975ef 100644
--- a/drivers/infiniband/hw/mthca/mthca_eq.c
+++ b/drivers/infiniband/hw/mthca/mthca_eq.c
@@ -836,7 +836,7 @@ int __devinit mthca_init_eq_table(struct mthca_dev *dev)
836 dev->eq_table.clr_mask = 836 dev->eq_table.clr_mask =
837 swab32(1 << (dev->eq_table.inta_pin & 31)); 837 swab32(1 << (dev->eq_table.inta_pin & 31));
838 dev->eq_table.clr_int = dev->clr_base + 838 dev->eq_table.clr_int = dev->clr_base +
839 (dev->eq_table.inta_pin < 31 ? 4 : 0); 839 (dev->eq_table.inta_pin < 32 ? 4 : 0);
840 } 840 }
841 841
842 dev->eq_table.arm_mask = 0; 842 dev->eq_table.arm_mask = 0;
diff --git a/drivers/infiniband/hw/mthca/mthca_memfree.c b/drivers/infiniband/hw/mthca/mthca_memfree.c
index 1827400f189b..7bd7a4bec7b4 100644
--- a/drivers/infiniband/hw/mthca/mthca_memfree.c
+++ b/drivers/infiniband/hw/mthca/mthca_memfree.c
@@ -290,7 +290,7 @@ struct mthca_icm_table *mthca_alloc_icm_table(struct mthca_dev *dev,
290 int i; 290 int i;
291 u8 status; 291 u8 status;
292 292
293 num_icm = obj_size * nobj / MTHCA_TABLE_CHUNK_SIZE; 293 num_icm = (obj_size * nobj + MTHCA_TABLE_CHUNK_SIZE - 1) / MTHCA_TABLE_CHUNK_SIZE;
294 294
295 table = kmalloc(sizeof *table + num_icm * sizeof *table->icm, GFP_KERNEL); 295 table = kmalloc(sizeof *table + num_icm * sizeof *table->icm, GFP_KERNEL);
296 if (!table) 296 if (!table)
@@ -529,12 +529,25 @@ int mthca_alloc_db(struct mthca_dev *dev, int type, u32 qn, __be32 **db)
529 goto found; 529 goto found;
530 } 530 }
531 531
532 for (i = start; i != end; i += dir)
533 if (!dev->db_tab->page[i].db_rec) {
534 page = dev->db_tab->page + i;
535 goto alloc;
536 }
537
532 if (dev->db_tab->max_group1 >= dev->db_tab->min_group2 - 1) { 538 if (dev->db_tab->max_group1 >= dev->db_tab->min_group2 - 1) {
533 ret = -ENOMEM; 539 ret = -ENOMEM;
534 goto out; 540 goto out;
535 } 541 }
536 542
543 if (group == 0)
544 ++dev->db_tab->max_group1;
545 else
546 --dev->db_tab->min_group2;
547
537 page = dev->db_tab->page + end; 548 page = dev->db_tab->page + end;
549
550alloc:
538 page->db_rec = dma_alloc_coherent(&dev->pdev->dev, 4096, 551 page->db_rec = dma_alloc_coherent(&dev->pdev->dev, 4096,
539 &page->mapping, GFP_KERNEL); 552 &page->mapping, GFP_KERNEL);
540 if (!page->db_rec) { 553 if (!page->db_rec) {
@@ -554,10 +567,6 @@ int mthca_alloc_db(struct mthca_dev *dev, int type, u32 qn, __be32 **db)
554 } 567 }
555 568
556 bitmap_zero(page->used, MTHCA_DB_REC_PER_PAGE); 569 bitmap_zero(page->used, MTHCA_DB_REC_PER_PAGE);
557 if (group == 0)
558 ++dev->db_tab->max_group1;
559 else
560 --dev->db_tab->min_group2;
561 570
562found: 571found:
563 j = find_first_zero_bit(page->used, MTHCA_DB_REC_PER_PAGE); 572 j = find_first_zero_bit(page->used, MTHCA_DB_REC_PER_PAGE);
diff --git a/drivers/infiniband/hw/mthca/mthca_provider.c b/drivers/infiniband/hw/mthca/mthca_provider.c
index 1c1c2e230871..3f5319a46577 100644
--- a/drivers/infiniband/hw/mthca/mthca_provider.c
+++ b/drivers/infiniband/hw/mthca/mthca_provider.c
@@ -84,7 +84,7 @@ static int mthca_query_device(struct ib_device *ibdev,
84 props->vendor_id = be32_to_cpup((__be32 *) (out_mad->data + 36)) & 84 props->vendor_id = be32_to_cpup((__be32 *) (out_mad->data + 36)) &
85 0xffffff; 85 0xffffff;
86 props->vendor_part_id = be16_to_cpup((__be16 *) (out_mad->data + 30)); 86 props->vendor_part_id = be16_to_cpup((__be16 *) (out_mad->data + 30));
87 props->hw_ver = be16_to_cpup((__be16 *) (out_mad->data + 32)); 87 props->hw_ver = be32_to_cpup((__be32 *) (out_mad->data + 32));
88 memcpy(&props->sys_image_guid, out_mad->data + 4, 8); 88 memcpy(&props->sys_image_guid, out_mad->data + 4, 8);
89 memcpy(&props->node_guid, out_mad->data + 12, 8); 89 memcpy(&props->node_guid, out_mad->data + 12, 8);
90 90
diff --git a/drivers/input/input.c b/drivers/input/input.c
index 88636a204525..14ae5583e198 100644
--- a/drivers/input/input.c
+++ b/drivers/input/input.c
@@ -308,6 +308,7 @@ static struct input_device_id *input_match_device(struct input_device_id *id, st
308 MATCH_BIT(ledbit, LED_MAX); 308 MATCH_BIT(ledbit, LED_MAX);
309 MATCH_BIT(sndbit, SND_MAX); 309 MATCH_BIT(sndbit, SND_MAX);
310 MATCH_BIT(ffbit, FF_MAX); 310 MATCH_BIT(ffbit, FF_MAX);
311 MATCH_BIT(swbit, SW_MAX);
311 312
312 return id; 313 return id;
313 } 314 }
diff --git a/drivers/isdn/divert/divert_procfs.c b/drivers/isdn/divert/divert_procfs.c
index e1f0d87de0eb..0b0ea26023e5 100644
--- a/drivers/isdn/divert/divert_procfs.c
+++ b/drivers/isdn/divert/divert_procfs.c
@@ -287,12 +287,12 @@ divert_dev_init(void)
287 init_waitqueue_head(&rd_queue); 287 init_waitqueue_head(&rd_queue);
288 288
289#ifdef CONFIG_PROC_FS 289#ifdef CONFIG_PROC_FS
290 isdn_proc_entry = create_proc_entry("isdn", S_IFDIR | S_IRUGO | S_IXUGO, proc_net); 290 isdn_proc_entry = proc_mkdir("net/isdn", NULL);
291 if (!isdn_proc_entry) 291 if (!isdn_proc_entry)
292 return (-1); 292 return (-1);
293 isdn_divert_entry = create_proc_entry("divert", S_IFREG | S_IRUGO, isdn_proc_entry); 293 isdn_divert_entry = create_proc_entry("divert", S_IFREG | S_IRUGO, isdn_proc_entry);
294 if (!isdn_divert_entry) { 294 if (!isdn_divert_entry) {
295 remove_proc_entry("isdn", proc_net); 295 remove_proc_entry("net/isdn", NULL);
296 return (-1); 296 return (-1);
297 } 297 }
298 isdn_divert_entry->proc_fops = &isdn_fops; 298 isdn_divert_entry->proc_fops = &isdn_fops;
@@ -312,7 +312,7 @@ divert_dev_deinit(void)
312 312
313#ifdef CONFIG_PROC_FS 313#ifdef CONFIG_PROC_FS
314 remove_proc_entry("divert", isdn_proc_entry); 314 remove_proc_entry("divert", isdn_proc_entry);
315 remove_proc_entry("isdn", proc_net); 315 remove_proc_entry("net/isdn", NULL);
316#endif /* CONFIG_PROC_FS */ 316#endif /* CONFIG_PROC_FS */
317 317
318 return (0); 318 return (0);
diff --git a/drivers/isdn/hardware/eicon/diva_didd.c b/drivers/isdn/hardware/eicon/diva_didd.c
index 7fdf8ae5be52..27204f4b111a 100644
--- a/drivers/isdn/hardware/eicon/diva_didd.c
+++ b/drivers/isdn/hardware/eicon/diva_didd.c
@@ -30,8 +30,6 @@ static char *DRIVERNAME =
30static char *DRIVERLNAME = "divadidd"; 30static char *DRIVERLNAME = "divadidd";
31char *DRIVERRELEASE_DIDD = "2.0"; 31char *DRIVERRELEASE_DIDD = "2.0";
32 32
33static char *main_proc_dir = "eicon";
34
35MODULE_DESCRIPTION("DIDD table driver for diva drivers"); 33MODULE_DESCRIPTION("DIDD table driver for diva drivers");
36MODULE_AUTHOR("Cytronics & Melware, Eicon Networks"); 34MODULE_AUTHOR("Cytronics & Melware, Eicon Networks");
37MODULE_SUPPORTED_DEVICE("Eicon diva drivers"); 35MODULE_SUPPORTED_DEVICE("Eicon diva drivers");
@@ -89,7 +87,7 @@ proc_read(char *page, char **start, off_t off, int count, int *eof,
89 87
90static int DIVA_INIT_FUNCTION create_proc(void) 88static int DIVA_INIT_FUNCTION create_proc(void)
91{ 89{
92 proc_net_eicon = create_proc_entry(main_proc_dir, S_IFDIR, proc_net); 90 proc_net_eicon = proc_mkdir("net/eicon", NULL);
93 91
94 if (proc_net_eicon) { 92 if (proc_net_eicon) {
95 if ((proc_didd = 93 if ((proc_didd =
@@ -105,7 +103,7 @@ static int DIVA_INIT_FUNCTION create_proc(void)
105static void DIVA_EXIT_FUNCTION remove_proc(void) 103static void DIVA_EXIT_FUNCTION remove_proc(void)
106{ 104{
107 remove_proc_entry(DRIVERLNAME, proc_net_eicon); 105 remove_proc_entry(DRIVERLNAME, proc_net_eicon);
108 remove_proc_entry(main_proc_dir, proc_net); 106 remove_proc_entry("net/eicon", NULL);
109} 107}
110 108
111static int DIVA_INIT_FUNCTION divadidd_init(void) 109static int DIVA_INIT_FUNCTION divadidd_init(void)
diff --git a/drivers/isdn/hardware/eicon/divasproc.c b/drivers/isdn/hardware/eicon/divasproc.c
index b6435589d459..c12efa6f8429 100644
--- a/drivers/isdn/hardware/eicon/divasproc.c
+++ b/drivers/isdn/hardware/eicon/divasproc.c
@@ -381,7 +381,7 @@ int create_adapter_proc(diva_os_xdi_adapter_t * a)
381 char tmp[16]; 381 char tmp[16];
382 382
383 sprintf(tmp, "%s%d", adapter_dir_name, a->controller); 383 sprintf(tmp, "%s%d", adapter_dir_name, a->controller);
384 if (!(de = create_proc_entry(tmp, S_IFDIR, proc_net_eicon))) 384 if (!(de = proc_mkdir(tmp, proc_net_eicon)))
385 return (0); 385 return (0);
386 a->proc_adapter_dir = (void *) de; 386 a->proc_adapter_dir = (void *) de;
387 387
diff --git a/drivers/isdn/hisax/st5481_b.c b/drivers/isdn/hisax/st5481_b.c
index 0a2536d62402..657817a591fe 100644
--- a/drivers/isdn/hisax/st5481_b.c
+++ b/drivers/isdn/hisax/st5481_b.c
@@ -209,9 +209,7 @@ static void st5481B_mode(struct st5481_bcs *bcs, int mode)
209 bcs->mode = mode; 209 bcs->mode = mode;
210 210
211 // Cancel all USB transfers on this B channel 211 // Cancel all USB transfers on this B channel
212 b_out->urb[0]->transfer_flags |= URB_ASYNC_UNLINK;
213 usb_unlink_urb(b_out->urb[0]); 212 usb_unlink_urb(b_out->urb[0]);
214 b_out->urb[1]->transfer_flags |= URB_ASYNC_UNLINK;
215 usb_unlink_urb(b_out->urb[1]); 213 usb_unlink_urb(b_out->urb[1]);
216 b_out->busy = 0; 214 b_out->busy = 0;
217 215
diff --git a/drivers/isdn/hisax/st5481_usb.c b/drivers/isdn/hisax/st5481_usb.c
index ffd5b2d45552..89fbeb58485d 100644
--- a/drivers/isdn/hisax/st5481_usb.c
+++ b/drivers/isdn/hisax/st5481_usb.c
@@ -645,9 +645,7 @@ void st5481_in_mode(struct st5481_in *in, int mode)
645 645
646 in->mode = mode; 646 in->mode = mode;
647 647
648 in->urb[0]->transfer_flags |= URB_ASYNC_UNLINK;
649 usb_unlink_urb(in->urb[0]); 648 usb_unlink_urb(in->urb[0]);
650 in->urb[1]->transfer_flags |= URB_ASYNC_UNLINK;
651 usb_unlink_urb(in->urb[1]); 649 usb_unlink_urb(in->urb[1]);
652 650
653 if (in->mode != L1_MODE_NULL) { 651 if (in->mode != L1_MODE_NULL) {
diff --git a/drivers/isdn/hysdn/hysdn_procconf.c b/drivers/isdn/hysdn/hysdn_procconf.c
index 5da507e532fc..639582f61f41 100644
--- a/drivers/isdn/hysdn/hysdn_procconf.c
+++ b/drivers/isdn/hysdn/hysdn_procconf.c
@@ -394,7 +394,7 @@ hysdn_procconf_init(void)
394 hysdn_card *card; 394 hysdn_card *card;
395 uchar conf_name[20]; 395 uchar conf_name[20];
396 396
397 hysdn_proc_entry = create_proc_entry(PROC_SUBDIR_NAME, S_IFDIR | S_IRUGO | S_IXUGO, proc_net); 397 hysdn_proc_entry = proc_mkdir(PROC_SUBDIR_NAME, proc_net);
398 if (!hysdn_proc_entry) { 398 if (!hysdn_proc_entry) {
399 printk(KERN_ERR "HYSDN: unable to create hysdn subdir\n"); 399 printk(KERN_ERR "HYSDN: unable to create hysdn subdir\n");
400 return (-1); 400 return (-1);
diff --git a/drivers/macintosh/smu.c b/drivers/macintosh/smu.c
index fb535737d17d..9b38674fbf75 100644
--- a/drivers/macintosh/smu.c
+++ b/drivers/macintosh/smu.c
@@ -8,21 +8,15 @@
8 */ 8 */
9 9
10/* 10/*
11 * For now, this driver includes:
12 * - RTC get & set
13 * - reboot & shutdown commands
14 * all synchronous with IRQ disabled (ugh)
15 *
16 * TODO: 11 * TODO:
17 * rework in a way the PMU driver works, that is asynchronous 12 * - maybe add timeout to commands ?
18 * with a queue of commands. I'll do that as soon as I have an 13 * - blocking version of time functions
19 * SMU based machine at hand. Some more cleanup is needed too, 14 * - polling version of i2c commands (including timer that works with
20 * like maybe fitting it into a platform device, etc... 15 * interrutps off)
21 * Also check what's up with cache coherency, and if we really 16 * - maybe avoid some data copies with i2c by directly using the smu cmd
22 * can't do better than flushing the cache, maybe build a table 17 * buffer and a lower level internal interface
23 * of command len/reply len like the PMU driver to only flush 18 * - understand SMU -> CPU events and implement reception of them via
24 * what is actually necessary. 19 * the userland interface
25 * --BenH.
26 */ 20 */
27 21
28#include <linux/config.h> 22#include <linux/config.h>
@@ -36,6 +30,11 @@
36#include <linux/jiffies.h> 30#include <linux/jiffies.h>
37#include <linux/interrupt.h> 31#include <linux/interrupt.h>
38#include <linux/rtc.h> 32#include <linux/rtc.h>
33#include <linux/completion.h>
34#include <linux/miscdevice.h>
35#include <linux/delay.h>
36#include <linux/sysdev.h>
37#include <linux/poll.h>
39 38
40#include <asm/byteorder.h> 39#include <asm/byteorder.h>
41#include <asm/io.h> 40#include <asm/io.h>
@@ -45,8 +44,13 @@
45#include <asm/smu.h> 44#include <asm/smu.h>
46#include <asm/sections.h> 45#include <asm/sections.h>
47#include <asm/abs_addr.h> 46#include <asm/abs_addr.h>
47#include <asm/uaccess.h>
48#include <asm/of_device.h>
49
50#define VERSION "0.6"
51#define AUTHOR "(c) 2005 Benjamin Herrenschmidt, IBM Corp."
48 52
49#define DEBUG_SMU 1 53#undef DEBUG_SMU
50 54
51#ifdef DEBUG_SMU 55#ifdef DEBUG_SMU
52#define DPRINTK(fmt, args...) do { printk(KERN_DEBUG fmt , ##args); } while (0) 56#define DPRINTK(fmt, args...) do { printk(KERN_DEBUG fmt , ##args); } while (0)
@@ -57,20 +61,30 @@
57/* 61/*
58 * This is the command buffer passed to the SMU hardware 62 * This is the command buffer passed to the SMU hardware
59 */ 63 */
64#define SMU_MAX_DATA 254
65
60struct smu_cmd_buf { 66struct smu_cmd_buf {
61 u8 cmd; 67 u8 cmd;
62 u8 length; 68 u8 length;
63 u8 data[0x0FFE]; 69 u8 data[SMU_MAX_DATA];
64}; 70};
65 71
66struct smu_device { 72struct smu_device {
67 spinlock_t lock; 73 spinlock_t lock;
68 struct device_node *of_node; 74 struct device_node *of_node;
69 int db_ack; /* doorbell ack GPIO */ 75 struct of_device *of_dev;
70 int db_req; /* doorbell req GPIO */ 76 int doorbell; /* doorbell gpio */
71 u32 __iomem *db_buf; /* doorbell buffer */ 77 u32 __iomem *db_buf; /* doorbell buffer */
78 int db_irq;
79 int msg;
80 int msg_irq;
72 struct smu_cmd_buf *cmd_buf; /* command buffer virtual */ 81 struct smu_cmd_buf *cmd_buf; /* command buffer virtual */
73 u32 cmd_buf_abs; /* command buffer absolute */ 82 u32 cmd_buf_abs; /* command buffer absolute */
83 struct list_head cmd_list;
84 struct smu_cmd *cmd_cur; /* pending command */
85 struct list_head cmd_i2c_list;
86 struct smu_i2c_cmd *cmd_i2c_cur; /* pending i2c command */
87 struct timer_list i2c_timer;
74}; 88};
75 89
76/* 90/*
@@ -79,113 +93,245 @@ struct smu_device {
79 */ 93 */
80static struct smu_device *smu; 94static struct smu_device *smu;
81 95
96
82/* 97/*
83 * SMU low level communication stuff 98 * SMU driver low level stuff
84 */ 99 */
85static inline int smu_cmd_stat(struct smu_cmd_buf *cmd_buf, u8 cmd_ack)
86{
87 rmb();
88 return cmd_buf->cmd == cmd_ack && cmd_buf->length != 0;
89}
90 100
91static inline u8 smu_save_ack_cmd(struct smu_cmd_buf *cmd_buf) 101static void smu_start_cmd(void)
92{ 102{
93 return (~cmd_buf->cmd) & 0xff; 103 unsigned long faddr, fend;
94} 104 struct smu_cmd *cmd;
95 105
96static void smu_send_cmd(struct smu_device *dev) 106 if (list_empty(&smu->cmd_list))
97{ 107 return;
98 /* SMU command buf is currently cacheable, we need a physical 108
99 * address. This isn't exactly a DMA mapping here, I suspect 109 /* Fetch first command in queue */
110 cmd = list_entry(smu->cmd_list.next, struct smu_cmd, link);
111 smu->cmd_cur = cmd;
112 list_del(&cmd->link);
113
114 DPRINTK("SMU: starting cmd %x, %d bytes data\n", cmd->cmd,
115 cmd->data_len);
116 DPRINTK("SMU: data buffer: %02x %02x %02x %02x ...\n",
117 ((u8 *)cmd->data_buf)[0], ((u8 *)cmd->data_buf)[1],
118 ((u8 *)cmd->data_buf)[2], ((u8 *)cmd->data_buf)[3]);
119
120 /* Fill the SMU command buffer */
121 smu->cmd_buf->cmd = cmd->cmd;
122 smu->cmd_buf->length = cmd->data_len;
123 memcpy(smu->cmd_buf->data, cmd->data_buf, cmd->data_len);
124
125 /* Flush command and data to RAM */
126 faddr = (unsigned long)smu->cmd_buf;
127 fend = faddr + smu->cmd_buf->length + 2;
128 flush_inval_dcache_range(faddr, fend);
129
130 /* This isn't exactly a DMA mapping here, I suspect
100 * the SMU is actually communicating with us via i2c to the 131 * the SMU is actually communicating with us via i2c to the
101 * northbridge or the CPU to access RAM. 132 * northbridge or the CPU to access RAM.
102 */ 133 */
103 writel(dev->cmd_buf_abs, dev->db_buf); 134 writel(smu->cmd_buf_abs, smu->db_buf);
104 135
105 /* Ring the SMU doorbell */ 136 /* Ring the SMU doorbell */
106 pmac_do_feature_call(PMAC_FTR_WRITE_GPIO, NULL, dev->db_req, 4); 137 pmac_do_feature_call(PMAC_FTR_WRITE_GPIO, NULL, smu->doorbell, 4);
107 pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, dev->db_req, 4);
108} 138}
109 139
110static int smu_cmd_done(struct smu_device *dev) 140
141static irqreturn_t smu_db_intr(int irq, void *arg, struct pt_regs *regs)
111{ 142{
112 unsigned long wait = 0; 143 unsigned long flags;
113 int gpio; 144 struct smu_cmd *cmd;
145 void (*done)(struct smu_cmd *cmd, void *misc) = NULL;
146 void *misc = NULL;
147 u8 gpio;
148 int rc = 0;
114 149
115 /* Check the SMU doorbell */ 150 /* SMU completed the command, well, we hope, let's make sure
116 do { 151 * of it
117 gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, 152 */
118 NULL, dev->db_ack); 153 spin_lock_irqsave(&smu->lock, flags);
119 if ((gpio & 7) == 7)
120 return 0;
121 udelay(100);
122 } while(++wait < 10000);
123 154
124 printk(KERN_ERR "SMU timeout !\n"); 155 gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
125 return -ENXIO; 156 if ((gpio & 7) != 7) {
157 spin_unlock_irqrestore(&smu->lock, flags);
158 return IRQ_HANDLED;
159 }
160
161 cmd = smu->cmd_cur;
162 smu->cmd_cur = NULL;
163 if (cmd == NULL)
164 goto bail;
165
166 if (rc == 0) {
167 unsigned long faddr;
168 int reply_len;
169 u8 ack;
170
171 /* CPU might have brought back the cache line, so we need
172 * to flush again before peeking at the SMU response. We
173 * flush the entire buffer for now as we haven't read the
174 * reply lenght (it's only 2 cache lines anyway)
175 */
176 faddr = (unsigned long)smu->cmd_buf;
177 flush_inval_dcache_range(faddr, faddr + 256);
178
179 /* Now check ack */
180 ack = (~cmd->cmd) & 0xff;
181 if (ack != smu->cmd_buf->cmd) {
182 DPRINTK("SMU: incorrect ack, want %x got %x\n",
183 ack, smu->cmd_buf->cmd);
184 rc = -EIO;
185 }
186 reply_len = rc == 0 ? smu->cmd_buf->length : 0;
187 DPRINTK("SMU: reply len: %d\n", reply_len);
188 if (reply_len > cmd->reply_len) {
189 printk(KERN_WARNING "SMU: reply buffer too small,"
190 "got %d bytes for a %d bytes buffer\n",
191 reply_len, cmd->reply_len);
192 reply_len = cmd->reply_len;
193 }
194 cmd->reply_len = reply_len;
195 if (cmd->reply_buf && reply_len)
196 memcpy(cmd->reply_buf, smu->cmd_buf->data, reply_len);
197 }
198
199 /* Now complete the command. Write status last in order as we lost
200 * ownership of the command structure as soon as it's no longer -1
201 */
202 done = cmd->done;
203 misc = cmd->misc;
204 mb();
205 cmd->status = rc;
206 bail:
207 /* Start next command if any */
208 smu_start_cmd();
209 spin_unlock_irqrestore(&smu->lock, flags);
210
211 /* Call command completion handler if any */
212 if (done)
213 done(cmd, misc);
214
215 /* It's an edge interrupt, nothing to do */
216 return IRQ_HANDLED;
126} 217}
127 218
128static int smu_do_cmd(struct smu_device *dev) 219
220static irqreturn_t smu_msg_intr(int irq, void *arg, struct pt_regs *regs)
129{ 221{
130 int rc; 222 /* I don't quite know what to do with this one, we seem to never
131 u8 cmd_ack; 223 * receive it, so I suspect we have to arm it someway in the SMU
224 * to start getting events that way.
225 */
132 226
133 DPRINTK("SMU do_cmd %02x len=%d %02x\n", 227 printk(KERN_INFO "SMU: message interrupt !\n");
134 dev->cmd_buf->cmd, dev->cmd_buf->length,
135 dev->cmd_buf->data[0]);
136 228
137 cmd_ack = smu_save_ack_cmd(dev->cmd_buf); 229 /* It's an edge interrupt, nothing to do */
230 return IRQ_HANDLED;
231}
138 232
139 /* Clear cmd_buf cache lines */
140 flush_inval_dcache_range((unsigned long)dev->cmd_buf,
141 ((unsigned long)dev->cmd_buf) +
142 sizeof(struct smu_cmd_buf));
143 smu_send_cmd(dev);
144 rc = smu_cmd_done(dev);
145 if (rc == 0)
146 rc = smu_cmd_stat(dev->cmd_buf, cmd_ack) ? 0 : -1;
147 233
148 DPRINTK("SMU do_cmd %02x len=%d %02x => %d (%02x)\n", 234/*
149 dev->cmd_buf->cmd, dev->cmd_buf->length, 235 * Queued command management.
150 dev->cmd_buf->data[0], rc, cmd_ack); 236 *
237 */
238
239int smu_queue_cmd(struct smu_cmd *cmd)
240{
241 unsigned long flags;
151 242
152 return rc; 243 if (smu == NULL)
244 return -ENODEV;
245 if (cmd->data_len > SMU_MAX_DATA ||
246 cmd->reply_len > SMU_MAX_DATA)
247 return -EINVAL;
248
249 cmd->status = 1;
250 spin_lock_irqsave(&smu->lock, flags);
251 list_add_tail(&cmd->link, &smu->cmd_list);
252 if (smu->cmd_cur == NULL)
253 smu_start_cmd();
254 spin_unlock_irqrestore(&smu->lock, flags);
255
256 return 0;
153} 257}
258EXPORT_SYMBOL(smu_queue_cmd);
154 259
155/* RTC low level commands */ 260
156static inline int bcd2hex (int n) 261int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
262 unsigned int data_len,
263 void (*done)(struct smu_cmd *cmd, void *misc),
264 void *misc, ...)
157{ 265{
158 return (((n & 0xf0) >> 4) * 10) + (n & 0xf); 266 struct smu_cmd *cmd = &scmd->cmd;
267 va_list list;
268 int i;
269
270 if (data_len > sizeof(scmd->buffer))
271 return -EINVAL;
272
273 memset(scmd, 0, sizeof(*scmd));
274 cmd->cmd = command;
275 cmd->data_len = data_len;
276 cmd->data_buf = scmd->buffer;
277 cmd->reply_len = sizeof(scmd->buffer);
278 cmd->reply_buf = scmd->buffer;
279 cmd->done = done;
280 cmd->misc = misc;
281
282 va_start(list, misc);
283 for (i = 0; i < data_len; ++i)
284 scmd->buffer[i] = (u8)va_arg(list, int);
285 va_end(list);
286
287 return smu_queue_cmd(cmd);
159} 288}
289EXPORT_SYMBOL(smu_queue_simple);
160 290
161static inline int hex2bcd (int n) 291
292void smu_poll(void)
162{ 293{
163 return ((n / 10) << 4) + (n % 10); 294 u8 gpio;
295
296 if (smu == NULL)
297 return;
298
299 gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
300 if ((gpio & 7) == 7)
301 smu_db_intr(smu->db_irq, smu, NULL);
164} 302}
303EXPORT_SYMBOL(smu_poll);
165 304
166#if 0 305
167static inline void smu_fill_set_pwrup_timer_cmd(struct smu_cmd_buf *cmd_buf) 306void smu_done_complete(struct smu_cmd *cmd, void *misc)
168{ 307{
169 cmd_buf->cmd = 0x8e; 308 struct completion *comp = misc;
170 cmd_buf->length = 8; 309
171 cmd_buf->data[0] = 0x00; 310 complete(comp);
172 memset(cmd_buf->data + 1, 0, 7);
173} 311}
312EXPORT_SYMBOL(smu_done_complete);
313
174 314
175static inline void smu_fill_get_pwrup_timer_cmd(struct smu_cmd_buf *cmd_buf) 315void smu_spinwait_cmd(struct smu_cmd *cmd)
176{ 316{
177 cmd_buf->cmd = 0x8e; 317 while(cmd->status == 1)
178 cmd_buf->length = 1; 318 smu_poll();
179 cmd_buf->data[0] = 0x01;
180} 319}
320EXPORT_SYMBOL(smu_spinwait_cmd);
321
181 322
182static inline void smu_fill_dis_pwrup_timer_cmd(struct smu_cmd_buf *cmd_buf) 323/* RTC low level commands */
324static inline int bcd2hex (int n)
183{ 325{
184 cmd_buf->cmd = 0x8e; 326 return (((n & 0xf0) >> 4) * 10) + (n & 0xf);
185 cmd_buf->length = 1;
186 cmd_buf->data[0] = 0x02;
187} 327}
188#endif 328
329
330static inline int hex2bcd (int n)
331{
332 return ((n / 10) << 4) + (n % 10);
333}
334
189 335
190static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf, 336static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf,
191 struct rtc_time *time) 337 struct rtc_time *time)
@@ -202,100 +348,96 @@ static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf,
202 cmd_buf->data[7] = hex2bcd(time->tm_year - 100); 348 cmd_buf->data[7] = hex2bcd(time->tm_year - 100);
203} 349}
204 350
205static inline void smu_fill_get_rtc_cmd(struct smu_cmd_buf *cmd_buf)
206{
207 cmd_buf->cmd = 0x8e;
208 cmd_buf->length = 1;
209 cmd_buf->data[0] = 0x81;
210}
211 351
212static void smu_parse_get_rtc_reply(struct smu_cmd_buf *cmd_buf, 352int smu_get_rtc_time(struct rtc_time *time, int spinwait)
213 struct rtc_time *time)
214{ 353{
215 time->tm_sec = bcd2hex(cmd_buf->data[0]); 354 struct smu_simple_cmd cmd;
216 time->tm_min = bcd2hex(cmd_buf->data[1]);
217 time->tm_hour = bcd2hex(cmd_buf->data[2]);
218 time->tm_wday = bcd2hex(cmd_buf->data[3]);
219 time->tm_mday = bcd2hex(cmd_buf->data[4]);
220 time->tm_mon = bcd2hex(cmd_buf->data[5]) - 1;
221 time->tm_year = bcd2hex(cmd_buf->data[6]) + 100;
222}
223
224int smu_get_rtc_time(struct rtc_time *time)
225{
226 unsigned long flags;
227 int rc; 355 int rc;
228 356
229 if (smu == NULL) 357 if (smu == NULL)
230 return -ENODEV; 358 return -ENODEV;
231 359
232 memset(time, 0, sizeof(struct rtc_time)); 360 memset(time, 0, sizeof(struct rtc_time));
233 spin_lock_irqsave(&smu->lock, flags); 361 rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 1, NULL, NULL,
234 smu_fill_get_rtc_cmd(smu->cmd_buf); 362 SMU_CMD_RTC_GET_DATETIME);
235 rc = smu_do_cmd(smu); 363 if (rc)
236 if (rc == 0) 364 return rc;
237 smu_parse_get_rtc_reply(smu->cmd_buf, time); 365 smu_spinwait_simple(&cmd);
238 spin_unlock_irqrestore(&smu->lock, flags);
239 366
240 return rc; 367 time->tm_sec = bcd2hex(cmd.buffer[0]);
368 time->tm_min = bcd2hex(cmd.buffer[1]);
369 time->tm_hour = bcd2hex(cmd.buffer[2]);
370 time->tm_wday = bcd2hex(cmd.buffer[3]);
371 time->tm_mday = bcd2hex(cmd.buffer[4]);
372 time->tm_mon = bcd2hex(cmd.buffer[5]) - 1;
373 time->tm_year = bcd2hex(cmd.buffer[6]) + 100;
374
375 return 0;
241} 376}
242 377
243int smu_set_rtc_time(struct rtc_time *time) 378
379int smu_set_rtc_time(struct rtc_time *time, int spinwait)
244{ 380{
245 unsigned long flags; 381 struct smu_simple_cmd cmd;
246 int rc; 382 int rc;
247 383
248 if (smu == NULL) 384 if (smu == NULL)
249 return -ENODEV; 385 return -ENODEV;
250 386
251 spin_lock_irqsave(&smu->lock, flags); 387 rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 8, NULL, NULL,
252 smu_fill_set_rtc_cmd(smu->cmd_buf, time); 388 SMU_CMD_RTC_SET_DATETIME,
253 rc = smu_do_cmd(smu); 389 hex2bcd(time->tm_sec),
254 spin_unlock_irqrestore(&smu->lock, flags); 390 hex2bcd(time->tm_min),
391 hex2bcd(time->tm_hour),
392 time->tm_wday,
393 hex2bcd(time->tm_mday),
394 hex2bcd(time->tm_mon) + 1,
395 hex2bcd(time->tm_year - 100));
396 if (rc)
397 return rc;
398 smu_spinwait_simple(&cmd);
255 399
256 return rc; 400 return 0;
257} 401}
258 402
403
259void smu_shutdown(void) 404void smu_shutdown(void)
260{ 405{
261 const unsigned char *command = "SHUTDOWN"; 406 struct smu_simple_cmd cmd;
262 unsigned long flags;
263 407
264 if (smu == NULL) 408 if (smu == NULL)
265 return; 409 return;
266 410
267 spin_lock_irqsave(&smu->lock, flags); 411 if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 9, NULL, NULL,
268 smu->cmd_buf->cmd = 0xaa; 412 'S', 'H', 'U', 'T', 'D', 'O', 'W', 'N', 0))
269 smu->cmd_buf->length = strlen(command); 413 return;
270 strcpy(smu->cmd_buf->data, command); 414 smu_spinwait_simple(&cmd);
271 smu_do_cmd(smu);
272 for (;;) 415 for (;;)
273 ; 416 ;
274 spin_unlock_irqrestore(&smu->lock, flags);
275} 417}
276 418
419
277void smu_restart(void) 420void smu_restart(void)
278{ 421{
279 const unsigned char *command = "RESTART"; 422 struct smu_simple_cmd cmd;
280 unsigned long flags;
281 423
282 if (smu == NULL) 424 if (smu == NULL)
283 return; 425 return;
284 426
285 spin_lock_irqsave(&smu->lock, flags); 427 if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 8, NULL, NULL,
286 smu->cmd_buf->cmd = 0xaa; 428 'R', 'E', 'S', 'T', 'A', 'R', 'T', 0))
287 smu->cmd_buf->length = strlen(command); 429 return;
288 strcpy(smu->cmd_buf->data, command); 430 smu_spinwait_simple(&cmd);
289 smu_do_cmd(smu);
290 for (;;) 431 for (;;)
291 ; 432 ;
292 spin_unlock_irqrestore(&smu->lock, flags);
293} 433}
294 434
435
295int smu_present(void) 436int smu_present(void)
296{ 437{
297 return smu != NULL; 438 return smu != NULL;
298} 439}
440EXPORT_SYMBOL(smu_present);
299 441
300 442
301int smu_init (void) 443int smu_init (void)
@@ -307,6 +449,8 @@ int smu_init (void)
307 if (np == NULL) 449 if (np == NULL)
308 return -ENODEV; 450 return -ENODEV;
309 451
452 printk(KERN_INFO "SMU driver %s %s\n", VERSION, AUTHOR);
453
310 if (smu_cmdbuf_abs == 0) { 454 if (smu_cmdbuf_abs == 0) {
311 printk(KERN_ERR "SMU: Command buffer not allocated !\n"); 455 printk(KERN_ERR "SMU: Command buffer not allocated !\n");
312 return -EINVAL; 456 return -EINVAL;
@@ -318,7 +462,13 @@ int smu_init (void)
318 memset(smu, 0, sizeof(*smu)); 462 memset(smu, 0, sizeof(*smu));
319 463
320 spin_lock_init(&smu->lock); 464 spin_lock_init(&smu->lock);
465 INIT_LIST_HEAD(&smu->cmd_list);
466 INIT_LIST_HEAD(&smu->cmd_i2c_list);
321 smu->of_node = np; 467 smu->of_node = np;
468 smu->db_irq = NO_IRQ;
469 smu->msg_irq = NO_IRQ;
470 init_timer(&smu->i2c_timer);
471
322 /* smu_cmdbuf_abs is in the low 2G of RAM, can be converted to a 472 /* smu_cmdbuf_abs is in the low 2G of RAM, can be converted to a
323 * 32 bits value safely 473 * 32 bits value safely
324 */ 474 */
@@ -331,8 +481,8 @@ int smu_init (void)
331 goto fail; 481 goto fail;
332 } 482 }
333 data = (u32 *)get_property(np, "reg", NULL); 483 data = (u32 *)get_property(np, "reg", NULL);
334 of_node_put(np);
335 if (data == NULL) { 484 if (data == NULL) {
485 of_node_put(np);
336 printk(KERN_ERR "SMU: Can't find doorbell GPIO address !\n"); 486 printk(KERN_ERR "SMU: Can't find doorbell GPIO address !\n");
337 goto fail; 487 goto fail;
338 } 488 }
@@ -341,8 +491,31 @@ int smu_init (void)
341 * and ack. GPIOs are at 0x50, best would be to find that out 491 * and ack. GPIOs are at 0x50, best would be to find that out
342 * in the device-tree though. 492 * in the device-tree though.
343 */ 493 */
344 smu->db_req = 0x50 + *data; 494 smu->doorbell = *data;
345 smu->db_ack = 0x50 + *data; 495 if (smu->doorbell < 0x50)
496 smu->doorbell += 0x50;
497 if (np->n_intrs > 0)
498 smu->db_irq = np->intrs[0].line;
499
500 of_node_put(np);
501
502 /* Now look for the smu-interrupt GPIO */
503 do {
504 np = of_find_node_by_name(NULL, "smu-interrupt");
505 if (np == NULL)
506 break;
507 data = (u32 *)get_property(np, "reg", NULL);
508 if (data == NULL) {
509 of_node_put(np);
510 break;
511 }
512 smu->msg = *data;
513 if (smu->msg < 0x50)
514 smu->msg += 0x50;
515 if (np->n_intrs > 0)
516 smu->msg_irq = np->intrs[0].line;
517 of_node_put(np);
518 } while(0);
346 519
347 /* Doorbell buffer is currently hard-coded, I didn't find a proper 520 /* Doorbell buffer is currently hard-coded, I didn't find a proper
348 * device-tree entry giving the address. Best would probably to use 521 * device-tree entry giving the address. Best would probably to use
@@ -362,3 +535,584 @@ int smu_init (void)
362 return -ENXIO; 535 return -ENXIO;
363 536
364} 537}
538
539
540static int smu_late_init(void)
541{
542 if (!smu)
543 return 0;
544
545 /*
546 * Try to request the interrupts
547 */
548
549 if (smu->db_irq != NO_IRQ) {
550 if (request_irq(smu->db_irq, smu_db_intr,
551 SA_SHIRQ, "SMU doorbell", smu) < 0) {
552 printk(KERN_WARNING "SMU: can't "
553 "request interrupt %d\n",
554 smu->db_irq);
555 smu->db_irq = NO_IRQ;
556 }
557 }
558
559 if (smu->msg_irq != NO_IRQ) {
560 if (request_irq(smu->msg_irq, smu_msg_intr,
561 SA_SHIRQ, "SMU message", smu) < 0) {
562 printk(KERN_WARNING "SMU: can't "
563 "request interrupt %d\n",
564 smu->msg_irq);
565 smu->msg_irq = NO_IRQ;
566 }
567 }
568
569 return 0;
570}
571arch_initcall(smu_late_init);
572
573/*
574 * sysfs visibility
575 */
576
577static void smu_expose_childs(void *unused)
578{
579 struct device_node *np;
580
581 for (np = NULL; (np = of_get_next_child(smu->of_node, np)) != NULL;) {
582 if (device_is_compatible(np, "smu-i2c")) {
583 char name[32];
584 u32 *reg = (u32 *)get_property(np, "reg", NULL);
585
586 if (reg == NULL)
587 continue;
588 sprintf(name, "smu-i2c-%02x", *reg);
589 of_platform_device_create(np, name, &smu->of_dev->dev);
590 }
591 }
592
593}
594
595static DECLARE_WORK(smu_expose_childs_work, smu_expose_childs, NULL);
596
597static int smu_platform_probe(struct of_device* dev,
598 const struct of_device_id *match)
599{
600 if (!smu)
601 return -ENODEV;
602 smu->of_dev = dev;
603
604 /*
605 * Ok, we are matched, now expose all i2c busses. We have to defer
606 * that unfortunately or it would deadlock inside the device model
607 */
608 schedule_work(&smu_expose_childs_work);
609
610 return 0;
611}
612
613static struct of_device_id smu_platform_match[] =
614{
615 {
616 .type = "smu",
617 },
618 {},
619};
620
621static struct of_platform_driver smu_of_platform_driver =
622{
623 .name = "smu",
624 .match_table = smu_platform_match,
625 .probe = smu_platform_probe,
626};
627
628static int __init smu_init_sysfs(void)
629{
630 int rc;
631
632 /*
633 * Due to sysfs bogosity, a sysdev is not a real device, so
634 * we should in fact create both if we want sysdev semantics
635 * for power management.
636 * For now, we don't power manage machines with an SMU chip,
637 * I'm a bit too far from figuring out how that works with those
638 * new chipsets, but that will come back and bite us
639 */
640 rc = of_register_driver(&smu_of_platform_driver);
641 return 0;
642}
643
644device_initcall(smu_init_sysfs);
645
646struct of_device *smu_get_ofdev(void)
647{
648 if (!smu)
649 return NULL;
650 return smu->of_dev;
651}
652
653EXPORT_SYMBOL_GPL(smu_get_ofdev);
654
655/*
656 * i2c interface
657 */
658
659static void smu_i2c_complete_command(struct smu_i2c_cmd *cmd, int fail)
660{
661 void (*done)(struct smu_i2c_cmd *cmd, void *misc) = cmd->done;
662 void *misc = cmd->misc;
663 unsigned long flags;
664
665 /* Check for read case */
666 if (!fail && cmd->read) {
667 if (cmd->pdata[0] < 1)
668 fail = 1;
669 else
670 memcpy(cmd->info.data, &cmd->pdata[1],
671 cmd->info.datalen);
672 }
673
674 DPRINTK("SMU: completing, success: %d\n", !fail);
675
676 /* Update status and mark no pending i2c command with lock
677 * held so nobody comes in while we dequeue an eventual
678 * pending next i2c command
679 */
680 spin_lock_irqsave(&smu->lock, flags);
681 smu->cmd_i2c_cur = NULL;
682 wmb();
683 cmd->status = fail ? -EIO : 0;
684
685 /* Is there another i2c command waiting ? */
686 if (!list_empty(&smu->cmd_i2c_list)) {
687 struct smu_i2c_cmd *newcmd;
688
689 /* Fetch it, new current, remove from list */
690 newcmd = list_entry(smu->cmd_i2c_list.next,
691 struct smu_i2c_cmd, link);
692 smu->cmd_i2c_cur = newcmd;
693 list_del(&cmd->link);
694
695 /* Queue with low level smu */
696 list_add_tail(&cmd->scmd.link, &smu->cmd_list);
697 if (smu->cmd_cur == NULL)
698 smu_start_cmd();
699 }
700 spin_unlock_irqrestore(&smu->lock, flags);
701
702 /* Call command completion handler if any */
703 if (done)
704 done(cmd, misc);
705
706}
707
708
709static void smu_i2c_retry(unsigned long data)
710{
711 struct smu_i2c_cmd *cmd = (struct smu_i2c_cmd *)data;
712
713 DPRINTK("SMU: i2c failure, requeuing...\n");
714
715 /* requeue command simply by resetting reply_len */
716 cmd->pdata[0] = 0xff;
717 cmd->scmd.reply_len = 0x10;
718 smu_queue_cmd(&cmd->scmd);
719}
720
721
722static void smu_i2c_low_completion(struct smu_cmd *scmd, void *misc)
723{
724 struct smu_i2c_cmd *cmd = misc;
725 int fail = 0;
726
727 DPRINTK("SMU: i2c compl. stage=%d status=%x pdata[0]=%x rlen: %x\n",
728 cmd->stage, scmd->status, cmd->pdata[0], scmd->reply_len);
729
730 /* Check for possible status */
731 if (scmd->status < 0)
732 fail = 1;
733 else if (cmd->read) {
734 if (cmd->stage == 0)
735 fail = cmd->pdata[0] != 0;
736 else
737 fail = cmd->pdata[0] >= 0x80;
738 } else {
739 fail = cmd->pdata[0] != 0;
740 }
741
742 /* Handle failures by requeuing command, after 5ms interval
743 */
744 if (fail && --cmd->retries > 0) {
745 DPRINTK("SMU: i2c failure, starting timer...\n");
746 smu->i2c_timer.function = smu_i2c_retry;
747 smu->i2c_timer.data = (unsigned long)cmd;
748 smu->i2c_timer.expires = jiffies + msecs_to_jiffies(5);
749 add_timer(&smu->i2c_timer);
750 return;
751 }
752
753 /* If failure or stage 1, command is complete */
754 if (fail || cmd->stage != 0) {
755 smu_i2c_complete_command(cmd, fail);
756 return;
757 }
758
759 DPRINTK("SMU: going to stage 1\n");
760
761 /* Ok, initial command complete, now poll status */
762 scmd->reply_buf = cmd->pdata;
763 scmd->reply_len = 0x10;
764 scmd->data_buf = cmd->pdata;
765 scmd->data_len = 1;
766 cmd->pdata[0] = 0;
767 cmd->stage = 1;
768 cmd->retries = 20;
769 smu_queue_cmd(scmd);
770}
771
772
773int smu_queue_i2c(struct smu_i2c_cmd *cmd)
774{
775 unsigned long flags;
776
777 if (smu == NULL)
778 return -ENODEV;
779
780 /* Fill most fields of scmd */
781 cmd->scmd.cmd = SMU_CMD_I2C_COMMAND;
782 cmd->scmd.done = smu_i2c_low_completion;
783 cmd->scmd.misc = cmd;
784 cmd->scmd.reply_buf = cmd->pdata;
785 cmd->scmd.reply_len = 0x10;
786 cmd->scmd.data_buf = (u8 *)(char *)&cmd->info;
787 cmd->scmd.status = 1;
788 cmd->stage = 0;
789 cmd->pdata[0] = 0xff;
790 cmd->retries = 20;
791 cmd->status = 1;
792
793 /* Check transfer type, sanitize some "info" fields
794 * based on transfer type and do more checking
795 */
796 cmd->info.caddr = cmd->info.devaddr;
797 cmd->read = cmd->info.devaddr & 0x01;
798 switch(cmd->info.type) {
799 case SMU_I2C_TRANSFER_SIMPLE:
800 memset(&cmd->info.sublen, 0, 4);
801 break;
802 case SMU_I2C_TRANSFER_COMBINED:
803 cmd->info.devaddr &= 0xfe;
804 case SMU_I2C_TRANSFER_STDSUB:
805 if (cmd->info.sublen > 3)
806 return -EINVAL;
807 break;
808 default:
809 return -EINVAL;
810 }
811
812 /* Finish setting up command based on transfer direction
813 */
814 if (cmd->read) {
815 if (cmd->info.datalen > SMU_I2C_READ_MAX)
816 return -EINVAL;
817 memset(cmd->info.data, 0xff, cmd->info.datalen);
818 cmd->scmd.data_len = 9;
819 } else {
820 if (cmd->info.datalen > SMU_I2C_WRITE_MAX)
821 return -EINVAL;
822 cmd->scmd.data_len = 9 + cmd->info.datalen;
823 }
824
825 DPRINTK("SMU: i2c enqueuing command\n");
826 DPRINTK("SMU: %s, len=%d bus=%x addr=%x sub0=%x type=%x\n",
827 cmd->read ? "read" : "write", cmd->info.datalen,
828 cmd->info.bus, cmd->info.caddr,
829 cmd->info.subaddr[0], cmd->info.type);
830
831
832 /* Enqueue command in i2c list, and if empty, enqueue also in
833 * main command list
834 */
835 spin_lock_irqsave(&smu->lock, flags);
836 if (smu->cmd_i2c_cur == NULL) {
837 smu->cmd_i2c_cur = cmd;
838 list_add_tail(&cmd->scmd.link, &smu->cmd_list);
839 if (smu->cmd_cur == NULL)
840 smu_start_cmd();
841 } else
842 list_add_tail(&cmd->link, &smu->cmd_i2c_list);
843 spin_unlock_irqrestore(&smu->lock, flags);
844
845 return 0;
846}
847
848
849
850/*
851 * Userland driver interface
852 */
853
854
855static LIST_HEAD(smu_clist);
856static DEFINE_SPINLOCK(smu_clist_lock);
857
858enum smu_file_mode {
859 smu_file_commands,
860 smu_file_events,
861 smu_file_closing
862};
863
864struct smu_private
865{
866 struct list_head list;
867 enum smu_file_mode mode;
868 int busy;
869 struct smu_cmd cmd;
870 spinlock_t lock;
871 wait_queue_head_t wait;
872 u8 buffer[SMU_MAX_DATA];
873};
874
875
876static int smu_open(struct inode *inode, struct file *file)
877{
878 struct smu_private *pp;
879 unsigned long flags;
880
881 pp = kmalloc(sizeof(struct smu_private), GFP_KERNEL);
882 if (pp == 0)
883 return -ENOMEM;
884 memset(pp, 0, sizeof(struct smu_private));
885 spin_lock_init(&pp->lock);
886 pp->mode = smu_file_commands;
887 init_waitqueue_head(&pp->wait);
888
889 spin_lock_irqsave(&smu_clist_lock, flags);
890 list_add(&pp->list, &smu_clist);
891 spin_unlock_irqrestore(&smu_clist_lock, flags);
892 file->private_data = pp;
893
894 return 0;
895}
896
897
898static void smu_user_cmd_done(struct smu_cmd *cmd, void *misc)
899{
900 struct smu_private *pp = misc;
901
902 wake_up_all(&pp->wait);
903}
904
905
906static ssize_t smu_write(struct file *file, const char __user *buf,
907 size_t count, loff_t *ppos)
908{
909 struct smu_private *pp = file->private_data;
910 unsigned long flags;
911 struct smu_user_cmd_hdr hdr;
912 int rc = 0;
913
914 if (pp->busy)
915 return -EBUSY;
916 else if (copy_from_user(&hdr, buf, sizeof(hdr)))
917 return -EFAULT;
918 else if (hdr.cmdtype == SMU_CMDTYPE_WANTS_EVENTS) {
919 pp->mode = smu_file_events;
920 return 0;
921 } else if (hdr.cmdtype != SMU_CMDTYPE_SMU)
922 return -EINVAL;
923 else if (pp->mode != smu_file_commands)
924 return -EBADFD;
925 else if (hdr.data_len > SMU_MAX_DATA)
926 return -EINVAL;
927
928 spin_lock_irqsave(&pp->lock, flags);
929 if (pp->busy) {
930 spin_unlock_irqrestore(&pp->lock, flags);
931 return -EBUSY;
932 }
933 pp->busy = 1;
934 pp->cmd.status = 1;
935 spin_unlock_irqrestore(&pp->lock, flags);
936
937 if (copy_from_user(pp->buffer, buf + sizeof(hdr), hdr.data_len)) {
938 pp->busy = 0;
939 return -EFAULT;
940 }
941
942 pp->cmd.cmd = hdr.cmd;
943 pp->cmd.data_len = hdr.data_len;
944 pp->cmd.reply_len = SMU_MAX_DATA;
945 pp->cmd.data_buf = pp->buffer;
946 pp->cmd.reply_buf = pp->buffer;
947 pp->cmd.done = smu_user_cmd_done;
948 pp->cmd.misc = pp;
949 rc = smu_queue_cmd(&pp->cmd);
950 if (rc < 0)
951 return rc;
952 return count;
953}
954
955
956static ssize_t smu_read_command(struct file *file, struct smu_private *pp,
957 char __user *buf, size_t count)
958{
959 DECLARE_WAITQUEUE(wait, current);
960 struct smu_user_reply_hdr hdr;
961 unsigned long flags;
962 int size, rc = 0;
963
964 if (!pp->busy)
965 return 0;
966 if (count < sizeof(struct smu_user_reply_hdr))
967 return -EOVERFLOW;
968 spin_lock_irqsave(&pp->lock, flags);
969 if (pp->cmd.status == 1) {
970 if (file->f_flags & O_NONBLOCK)
971 return -EAGAIN;
972 add_wait_queue(&pp->wait, &wait);
973 for (;;) {
974 set_current_state(TASK_INTERRUPTIBLE);
975 rc = 0;
976 if (pp->cmd.status != 1)
977 break;
978 rc = -ERESTARTSYS;
979 if (signal_pending(current))
980 break;
981 spin_unlock_irqrestore(&pp->lock, flags);
982 schedule();
983 spin_lock_irqsave(&pp->lock, flags);
984 }
985 set_current_state(TASK_RUNNING);
986 remove_wait_queue(&pp->wait, &wait);
987 }
988 spin_unlock_irqrestore(&pp->lock, flags);
989 if (rc)
990 return rc;
991 if (pp->cmd.status != 0)
992 pp->cmd.reply_len = 0;
993 size = sizeof(hdr) + pp->cmd.reply_len;
994 if (count < size)
995 size = count;
996 rc = size;
997 hdr.status = pp->cmd.status;
998 hdr.reply_len = pp->cmd.reply_len;
999 if (copy_to_user(buf, &hdr, sizeof(hdr)))
1000 return -EFAULT;
1001 size -= sizeof(hdr);
1002 if (size && copy_to_user(buf + sizeof(hdr), pp->buffer, size))
1003 return -EFAULT;
1004 pp->busy = 0;
1005
1006 return rc;
1007}
1008
1009
1010static ssize_t smu_read_events(struct file *file, struct smu_private *pp,
1011 char __user *buf, size_t count)
1012{
1013 /* Not implemented */
1014 msleep_interruptible(1000);
1015 return 0;
1016}
1017
1018
1019static ssize_t smu_read(struct file *file, char __user *buf,
1020 size_t count, loff_t *ppos)
1021{
1022 struct smu_private *pp = file->private_data;
1023
1024 if (pp->mode == smu_file_commands)
1025 return smu_read_command(file, pp, buf, count);
1026 if (pp->mode == smu_file_events)
1027 return smu_read_events(file, pp, buf, count);
1028
1029 return -EBADFD;
1030}
1031
1032static unsigned int smu_fpoll(struct file *file, poll_table *wait)
1033{
1034 struct smu_private *pp = file->private_data;
1035 unsigned int mask = 0;
1036 unsigned long flags;
1037
1038 if (pp == 0)
1039 return 0;
1040
1041 if (pp->mode == smu_file_commands) {
1042 poll_wait(file, &pp->wait, wait);
1043
1044 spin_lock_irqsave(&pp->lock, flags);
1045 if (pp->busy && pp->cmd.status != 1)
1046 mask |= POLLIN;
1047 spin_unlock_irqrestore(&pp->lock, flags);
1048 } if (pp->mode == smu_file_events) {
1049 /* Not yet implemented */
1050 }
1051 return mask;
1052}
1053
1054static int smu_release(struct inode *inode, struct file *file)
1055{
1056 struct smu_private *pp = file->private_data;
1057 unsigned long flags;
1058 unsigned int busy;
1059
1060 if (pp == 0)
1061 return 0;
1062
1063 file->private_data = NULL;
1064
1065 /* Mark file as closing to avoid races with new request */
1066 spin_lock_irqsave(&pp->lock, flags);
1067 pp->mode = smu_file_closing;
1068 busy = pp->busy;
1069
1070 /* Wait for any pending request to complete */
1071 if (busy && pp->cmd.status == 1) {
1072 DECLARE_WAITQUEUE(wait, current);
1073
1074 add_wait_queue(&pp->wait, &wait);
1075 for (;;) {
1076 set_current_state(TASK_UNINTERRUPTIBLE);
1077 if (pp->cmd.status != 1)
1078 break;
1079 spin_lock_irqsave(&pp->lock, flags);
1080 schedule();
1081 spin_unlock_irqrestore(&pp->lock, flags);
1082 }
1083 set_current_state(TASK_RUNNING);
1084 remove_wait_queue(&pp->wait, &wait);
1085 }
1086 spin_unlock_irqrestore(&pp->lock, flags);
1087
1088 spin_lock_irqsave(&smu_clist_lock, flags);
1089 list_del(&pp->list);
1090 spin_unlock_irqrestore(&smu_clist_lock, flags);
1091 kfree(pp);
1092
1093 return 0;
1094}
1095
1096
1097static struct file_operations smu_device_fops __pmacdata = {
1098 .llseek = no_llseek,
1099 .read = smu_read,
1100 .write = smu_write,
1101 .poll = smu_fpoll,
1102 .open = smu_open,
1103 .release = smu_release,
1104};
1105
1106static struct miscdevice pmu_device __pmacdata = {
1107 MISC_DYNAMIC_MINOR, "smu", &smu_device_fops
1108};
1109
1110static int smu_device_init(void)
1111{
1112 if (!smu)
1113 return -ENODEV;
1114 if (misc_register(&pmu_device) < 0)
1115 printk(KERN_ERR "via-pmu: cannot register misc device.\n");
1116 return 0;
1117}
1118device_initcall(smu_device_init);
diff --git a/drivers/macintosh/therm_adt746x.c b/drivers/macintosh/therm_adt746x.c
index c9ca1118e449..f38696622eb4 100644
--- a/drivers/macintosh/therm_adt746x.c
+++ b/drivers/macintosh/therm_adt746x.c
@@ -599,7 +599,7 @@ thermostat_init(void)
599 sensor_location[2] = "?"; 599 sensor_location[2] = "?";
600 } 600 }
601 601
602 of_dev = of_platform_device_create(np, "temperatures"); 602 of_dev = of_platform_device_create(np, "temperatures", NULL);
603 603
604 if (of_dev == NULL) { 604 if (of_dev == NULL) {
605 printk(KERN_ERR "Can't register temperatures device !\n"); 605 printk(KERN_ERR "Can't register temperatures device !\n");
diff --git a/drivers/macintosh/therm_pm72.c b/drivers/macintosh/therm_pm72.c
index 703e31973314..cc507ceef153 100644
--- a/drivers/macintosh/therm_pm72.c
+++ b/drivers/macintosh/therm_pm72.c
@@ -2051,7 +2051,7 @@ static int __init therm_pm72_init(void)
2051 return -ENODEV; 2051 return -ENODEV;
2052 } 2052 }
2053 } 2053 }
2054 of_dev = of_platform_device_create(np, "temperature"); 2054 of_dev = of_platform_device_create(np, "temperature", NULL);
2055 if (of_dev == NULL) { 2055 if (of_dev == NULL) {
2056 printk(KERN_ERR "Can't register FCU platform device !\n"); 2056 printk(KERN_ERR "Can't register FCU platform device !\n");
2057 return -ENODEV; 2057 return -ENODEV;
diff --git a/drivers/macintosh/therm_windtunnel.c b/drivers/macintosh/therm_windtunnel.c
index cbb72eb0426d..6aaa1df1a64e 100644
--- a/drivers/macintosh/therm_windtunnel.c
+++ b/drivers/macintosh/therm_windtunnel.c
@@ -504,7 +504,7 @@ g4fan_init( void )
504 } 504 }
505 if( !(np=of_find_node_by_name(NULL, "fan")) ) 505 if( !(np=of_find_node_by_name(NULL, "fan")) )
506 return -ENODEV; 506 return -ENODEV;
507 x.of_dev = of_platform_device_create( np, "temperature" ); 507 x.of_dev = of_platform_device_create(np, "temperature", NULL);
508 of_node_put( np ); 508 of_node_put( np );
509 509
510 if( !x.of_dev ) { 510 if( !x.of_dev ) {
diff --git a/drivers/md/dm-ioctl.c b/drivers/md/dm-ioctl.c
index 200a0688f717..54ec737195e0 100644
--- a/drivers/md/dm-ioctl.c
+++ b/drivers/md/dm-ioctl.c
@@ -230,11 +230,20 @@ static int dm_hash_insert(const char *name, const char *uuid, struct mapped_devi
230 230
231static void __hash_remove(struct hash_cell *hc) 231static void __hash_remove(struct hash_cell *hc)
232{ 232{
233 struct dm_table *table;
234
233 /* remove from the dev hash */ 235 /* remove from the dev hash */
234 list_del(&hc->uuid_list); 236 list_del(&hc->uuid_list);
235 list_del(&hc->name_list); 237 list_del(&hc->name_list);
236 unregister_with_devfs(hc); 238 unregister_with_devfs(hc);
237 dm_set_mdptr(hc->md, NULL); 239 dm_set_mdptr(hc->md, NULL);
240
241 table = dm_get_table(hc->md);
242 if (table) {
243 dm_table_event(table);
244 dm_table_put(table);
245 }
246
238 dm_put(hc->md); 247 dm_put(hc->md);
239 if (hc->new_map) 248 if (hc->new_map)
240 dm_table_put(hc->new_map); 249 dm_table_put(hc->new_map);
diff --git a/drivers/md/dm-mpath.c b/drivers/md/dm-mpath.c
index 785806bdb248..f9b7b32d5d5c 100644
--- a/drivers/md/dm-mpath.c
+++ b/drivers/md/dm-mpath.c
@@ -329,13 +329,17 @@ static int map_io(struct multipath *m, struct bio *bio, struct mpath_io *mpio,
329/* 329/*
330 * If we run out of usable paths, should we queue I/O or error it? 330 * If we run out of usable paths, should we queue I/O or error it?
331 */ 331 */
332static int queue_if_no_path(struct multipath *m, unsigned queue_if_no_path) 332static int queue_if_no_path(struct multipath *m, unsigned queue_if_no_path,
333 unsigned save_old_value)
333{ 334{
334 unsigned long flags; 335 unsigned long flags;
335 336
336 spin_lock_irqsave(&m->lock, flags); 337 spin_lock_irqsave(&m->lock, flags);
337 338
338 m->saved_queue_if_no_path = m->queue_if_no_path; 339 if (save_old_value)
340 m->saved_queue_if_no_path = m->queue_if_no_path;
341 else
342 m->saved_queue_if_no_path = queue_if_no_path;
339 m->queue_if_no_path = queue_if_no_path; 343 m->queue_if_no_path = queue_if_no_path;
340 if (!m->queue_if_no_path && m->queue_size) 344 if (!m->queue_if_no_path && m->queue_size)
341 queue_work(kmultipathd, &m->process_queued_ios); 345 queue_work(kmultipathd, &m->process_queued_ios);
@@ -677,7 +681,7 @@ static int parse_features(struct arg_set *as, struct multipath *m,
677 return 0; 681 return 0;
678 682
679 if (!strnicmp(shift(as), MESG_STR("queue_if_no_path"))) 683 if (!strnicmp(shift(as), MESG_STR("queue_if_no_path")))
680 return queue_if_no_path(m, 1); 684 return queue_if_no_path(m, 1, 0);
681 else { 685 else {
682 ti->error = "Unrecognised multipath feature request"; 686 ti->error = "Unrecognised multipath feature request";
683 return -EINVAL; 687 return -EINVAL;
@@ -1077,7 +1081,7 @@ static void multipath_presuspend(struct dm_target *ti)
1077{ 1081{
1078 struct multipath *m = (struct multipath *) ti->private; 1082 struct multipath *m = (struct multipath *) ti->private;
1079 1083
1080 queue_if_no_path(m, 0); 1084 queue_if_no_path(m, 0, 1);
1081} 1085}
1082 1086
1083/* 1087/*
@@ -1222,9 +1226,9 @@ static int multipath_message(struct dm_target *ti, unsigned argc, char **argv)
1222 1226
1223 if (argc == 1) { 1227 if (argc == 1) {
1224 if (!strnicmp(argv[0], MESG_STR("queue_if_no_path"))) 1228 if (!strnicmp(argv[0], MESG_STR("queue_if_no_path")))
1225 return queue_if_no_path(m, 1); 1229 return queue_if_no_path(m, 1, 0);
1226 else if (!strnicmp(argv[0], MESG_STR("fail_if_no_path"))) 1230 else if (!strnicmp(argv[0], MESG_STR("fail_if_no_path")))
1227 return queue_if_no_path(m, 0); 1231 return queue_if_no_path(m, 0, 0);
1228 } 1232 }
1229 1233
1230 if (argc != 2) 1234 if (argc != 2)
diff --git a/drivers/media/dvb/frontends/tda10021.c b/drivers/media/dvb/frontends/tda10021.c
index 87d5f4d8790f..eaf130e666d8 100644
--- a/drivers/media/dvb/frontends/tda10021.c
+++ b/drivers/media/dvb/frontends/tda10021.c
@@ -100,8 +100,8 @@ static u8 tda10021_readreg (struct tda10021_state* state, u8 reg)
100 100
101 ret = i2c_transfer (state->i2c, msg, 2); 101 ret = i2c_transfer (state->i2c, msg, 2);
102 if (ret != 2) 102 if (ret != 2)
103 printk("DVB: TDA10021(%d): %s: readreg error (ret == %i)\n", 103 printk("DVB: TDA10021: %s: readreg error (ret == %i)\n",
104 state->frontend.dvb->num, __FUNCTION__, ret); 104 __FUNCTION__, ret);
105 return b1[0]; 105 return b1[0];
106} 106}
107 107
diff --git a/drivers/media/video/bttv-cards.c b/drivers/media/video/bttv-cards.c
index 190977a1e549..6c332800d6ab 100644
--- a/drivers/media/video/bttv-cards.c
+++ b/drivers/media/video/bttv-cards.c
@@ -2398,7 +2398,7 @@ struct tvcard bttv_tvcards[] = {
2398 .svhs = 2, 2398 .svhs = 2,
2399 .muxsel = { 2, 3 }, 2399 .muxsel = { 2, 3 },
2400 .gpiomask = 0x00e00007, 2400 .gpiomask = 0x00e00007,
2401 .audiomux = { 0x00400005, 0, 0, 0, 0, 0 }, 2401 .audiomux = { 0x00400005, 0, 0x00000001, 0, 0x00c00007, 0 },
2402 .no_msp34xx = 1, 2402 .no_msp34xx = 1,
2403 .no_tda9875 = 1, 2403 .no_tda9875 = 1,
2404 .no_tda7432 = 1, 2404 .no_tda7432 = 1,
diff --git a/drivers/media/video/bttv-driver.c b/drivers/media/video/bttv-driver.c
index a564321db2f0..c062a017491e 100644
--- a/drivers/media/video/bttv-driver.c
+++ b/drivers/media/video/bttv-driver.c
@@ -763,21 +763,21 @@ static void set_pll(struct bttv *btv)
763 /* no PLL needed */ 763 /* no PLL needed */
764 if (btv->pll.pll_current == 0) 764 if (btv->pll.pll_current == 0)
765 return; 765 return;
766 vprintk(KERN_INFO "bttv%d: PLL can sleep, using XTAL (%d).\n", 766 bttv_printk(KERN_INFO "bttv%d: PLL can sleep, using XTAL (%d).\n",
767 btv->c.nr,btv->pll.pll_ifreq); 767 btv->c.nr,btv->pll.pll_ifreq);
768 btwrite(0x00,BT848_TGCTRL); 768 btwrite(0x00,BT848_TGCTRL);
769 btwrite(0x00,BT848_PLL_XCI); 769 btwrite(0x00,BT848_PLL_XCI);
770 btv->pll.pll_current = 0; 770 btv->pll.pll_current = 0;
771 return; 771 return;
772 } 772 }
773 773
774 vprintk(KERN_INFO "bttv%d: PLL: %d => %d ",btv->c.nr, 774 bttv_printk(KERN_INFO "bttv%d: PLL: %d => %d ",btv->c.nr,
775 btv->pll.pll_ifreq, btv->pll.pll_ofreq); 775 btv->pll.pll_ifreq, btv->pll.pll_ofreq);
776 set_pll_freq(btv, btv->pll.pll_ifreq, btv->pll.pll_ofreq); 776 set_pll_freq(btv, btv->pll.pll_ifreq, btv->pll.pll_ofreq);
777 777
778 for (i=0; i<10; i++) { 778 for (i=0; i<10; i++) {
779 /* Let other people run while the PLL stabilizes */ 779 /* Let other people run while the PLL stabilizes */
780 vprintk("."); 780 bttv_printk(".");
781 msleep(10); 781 msleep(10);
782 782
783 if (btread(BT848_DSTATUS) & BT848_DSTATUS_PLOCK) { 783 if (btread(BT848_DSTATUS) & BT848_DSTATUS_PLOCK) {
@@ -785,12 +785,12 @@ static void set_pll(struct bttv *btv)
785 } else { 785 } else {
786 btwrite(0x08,BT848_TGCTRL); 786 btwrite(0x08,BT848_TGCTRL);
787 btv->pll.pll_current = btv->pll.pll_ofreq; 787 btv->pll.pll_current = btv->pll.pll_ofreq;
788 vprintk(" ok\n"); 788 bttv_printk(" ok\n");
789 return; 789 return;
790 } 790 }
791 } 791 }
792 btv->pll.pll_current = -1; 792 btv->pll.pll_current = -1;
793 vprintk("failed\n"); 793 bttv_printk("failed\n");
794 return; 794 return;
795} 795}
796 796
diff --git a/drivers/media/video/bttvp.h b/drivers/media/video/bttvp.h
index 9b0b7ca035f8..7a312f79340a 100644
--- a/drivers/media/video/bttvp.h
+++ b/drivers/media/video/bttvp.h
@@ -221,7 +221,7 @@ extern void bttv_gpio_tracking(struct bttv *btv, char *comment);
221extern int init_bttv_i2c(struct bttv *btv); 221extern int init_bttv_i2c(struct bttv *btv);
222extern int fini_bttv_i2c(struct bttv *btv); 222extern int fini_bttv_i2c(struct bttv *btv);
223 223
224#define vprintk if (bttv_verbose) printk 224#define bttv_printk if (bttv_verbose) printk
225#define dprintk if (bttv_debug >= 1) printk 225#define dprintk if (bttv_debug >= 1) printk
226#define d2printk if (bttv_debug >= 2) printk 226#define d2printk if (bttv_debug >= 2) printk
227 227
diff --git a/drivers/media/video/cpia.c b/drivers/media/video/cpia.c
index 8c08b7f1ad23..b7ec9bf45085 100644
--- a/drivers/media/video/cpia.c
+++ b/drivers/media/video/cpia.c
@@ -1397,7 +1397,7 @@ static void destroy_proc_cpia_cam(struct cam_data *cam)
1397 1397
1398static void proc_cpia_create(void) 1398static void proc_cpia_create(void)
1399{ 1399{
1400 cpia_proc_root = create_proc_entry("cpia", S_IFDIR, NULL); 1400 cpia_proc_root = proc_mkdir("cpia", NULL);
1401 1401
1402 if (cpia_proc_root) 1402 if (cpia_proc_root)
1403 cpia_proc_root->owner = THIS_MODULE; 1403 cpia_proc_root->owner = THIS_MODULE;
diff --git a/drivers/media/video/rds.h b/drivers/media/video/rds.h
index 30337d0f1a87..0d30eb744e61 100644
--- a/drivers/media/video/rds.h
+++ b/drivers/media/video/rds.h
@@ -31,7 +31,7 @@
31struct rds_command { 31struct rds_command {
32 unsigned int block_count; 32 unsigned int block_count;
33 int result; 33 int result;
34 unsigned char *buffer; 34 unsigned char __user *buffer;
35 struct file *instance; 35 struct file *instance;
36 poll_table *event_list; 36 poll_table *event_list;
37}; 37};
diff --git a/drivers/media/video/saa6588.c b/drivers/media/video/saa6588.c
index 1a657a70ff43..72b70eb5da1d 100644
--- a/drivers/media/video/saa6588.c
+++ b/drivers/media/video/saa6588.c
@@ -157,7 +157,7 @@ static struct i2c_client client_template;
157 157
158/* ---------------------------------------------------------------------- */ 158/* ---------------------------------------------------------------------- */
159 159
160static int block_to_user_buf(struct saa6588 *s, unsigned char *user_buf) 160static int block_to_user_buf(struct saa6588 *s, unsigned char __user *user_buf)
161{ 161{
162 int i; 162 int i;
163 163
@@ -191,7 +191,7 @@ static void read_from_buf(struct saa6588 *s, struct rds_command *a)
191{ 191{
192 unsigned long flags; 192 unsigned long flags;
193 193
194 unsigned char *buf_ptr = a->buffer; /* This is a user space buffer! */ 194 unsigned char __user *buf_ptr = a->buffer;
195 unsigned int i; 195 unsigned int i;
196 unsigned int rd_blocks; 196 unsigned int rd_blocks;
197 197
diff --git a/drivers/mfd/ucb1x00-ts.c b/drivers/mfd/ucb1x00-ts.c
index a851d65c7cfe..a260f83bcb02 100644
--- a/drivers/mfd/ucb1x00-ts.c
+++ b/drivers/mfd/ucb1x00-ts.c
@@ -48,8 +48,8 @@ struct ucb1x00_ts {
48 u16 x_res; 48 u16 x_res;
49 u16 y_res; 49 u16 y_res;
50 50
51 int restart:1; 51 unsigned int restart:1;
52 int adcsync:1; 52 unsigned int adcsync:1;
53}; 53};
54 54
55static int adcsync; 55static int adcsync;
diff --git a/drivers/mtd/devices/docecc.c b/drivers/mtd/devices/docecc.c
index 9a087c1fb0b7..24f670b5a4f3 100644
--- a/drivers/mtd/devices/docecc.c
+++ b/drivers/mtd/devices/docecc.c
@@ -40,7 +40,7 @@
40#include <linux/mtd/mtd.h> 40#include <linux/mtd/mtd.h>
41#include <linux/mtd/doc2000.h> 41#include <linux/mtd/doc2000.h>
42 42
43#define DEBUG 0 43#define DEBUG_ECC 0
44/* need to undef it (from asm/termbits.h) */ 44/* need to undef it (from asm/termbits.h) */
45#undef B0 45#undef B0
46 46
@@ -249,7 +249,7 @@ eras_dec_rs(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1],
249 lambda[j] ^= Alpha_to[modnn(u + tmp)]; 249 lambda[j] ^= Alpha_to[modnn(u + tmp)];
250 } 250 }
251 } 251 }
252#if DEBUG >= 1 252#if DEBUG_ECC >= 1
253 /* Test code that verifies the erasure locator polynomial just constructed 253 /* Test code that verifies the erasure locator polynomial just constructed
254 Needed only for decoder debugging. */ 254 Needed only for decoder debugging. */
255 255
@@ -276,7 +276,7 @@ eras_dec_rs(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1],
276 count = -1; 276 count = -1;
277 goto finish; 277 goto finish;
278 } 278 }
279#if DEBUG >= 2 279#if DEBUG_ECC >= 2
280 printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n"); 280 printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
281 for (i = 0; i < count; i++) 281 for (i = 0; i < count; i++)
282 printf("%d ", loc[i]); 282 printf("%d ", loc[i]);
@@ -409,7 +409,7 @@ eras_dec_rs(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1],
409 den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])]; 409 den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])];
410 } 410 }
411 if (den == 0) { 411 if (den == 0) {
412#if DEBUG >= 1 412#if DEBUG_ECC >= 1
413 printf("\n ERROR: denominator = 0\n"); 413 printf("\n ERROR: denominator = 0\n");
414#endif 414#endif
415 /* Convert to dual- basis */ 415 /* Convert to dual- basis */
diff --git a/drivers/mtd/maps/bast-flash.c b/drivers/mtd/maps/bast-flash.c
index 0c45464e3f7b..0ba0ff7d43b9 100644
--- a/drivers/mtd/maps/bast-flash.c
+++ b/drivers/mtd/maps/bast-flash.c
@@ -39,7 +39,6 @@
39#include <linux/mtd/partitions.h> 39#include <linux/mtd/partitions.h>
40 40
41#include <asm/io.h> 41#include <asm/io.h>
42#include <asm/mach-types.h>
43#include <asm/mach/flash.h> 42#include <asm/mach/flash.h>
44 43
45#include <asm/arch/map.h> 44#include <asm/arch/map.h>
diff --git a/drivers/mtd/maps/ixp2000.c b/drivers/mtd/maps/ixp2000.c
index 3e94b616743d..a9f86c7fbd52 100644
--- a/drivers/mtd/maps/ixp2000.c
+++ b/drivers/mtd/maps/ixp2000.c
@@ -30,7 +30,6 @@
30 30
31#include <asm/io.h> 31#include <asm/io.h>
32#include <asm/hardware.h> 32#include <asm/hardware.h>
33#include <asm/mach-types.h>
34#include <asm/mach/flash.h> 33#include <asm/mach/flash.h>
35 34
36#include <linux/reboot.h> 35#include <linux/reboot.h>
diff --git a/drivers/mtd/maps/ixp4xx.c b/drivers/mtd/maps/ixp4xx.c
index 5afe660aa2c4..3fcc32884074 100644
--- a/drivers/mtd/maps/ixp4xx.c
+++ b/drivers/mtd/maps/ixp4xx.c
@@ -26,7 +26,6 @@
26#include <linux/ioport.h> 26#include <linux/ioport.h>
27#include <linux/device.h> 27#include <linux/device.h>
28#include <asm/io.h> 28#include <asm/io.h>
29#include <asm/mach-types.h>
30#include <asm/mach/flash.h> 29#include <asm/mach/flash.h>
31 30
32#include <linux/reboot.h> 31#include <linux/reboot.h>
@@ -254,6 +253,6 @@ module_init(ixp4xx_flash_init);
254module_exit(ixp4xx_flash_exit); 253module_exit(ixp4xx_flash_exit);
255 254
256MODULE_LICENSE("GPL"); 255MODULE_LICENSE("GPL");
257MODULE_DESCRIPTION("MTD map driver for Intel IXP4xx systems") 256MODULE_DESCRIPTION("MTD map driver for Intel IXP4xx systems");
258MODULE_AUTHOR("Deepak Saxena"); 257MODULE_AUTHOR("Deepak Saxena");
259 258
diff --git a/drivers/mtd/maps/omap_nor.c b/drivers/mtd/maps/omap_nor.c
index 8cc71409a328..b17bca657daf 100644
--- a/drivers/mtd/maps/omap_nor.c
+++ b/drivers/mtd/maps/omap_nor.c
@@ -42,7 +42,6 @@
42 42
43#include <asm/io.h> 43#include <asm/io.h>
44#include <asm/hardware.h> 44#include <asm/hardware.h>
45#include <asm/mach-types.h>
46#include <asm/mach/flash.h> 45#include <asm/mach/flash.h>
47#include <asm/arch/tc.h> 46#include <asm/arch/tc.h>
48 47
diff --git a/drivers/mtd/maps/sa1100-flash.c b/drivers/mtd/maps/sa1100-flash.c
index 52385705da09..8dcaa357b4bb 100644
--- a/drivers/mtd/maps/sa1100-flash.c
+++ b/drivers/mtd/maps/sa1100-flash.c
@@ -21,7 +21,6 @@
21#include <linux/mtd/partitions.h> 21#include <linux/mtd/partitions.h>
22#include <linux/mtd/concat.h> 22#include <linux/mtd/concat.h>
23 23
24#include <asm/mach-types.h>
25#include <asm/io.h> 24#include <asm/io.h>
26#include <asm/sizes.h> 25#include <asm/sizes.h>
27#include <asm/mach/flash.h> 26#include <asm/mach/flash.h>
diff --git a/drivers/mtd/nand/s3c2410.c b/drivers/mtd/nand/s3c2410.c
index 891e3a1b9110..b47ebcb31e0f 100644
--- a/drivers/mtd/nand/s3c2410.c
+++ b/drivers/mtd/nand/s3c2410.c
@@ -58,7 +58,6 @@
58#include <linux/mtd/partitions.h> 58#include <linux/mtd/partitions.h>
59 59
60#include <asm/io.h> 60#include <asm/io.h>
61#include <asm/mach-types.h>
62#include <asm/hardware/clock.h> 61#include <asm/hardware/clock.h>
63 62
64#include <asm/arch/regs-nand.h> 63#include <asm/arch/regs-nand.h>
diff --git a/drivers/net/8390.c b/drivers/net/8390.c
index 6d76f3a99b17..f87027420081 100644
--- a/drivers/net/8390.c
+++ b/drivers/net/8390.c
@@ -1094,7 +1094,7 @@ static void NS8390_trigger_send(struct net_device *dev, unsigned int length,
1094 1094
1095 outb_p(E8390_NODMA+E8390_PAGE0, e8390_base+E8390_CMD); 1095 outb_p(E8390_NODMA+E8390_PAGE0, e8390_base+E8390_CMD);
1096 1096
1097 if (inb_p(e8390_base) & E8390_TRANS) 1097 if (inb_p(e8390_base + E8390_CMD) & E8390_TRANS)
1098 { 1098 {
1099 printk(KERN_WARNING "%s: trigger_send() called with the transmitter busy.\n", 1099 printk(KERN_WARNING "%s: trigger_send() called with the transmitter busy.\n",
1100 dev->name); 1100 dev->name);
diff --git a/drivers/net/Kconfig b/drivers/net/Kconfig
index db8898100325..018b11a7a4ce 100644
--- a/drivers/net/Kconfig
+++ b/drivers/net/Kconfig
@@ -548,6 +548,14 @@ config SUNGEM
548 Support for the Sun GEM chip, aka Sun GigabitEthernet/P 2.0. See also 548 Support for the Sun GEM chip, aka Sun GigabitEthernet/P 2.0. See also
549 <http://www.sun.com/products-n-solutions/hardware/docs/pdf/806-3985-10.pdf>. 549 <http://www.sun.com/products-n-solutions/hardware/docs/pdf/806-3985-10.pdf>.
550 550
551config CASSINI
552 tristate "Sun Cassini support"
553 depends on NET_ETHERNET && PCI
554 select CRC32
555 help
556 Support for the Sun Cassini chip, aka Sun GigaSwift Ethernet. See also
557 <http://www.sun.com/products-n-solutions/hardware/docs/pdf/817-4341-10.pdf>
558
551config NET_VENDOR_3COM 559config NET_VENDOR_3COM
552 bool "3COM cards" 560 bool "3COM cards"
553 depends on NET_ETHERNET && (ISA || EISA || MCA || PCI) 561 depends on NET_ETHERNET && (ISA || EISA || MCA || PCI)
diff --git a/drivers/net/Makefile b/drivers/net/Makefile
index 39b17cb4f86e..4c9477cb2127 100644
--- a/drivers/net/Makefile
+++ b/drivers/net/Makefile
@@ -28,6 +28,7 @@ obj-$(CONFIG_SUNQE) += sunqe.o
28obj-$(CONFIG_SUNBMAC) += sunbmac.o 28obj-$(CONFIG_SUNBMAC) += sunbmac.o
29obj-$(CONFIG_MYRI_SBUS) += myri_sbus.o 29obj-$(CONFIG_MYRI_SBUS) += myri_sbus.o
30obj-$(CONFIG_SUNGEM) += sungem.o sungem_phy.o 30obj-$(CONFIG_SUNGEM) += sungem.o sungem_phy.o
31obj-$(CONFIG_CASSINI) += cassini.o
31 32
32obj-$(CONFIG_MACE) += mace.o 33obj-$(CONFIG_MACE) += mace.o
33obj-$(CONFIG_BMAC) += bmac.o 34obj-$(CONFIG_BMAC) += bmac.o
diff --git a/drivers/net/arm/am79c961a.c b/drivers/net/arm/am79c961a.c
index 9b659e3c8d67..c56d86d371a9 100644
--- a/drivers/net/arm/am79c961a.c
+++ b/drivers/net/arm/am79c961a.c
@@ -15,16 +15,13 @@
15 */ 15 */
16#include <linux/kernel.h> 16#include <linux/kernel.h>
17#include <linux/types.h> 17#include <linux/types.h>
18#include <linux/fcntl.h>
19#include <linux/interrupt.h> 18#include <linux/interrupt.h>
20#include <linux/ioport.h> 19#include <linux/ioport.h>
21#include <linux/in.h>
22#include <linux/slab.h> 20#include <linux/slab.h>
23#include <linux/string.h> 21#include <linux/string.h>
24#include <linux/errno.h> 22#include <linux/errno.h>
25#include <linux/netdevice.h> 23#include <linux/netdevice.h>
26#include <linux/etherdevice.h> 24#include <linux/etherdevice.h>
27#include <linux/skbuff.h>
28#include <linux/delay.h> 25#include <linux/delay.h>
29#include <linux/init.h> 26#include <linux/init.h>
30#include <linux/crc32.h> 27#include <linux/crc32.h>
@@ -33,7 +30,6 @@
33#include <asm/system.h> 30#include <asm/system.h>
34#include <asm/irq.h> 31#include <asm/irq.h>
35#include <asm/io.h> 32#include <asm/io.h>
36#include <asm/dma.h>
37 33
38#define TX_BUFFERS 15 34#define TX_BUFFERS 15
39#define RX_BUFFERS 25 35#define RX_BUFFERS 25
@@ -85,7 +81,7 @@ static inline unsigned short read_ireg(u_long base_addr, u_int reg)
85 u_short v; 81 u_short v;
86 __asm__( 82 __asm__(
87 "str%?h %1, [%2] @ NAT_RAP\n\t" 83 "str%?h %1, [%2] @ NAT_RAP\n\t"
88 "str%?h %0, [%2, #8] @ NET_IDP\n\t" 84 "ldr%?h %0, [%2, #8] @ NET_IDP\n\t"
89 : "=r" (v) 85 : "=r" (v)
90 : "r" (reg), "r" (ISAIO_BASE + 0x0464)); 86 : "r" (reg), "r" (ISAIO_BASE + 0x0464));
91 return v; 87 return v;
@@ -288,7 +284,7 @@ static void am79c961_timer(unsigned long data)
288 else if (!lnkstat && carrier) 284 else if (!lnkstat && carrier)
289 netif_carrier_off(dev); 285 netif_carrier_off(dev);
290 286
291 mod_timer(&priv->timer, jiffies + 5*HZ); 287 mod_timer(&priv->timer, jiffies + msecs_to_jiffies(500));
292} 288}
293 289
294/* 290/*
@@ -709,13 +705,9 @@ static int __init am79c961_init(void)
709 goto release; 705 goto release;
710 706
711 am79c961_banner(); 707 am79c961_banner();
712 printk(KERN_INFO "%s: ether address ", dev->name);
713 708
714 /* Retrive and print the ethernet address. */ 709 for (i = 0; i < 6; i++)
715 for (i = 0; i < 6; i++) {
716 dev->dev_addr[i] = inb(dev->base_addr + i * 2) & 0xff; 710 dev->dev_addr[i] = inb(dev->base_addr + i * 2) & 0xff;
717 printk (i == 5 ? "%02x\n" : "%02x:", dev->dev_addr[i]);
718 }
719 711
720 spin_lock_init(&priv->chip_lock); 712 spin_lock_init(&priv->chip_lock);
721 init_timer(&priv->timer); 713 init_timer(&priv->timer);
@@ -736,8 +728,14 @@ static int __init am79c961_init(void)
736#endif 728#endif
737 729
738 ret = register_netdev(dev); 730 ret = register_netdev(dev);
739 if (ret == 0) 731 if (ret == 0) {
732 printk(KERN_INFO "%s: ether address ", dev->name);
733
734 for (i = 0; i < 6; i++)
735 printk (i == 5 ? "%02x\n" : "%02x:", dev->dev_addr[i]);
736
740 return 0; 737 return 0;
738 }
741 739
742release: 740release:
743 release_region(dev->base_addr, 0x18); 741 release_region(dev->base_addr, 0x18);
diff --git a/drivers/net/bmac.c b/drivers/net/bmac.c
index 8dc657fc8afb..60dba4a1ca5c 100644
--- a/drivers/net/bmac.c
+++ b/drivers/net/bmac.c
@@ -218,7 +218,7 @@ void bmwrite(struct net_device *dev, unsigned long reg_offset, unsigned data )
218 218
219 219
220static inline 220static inline
221volatile unsigned short bmread(struct net_device *dev, unsigned long reg_offset ) 221unsigned short bmread(struct net_device *dev, unsigned long reg_offset )
222{ 222{
223 return in_le16((void __iomem *)dev->base_addr + reg_offset); 223 return in_le16((void __iomem *)dev->base_addr + reg_offset);
224} 224}
diff --git a/drivers/net/bonding/bond_main.c b/drivers/net/bonding/bond_main.c
index 6d00c3de1a83..bf81cd45e4d4 100644
--- a/drivers/net/bonding/bond_main.c
+++ b/drivers/net/bonding/bond_main.c
@@ -2776,7 +2776,7 @@ static u32 bond_glean_dev_ip(struct net_device *dev)
2776 return 0; 2776 return 0;
2777 2777
2778 rcu_read_lock(); 2778 rcu_read_lock();
2779 idev = __in_dev_get(dev); 2779 idev = __in_dev_get_rcu(dev);
2780 if (!idev) 2780 if (!idev)
2781 goto out; 2781 goto out;
2782 2782
diff --git a/drivers/net/cassini.c b/drivers/net/cassini.c
new file mode 100644
index 000000000000..2e617424d3fb
--- /dev/null
+++ b/drivers/net/cassini.c
@@ -0,0 +1,5237 @@
1/* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
2 *
3 * Copyright (C) 2004 Sun Microsystems Inc.
4 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
19 * 02111-1307, USA.
20 *
21 * This driver uses the sungem driver (c) David Miller
22 * (davem@redhat.com) as its basis.
23 *
24 * The cassini chip has a number of features that distinguish it from
25 * the gem chip:
26 * 4 transmit descriptor rings that are used for either QoS (VLAN) or
27 * load balancing (non-VLAN mode)
28 * batching of multiple packets
29 * multiple CPU dispatching
30 * page-based RX descriptor engine with separate completion rings
31 * Gigabit support (GMII and PCS interface)
32 * MIF link up/down detection works
33 *
34 * RX is handled by page sized buffers that are attached as fragments to
35 * the skb. here's what's done:
36 * -- driver allocates pages at a time and keeps reference counts
37 * on them.
38 * -- the upper protocol layers assume that the header is in the skb
39 * itself. as a result, cassini will copy a small amount (64 bytes)
40 * to make them happy.
41 * -- driver appends the rest of the data pages as frags to skbuffs
42 * and increments the reference count
43 * -- on page reclamation, the driver swaps the page with a spare page.
44 * if that page is still in use, it frees its reference to that page,
45 * and allocates a new page for use. otherwise, it just recycles the
46 * the page.
47 *
48 * NOTE: cassini can parse the header. however, it's not worth it
49 * as long as the network stack requires a header copy.
50 *
51 * TX has 4 queues. currently these queues are used in a round-robin
52 * fashion for load balancing. They can also be used for QoS. for that
53 * to work, however, QoS information needs to be exposed down to the driver
54 * level so that subqueues get targetted to particular transmit rings.
55 * alternatively, the queues can be configured via use of the all-purpose
56 * ioctl.
57 *
58 * RX DATA: the rx completion ring has all the info, but the rx desc
59 * ring has all of the data. RX can conceivably come in under multiple
60 * interrupts, but the INT# assignment needs to be set up properly by
61 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62 * that. also, the two descriptor rings are designed to distinguish between
63 * encrypted and non-encrypted packets, but we use them for buffering
64 * instead.
65 *
66 * by default, the selective clear mask is set up to process rx packets.
67 */
68
69#include <linux/config.h>
70#include <linux/version.h>
71
72#include <linux/module.h>
73#include <linux/kernel.h>
74#include <linux/types.h>
75#include <linux/compiler.h>
76#include <linux/slab.h>
77#include <linux/delay.h>
78#include <linux/init.h>
79#include <linux/ioport.h>
80#include <linux/pci.h>
81#include <linux/mm.h>
82#include <linux/highmem.h>
83#include <linux/list.h>
84#include <linux/dma-mapping.h>
85
86#include <linux/netdevice.h>
87#include <linux/etherdevice.h>
88#include <linux/skbuff.h>
89#include <linux/ethtool.h>
90#include <linux/crc32.h>
91#include <linux/random.h>
92#include <linux/mii.h>
93#include <linux/ip.h>
94#include <linux/tcp.h>
95
96#include <net/checksum.h>
97
98#include <asm/atomic.h>
99#include <asm/system.h>
100#include <asm/io.h>
101#include <asm/byteorder.h>
102#include <asm/uaccess.h>
103
104#define cas_page_map(x) kmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
105#define cas_page_unmap(x) kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
106#define CAS_NCPUS num_online_cpus()
107
108#if defined(CONFIG_CASSINI_NAPI) && defined(HAVE_NETDEV_POLL)
109#define USE_NAPI
110#define cas_skb_release(x) netif_receive_skb(x)
111#else
112#define cas_skb_release(x) netif_rx(x)
113#endif
114
115/* select which firmware to use */
116#define USE_HP_WORKAROUND
117#define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
118#define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
119
120#include "cassini.h"
121
122#define USE_TX_COMPWB /* use completion writeback registers */
123#define USE_CSMA_CD_PROTO /* standard CSMA/CD */
124#define USE_RX_BLANK /* hw interrupt mitigation */
125#undef USE_ENTROPY_DEV /* don't test for entropy device */
126
127/* NOTE: these aren't useable unless PCI interrupts can be assigned.
128 * also, we need to make cp->lock finer-grained.
129 */
130#undef USE_PCI_INTB
131#undef USE_PCI_INTC
132#undef USE_PCI_INTD
133#undef USE_QOS
134
135#undef USE_VPD_DEBUG /* debug vpd information if defined */
136
137/* rx processing options */
138#define USE_PAGE_ORDER /* specify to allocate large rx pages */
139#define RX_DONT_BATCH 0 /* if 1, don't batch flows */
140#define RX_COPY_ALWAYS 0 /* if 0, use frags */
141#define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
142#undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
143
144#define DRV_MODULE_NAME "cassini"
145#define PFX DRV_MODULE_NAME ": "
146#define DRV_MODULE_VERSION "1.4"
147#define DRV_MODULE_RELDATE "1 July 2004"
148
149#define CAS_DEF_MSG_ENABLE \
150 (NETIF_MSG_DRV | \
151 NETIF_MSG_PROBE | \
152 NETIF_MSG_LINK | \
153 NETIF_MSG_TIMER | \
154 NETIF_MSG_IFDOWN | \
155 NETIF_MSG_IFUP | \
156 NETIF_MSG_RX_ERR | \
157 NETIF_MSG_TX_ERR)
158
159/* length of time before we decide the hardware is borked,
160 * and dev->tx_timeout() should be called to fix the problem
161 */
162#define CAS_TX_TIMEOUT (HZ)
163#define CAS_LINK_TIMEOUT (22*HZ/10)
164#define CAS_LINK_FAST_TIMEOUT (1)
165
166/* timeout values for state changing. these specify the number
167 * of 10us delays to be used before giving up.
168 */
169#define STOP_TRIES_PHY 1000
170#define STOP_TRIES 5000
171
172/* specify a minimum frame size to deal with some fifo issues
173 * max mtu == 2 * page size - ethernet header - 64 - swivel =
174 * 2 * page_size - 0x50
175 */
176#define CAS_MIN_FRAME 97
177#define CAS_1000MB_MIN_FRAME 255
178#define CAS_MIN_MTU 60
179#define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
180
181#if 1
182/*
183 * Eliminate these and use separate atomic counters for each, to
184 * avoid a race condition.
185 */
186#else
187#define CAS_RESET_MTU 1
188#define CAS_RESET_ALL 2
189#define CAS_RESET_SPARE 3
190#endif
191
192static char version[] __devinitdata =
193 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
194
195MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
196MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
197MODULE_LICENSE("GPL");
198MODULE_PARM(cassini_debug, "i");
199MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
200MODULE_PARM(link_mode, "i");
201MODULE_PARM_DESC(link_mode, "default link mode");
202
203/*
204 * Work around for a PCS bug in which the link goes down due to the chip
205 * being confused and never showing a link status of "up."
206 */
207#define DEFAULT_LINKDOWN_TIMEOUT 5
208/*
209 * Value in seconds, for user input.
210 */
211static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
212MODULE_PARM(linkdown_timeout, "i");
213MODULE_PARM_DESC(linkdown_timeout,
214"min reset interval in sec. for PCS linkdown issue; disabled if not positive");
215
216/*
217 * value in 'ticks' (units used by jiffies). Set when we init the
218 * module because 'HZ' in actually a function call on some flavors of
219 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
220 */
221static int link_transition_timeout;
222
223
224static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
225static int link_mode;
226
227static u16 link_modes[] __devinitdata = {
228 BMCR_ANENABLE, /* 0 : autoneg */
229 0, /* 1 : 10bt half duplex */
230 BMCR_SPEED100, /* 2 : 100bt half duplex */
231 BMCR_FULLDPLX, /* 3 : 10bt full duplex */
232 BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */
233 CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
234};
235
236static struct pci_device_id cas_pci_tbl[] __devinitdata = {
237 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
238 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
239 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
240 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
241 { 0, }
242};
243
244MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
245
246static void cas_set_link_modes(struct cas *cp);
247
248static inline void cas_lock_tx(struct cas *cp)
249{
250 int i;
251
252 for (i = 0; i < N_TX_RINGS; i++)
253 spin_lock(&cp->tx_lock[i]);
254}
255
256static inline void cas_lock_all(struct cas *cp)
257{
258 spin_lock_irq(&cp->lock);
259 cas_lock_tx(cp);
260}
261
262/* WTZ: QA was finding deadlock problems with the previous
263 * versions after long test runs with multiple cards per machine.
264 * See if replacing cas_lock_all with safer versions helps. The
265 * symptoms QA is reporting match those we'd expect if interrupts
266 * aren't being properly restored, and we fixed a previous deadlock
267 * with similar symptoms by using save/restore versions in other
268 * places.
269 */
270#define cas_lock_all_save(cp, flags) \
271do { \
272 struct cas *xxxcp = (cp); \
273 spin_lock_irqsave(&xxxcp->lock, flags); \
274 cas_lock_tx(xxxcp); \
275} while (0)
276
277static inline void cas_unlock_tx(struct cas *cp)
278{
279 int i;
280
281 for (i = N_TX_RINGS; i > 0; i--)
282 spin_unlock(&cp->tx_lock[i - 1]);
283}
284
285static inline void cas_unlock_all(struct cas *cp)
286{
287 cas_unlock_tx(cp);
288 spin_unlock_irq(&cp->lock);
289}
290
291#define cas_unlock_all_restore(cp, flags) \
292do { \
293 struct cas *xxxcp = (cp); \
294 cas_unlock_tx(xxxcp); \
295 spin_unlock_irqrestore(&xxxcp->lock, flags); \
296} while (0)
297
298static void cas_disable_irq(struct cas *cp, const int ring)
299{
300 /* Make sure we won't get any more interrupts */
301 if (ring == 0) {
302 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
303 return;
304 }
305
306 /* disable completion interrupts and selectively mask */
307 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
308 switch (ring) {
309#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
310#ifdef USE_PCI_INTB
311 case 1:
312#endif
313#ifdef USE_PCI_INTC
314 case 2:
315#endif
316#ifdef USE_PCI_INTD
317 case 3:
318#endif
319 writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
320 cp->regs + REG_PLUS_INTRN_MASK(ring));
321 break;
322#endif
323 default:
324 writel(INTRN_MASK_CLEAR_ALL, cp->regs +
325 REG_PLUS_INTRN_MASK(ring));
326 break;
327 }
328 }
329}
330
331static inline void cas_mask_intr(struct cas *cp)
332{
333 int i;
334
335 for (i = 0; i < N_RX_COMP_RINGS; i++)
336 cas_disable_irq(cp, i);
337}
338
339static void cas_enable_irq(struct cas *cp, const int ring)
340{
341 if (ring == 0) { /* all but TX_DONE */
342 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
343 return;
344 }
345
346 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
347 switch (ring) {
348#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
349#ifdef USE_PCI_INTB
350 case 1:
351#endif
352#ifdef USE_PCI_INTC
353 case 2:
354#endif
355#ifdef USE_PCI_INTD
356 case 3:
357#endif
358 writel(INTRN_MASK_RX_EN, cp->regs +
359 REG_PLUS_INTRN_MASK(ring));
360 break;
361#endif
362 default:
363 break;
364 }
365 }
366}
367
368static inline void cas_unmask_intr(struct cas *cp)
369{
370 int i;
371
372 for (i = 0; i < N_RX_COMP_RINGS; i++)
373 cas_enable_irq(cp, i);
374}
375
376static inline void cas_entropy_gather(struct cas *cp)
377{
378#ifdef USE_ENTROPY_DEV
379 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
380 return;
381
382 batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
383 readl(cp->regs + REG_ENTROPY_IV),
384 sizeof(uint64_t)*8);
385#endif
386}
387
388static inline void cas_entropy_reset(struct cas *cp)
389{
390#ifdef USE_ENTROPY_DEV
391 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
392 return;
393
394 writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
395 cp->regs + REG_BIM_LOCAL_DEV_EN);
396 writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
397 writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
398
399 /* if we read back 0x0, we don't have an entropy device */
400 if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
401 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
402#endif
403}
404
405/* access to the phy. the following assumes that we've initialized the MIF to
406 * be in frame rather than bit-bang mode
407 */
408static u16 cas_phy_read(struct cas *cp, int reg)
409{
410 u32 cmd;
411 int limit = STOP_TRIES_PHY;
412
413 cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
414 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
415 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
416 cmd |= MIF_FRAME_TURN_AROUND_MSB;
417 writel(cmd, cp->regs + REG_MIF_FRAME);
418
419 /* poll for completion */
420 while (limit-- > 0) {
421 udelay(10);
422 cmd = readl(cp->regs + REG_MIF_FRAME);
423 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
424 return (cmd & MIF_FRAME_DATA_MASK);
425 }
426 return 0xFFFF; /* -1 */
427}
428
429static int cas_phy_write(struct cas *cp, int reg, u16 val)
430{
431 int limit = STOP_TRIES_PHY;
432 u32 cmd;
433
434 cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
435 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
436 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
437 cmd |= MIF_FRAME_TURN_AROUND_MSB;
438 cmd |= val & MIF_FRAME_DATA_MASK;
439 writel(cmd, cp->regs + REG_MIF_FRAME);
440
441 /* poll for completion */
442 while (limit-- > 0) {
443 udelay(10);
444 cmd = readl(cp->regs + REG_MIF_FRAME);
445 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
446 return 0;
447 }
448 return -1;
449}
450
451static void cas_phy_powerup(struct cas *cp)
452{
453 u16 ctl = cas_phy_read(cp, MII_BMCR);
454
455 if ((ctl & BMCR_PDOWN) == 0)
456 return;
457 ctl &= ~BMCR_PDOWN;
458 cas_phy_write(cp, MII_BMCR, ctl);
459}
460
461static void cas_phy_powerdown(struct cas *cp)
462{
463 u16 ctl = cas_phy_read(cp, MII_BMCR);
464
465 if (ctl & BMCR_PDOWN)
466 return;
467 ctl |= BMCR_PDOWN;
468 cas_phy_write(cp, MII_BMCR, ctl);
469}
470
471/* cp->lock held. note: the last put_page will free the buffer */
472static int cas_page_free(struct cas *cp, cas_page_t *page)
473{
474 pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
475 PCI_DMA_FROMDEVICE);
476 __free_pages(page->buffer, cp->page_order);
477 kfree(page);
478 return 0;
479}
480
481#ifdef RX_COUNT_BUFFERS
482#define RX_USED_ADD(x, y) ((x)->used += (y))
483#define RX_USED_SET(x, y) ((x)->used = (y))
484#else
485#define RX_USED_ADD(x, y)
486#define RX_USED_SET(x, y)
487#endif
488
489/* local page allocation routines for the receive buffers. jumbo pages
490 * require at least 8K contiguous and 8K aligned buffers.
491 */
492static cas_page_t *cas_page_alloc(struct cas *cp, const int flags)
493{
494 cas_page_t *page;
495
496 page = kmalloc(sizeof(cas_page_t), flags);
497 if (!page)
498 return NULL;
499
500 INIT_LIST_HEAD(&page->list);
501 RX_USED_SET(page, 0);
502 page->buffer = alloc_pages(flags, cp->page_order);
503 if (!page->buffer)
504 goto page_err;
505 page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
506 cp->page_size, PCI_DMA_FROMDEVICE);
507 return page;
508
509page_err:
510 kfree(page);
511 return NULL;
512}
513
514/* initialize spare pool of rx buffers, but allocate during the open */
515static void cas_spare_init(struct cas *cp)
516{
517 spin_lock(&cp->rx_inuse_lock);
518 INIT_LIST_HEAD(&cp->rx_inuse_list);
519 spin_unlock(&cp->rx_inuse_lock);
520
521 spin_lock(&cp->rx_spare_lock);
522 INIT_LIST_HEAD(&cp->rx_spare_list);
523 cp->rx_spares_needed = RX_SPARE_COUNT;
524 spin_unlock(&cp->rx_spare_lock);
525}
526
527/* used on close. free all the spare buffers. */
528static void cas_spare_free(struct cas *cp)
529{
530 struct list_head list, *elem, *tmp;
531
532 /* free spare buffers */
533 INIT_LIST_HEAD(&list);
534 spin_lock(&cp->rx_spare_lock);
535 list_splice(&cp->rx_spare_list, &list);
536 INIT_LIST_HEAD(&cp->rx_spare_list);
537 spin_unlock(&cp->rx_spare_lock);
538 list_for_each_safe(elem, tmp, &list) {
539 cas_page_free(cp, list_entry(elem, cas_page_t, list));
540 }
541
542 INIT_LIST_HEAD(&list);
543#if 1
544 /*
545 * Looks like Adrian had protected this with a different
546 * lock than used everywhere else to manipulate this list.
547 */
548 spin_lock(&cp->rx_inuse_lock);
549 list_splice(&cp->rx_inuse_list, &list);
550 INIT_LIST_HEAD(&cp->rx_inuse_list);
551 spin_unlock(&cp->rx_inuse_lock);
552#else
553 spin_lock(&cp->rx_spare_lock);
554 list_splice(&cp->rx_inuse_list, &list);
555 INIT_LIST_HEAD(&cp->rx_inuse_list);
556 spin_unlock(&cp->rx_spare_lock);
557#endif
558 list_for_each_safe(elem, tmp, &list) {
559 cas_page_free(cp, list_entry(elem, cas_page_t, list));
560 }
561}
562
563/* replenish spares if needed */
564static void cas_spare_recover(struct cas *cp, const int flags)
565{
566 struct list_head list, *elem, *tmp;
567 int needed, i;
568
569 /* check inuse list. if we don't need any more free buffers,
570 * just free it
571 */
572
573 /* make a local copy of the list */
574 INIT_LIST_HEAD(&list);
575 spin_lock(&cp->rx_inuse_lock);
576 list_splice(&cp->rx_inuse_list, &list);
577 INIT_LIST_HEAD(&cp->rx_inuse_list);
578 spin_unlock(&cp->rx_inuse_lock);
579
580 list_for_each_safe(elem, tmp, &list) {
581 cas_page_t *page = list_entry(elem, cas_page_t, list);
582
583 if (page_count(page->buffer) > 1)
584 continue;
585
586 list_del(elem);
587 spin_lock(&cp->rx_spare_lock);
588 if (cp->rx_spares_needed > 0) {
589 list_add(elem, &cp->rx_spare_list);
590 cp->rx_spares_needed--;
591 spin_unlock(&cp->rx_spare_lock);
592 } else {
593 spin_unlock(&cp->rx_spare_lock);
594 cas_page_free(cp, page);
595 }
596 }
597
598 /* put any inuse buffers back on the list */
599 if (!list_empty(&list)) {
600 spin_lock(&cp->rx_inuse_lock);
601 list_splice(&list, &cp->rx_inuse_list);
602 spin_unlock(&cp->rx_inuse_lock);
603 }
604
605 spin_lock(&cp->rx_spare_lock);
606 needed = cp->rx_spares_needed;
607 spin_unlock(&cp->rx_spare_lock);
608 if (!needed)
609 return;
610
611 /* we still need spares, so try to allocate some */
612 INIT_LIST_HEAD(&list);
613 i = 0;
614 while (i < needed) {
615 cas_page_t *spare = cas_page_alloc(cp, flags);
616 if (!spare)
617 break;
618 list_add(&spare->list, &list);
619 i++;
620 }
621
622 spin_lock(&cp->rx_spare_lock);
623 list_splice(&list, &cp->rx_spare_list);
624 cp->rx_spares_needed -= i;
625 spin_unlock(&cp->rx_spare_lock);
626}
627
628/* pull a page from the list. */
629static cas_page_t *cas_page_dequeue(struct cas *cp)
630{
631 struct list_head *entry;
632 int recover;
633
634 spin_lock(&cp->rx_spare_lock);
635 if (list_empty(&cp->rx_spare_list)) {
636 /* try to do a quick recovery */
637 spin_unlock(&cp->rx_spare_lock);
638 cas_spare_recover(cp, GFP_ATOMIC);
639 spin_lock(&cp->rx_spare_lock);
640 if (list_empty(&cp->rx_spare_list)) {
641 if (netif_msg_rx_err(cp))
642 printk(KERN_ERR "%s: no spare buffers "
643 "available.\n", cp->dev->name);
644 spin_unlock(&cp->rx_spare_lock);
645 return NULL;
646 }
647 }
648
649 entry = cp->rx_spare_list.next;
650 list_del(entry);
651 recover = ++cp->rx_spares_needed;
652 spin_unlock(&cp->rx_spare_lock);
653
654 /* trigger the timer to do the recovery */
655 if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
656#if 1
657 atomic_inc(&cp->reset_task_pending);
658 atomic_inc(&cp->reset_task_pending_spare);
659 schedule_work(&cp->reset_task);
660#else
661 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
662 schedule_work(&cp->reset_task);
663#endif
664 }
665 return list_entry(entry, cas_page_t, list);
666}
667
668
669static void cas_mif_poll(struct cas *cp, const int enable)
670{
671 u32 cfg;
672
673 cfg = readl(cp->regs + REG_MIF_CFG);
674 cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
675
676 if (cp->phy_type & CAS_PHY_MII_MDIO1)
677 cfg |= MIF_CFG_PHY_SELECT;
678
679 /* poll and interrupt on link status change. */
680 if (enable) {
681 cfg |= MIF_CFG_POLL_EN;
682 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
683 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
684 }
685 writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
686 cp->regs + REG_MIF_MASK);
687 writel(cfg, cp->regs + REG_MIF_CFG);
688}
689
690/* Must be invoked under cp->lock */
691static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
692{
693 u16 ctl;
694#if 1
695 int lcntl;
696 int changed = 0;
697 int oldstate = cp->lstate;
698 int link_was_not_down = !(oldstate == link_down);
699#endif
700 /* Setup link parameters */
701 if (!ep)
702 goto start_aneg;
703 lcntl = cp->link_cntl;
704 if (ep->autoneg == AUTONEG_ENABLE)
705 cp->link_cntl = BMCR_ANENABLE;
706 else {
707 cp->link_cntl = 0;
708 if (ep->speed == SPEED_100)
709 cp->link_cntl |= BMCR_SPEED100;
710 else if (ep->speed == SPEED_1000)
711 cp->link_cntl |= CAS_BMCR_SPEED1000;
712 if (ep->duplex == DUPLEX_FULL)
713 cp->link_cntl |= BMCR_FULLDPLX;
714 }
715#if 1
716 changed = (lcntl != cp->link_cntl);
717#endif
718start_aneg:
719 if (cp->lstate == link_up) {
720 printk(KERN_INFO "%s: PCS link down.\n",
721 cp->dev->name);
722 } else {
723 if (changed) {
724 printk(KERN_INFO "%s: link configuration changed\n",
725 cp->dev->name);
726 }
727 }
728 cp->lstate = link_down;
729 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
730 if (!cp->hw_running)
731 return;
732#if 1
733 /*
734 * WTZ: If the old state was link_up, we turn off the carrier
735 * to replicate everything we do elsewhere on a link-down
736 * event when we were already in a link-up state..
737 */
738 if (oldstate == link_up)
739 netif_carrier_off(cp->dev);
740 if (changed && link_was_not_down) {
741 /*
742 * WTZ: This branch will simply schedule a full reset after
743 * we explicitly changed link modes in an ioctl. See if this
744 * fixes the link-problems we were having for forced mode.
745 */
746 atomic_inc(&cp->reset_task_pending);
747 atomic_inc(&cp->reset_task_pending_all);
748 schedule_work(&cp->reset_task);
749 cp->timer_ticks = 0;
750 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
751 return;
752 }
753#endif
754 if (cp->phy_type & CAS_PHY_SERDES) {
755 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
756
757 if (cp->link_cntl & BMCR_ANENABLE) {
758 val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
759 cp->lstate = link_aneg;
760 } else {
761 if (cp->link_cntl & BMCR_FULLDPLX)
762 val |= PCS_MII_CTRL_DUPLEX;
763 val &= ~PCS_MII_AUTONEG_EN;
764 cp->lstate = link_force_ok;
765 }
766 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
767 writel(val, cp->regs + REG_PCS_MII_CTRL);
768
769 } else {
770 cas_mif_poll(cp, 0);
771 ctl = cas_phy_read(cp, MII_BMCR);
772 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
773 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
774 ctl |= cp->link_cntl;
775 if (ctl & BMCR_ANENABLE) {
776 ctl |= BMCR_ANRESTART;
777 cp->lstate = link_aneg;
778 } else {
779 cp->lstate = link_force_ok;
780 }
781 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
782 cas_phy_write(cp, MII_BMCR, ctl);
783 cas_mif_poll(cp, 1);
784 }
785
786 cp->timer_ticks = 0;
787 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
788}
789
790/* Must be invoked under cp->lock. */
791static int cas_reset_mii_phy(struct cas *cp)
792{
793 int limit = STOP_TRIES_PHY;
794 u16 val;
795
796 cas_phy_write(cp, MII_BMCR, BMCR_RESET);
797 udelay(100);
798 while (limit--) {
799 val = cas_phy_read(cp, MII_BMCR);
800 if ((val & BMCR_RESET) == 0)
801 break;
802 udelay(10);
803 }
804 return (limit <= 0);
805}
806
807static void cas_saturn_firmware_load(struct cas *cp)
808{
809 cas_saturn_patch_t *patch = cas_saturn_patch;
810
811 cas_phy_powerdown(cp);
812
813 /* expanded memory access mode */
814 cas_phy_write(cp, DP83065_MII_MEM, 0x0);
815
816 /* pointer configuration for new firmware */
817 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
818 cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
819 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
820 cas_phy_write(cp, DP83065_MII_REGD, 0x82);
821 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
822 cas_phy_write(cp, DP83065_MII_REGD, 0x0);
823 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
824 cas_phy_write(cp, DP83065_MII_REGD, 0x39);
825
826 /* download new firmware */
827 cas_phy_write(cp, DP83065_MII_MEM, 0x1);
828 cas_phy_write(cp, DP83065_MII_REGE, patch->addr);
829 while (patch->addr) {
830 cas_phy_write(cp, DP83065_MII_REGD, patch->val);
831 patch++;
832 }
833
834 /* enable firmware */
835 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
836 cas_phy_write(cp, DP83065_MII_REGD, 0x1);
837}
838
839
840/* phy initialization */
841static void cas_phy_init(struct cas *cp)
842{
843 u16 val;
844
845 /* if we're in MII/GMII mode, set up phy */
846 if (CAS_PHY_MII(cp->phy_type)) {
847 writel(PCS_DATAPATH_MODE_MII,
848 cp->regs + REG_PCS_DATAPATH_MODE);
849
850 cas_mif_poll(cp, 0);
851 cas_reset_mii_phy(cp); /* take out of isolate mode */
852
853 if (PHY_LUCENT_B0 == cp->phy_id) {
854 /* workaround link up/down issue with lucent */
855 cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
856 cas_phy_write(cp, MII_BMCR, 0x00f1);
857 cas_phy_write(cp, LUCENT_MII_REG, 0x0);
858
859 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
860 /* workarounds for broadcom phy */
861 cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
862 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
863 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
864 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
865 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
866 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
867 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
868 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
869 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
870 cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
871 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
872
873 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
874 val = cas_phy_read(cp, BROADCOM_MII_REG4);
875 val = cas_phy_read(cp, BROADCOM_MII_REG4);
876 if (val & 0x0080) {
877 /* link workaround */
878 cas_phy_write(cp, BROADCOM_MII_REG4,
879 val & ~0x0080);
880 }
881
882 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
883 writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
884 SATURN_PCFG_FSI : 0x0,
885 cp->regs + REG_SATURN_PCFG);
886
887 /* load firmware to address 10Mbps auto-negotiation
888 * issue. NOTE: this will need to be changed if the
889 * default firmware gets fixed.
890 */
891 if (PHY_NS_DP83065 == cp->phy_id) {
892 cas_saturn_firmware_load(cp);
893 }
894 cas_phy_powerup(cp);
895 }
896
897 /* advertise capabilities */
898 val = cas_phy_read(cp, MII_BMCR);
899 val &= ~BMCR_ANENABLE;
900 cas_phy_write(cp, MII_BMCR, val);
901 udelay(10);
902
903 cas_phy_write(cp, MII_ADVERTISE,
904 cas_phy_read(cp, MII_ADVERTISE) |
905 (ADVERTISE_10HALF | ADVERTISE_10FULL |
906 ADVERTISE_100HALF | ADVERTISE_100FULL |
907 CAS_ADVERTISE_PAUSE |
908 CAS_ADVERTISE_ASYM_PAUSE));
909
910 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
911 /* make sure that we don't advertise half
912 * duplex to avoid a chip issue
913 */
914 val = cas_phy_read(cp, CAS_MII_1000_CTRL);
915 val &= ~CAS_ADVERTISE_1000HALF;
916 val |= CAS_ADVERTISE_1000FULL;
917 cas_phy_write(cp, CAS_MII_1000_CTRL, val);
918 }
919
920 } else {
921 /* reset pcs for serdes */
922 u32 val;
923 int limit;
924
925 writel(PCS_DATAPATH_MODE_SERDES,
926 cp->regs + REG_PCS_DATAPATH_MODE);
927
928 /* enable serdes pins on saturn */
929 if (cp->cas_flags & CAS_FLAG_SATURN)
930 writel(0, cp->regs + REG_SATURN_PCFG);
931
932 /* Reset PCS unit. */
933 val = readl(cp->regs + REG_PCS_MII_CTRL);
934 val |= PCS_MII_RESET;
935 writel(val, cp->regs + REG_PCS_MII_CTRL);
936
937 limit = STOP_TRIES;
938 while (limit-- > 0) {
939 udelay(10);
940 if ((readl(cp->regs + REG_PCS_MII_CTRL) &
941 PCS_MII_RESET) == 0)
942 break;
943 }
944 if (limit <= 0)
945 printk(KERN_WARNING "%s: PCS reset bit would not "
946 "clear [%08x].\n", cp->dev->name,
947 readl(cp->regs + REG_PCS_STATE_MACHINE));
948
949 /* Make sure PCS is disabled while changing advertisement
950 * configuration.
951 */
952 writel(0x0, cp->regs + REG_PCS_CFG);
953
954 /* Advertise all capabilities except half-duplex. */
955 val = readl(cp->regs + REG_PCS_MII_ADVERT);
956 val &= ~PCS_MII_ADVERT_HD;
957 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
958 PCS_MII_ADVERT_ASYM_PAUSE);
959 writel(val, cp->regs + REG_PCS_MII_ADVERT);
960
961 /* enable PCS */
962 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
963
964 /* pcs workaround: enable sync detect */
965 writel(PCS_SERDES_CTRL_SYNCD_EN,
966 cp->regs + REG_PCS_SERDES_CTRL);
967 }
968}
969
970
971static int cas_pcs_link_check(struct cas *cp)
972{
973 u32 stat, state_machine;
974 int retval = 0;
975
976 /* The link status bit latches on zero, so you must
977 * read it twice in such a case to see a transition
978 * to the link being up.
979 */
980 stat = readl(cp->regs + REG_PCS_MII_STATUS);
981 if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
982 stat = readl(cp->regs + REG_PCS_MII_STATUS);
983
984 /* The remote-fault indication is only valid
985 * when autoneg has completed.
986 */
987 if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
988 PCS_MII_STATUS_REMOTE_FAULT)) ==
989 (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT)) {
990 if (netif_msg_link(cp))
991 printk(KERN_INFO "%s: PCS RemoteFault\n",
992 cp->dev->name);
993 }
994
995 /* work around link detection issue by querying the PCS state
996 * machine directly.
997 */
998 state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
999 if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1000 stat &= ~PCS_MII_STATUS_LINK_STATUS;
1001 } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1002 stat |= PCS_MII_STATUS_LINK_STATUS;
1003 }
1004
1005 if (stat & PCS_MII_STATUS_LINK_STATUS) {
1006 if (cp->lstate != link_up) {
1007 if (cp->opened) {
1008 cp->lstate = link_up;
1009 cp->link_transition = LINK_TRANSITION_LINK_UP;
1010
1011 cas_set_link_modes(cp);
1012 netif_carrier_on(cp->dev);
1013 }
1014 }
1015 } else if (cp->lstate == link_up) {
1016 cp->lstate = link_down;
1017 if (link_transition_timeout != 0 &&
1018 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1019 !cp->link_transition_jiffies_valid) {
1020 /*
1021 * force a reset, as a workaround for the
1022 * link-failure problem. May want to move this to a
1023 * point a bit earlier in the sequence. If we had
1024 * generated a reset a short time ago, we'll wait for
1025 * the link timer to check the status until a
1026 * timer expires (link_transistion_jiffies_valid is
1027 * true when the timer is running.) Instead of using
1028 * a system timer, we just do a check whenever the
1029 * link timer is running - this clears the flag after
1030 * a suitable delay.
1031 */
1032 retval = 1;
1033 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1034 cp->link_transition_jiffies = jiffies;
1035 cp->link_transition_jiffies_valid = 1;
1036 } else {
1037 cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1038 }
1039 netif_carrier_off(cp->dev);
1040 if (cp->opened && netif_msg_link(cp)) {
1041 printk(KERN_INFO "%s: PCS link down.\n",
1042 cp->dev->name);
1043 }
1044
1045 /* Cassini only: if you force a mode, there can be
1046 * sync problems on link down. to fix that, the following
1047 * things need to be checked:
1048 * 1) read serialink state register
1049 * 2) read pcs status register to verify link down.
1050 * 3) if link down and serial link == 0x03, then you need
1051 * to global reset the chip.
1052 */
1053 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1054 /* should check to see if we're in a forced mode */
1055 stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1056 if (stat == 0x03)
1057 return 1;
1058 }
1059 } else if (cp->lstate == link_down) {
1060 if (link_transition_timeout != 0 &&
1061 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1062 !cp->link_transition_jiffies_valid) {
1063 /* force a reset, as a workaround for the
1064 * link-failure problem. May want to move
1065 * this to a point a bit earlier in the
1066 * sequence.
1067 */
1068 retval = 1;
1069 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1070 cp->link_transition_jiffies = jiffies;
1071 cp->link_transition_jiffies_valid = 1;
1072 } else {
1073 cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1074 }
1075 }
1076
1077 return retval;
1078}
1079
1080static int cas_pcs_interrupt(struct net_device *dev,
1081 struct cas *cp, u32 status)
1082{
1083 u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1084
1085 if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1086 return 0;
1087 return cas_pcs_link_check(cp);
1088}
1089
1090static int cas_txmac_interrupt(struct net_device *dev,
1091 struct cas *cp, u32 status)
1092{
1093 u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1094
1095 if (!txmac_stat)
1096 return 0;
1097
1098 if (netif_msg_intr(cp))
1099 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
1100 cp->dev->name, txmac_stat);
1101
1102 /* Defer timer expiration is quite normal,
1103 * don't even log the event.
1104 */
1105 if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1106 !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1107 return 0;
1108
1109 spin_lock(&cp->stat_lock[0]);
1110 if (txmac_stat & MAC_TX_UNDERRUN) {
1111 printk(KERN_ERR "%s: TX MAC xmit underrun.\n",
1112 dev->name);
1113 cp->net_stats[0].tx_fifo_errors++;
1114 }
1115
1116 if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1117 printk(KERN_ERR "%s: TX MAC max packet size error.\n",
1118 dev->name);
1119 cp->net_stats[0].tx_errors++;
1120 }
1121
1122 /* The rest are all cases of one of the 16-bit TX
1123 * counters expiring.
1124 */
1125 if (txmac_stat & MAC_TX_COLL_NORMAL)
1126 cp->net_stats[0].collisions += 0x10000;
1127
1128 if (txmac_stat & MAC_TX_COLL_EXCESS) {
1129 cp->net_stats[0].tx_aborted_errors += 0x10000;
1130 cp->net_stats[0].collisions += 0x10000;
1131 }
1132
1133 if (txmac_stat & MAC_TX_COLL_LATE) {
1134 cp->net_stats[0].tx_aborted_errors += 0x10000;
1135 cp->net_stats[0].collisions += 0x10000;
1136 }
1137 spin_unlock(&cp->stat_lock[0]);
1138
1139 /* We do not keep track of MAC_TX_COLL_FIRST and
1140 * MAC_TX_PEAK_ATTEMPTS events.
1141 */
1142 return 0;
1143}
1144
1145static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1146{
1147 cas_hp_inst_t *inst;
1148 u32 val;
1149 int i;
1150
1151 i = 0;
1152 while ((inst = firmware) && inst->note) {
1153 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1154
1155 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1156 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1157 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1158
1159 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1160 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1161 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1162 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1163 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1164 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1165 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1166 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1167
1168 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1169 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1170 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1171 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1172 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1173 ++firmware;
1174 ++i;
1175 }
1176}
1177
1178static void cas_init_rx_dma(struct cas *cp)
1179{
1180 u64 desc_dma = cp->block_dvma;
1181 u32 val;
1182 int i, size;
1183
1184 /* rx free descriptors */
1185 val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1186 val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1187 val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1188 if ((N_RX_DESC_RINGS > 1) &&
1189 (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */
1190 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1191 writel(val, cp->regs + REG_RX_CFG);
1192
1193 val = (unsigned long) cp->init_rxds[0] -
1194 (unsigned long) cp->init_block;
1195 writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1196 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1197 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1198
1199 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1200 /* rx desc 2 is for IPSEC packets. however,
1201 * we don't it that for that purpose.
1202 */
1203 val = (unsigned long) cp->init_rxds[1] -
1204 (unsigned long) cp->init_block;
1205 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1206 writel((desc_dma + val) & 0xffffffff, cp->regs +
1207 REG_PLUS_RX_DB1_LOW);
1208 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1209 REG_PLUS_RX_KICK1);
1210 }
1211
1212 /* rx completion registers */
1213 val = (unsigned long) cp->init_rxcs[0] -
1214 (unsigned long) cp->init_block;
1215 writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1216 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1217
1218 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1219 /* rx comp 2-4 */
1220 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1221 val = (unsigned long) cp->init_rxcs[i] -
1222 (unsigned long) cp->init_block;
1223 writel((desc_dma + val) >> 32, cp->regs +
1224 REG_PLUS_RX_CBN_HI(i));
1225 writel((desc_dma + val) & 0xffffffff, cp->regs +
1226 REG_PLUS_RX_CBN_LOW(i));
1227 }
1228 }
1229
1230 /* read selective clear regs to prevent spurious interrupts
1231 * on reset because complete == kick.
1232 * selective clear set up to prevent interrupts on resets
1233 */
1234 readl(cp->regs + REG_INTR_STATUS_ALIAS);
1235 writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1236 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1237 for (i = 1; i < N_RX_COMP_RINGS; i++)
1238 readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1239
1240 /* 2 is different from 3 and 4 */
1241 if (N_RX_COMP_RINGS > 1)
1242 writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1243 cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1244
1245 for (i = 2; i < N_RX_COMP_RINGS; i++)
1246 writel(INTR_RX_DONE_ALT,
1247 cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1248 }
1249
1250 /* set up pause thresholds */
1251 val = CAS_BASE(RX_PAUSE_THRESH_OFF,
1252 cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1253 val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1254 cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1255 writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1256
1257 /* zero out dma reassembly buffers */
1258 for (i = 0; i < 64; i++) {
1259 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1260 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1261 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1262 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1263 }
1264
1265 /* make sure address register is 0 for normal operation */
1266 writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1267 writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1268
1269 /* interrupt mitigation */
1270#ifdef USE_RX_BLANK
1271 val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1272 val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1273 writel(val, cp->regs + REG_RX_BLANK);
1274#else
1275 writel(0x0, cp->regs + REG_RX_BLANK);
1276#endif
1277
1278 /* interrupt generation as a function of low water marks for
1279 * free desc and completion entries. these are used to trigger
1280 * housekeeping for rx descs. we don't use the free interrupt
1281 * as it's not very useful
1282 */
1283 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1284 val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1285 writel(val, cp->regs + REG_RX_AE_THRESH);
1286 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1287 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1288 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1289 }
1290
1291 /* Random early detect registers. useful for congestion avoidance.
1292 * this should be tunable.
1293 */
1294 writel(0x0, cp->regs + REG_RX_RED);
1295
1296 /* receive page sizes. default == 2K (0x800) */
1297 val = 0;
1298 if (cp->page_size == 0x1000)
1299 val = 0x1;
1300 else if (cp->page_size == 0x2000)
1301 val = 0x2;
1302 else if (cp->page_size == 0x4000)
1303 val = 0x3;
1304
1305 /* round mtu + offset. constrain to page size. */
1306 size = cp->dev->mtu + 64;
1307 if (size > cp->page_size)
1308 size = cp->page_size;
1309
1310 if (size <= 0x400)
1311 i = 0x0;
1312 else if (size <= 0x800)
1313 i = 0x1;
1314 else if (size <= 0x1000)
1315 i = 0x2;
1316 else
1317 i = 0x3;
1318
1319 cp->mtu_stride = 1 << (i + 10);
1320 val = CAS_BASE(RX_PAGE_SIZE, val);
1321 val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1322 val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1323 val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1324 writel(val, cp->regs + REG_RX_PAGE_SIZE);
1325
1326 /* enable the header parser if desired */
1327 if (CAS_HP_FIRMWARE == cas_prog_null)
1328 return;
1329
1330 val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1331 val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1332 val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1333 writel(val, cp->regs + REG_HP_CFG);
1334}
1335
1336static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1337{
1338 memset(rxc, 0, sizeof(*rxc));
1339 rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1340}
1341
1342/* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1343 * flipping is protected by the fact that the chip will not
1344 * hand back the same page index while it's being processed.
1345 */
1346static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1347{
1348 cas_page_t *page = cp->rx_pages[1][index];
1349 cas_page_t *new;
1350
1351 if (page_count(page->buffer) == 1)
1352 return page;
1353
1354 new = cas_page_dequeue(cp);
1355 if (new) {
1356 spin_lock(&cp->rx_inuse_lock);
1357 list_add(&page->list, &cp->rx_inuse_list);
1358 spin_unlock(&cp->rx_inuse_lock);
1359 }
1360 return new;
1361}
1362
1363/* this needs to be changed if we actually use the ENC RX DESC ring */
1364static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1365 const int index)
1366{
1367 cas_page_t **page0 = cp->rx_pages[0];
1368 cas_page_t **page1 = cp->rx_pages[1];
1369
1370 /* swap if buffer is in use */
1371 if (page_count(page0[index]->buffer) > 1) {
1372 cas_page_t *new = cas_page_spare(cp, index);
1373 if (new) {
1374 page1[index] = page0[index];
1375 page0[index] = new;
1376 }
1377 }
1378 RX_USED_SET(page0[index], 0);
1379 return page0[index];
1380}
1381
1382static void cas_clean_rxds(struct cas *cp)
1383{
1384 /* only clean ring 0 as ring 1 is used for spare buffers */
1385 struct cas_rx_desc *rxd = cp->init_rxds[0];
1386 int i, size;
1387
1388 /* release all rx flows */
1389 for (i = 0; i < N_RX_FLOWS; i++) {
1390 struct sk_buff *skb;
1391 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1392 cas_skb_release(skb);
1393 }
1394 }
1395
1396 /* initialize descriptors */
1397 size = RX_DESC_RINGN_SIZE(0);
1398 for (i = 0; i < size; i++) {
1399 cas_page_t *page = cas_page_swap(cp, 0, i);
1400 rxd[i].buffer = cpu_to_le64(page->dma_addr);
1401 rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1402 CAS_BASE(RX_INDEX_RING, 0));
1403 }
1404
1405 cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4;
1406 cp->rx_last[0] = 0;
1407 cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1408}
1409
1410static void cas_clean_rxcs(struct cas *cp)
1411{
1412 int i, j;
1413
1414 /* take ownership of rx comp descriptors */
1415 memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1416 memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1417 for (i = 0; i < N_RX_COMP_RINGS; i++) {
1418 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1419 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1420 cas_rxc_init(rxc + j);
1421 }
1422 }
1423}
1424
1425#if 0
1426/* When we get a RX fifo overflow, the RX unit is probably hung
1427 * so we do the following.
1428 *
1429 * If any part of the reset goes wrong, we return 1 and that causes the
1430 * whole chip to be reset.
1431 */
1432static int cas_rxmac_reset(struct cas *cp)
1433{
1434 struct net_device *dev = cp->dev;
1435 int limit;
1436 u32 val;
1437
1438 /* First, reset MAC RX. */
1439 writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1440 for (limit = 0; limit < STOP_TRIES; limit++) {
1441 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1442 break;
1443 udelay(10);
1444 }
1445 if (limit == STOP_TRIES) {
1446 printk(KERN_ERR "%s: RX MAC will not disable, resetting whole "
1447 "chip.\n", dev->name);
1448 return 1;
1449 }
1450
1451 /* Second, disable RX DMA. */
1452 writel(0, cp->regs + REG_RX_CFG);
1453 for (limit = 0; limit < STOP_TRIES; limit++) {
1454 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1455 break;
1456 udelay(10);
1457 }
1458 if (limit == STOP_TRIES) {
1459 printk(KERN_ERR "%s: RX DMA will not disable, resetting whole "
1460 "chip.\n", dev->name);
1461 return 1;
1462 }
1463
1464 mdelay(5);
1465
1466 /* Execute RX reset command. */
1467 writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1468 for (limit = 0; limit < STOP_TRIES; limit++) {
1469 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1470 break;
1471 udelay(10);
1472 }
1473 if (limit == STOP_TRIES) {
1474 printk(KERN_ERR "%s: RX reset command will not execute, "
1475 "resetting whole chip.\n", dev->name);
1476 return 1;
1477 }
1478
1479 /* reset driver rx state */
1480 cas_clean_rxds(cp);
1481 cas_clean_rxcs(cp);
1482
1483 /* Now, reprogram the rest of RX unit. */
1484 cas_init_rx_dma(cp);
1485
1486 /* re-enable */
1487 val = readl(cp->regs + REG_RX_CFG);
1488 writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1489 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1490 val = readl(cp->regs + REG_MAC_RX_CFG);
1491 writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1492 return 0;
1493}
1494#endif
1495
1496static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1497 u32 status)
1498{
1499 u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1500
1501 if (!stat)
1502 return 0;
1503
1504 if (netif_msg_intr(cp))
1505 printk(KERN_DEBUG "%s: rxmac interrupt, stat: 0x%x\n",
1506 cp->dev->name, stat);
1507
1508 /* these are all rollovers */
1509 spin_lock(&cp->stat_lock[0]);
1510 if (stat & MAC_RX_ALIGN_ERR)
1511 cp->net_stats[0].rx_frame_errors += 0x10000;
1512
1513 if (stat & MAC_RX_CRC_ERR)
1514 cp->net_stats[0].rx_crc_errors += 0x10000;
1515
1516 if (stat & MAC_RX_LEN_ERR)
1517 cp->net_stats[0].rx_length_errors += 0x10000;
1518
1519 if (stat & MAC_RX_OVERFLOW) {
1520 cp->net_stats[0].rx_over_errors++;
1521 cp->net_stats[0].rx_fifo_errors++;
1522 }
1523
1524 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1525 * events.
1526 */
1527 spin_unlock(&cp->stat_lock[0]);
1528 return 0;
1529}
1530
1531static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1532 u32 status)
1533{
1534 u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1535
1536 if (!stat)
1537 return 0;
1538
1539 if (netif_msg_intr(cp))
1540 printk(KERN_DEBUG "%s: mac interrupt, stat: 0x%x\n",
1541 cp->dev->name, stat);
1542
1543 /* This interrupt is just for pause frame and pause
1544 * tracking. It is useful for diagnostics and debug
1545 * but probably by default we will mask these events.
1546 */
1547 if (stat & MAC_CTRL_PAUSE_STATE)
1548 cp->pause_entered++;
1549
1550 if (stat & MAC_CTRL_PAUSE_RECEIVED)
1551 cp->pause_last_time_recvd = (stat >> 16);
1552
1553 return 0;
1554}
1555
1556
1557/* Must be invoked under cp->lock. */
1558static inline int cas_mdio_link_not_up(struct cas *cp)
1559{
1560 u16 val;
1561
1562 switch (cp->lstate) {
1563 case link_force_ret:
1564 if (netif_msg_link(cp))
1565 printk(KERN_INFO "%s: Autoneg failed again, keeping"
1566 " forced mode\n", cp->dev->name);
1567 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1568 cp->timer_ticks = 5;
1569 cp->lstate = link_force_ok;
1570 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1571 break;
1572
1573 case link_aneg:
1574 val = cas_phy_read(cp, MII_BMCR);
1575
1576 /* Try forced modes. we try things in the following order:
1577 * 1000 full -> 100 full/half -> 10 half
1578 */
1579 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1580 val |= BMCR_FULLDPLX;
1581 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1582 CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1583 cas_phy_write(cp, MII_BMCR, val);
1584 cp->timer_ticks = 5;
1585 cp->lstate = link_force_try;
1586 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1587 break;
1588
1589 case link_force_try:
1590 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1591 val = cas_phy_read(cp, MII_BMCR);
1592 cp->timer_ticks = 5;
1593 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1594 val &= ~CAS_BMCR_SPEED1000;
1595 val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1596 cas_phy_write(cp, MII_BMCR, val);
1597 break;
1598 }
1599
1600 if (val & BMCR_SPEED100) {
1601 if (val & BMCR_FULLDPLX) /* fd failed */
1602 val &= ~BMCR_FULLDPLX;
1603 else { /* 100Mbps failed */
1604 val &= ~BMCR_SPEED100;
1605 }
1606 cas_phy_write(cp, MII_BMCR, val);
1607 break;
1608 }
1609 default:
1610 break;
1611 }
1612 return 0;
1613}
1614
1615
1616/* must be invoked with cp->lock held */
1617static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1618{
1619 int restart;
1620
1621 if (bmsr & BMSR_LSTATUS) {
1622 /* Ok, here we got a link. If we had it due to a forced
1623 * fallback, and we were configured for autoneg, we
1624 * retry a short autoneg pass. If you know your hub is
1625 * broken, use ethtool ;)
1626 */
1627 if ((cp->lstate == link_force_try) &&
1628 (cp->link_cntl & BMCR_ANENABLE)) {
1629 cp->lstate = link_force_ret;
1630 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1631 cas_mif_poll(cp, 0);
1632 cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1633 cp->timer_ticks = 5;
1634 if (cp->opened && netif_msg_link(cp))
1635 printk(KERN_INFO "%s: Got link after fallback, retrying"
1636 " autoneg once...\n", cp->dev->name);
1637 cas_phy_write(cp, MII_BMCR,
1638 cp->link_fcntl | BMCR_ANENABLE |
1639 BMCR_ANRESTART);
1640 cas_mif_poll(cp, 1);
1641
1642 } else if (cp->lstate != link_up) {
1643 cp->lstate = link_up;
1644 cp->link_transition = LINK_TRANSITION_LINK_UP;
1645
1646 if (cp->opened) {
1647 cas_set_link_modes(cp);
1648 netif_carrier_on(cp->dev);
1649 }
1650 }
1651 return 0;
1652 }
1653
1654 /* link not up. if the link was previously up, we restart the
1655 * whole process
1656 */
1657 restart = 0;
1658 if (cp->lstate == link_up) {
1659 cp->lstate = link_down;
1660 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1661
1662 netif_carrier_off(cp->dev);
1663 if (cp->opened && netif_msg_link(cp))
1664 printk(KERN_INFO "%s: Link down\n",
1665 cp->dev->name);
1666 restart = 1;
1667
1668 } else if (++cp->timer_ticks > 10)
1669 cas_mdio_link_not_up(cp);
1670
1671 return restart;
1672}
1673
1674static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1675 u32 status)
1676{
1677 u32 stat = readl(cp->regs + REG_MIF_STATUS);
1678 u16 bmsr;
1679
1680 /* check for a link change */
1681 if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1682 return 0;
1683
1684 bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1685 return cas_mii_link_check(cp, bmsr);
1686}
1687
1688static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1689 u32 status)
1690{
1691 u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1692
1693 if (!stat)
1694 return 0;
1695
1696 printk(KERN_ERR "%s: PCI error [%04x:%04x] ", dev->name, stat,
1697 readl(cp->regs + REG_BIM_DIAG));
1698
1699 /* cassini+ has this reserved */
1700 if ((stat & PCI_ERR_BADACK) &&
1701 ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1702 printk("<No ACK64# during ABS64 cycle> ");
1703
1704 if (stat & PCI_ERR_DTRTO)
1705 printk("<Delayed transaction timeout> ");
1706 if (stat & PCI_ERR_OTHER)
1707 printk("<other> ");
1708 if (stat & PCI_ERR_BIM_DMA_WRITE)
1709 printk("<BIM DMA 0 write req> ");
1710 if (stat & PCI_ERR_BIM_DMA_READ)
1711 printk("<BIM DMA 0 read req> ");
1712 printk("\n");
1713
1714 if (stat & PCI_ERR_OTHER) {
1715 u16 cfg;
1716
1717 /* Interrogate PCI config space for the
1718 * true cause.
1719 */
1720 pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1721 printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n",
1722 dev->name, cfg);
1723 if (cfg & PCI_STATUS_PARITY)
1724 printk(KERN_ERR "%s: PCI parity error detected.\n",
1725 dev->name);
1726 if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1727 printk(KERN_ERR "%s: PCI target abort.\n",
1728 dev->name);
1729 if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1730 printk(KERN_ERR "%s: PCI master acks target abort.\n",
1731 dev->name);
1732 if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1733 printk(KERN_ERR "%s: PCI master abort.\n", dev->name);
1734 if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1735 printk(KERN_ERR "%s: PCI system error SERR#.\n",
1736 dev->name);
1737 if (cfg & PCI_STATUS_DETECTED_PARITY)
1738 printk(KERN_ERR "%s: PCI parity error.\n",
1739 dev->name);
1740
1741 /* Write the error bits back to clear them. */
1742 cfg &= (PCI_STATUS_PARITY |
1743 PCI_STATUS_SIG_TARGET_ABORT |
1744 PCI_STATUS_REC_TARGET_ABORT |
1745 PCI_STATUS_REC_MASTER_ABORT |
1746 PCI_STATUS_SIG_SYSTEM_ERROR |
1747 PCI_STATUS_DETECTED_PARITY);
1748 pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1749 }
1750
1751 /* For all PCI errors, we should reset the chip. */
1752 return 1;
1753}
1754
1755/* All non-normal interrupt conditions get serviced here.
1756 * Returns non-zero if we should just exit the interrupt
1757 * handler right now (ie. if we reset the card which invalidates
1758 * all of the other original irq status bits).
1759 */
1760static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1761 u32 status)
1762{
1763 if (status & INTR_RX_TAG_ERROR) {
1764 /* corrupt RX tag framing */
1765 if (netif_msg_rx_err(cp))
1766 printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
1767 cp->dev->name);
1768 spin_lock(&cp->stat_lock[0]);
1769 cp->net_stats[0].rx_errors++;
1770 spin_unlock(&cp->stat_lock[0]);
1771 goto do_reset;
1772 }
1773
1774 if (status & INTR_RX_LEN_MISMATCH) {
1775 /* length mismatch. */
1776 if (netif_msg_rx_err(cp))
1777 printk(KERN_DEBUG "%s: length mismatch for rx frame\n",
1778 cp->dev->name);
1779 spin_lock(&cp->stat_lock[0]);
1780 cp->net_stats[0].rx_errors++;
1781 spin_unlock(&cp->stat_lock[0]);
1782 goto do_reset;
1783 }
1784
1785 if (status & INTR_PCS_STATUS) {
1786 if (cas_pcs_interrupt(dev, cp, status))
1787 goto do_reset;
1788 }
1789
1790 if (status & INTR_TX_MAC_STATUS) {
1791 if (cas_txmac_interrupt(dev, cp, status))
1792 goto do_reset;
1793 }
1794
1795 if (status & INTR_RX_MAC_STATUS) {
1796 if (cas_rxmac_interrupt(dev, cp, status))
1797 goto do_reset;
1798 }
1799
1800 if (status & INTR_MAC_CTRL_STATUS) {
1801 if (cas_mac_interrupt(dev, cp, status))
1802 goto do_reset;
1803 }
1804
1805 if (status & INTR_MIF_STATUS) {
1806 if (cas_mif_interrupt(dev, cp, status))
1807 goto do_reset;
1808 }
1809
1810 if (status & INTR_PCI_ERROR_STATUS) {
1811 if (cas_pci_interrupt(dev, cp, status))
1812 goto do_reset;
1813 }
1814 return 0;
1815
1816do_reset:
1817#if 1
1818 atomic_inc(&cp->reset_task_pending);
1819 atomic_inc(&cp->reset_task_pending_all);
1820 printk(KERN_ERR "%s:reset called in cas_abnormal_irq [0x%x]\n",
1821 dev->name, status);
1822 schedule_work(&cp->reset_task);
1823#else
1824 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1825 printk(KERN_ERR "reset called in cas_abnormal_irq\n");
1826 schedule_work(&cp->reset_task);
1827#endif
1828 return 1;
1829}
1830
1831/* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1832 * determining whether to do a netif_stop/wakeup
1833 */
1834#define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1835#define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1836static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1837 const int len)
1838{
1839 unsigned long off = addr + len;
1840
1841 if (CAS_TABORT(cp) == 1)
1842 return 0;
1843 if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1844 return 0;
1845 return TX_TARGET_ABORT_LEN;
1846}
1847
1848static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1849{
1850 struct cas_tx_desc *txds;
1851 struct sk_buff **skbs;
1852 struct net_device *dev = cp->dev;
1853 int entry, count;
1854
1855 spin_lock(&cp->tx_lock[ring]);
1856 txds = cp->init_txds[ring];
1857 skbs = cp->tx_skbs[ring];
1858 entry = cp->tx_old[ring];
1859
1860 count = TX_BUFF_COUNT(ring, entry, limit);
1861 while (entry != limit) {
1862 struct sk_buff *skb = skbs[entry];
1863 dma_addr_t daddr;
1864 u32 dlen;
1865 int frag;
1866
1867 if (!skb) {
1868 /* this should never occur */
1869 entry = TX_DESC_NEXT(ring, entry);
1870 continue;
1871 }
1872
1873 /* however, we might get only a partial skb release. */
1874 count -= skb_shinfo(skb)->nr_frags +
1875 + cp->tx_tiny_use[ring][entry].nbufs + 1;
1876 if (count < 0)
1877 break;
1878
1879 if (netif_msg_tx_done(cp))
1880 printk(KERN_DEBUG "%s: tx[%d] done, slot %d\n",
1881 cp->dev->name, ring, entry);
1882
1883 skbs[entry] = NULL;
1884 cp->tx_tiny_use[ring][entry].nbufs = 0;
1885
1886 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1887 struct cas_tx_desc *txd = txds + entry;
1888
1889 daddr = le64_to_cpu(txd->buffer);
1890 dlen = CAS_VAL(TX_DESC_BUFLEN,
1891 le64_to_cpu(txd->control));
1892 pci_unmap_page(cp->pdev, daddr, dlen,
1893 PCI_DMA_TODEVICE);
1894 entry = TX_DESC_NEXT(ring, entry);
1895
1896 /* tiny buffer may follow */
1897 if (cp->tx_tiny_use[ring][entry].used) {
1898 cp->tx_tiny_use[ring][entry].used = 0;
1899 entry = TX_DESC_NEXT(ring, entry);
1900 }
1901 }
1902
1903 spin_lock(&cp->stat_lock[ring]);
1904 cp->net_stats[ring].tx_packets++;
1905 cp->net_stats[ring].tx_bytes += skb->len;
1906 spin_unlock(&cp->stat_lock[ring]);
1907 dev_kfree_skb_irq(skb);
1908 }
1909 cp->tx_old[ring] = entry;
1910
1911 /* this is wrong for multiple tx rings. the net device needs
1912 * multiple queues for this to do the right thing. we wait
1913 * for 2*packets to be available when using tiny buffers
1914 */
1915 if (netif_queue_stopped(dev) &&
1916 (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1917 netif_wake_queue(dev);
1918 spin_unlock(&cp->tx_lock[ring]);
1919}
1920
1921static void cas_tx(struct net_device *dev, struct cas *cp,
1922 u32 status)
1923{
1924 int limit, ring;
1925#ifdef USE_TX_COMPWB
1926 u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1927#endif
1928 if (netif_msg_intr(cp))
1929 printk(KERN_DEBUG "%s: tx interrupt, status: 0x%x, %lx\n",
1930 cp->dev->name, status, compwb);
1931 /* process all the rings */
1932 for (ring = 0; ring < N_TX_RINGS; ring++) {
1933#ifdef USE_TX_COMPWB
1934 /* use the completion writeback registers */
1935 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1936 CAS_VAL(TX_COMPWB_LSB, compwb);
1937 compwb = TX_COMPWB_NEXT(compwb);
1938#else
1939 limit = readl(cp->regs + REG_TX_COMPN(ring));
1940#endif
1941 if (cp->tx_old[ring] != limit)
1942 cas_tx_ringN(cp, ring, limit);
1943 }
1944}
1945
1946
1947static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1948 int entry, const u64 *words,
1949 struct sk_buff **skbref)
1950{
1951 int dlen, hlen, len, i, alloclen;
1952 int off, swivel = RX_SWIVEL_OFF_VAL;
1953 struct cas_page *page;
1954 struct sk_buff *skb;
1955 void *addr, *crcaddr;
1956 char *p;
1957
1958 hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1959 dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1960 len = hlen + dlen;
1961
1962 if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1963 alloclen = len;
1964 else
1965 alloclen = max(hlen, RX_COPY_MIN);
1966
1967 skb = dev_alloc_skb(alloclen + swivel + cp->crc_size);
1968 if (skb == NULL)
1969 return -1;
1970
1971 *skbref = skb;
1972 skb->dev = cp->dev;
1973 skb_reserve(skb, swivel);
1974
1975 p = skb->data;
1976 addr = crcaddr = NULL;
1977 if (hlen) { /* always copy header pages */
1978 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1979 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1980 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1981 swivel;
1982
1983 i = hlen;
1984 if (!dlen) /* attach FCS */
1985 i += cp->crc_size;
1986 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
1987 PCI_DMA_FROMDEVICE);
1988 addr = cas_page_map(page->buffer);
1989 memcpy(p, addr + off, i);
1990 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
1991 PCI_DMA_FROMDEVICE);
1992 cas_page_unmap(addr);
1993 RX_USED_ADD(page, 0x100);
1994 p += hlen;
1995 swivel = 0;
1996 }
1997
1998
1999 if (alloclen < (hlen + dlen)) {
2000 skb_frag_t *frag = skb_shinfo(skb)->frags;
2001
2002 /* normal or jumbo packets. we use frags */
2003 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2004 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2005 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2006
2007 hlen = min(cp->page_size - off, dlen);
2008 if (hlen < 0) {
2009 if (netif_msg_rx_err(cp)) {
2010 printk(KERN_DEBUG "%s: rx page overflow: "
2011 "%d\n", cp->dev->name, hlen);
2012 }
2013 dev_kfree_skb_irq(skb);
2014 return -1;
2015 }
2016 i = hlen;
2017 if (i == dlen) /* attach FCS */
2018 i += cp->crc_size;
2019 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2020 PCI_DMA_FROMDEVICE);
2021
2022 /* make sure we always copy a header */
2023 swivel = 0;
2024 if (p == (char *) skb->data) { /* not split */
2025 addr = cas_page_map(page->buffer);
2026 memcpy(p, addr + off, RX_COPY_MIN);
2027 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2028 PCI_DMA_FROMDEVICE);
2029 cas_page_unmap(addr);
2030 off += RX_COPY_MIN;
2031 swivel = RX_COPY_MIN;
2032 RX_USED_ADD(page, cp->mtu_stride);
2033 } else {
2034 RX_USED_ADD(page, hlen);
2035 }
2036 skb_put(skb, alloclen);
2037
2038 skb_shinfo(skb)->nr_frags++;
2039 skb->data_len += hlen - swivel;
2040 skb->len += hlen - swivel;
2041
2042 get_page(page->buffer);
2043 frag->page = page->buffer;
2044 frag->page_offset = off;
2045 frag->size = hlen - swivel;
2046
2047 /* any more data? */
2048 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2049 hlen = dlen;
2050 off = 0;
2051
2052 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2053 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2054 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2055 hlen + cp->crc_size,
2056 PCI_DMA_FROMDEVICE);
2057 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2058 hlen + cp->crc_size,
2059 PCI_DMA_FROMDEVICE);
2060
2061 skb_shinfo(skb)->nr_frags++;
2062 skb->data_len += hlen;
2063 skb->len += hlen;
2064 frag++;
2065
2066 get_page(page->buffer);
2067 frag->page = page->buffer;
2068 frag->page_offset = 0;
2069 frag->size = hlen;
2070 RX_USED_ADD(page, hlen + cp->crc_size);
2071 }
2072
2073 if (cp->crc_size) {
2074 addr = cas_page_map(page->buffer);
2075 crcaddr = addr + off + hlen;
2076 }
2077
2078 } else {
2079 /* copying packet */
2080 if (!dlen)
2081 goto end_copy_pkt;
2082
2083 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2084 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2085 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2086 hlen = min(cp->page_size - off, dlen);
2087 if (hlen < 0) {
2088 if (netif_msg_rx_err(cp)) {
2089 printk(KERN_DEBUG "%s: rx page overflow: "
2090 "%d\n", cp->dev->name, hlen);
2091 }
2092 dev_kfree_skb_irq(skb);
2093 return -1;
2094 }
2095 i = hlen;
2096 if (i == dlen) /* attach FCS */
2097 i += cp->crc_size;
2098 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2099 PCI_DMA_FROMDEVICE);
2100 addr = cas_page_map(page->buffer);
2101 memcpy(p, addr + off, i);
2102 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2103 PCI_DMA_FROMDEVICE);
2104 cas_page_unmap(addr);
2105 if (p == (char *) skb->data) /* not split */
2106 RX_USED_ADD(page, cp->mtu_stride);
2107 else
2108 RX_USED_ADD(page, i);
2109
2110 /* any more data? */
2111 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2112 p += hlen;
2113 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2114 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2115 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2116 dlen + cp->crc_size,
2117 PCI_DMA_FROMDEVICE);
2118 addr = cas_page_map(page->buffer);
2119 memcpy(p, addr, dlen + cp->crc_size);
2120 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2121 dlen + cp->crc_size,
2122 PCI_DMA_FROMDEVICE);
2123 cas_page_unmap(addr);
2124 RX_USED_ADD(page, dlen + cp->crc_size);
2125 }
2126end_copy_pkt:
2127 if (cp->crc_size) {
2128 addr = NULL;
2129 crcaddr = skb->data + alloclen;
2130 }
2131 skb_put(skb, alloclen);
2132 }
2133
2134 i = CAS_VAL(RX_COMP4_TCP_CSUM, words[3]);
2135 if (cp->crc_size) {
2136 /* checksum includes FCS. strip it out. */
2137 i = csum_fold(csum_partial(crcaddr, cp->crc_size, i));
2138 if (addr)
2139 cas_page_unmap(addr);
2140 }
2141 skb->csum = ntohs(i ^ 0xffff);
2142 skb->ip_summed = CHECKSUM_HW;
2143 skb->protocol = eth_type_trans(skb, cp->dev);
2144 return len;
2145}
2146
2147
2148/* we can handle up to 64 rx flows at a time. we do the same thing
2149 * as nonreassm except that we batch up the buffers.
2150 * NOTE: we currently just treat each flow as a bunch of packets that
2151 * we pass up. a better way would be to coalesce the packets
2152 * into a jumbo packet. to do that, we need to do the following:
2153 * 1) the first packet will have a clean split between header and
2154 * data. save both.
2155 * 2) each time the next flow packet comes in, extend the
2156 * data length and merge the checksums.
2157 * 3) on flow release, fix up the header.
2158 * 4) make sure the higher layer doesn't care.
2159 * because packets get coalesced, we shouldn't run into fragment count
2160 * issues.
2161 */
2162static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2163 struct sk_buff *skb)
2164{
2165 int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2166 struct sk_buff_head *flow = &cp->rx_flows[flowid];
2167
2168 /* this is protected at a higher layer, so no need to
2169 * do any additional locking here. stick the buffer
2170 * at the end.
2171 */
2172 __skb_insert(skb, flow->prev, (struct sk_buff *) flow, flow);
2173 if (words[0] & RX_COMP1_RELEASE_FLOW) {
2174 while ((skb = __skb_dequeue(flow))) {
2175 cas_skb_release(skb);
2176 }
2177 }
2178}
2179
2180/* put rx descriptor back on ring. if a buffer is in use by a higher
2181 * layer, this will need to put in a replacement.
2182 */
2183static void cas_post_page(struct cas *cp, const int ring, const int index)
2184{
2185 cas_page_t *new;
2186 int entry;
2187
2188 entry = cp->rx_old[ring];
2189
2190 new = cas_page_swap(cp, ring, index);
2191 cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2192 cp->init_rxds[ring][entry].index =
2193 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2194 CAS_BASE(RX_INDEX_RING, ring));
2195
2196 entry = RX_DESC_ENTRY(ring, entry + 1);
2197 cp->rx_old[ring] = entry;
2198
2199 if (entry % 4)
2200 return;
2201
2202 if (ring == 0)
2203 writel(entry, cp->regs + REG_RX_KICK);
2204 else if ((N_RX_DESC_RINGS > 1) &&
2205 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2206 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2207}
2208
2209
2210/* only when things are bad */
2211static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2212{
2213 unsigned int entry, last, count, released;
2214 int cluster;
2215 cas_page_t **page = cp->rx_pages[ring];
2216
2217 entry = cp->rx_old[ring];
2218
2219 if (netif_msg_intr(cp))
2220 printk(KERN_DEBUG "%s: rxd[%d] interrupt, done: %d\n",
2221 cp->dev->name, ring, entry);
2222
2223 cluster = -1;
2224 count = entry & 0x3;
2225 last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2226 released = 0;
2227 while (entry != last) {
2228 /* make a new buffer if it's still in use */
2229 if (page_count(page[entry]->buffer) > 1) {
2230 cas_page_t *new = cas_page_dequeue(cp);
2231 if (!new) {
2232 /* let the timer know that we need to
2233 * do this again
2234 */
2235 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2236 if (!timer_pending(&cp->link_timer))
2237 mod_timer(&cp->link_timer, jiffies +
2238 CAS_LINK_FAST_TIMEOUT);
2239 cp->rx_old[ring] = entry;
2240 cp->rx_last[ring] = num ? num - released : 0;
2241 return -ENOMEM;
2242 }
2243 spin_lock(&cp->rx_inuse_lock);
2244 list_add(&page[entry]->list, &cp->rx_inuse_list);
2245 spin_unlock(&cp->rx_inuse_lock);
2246 cp->init_rxds[ring][entry].buffer =
2247 cpu_to_le64(new->dma_addr);
2248 page[entry] = new;
2249
2250 }
2251
2252 if (++count == 4) {
2253 cluster = entry;
2254 count = 0;
2255 }
2256 released++;
2257 entry = RX_DESC_ENTRY(ring, entry + 1);
2258 }
2259 cp->rx_old[ring] = entry;
2260
2261 if (cluster < 0)
2262 return 0;
2263
2264 if (ring == 0)
2265 writel(cluster, cp->regs + REG_RX_KICK);
2266 else if ((N_RX_DESC_RINGS > 1) &&
2267 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2268 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2269 return 0;
2270}
2271
2272
2273/* process a completion ring. packets are set up in three basic ways:
2274 * small packets: should be copied header + data in single buffer.
2275 * large packets: header and data in a single buffer.
2276 * split packets: header in a separate buffer from data.
2277 * data may be in multiple pages. data may be > 256
2278 * bytes but in a single page.
2279 *
2280 * NOTE: RX page posting is done in this routine as well. while there's
2281 * the capability of using multiple RX completion rings, it isn't
2282 * really worthwhile due to the fact that the page posting will
2283 * force serialization on the single descriptor ring.
2284 */
2285static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2286{
2287 struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2288 int entry, drops;
2289 int npackets = 0;
2290
2291 if (netif_msg_intr(cp))
2292 printk(KERN_DEBUG "%s: rx[%d] interrupt, done: %d/%d\n",
2293 cp->dev->name, ring,
2294 readl(cp->regs + REG_RX_COMP_HEAD),
2295 cp->rx_new[ring]);
2296
2297 entry = cp->rx_new[ring];
2298 drops = 0;
2299 while (1) {
2300 struct cas_rx_comp *rxc = rxcs + entry;
2301 struct sk_buff *skb;
2302 int type, len;
2303 u64 words[4];
2304 int i, dring;
2305
2306 words[0] = le64_to_cpu(rxc->word1);
2307 words[1] = le64_to_cpu(rxc->word2);
2308 words[2] = le64_to_cpu(rxc->word3);
2309 words[3] = le64_to_cpu(rxc->word4);
2310
2311 /* don't touch if still owned by hw */
2312 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2313 if (type == 0)
2314 break;
2315
2316 /* hw hasn't cleared the zero bit yet */
2317 if (words[3] & RX_COMP4_ZERO) {
2318 break;
2319 }
2320
2321 /* get info on the packet */
2322 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2323 spin_lock(&cp->stat_lock[ring]);
2324 cp->net_stats[ring].rx_errors++;
2325 if (words[3] & RX_COMP4_LEN_MISMATCH)
2326 cp->net_stats[ring].rx_length_errors++;
2327 if (words[3] & RX_COMP4_BAD)
2328 cp->net_stats[ring].rx_crc_errors++;
2329 spin_unlock(&cp->stat_lock[ring]);
2330
2331 /* We'll just return it to Cassini. */
2332 drop_it:
2333 spin_lock(&cp->stat_lock[ring]);
2334 ++cp->net_stats[ring].rx_dropped;
2335 spin_unlock(&cp->stat_lock[ring]);
2336 goto next;
2337 }
2338
2339 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2340 if (len < 0) {
2341 ++drops;
2342 goto drop_it;
2343 }
2344
2345 /* see if it's a flow re-assembly or not. the driver
2346 * itself handles release back up.
2347 */
2348 if (RX_DONT_BATCH || (type == 0x2)) {
2349 /* non-reassm: these always get released */
2350 cas_skb_release(skb);
2351 } else {
2352 cas_rx_flow_pkt(cp, words, skb);
2353 }
2354
2355 spin_lock(&cp->stat_lock[ring]);
2356 cp->net_stats[ring].rx_packets++;
2357 cp->net_stats[ring].rx_bytes += len;
2358 spin_unlock(&cp->stat_lock[ring]);
2359 cp->dev->last_rx = jiffies;
2360
2361 next:
2362 npackets++;
2363
2364 /* should it be released? */
2365 if (words[0] & RX_COMP1_RELEASE_HDR) {
2366 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2367 dring = CAS_VAL(RX_INDEX_RING, i);
2368 i = CAS_VAL(RX_INDEX_NUM, i);
2369 cas_post_page(cp, dring, i);
2370 }
2371
2372 if (words[0] & RX_COMP1_RELEASE_DATA) {
2373 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2374 dring = CAS_VAL(RX_INDEX_RING, i);
2375 i = CAS_VAL(RX_INDEX_NUM, i);
2376 cas_post_page(cp, dring, i);
2377 }
2378
2379 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2380 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2381 dring = CAS_VAL(RX_INDEX_RING, i);
2382 i = CAS_VAL(RX_INDEX_NUM, i);
2383 cas_post_page(cp, dring, i);
2384 }
2385
2386 /* skip to the next entry */
2387 entry = RX_COMP_ENTRY(ring, entry + 1 +
2388 CAS_VAL(RX_COMP1_SKIP, words[0]));
2389#ifdef USE_NAPI
2390 if (budget && (npackets >= budget))
2391 break;
2392#endif
2393 }
2394 cp->rx_new[ring] = entry;
2395
2396 if (drops)
2397 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
2398 cp->dev->name);
2399 return npackets;
2400}
2401
2402
2403/* put completion entries back on the ring */
2404static void cas_post_rxcs_ringN(struct net_device *dev,
2405 struct cas *cp, int ring)
2406{
2407 struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2408 int last, entry;
2409
2410 last = cp->rx_cur[ring];
2411 entry = cp->rx_new[ring];
2412 if (netif_msg_intr(cp))
2413 printk(KERN_DEBUG "%s: rxc[%d] interrupt, done: %d/%d\n",
2414 dev->name, ring, readl(cp->regs + REG_RX_COMP_HEAD),
2415 entry);
2416
2417 /* zero and re-mark descriptors */
2418 while (last != entry) {
2419 cas_rxc_init(rxc + last);
2420 last = RX_COMP_ENTRY(ring, last + 1);
2421 }
2422 cp->rx_cur[ring] = last;
2423
2424 if (ring == 0)
2425 writel(last, cp->regs + REG_RX_COMP_TAIL);
2426 else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2427 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2428}
2429
2430
2431
2432/* cassini can use all four PCI interrupts for the completion ring.
2433 * rings 3 and 4 are identical
2434 */
2435#if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2436static inline void cas_handle_irqN(struct net_device *dev,
2437 struct cas *cp, const u32 status,
2438 const int ring)
2439{
2440 if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2441 cas_post_rxcs_ringN(dev, cp, ring);
2442}
2443
2444static irqreturn_t cas_interruptN(int irq, void *dev_id, struct pt_regs *regs)
2445{
2446 struct net_device *dev = dev_id;
2447 struct cas *cp = netdev_priv(dev);
2448 unsigned long flags;
2449 int ring;
2450 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2451
2452 /* check for shared irq */
2453 if (status == 0)
2454 return IRQ_NONE;
2455
2456 ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2457 spin_lock_irqsave(&cp->lock, flags);
2458 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2459#ifdef USE_NAPI
2460 cas_mask_intr(cp);
2461 netif_rx_schedule(dev);
2462#else
2463 cas_rx_ringN(cp, ring, 0);
2464#endif
2465 status &= ~INTR_RX_DONE_ALT;
2466 }
2467
2468 if (status)
2469 cas_handle_irqN(dev, cp, status, ring);
2470 spin_unlock_irqrestore(&cp->lock, flags);
2471 return IRQ_HANDLED;
2472}
2473#endif
2474
2475#ifdef USE_PCI_INTB
2476/* everything but rx packets */
2477static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2478{
2479 if (status & INTR_RX_BUF_UNAVAIL_1) {
2480 /* Frame arrived, no free RX buffers available.
2481 * NOTE: we can get this on a link transition. */
2482 cas_post_rxds_ringN(cp, 1, 0);
2483 spin_lock(&cp->stat_lock[1]);
2484 cp->net_stats[1].rx_dropped++;
2485 spin_unlock(&cp->stat_lock[1]);
2486 }
2487
2488 if (status & INTR_RX_BUF_AE_1)
2489 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2490 RX_AE_FREEN_VAL(1));
2491
2492 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2493 cas_post_rxcs_ringN(cp, 1);
2494}
2495
2496/* ring 2 handles a few more events than 3 and 4 */
2497static irqreturn_t cas_interrupt1(int irq, void *dev_id, struct pt_regs *regs)
2498{
2499 struct net_device *dev = dev_id;
2500 struct cas *cp = netdev_priv(dev);
2501 unsigned long flags;
2502 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2503
2504 /* check for shared interrupt */
2505 if (status == 0)
2506 return IRQ_NONE;
2507
2508 spin_lock_irqsave(&cp->lock, flags);
2509 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2510#ifdef USE_NAPI
2511 cas_mask_intr(cp);
2512 netif_rx_schedule(dev);
2513#else
2514 cas_rx_ringN(cp, 1, 0);
2515#endif
2516 status &= ~INTR_RX_DONE_ALT;
2517 }
2518 if (status)
2519 cas_handle_irq1(cp, status);
2520 spin_unlock_irqrestore(&cp->lock, flags);
2521 return IRQ_HANDLED;
2522}
2523#endif
2524
2525static inline void cas_handle_irq(struct net_device *dev,
2526 struct cas *cp, const u32 status)
2527{
2528 /* housekeeping interrupts */
2529 if (status & INTR_ERROR_MASK)
2530 cas_abnormal_irq(dev, cp, status);
2531
2532 if (status & INTR_RX_BUF_UNAVAIL) {
2533 /* Frame arrived, no free RX buffers available.
2534 * NOTE: we can get this on a link transition.
2535 */
2536 cas_post_rxds_ringN(cp, 0, 0);
2537 spin_lock(&cp->stat_lock[0]);
2538 cp->net_stats[0].rx_dropped++;
2539 spin_unlock(&cp->stat_lock[0]);
2540 } else if (status & INTR_RX_BUF_AE) {
2541 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2542 RX_AE_FREEN_VAL(0));
2543 }
2544
2545 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2546 cas_post_rxcs_ringN(dev, cp, 0);
2547}
2548
2549static irqreturn_t cas_interrupt(int irq, void *dev_id, struct pt_regs *regs)
2550{
2551 struct net_device *dev = dev_id;
2552 struct cas *cp = netdev_priv(dev);
2553 unsigned long flags;
2554 u32 status = readl(cp->regs + REG_INTR_STATUS);
2555
2556 if (status == 0)
2557 return IRQ_NONE;
2558
2559 spin_lock_irqsave(&cp->lock, flags);
2560 if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2561 cas_tx(dev, cp, status);
2562 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2563 }
2564
2565 if (status & INTR_RX_DONE) {
2566#ifdef USE_NAPI
2567 cas_mask_intr(cp);
2568 netif_rx_schedule(dev);
2569#else
2570 cas_rx_ringN(cp, 0, 0);
2571#endif
2572 status &= ~INTR_RX_DONE;
2573 }
2574
2575 if (status)
2576 cas_handle_irq(dev, cp, status);
2577 spin_unlock_irqrestore(&cp->lock, flags);
2578 return IRQ_HANDLED;
2579}
2580
2581
2582#ifdef USE_NAPI
2583static int cas_poll(struct net_device *dev, int *budget)
2584{
2585 struct cas *cp = netdev_priv(dev);
2586 int i, enable_intr, todo, credits;
2587 u32 status = readl(cp->regs + REG_INTR_STATUS);
2588 unsigned long flags;
2589
2590 spin_lock_irqsave(&cp->lock, flags);
2591 cas_tx(dev, cp, status);
2592 spin_unlock_irqrestore(&cp->lock, flags);
2593
2594 /* NAPI rx packets. we spread the credits across all of the
2595 * rxc rings
2596 */
2597 todo = min(*budget, dev->quota);
2598
2599 /* to make sure we're fair with the work we loop through each
2600 * ring N_RX_COMP_RING times with a request of
2601 * todo / N_RX_COMP_RINGS
2602 */
2603 enable_intr = 1;
2604 credits = 0;
2605 for (i = 0; i < N_RX_COMP_RINGS; i++) {
2606 int j;
2607 for (j = 0; j < N_RX_COMP_RINGS; j++) {
2608 credits += cas_rx_ringN(cp, j, todo / N_RX_COMP_RINGS);
2609 if (credits >= todo) {
2610 enable_intr = 0;
2611 goto rx_comp;
2612 }
2613 }
2614 }
2615
2616rx_comp:
2617 *budget -= credits;
2618 dev->quota -= credits;
2619
2620 /* final rx completion */
2621 spin_lock_irqsave(&cp->lock, flags);
2622 if (status)
2623 cas_handle_irq(dev, cp, status);
2624
2625#ifdef USE_PCI_INTB
2626 if (N_RX_COMP_RINGS > 1) {
2627 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2628 if (status)
2629 cas_handle_irq1(dev, cp, status);
2630 }
2631#endif
2632
2633#ifdef USE_PCI_INTC
2634 if (N_RX_COMP_RINGS > 2) {
2635 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2636 if (status)
2637 cas_handle_irqN(dev, cp, status, 2);
2638 }
2639#endif
2640
2641#ifdef USE_PCI_INTD
2642 if (N_RX_COMP_RINGS > 3) {
2643 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2644 if (status)
2645 cas_handle_irqN(dev, cp, status, 3);
2646 }
2647#endif
2648 spin_unlock_irqrestore(&cp->lock, flags);
2649 if (enable_intr) {
2650 netif_rx_complete(dev);
2651 cas_unmask_intr(cp);
2652 return 0;
2653 }
2654 return 1;
2655}
2656#endif
2657
2658#ifdef CONFIG_NET_POLL_CONTROLLER
2659static void cas_netpoll(struct net_device *dev)
2660{
2661 struct cas *cp = netdev_priv(dev);
2662
2663 cas_disable_irq(cp, 0);
2664 cas_interrupt(cp->pdev->irq, dev, NULL);
2665 cas_enable_irq(cp, 0);
2666
2667#ifdef USE_PCI_INTB
2668 if (N_RX_COMP_RINGS > 1) {
2669 /* cas_interrupt1(); */
2670 }
2671#endif
2672#ifdef USE_PCI_INTC
2673 if (N_RX_COMP_RINGS > 2) {
2674 /* cas_interruptN(); */
2675 }
2676#endif
2677#ifdef USE_PCI_INTD
2678 if (N_RX_COMP_RINGS > 3) {
2679 /* cas_interruptN(); */
2680 }
2681#endif
2682}
2683#endif
2684
2685static void cas_tx_timeout(struct net_device *dev)
2686{
2687 struct cas *cp = netdev_priv(dev);
2688
2689 printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2690 if (!cp->hw_running) {
2691 printk("%s: hrm.. hw not running!\n", dev->name);
2692 return;
2693 }
2694
2695 printk(KERN_ERR "%s: MIF_STATE[%08x]\n",
2696 dev->name, readl(cp->regs + REG_MIF_STATE_MACHINE));
2697
2698 printk(KERN_ERR "%s: MAC_STATE[%08x]\n",
2699 dev->name, readl(cp->regs + REG_MAC_STATE_MACHINE));
2700
2701 printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x] "
2702 "FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2703 dev->name,
2704 readl(cp->regs + REG_TX_CFG),
2705 readl(cp->regs + REG_MAC_TX_STATUS),
2706 readl(cp->regs + REG_MAC_TX_CFG),
2707 readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2708 readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2709 readl(cp->regs + REG_TX_FIFO_READ_PTR),
2710 readl(cp->regs + REG_TX_SM_1),
2711 readl(cp->regs + REG_TX_SM_2));
2712
2713 printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n",
2714 dev->name,
2715 readl(cp->regs + REG_RX_CFG),
2716 readl(cp->regs + REG_MAC_RX_STATUS),
2717 readl(cp->regs + REG_MAC_RX_CFG));
2718
2719 printk(KERN_ERR "%s: HP_STATE[%08x:%08x:%08x:%08x]\n",
2720 dev->name,
2721 readl(cp->regs + REG_HP_STATE_MACHINE),
2722 readl(cp->regs + REG_HP_STATUS0),
2723 readl(cp->regs + REG_HP_STATUS1),
2724 readl(cp->regs + REG_HP_STATUS2));
2725
2726#if 1
2727 atomic_inc(&cp->reset_task_pending);
2728 atomic_inc(&cp->reset_task_pending_all);
2729 schedule_work(&cp->reset_task);
2730#else
2731 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2732 schedule_work(&cp->reset_task);
2733#endif
2734}
2735
2736static inline int cas_intme(int ring, int entry)
2737{
2738 /* Algorithm: IRQ every 1/2 of descriptors. */
2739 if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2740 return 1;
2741 return 0;
2742}
2743
2744
2745static void cas_write_txd(struct cas *cp, int ring, int entry,
2746 dma_addr_t mapping, int len, u64 ctrl, int last)
2747{
2748 struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2749
2750 ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2751 if (cas_intme(ring, entry))
2752 ctrl |= TX_DESC_INTME;
2753 if (last)
2754 ctrl |= TX_DESC_EOF;
2755 txd->control = cpu_to_le64(ctrl);
2756 txd->buffer = cpu_to_le64(mapping);
2757}
2758
2759static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2760 const int entry)
2761{
2762 return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2763}
2764
2765static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2766 const int entry, const int tentry)
2767{
2768 cp->tx_tiny_use[ring][tentry].nbufs++;
2769 cp->tx_tiny_use[ring][entry].used = 1;
2770 return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2771}
2772
2773static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2774 struct sk_buff *skb)
2775{
2776 struct net_device *dev = cp->dev;
2777 int entry, nr_frags, frag, tabort, tentry;
2778 dma_addr_t mapping;
2779 unsigned long flags;
2780 u64 ctrl;
2781 u32 len;
2782
2783 spin_lock_irqsave(&cp->tx_lock[ring], flags);
2784
2785 /* This is a hard error, log it. */
2786 if (TX_BUFFS_AVAIL(cp, ring) <=
2787 CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2788 netif_stop_queue(dev);
2789 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2790 printk(KERN_ERR PFX "%s: BUG! Tx Ring full when "
2791 "queue awake!\n", dev->name);
2792 return 1;
2793 }
2794
2795 ctrl = 0;
2796 if (skb->ip_summed == CHECKSUM_HW) {
2797 u64 csum_start_off, csum_stuff_off;
2798
2799 csum_start_off = (u64) (skb->h.raw - skb->data);
2800 csum_stuff_off = (u64) ((skb->h.raw + skb->csum) - skb->data);
2801
2802 ctrl = TX_DESC_CSUM_EN |
2803 CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2804 CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2805 }
2806
2807 entry = cp->tx_new[ring];
2808 cp->tx_skbs[ring][entry] = skb;
2809
2810 nr_frags = skb_shinfo(skb)->nr_frags;
2811 len = skb_headlen(skb);
2812 mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2813 offset_in_page(skb->data), len,
2814 PCI_DMA_TODEVICE);
2815
2816 tentry = entry;
2817 tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2818 if (unlikely(tabort)) {
2819 /* NOTE: len is always > tabort */
2820 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2821 ctrl | TX_DESC_SOF, 0);
2822 entry = TX_DESC_NEXT(ring, entry);
2823
2824 memcpy(tx_tiny_buf(cp, ring, entry), skb->data +
2825 len - tabort, tabort);
2826 mapping = tx_tiny_map(cp, ring, entry, tentry);
2827 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2828 (nr_frags == 0));
2829 } else {
2830 cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2831 TX_DESC_SOF, (nr_frags == 0));
2832 }
2833 entry = TX_DESC_NEXT(ring, entry);
2834
2835 for (frag = 0; frag < nr_frags; frag++) {
2836 skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2837
2838 len = fragp->size;
2839 mapping = pci_map_page(cp->pdev, fragp->page,
2840 fragp->page_offset, len,
2841 PCI_DMA_TODEVICE);
2842
2843 tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2844 if (unlikely(tabort)) {
2845 void *addr;
2846
2847 /* NOTE: len is always > tabort */
2848 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2849 ctrl, 0);
2850 entry = TX_DESC_NEXT(ring, entry);
2851
2852 addr = cas_page_map(fragp->page);
2853 memcpy(tx_tiny_buf(cp, ring, entry),
2854 addr + fragp->page_offset + len - tabort,
2855 tabort);
2856 cas_page_unmap(addr);
2857 mapping = tx_tiny_map(cp, ring, entry, tentry);
2858 len = tabort;
2859 }
2860
2861 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2862 (frag + 1 == nr_frags));
2863 entry = TX_DESC_NEXT(ring, entry);
2864 }
2865
2866 cp->tx_new[ring] = entry;
2867 if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2868 netif_stop_queue(dev);
2869
2870 if (netif_msg_tx_queued(cp))
2871 printk(KERN_DEBUG "%s: tx[%d] queued, slot %d, skblen %d, "
2872 "avail %d\n",
2873 dev->name, ring, entry, skb->len,
2874 TX_BUFFS_AVAIL(cp, ring));
2875 writel(entry, cp->regs + REG_TX_KICKN(ring));
2876 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2877 return 0;
2878}
2879
2880static int cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2881{
2882 struct cas *cp = netdev_priv(dev);
2883
2884 /* this is only used as a load-balancing hint, so it doesn't
2885 * need to be SMP safe
2886 */
2887 static int ring;
2888
2889 skb = skb_padto(skb, cp->min_frame_size);
2890 if (!skb)
2891 return 0;
2892
2893 /* XXX: we need some higher-level QoS hooks to steer packets to
2894 * individual queues.
2895 */
2896 if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2897 return 1;
2898 dev->trans_start = jiffies;
2899 return 0;
2900}
2901
2902static void cas_init_tx_dma(struct cas *cp)
2903{
2904 u64 desc_dma = cp->block_dvma;
2905 unsigned long off;
2906 u32 val;
2907 int i;
2908
2909 /* set up tx completion writeback registers. must be 8-byte aligned */
2910#ifdef USE_TX_COMPWB
2911 off = offsetof(struct cas_init_block, tx_compwb);
2912 writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2913 writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2914#endif
2915
2916 /* enable completion writebacks, enable paced mode,
2917 * disable read pipe, and disable pre-interrupt compwbs
2918 */
2919 val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2920 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2921 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2922 TX_CFG_INTR_COMPWB_DIS;
2923
2924 /* write out tx ring info and tx desc bases */
2925 for (i = 0; i < MAX_TX_RINGS; i++) {
2926 off = (unsigned long) cp->init_txds[i] -
2927 (unsigned long) cp->init_block;
2928
2929 val |= CAS_TX_RINGN_BASE(i);
2930 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2931 writel((desc_dma + off) & 0xffffffff, cp->regs +
2932 REG_TX_DBN_LOW(i));
2933 /* don't zero out the kick register here as the system
2934 * will wedge
2935 */
2936 }
2937 writel(val, cp->regs + REG_TX_CFG);
2938
2939 /* program max burst sizes. these numbers should be different
2940 * if doing QoS.
2941 */
2942#ifdef USE_QOS
2943 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2944 writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2945 writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2946 writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2947#else
2948 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2949 writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2950 writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2951 writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2952#endif
2953}
2954
2955/* Must be invoked under cp->lock. */
2956static inline void cas_init_dma(struct cas *cp)
2957{
2958 cas_init_tx_dma(cp);
2959 cas_init_rx_dma(cp);
2960}
2961
2962/* Must be invoked under cp->lock. */
2963static u32 cas_setup_multicast(struct cas *cp)
2964{
2965 u32 rxcfg = 0;
2966 int i;
2967
2968 if (cp->dev->flags & IFF_PROMISC) {
2969 rxcfg |= MAC_RX_CFG_PROMISC_EN;
2970
2971 } else if (cp->dev->flags & IFF_ALLMULTI) {
2972 for (i=0; i < 16; i++)
2973 writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2974 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2975
2976 } else {
2977 u16 hash_table[16];
2978 u32 crc;
2979 struct dev_mc_list *dmi = cp->dev->mc_list;
2980 int i;
2981
2982 /* use the alternate mac address registers for the
2983 * first 15 multicast addresses
2984 */
2985 for (i = 1; i <= CAS_MC_EXACT_MATCH_SIZE; i++) {
2986 if (!dmi) {
2987 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 0));
2988 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 1));
2989 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 2));
2990 continue;
2991 }
2992 writel((dmi->dmi_addr[4] << 8) | dmi->dmi_addr[5],
2993 cp->regs + REG_MAC_ADDRN(i*3 + 0));
2994 writel((dmi->dmi_addr[2] << 8) | dmi->dmi_addr[3],
2995 cp->regs + REG_MAC_ADDRN(i*3 + 1));
2996 writel((dmi->dmi_addr[0] << 8) | dmi->dmi_addr[1],
2997 cp->regs + REG_MAC_ADDRN(i*3 + 2));
2998 dmi = dmi->next;
2999 }
3000
3001 /* use hw hash table for the next series of
3002 * multicast addresses
3003 */
3004 memset(hash_table, 0, sizeof(hash_table));
3005 while (dmi) {
3006 crc = ether_crc_le(ETH_ALEN, dmi->dmi_addr);
3007 crc >>= 24;
3008 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
3009 dmi = dmi->next;
3010 }
3011 for (i=0; i < 16; i++)
3012 writel(hash_table[i], cp->regs +
3013 REG_MAC_HASH_TABLEN(i));
3014 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3015 }
3016
3017 return rxcfg;
3018}
3019
3020/* must be invoked under cp->stat_lock[N_TX_RINGS] */
3021static void cas_clear_mac_err(struct cas *cp)
3022{
3023 writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3024 writel(0, cp->regs + REG_MAC_COLL_FIRST);
3025 writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3026 writel(0, cp->regs + REG_MAC_COLL_LATE);
3027 writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3028 writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3029 writel(0, cp->regs + REG_MAC_RECV_FRAME);
3030 writel(0, cp->regs + REG_MAC_LEN_ERR);
3031 writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3032 writel(0, cp->regs + REG_MAC_FCS_ERR);
3033 writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3034}
3035
3036
3037static void cas_mac_reset(struct cas *cp)
3038{
3039 int i;
3040
3041 /* do both TX and RX reset */
3042 writel(0x1, cp->regs + REG_MAC_TX_RESET);
3043 writel(0x1, cp->regs + REG_MAC_RX_RESET);
3044
3045 /* wait for TX */
3046 i = STOP_TRIES;
3047 while (i-- > 0) {
3048 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3049 break;
3050 udelay(10);
3051 }
3052
3053 /* wait for RX */
3054 i = STOP_TRIES;
3055 while (i-- > 0) {
3056 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3057 break;
3058 udelay(10);
3059 }
3060
3061 if (readl(cp->regs + REG_MAC_TX_RESET) |
3062 readl(cp->regs + REG_MAC_RX_RESET))
3063 printk(KERN_ERR "%s: mac tx[%d]/rx[%d] reset failed [%08x]\n",
3064 cp->dev->name, readl(cp->regs + REG_MAC_TX_RESET),
3065 readl(cp->regs + REG_MAC_RX_RESET),
3066 readl(cp->regs + REG_MAC_STATE_MACHINE));
3067}
3068
3069
3070/* Must be invoked under cp->lock. */
3071static void cas_init_mac(struct cas *cp)
3072{
3073 unsigned char *e = &cp->dev->dev_addr[0];
3074 int i;
3075#ifdef CONFIG_CASSINI_MULTICAST_REG_WRITE
3076 u32 rxcfg;
3077#endif
3078 cas_mac_reset(cp);
3079
3080 /* setup core arbitration weight register */
3081 writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3082
3083 /* XXX Use pci_dma_burst_advice() */
3084#if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3085 /* set the infinite burst register for chips that don't have
3086 * pci issues.
3087 */
3088 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3089 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3090#endif
3091
3092 writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3093
3094 writel(0x00, cp->regs + REG_MAC_IPG0);
3095 writel(0x08, cp->regs + REG_MAC_IPG1);
3096 writel(0x04, cp->regs + REG_MAC_IPG2);
3097
3098 /* change later for 802.3z */
3099 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3100
3101 /* min frame + FCS */
3102 writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3103
3104 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3105 * specify the maximum frame size to prevent RX tag errors on
3106 * oversized frames.
3107 */
3108 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3109 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3110 (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3111 cp->regs + REG_MAC_FRAMESIZE_MAX);
3112
3113 /* NOTE: crc_size is used as a surrogate for half-duplex.
3114 * workaround saturn half-duplex issue by increasing preamble
3115 * size to 65 bytes.
3116 */
3117 if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3118 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3119 else
3120 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3121 writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3122 writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3123 writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3124
3125 writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3126
3127 writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3128 writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3129 writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3130 writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3131 writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3132
3133 /* setup mac address in perfect filter array */
3134 for (i = 0; i < 45; i++)
3135 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3136
3137 writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3138 writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3139 writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3140
3141 writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3142 writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3143 writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3144
3145#ifndef CONFIG_CASSINI_MULTICAST_REG_WRITE
3146 cp->mac_rx_cfg = cas_setup_multicast(cp);
3147#else
3148 /* WTZ: Do what Adrian did in cas_set_multicast. Doing
3149 * a writel does not seem to be necessary because Cassini
3150 * seems to preserve the configuration when we do the reset.
3151 * If the chip is in trouble, though, it is not clear if we
3152 * can really count on this behavior. cas_set_multicast uses
3153 * spin_lock_irqsave, but we are called only in cas_init_hw and
3154 * cas_init_hw is protected by cas_lock_all, which calls
3155 * spin_lock_irq (so it doesn't need to save the flags, and
3156 * we should be OK for the writel, as that is the only
3157 * difference).
3158 */
3159 cp->mac_rx_cfg = rxcfg = cas_setup_multicast(cp);
3160 writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
3161#endif
3162 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3163 cas_clear_mac_err(cp);
3164 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3165
3166 /* Setup MAC interrupts. We want to get all of the interesting
3167 * counter expiration events, but we do not want to hear about
3168 * normal rx/tx as the DMA engine tells us that.
3169 */
3170 writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3171 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3172
3173 /* Don't enable even the PAUSE interrupts for now, we
3174 * make no use of those events other than to record them.
3175 */
3176 writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3177}
3178
3179/* Must be invoked under cp->lock. */
3180static void cas_init_pause_thresholds(struct cas *cp)
3181{
3182 /* Calculate pause thresholds. Setting the OFF threshold to the
3183 * full RX fifo size effectively disables PAUSE generation
3184 */
3185 if (cp->rx_fifo_size <= (2 * 1024)) {
3186 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3187 } else {
3188 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3189 if (max_frame * 3 > cp->rx_fifo_size) {
3190 cp->rx_pause_off = 7104;
3191 cp->rx_pause_on = 960;
3192 } else {
3193 int off = (cp->rx_fifo_size - (max_frame * 2));
3194 int on = off - max_frame;
3195 cp->rx_pause_off = off;
3196 cp->rx_pause_on = on;
3197 }
3198 }
3199}
3200
3201static int cas_vpd_match(const void __iomem *p, const char *str)
3202{
3203 int len = strlen(str) + 1;
3204 int i;
3205
3206 for (i = 0; i < len; i++) {
3207 if (readb(p + i) != str[i])
3208 return 0;
3209 }
3210 return 1;
3211}
3212
3213
3214/* get the mac address by reading the vpd information in the rom.
3215 * also get the phy type and determine if there's an entropy generator.
3216 * NOTE: this is a bit convoluted for the following reasons:
3217 * 1) vpd info has order-dependent mac addresses for multinic cards
3218 * 2) the only way to determine the nic order is to use the slot
3219 * number.
3220 * 3) fiber cards don't have bridges, so their slot numbers don't
3221 * mean anything.
3222 * 4) we don't actually know we have a fiber card until after
3223 * the mac addresses are parsed.
3224 */
3225static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3226 const int offset)
3227{
3228 void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3229 void __iomem *base, *kstart;
3230 int i, len;
3231 int found = 0;
3232#define VPD_FOUND_MAC 0x01
3233#define VPD_FOUND_PHY 0x02
3234
3235 int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3236 int mac_off = 0;
3237
3238 /* give us access to the PROM */
3239 writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3240 cp->regs + REG_BIM_LOCAL_DEV_EN);
3241
3242 /* check for an expansion rom */
3243 if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3244 goto use_random_mac_addr;
3245
3246 /* search for beginning of vpd */
3247 base = NULL;
3248 for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3249 /* check for PCIR */
3250 if ((readb(p + i + 0) == 0x50) &&
3251 (readb(p + i + 1) == 0x43) &&
3252 (readb(p + i + 2) == 0x49) &&
3253 (readb(p + i + 3) == 0x52)) {
3254 base = p + (readb(p + i + 8) |
3255 (readb(p + i + 9) << 8));
3256 break;
3257 }
3258 }
3259
3260 if (!base || (readb(base) != 0x82))
3261 goto use_random_mac_addr;
3262
3263 i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3264 while (i < EXPANSION_ROM_SIZE) {
3265 if (readb(base + i) != 0x90) /* no vpd found */
3266 goto use_random_mac_addr;
3267
3268 /* found a vpd field */
3269 len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3270
3271 /* extract keywords */
3272 kstart = base + i + 3;
3273 p = kstart;
3274 while ((p - kstart) < len) {
3275 int klen = readb(p + 2);
3276 int j;
3277 char type;
3278
3279 p += 3;
3280
3281 /* look for the following things:
3282 * -- correct length == 29
3283 * 3 (type) + 2 (size) +
3284 * 18 (strlen("local-mac-address") + 1) +
3285 * 6 (mac addr)
3286 * -- VPD Instance 'I'
3287 * -- VPD Type Bytes 'B'
3288 * -- VPD data length == 6
3289 * -- property string == local-mac-address
3290 *
3291 * -- correct length == 24
3292 * 3 (type) + 2 (size) +
3293 * 12 (strlen("entropy-dev") + 1) +
3294 * 7 (strlen("vms110") + 1)
3295 * -- VPD Instance 'I'
3296 * -- VPD Type String 'B'
3297 * -- VPD data length == 7
3298 * -- property string == entropy-dev
3299 *
3300 * -- correct length == 18
3301 * 3 (type) + 2 (size) +
3302 * 9 (strlen("phy-type") + 1) +
3303 * 4 (strlen("pcs") + 1)
3304 * -- VPD Instance 'I'
3305 * -- VPD Type String 'S'
3306 * -- VPD data length == 4
3307 * -- property string == phy-type
3308 *
3309 * -- correct length == 23
3310 * 3 (type) + 2 (size) +
3311 * 14 (strlen("phy-interface") + 1) +
3312 * 4 (strlen("pcs") + 1)
3313 * -- VPD Instance 'I'
3314 * -- VPD Type String 'S'
3315 * -- VPD data length == 4
3316 * -- property string == phy-interface
3317 */
3318 if (readb(p) != 'I')
3319 goto next;
3320
3321 /* finally, check string and length */
3322 type = readb(p + 3);
3323 if (type == 'B') {
3324 if ((klen == 29) && readb(p + 4) == 6 &&
3325 cas_vpd_match(p + 5,
3326 "local-mac-address")) {
3327 if (mac_off++ > offset)
3328 goto next;
3329
3330 /* set mac address */
3331 for (j = 0; j < 6; j++)
3332 dev_addr[j] =
3333 readb(p + 23 + j);
3334 goto found_mac;
3335 }
3336 }
3337
3338 if (type != 'S')
3339 goto next;
3340
3341#ifdef USE_ENTROPY_DEV
3342 if ((klen == 24) &&
3343 cas_vpd_match(p + 5, "entropy-dev") &&
3344 cas_vpd_match(p + 17, "vms110")) {
3345 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3346 goto next;
3347 }
3348#endif
3349
3350 if (found & VPD_FOUND_PHY)
3351 goto next;
3352
3353 if ((klen == 18) && readb(p + 4) == 4 &&
3354 cas_vpd_match(p + 5, "phy-type")) {
3355 if (cas_vpd_match(p + 14, "pcs")) {
3356 phy_type = CAS_PHY_SERDES;
3357 goto found_phy;
3358 }
3359 }
3360
3361 if ((klen == 23) && readb(p + 4) == 4 &&
3362 cas_vpd_match(p + 5, "phy-interface")) {
3363 if (cas_vpd_match(p + 19, "pcs")) {
3364 phy_type = CAS_PHY_SERDES;
3365 goto found_phy;
3366 }
3367 }
3368found_mac:
3369 found |= VPD_FOUND_MAC;
3370 goto next;
3371
3372found_phy:
3373 found |= VPD_FOUND_PHY;
3374
3375next:
3376 p += klen;
3377 }
3378 i += len + 3;
3379 }
3380
3381use_random_mac_addr:
3382 if (found & VPD_FOUND_MAC)
3383 goto done;
3384
3385 /* Sun MAC prefix then 3 random bytes. */
3386 printk(PFX "MAC address not found in ROM VPD\n");
3387 dev_addr[0] = 0x08;
3388 dev_addr[1] = 0x00;
3389 dev_addr[2] = 0x20;
3390 get_random_bytes(dev_addr + 3, 3);
3391
3392done:
3393 writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3394 return phy_type;
3395}
3396
3397/* check pci invariants */
3398static void cas_check_pci_invariants(struct cas *cp)
3399{
3400 struct pci_dev *pdev = cp->pdev;
3401 u8 rev;
3402
3403 cp->cas_flags = 0;
3404 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev);
3405 if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3406 (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3407 if (rev >= CAS_ID_REVPLUS)
3408 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3409 if (rev < CAS_ID_REVPLUS02u)
3410 cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3411
3412 /* Original Cassini supports HW CSUM, but it's not
3413 * enabled by default as it can trigger TX hangs.
3414 */
3415 if (rev < CAS_ID_REV2)
3416 cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3417 } else {
3418 /* Only sun has original cassini chips. */
3419 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3420
3421 /* We use a flag because the same phy might be externally
3422 * connected.
3423 */
3424 if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3425 (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3426 cp->cas_flags |= CAS_FLAG_SATURN;
3427 }
3428}
3429
3430
3431static int cas_check_invariants(struct cas *cp)
3432{
3433 struct pci_dev *pdev = cp->pdev;
3434 u32 cfg;
3435 int i;
3436
3437 /* get page size for rx buffers. */
3438 cp->page_order = 0;
3439#ifdef USE_PAGE_ORDER
3440 if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3441 /* see if we can allocate larger pages */
3442 struct page *page = alloc_pages(GFP_ATOMIC,
3443 CAS_JUMBO_PAGE_SHIFT -
3444 PAGE_SHIFT);
3445 if (page) {
3446 __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3447 cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3448 } else {
3449 printk(PFX "MTU limited to %d bytes\n", CAS_MAX_MTU);
3450 }
3451 }
3452#endif
3453 cp->page_size = (PAGE_SIZE << cp->page_order);
3454
3455 /* Fetch the FIFO configurations. */
3456 cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3457 cp->rx_fifo_size = RX_FIFO_SIZE;
3458
3459 /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3460 * they're both connected.
3461 */
3462 cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3463 PCI_SLOT(pdev->devfn));
3464 if (cp->phy_type & CAS_PHY_SERDES) {
3465 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3466 return 0; /* no more checking needed */
3467 }
3468
3469 /* MII */
3470 cfg = readl(cp->regs + REG_MIF_CFG);
3471 if (cfg & MIF_CFG_MDIO_1) {
3472 cp->phy_type = CAS_PHY_MII_MDIO1;
3473 } else if (cfg & MIF_CFG_MDIO_0) {
3474 cp->phy_type = CAS_PHY_MII_MDIO0;
3475 }
3476
3477 cas_mif_poll(cp, 0);
3478 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3479
3480 for (i = 0; i < 32; i++) {
3481 u32 phy_id;
3482 int j;
3483
3484 for (j = 0; j < 3; j++) {
3485 cp->phy_addr = i;
3486 phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3487 phy_id |= cas_phy_read(cp, MII_PHYSID2);
3488 if (phy_id && (phy_id != 0xFFFFFFFF)) {
3489 cp->phy_id = phy_id;
3490 goto done;
3491 }
3492 }
3493 }
3494 printk(KERN_ERR PFX "MII phy did not respond [%08x]\n",
3495 readl(cp->regs + REG_MIF_STATE_MACHINE));
3496 return -1;
3497
3498done:
3499 /* see if we can do gigabit */
3500 cfg = cas_phy_read(cp, MII_BMSR);
3501 if ((cfg & CAS_BMSR_1000_EXTEND) &&
3502 cas_phy_read(cp, CAS_MII_1000_EXTEND))
3503 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3504 return 0;
3505}
3506
3507/* Must be invoked under cp->lock. */
3508static inline void cas_start_dma(struct cas *cp)
3509{
3510 int i;
3511 u32 val;
3512 int txfailed = 0;
3513
3514 /* enable dma */
3515 val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3516 writel(val, cp->regs + REG_TX_CFG);
3517 val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3518 writel(val, cp->regs + REG_RX_CFG);
3519
3520 /* enable the mac */
3521 val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3522 writel(val, cp->regs + REG_MAC_TX_CFG);
3523 val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3524 writel(val, cp->regs + REG_MAC_RX_CFG);
3525
3526 i = STOP_TRIES;
3527 while (i-- > 0) {
3528 val = readl(cp->regs + REG_MAC_TX_CFG);
3529 if ((val & MAC_TX_CFG_EN))
3530 break;
3531 udelay(10);
3532 }
3533 if (i < 0) txfailed = 1;
3534 i = STOP_TRIES;
3535 while (i-- > 0) {
3536 val = readl(cp->regs + REG_MAC_RX_CFG);
3537 if ((val & MAC_RX_CFG_EN)) {
3538 if (txfailed) {
3539 printk(KERN_ERR
3540 "%s: enabling mac failed [tx:%08x:%08x].\n",
3541 cp->dev->name,
3542 readl(cp->regs + REG_MIF_STATE_MACHINE),
3543 readl(cp->regs + REG_MAC_STATE_MACHINE));
3544 }
3545 goto enable_rx_done;
3546 }
3547 udelay(10);
3548 }
3549 printk(KERN_ERR "%s: enabling mac failed [%s:%08x:%08x].\n",
3550 cp->dev->name,
3551 (txfailed? "tx,rx":"rx"),
3552 readl(cp->regs + REG_MIF_STATE_MACHINE),
3553 readl(cp->regs + REG_MAC_STATE_MACHINE));
3554
3555enable_rx_done:
3556 cas_unmask_intr(cp); /* enable interrupts */
3557 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3558 writel(0, cp->regs + REG_RX_COMP_TAIL);
3559
3560 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3561 if (N_RX_DESC_RINGS > 1)
3562 writel(RX_DESC_RINGN_SIZE(1) - 4,
3563 cp->regs + REG_PLUS_RX_KICK1);
3564
3565 for (i = 1; i < N_RX_COMP_RINGS; i++)
3566 writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3567 }
3568}
3569
3570/* Must be invoked under cp->lock. */
3571static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3572 int *pause)
3573{
3574 u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3575 *fd = (val & PCS_MII_LPA_FD) ? 1 : 0;
3576 *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3577 if (val & PCS_MII_LPA_ASYM_PAUSE)
3578 *pause |= 0x10;
3579 *spd = 1000;
3580}
3581
3582/* Must be invoked under cp->lock. */
3583static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3584 int *pause)
3585{
3586 u32 val;
3587
3588 *fd = 0;
3589 *spd = 10;
3590 *pause = 0;
3591
3592 /* use GMII registers */
3593 val = cas_phy_read(cp, MII_LPA);
3594 if (val & CAS_LPA_PAUSE)
3595 *pause = 0x01;
3596
3597 if (val & CAS_LPA_ASYM_PAUSE)
3598 *pause |= 0x10;
3599
3600 if (val & LPA_DUPLEX)
3601 *fd = 1;
3602 if (val & LPA_100)
3603 *spd = 100;
3604
3605 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3606 val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3607 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3608 *spd = 1000;
3609 if (val & CAS_LPA_1000FULL)
3610 *fd = 1;
3611 }
3612}
3613
3614/* A link-up condition has occurred, initialize and enable the
3615 * rest of the chip.
3616 *
3617 * Must be invoked under cp->lock.
3618 */
3619static void cas_set_link_modes(struct cas *cp)
3620{
3621 u32 val;
3622 int full_duplex, speed, pause;
3623
3624 full_duplex = 0;
3625 speed = 10;
3626 pause = 0;
3627
3628 if (CAS_PHY_MII(cp->phy_type)) {
3629 cas_mif_poll(cp, 0);
3630 val = cas_phy_read(cp, MII_BMCR);
3631 if (val & BMCR_ANENABLE) {
3632 cas_read_mii_link_mode(cp, &full_duplex, &speed,
3633 &pause);
3634 } else {
3635 if (val & BMCR_FULLDPLX)
3636 full_duplex = 1;
3637
3638 if (val & BMCR_SPEED100)
3639 speed = 100;
3640 else if (val & CAS_BMCR_SPEED1000)
3641 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3642 1000 : 100;
3643 }
3644 cas_mif_poll(cp, 1);
3645
3646 } else {
3647 val = readl(cp->regs + REG_PCS_MII_CTRL);
3648 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3649 if ((val & PCS_MII_AUTONEG_EN) == 0) {
3650 if (val & PCS_MII_CTRL_DUPLEX)
3651 full_duplex = 1;
3652 }
3653 }
3654
3655 if (netif_msg_link(cp))
3656 printk(KERN_INFO "%s: Link up at %d Mbps, %s-duplex.\n",
3657 cp->dev->name, speed, (full_duplex ? "full" : "half"));
3658
3659 val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3660 if (CAS_PHY_MII(cp->phy_type)) {
3661 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3662 if (!full_duplex)
3663 val |= MAC_XIF_DISABLE_ECHO;
3664 }
3665 if (full_duplex)
3666 val |= MAC_XIF_FDPLX_LED;
3667 if (speed == 1000)
3668 val |= MAC_XIF_GMII_MODE;
3669 writel(val, cp->regs + REG_MAC_XIF_CFG);
3670
3671 /* deal with carrier and collision detect. */
3672 val = MAC_TX_CFG_IPG_EN;
3673 if (full_duplex) {
3674 val |= MAC_TX_CFG_IGNORE_CARRIER;
3675 val |= MAC_TX_CFG_IGNORE_COLL;
3676 } else {
3677#ifndef USE_CSMA_CD_PROTO
3678 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3679 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3680#endif
3681 }
3682 /* val now set up for REG_MAC_TX_CFG */
3683
3684 /* If gigabit and half-duplex, enable carrier extension
3685 * mode. increase slot time to 512 bytes as well.
3686 * else, disable it and make sure slot time is 64 bytes.
3687 * also activate checksum bug workaround
3688 */
3689 if ((speed == 1000) && !full_duplex) {
3690 writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3691 cp->regs + REG_MAC_TX_CFG);
3692
3693 val = readl(cp->regs + REG_MAC_RX_CFG);
3694 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3695 writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3696 cp->regs + REG_MAC_RX_CFG);
3697
3698 writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3699
3700 cp->crc_size = 4;
3701 /* minimum size gigabit frame at half duplex */
3702 cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3703
3704 } else {
3705 writel(val, cp->regs + REG_MAC_TX_CFG);
3706
3707 /* checksum bug workaround. don't strip FCS when in
3708 * half-duplex mode
3709 */
3710 val = readl(cp->regs + REG_MAC_RX_CFG);
3711 if (full_duplex) {
3712 val |= MAC_RX_CFG_STRIP_FCS;
3713 cp->crc_size = 0;
3714 cp->min_frame_size = CAS_MIN_MTU;
3715 } else {
3716 val &= ~MAC_RX_CFG_STRIP_FCS;
3717 cp->crc_size = 4;
3718 cp->min_frame_size = CAS_MIN_FRAME;
3719 }
3720 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3721 cp->regs + REG_MAC_RX_CFG);
3722 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3723 }
3724
3725 if (netif_msg_link(cp)) {
3726 if (pause & 0x01) {
3727 printk(KERN_INFO "%s: Pause is enabled "
3728 "(rxfifo: %d off: %d on: %d)\n",
3729 cp->dev->name,
3730 cp->rx_fifo_size,
3731 cp->rx_pause_off,
3732 cp->rx_pause_on);
3733 } else if (pause & 0x10) {
3734 printk(KERN_INFO "%s: TX pause enabled\n",
3735 cp->dev->name);
3736 } else {
3737 printk(KERN_INFO "%s: Pause is disabled\n",
3738 cp->dev->name);
3739 }
3740 }
3741
3742 val = readl(cp->regs + REG_MAC_CTRL_CFG);
3743 val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3744 if (pause) { /* symmetric or asymmetric pause */
3745 val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3746 if (pause & 0x01) { /* symmetric pause */
3747 val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3748 }
3749 }
3750 writel(val, cp->regs + REG_MAC_CTRL_CFG);
3751 cas_start_dma(cp);
3752}
3753
3754/* Must be invoked under cp->lock. */
3755static void cas_init_hw(struct cas *cp, int restart_link)
3756{
3757 if (restart_link)
3758 cas_phy_init(cp);
3759
3760 cas_init_pause_thresholds(cp);
3761 cas_init_mac(cp);
3762 cas_init_dma(cp);
3763
3764 if (restart_link) {
3765 /* Default aneg parameters */
3766 cp->timer_ticks = 0;
3767 cas_begin_auto_negotiation(cp, NULL);
3768 } else if (cp->lstate == link_up) {
3769 cas_set_link_modes(cp);
3770 netif_carrier_on(cp->dev);
3771 }
3772}
3773
3774/* Must be invoked under cp->lock. on earlier cassini boards,
3775 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3776 * let it settle out, and then restore pci state.
3777 */
3778static void cas_hard_reset(struct cas *cp)
3779{
3780 writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3781 udelay(20);
3782 pci_restore_state(cp->pdev);
3783}
3784
3785
3786static void cas_global_reset(struct cas *cp, int blkflag)
3787{
3788 int limit;
3789
3790 /* issue a global reset. don't use RSTOUT. */
3791 if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3792 /* For PCS, when the blkflag is set, we should set the
3793 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3794 * the last autonegotiation from being cleared. We'll
3795 * need some special handling if the chip is set into a
3796 * loopback mode.
3797 */
3798 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3799 cp->regs + REG_SW_RESET);
3800 } else {
3801 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3802 }
3803
3804 /* need to wait at least 3ms before polling register */
3805 mdelay(3);
3806
3807 limit = STOP_TRIES;
3808 while (limit-- > 0) {
3809 u32 val = readl(cp->regs + REG_SW_RESET);
3810 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3811 goto done;
3812 udelay(10);
3813 }
3814 printk(KERN_ERR "%s: sw reset failed.\n", cp->dev->name);
3815
3816done:
3817 /* enable various BIM interrupts */
3818 writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3819 BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3820
3821 /* clear out pci error status mask for handled errors.
3822 * we don't deal with DMA counter overflows as they happen
3823 * all the time.
3824 */
3825 writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3826 PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3827 PCI_ERR_BIM_DMA_READ), cp->regs +
3828 REG_PCI_ERR_STATUS_MASK);
3829
3830 /* set up for MII by default to address mac rx reset timeout
3831 * issue
3832 */
3833 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3834}
3835
3836static void cas_reset(struct cas *cp, int blkflag)
3837{
3838 u32 val;
3839
3840 cas_mask_intr(cp);
3841 cas_global_reset(cp, blkflag);
3842 cas_mac_reset(cp);
3843 cas_entropy_reset(cp);
3844
3845 /* disable dma engines. */
3846 val = readl(cp->regs + REG_TX_CFG);
3847 val &= ~TX_CFG_DMA_EN;
3848 writel(val, cp->regs + REG_TX_CFG);
3849
3850 val = readl(cp->regs + REG_RX_CFG);
3851 val &= ~RX_CFG_DMA_EN;
3852 writel(val, cp->regs + REG_RX_CFG);
3853
3854 /* program header parser */
3855 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3856 (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3857 cas_load_firmware(cp, CAS_HP_FIRMWARE);
3858 } else {
3859 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3860 }
3861
3862 /* clear out error registers */
3863 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3864 cas_clear_mac_err(cp);
3865 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3866}
3867
3868/* Shut down the chip, must be called with pm_sem held. */
3869static void cas_shutdown(struct cas *cp)
3870{
3871 unsigned long flags;
3872
3873 /* Make us not-running to avoid timers respawning */
3874 cp->hw_running = 0;
3875
3876 del_timer_sync(&cp->link_timer);
3877
3878 /* Stop the reset task */
3879#if 0
3880 while (atomic_read(&cp->reset_task_pending_mtu) ||
3881 atomic_read(&cp->reset_task_pending_spare) ||
3882 atomic_read(&cp->reset_task_pending_all))
3883 schedule();
3884
3885#else
3886 while (atomic_read(&cp->reset_task_pending))
3887 schedule();
3888#endif
3889 /* Actually stop the chip */
3890 cas_lock_all_save(cp, flags);
3891 cas_reset(cp, 0);
3892 if (cp->cas_flags & CAS_FLAG_SATURN)
3893 cas_phy_powerdown(cp);
3894 cas_unlock_all_restore(cp, flags);
3895}
3896
3897static int cas_change_mtu(struct net_device *dev, int new_mtu)
3898{
3899 struct cas *cp = netdev_priv(dev);
3900
3901 if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
3902 return -EINVAL;
3903
3904 dev->mtu = new_mtu;
3905 if (!netif_running(dev) || !netif_device_present(dev))
3906 return 0;
3907
3908 /* let the reset task handle it */
3909#if 1
3910 atomic_inc(&cp->reset_task_pending);
3911 if ((cp->phy_type & CAS_PHY_SERDES)) {
3912 atomic_inc(&cp->reset_task_pending_all);
3913 } else {
3914 atomic_inc(&cp->reset_task_pending_mtu);
3915 }
3916 schedule_work(&cp->reset_task);
3917#else
3918 atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3919 CAS_RESET_ALL : CAS_RESET_MTU);
3920 printk(KERN_ERR "reset called in cas_change_mtu\n");
3921 schedule_work(&cp->reset_task);
3922#endif
3923
3924 flush_scheduled_work();
3925 return 0;
3926}
3927
3928static void cas_clean_txd(struct cas *cp, int ring)
3929{
3930 struct cas_tx_desc *txd = cp->init_txds[ring];
3931 struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3932 u64 daddr, dlen;
3933 int i, size;
3934
3935 size = TX_DESC_RINGN_SIZE(ring);
3936 for (i = 0; i < size; i++) {
3937 int frag;
3938
3939 if (skbs[i] == NULL)
3940 continue;
3941
3942 skb = skbs[i];
3943 skbs[i] = NULL;
3944
3945 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
3946 int ent = i & (size - 1);
3947
3948 /* first buffer is never a tiny buffer and so
3949 * needs to be unmapped.
3950 */
3951 daddr = le64_to_cpu(txd[ent].buffer);
3952 dlen = CAS_VAL(TX_DESC_BUFLEN,
3953 le64_to_cpu(txd[ent].control));
3954 pci_unmap_page(cp->pdev, daddr, dlen,
3955 PCI_DMA_TODEVICE);
3956
3957 if (frag != skb_shinfo(skb)->nr_frags) {
3958 i++;
3959
3960 /* next buffer might by a tiny buffer.
3961 * skip past it.
3962 */
3963 ent = i & (size - 1);
3964 if (cp->tx_tiny_use[ring][ent].used)
3965 i++;
3966 }
3967 }
3968 dev_kfree_skb_any(skb);
3969 }
3970
3971 /* zero out tiny buf usage */
3972 memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3973}
3974
3975/* freed on close */
3976static inline void cas_free_rx_desc(struct cas *cp, int ring)
3977{
3978 cas_page_t **page = cp->rx_pages[ring];
3979 int i, size;
3980
3981 size = RX_DESC_RINGN_SIZE(ring);
3982 for (i = 0; i < size; i++) {
3983 if (page[i]) {
3984 cas_page_free(cp, page[i]);
3985 page[i] = NULL;
3986 }
3987 }
3988}
3989
3990static void cas_free_rxds(struct cas *cp)
3991{
3992 int i;
3993
3994 for (i = 0; i < N_RX_DESC_RINGS; i++)
3995 cas_free_rx_desc(cp, i);
3996}
3997
3998/* Must be invoked under cp->lock. */
3999static void cas_clean_rings(struct cas *cp)
4000{
4001 int i;
4002
4003 /* need to clean all tx rings */
4004 memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
4005 memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
4006 for (i = 0; i < N_TX_RINGS; i++)
4007 cas_clean_txd(cp, i);
4008
4009 /* zero out init block */
4010 memset(cp->init_block, 0, sizeof(struct cas_init_block));
4011 cas_clean_rxds(cp);
4012 cas_clean_rxcs(cp);
4013}
4014
4015/* allocated on open */
4016static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
4017{
4018 cas_page_t **page = cp->rx_pages[ring];
4019 int size, i = 0;
4020
4021 size = RX_DESC_RINGN_SIZE(ring);
4022 for (i = 0; i < size; i++) {
4023 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
4024 return -1;
4025 }
4026 return 0;
4027}
4028
4029static int cas_alloc_rxds(struct cas *cp)
4030{
4031 int i;
4032
4033 for (i = 0; i < N_RX_DESC_RINGS; i++) {
4034 if (cas_alloc_rx_desc(cp, i) < 0) {
4035 cas_free_rxds(cp);
4036 return -1;
4037 }
4038 }
4039 return 0;
4040}
4041
4042static void cas_reset_task(void *data)
4043{
4044 struct cas *cp = (struct cas *) data;
4045#if 0
4046 int pending = atomic_read(&cp->reset_task_pending);
4047#else
4048 int pending_all = atomic_read(&cp->reset_task_pending_all);
4049 int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4050 int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4051
4052 if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4053 /* We can have more tasks scheduled than actually
4054 * needed.
4055 */
4056 atomic_dec(&cp->reset_task_pending);
4057 return;
4058 }
4059#endif
4060 /* The link went down, we reset the ring, but keep
4061 * DMA stopped. Use this function for reset
4062 * on error as well.
4063 */
4064 if (cp->hw_running) {
4065 unsigned long flags;
4066
4067 /* Make sure we don't get interrupts or tx packets */
4068 netif_device_detach(cp->dev);
4069 cas_lock_all_save(cp, flags);
4070
4071 if (cp->opened) {
4072 /* We call cas_spare_recover when we call cas_open.
4073 * but we do not initialize the lists cas_spare_recover
4074 * uses until cas_open is called.
4075 */
4076 cas_spare_recover(cp, GFP_ATOMIC);
4077 }
4078#if 1
4079 /* test => only pending_spare set */
4080 if (!pending_all && !pending_mtu)
4081 goto done;
4082#else
4083 if (pending == CAS_RESET_SPARE)
4084 goto done;
4085#endif
4086 /* when pending == CAS_RESET_ALL, the following
4087 * call to cas_init_hw will restart auto negotiation.
4088 * Setting the second argument of cas_reset to
4089 * !(pending == CAS_RESET_ALL) will set this argument
4090 * to 1 (avoiding reinitializing the PHY for the normal
4091 * PCS case) when auto negotiation is not restarted.
4092 */
4093#if 1
4094 cas_reset(cp, !(pending_all > 0));
4095 if (cp->opened)
4096 cas_clean_rings(cp);
4097 cas_init_hw(cp, (pending_all > 0));
4098#else
4099 cas_reset(cp, !(pending == CAS_RESET_ALL));
4100 if (cp->opened)
4101 cas_clean_rings(cp);
4102 cas_init_hw(cp, pending == CAS_RESET_ALL);
4103#endif
4104
4105done:
4106 cas_unlock_all_restore(cp, flags);
4107 netif_device_attach(cp->dev);
4108 }
4109#if 1
4110 atomic_sub(pending_all, &cp->reset_task_pending_all);
4111 atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4112 atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4113 atomic_dec(&cp->reset_task_pending);
4114#else
4115 atomic_set(&cp->reset_task_pending, 0);
4116#endif
4117}
4118
4119static void cas_link_timer(unsigned long data)
4120{
4121 struct cas *cp = (struct cas *) data;
4122 int mask, pending = 0, reset = 0;
4123 unsigned long flags;
4124
4125 if (link_transition_timeout != 0 &&
4126 cp->link_transition_jiffies_valid &&
4127 ((jiffies - cp->link_transition_jiffies) >
4128 (link_transition_timeout))) {
4129 /* One-second counter so link-down workaround doesn't
4130 * cause resets to occur so fast as to fool the switch
4131 * into thinking the link is down.
4132 */
4133 cp->link_transition_jiffies_valid = 0;
4134 }
4135
4136 if (!cp->hw_running)
4137 return;
4138
4139 spin_lock_irqsave(&cp->lock, flags);
4140 cas_lock_tx(cp);
4141 cas_entropy_gather(cp);
4142
4143 /* If the link task is still pending, we just
4144 * reschedule the link timer
4145 */
4146#if 1
4147 if (atomic_read(&cp->reset_task_pending_all) ||
4148 atomic_read(&cp->reset_task_pending_spare) ||
4149 atomic_read(&cp->reset_task_pending_mtu))
4150 goto done;
4151#else
4152 if (atomic_read(&cp->reset_task_pending))
4153 goto done;
4154#endif
4155
4156 /* check for rx cleaning */
4157 if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4158 int i, rmask;
4159
4160 for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4161 rmask = CAS_FLAG_RXD_POST(i);
4162 if ((mask & rmask) == 0)
4163 continue;
4164
4165 /* post_rxds will do a mod_timer */
4166 if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4167 pending = 1;
4168 continue;
4169 }
4170 cp->cas_flags &= ~rmask;
4171 }
4172 }
4173
4174 if (CAS_PHY_MII(cp->phy_type)) {
4175 u16 bmsr;
4176 cas_mif_poll(cp, 0);
4177 bmsr = cas_phy_read(cp, MII_BMSR);
4178 /* WTZ: Solaris driver reads this twice, but that
4179 * may be due to the PCS case and the use of a
4180 * common implementation. Read it twice here to be
4181 * safe.
4182 */
4183 bmsr = cas_phy_read(cp, MII_BMSR);
4184 cas_mif_poll(cp, 1);
4185 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4186 reset = cas_mii_link_check(cp, bmsr);
4187 } else {
4188 reset = cas_pcs_link_check(cp);
4189 }
4190
4191 if (reset)
4192 goto done;
4193
4194 /* check for tx state machine confusion */
4195 if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4196 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4197 u32 wptr, rptr;
4198 int tlm = CAS_VAL(MAC_SM_TLM, val);
4199
4200 if (((tlm == 0x5) || (tlm == 0x3)) &&
4201 (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4202 if (netif_msg_tx_err(cp))
4203 printk(KERN_DEBUG "%s: tx err: "
4204 "MAC_STATE[%08x]\n",
4205 cp->dev->name, val);
4206 reset = 1;
4207 goto done;
4208 }
4209
4210 val = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4211 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4212 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4213 if ((val == 0) && (wptr != rptr)) {
4214 if (netif_msg_tx_err(cp))
4215 printk(KERN_DEBUG "%s: tx err: "
4216 "TX_FIFO[%08x:%08x:%08x]\n",
4217 cp->dev->name, val, wptr, rptr);
4218 reset = 1;
4219 }
4220
4221 if (reset)
4222 cas_hard_reset(cp);
4223 }
4224
4225done:
4226 if (reset) {
4227#if 1
4228 atomic_inc(&cp->reset_task_pending);
4229 atomic_inc(&cp->reset_task_pending_all);
4230 schedule_work(&cp->reset_task);
4231#else
4232 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4233 printk(KERN_ERR "reset called in cas_link_timer\n");
4234 schedule_work(&cp->reset_task);
4235#endif
4236 }
4237
4238 if (!pending)
4239 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4240 cas_unlock_tx(cp);
4241 spin_unlock_irqrestore(&cp->lock, flags);
4242}
4243
4244/* tiny buffers are used to avoid target abort issues with
4245 * older cassini's
4246 */
4247static void cas_tx_tiny_free(struct cas *cp)
4248{
4249 struct pci_dev *pdev = cp->pdev;
4250 int i;
4251
4252 for (i = 0; i < N_TX_RINGS; i++) {
4253 if (!cp->tx_tiny_bufs[i])
4254 continue;
4255
4256 pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4257 cp->tx_tiny_bufs[i],
4258 cp->tx_tiny_dvma[i]);
4259 cp->tx_tiny_bufs[i] = NULL;
4260 }
4261}
4262
4263static int cas_tx_tiny_alloc(struct cas *cp)
4264{
4265 struct pci_dev *pdev = cp->pdev;
4266 int i;
4267
4268 for (i = 0; i < N_TX_RINGS; i++) {
4269 cp->tx_tiny_bufs[i] =
4270 pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4271 &cp->tx_tiny_dvma[i]);
4272 if (!cp->tx_tiny_bufs[i]) {
4273 cas_tx_tiny_free(cp);
4274 return -1;
4275 }
4276 }
4277 return 0;
4278}
4279
4280
4281static int cas_open(struct net_device *dev)
4282{
4283 struct cas *cp = netdev_priv(dev);
4284 int hw_was_up, err;
4285 unsigned long flags;
4286
4287 down(&cp->pm_sem);
4288
4289 hw_was_up = cp->hw_running;
4290
4291 /* The power-management semaphore protects the hw_running
4292 * etc. state so it is safe to do this bit without cp->lock
4293 */
4294 if (!cp->hw_running) {
4295 /* Reset the chip */
4296 cas_lock_all_save(cp, flags);
4297 /* We set the second arg to cas_reset to zero
4298 * because cas_init_hw below will have its second
4299 * argument set to non-zero, which will force
4300 * autonegotiation to start.
4301 */
4302 cas_reset(cp, 0);
4303 cp->hw_running = 1;
4304 cas_unlock_all_restore(cp, flags);
4305 }
4306
4307 if (cas_tx_tiny_alloc(cp) < 0)
4308 return -ENOMEM;
4309
4310 /* alloc rx descriptors */
4311 err = -ENOMEM;
4312 if (cas_alloc_rxds(cp) < 0)
4313 goto err_tx_tiny;
4314
4315 /* allocate spares */
4316 cas_spare_init(cp);
4317 cas_spare_recover(cp, GFP_KERNEL);
4318
4319 /* We can now request the interrupt as we know it's masked
4320 * on the controller. cassini+ has up to 4 interrupts
4321 * that can be used, but you need to do explicit pci interrupt
4322 * mapping to expose them
4323 */
4324 if (request_irq(cp->pdev->irq, cas_interrupt,
4325 SA_SHIRQ, dev->name, (void *) dev)) {
4326 printk(KERN_ERR "%s: failed to request irq !\n",
4327 cp->dev->name);
4328 err = -EAGAIN;
4329 goto err_spare;
4330 }
4331
4332 /* init hw */
4333 cas_lock_all_save(cp, flags);
4334 cas_clean_rings(cp);
4335 cas_init_hw(cp, !hw_was_up);
4336 cp->opened = 1;
4337 cas_unlock_all_restore(cp, flags);
4338
4339 netif_start_queue(dev);
4340 up(&cp->pm_sem);
4341 return 0;
4342
4343err_spare:
4344 cas_spare_free(cp);
4345 cas_free_rxds(cp);
4346err_tx_tiny:
4347 cas_tx_tiny_free(cp);
4348 up(&cp->pm_sem);
4349 return err;
4350}
4351
4352static int cas_close(struct net_device *dev)
4353{
4354 unsigned long flags;
4355 struct cas *cp = netdev_priv(dev);
4356
4357 /* Make sure we don't get distracted by suspend/resume */
4358 down(&cp->pm_sem);
4359
4360 netif_stop_queue(dev);
4361
4362 /* Stop traffic, mark us closed */
4363 cas_lock_all_save(cp, flags);
4364 cp->opened = 0;
4365 cas_reset(cp, 0);
4366 cas_phy_init(cp);
4367 cas_begin_auto_negotiation(cp, NULL);
4368 cas_clean_rings(cp);
4369 cas_unlock_all_restore(cp, flags);
4370
4371 free_irq(cp->pdev->irq, (void *) dev);
4372 cas_spare_free(cp);
4373 cas_free_rxds(cp);
4374 cas_tx_tiny_free(cp);
4375 up(&cp->pm_sem);
4376 return 0;
4377}
4378
4379static struct {
4380 const char name[ETH_GSTRING_LEN];
4381} ethtool_cassini_statnames[] = {
4382 {"collisions"},
4383 {"rx_bytes"},
4384 {"rx_crc_errors"},
4385 {"rx_dropped"},
4386 {"rx_errors"},
4387 {"rx_fifo_errors"},
4388 {"rx_frame_errors"},
4389 {"rx_length_errors"},
4390 {"rx_over_errors"},
4391 {"rx_packets"},
4392 {"tx_aborted_errors"},
4393 {"tx_bytes"},
4394 {"tx_dropped"},
4395 {"tx_errors"},
4396 {"tx_fifo_errors"},
4397 {"tx_packets"}
4398};
4399#define CAS_NUM_STAT_KEYS (sizeof(ethtool_cassini_statnames)/ETH_GSTRING_LEN)
4400
4401static struct {
4402 const int offsets; /* neg. values for 2nd arg to cas_read_phy */
4403} ethtool_register_table[] = {
4404 {-MII_BMSR},
4405 {-MII_BMCR},
4406 {REG_CAWR},
4407 {REG_INF_BURST},
4408 {REG_BIM_CFG},
4409 {REG_RX_CFG},
4410 {REG_HP_CFG},
4411 {REG_MAC_TX_CFG},
4412 {REG_MAC_RX_CFG},
4413 {REG_MAC_CTRL_CFG},
4414 {REG_MAC_XIF_CFG},
4415 {REG_MIF_CFG},
4416 {REG_PCS_CFG},
4417 {REG_SATURN_PCFG},
4418 {REG_PCS_MII_STATUS},
4419 {REG_PCS_STATE_MACHINE},
4420 {REG_MAC_COLL_EXCESS},
4421 {REG_MAC_COLL_LATE}
4422};
4423#define CAS_REG_LEN (sizeof(ethtool_register_table)/sizeof(int))
4424#define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
4425
4426static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4427{
4428 u8 *p;
4429 int i;
4430 unsigned long flags;
4431
4432 spin_lock_irqsave(&cp->lock, flags);
4433 for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4434 u16 hval;
4435 u32 val;
4436 if (ethtool_register_table[i].offsets < 0) {
4437 hval = cas_phy_read(cp,
4438 -ethtool_register_table[i].offsets);
4439 val = hval;
4440 } else {
4441 val= readl(cp->regs+ethtool_register_table[i].offsets);
4442 }
4443 memcpy(p, (u8 *)&val, sizeof(u32));
4444 }
4445 spin_unlock_irqrestore(&cp->lock, flags);
4446}
4447
4448static struct net_device_stats *cas_get_stats(struct net_device *dev)
4449{
4450 struct cas *cp = netdev_priv(dev);
4451 struct net_device_stats *stats = cp->net_stats;
4452 unsigned long flags;
4453 int i;
4454 unsigned long tmp;
4455
4456 /* we collate all of the stats into net_stats[N_TX_RING] */
4457 if (!cp->hw_running)
4458 return stats + N_TX_RINGS;
4459
4460 /* collect outstanding stats */
4461 /* WTZ: the Cassini spec gives these as 16 bit counters but
4462 * stored in 32-bit words. Added a mask of 0xffff to be safe,
4463 * in case the chip somehow puts any garbage in the other bits.
4464 * Also, counter usage didn't seem to mach what Adrian did
4465 * in the parts of the code that set these quantities. Made
4466 * that consistent.
4467 */
4468 spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4469 stats[N_TX_RINGS].rx_crc_errors +=
4470 readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4471 stats[N_TX_RINGS].rx_frame_errors +=
4472 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4473 stats[N_TX_RINGS].rx_length_errors +=
4474 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4475#if 1
4476 tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4477 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4478 stats[N_TX_RINGS].tx_aborted_errors += tmp;
4479 stats[N_TX_RINGS].collisions +=
4480 tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4481#else
4482 stats[N_TX_RINGS].tx_aborted_errors +=
4483 readl(cp->regs + REG_MAC_COLL_EXCESS);
4484 stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4485 readl(cp->regs + REG_MAC_COLL_LATE);
4486#endif
4487 cas_clear_mac_err(cp);
4488
4489 /* saved bits that are unique to ring 0 */
4490 spin_lock(&cp->stat_lock[0]);
4491 stats[N_TX_RINGS].collisions += stats[0].collisions;
4492 stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors;
4493 stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors;
4494 stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors;
4495 stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4496 stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors;
4497 spin_unlock(&cp->stat_lock[0]);
4498
4499 for (i = 0; i < N_TX_RINGS; i++) {
4500 spin_lock(&cp->stat_lock[i]);
4501 stats[N_TX_RINGS].rx_length_errors +=
4502 stats[i].rx_length_errors;
4503 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4504 stats[N_TX_RINGS].rx_packets += stats[i].rx_packets;
4505 stats[N_TX_RINGS].tx_packets += stats[i].tx_packets;
4506 stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes;
4507 stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes;
4508 stats[N_TX_RINGS].rx_errors += stats[i].rx_errors;
4509 stats[N_TX_RINGS].tx_errors += stats[i].tx_errors;
4510 stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped;
4511 stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped;
4512 memset(stats + i, 0, sizeof(struct net_device_stats));
4513 spin_unlock(&cp->stat_lock[i]);
4514 }
4515 spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4516 return stats + N_TX_RINGS;
4517}
4518
4519
4520static void cas_set_multicast(struct net_device *dev)
4521{
4522 struct cas *cp = netdev_priv(dev);
4523 u32 rxcfg, rxcfg_new;
4524 unsigned long flags;
4525 int limit = STOP_TRIES;
4526
4527 if (!cp->hw_running)
4528 return;
4529
4530 spin_lock_irqsave(&cp->lock, flags);
4531 rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4532
4533 /* disable RX MAC and wait for completion */
4534 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4535 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4536 if (!limit--)
4537 break;
4538 udelay(10);
4539 }
4540
4541 /* disable hash filter and wait for completion */
4542 limit = STOP_TRIES;
4543 rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4544 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4545 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4546 if (!limit--)
4547 break;
4548 udelay(10);
4549 }
4550
4551 /* program hash filters */
4552 cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4553 rxcfg |= rxcfg_new;
4554 writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4555 spin_unlock_irqrestore(&cp->lock, flags);
4556}
4557
4558static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4559{
4560 struct cas *cp = netdev_priv(dev);
4561 strncpy(info->driver, DRV_MODULE_NAME, ETHTOOL_BUSINFO_LEN);
4562 strncpy(info->version, DRV_MODULE_VERSION, ETHTOOL_BUSINFO_LEN);
4563 info->fw_version[0] = '\0';
4564 strncpy(info->bus_info, pci_name(cp->pdev), ETHTOOL_BUSINFO_LEN);
4565 info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
4566 cp->casreg_len : CAS_MAX_REGS;
4567 info->n_stats = CAS_NUM_STAT_KEYS;
4568}
4569
4570static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4571{
4572 struct cas *cp = netdev_priv(dev);
4573 u16 bmcr;
4574 int full_duplex, speed, pause;
4575 unsigned long flags;
4576 enum link_state linkstate = link_up;
4577
4578 cmd->advertising = 0;
4579 cmd->supported = SUPPORTED_Autoneg;
4580 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4581 cmd->supported |= SUPPORTED_1000baseT_Full;
4582 cmd->advertising |= ADVERTISED_1000baseT_Full;
4583 }
4584
4585 /* Record PHY settings if HW is on. */
4586 spin_lock_irqsave(&cp->lock, flags);
4587 bmcr = 0;
4588 linkstate = cp->lstate;
4589 if (CAS_PHY_MII(cp->phy_type)) {
4590 cmd->port = PORT_MII;
4591 cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
4592 XCVR_INTERNAL : XCVR_EXTERNAL;
4593 cmd->phy_address = cp->phy_addr;
4594 cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
4595 ADVERTISED_10baseT_Half |
4596 ADVERTISED_10baseT_Full |
4597 ADVERTISED_100baseT_Half |
4598 ADVERTISED_100baseT_Full;
4599
4600 cmd->supported |=
4601 (SUPPORTED_10baseT_Half |
4602 SUPPORTED_10baseT_Full |
4603 SUPPORTED_100baseT_Half |
4604 SUPPORTED_100baseT_Full |
4605 SUPPORTED_TP | SUPPORTED_MII);
4606
4607 if (cp->hw_running) {
4608 cas_mif_poll(cp, 0);
4609 bmcr = cas_phy_read(cp, MII_BMCR);
4610 cas_read_mii_link_mode(cp, &full_duplex,
4611 &speed, &pause);
4612 cas_mif_poll(cp, 1);
4613 }
4614
4615 } else {
4616 cmd->port = PORT_FIBRE;
4617 cmd->transceiver = XCVR_INTERNAL;
4618 cmd->phy_address = 0;
4619 cmd->supported |= SUPPORTED_FIBRE;
4620 cmd->advertising |= ADVERTISED_FIBRE;
4621
4622 if (cp->hw_running) {
4623 /* pcs uses the same bits as mii */
4624 bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4625 cas_read_pcs_link_mode(cp, &full_duplex,
4626 &speed, &pause);
4627 }
4628 }
4629 spin_unlock_irqrestore(&cp->lock, flags);
4630
4631 if (bmcr & BMCR_ANENABLE) {
4632 cmd->advertising |= ADVERTISED_Autoneg;
4633 cmd->autoneg = AUTONEG_ENABLE;
4634 cmd->speed = ((speed == 10) ?
4635 SPEED_10 :
4636 ((speed == 1000) ?
4637 SPEED_1000 : SPEED_100));
4638 cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4639 } else {
4640 cmd->autoneg = AUTONEG_DISABLE;
4641 cmd->speed =
4642 (bmcr & CAS_BMCR_SPEED1000) ?
4643 SPEED_1000 :
4644 ((bmcr & BMCR_SPEED100) ? SPEED_100:
4645 SPEED_10);
4646 cmd->duplex =
4647 (bmcr & BMCR_FULLDPLX) ?
4648 DUPLEX_FULL : DUPLEX_HALF;
4649 }
4650 if (linkstate != link_up) {
4651 /* Force these to "unknown" if the link is not up and
4652 * autonogotiation in enabled. We can set the link
4653 * speed to 0, but not cmd->duplex,
4654 * because its legal values are 0 and 1. Ethtool will
4655 * print the value reported in parentheses after the
4656 * word "Unknown" for unrecognized values.
4657 *
4658 * If in forced mode, we report the speed and duplex
4659 * settings that we configured.
4660 */
4661 if (cp->link_cntl & BMCR_ANENABLE) {
4662 cmd->speed = 0;
4663 cmd->duplex = 0xff;
4664 } else {
4665 cmd->speed = SPEED_10;
4666 if (cp->link_cntl & BMCR_SPEED100) {
4667 cmd->speed = SPEED_100;
4668 } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4669 cmd->speed = SPEED_1000;
4670 }
4671 cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
4672 DUPLEX_FULL : DUPLEX_HALF;
4673 }
4674 }
4675 return 0;
4676}
4677
4678static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4679{
4680 struct cas *cp = netdev_priv(dev);
4681 unsigned long flags;
4682
4683 /* Verify the settings we care about. */
4684 if (cmd->autoneg != AUTONEG_ENABLE &&
4685 cmd->autoneg != AUTONEG_DISABLE)
4686 return -EINVAL;
4687
4688 if (cmd->autoneg == AUTONEG_DISABLE &&
4689 ((cmd->speed != SPEED_1000 &&
4690 cmd->speed != SPEED_100 &&
4691 cmd->speed != SPEED_10) ||
4692 (cmd->duplex != DUPLEX_HALF &&
4693 cmd->duplex != DUPLEX_FULL)))
4694 return -EINVAL;
4695
4696 /* Apply settings and restart link process. */
4697 spin_lock_irqsave(&cp->lock, flags);
4698 cas_begin_auto_negotiation(cp, cmd);
4699 spin_unlock_irqrestore(&cp->lock, flags);
4700 return 0;
4701}
4702
4703static int cas_nway_reset(struct net_device *dev)
4704{
4705 struct cas *cp = netdev_priv(dev);
4706 unsigned long flags;
4707
4708 if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4709 return -EINVAL;
4710
4711 /* Restart link process. */
4712 spin_lock_irqsave(&cp->lock, flags);
4713 cas_begin_auto_negotiation(cp, NULL);
4714 spin_unlock_irqrestore(&cp->lock, flags);
4715
4716 return 0;
4717}
4718
4719static u32 cas_get_link(struct net_device *dev)
4720{
4721 struct cas *cp = netdev_priv(dev);
4722 return cp->lstate == link_up;
4723}
4724
4725static u32 cas_get_msglevel(struct net_device *dev)
4726{
4727 struct cas *cp = netdev_priv(dev);
4728 return cp->msg_enable;
4729}
4730
4731static void cas_set_msglevel(struct net_device *dev, u32 value)
4732{
4733 struct cas *cp = netdev_priv(dev);
4734 cp->msg_enable = value;
4735}
4736
4737static int cas_get_regs_len(struct net_device *dev)
4738{
4739 struct cas *cp = netdev_priv(dev);
4740 return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4741}
4742
4743static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4744 void *p)
4745{
4746 struct cas *cp = netdev_priv(dev);
4747 regs->version = 0;
4748 /* cas_read_regs handles locks (cp->lock). */
4749 cas_read_regs(cp, p, regs->len / sizeof(u32));
4750}
4751
4752static int cas_get_stats_count(struct net_device *dev)
4753{
4754 return CAS_NUM_STAT_KEYS;
4755}
4756
4757static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4758{
4759 memcpy(data, &ethtool_cassini_statnames,
4760 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4761}
4762
4763static void cas_get_ethtool_stats(struct net_device *dev,
4764 struct ethtool_stats *estats, u64 *data)
4765{
4766 struct cas *cp = netdev_priv(dev);
4767 struct net_device_stats *stats = cas_get_stats(cp->dev);
4768 int i = 0;
4769 data[i++] = stats->collisions;
4770 data[i++] = stats->rx_bytes;
4771 data[i++] = stats->rx_crc_errors;
4772 data[i++] = stats->rx_dropped;
4773 data[i++] = stats->rx_errors;
4774 data[i++] = stats->rx_fifo_errors;
4775 data[i++] = stats->rx_frame_errors;
4776 data[i++] = stats->rx_length_errors;
4777 data[i++] = stats->rx_over_errors;
4778 data[i++] = stats->rx_packets;
4779 data[i++] = stats->tx_aborted_errors;
4780 data[i++] = stats->tx_bytes;
4781 data[i++] = stats->tx_dropped;
4782 data[i++] = stats->tx_errors;
4783 data[i++] = stats->tx_fifo_errors;
4784 data[i++] = stats->tx_packets;
4785 BUG_ON(i != CAS_NUM_STAT_KEYS);
4786}
4787
4788static struct ethtool_ops cas_ethtool_ops = {
4789 .get_drvinfo = cas_get_drvinfo,
4790 .get_settings = cas_get_settings,
4791 .set_settings = cas_set_settings,
4792 .nway_reset = cas_nway_reset,
4793 .get_link = cas_get_link,
4794 .get_msglevel = cas_get_msglevel,
4795 .set_msglevel = cas_set_msglevel,
4796 .get_regs_len = cas_get_regs_len,
4797 .get_regs = cas_get_regs,
4798 .get_stats_count = cas_get_stats_count,
4799 .get_strings = cas_get_strings,
4800 .get_ethtool_stats = cas_get_ethtool_stats,
4801};
4802
4803static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4804{
4805 struct cas *cp = netdev_priv(dev);
4806 struct mii_ioctl_data *data = if_mii(ifr);
4807 unsigned long flags;
4808 int rc = -EOPNOTSUPP;
4809
4810 /* Hold the PM semaphore while doing ioctl's or we may collide
4811 * with open/close and power management and oops.
4812 */
4813 down(&cp->pm_sem);
4814 switch (cmd) {
4815 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
4816 data->phy_id = cp->phy_addr;
4817 /* Fallthrough... */
4818
4819 case SIOCGMIIREG: /* Read MII PHY register. */
4820 spin_lock_irqsave(&cp->lock, flags);
4821 cas_mif_poll(cp, 0);
4822 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4823 cas_mif_poll(cp, 1);
4824 spin_unlock_irqrestore(&cp->lock, flags);
4825 rc = 0;
4826 break;
4827
4828 case SIOCSMIIREG: /* Write MII PHY register. */
4829 if (!capable(CAP_NET_ADMIN)) {
4830 rc = -EPERM;
4831 break;
4832 }
4833 spin_lock_irqsave(&cp->lock, flags);
4834 cas_mif_poll(cp, 0);
4835 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4836 cas_mif_poll(cp, 1);
4837 spin_unlock_irqrestore(&cp->lock, flags);
4838 break;
4839 default:
4840 break;
4841 };
4842
4843 up(&cp->pm_sem);
4844 return rc;
4845}
4846
4847static int __devinit cas_init_one(struct pci_dev *pdev,
4848 const struct pci_device_id *ent)
4849{
4850 static int cas_version_printed = 0;
4851 unsigned long casreg_base, casreg_len;
4852 struct net_device *dev;
4853 struct cas *cp;
4854 int i, err, pci_using_dac;
4855 u16 pci_cmd;
4856 u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4857
4858 if (cas_version_printed++ == 0)
4859 printk(KERN_INFO "%s", version);
4860
4861 err = pci_enable_device(pdev);
4862 if (err) {
4863 printk(KERN_ERR PFX "Cannot enable PCI device, "
4864 "aborting.\n");
4865 return err;
4866 }
4867
4868 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4869 printk(KERN_ERR PFX "Cannot find proper PCI device "
4870 "base address, aborting.\n");
4871 err = -ENODEV;
4872 goto err_out_disable_pdev;
4873 }
4874
4875 dev = alloc_etherdev(sizeof(*cp));
4876 if (!dev) {
4877 printk(KERN_ERR PFX "Etherdev alloc failed, aborting.\n");
4878 err = -ENOMEM;
4879 goto err_out_disable_pdev;
4880 }
4881 SET_MODULE_OWNER(dev);
4882 SET_NETDEV_DEV(dev, &pdev->dev);
4883
4884 err = pci_request_regions(pdev, dev->name);
4885 if (err) {
4886 printk(KERN_ERR PFX "Cannot obtain PCI resources, "
4887 "aborting.\n");
4888 goto err_out_free_netdev;
4889 }
4890 pci_set_master(pdev);
4891
4892 /* we must always turn on parity response or else parity
4893 * doesn't get generated properly. disable SERR/PERR as well.
4894 * in addition, we want to turn MWI on.
4895 */
4896 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4897 pci_cmd &= ~PCI_COMMAND_SERR;
4898 pci_cmd |= PCI_COMMAND_PARITY;
4899 pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4900 pci_set_mwi(pdev);
4901 /*
4902 * On some architectures, the default cache line size set
4903 * by pci_set_mwi reduces perforamnce. We have to increase
4904 * it for this case. To start, we'll print some configuration
4905 * data.
4906 */
4907#if 1
4908 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4909 &orig_cacheline_size);
4910 if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4911 cas_cacheline_size =
4912 (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4913 CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4914 if (pci_write_config_byte(pdev,
4915 PCI_CACHE_LINE_SIZE,
4916 cas_cacheline_size)) {
4917 printk(KERN_ERR PFX "Could not set PCI cache "
4918 "line size\n");
4919 goto err_write_cacheline;
4920 }
4921 }
4922#endif
4923
4924
4925 /* Configure DMA attributes. */
4926 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
4927 pci_using_dac = 1;
4928 err = pci_set_consistent_dma_mask(pdev,
4929 DMA_64BIT_MASK);
4930 if (err < 0) {
4931 printk(KERN_ERR PFX "Unable to obtain 64-bit DMA "
4932 "for consistent allocations\n");
4933 goto err_out_free_res;
4934 }
4935
4936 } else {
4937 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
4938 if (err) {
4939 printk(KERN_ERR PFX "No usable DMA configuration, "
4940 "aborting.\n");
4941 goto err_out_free_res;
4942 }
4943 pci_using_dac = 0;
4944 }
4945
4946 casreg_base = pci_resource_start(pdev, 0);
4947 casreg_len = pci_resource_len(pdev, 0);
4948
4949 cp = netdev_priv(dev);
4950 cp->pdev = pdev;
4951#if 1
4952 /* A value of 0 indicates we never explicitly set it */
4953 cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
4954#endif
4955 cp->dev = dev;
4956 cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
4957 cassini_debug;
4958
4959 cp->link_transition = LINK_TRANSITION_UNKNOWN;
4960 cp->link_transition_jiffies_valid = 0;
4961
4962 spin_lock_init(&cp->lock);
4963 spin_lock_init(&cp->rx_inuse_lock);
4964 spin_lock_init(&cp->rx_spare_lock);
4965 for (i = 0; i < N_TX_RINGS; i++) {
4966 spin_lock_init(&cp->stat_lock[i]);
4967 spin_lock_init(&cp->tx_lock[i]);
4968 }
4969 spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
4970 init_MUTEX(&cp->pm_sem);
4971
4972 init_timer(&cp->link_timer);
4973 cp->link_timer.function = cas_link_timer;
4974 cp->link_timer.data = (unsigned long) cp;
4975
4976#if 1
4977 /* Just in case the implementation of atomic operations
4978 * change so that an explicit initialization is necessary.
4979 */
4980 atomic_set(&cp->reset_task_pending, 0);
4981 atomic_set(&cp->reset_task_pending_all, 0);
4982 atomic_set(&cp->reset_task_pending_spare, 0);
4983 atomic_set(&cp->reset_task_pending_mtu, 0);
4984#endif
4985 INIT_WORK(&cp->reset_task, cas_reset_task, cp);
4986
4987 /* Default link parameters */
4988 if (link_mode >= 0 && link_mode <= 6)
4989 cp->link_cntl = link_modes[link_mode];
4990 else
4991 cp->link_cntl = BMCR_ANENABLE;
4992 cp->lstate = link_down;
4993 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
4994 netif_carrier_off(cp->dev);
4995 cp->timer_ticks = 0;
4996
4997 /* give us access to cassini registers */
4998 cp->regs = ioremap(casreg_base, casreg_len);
4999 if (cp->regs == 0UL) {
5000 printk(KERN_ERR PFX "Cannot map device registers, "
5001 "aborting.\n");
5002 goto err_out_free_res;
5003 }
5004 cp->casreg_len = casreg_len;
5005
5006 pci_save_state(pdev);
5007 cas_check_pci_invariants(cp);
5008 cas_hard_reset(cp);
5009 cas_reset(cp, 0);
5010 if (cas_check_invariants(cp))
5011 goto err_out_iounmap;
5012
5013 cp->init_block = (struct cas_init_block *)
5014 pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5015 &cp->block_dvma);
5016 if (!cp->init_block) {
5017 printk(KERN_ERR PFX "Cannot allocate init block, "
5018 "aborting.\n");
5019 goto err_out_iounmap;
5020 }
5021
5022 for (i = 0; i < N_TX_RINGS; i++)
5023 cp->init_txds[i] = cp->init_block->txds[i];
5024
5025 for (i = 0; i < N_RX_DESC_RINGS; i++)
5026 cp->init_rxds[i] = cp->init_block->rxds[i];
5027
5028 for (i = 0; i < N_RX_COMP_RINGS; i++)
5029 cp->init_rxcs[i] = cp->init_block->rxcs[i];
5030
5031 for (i = 0; i < N_RX_FLOWS; i++)
5032 skb_queue_head_init(&cp->rx_flows[i]);
5033
5034 dev->open = cas_open;
5035 dev->stop = cas_close;
5036 dev->hard_start_xmit = cas_start_xmit;
5037 dev->get_stats = cas_get_stats;
5038 dev->set_multicast_list = cas_set_multicast;
5039 dev->do_ioctl = cas_ioctl;
5040 dev->ethtool_ops = &cas_ethtool_ops;
5041 dev->tx_timeout = cas_tx_timeout;
5042 dev->watchdog_timeo = CAS_TX_TIMEOUT;
5043 dev->change_mtu = cas_change_mtu;
5044#ifdef USE_NAPI
5045 dev->poll = cas_poll;
5046 dev->weight = 64;
5047#endif
5048#ifdef CONFIG_NET_POLL_CONTROLLER
5049 dev->poll_controller = cas_netpoll;
5050#endif
5051 dev->irq = pdev->irq;
5052 dev->dma = 0;
5053
5054 /* Cassini features. */
5055 if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5056 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5057
5058 if (pci_using_dac)
5059 dev->features |= NETIF_F_HIGHDMA;
5060
5061 if (register_netdev(dev)) {
5062 printk(KERN_ERR PFX "Cannot register net device, "
5063 "aborting.\n");
5064 goto err_out_free_consistent;
5065 }
5066
5067 i = readl(cp->regs + REG_BIM_CFG);
5068 printk(KERN_INFO "%s: Sun Cassini%s (%sbit/%sMHz PCI/%s) "
5069 "Ethernet[%d] ", dev->name,
5070 (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5071 (i & BIM_CFG_32BIT) ? "32" : "64",
5072 (i & BIM_CFG_66MHZ) ? "66" : "33",
5073 (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq);
5074
5075 for (i = 0; i < 6; i++)
5076 printk("%2.2x%c", dev->dev_addr[i],
5077 i == 5 ? ' ' : ':');
5078 printk("\n");
5079
5080 pci_set_drvdata(pdev, dev);
5081 cp->hw_running = 1;
5082 cas_entropy_reset(cp);
5083 cas_phy_init(cp);
5084 cas_begin_auto_negotiation(cp, NULL);
5085 return 0;
5086
5087err_out_free_consistent:
5088 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5089 cp->init_block, cp->block_dvma);
5090
5091err_out_iounmap:
5092 down(&cp->pm_sem);
5093 if (cp->hw_running)
5094 cas_shutdown(cp);
5095 up(&cp->pm_sem);
5096
5097 iounmap(cp->regs);
5098
5099
5100err_out_free_res:
5101 pci_release_regions(pdev);
5102
5103err_write_cacheline:
5104 /* Try to restore it in case the error occured after we
5105 * set it.
5106 */
5107 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5108
5109err_out_free_netdev:
5110 free_netdev(dev);
5111
5112err_out_disable_pdev:
5113 pci_disable_device(pdev);
5114 pci_set_drvdata(pdev, NULL);
5115 return -ENODEV;
5116}
5117
5118static void __devexit cas_remove_one(struct pci_dev *pdev)
5119{
5120 struct net_device *dev = pci_get_drvdata(pdev);
5121 struct cas *cp;
5122 if (!dev)
5123 return;
5124
5125 cp = netdev_priv(dev);
5126 unregister_netdev(dev);
5127
5128 down(&cp->pm_sem);
5129 flush_scheduled_work();
5130 if (cp->hw_running)
5131 cas_shutdown(cp);
5132 up(&cp->pm_sem);
5133
5134#if 1
5135 if (cp->orig_cacheline_size) {
5136 /* Restore the cache line size if we had modified
5137 * it.
5138 */
5139 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5140 cp->orig_cacheline_size);
5141 }
5142#endif
5143 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5144 cp->init_block, cp->block_dvma);
5145 iounmap(cp->regs);
5146 free_netdev(dev);
5147 pci_release_regions(pdev);
5148 pci_disable_device(pdev);
5149 pci_set_drvdata(pdev, NULL);
5150}
5151
5152#ifdef CONFIG_PM
5153static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5154{
5155 struct net_device *dev = pci_get_drvdata(pdev);
5156 struct cas *cp = netdev_priv(dev);
5157 unsigned long flags;
5158
5159 /* We hold the PM semaphore during entire driver
5160 * sleep time
5161 */
5162 down(&cp->pm_sem);
5163
5164 /* If the driver is opened, we stop the DMA */
5165 if (cp->opened) {
5166 netif_device_detach(dev);
5167
5168 cas_lock_all_save(cp, flags);
5169
5170 /* We can set the second arg of cas_reset to 0
5171 * because on resume, we'll call cas_init_hw with
5172 * its second arg set so that autonegotiation is
5173 * restarted.
5174 */
5175 cas_reset(cp, 0);
5176 cas_clean_rings(cp);
5177 cas_unlock_all_restore(cp, flags);
5178 }
5179
5180 if (cp->hw_running)
5181 cas_shutdown(cp);
5182
5183 return 0;
5184}
5185
5186static int cas_resume(struct pci_dev *pdev)
5187{
5188 struct net_device *dev = pci_get_drvdata(pdev);
5189 struct cas *cp = netdev_priv(dev);
5190
5191 printk(KERN_INFO "%s: resuming\n", dev->name);
5192
5193 cas_hard_reset(cp);
5194 if (cp->opened) {
5195 unsigned long flags;
5196 cas_lock_all_save(cp, flags);
5197 cas_reset(cp, 0);
5198 cp->hw_running = 1;
5199 cas_clean_rings(cp);
5200 cas_init_hw(cp, 1);
5201 cas_unlock_all_restore(cp, flags);
5202
5203 netif_device_attach(dev);
5204 }
5205 up(&cp->pm_sem);
5206 return 0;
5207}
5208#endif /* CONFIG_PM */
5209
5210static struct pci_driver cas_driver = {
5211 .name = DRV_MODULE_NAME,
5212 .id_table = cas_pci_tbl,
5213 .probe = cas_init_one,
5214 .remove = __devexit_p(cas_remove_one),
5215#ifdef CONFIG_PM
5216 .suspend = cas_suspend,
5217 .resume = cas_resume
5218#endif
5219};
5220
5221static int __init cas_init(void)
5222{
5223 if (linkdown_timeout > 0)
5224 link_transition_timeout = linkdown_timeout * HZ;
5225 else
5226 link_transition_timeout = 0;
5227
5228 return pci_module_init(&cas_driver);
5229}
5230
5231static void __exit cas_cleanup(void)
5232{
5233 pci_unregister_driver(&cas_driver);
5234}
5235
5236module_init(cas_init);
5237module_exit(cas_cleanup);
diff --git a/drivers/net/cassini.h b/drivers/net/cassini.h
new file mode 100644
index 000000000000..88063ef16cf6
--- /dev/null
+++ b/drivers/net/cassini.h
@@ -0,0 +1,4425 @@
1/* $Id: cassini.h,v 1.16 2004/08/17 21:15:16 zaumen Exp $
2 * cassini.h: Definitions for Sun Microsystems Cassini(+) ethernet driver.
3 *
4 * Copyright (C) 2004 Sun Microsystems Inc.
5 * Copyright (c) 2003 Adrian Sun (asun@darksunrising.com)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 of the
10 * License, or (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
20 * 02111-1307, USA.
21 *
22 * vendor id: 0x108E (Sun Microsystems, Inc.)
23 * device id: 0xabba (Cassini)
24 * revision ids: 0x01 = Cassini
25 * 0x02 = Cassini rev 2
26 * 0x10 = Cassini+
27 * 0x11 = Cassini+ 0.2u
28 *
29 * vendor id: 0x100b (National Semiconductor)
30 * device id: 0x0035 (DP83065/Saturn)
31 * revision ids: 0x30 = Saturn B2
32 *
33 * rings are all offset from 0.
34 *
35 * there are two clock domains:
36 * PCI: 33/66MHz clock
37 * chip: 125MHz clock
38 */
39
40#ifndef _CASSINI_H
41#define _CASSINI_H
42
43/* cassini register map: 2M memory mapped in 32-bit memory space accessible as
44 * 32-bit words. there is no i/o port access. REG_ addresses are
45 * shared between cassini and cassini+. REG_PLUS_ addresses only
46 * appear in cassini+. REG_MINUS_ addresses only appear in cassini.
47 */
48#define CAS_ID_REV2 0x02
49#define CAS_ID_REVPLUS 0x10
50#define CAS_ID_REVPLUS02u 0x11
51#define CAS_ID_REVSATURNB2 0x30
52
53/** global resources **/
54
55/* this register sets the weights for the weighted round robin arbiter. e.g.,
56 * if rx weight == 1 and tx weight == 0, rx == 2x tx transfer credit
57 * for its next turn to access the pci bus.
58 * map: 0x0 = x1, 0x1 = x2, 0x2 = x4, 0x3 = x8
59 * DEFAULT: 0x0, SIZE: 5 bits
60 */
61#define REG_CAWR 0x0004 /* core arbitration weight */
62#define CAWR_RX_DMA_WEIGHT_SHIFT 0
63#define CAWR_RX_DMA_WEIGHT_MASK 0x03 /* [0:1] */
64#define CAWR_TX_DMA_WEIGHT_SHIFT 2
65#define CAWR_TX_DMA_WEIGHT_MASK 0x0C /* [3:2] */
66#define CAWR_RR_DIS 0x10 /* [4] */
67
68/* if enabled, BIM can send bursts across PCI bus > cacheline size. burst
69 * sizes determined by length of packet or descriptor transfer and the
70 * max length allowed by the target.
71 * DEFAULT: 0x0, SIZE: 1 bit
72 */
73#define REG_INF_BURST 0x0008 /* infinite burst enable reg */
74#define INF_BURST_EN 0x1 /* enable */
75
76/* top level interrupts [0-9] are auto-cleared to 0 when the status
77 * register is read. second level interrupts [13 - 18] are cleared at
78 * the source. tx completion register 3 is replicated in [19 - 31]
79 * DEFAULT: 0x00000000, SIZE: 29 bits
80 */
81#define REG_INTR_STATUS 0x000C /* interrupt status register */
82#define INTR_TX_INTME 0x00000001 /* frame w/ INT ME desc bit set
83 xferred from host queue to
84 TX FIFO */
85#define INTR_TX_ALL 0x00000002 /* all xmit frames xferred into
86 TX FIFO. i.e.,
87 TX Kick == TX complete. if
88 PACED_MODE set, then TX FIFO
89 also empty */
90#define INTR_TX_DONE 0x00000004 /* any frame xferred into tx
91 FIFO */
92#define INTR_TX_TAG_ERROR 0x00000008 /* TX FIFO tag framing
93 corrupted. FATAL ERROR */
94#define INTR_RX_DONE 0x00000010 /* at least 1 frame xferred
95 from RX FIFO to host mem.
96 RX completion reg updated.
97 may be delayed by recv
98 intr blanking. */
99#define INTR_RX_BUF_UNAVAIL 0x00000020 /* no more receive buffers.
100 RX Kick == RX complete */
101#define INTR_RX_TAG_ERROR 0x00000040 /* RX FIFO tag framing
102 corrupted. FATAL ERROR */
103#define INTR_RX_COMP_FULL 0x00000080 /* no more room in completion
104 ring to post descriptors.
105 RX complete head incr to
106 almost reach RX complete
107 tail */
108#define INTR_RX_BUF_AE 0x00000100 /* less than the
109 programmable threshold #
110 of free descr avail for
111 hw use */
112#define INTR_RX_COMP_AF 0x00000200 /* less than the
113 programmable threshold #
114 of descr spaces for hw
115 use in completion descr
116 ring */
117#define INTR_RX_LEN_MISMATCH 0x00000400 /* len field from MAC !=
118 len of non-reassembly pkt
119 from fifo during DMA or
120 header parser provides TCP
121 header and payload size >
122 MAC packet size.
123 FATAL ERROR */
124#define INTR_SUMMARY 0x00001000 /* summary interrupt bit. this
125 bit will be set if an interrupt
126 generated on the pci bus. useful
127 when driver is polling for
128 interrupts */
129#define INTR_PCS_STATUS 0x00002000 /* PCS interrupt status register */
130#define INTR_TX_MAC_STATUS 0x00004000 /* TX MAC status register has at
131 least 1 unmasked interrupt set */
132#define INTR_RX_MAC_STATUS 0x00008000 /* RX MAC status register has at
133 least 1 unmasked interrupt set */
134#define INTR_MAC_CTRL_STATUS 0x00010000 /* MAC control status register has
135 at least 1 unmasked interrupt
136 set */
137#define INTR_MIF_STATUS 0x00020000 /* MIF status register has at least
138 1 unmasked interrupt set */
139#define INTR_PCI_ERROR_STATUS 0x00040000 /* PCI error status register in the
140 BIF has at least 1 unmasked
141 interrupt set */
142#define INTR_TX_COMP_3_MASK 0xFFF80000 /* mask for TX completion
143 3 reg data */
144#define INTR_TX_COMP_3_SHIFT 19
145#define INTR_ERROR_MASK (INTR_MIF_STATUS | INTR_PCI_ERROR_STATUS | \
146 INTR_PCS_STATUS | INTR_RX_LEN_MISMATCH | \
147 INTR_TX_MAC_STATUS | INTR_RX_MAC_STATUS | \
148 INTR_TX_TAG_ERROR | INTR_RX_TAG_ERROR | \
149 INTR_MAC_CTRL_STATUS)
150
151/* determines which status events will cause an interrupt. layout same
152 * as REG_INTR_STATUS.
153 * DEFAULT: 0xFFFFFFFF, SIZE: 16 bits
154 */
155#define REG_INTR_MASK 0x0010 /* Interrupt mask */
156
157/* top level interrupt bits that are cleared during read of REG_INTR_STATUS_ALIAS.
158 * useful when driver is polling for interrupts. layout same as REG_INTR_MASK.
159 * DEFAULT: 0x00000000, SIZE: 12 bits
160 */
161#define REG_ALIAS_CLEAR 0x0014 /* alias clear mask
162 (used w/ status alias) */
163/* same as REG_INTR_STATUS except that only bits cleared are those selected by
164 * REG_ALIAS_CLEAR
165 * DEFAULT: 0x00000000, SIZE: 29 bits
166 */
167#define REG_INTR_STATUS_ALIAS 0x001C /* interrupt status alias
168 (selective clear) */
169
170/* DEFAULT: 0x0, SIZE: 3 bits */
171#define REG_PCI_ERR_STATUS 0x1000 /* PCI error status */
172#define PCI_ERR_BADACK 0x01 /* reserved in Cassini+.
173 set if no ACK64# during ABS64 cycle
174 in Cassini. */
175#define PCI_ERR_DTRTO 0x02 /* delayed xaction timeout. set if
176 no read retry after 2^15 clocks */
177#define PCI_ERR_OTHER 0x04 /* other PCI errors */
178#define PCI_ERR_BIM_DMA_WRITE 0x08 /* BIM received 0 count DMA write req.
179 unused in Cassini. */
180#define PCI_ERR_BIM_DMA_READ 0x10 /* BIM received 0 count DMA read req.
181 unused in Cassini. */
182#define PCI_ERR_BIM_DMA_TIMEOUT 0x20 /* BIM received 255 retries during
183 DMA. unused in cassini. */
184
185/* mask for PCI status events that will set PCI_ERR_STATUS. if cleared, event
186 * causes an interrupt to be generated.
187 * DEFAULT: 0x7, SIZE: 3 bits
188 */
189#define REG_PCI_ERR_STATUS_MASK 0x1004 /* PCI Error status mask */
190
191/* used to configure PCI related parameters that are not in PCI config space.
192 * DEFAULT: 0bxx000, SIZE: 5 bits
193 */
194#define REG_BIM_CFG 0x1008 /* BIM Configuration */
195#define BIM_CFG_RESERVED0 0x001 /* reserved */
196#define BIM_CFG_RESERVED1 0x002 /* reserved */
197#define BIM_CFG_64BIT_DISABLE 0x004 /* disable 64-bit mode */
198#define BIM_CFG_66MHZ 0x008 /* (ro) 1 = 66MHz, 0 = < 66MHz */
199#define BIM_CFG_32BIT 0x010 /* (ro) 1 = 32-bit slot, 0 = 64-bit */
200#define BIM_CFG_DPAR_INTR_ENABLE 0x020 /* detected parity err enable */
201#define BIM_CFG_RMA_INTR_ENABLE 0x040 /* master abort intr enable */
202#define BIM_CFG_RTA_INTR_ENABLE 0x080 /* target abort intr enable */
203#define BIM_CFG_RESERVED2 0x100 /* reserved */
204#define BIM_CFG_BIM_DISABLE 0x200 /* stop BIM DMA. use before global
205 reset. reserved in Cassini. */
206#define BIM_CFG_BIM_STATUS 0x400 /* (ro) 1 = BIM DMA suspended.
207 reserved in Cassini. */
208#define BIM_CFG_PERROR_BLOCK 0x800 /* block PERR# to pci bus. def: 0.
209 reserved in Cassini. */
210
211/* DEFAULT: 0x00000000, SIZE: 32 bits */
212#define REG_BIM_DIAG 0x100C /* BIM Diagnostic */
213#define BIM_DIAG_MSTR_SM_MASK 0x3FFFFF00 /* PCI master controller state
214 machine bits [21:0] */
215#define BIM_DIAG_BRST_SM_MASK 0x7F /* PCI burst controller state
216 machine bits [6:0] */
217
218/* writing to SW_RESET_TX and SW_RESET_RX will issue a global
219 * reset. poll until TX and RX read back as 0's for completion.
220 */
221#define REG_SW_RESET 0x1010 /* Software reset */
222#define SW_RESET_TX 0x00000001 /* reset TX DMA engine. poll until
223 cleared to 0. */
224#define SW_RESET_RX 0x00000002 /* reset RX DMA engine. poll until
225 cleared to 0. */
226#define SW_RESET_RSTOUT 0x00000004 /* force RSTOUT# pin active (low).
227 resets PHY and anything else
228 connected to RSTOUT#. RSTOUT#
229 is also activated by local PCI
230 reset when hot-swap is being
231 done. */
232#define SW_RESET_BLOCK_PCS_SLINK 0x00000008 /* if a global reset is done with
233 this bit set, PCS and SLINK
234 modules won't be reset.
235 i.e., link won't drop. */
236#define SW_RESET_BREQ_SM_MASK 0x00007F00 /* breq state machine [6:0] */
237#define SW_RESET_PCIARB_SM_MASK 0x00070000 /* pci arbitration state bits:
238 0b000: ARB_IDLE1
239 0b001: ARB_IDLE2
240 0b010: ARB_WB_ACK
241 0b011: ARB_WB_WAT
242 0b100: ARB_RB_ACK
243 0b101: ARB_RB_WAT
244 0b110: ARB_RB_END
245 0b111: ARB_WB_END */
246#define SW_RESET_RDPCI_SM_MASK 0x00300000 /* read pci state bits:
247 0b00: RD_PCI_WAT
248 0b01: RD_PCI_RDY
249 0b11: RD_PCI_ACK */
250#define SW_RESET_RDARB_SM_MASK 0x00C00000 /* read arbitration state bits:
251 0b00: AD_IDL_RX
252 0b01: AD_ACK_RX
253 0b10: AD_ACK_TX
254 0b11: AD_IDL_TX */
255#define SW_RESET_WRPCI_SM_MASK 0x06000000 /* write pci state bits
256 0b00: WR_PCI_WAT
257 0b01: WR_PCI_RDY
258 0b11: WR_PCI_ACK */
259#define SW_RESET_WRARB_SM_MASK 0x38000000 /* write arbitration state bits:
260 0b000: ARB_IDLE1
261 0b001: ARB_IDLE2
262 0b010: ARB_TX_ACK
263 0b011: ARB_TX_WAT
264 0b100: ARB_RX_ACK
265 0b110: ARB_RX_WAT */
266
267/* Cassini only. 64-bit register used to check PCI datapath. when read,
268 * value written has both lower and upper 32-bit halves rotated to the right
269 * one bit position. e.g., FFFFFFFF FFFFFFFF -> 7FFFFFFF 7FFFFFFF
270 */
271#define REG_MINUS_BIM_DATAPATH_TEST 0x1018 /* Cassini: BIM datapath test
272 Cassini+: reserved */
273
274/* output enables are provided for each device's chip select and for the rest
275 * of the outputs from cassini to its local bus devices. two sw programmable
276 * bits are connected to general purpus control/status bits.
277 * DEFAULT: 0x7
278 */
279#define REG_BIM_LOCAL_DEV_EN 0x1020 /* BIM local device
280 output EN. default: 0x7 */
281#define BIM_LOCAL_DEV_PAD 0x01 /* address bus, RW signal, and
282 OE signal output enable on the
283 local bus interface. these
284 are shared between both local
285 bus devices. tristate when 0. */
286#define BIM_LOCAL_DEV_PROM 0x02 /* PROM chip select */
287#define BIM_LOCAL_DEV_EXT 0x04 /* secondary local bus device chip
288 select output enable */
289#define BIM_LOCAL_DEV_SOFT_0 0x08 /* sw programmable ctrl bit 0 */
290#define BIM_LOCAL_DEV_SOFT_1 0x10 /* sw programmable ctrl bit 1 */
291#define BIM_LOCAL_DEV_HW_RESET 0x20 /* internal hw reset. Cassini+ only. */
292
293/* access 24 entry BIM read and write buffers. put address in REG_BIM_BUFFER_ADDR
294 * and read/write from/to it REG_BIM_BUFFER_DATA_LOW and _DATA_HI.
295 * _DATA_HI should be the last access of the sequence.
296 * DEFAULT: undefined
297 */
298#define REG_BIM_BUFFER_ADDR 0x1024 /* BIM buffer address. for
299 purposes. */
300#define BIM_BUFFER_ADDR_MASK 0x3F /* index (0 - 23) of buffer */
301#define BIM_BUFFER_WR_SELECT 0x40 /* write buffer access = 1
302 read buffer access = 0 */
303/* DEFAULT: undefined */
304#define REG_BIM_BUFFER_DATA_LOW 0x1028 /* BIM buffer data low */
305#define REG_BIM_BUFFER_DATA_HI 0x102C /* BIM buffer data high */
306
307/* set BIM_RAM_BIST_START to start built-in self test for BIM read buffer.
308 * bit auto-clears when done with status read from _SUMMARY and _PASS bits.
309 */
310#define REG_BIM_RAM_BIST 0x102C /* BIM RAM (read buffer) BIST
311 control/status */
312#define BIM_RAM_BIST_RD_START 0x01 /* start BIST for BIM read buffer */
313#define BIM_RAM_BIST_WR_START 0x02 /* start BIST for BIM write buffer.
314 Cassini only. reserved in
315 Cassini+. */
316#define BIM_RAM_BIST_RD_PASS 0x04 /* summary BIST pass status for read
317 buffer. */
318#define BIM_RAM_BIST_WR_PASS 0x08 /* summary BIST pass status for write
319 buffer. Cassini only. reserved
320 in Cassini+. */
321#define BIM_RAM_BIST_RD_LOW_PASS 0x10 /* read low bank passes BIST */
322#define BIM_RAM_BIST_RD_HI_PASS 0x20 /* read high bank passes BIST */
323#define BIM_RAM_BIST_WR_LOW_PASS 0x40 /* write low bank passes BIST.
324 Cassini only. reserved in
325 Cassini+. */
326#define BIM_RAM_BIST_WR_HI_PASS 0x80 /* write high bank passes BIST.
327 Cassini only. reserved in
328 Cassini+. */
329
330/* ASUN: i'm not sure what this does as it's not in the spec.
331 * DEFAULT: 0xFC
332 */
333#define REG_BIM_DIAG_MUX 0x1030 /* BIM diagnostic probe mux
334 select register */
335
336/* enable probe monitoring mode and select data appearing on the P_A* bus. bit
337 * values for _SEL_HI_MASK and _SEL_LOW_MASK:
338 * 0x0: internal probe[7:0] (pci arb state, wtc empty w, wtc full w, wtc empty w,
339 * wtc empty r, post pci)
340 * 0x1: internal probe[15:8] (pci wbuf comp, pci wpkt comp, pci rbuf comp,
341 * pci rpkt comp, txdma wr req, txdma wr ack,
342 * txdma wr rdy, txdma wr xfr done)
343 * 0x2: internal probe[23:16] (txdma rd req, txdma rd ack, txdma rd rdy, rxdma rd,
344 * rd arb state, rd pci state)
345 * 0x3: internal probe[31:24] (rxdma req, rxdma ack, rxdma rdy, wrarb state,
346 * wrpci state)
347 * 0x4: pci io probe[7:0] 0x5: pci io probe[15:8]
348 * 0x6: pci io probe[23:16] 0x7: pci io probe[31:24]
349 * 0x8: pci io probe[39:32] 0x9: pci io probe[47:40]
350 * 0xa: pci io probe[55:48] 0xb: pci io probe[63:56]
351 * the following are not available in Cassini:
352 * 0xc: rx probe[7:0] 0xd: tx probe[7:0]
353 * 0xe: hp probe[7:0] 0xf: mac probe[7:0]
354 */
355#define REG_PLUS_PROBE_MUX_SELECT 0x1034 /* Cassini+: PROBE MUX SELECT */
356#define PROBE_MUX_EN 0x80000000 /* allow probe signals to be
357 driven on local bus P_A[15:0]
358 for debugging */
359#define PROBE_MUX_SUB_MUX_MASK 0x0000FF00 /* select sub module probe signals:
360 0x03 = mac[1:0]
361 0x0C = rx[1:0]
362 0x30 = tx[1:0]
363 0xC0 = hp[1:0] */
364#define PROBE_MUX_SEL_HI_MASK 0x000000F0 /* select which module to appear
365 on P_A[15:8]. see above for
366 values. */
367#define PROBE_MUX_SEL_LOW_MASK 0x0000000F /* select which module to appear
368 on P_A[7:0]. see above for
369 values. */
370
371/* values mean the same thing as REG_INTR_MASK excep that it's for INTB.
372 DEFAULT: 0x1F */
373#define REG_PLUS_INTR_MASK_1 0x1038 /* Cassini+: interrupt mask
374 register 2 for INTB */
375#define REG_PLUS_INTRN_MASK(x) (REG_PLUS_INTR_MASK_1 + ((x) - 1)*16)
376/* bits correspond to both _MASK and _STATUS registers. _ALT corresponds to
377 * all of the alternate (2-4) INTR registers while _1 corresponds to only
378 * _MASK_1 and _STATUS_1 registers.
379 * DEFAULT: 0x7 for MASK registers, 0x0 for ALIAS_CLEAR registers
380 */
381#define INTR_RX_DONE_ALT 0x01
382#define INTR_RX_COMP_FULL_ALT 0x02
383#define INTR_RX_COMP_AF_ALT 0x04
384#define INTR_RX_BUF_UNAVAIL_1 0x08
385#define INTR_RX_BUF_AE_1 0x10 /* almost empty */
386#define INTRN_MASK_RX_EN 0x80
387#define INTRN_MASK_CLEAR_ALL (INTR_RX_DONE_ALT | \
388 INTR_RX_COMP_FULL_ALT | \
389 INTR_RX_COMP_AF_ALT | \
390 INTR_RX_BUF_UNAVAIL_1 | \
391 INTR_RX_BUF_AE_1)
392#define REG_PLUS_INTR_STATUS_1 0x103C /* Cassini+: interrupt status
393 register 2 for INTB. default: 0x1F */
394#define REG_PLUS_INTRN_STATUS(x) (REG_PLUS_INTR_STATUS_1 + ((x) - 1)*16)
395#define INTR_STATUS_ALT_INTX_EN 0x80 /* generate INTX when one of the
396 flags are set. enables desc ring. */
397
398#define REG_PLUS_ALIAS_CLEAR_1 0x1040 /* Cassini+: alias clear mask
399 register 2 for INTB */
400#define REG_PLUS_ALIASN_CLEAR(x) (REG_PLUS_ALIAS_CLEAR_1 + ((x) - 1)*16)
401
402#define REG_PLUS_INTR_STATUS_ALIAS_1 0x1044 /* Cassini+: interrupt status
403 register alias 2 for INTB */
404#define REG_PLUS_INTRN_STATUS_ALIAS(x) (REG_PLUS_INTR_STATUS_ALIAS_1 + ((x) - 1)*16)
405
406#define REG_SATURN_PCFG 0x106c /* pin configuration register for
407 integrated macphy */
408
409#define SATURN_PCFG_TLA 0x00000001 /* 1 = phy actled */
410#define SATURN_PCFG_FLA 0x00000002 /* 1 = phy link10led */
411#define SATURN_PCFG_CLA 0x00000004 /* 1 = phy link100led */
412#define SATURN_PCFG_LLA 0x00000008 /* 1 = phy link1000led */
413#define SATURN_PCFG_RLA 0x00000010 /* 1 = phy duplexled */
414#define SATURN_PCFG_PDS 0x00000020 /* phy debug mode.
415 0 = normal */
416#define SATURN_PCFG_MTP 0x00000080 /* test point select */
417#define SATURN_PCFG_GMO 0x00000100 /* GMII observe. 1 =
418 GMII on SERDES pins for
419 monitoring. */
420#define SATURN_PCFG_FSI 0x00000200 /* 1 = freeze serdes/gmii. all
421 pins configed as outputs.
422 for power saving when using
423 internal phy. */
424#define SATURN_PCFG_LAD 0x00000800 /* 0 = mac core led ctrl
425 polarity from strapping
426 value.
427 1 = mac core led ctrl
428 polarity active low. */
429
430
431/** transmit dma registers **/
432#define MAX_TX_RINGS_SHIFT 2
433#define MAX_TX_RINGS (1 << MAX_TX_RINGS_SHIFT)
434#define MAX_TX_RINGS_MASK (MAX_TX_RINGS - 1)
435
436/* TX configuration.
437 * descr ring sizes size = 32 * (1 << n), n < 9. e.g., 0x8 = 8k. default: 0x8
438 * DEFAULT: 0x3F000001
439 */
440#define REG_TX_CFG 0x2004 /* TX config */
441#define TX_CFG_DMA_EN 0x00000001 /* enable TX DMA. if cleared, DMA
442 will stop after xfer of current
443 buffer has been completed. */
444#define TX_CFG_FIFO_PIO_SEL 0x00000002 /* TX DMA FIFO can be
445 accessed w/ FIFO addr
446 and data registers.
447 TX DMA should be
448 disabled. */
449#define TX_CFG_DESC_RING0_MASK 0x0000003C /* # desc entries in
450 ring 1. */
451#define TX_CFG_DESC_RING0_SHIFT 2
452#define TX_CFG_DESC_RINGN_MASK(a) (TX_CFG_DESC_RING0_MASK << (a)*4)
453#define TX_CFG_DESC_RINGN_SHIFT(a) (TX_CFG_DESC_RING0_SHIFT + (a)*4)
454#define TX_CFG_PACED_MODE 0x00100000 /* TX_ALL only set after
455 TX FIFO becomes empty.
456 if 0, TX_ALL set
457 if descr queue empty. */
458#define TX_CFG_DMA_RDPIPE_DIS 0x01000000 /* always set to 1 */
459#define TX_CFG_COMPWB_Q1 0x02000000 /* completion writeback happens at
460 the end of every packet kicked
461 through Q1. */
462#define TX_CFG_COMPWB_Q2 0x04000000 /* completion writeback happens at
463 the end of every packet kicked
464 through Q2. */
465#define TX_CFG_COMPWB_Q3 0x08000000 /* completion writeback happens at
466 the end of every packet kicked
467 through Q3 */
468#define TX_CFG_COMPWB_Q4 0x10000000 /* completion writeback happens at
469 the end of every packet kicked
470 through Q4 */
471#define TX_CFG_INTR_COMPWB_DIS 0x20000000 /* disable pre-interrupt completion
472 writeback */
473#define TX_CFG_CTX_SEL_MASK 0xC0000000 /* selects tx test port
474 connection
475 0b00: tx mac req,
476 tx mac retry req,
477 tx ack and tx tag.
478 0b01: txdma rd req,
479 txdma rd ack,
480 txdma rd rdy,
481 txdma rd type0
482 0b11: txdma wr req,
483 txdma wr ack,
484 txdma wr rdy,
485 txdma wr xfr done. */
486#define TX_CFG_CTX_SEL_SHIFT 30
487
488/* 11-bit counters that point to next location in FIFO to be loaded/retrieved.
489 * used for diagnostics only.
490 */
491#define REG_TX_FIFO_WRITE_PTR 0x2014 /* TX FIFO write pointer */
492#define REG_TX_FIFO_SHADOW_WRITE_PTR 0x2018 /* TX FIFO shadow write
493 pointer. temp hold reg.
494 diagnostics only. */
495#define REG_TX_FIFO_READ_PTR 0x201C /* TX FIFO read pointer */
496#define REG_TX_FIFO_SHADOW_READ_PTR 0x2020 /* TX FIFO shadow read
497 pointer */
498
499/* (ro) 11-bit up/down counter w/ # of frames currently in TX FIFO */
500#define REG_TX_FIFO_PKT_CNT 0x2024 /* TX FIFO packet counter */
501
502/* current state of all state machines in TX */
503#define REG_TX_SM_1 0x2028 /* TX state machine reg #1 */
504#define TX_SM_1_CHAIN_MASK 0x000003FF /* chaining state machine */
505#define TX_SM_1_CSUM_MASK 0x00000C00 /* checksum state machine */
506#define TX_SM_1_FIFO_LOAD_MASK 0x0003F000 /* FIFO load state machine.
507 = 0x01 when TX disabled. */
508#define TX_SM_1_FIFO_UNLOAD_MASK 0x003C0000 /* FIFO unload state machine */
509#define TX_SM_1_CACHE_MASK 0x03C00000 /* desc. prefetch cache controller
510 state machine */
511#define TX_SM_1_CBQ_ARB_MASK 0xF8000000 /* CBQ arbiter state machine */
512
513#define REG_TX_SM_2 0x202C /* TX state machine reg #2 */
514#define TX_SM_2_COMP_WB_MASK 0x07 /* completion writeback sm */
515#define TX_SM_2_SUB_LOAD_MASK 0x38 /* sub load state machine */
516#define TX_SM_2_KICK_MASK 0xC0 /* kick state machine */
517
518/* 64-bit pointer to the transmit data buffer. only the 50 LSB are incremented
519 * while the upper 23 bits are taken from the TX descriptor
520 */
521#define REG_TX_DATA_PTR_LOW 0x2030 /* TX data pointer low */
522#define REG_TX_DATA_PTR_HI 0x2034 /* TX data pointer high */
523
524/* 13 bit registers written by driver w/ descriptor value that follows
525 * last valid xmit descriptor. kick # and complete # values are used by
526 * the xmit dma engine to control tx descr fetching. if > 1 valid
527 * tx descr is available within the cache line being read, cassini will
528 * internally cache up to 4 of them. 0 on reset. _KICK = rw, _COMP = ro.
529 */
530#define REG_TX_KICK0 0x2038 /* TX kick reg #1 */
531#define REG_TX_KICKN(x) (REG_TX_KICK0 + (x)*4)
532#define REG_TX_COMP0 0x2048 /* TX completion reg #1 */
533#define REG_TX_COMPN(x) (REG_TX_COMP0 + (x)*4)
534
535/* values of TX_COMPLETE_1-4 are written. each completion register
536 * is 2bytes in size and contiguous. 8B allocation w/ 8B alignment.
537 * NOTE: completion reg values are only written back prior to TX_INTME and
538 * TX_ALL interrupts. at all other times, the most up-to-date index values
539 * should be obtained from the REG_TX_COMPLETE_# registers.
540 * here's the layout:
541 * offset from base addr completion # byte
542 * 0 TX_COMPLETE_1_MSB
543 * 1 TX_COMPLETE_1_LSB
544 * 2 TX_COMPLETE_2_MSB
545 * 3 TX_COMPLETE_2_LSB
546 * 4 TX_COMPLETE_3_MSB
547 * 5 TX_COMPLETE_3_LSB
548 * 6 TX_COMPLETE_4_MSB
549 * 7 TX_COMPLETE_4_LSB
550 */
551#define TX_COMPWB_SIZE 8
552#define REG_TX_COMPWB_DB_LOW 0x2058 /* TX completion write back
553 base low */
554#define REG_TX_COMPWB_DB_HI 0x205C /* TX completion write back
555 base high */
556#define TX_COMPWB_MSB_MASK 0x00000000000000FFULL
557#define TX_COMPWB_MSB_SHIFT 0
558#define TX_COMPWB_LSB_MASK 0x000000000000FF00ULL
559#define TX_COMPWB_LSB_SHIFT 8
560#define TX_COMPWB_NEXT(x) ((x) >> 16)
561
562/* 53 MSB used as base address. 11 LSB assumed to be 0. TX desc pointer must
563 * be 2KB-aligned. */
564#define REG_TX_DB0_LOW 0x2060 /* TX descriptor base low #1 */
565#define REG_TX_DB0_HI 0x2064 /* TX descriptor base hi #1 */
566#define REG_TX_DBN_LOW(x) (REG_TX_DB0_LOW + (x)*8)
567#define REG_TX_DBN_HI(x) (REG_TX_DB0_HI + (x)*8)
568
569/* 16-bit registers hold weights for the weighted round-robin of the
570 * four CBQ TX descr rings. weights correspond to # bytes xferred from
571 * host to TXFIFO in a round of WRR arbitration. can be set
572 * dynamically with new weights set upon completion of the current
573 * packet transfer from host memory to TXFIFO. a dummy write to any of
574 * these registers causes a queue1 pre-emption with all historical bw
575 * deficit data reset to 0 (useful when congestion requires a
576 * pre-emption/re-allocation of network bandwidth
577 */
578#define REG_TX_MAXBURST_0 0x2080 /* TX MaxBurst #1 */
579#define REG_TX_MAXBURST_1 0x2084 /* TX MaxBurst #2 */
580#define REG_TX_MAXBURST_2 0x2088 /* TX MaxBurst #3 */
581#define REG_TX_MAXBURST_3 0x208C /* TX MaxBurst #4 */
582
583/* diagnostics access to any TX FIFO location. every access is 65
584 * bits. _DATA_LOW = 32 LSB, _DATA_HI_T1/T0 = 32 MSB. _TAG = tag bit.
585 * writing _DATA_HI_T0 sets tag bit low, writing _DATA_HI_T1 sets tag
586 * bit high. TX_FIFO_PIO_SEL must be set for TX FIFO PIO access. if
587 * TX FIFO data integrity is desired, TX DMA should be
588 * disabled. _DATA_HI_Tx should be the last access of the sequence.
589 */
590#define REG_TX_FIFO_ADDR 0x2104 /* TX FIFO address */
591#define REG_TX_FIFO_TAG 0x2108 /* TX FIFO tag */
592#define REG_TX_FIFO_DATA_LOW 0x210C /* TX FIFO data low */
593#define REG_TX_FIFO_DATA_HI_T1 0x2110 /* TX FIFO data high t1 */
594#define REG_TX_FIFO_DATA_HI_T0 0x2114 /* TX FIFO data high t0 */
595#define REG_TX_FIFO_SIZE 0x2118 /* (ro) TX FIFO size = 0x090 = 9KB */
596
597/* 9-bit register controls BIST of TX FIFO. bit set indicates that the BIST
598 * passed for the specified memory
599 */
600#define REG_TX_RAMBIST 0x211C /* TX RAMBIST control/status */
601#define TX_RAMBIST_STATE 0x01C0 /* progress state of RAMBIST
602 controller state machine */
603#define TX_RAMBIST_RAM33A_PASS 0x0020 /* RAM33A passed */
604#define TX_RAMBIST_RAM32A_PASS 0x0010 /* RAM32A passed */
605#define TX_RAMBIST_RAM33B_PASS 0x0008 /* RAM33B passed */
606#define TX_RAMBIST_RAM32B_PASS 0x0004 /* RAM32B passed */
607#define TX_RAMBIST_SUMMARY 0x0002 /* all RAM passed */
608#define TX_RAMBIST_START 0x0001 /* write 1 to start BIST. self
609 clears on completion. */
610
611/** receive dma registers **/
612#define MAX_RX_DESC_RINGS 2
613#define MAX_RX_COMP_RINGS 4
614
615/* receive DMA channel configuration. default: 0x80910
616 * free ring size = (1 << n)*32 -> [32 - 8k]
617 * completion ring size = (1 << n)*128 -> [128 - 32k], n < 9
618 * DEFAULT: 0x80910
619 */
620#define REG_RX_CFG 0x4000 /* RX config */
621#define RX_CFG_DMA_EN 0x00000001 /* enable RX DMA. 0 stops
622 channel as soon as current
623 frame xfer has completed.
624 driver should disable MAC
625 for 200ms before disabling
626 RX */
627#define RX_CFG_DESC_RING_MASK 0x0000001E /* # desc entries in RX
628 free desc ring.
629 def: 0x8 = 8k */
630#define RX_CFG_DESC_RING_SHIFT 1
631#define RX_CFG_COMP_RING_MASK 0x000001E0 /* # desc entries in RX complete
632 ring. def: 0x8 = 32k */
633#define RX_CFG_COMP_RING_SHIFT 5
634#define RX_CFG_BATCH_DIS 0x00000200 /* disable receive desc
635 batching. def: 0x0 =
636 enabled */
637#define RX_CFG_SWIVEL_MASK 0x00001C00 /* byte offset of the 1st
638 data byte of the packet
639 w/in 8 byte boundares.
640 this swivels the data
641 DMA'ed to header
642 buffers, jumbo buffers
643 when header split is not
644 requested and MTU sized
645 buffers. def: 0x2 */
646#define RX_CFG_SWIVEL_SHIFT 10
647
648/* cassini+ only */
649#define RX_CFG_DESC_RING1_MASK 0x000F0000 /* # of desc entries in
650 RX free desc ring 2.
651 def: 0x8 = 8k */
652#define RX_CFG_DESC_RING1_SHIFT 16
653
654
655/* the page size register allows cassini chips to do the following with
656 * received data:
657 * [--------------------------------------------------------------] page
658 * [off][buf1][pad][off][buf2][pad][off][buf3][pad][off][buf4][pad]
659 * |--------------| = PAGE_SIZE_BUFFER_STRIDE
660 * page = PAGE_SIZE
661 * offset = PAGE_SIZE_MTU_OFF
662 * for the above example, MTU_BUFFER_COUNT = 4.
663 * NOTE: as is apparent, you need to ensure that the following holds:
664 * MTU_BUFFER_COUNT <= PAGE_SIZE/PAGE_SIZE_BUFFER_STRIDE
665 * DEFAULT: 0x48002002 (8k pages)
666 */
667#define REG_RX_PAGE_SIZE 0x4004 /* RX page size */
668#define RX_PAGE_SIZE_MASK 0x00000003 /* size of pages pointed to
669 by receive descriptors.
670 if jumbo buffers are
671 supported the page size
672 should not be < 8k.
673 0b00 = 2k, 0b01 = 4k
674 0b10 = 8k, 0b11 = 16k
675 DEFAULT: 8k */
676#define RX_PAGE_SIZE_SHIFT 0
677#define RX_PAGE_SIZE_MTU_COUNT_MASK 0x00007800 /* # of MTU buffers the hw
678 packs into a page.
679 DEFAULT: 4 */
680#define RX_PAGE_SIZE_MTU_COUNT_SHIFT 11
681#define RX_PAGE_SIZE_MTU_STRIDE_MASK 0x18000000 /* # of bytes that separate
682 each MTU buffer +
683 offset from each
684 other.
685 0b00 = 1k, 0b01 = 2k
686 0b10 = 4k, 0b11 = 8k
687 DEFAULT: 0x1 */
688#define RX_PAGE_SIZE_MTU_STRIDE_SHIFT 27
689#define RX_PAGE_SIZE_MTU_OFF_MASK 0xC0000000 /* offset in each page that
690 hw writes the MTU buffer
691 into.
692 0b00 = 0,
693 0b01 = 64 bytes
694 0b10 = 96, 0b11 = 128
695 DEFAULT: 0x1 */
696#define RX_PAGE_SIZE_MTU_OFF_SHIFT 30
697
698/* 11-bit counter points to next location in RX FIFO to be loaded/read.
699 * shadow write pointers enable retries in case of early receive aborts.
700 * DEFAULT: 0x0. generated on 64-bit boundaries.
701 */
702#define REG_RX_FIFO_WRITE_PTR 0x4008 /* RX FIFO write pointer */
703#define REG_RX_FIFO_READ_PTR 0x400C /* RX FIFO read pointer */
704#define REG_RX_IPP_FIFO_SHADOW_WRITE_PTR 0x4010 /* RX IPP FIFO shadow write
705 pointer */
706#define REG_RX_IPP_FIFO_SHADOW_READ_PTR 0x4014 /* RX IPP FIFO shadow read
707 pointer */
708#define REG_RX_IPP_FIFO_READ_PTR 0x400C /* RX IPP FIFO read
709 pointer. (8-bit counter) */
710
711/* current state of RX DMA state engines + other info
712 * DEFAULT: 0x0
713 */
714#define REG_RX_DEBUG 0x401C /* RX debug */
715#define RX_DEBUG_LOAD_STATE_MASK 0x0000000F /* load state machine w/ MAC:
716 0x0 = idle, 0x1 = load_bop
717 0x2 = load 1, 0x3 = load 2
718 0x4 = load 3, 0x5 = load 4
719 0x6 = last detect
720 0x7 = wait req
721 0x8 = wait req statuss 1st
722 0x9 = load st
723 0xa = bubble mac
724 0xb = error */
725#define RX_DEBUG_LM_STATE_MASK 0x00000070 /* load state machine w/ HP and
726 RX FIFO:
727 0x0 = idle, 0x1 = hp xfr
728 0x2 = wait hp ready
729 0x3 = wait flow code
730 0x4 = fifo xfer
731 0x5 = make status
732 0x6 = csum ready
733 0x7 = error */
734#define RX_DEBUG_FC_STATE_MASK 0x000000180 /* flow control state machine
735 w/ MAC:
736 0x0 = idle
737 0x1 = wait xoff ack
738 0x2 = wait xon
739 0x3 = wait xon ack */
740#define RX_DEBUG_DATA_STATE_MASK 0x000001E00 /* unload data state machine
741 states:
742 0x0 = idle data
743 0x1 = header begin
744 0x2 = xfer header
745 0x3 = xfer header ld
746 0x4 = mtu begin
747 0x5 = xfer mtu
748 0x6 = xfer mtu ld
749 0x7 = jumbo begin
750 0x8 = xfer jumbo
751 0x9 = xfer jumbo ld
752 0xa = reas begin
753 0xb = xfer reas
754 0xc = flush tag
755 0xd = xfer reas ld
756 0xe = error
757 0xf = bubble idle */
758#define RX_DEBUG_DESC_STATE_MASK 0x0001E000 /* unload desc state machine
759 states:
760 0x0 = idle desc
761 0x1 = wait ack
762 0x9 = wait ack 2
763 0x2 = fetch desc 1
764 0xa = fetch desc 2
765 0x3 = load ptrs
766 0x4 = wait dma
767 0x5 = wait ack batch
768 0x6 = post batch
769 0x7 = xfr done */
770#define RX_DEBUG_INTR_READ_PTR_MASK 0x30000000 /* interrupt read ptr of the
771 interrupt queue */
772#define RX_DEBUG_INTR_WRITE_PTR_MASK 0xC0000000 /* interrupt write pointer
773 of the interrupt queue */
774
775/* flow control frames are emmitted using two PAUSE thresholds:
776 * XOFF PAUSE uses pause time value pre-programmed in the Send PAUSE MAC reg
777 * XON PAUSE uses a pause time of 0. granularity of threshold is 64bytes.
778 * PAUSE thresholds defined in terms of FIFO occupancy and may be translated
779 * into FIFO vacancy using RX_FIFO_SIZE. setting ON will trigger XON frames
780 * when FIFO reaches 0. OFF threshold should not be > size of RX FIFO. max
781 * value is is 0x6F.
782 * DEFAULT: 0x00078
783 */
784#define REG_RX_PAUSE_THRESH 0x4020 /* RX pause thresholds */
785#define RX_PAUSE_THRESH_QUANTUM 64
786#define RX_PAUSE_THRESH_OFF_MASK 0x000001FF /* XOFF PAUSE emitted when
787 RX FIFO occupancy >
788 value*64B */
789#define RX_PAUSE_THRESH_OFF_SHIFT 0
790#define RX_PAUSE_THRESH_ON_MASK 0x001FF000 /* XON PAUSE emitted after
791 emitting XOFF PAUSE when RX
792 FIFO occupancy falls below
793 this value*64B. must be
794 < XOFF threshold. if =
795 RX_FIFO_SIZE< XON frames are
796 never emitted. */
797#define RX_PAUSE_THRESH_ON_SHIFT 12
798
799/* 13-bit register used to control RX desc fetching and intr generation. if 4+
800 * valid RX descriptors are available, Cassini will read 4 at a time.
801 * writing N means that all desc up to *but* excluding N are available. N must
802 * be a multiple of 4 (N % 4 = 0). first desc should be cache-line aligned.
803 * DEFAULT: 0 on reset
804 */
805#define REG_RX_KICK 0x4024 /* RX kick reg */
806
807/* 8KB aligned 64-bit pointer to the base of the RX free/completion rings.
808 * lower 13 bits of the low register are hard-wired to 0.
809 */
810#define REG_RX_DB_LOW 0x4028 /* RX descriptor ring
811 base low */
812#define REG_RX_DB_HI 0x402C /* RX descriptor ring
813 base hi */
814#define REG_RX_CB_LOW 0x4030 /* RX completion ring
815 base low */
816#define REG_RX_CB_HI 0x4034 /* RX completion ring
817 base hi */
818/* 13-bit register indicate desc used by cassini for receive frames. used
819 * for diagnostic purposes.
820 * DEFAULT: 0 on reset
821 */
822#define REG_RX_COMP 0x4038 /* (ro) RX completion */
823
824/* HEAD and TAIL are used to control RX desc posting and interrupt
825 * generation. hw moves the head register to pass ownership to sw. sw
826 * moves the tail register to pass ownership back to hw. to give all
827 * entries to hw, set TAIL = HEAD. if HEAD and TAIL indicate that no
828 * more entries are available, DMA will pause and an interrupt will be
829 * generated to indicate no more entries are available. sw can use
830 * this interrupt to reduce the # of times it must update the
831 * completion tail register.
832 * DEFAULT: 0 on reset
833 */
834#define REG_RX_COMP_HEAD 0x403C /* RX completion head */
835#define REG_RX_COMP_TAIL 0x4040 /* RX completion tail */
836
837/* values used for receive interrupt blanking. loaded each time the ISR is read
838 * DEFAULT: 0x00000000
839 */
840#define REG_RX_BLANK 0x4044 /* RX blanking register
841 for ISR read */
842#define RX_BLANK_INTR_PKT_MASK 0x000001FF /* RX_DONE intr asserted if
843 this many sets of completion
844 writebacks (up to 2 packets)
845 occur since the last time
846 the ISR was read. 0 = no
847 packet blanking */
848#define RX_BLANK_INTR_PKT_SHIFT 0
849#define RX_BLANK_INTR_TIME_MASK 0x3FFFF000 /* RX_DONE interrupt asserted
850 if that many clocks were
851 counted since last time the
852 ISR was read.
853 each count is 512 core
854 clocks (125MHz). 0 = no
855 time blanking */
856#define RX_BLANK_INTR_TIME_SHIFT 12
857
858/* values used for interrupt generation based on threshold values of how
859 * many free desc and completion entries are available for hw use.
860 * DEFAULT: 0x00000000
861 */
862#define REG_RX_AE_THRESH 0x4048 /* RX almost empty
863 thresholds */
864#define RX_AE_THRESH_FREE_MASK 0x00001FFF /* RX_BUF_AE will be
865 generated if # desc
866 avail for hw use <=
867 # */
868#define RX_AE_THRESH_FREE_SHIFT 0
869#define RX_AE_THRESH_COMP_MASK 0x0FFFE000 /* RX_COMP_AE will be
870 generated if # of
871 completion entries
872 avail for hw use <=
873 # */
874#define RX_AE_THRESH_COMP_SHIFT 13
875
876/* probabilities for random early drop (RED) thresholds on a FIFO threshold
877 * basis. probability should increase when the FIFO level increases. control
878 * packets are never dropped and not counted in stats. probability programmed
879 * on a 12.5% granularity. e.g., 0x1 = 1/8 packets dropped.
880 * DEFAULT: 0x00000000
881 */
882#define REG_RX_RED 0x404C /* RX random early detect enable */
883#define RX_RED_4K_6K_FIFO_MASK 0x000000FF /* 4KB < FIFO thresh < 6KB */
884#define RX_RED_6K_8K_FIFO_MASK 0x0000FF00 /* 6KB < FIFO thresh < 8KB */
885#define RX_RED_8K_10K_FIFO_MASK 0x00FF0000 /* 8KB < FIFO thresh < 10KB */
886#define RX_RED_10K_12K_FIFO_MASK 0xFF000000 /* 10KB < FIFO thresh < 12KB */
887
888/* FIFO fullness levels for RX FIFO, RX control FIFO, and RX IPP FIFO.
889 * RX control FIFO = # of packets in RX FIFO.
890 * DEFAULT: 0x0
891 */
892#define REG_RX_FIFO_FULLNESS 0x4050 /* (ro) RX FIFO fullness */
893#define RX_FIFO_FULLNESS_RX_FIFO_MASK 0x3FF80000 /* level w/ 8B granularity */
894#define RX_FIFO_FULLNESS_IPP_FIFO_MASK 0x0007FF00 /* level w/ 8B granularity */
895#define RX_FIFO_FULLNESS_RX_PKT_MASK 0x000000FF /* # packets in RX FIFO */
896#define REG_RX_IPP_PACKET_COUNT 0x4054 /* RX IPP packet counter */
897#define REG_RX_WORK_DMA_PTR_LOW 0x4058 /* RX working DMA ptr low */
898#define REG_RX_WORK_DMA_PTR_HI 0x405C /* RX working DMA ptr
899 high */
900
901/* BIST testing ro RX FIFO, RX control FIFO, and RX IPP FIFO. only RX BIST
902 * START/COMPLETE is writeable. START will clear when the BIST has completed
903 * checking all 17 RAMS.
904 * DEFAULT: 0bxxxx xxxxx xxxx xxxx xxxx x000 0000 0000 00x0
905 */
906#define REG_RX_BIST 0x4060 /* (ro) RX BIST */
907#define RX_BIST_32A_PASS 0x80000000 /* RX FIFO 32A passed */
908#define RX_BIST_33A_PASS 0x40000000 /* RX FIFO 33A passed */
909#define RX_BIST_32B_PASS 0x20000000 /* RX FIFO 32B passed */
910#define RX_BIST_33B_PASS 0x10000000 /* RX FIFO 33B passed */
911#define RX_BIST_32C_PASS 0x08000000 /* RX FIFO 32C passed */
912#define RX_BIST_33C_PASS 0x04000000 /* RX FIFO 33C passed */
913#define RX_BIST_IPP_32A_PASS 0x02000000 /* RX IPP FIFO 33B passed */
914#define RX_BIST_IPP_33A_PASS 0x01000000 /* RX IPP FIFO 33A passed */
915#define RX_BIST_IPP_32B_PASS 0x00800000 /* RX IPP FIFO 32B passed */
916#define RX_BIST_IPP_33B_PASS 0x00400000 /* RX IPP FIFO 33B passed */
917#define RX_BIST_IPP_32C_PASS 0x00200000 /* RX IPP FIFO 32C passed */
918#define RX_BIST_IPP_33C_PASS 0x00100000 /* RX IPP FIFO 33C passed */
919#define RX_BIST_CTRL_32_PASS 0x00800000 /* RX CTRL FIFO 32 passed */
920#define RX_BIST_CTRL_33_PASS 0x00400000 /* RX CTRL FIFO 33 passed */
921#define RX_BIST_REAS_26A_PASS 0x00200000 /* RX Reas 26A passed */
922#define RX_BIST_REAS_26B_PASS 0x00100000 /* RX Reas 26B passed */
923#define RX_BIST_REAS_27_PASS 0x00080000 /* RX Reas 27 passed */
924#define RX_BIST_STATE_MASK 0x00078000 /* BIST state machine */
925#define RX_BIST_SUMMARY 0x00000002 /* when BIST complete,
926 summary pass bit
927 contains AND of BIST
928 results of all 16
929 RAMS */
930#define RX_BIST_START 0x00000001 /* write 1 to start
931 BIST. self clears
932 on completion. */
933
934/* next location in RX CTRL FIFO that will be loaded w/ data from RX IPP/read
935 * from to retrieve packet control info.
936 * DEFAULT: 0
937 */
938#define REG_RX_CTRL_FIFO_WRITE_PTR 0x4064 /* (ro) RX control FIFO
939 write ptr */
940#define REG_RX_CTRL_FIFO_READ_PTR 0x4068 /* (ro) RX control FIFO read
941 ptr */
942
943/* receive interrupt blanking. loaded each time interrupt alias register is
944 * read.
945 * DEFAULT: 0x0
946 */
947#define REG_RX_BLANK_ALIAS_READ 0x406C /* RX blanking register for
948 alias read */
949#define RX_BAR_INTR_PACKET_MASK 0x000001FF /* assert RX_DONE if #
950 completion writebacks
951 > # since last ISR
952 read. 0 = no
953 blanking. up to 2
954 packets per
955 completion wb. */
956#define RX_BAR_INTR_TIME_MASK 0x3FFFF000 /* assert RX_DONE if #
957 clocks > # since last
958 ISR read. each count
959 is 512 core clocks
960 (125MHz). 0 = no
961 blanking. */
962
963/* diagnostic access to RX FIFO. 32 LSB accessed via DATA_LOW. 32 MSB accessed
964 * via DATA_HI_T0 or DATA_HI_T1. TAG reads the tag bit. writing HI_T0
965 * will unset the tag bit while writing HI_T1 will set the tag bit. to reset
966 * to normal operation after diagnostics, write to address location 0x0.
967 * RX_DMA_EN bit must be set to 0x0 for RX FIFO PIO access. DATA_HI should
968 * be the last write access of a write sequence.
969 * DEFAULT: undefined
970 */
971#define REG_RX_FIFO_ADDR 0x4080 /* RX FIFO address */
972#define REG_RX_FIFO_TAG 0x4084 /* RX FIFO tag */
973#define REG_RX_FIFO_DATA_LOW 0x4088 /* RX FIFO data low */
974#define REG_RX_FIFO_DATA_HI_T0 0x408C /* RX FIFO data high T0 */
975#define REG_RX_FIFO_DATA_HI_T1 0x4090 /* RX FIFO data high T1 */
976
977/* diagnostic assess to RX CTRL FIFO. 8-bit FIFO_ADDR holds address of
978 * 81 bit control entry and 6 bit flow id. LOW and MID are both 32-bit
979 * accesses. HI is 7-bits with 6-bit flow id and 1 bit control
980 * word. RX_DMA_EN must be 0 for RX CTRL FIFO PIO access. DATA_HI
981 * should be last write access of the write sequence.
982 * DEFAULT: undefined
983 */
984#define REG_RX_CTRL_FIFO_ADDR 0x4094 /* RX Control FIFO and
985 Batching FIFO addr */
986#define REG_RX_CTRL_FIFO_DATA_LOW 0x4098 /* RX Control FIFO data
987 low */
988#define REG_RX_CTRL_FIFO_DATA_MID 0x409C /* RX Control FIFO data
989 mid */
990#define REG_RX_CTRL_FIFO_DATA_HI 0x4100 /* RX Control FIFO data
991 hi and flow id */
992#define RX_CTRL_FIFO_DATA_HI_CTRL 0x0001 /* upper bit of ctrl word */
993#define RX_CTRL_FIFO_DATA_HI_FLOW_MASK 0x007E /* flow id */
994
995/* diagnostic access to RX IPP FIFO. same semantics as RX_FIFO.
996 * DEFAULT: undefined
997 */
998#define REG_RX_IPP_FIFO_ADDR 0x4104 /* RX IPP FIFO address */
999#define REG_RX_IPP_FIFO_TAG 0x4108 /* RX IPP FIFO tag */
1000#define REG_RX_IPP_FIFO_DATA_LOW 0x410C /* RX IPP FIFO data low */
1001#define REG_RX_IPP_FIFO_DATA_HI_T0 0x4110 /* RX IPP FIFO data high
1002 T0 */
1003#define REG_RX_IPP_FIFO_DATA_HI_T1 0x4114 /* RX IPP FIFO data high
1004 T1 */
1005
1006/* 64-bit pointer to receive data buffer in host memory used for headers and
1007 * small packets. MSB in high register. loaded by DMA state machine and
1008 * increments as DMA writes receive data. only 50 LSB are incremented. top
1009 * 13 bits taken from RX descriptor.
1010 * DEFAULT: undefined
1011 */
1012#define REG_RX_HEADER_PAGE_PTR_LOW 0x4118 /* (ro) RX header page ptr
1013 low */
1014#define REG_RX_HEADER_PAGE_PTR_HI 0x411C /* (ro) RX header page ptr
1015 high */
1016#define REG_RX_MTU_PAGE_PTR_LOW 0x4120 /* (ro) RX MTU page pointer
1017 low */
1018#define REG_RX_MTU_PAGE_PTR_HI 0x4124 /* (ro) RX MTU page pointer
1019 high */
1020
1021/* PIO diagnostic access to RX reassembly DMA Table RAM. 6-bit register holds
1022 * one of 64 79-bit locations in the RX Reassembly DMA table and the addr of
1023 * one of the 64 byte locations in the Batching table. LOW holds 32 LSB.
1024 * MID holds the next 32 LSB. HIGH holds the 15 MSB. RX_DMA_EN must be set
1025 * to 0 for PIO access. DATA_HIGH should be last write of write sequence.
1026 * layout:
1027 * reassmbl ptr [78:15] | reassmbl index [14:1] | reassmbl entry valid [0]
1028 * DEFAULT: undefined
1029 */
1030#define REG_RX_TABLE_ADDR 0x4128 /* RX reassembly DMA table
1031 address */
1032#define RX_TABLE_ADDR_MASK 0x0000003F /* address mask */
1033
1034#define REG_RX_TABLE_DATA_LOW 0x412C /* RX reassembly DMA table
1035 data low */
1036#define REG_RX_TABLE_DATA_MID 0x4130 /* RX reassembly DMA table
1037 data mid */
1038#define REG_RX_TABLE_DATA_HI 0x4134 /* RX reassembly DMA table
1039 data high */
1040
1041/* cassini+ only */
1042/* 8KB aligned 64-bit pointer to base of RX rings. lower 13 bits hardwired to
1043 * 0. same semantics as primary desc/complete rings.
1044 */
1045#define REG_PLUS_RX_DB1_LOW 0x4200 /* RX descriptor ring
1046 2 base low */
1047#define REG_PLUS_RX_DB1_HI 0x4204 /* RX descriptor ring
1048 2 base high */
1049#define REG_PLUS_RX_CB1_LOW 0x4208 /* RX completion ring
1050 2 base low. 4 total */
1051#define REG_PLUS_RX_CB1_HI 0x420C /* RX completion ring
1052 2 base high. 4 total */
1053#define REG_PLUS_RX_CBN_LOW(x) (REG_PLUS_RX_CB1_LOW + 8*((x) - 1))
1054#define REG_PLUS_RX_CBN_HI(x) (REG_PLUS_RX_CB1_HI + 8*((x) - 1))
1055#define REG_PLUS_RX_KICK1 0x4220 /* RX Kick 2 register */
1056#define REG_PLUS_RX_COMP1 0x4224 /* (ro) RX completion 2
1057 reg */
1058#define REG_PLUS_RX_COMP1_HEAD 0x4228 /* (ro) RX completion 2
1059 head reg. 4 total. */
1060#define REG_PLUS_RX_COMP1_TAIL 0x422C /* RX completion 2
1061 tail reg. 4 total. */
1062#define REG_PLUS_RX_COMPN_HEAD(x) (REG_PLUS_RX_COMP1_HEAD + 8*((x) - 1))
1063#define REG_PLUS_RX_COMPN_TAIL(x) (REG_PLUS_RX_COMP1_TAIL + 8*((x) - 1))
1064#define REG_PLUS_RX_AE1_THRESH 0x4240 /* RX almost empty 2
1065 thresholds */
1066#define RX_AE1_THRESH_FREE_MASK RX_AE_THRESH_FREE_MASK
1067#define RX_AE1_THRESH_FREE_SHIFT RX_AE_THRESH_FREE_SHIFT
1068
1069/** header parser registers **/
1070
1071/* RX parser configuration register.
1072 * DEFAULT: 0x1651004
1073 */
1074#define REG_HP_CFG 0x4140 /* header parser
1075 configuration reg */
1076#define HP_CFG_PARSE_EN 0x00000001 /* enab header parsing */
1077#define HP_CFG_NUM_CPU_MASK 0x000000FC /* # processors
1078 0 = 64. 0x3f = 63 */
1079#define HP_CFG_NUM_CPU_SHIFT 2
1080#define HP_CFG_SYN_INC_MASK 0x00000100 /* SYN bit won't increment
1081 TCP seq # by one when
1082 stored in FDBM */
1083#define HP_CFG_TCP_THRESH_MASK 0x000FFE00 /* # bytes of TCP data
1084 needed to be considered
1085 for reassembly */
1086#define HP_CFG_TCP_THRESH_SHIFT 9
1087
1088/* access to RX Instruction RAM. 5-bit register/counter holds addr
1089 * of 39 bit entry to be read/written. 32 LSB in _DATA_LOW. 7 MSB in _DATA_HI.
1090 * RX_DMA_EN must be 0 for RX instr PIO access. DATA_HI should be last access
1091 * of sequence.
1092 * DEFAULT: undefined
1093 */
1094#define REG_HP_INSTR_RAM_ADDR 0x4144 /* HP instruction RAM
1095 address */
1096#define HP_INSTR_RAM_ADDR_MASK 0x01F /* 5-bit mask */
1097#define REG_HP_INSTR_RAM_DATA_LOW 0x4148 /* HP instruction RAM
1098 data low */
1099#define HP_INSTR_RAM_LOW_OUTMASK_MASK 0x0000FFFF
1100#define HP_INSTR_RAM_LOW_OUTMASK_SHIFT 0
1101#define HP_INSTR_RAM_LOW_OUTSHIFT_MASK 0x000F0000
1102#define HP_INSTR_RAM_LOW_OUTSHIFT_SHIFT 16
1103#define HP_INSTR_RAM_LOW_OUTEN_MASK 0x00300000
1104#define HP_INSTR_RAM_LOW_OUTEN_SHIFT 20
1105#define HP_INSTR_RAM_LOW_OUTARG_MASK 0xFFC00000
1106#define HP_INSTR_RAM_LOW_OUTARG_SHIFT 22
1107#define REG_HP_INSTR_RAM_DATA_MID 0x414C /* HP instruction RAM
1108 data mid */
1109#define HP_INSTR_RAM_MID_OUTARG_MASK 0x00000003
1110#define HP_INSTR_RAM_MID_OUTARG_SHIFT 0
1111#define HP_INSTR_RAM_MID_OUTOP_MASK 0x0000003C
1112#define HP_INSTR_RAM_MID_OUTOP_SHIFT 2
1113#define HP_INSTR_RAM_MID_FNEXT_MASK 0x000007C0
1114#define HP_INSTR_RAM_MID_FNEXT_SHIFT 6
1115#define HP_INSTR_RAM_MID_FOFF_MASK 0x0003F800
1116#define HP_INSTR_RAM_MID_FOFF_SHIFT 11
1117#define HP_INSTR_RAM_MID_SNEXT_MASK 0x007C0000
1118#define HP_INSTR_RAM_MID_SNEXT_SHIFT 18
1119#define HP_INSTR_RAM_MID_SOFF_MASK 0x3F800000
1120#define HP_INSTR_RAM_MID_SOFF_SHIFT 23
1121#define HP_INSTR_RAM_MID_OP_MASK 0xC0000000
1122#define HP_INSTR_RAM_MID_OP_SHIFT 30
1123#define REG_HP_INSTR_RAM_DATA_HI 0x4150 /* HP instruction RAM
1124 data high */
1125#define HP_INSTR_RAM_HI_VAL_MASK 0x0000FFFF
1126#define HP_INSTR_RAM_HI_VAL_SHIFT 0
1127#define HP_INSTR_RAM_HI_MASK_MASK 0xFFFF0000
1128#define HP_INSTR_RAM_HI_MASK_SHIFT 16
1129
1130/* PIO access into RX Header parser data RAM and flow database.
1131 * 11-bit register. Data fills the LSB portion of bus if less than 32 bits.
1132 * DATA_RAM: write RAM_FDB_DATA with index to access DATA_RAM.
1133 * RAM bytes = 4*(x - 1) + [3:0]. e.g., 0 -> [3:0], 31 -> [123:120]
1134 * FLOWDB: write DATA_RAM_FDB register and then read/write FDB1-12 to access
1135 * flow database.
1136 * RX_DMA_EN must be 0 for RX parser RAM PIO access. RX Parser RAM data reg
1137 * should be the last write access of the write sequence.
1138 * DEFAULT: undefined
1139 */
1140#define REG_HP_DATA_RAM_FDB_ADDR 0x4154 /* HP data and FDB
1141 RAM address */
1142#define HP_DATA_RAM_FDB_DATA_MASK 0x001F /* select 1 of 86 byte
1143 locations in header
1144 parser data ram to
1145 read/write */
1146#define HP_DATA_RAM_FDB_FDB_MASK 0x3F00 /* 1 of 64 353-bit locations
1147 in the flow database */
1148#define REG_HP_DATA_RAM_DATA 0x4158 /* HP data RAM data */
1149
1150/* HP flow database registers: 1 - 12, 0x415C - 0x4188, 4 8-bit bytes
1151 * FLOW_DB(1) = IP_SA[127:96], FLOW_DB(2) = IP_SA[95:64]
1152 * FLOW_DB(3) = IP_SA[63:32], FLOW_DB(4) = IP_SA[31:0]
1153 * FLOW_DB(5) = IP_DA[127:96], FLOW_DB(6) = IP_DA[95:64]
1154 * FLOW_DB(7) = IP_DA[63:32], FLOW_DB(8) = IP_DA[31:0]
1155 * FLOW_DB(9) = {TCP_SP[15:0],TCP_DP[15:0]}
1156 * FLOW_DB(10) = bit 0 has value for flow valid
1157 * FLOW_DB(11) = TCP_SEQ[63:32], FLOW_DB(12) = TCP_SEQ[31:0]
1158 */
1159#define REG_HP_FLOW_DB0 0x415C /* HP flow database 1 reg */
1160#define REG_HP_FLOW_DBN(x) (REG_HP_FLOW_DB0 + (x)*4)
1161
1162/* diagnostics for RX Header Parser block.
1163 * ASUN: the header parser state machine register is used for diagnostics
1164 * purposes. however, the spec doesn't have any details on it.
1165 */
1166#define REG_HP_STATE_MACHINE 0x418C /* (ro) HP state machine */
1167#define REG_HP_STATUS0 0x4190 /* (ro) HP status 1 */
1168#define HP_STATUS0_SAP_MASK 0xFFFF0000 /* SAP */
1169#define HP_STATUS0_L3_OFF_MASK 0x0000FE00 /* L3 offset */
1170#define HP_STATUS0_LB_CPUNUM_MASK 0x000001F8 /* load balancing CPU
1171 number */
1172#define HP_STATUS0_HRP_OPCODE_MASK 0x00000007 /* HRP opcode */
1173
1174#define REG_HP_STATUS1 0x4194 /* (ro) HP status 2 */
1175#define HP_STATUS1_ACCUR2_MASK 0xE0000000 /* accu R2[6:4] */
1176#define HP_STATUS1_FLOWID_MASK 0x1F800000 /* flow id */
1177#define HP_STATUS1_TCP_OFF_MASK 0x007F0000 /* tcp payload offset */
1178#define HP_STATUS1_TCP_SIZE_MASK 0x0000FFFF /* tcp payload size */
1179
1180#define REG_HP_STATUS2 0x4198 /* (ro) HP status 3 */
1181#define HP_STATUS2_ACCUR2_MASK 0xF0000000 /* accu R2[3:0] */
1182#define HP_STATUS2_CSUM_OFF_MASK 0x07F00000 /* checksum start
1183 start offset */
1184#define HP_STATUS2_ACCUR1_MASK 0x000FE000 /* accu R1 */
1185#define HP_STATUS2_FORCE_DROP 0x00001000 /* force drop */
1186#define HP_STATUS2_BWO_REASSM 0x00000800 /* batching w/o
1187 reassembly */
1188#define HP_STATUS2_JH_SPLIT_EN 0x00000400 /* jumbo header split
1189 enable */
1190#define HP_STATUS2_FORCE_TCP_NOCHECK 0x00000200 /* force tcp no payload
1191 check */
1192#define HP_STATUS2_DATA_MASK_ZERO 0x00000100 /* mask of data length
1193 equal to zero */
1194#define HP_STATUS2_FORCE_TCP_CHECK 0x00000080 /* force tcp payload
1195 chk */
1196#define HP_STATUS2_MASK_TCP_THRESH 0x00000040 /* mask of payload
1197 threshold */
1198#define HP_STATUS2_NO_ASSIST 0x00000020 /* no assist */
1199#define HP_STATUS2_CTRL_PACKET_FLAG 0x00000010 /* control packet flag */
1200#define HP_STATUS2_TCP_FLAG_CHECK 0x00000008 /* tcp flag check */
1201#define HP_STATUS2_SYN_FLAG 0x00000004 /* syn flag */
1202#define HP_STATUS2_TCP_CHECK 0x00000002 /* tcp payload chk */
1203#define HP_STATUS2_TCP_NOCHECK 0x00000001 /* tcp no payload chk */
1204
1205/* BIST for header parser(HP) and flow database memories (FDBM). set _START
1206 * to start BIST. controller clears _START on completion. _START can also
1207 * be cleared to force termination of BIST. a bit set indicates that that
1208 * memory passed its BIST.
1209 */
1210#define REG_HP_RAM_BIST 0x419C /* HP RAM BIST reg */
1211#define HP_RAM_BIST_HP_DATA_PASS 0x80000000 /* HP data ram */
1212#define HP_RAM_BIST_HP_INSTR0_PASS 0x40000000 /* HP instr ram 0 */
1213#define HP_RAM_BIST_HP_INSTR1_PASS 0x20000000 /* HP instr ram 1 */
1214#define HP_RAM_BIST_HP_INSTR2_PASS 0x10000000 /* HP instr ram 2 */
1215#define HP_RAM_BIST_FDBM_AGE0_PASS 0x08000000 /* FDBM aging RAM0 */
1216#define HP_RAM_BIST_FDBM_AGE1_PASS 0x04000000 /* FDBM aging RAM1 */
1217#define HP_RAM_BIST_FDBM_FLOWID00_PASS 0x02000000 /* FDBM flowid RAM0
1218 bank 0 */
1219#define HP_RAM_BIST_FDBM_FLOWID10_PASS 0x01000000 /* FDBM flowid RAM1
1220 bank 0 */
1221#define HP_RAM_BIST_FDBM_FLOWID20_PASS 0x00800000 /* FDBM flowid RAM2
1222 bank 0 */
1223#define HP_RAM_BIST_FDBM_FLOWID30_PASS 0x00400000 /* FDBM flowid RAM3
1224 bank 0 */
1225#define HP_RAM_BIST_FDBM_FLOWID01_PASS 0x00200000 /* FDBM flowid RAM0
1226 bank 1 */
1227#define HP_RAM_BIST_FDBM_FLOWID11_PASS 0x00100000 /* FDBM flowid RAM1
1228 bank 2 */
1229#define HP_RAM_BIST_FDBM_FLOWID21_PASS 0x00080000 /* FDBM flowid RAM2
1230 bank 1 */
1231#define HP_RAM_BIST_FDBM_FLOWID31_PASS 0x00040000 /* FDBM flowid RAM3
1232 bank 1 */
1233#define HP_RAM_BIST_FDBM_TCPSEQ_PASS 0x00020000 /* FDBM tcp sequence
1234 RAM */
1235#define HP_RAM_BIST_SUMMARY 0x00000002 /* all BIST tests */
1236#define HP_RAM_BIST_START 0x00000001 /* start/stop BIST */
1237
1238
1239/** MAC registers. **/
1240/* reset bits are set using a PIO write and self-cleared after the command
1241 * execution has completed.
1242 */
1243#define REG_MAC_TX_RESET 0x6000 /* TX MAC software reset
1244 command (default: 0x0) */
1245#define REG_MAC_RX_RESET 0x6004 /* RX MAC software reset
1246 command (default: 0x0) */
1247/* execute a pause flow control frame transmission
1248 DEFAULT: 0x0XXXX */
1249#define REG_MAC_SEND_PAUSE 0x6008 /* send pause command reg */
1250#define MAC_SEND_PAUSE_TIME_MASK 0x0000FFFF /* value of pause time
1251 to be sent on network
1252 in units of slot
1253 times */
1254#define MAC_SEND_PAUSE_SEND 0x00010000 /* send pause flow ctrl
1255 frame on network */
1256
1257/* bit set indicates that event occurred. auto-cleared when status register
1258 * is read and have corresponding mask bits in mask register. events will
1259 * trigger an interrupt if the corresponding mask bit is 0.
1260 * status register default: 0x00000000
1261 * mask register default = 0xFFFFFFFF on reset
1262 */
1263#define REG_MAC_TX_STATUS 0x6010 /* TX MAC status reg */
1264#define MAC_TX_FRAME_XMIT 0x0001 /* successful frame
1265 transmision */
1266#define MAC_TX_UNDERRUN 0x0002 /* terminated frame
1267 transmission due to
1268 data starvation in the
1269 xmit data path */
1270#define MAC_TX_MAX_PACKET_ERR 0x0004 /* frame exceeds max allowed
1271 length passed to TX MAC
1272 by the DMA engine */
1273#define MAC_TX_COLL_NORMAL 0x0008 /* rollover of the normal
1274 collision counter */
1275#define MAC_TX_COLL_EXCESS 0x0010 /* rollover of the excessive
1276 collision counter */
1277#define MAC_TX_COLL_LATE 0x0020 /* rollover of the late
1278 collision counter */
1279#define MAC_TX_COLL_FIRST 0x0040 /* rollover of the first
1280 collision counter */
1281#define MAC_TX_DEFER_TIMER 0x0080 /* rollover of the defer
1282 timer */
1283#define MAC_TX_PEAK_ATTEMPTS 0x0100 /* rollover of the peak
1284 attempts counter */
1285
1286#define REG_MAC_RX_STATUS 0x6014 /* RX MAC status reg */
1287#define MAC_RX_FRAME_RECV 0x0001 /* successful receipt of
1288 a frame */
1289#define MAC_RX_OVERFLOW 0x0002 /* dropped frame due to
1290 RX FIFO overflow */
1291#define MAC_RX_FRAME_COUNT 0x0004 /* rollover of receive frame
1292 counter */
1293#define MAC_RX_ALIGN_ERR 0x0008 /* rollover of alignment
1294 error counter */
1295#define MAC_RX_CRC_ERR 0x0010 /* rollover of crc error
1296 counter */
1297#define MAC_RX_LEN_ERR 0x0020 /* rollover of length
1298 error counter */
1299#define MAC_RX_VIOL_ERR 0x0040 /* rollover of code
1300 violation error */
1301
1302/* DEFAULT: 0xXXXX0000 on reset */
1303#define REG_MAC_CTRL_STATUS 0x6018 /* MAC control status reg */
1304#define MAC_CTRL_PAUSE_RECEIVED 0x00000001 /* successful
1305 reception of a
1306 pause control
1307 frame */
1308#define MAC_CTRL_PAUSE_STATE 0x00000002 /* MAC has made a
1309 transition from
1310 "not paused" to
1311 "paused" */
1312#define MAC_CTRL_NOPAUSE_STATE 0x00000004 /* MAC has made a
1313 transition from
1314 "paused" to "not
1315 paused" */
1316#define MAC_CTRL_PAUSE_TIME_MASK 0xFFFF0000 /* value of pause time
1317 operand that was
1318 received in the last
1319 pause flow control
1320 frame */
1321
1322/* layout identical to TX MAC[8:0] */
1323#define REG_MAC_TX_MASK 0x6020 /* TX MAC mask reg */
1324/* layout identical to RX MAC[6:0] */
1325#define REG_MAC_RX_MASK 0x6024 /* RX MAC mask reg */
1326/* layout identical to CTRL MAC[2:0] */
1327#define REG_MAC_CTRL_MASK 0x6028 /* MAC control mask reg */
1328
1329/* to ensure proper operation, CFG_EN must be cleared to 0 and a delay
1330 * imposed before writes to other bits in the TX_MAC_CFG register or any of
1331 * the MAC parameters is performed. delay dependent upon time required to
1332 * transmit a maximum size frame (= MAC_FRAMESIZE_MAX*8/Mbps). e.g.,
1333 * the delay for a 1518-byte frame on a 100Mbps network is 125us.
1334 * alternatively, just poll TX_CFG_EN until it reads back as 0.
1335 * NOTE: on half-duplex 1Gbps, TX_CFG_CARRIER_EXTEND and
1336 * RX_CFG_CARRIER_EXTEND should be set and the SLOT_TIME register should
1337 * be 0x200 (slot time of 512 bytes)
1338 */
1339#define REG_MAC_TX_CFG 0x6030 /* TX MAC config reg */
1340#define MAC_TX_CFG_EN 0x0001 /* enable TX MAC. 0 will
1341 force TXMAC state
1342 machine to remain in
1343 idle state or to
1344 transition to idle state
1345 on completion of an
1346 ongoing packet. */
1347#define MAC_TX_CFG_IGNORE_CARRIER 0x0002 /* disable CSMA/CD deferral
1348 process. set to 1 when
1349 full duplex and 0 when
1350 half duplex */
1351#define MAC_TX_CFG_IGNORE_COLL 0x0004 /* disable CSMA/CD backoff
1352 algorithm. set to 1 when
1353 full duplex and 0 when
1354 half duplex */
1355#define MAC_TX_CFG_IPG_EN 0x0008 /* enable extension of the
1356 Rx-to-TX IPG. after
1357 receiving a frame, TX
1358 MAC will reset its
1359 deferral process to
1360 carrier sense for the
1361 amount of time = IPG0 +
1362 IPG1 and commit to
1363 transmission for time
1364 specified in IPG2. when
1365 0 or when xmitting frames
1366 back-to-pack (Tx-to-Tx
1367 IPG), TX MAC ignores
1368 IPG0 and will only use
1369 IPG1 for deferral time.
1370 IPG2 still used. */
1371#define MAC_TX_CFG_NEVER_GIVE_UP_EN 0x0010 /* TX MAC will not easily
1372 give up on frame
1373 xmission. if backoff
1374 algorithm reaches the
1375 ATTEMPT_LIMIT, it will
1376 clear attempts counter
1377 and continue trying to
1378 send the frame as
1379 specified by
1380 GIVE_UP_LIM. when 0,
1381 TX MAC will execute
1382 standard CSMA/CD prot. */
1383#define MAC_TX_CFG_NEVER_GIVE_UP_LIM 0x0020 /* when set, TX MAC will
1384 continue to try to xmit
1385 until successful. when
1386 0, TX MAC will continue
1387 to try xmitting until
1388 successful or backoff
1389 algorithm reaches
1390 ATTEMPT_LIMIT*16 */
1391#define MAC_TX_CFG_NO_BACKOFF 0x0040 /* modify CSMA/CD to disable
1392 backoff algorithm. TX
1393 MAC will not back off
1394 after a xmission attempt
1395 that resulted in a
1396 collision. */
1397#define MAC_TX_CFG_SLOW_DOWN 0x0080 /* modify CSMA/CD so that
1398 deferral process is reset
1399 in response to carrier
1400 sense during the entire
1401 duration of IPG. TX MAC
1402 will only commit to frame
1403 xmission after frame
1404 xmission has actually
1405 begun. */
1406#define MAC_TX_CFG_NO_FCS 0x0100 /* TX MAC will not generate
1407 CRC for all xmitted
1408 packets. when clear, CRC
1409 generation is dependent
1410 upon NO_CRC bit in the
1411 xmit control word from
1412 TX DMA */
1413#define MAC_TX_CFG_CARRIER_EXTEND 0x0200 /* enables xmit part of the
1414 carrier extension
1415 feature. this allows for
1416 longer collision domains
1417 by extending the carrier
1418 and collision window
1419 from the end of FCS until
1420 the end of the slot time
1421 if necessary. Required
1422 for half-duplex at 1Gbps,
1423 clear otherwise. */
1424
1425/* when CRC is not stripped, reassembly packets will not contain the CRC.
1426 * these will be stripped by HRP because it reassembles layer 4 data, and the
1427 * CRC is layer 2. however, non-reassembly packets will still contain the CRC
1428 * when passed to the host. to ensure proper operation, need to wait 3.2ms
1429 * after clearing RX_CFG_EN before writing to any other RX MAC registers
1430 * or other MAC parameters. alternatively, poll RX_CFG_EN until it clears
1431 * to 0. similary, HASH_FILTER_EN and ADDR_FILTER_EN have the same
1432 * restrictions as CFG_EN.
1433 */
1434#define REG_MAC_RX_CFG 0x6034 /* RX MAC config reg */
1435#define MAC_RX_CFG_EN 0x0001 /* enable RX MAC */
1436#define MAC_RX_CFG_STRIP_PAD 0x0002 /* always program to 0.
1437 feature not supported */
1438#define MAC_RX_CFG_STRIP_FCS 0x0004 /* RX MAC will strip the
1439 last 4 bytes of a
1440 received frame. */
1441#define MAC_RX_CFG_PROMISC_EN 0x0008 /* promiscuous mode */
1442#define MAC_RX_CFG_PROMISC_GROUP_EN 0x0010 /* accept all valid
1443 multicast frames (group
1444 bit in DA field set) */
1445#define MAC_RX_CFG_HASH_FILTER_EN 0x0020 /* use hash table to filter
1446 multicast addresses */
1447#define MAC_RX_CFG_ADDR_FILTER_EN 0x0040 /* cause RX MAC to use
1448 address filtering regs
1449 to filter both unicast
1450 and multicast
1451 addresses */
1452#define MAC_RX_CFG_DISABLE_DISCARD 0x0080 /* pass errored frames to
1453 RX DMA by setting BAD
1454 bit but not Abort bit
1455 in the status. CRC,
1456 framing, and length errs
1457 will not increment
1458 error counters. frames
1459 which don't match dest
1460 addr will be passed up
1461 w/ BAD bit set. */
1462#define MAC_RX_CFG_CARRIER_EXTEND 0x0100 /* enable reception of
1463 packet bursts generated
1464 by carrier extension
1465 with packet bursting
1466 senders. only applies
1467 to half-duplex 1Gbps */
1468
1469/* DEFAULT: 0x0 */
1470#define REG_MAC_CTRL_CFG 0x6038 /* MAC control config reg */
1471#define MAC_CTRL_CFG_SEND_PAUSE_EN 0x0001 /* respond to requests for
1472 sending pause flow ctrl
1473 frames */
1474#define MAC_CTRL_CFG_RECV_PAUSE_EN 0x0002 /* respond to received
1475 pause flow ctrl frames */
1476#define MAC_CTRL_CFG_PASS_CTRL 0x0004 /* pass valid MAC ctrl
1477 packets to RX DMA */
1478
1479/* to ensure proper operation, a global initialization sequence should be
1480 * performed when a loopback config is entered or exited. if programmed after
1481 * a hw or global sw reset, RX/TX MAC software reset and initialization
1482 * should be done to ensure stable clocking.
1483 * DEFAULT: 0x0
1484 */
1485#define REG_MAC_XIF_CFG 0x603C /* XIF config reg */
1486#define MAC_XIF_TX_MII_OUTPUT_EN 0x0001 /* enable output drivers
1487 on MII xmit bus */
1488#define MAC_XIF_MII_INT_LOOPBACK 0x0002 /* loopback GMII xmit data
1489 path to GMII recv data
1490 path. phy mode register
1491 clock selection must be
1492 set to GMII mode and
1493 GMII_MODE should be set
1494 to 1. in loopback mode,
1495 REFCLK will drive the
1496 entire mac core. 0 for
1497 normal operation. */
1498#define MAC_XIF_DISABLE_ECHO 0x0004 /* disables receive data
1499 path during packet
1500 xmission. clear to 0
1501 in any full duplex mode,
1502 in any loopback mode,
1503 or in half-duplex SERDES
1504 or SLINK modes. set when
1505 in half-duplex when
1506 using external phy. */
1507#define MAC_XIF_GMII_MODE 0x0008 /* MAC operates with GMII
1508 clocks and datapath */
1509#define MAC_XIF_MII_BUFFER_OUTPUT_EN 0x0010 /* MII_BUF_EN pin. enable
1510 external tristate buffer
1511 on the MII receive
1512 bus. */
1513#define MAC_XIF_LINK_LED 0x0020 /* LINKLED# active (low) */
1514#define MAC_XIF_FDPLX_LED 0x0040 /* FDPLXLED# active (low) */
1515
1516#define REG_MAC_IPG0 0x6040 /* inter-packet gap0 reg.
1517 recommended: 0x00 */
1518#define REG_MAC_IPG1 0x6044 /* inter-packet gap1 reg
1519 recommended: 0x08 */
1520#define REG_MAC_IPG2 0x6048 /* inter-packet gap2 reg
1521 recommended: 0x04 */
1522#define REG_MAC_SLOT_TIME 0x604C /* slot time reg
1523 recommended: 0x40 */
1524#define REG_MAC_FRAMESIZE_MIN 0x6050 /* min frame size reg
1525 recommended: 0x40 */
1526
1527/* FRAMESIZE_MAX holds both the max frame size as well as the max burst size.
1528 * recommended value: 0x2000.05EE
1529 */
1530#define REG_MAC_FRAMESIZE_MAX 0x6054 /* max frame size reg */
1531#define MAC_FRAMESIZE_MAX_BURST_MASK 0x3FFF0000 /* max burst size */
1532#define MAC_FRAMESIZE_MAX_BURST_SHIFT 16
1533#define MAC_FRAMESIZE_MAX_FRAME_MASK 0x00007FFF /* max frame size */
1534#define MAC_FRAMESIZE_MAX_FRAME_SHIFT 0
1535#define REG_MAC_PA_SIZE 0x6058 /* PA size reg. number of
1536 preamble bytes that the
1537 TX MAC will xmit at the
1538 beginning of each frame
1539 value should be 2 or
1540 greater. recommended
1541 value: 0x07 */
1542#define REG_MAC_JAM_SIZE 0x605C /* jam size reg. duration
1543 of jam in units of media
1544 byte time. recommended
1545 value: 0x04 */
1546#define REG_MAC_ATTEMPT_LIMIT 0x6060 /* attempt limit reg. #
1547 of attempts TX MAC will
1548 make to xmit a frame
1549 before it resets its
1550 attempts counter. after
1551 the limit has been
1552 reached, TX MAC may or
1553 may not drop the frame
1554 dependent upon value
1555 in TX_MAC_CFG.
1556 recommended
1557 value: 0x10 */
1558#define REG_MAC_CTRL_TYPE 0x6064 /* MAC control type reg.
1559 type field of a MAC
1560 ctrl frame. recommended
1561 value: 0x8808 */
1562
1563/* mac address registers: 0 - 44, 0x6080 - 0x6130, 4 8-bit bytes.
1564 * register contains comparison
1565 * 0 16 MSB of primary MAC addr [47:32] of DA field
1566 * 1 16 middle bits "" [31:16] of DA field
1567 * 2 16 LSB "" [15:0] of DA field
1568 * 3*x 16MSB of alt MAC addr 1-15 [47:32] of DA field
1569 * 4*x 16 middle bits "" [31:16]
1570 * 5*x 16 LSB "" [15:0]
1571 * 42 16 MSB of MAC CTRL addr [47:32] of DA.
1572 * 43 16 middle bits "" [31:16]
1573 * 44 16 LSB "" [15:0]
1574 * MAC CTRL addr must be the reserved multicast addr for MAC CTRL frames.
1575 * if there is a match, MAC will set the bit for alternative address
1576 * filter pass [15]
1577
1578 * here is the map of registers given MAC address notation: a:b:c:d:e:f
1579 * ab cd ef
1580 * primary addr reg 2 reg 1 reg 0
1581 * alt addr 1 reg 5 reg 4 reg 3
1582 * alt addr x reg 5*x reg 4*x reg 3*x
1583 * ctrl addr reg 44 reg 43 reg 42
1584 */
1585#define REG_MAC_ADDR0 0x6080 /* MAC address 0 reg */
1586#define REG_MAC_ADDRN(x) (REG_MAC_ADDR0 + (x)*4)
1587#define REG_MAC_ADDR_FILTER0 0x614C /* address filter 0 reg
1588 [47:32] */
1589#define REG_MAC_ADDR_FILTER1 0x6150 /* address filter 1 reg
1590 [31:16] */
1591#define REG_MAC_ADDR_FILTER2 0x6154 /* address filter 2 reg
1592 [15:0] */
1593#define REG_MAC_ADDR_FILTER2_1_MASK 0x6158 /* address filter 2 and 1
1594 mask reg. 8-bit reg
1595 contains nibble mask for
1596 reg 2 and 1. */
1597#define REG_MAC_ADDR_FILTER0_MASK 0x615C /* address filter 0 mask
1598 reg */
1599
1600/* hash table registers: 0 - 15, 0x6160 - 0x619C, 4 8-bit bytes
1601 * 16-bit registers contain bits of the hash table.
1602 * reg x -> [16*(15 - x) + 15 : 16*(15 - x)].
1603 * e.g., 15 -> [15:0], 0 -> [255:240]
1604 */
1605#define REG_MAC_HASH_TABLE0 0x6160 /* hash table 0 reg */
1606#define REG_MAC_HASH_TABLEN(x) (REG_MAC_HASH_TABLE0 + (x)*4)
1607
1608/* statistics registers. these registers generate an interrupt on
1609 * overflow. recommended initialization: 0x0000. most are 16-bits except
1610 * for PEAK_ATTEMPTS register which is 8 bits.
1611 */
1612#define REG_MAC_COLL_NORMAL 0x61A0 /* normal collision
1613 counter. */
1614#define REG_MAC_COLL_FIRST 0x61A4 /* first attempt
1615 successful collision
1616 counter */
1617#define REG_MAC_COLL_EXCESS 0x61A8 /* excessive collision
1618 counter */
1619#define REG_MAC_COLL_LATE 0x61AC /* late collision counter */
1620#define REG_MAC_TIMER_DEFER 0x61B0 /* defer timer. time base
1621 is the media byte
1622 clock/256 */
1623#define REG_MAC_ATTEMPTS_PEAK 0x61B4 /* peak attempts reg */
1624#define REG_MAC_RECV_FRAME 0x61B8 /* receive frame counter */
1625#define REG_MAC_LEN_ERR 0x61BC /* length error counter */
1626#define REG_MAC_ALIGN_ERR 0x61C0 /* alignment error counter */
1627#define REG_MAC_FCS_ERR 0x61C4 /* FCS error counter */
1628#define REG_MAC_RX_CODE_ERR 0x61C8 /* RX code violation
1629 error counter */
1630
1631/* misc registers */
1632#define REG_MAC_RANDOM_SEED 0x61CC /* random number seed reg.
1633 10-bit register used as a
1634 seed for the random number
1635 generator for the CSMA/CD
1636 backoff algorithm. only
1637 programmed after power-on
1638 reset and should be a
1639 random value which has a
1640 high likelihood of being
1641 unique for each MAC
1642 attached to a network
1643 segment (e.g., 10 LSB of
1644 MAC address) */
1645
1646/* ASUN: there's a PAUSE_TIMER (ro) described, but it's not in the address
1647 * map
1648 */
1649
1650/* 27-bit register has the current state for key state machines in the MAC */
1651#define REG_MAC_STATE_MACHINE 0x61D0 /* (ro) state machine reg */
1652#define MAC_SM_RLM_MASK 0x07800000
1653#define MAC_SM_RLM_SHIFT 23
1654#define MAC_SM_RX_FC_MASK 0x00700000
1655#define MAC_SM_RX_FC_SHIFT 20
1656#define MAC_SM_TLM_MASK 0x000F0000
1657#define MAC_SM_TLM_SHIFT 16
1658#define MAC_SM_ENCAP_SM_MASK 0x0000F000
1659#define MAC_SM_ENCAP_SM_SHIFT 12
1660#define MAC_SM_TX_REQ_MASK 0x00000C00
1661#define MAC_SM_TX_REQ_SHIFT 10
1662#define MAC_SM_TX_FC_MASK 0x000003C0
1663#define MAC_SM_TX_FC_SHIFT 6
1664#define MAC_SM_FIFO_WRITE_SEL_MASK 0x00000038
1665#define MAC_SM_FIFO_WRITE_SEL_SHIFT 3
1666#define MAC_SM_TX_FIFO_EMPTY_MASK 0x00000007
1667#define MAC_SM_TX_FIFO_EMPTY_SHIFT 0
1668
1669/** MIF registers. the MIF can be programmed in either bit-bang or
1670 * frame mode.
1671 **/
1672#define REG_MIF_BIT_BANG_CLOCK 0x6200 /* MIF bit-bang clock.
1673 1 -> 0 will generate a
1674 rising edge. 0 -> 1 will
1675 generate a falling edge. */
1676#define REG_MIF_BIT_BANG_DATA 0x6204 /* MIF bit-bang data. 1-bit
1677 register generates data */
1678#define REG_MIF_BIT_BANG_OUTPUT_EN 0x6208 /* MIF bit-bang output
1679 enable. enable when
1680 xmitting data from MIF to
1681 transceiver. */
1682
1683/* 32-bit register serves as an instruction register when the MIF is
1684 * programmed in frame mode. load this register w/ a valid instruction
1685 * (as per IEEE 802.3u MII spec). poll this register to check for instruction
1686 * execution completion. during a read operation, this register will also
1687 * contain the 16-bit data returned by the tranceiver. unless specified
1688 * otherwise, fields are considered "don't care" when polling for
1689 * completion.
1690 */
1691#define REG_MIF_FRAME 0x620C /* MIF frame/output reg */
1692#define MIF_FRAME_START_MASK 0xC0000000 /* start of frame.
1693 load w/ 01 when
1694 issuing an instr */
1695#define MIF_FRAME_ST 0x40000000 /* STart of frame */
1696#define MIF_FRAME_OPCODE_MASK 0x30000000 /* opcode. 01 for a
1697 write. 10 for a
1698 read */
1699#define MIF_FRAME_OP_READ 0x20000000 /* read OPcode */
1700#define MIF_FRAME_OP_WRITE 0x10000000 /* write OPcode */
1701#define MIF_FRAME_PHY_ADDR_MASK 0x0F800000 /* phy address. when
1702 issuing an instr,
1703 this field should be
1704 loaded w/ the XCVR
1705 addr */
1706#define MIF_FRAME_PHY_ADDR_SHIFT 23
1707#define MIF_FRAME_REG_ADDR_MASK 0x007C0000 /* register address.
1708 when issuing an instr,
1709 addr of register
1710 to be read/written */
1711#define MIF_FRAME_REG_ADDR_SHIFT 18
1712#define MIF_FRAME_TURN_AROUND_MSB 0x00020000 /* turn around, MSB.
1713 when issuing an instr,
1714 set this bit to 1 */
1715#define MIF_FRAME_TURN_AROUND_LSB 0x00010000 /* turn around, LSB.
1716 when issuing an instr,
1717 set this bit to 0.
1718 when polling for
1719 completion, 1 means
1720 that instr execution
1721 has been completed */
1722#define MIF_FRAME_DATA_MASK 0x0000FFFF /* instruction payload
1723 load with 16-bit data
1724 to be written in
1725 transceiver reg for a
1726 write. doesn't matter
1727 in a read. when
1728 polling for
1729 completion, field is
1730 "don't care" for write
1731 and 16-bit data
1732 returned by the
1733 transceiver for a
1734 read (if valid bit
1735 is set) */
1736#define REG_MIF_CFG 0x6210 /* MIF config reg */
1737#define MIF_CFG_PHY_SELECT 0x0001 /* 1 -> select MDIO_1
1738 0 -> select MDIO_0 */
1739#define MIF_CFG_POLL_EN 0x0002 /* enable polling
1740 mechanism. if set,
1741 BB_MODE should be 0 */
1742#define MIF_CFG_BB_MODE 0x0004 /* 1 -> bit-bang mode
1743 0 -> frame mode */
1744#define MIF_CFG_POLL_REG_MASK 0x00F8 /* register address to be
1745 used by polling mode.
1746 only meaningful if POLL_EN
1747 is set to 1 */
1748#define MIF_CFG_POLL_REG_SHIFT 3
1749#define MIF_CFG_MDIO_0 0x0100 /* (ro) dual purpose.
1750 when MDIO_0 is idle,
1751 1 -> tranceiver is
1752 connected to MDIO_0.
1753 when MIF is communicating
1754 w/ MDIO_0 in bit-bang
1755 mode, this bit indicates
1756 the incoming bit stream
1757 during a read op */
1758#define MIF_CFG_MDIO_1 0x0200 /* (ro) dual purpose.
1759 when MDIO_1 is idle,
1760 1 -> transceiver is
1761 connected to MDIO_1.
1762 when MIF is communicating
1763 w/ MDIO_1 in bit-bang
1764 mode, this bit indicates
1765 the incoming bit stream
1766 during a read op */
1767#define MIF_CFG_POLL_PHY_MASK 0x7C00 /* tranceiver address to
1768 be polled */
1769#define MIF_CFG_POLL_PHY_SHIFT 10
1770
1771/* 16-bit register used to determine which bits in the POLL_STATUS portion of
1772 * the MIF_STATUS register will cause an interrupt. if a mask bit is 0,
1773 * corresponding bit of the POLL_STATUS will generate a MIF interrupt when
1774 * set. DEFAULT: 0xFFFF
1775 */
1776#define REG_MIF_MASK 0x6214 /* MIF mask reg */
1777
1778/* 32-bit register used when in poll mode. auto-cleared after being read */
1779#define REG_MIF_STATUS 0x6218 /* MIF status reg */
1780#define MIF_STATUS_POLL_DATA_MASK 0xFFFF0000 /* poll data contains
1781 the "latest image"
1782 update of the XCVR
1783 reg being read */
1784#define MIF_STATUS_POLL_DATA_SHIFT 16
1785#define MIF_STATUS_POLL_STATUS_MASK 0x0000FFFF /* poll status indicates
1786 which bits in the
1787 POLL_DATA field have
1788 changed since the
1789 MIF_STATUS reg was
1790 last read */
1791#define MIF_STATUS_POLL_STATUS_SHIFT 0
1792
1793/* 7-bit register has current state for all state machines in the MIF */
1794#define REG_MIF_STATE_MACHINE 0x621C /* MIF state machine reg */
1795#define MIF_SM_CONTROL_MASK 0x07 /* control state machine
1796 state */
1797#define MIF_SM_EXECUTION_MASK 0x60 /* execution state machine
1798 state */
1799
1800/** PCS/Serialink. the following registers are equivalent to the standard
1801 * MII management registers except that they're directly mapped in
1802 * Cassini's register space.
1803 **/
1804
1805/* the auto-negotiation enable bit should be programmed the same at
1806 * the link partner as in the local device to enable auto-negotiation to
1807 * complete. when that bit is reprogrammed, auto-neg/manual config is
1808 * restarted automatically.
1809 * DEFAULT: 0x1040
1810 */
1811#define REG_PCS_MII_CTRL 0x9000 /* PCS MII control reg */
1812#define PCS_MII_CTRL_1000_SEL 0x0040 /* reads 1. ignored on
1813 writes */
1814#define PCS_MII_CTRL_COLLISION_TEST 0x0080 /* COL signal at the PCS
1815 to MAC interface is
1816 activated regardless
1817 of activity */
1818#define PCS_MII_CTRL_DUPLEX 0x0100 /* forced 0x0. PCS
1819 behaviour same for
1820 half and full dplx */
1821#define PCS_MII_RESTART_AUTONEG 0x0200 /* self clearing.
1822 restart auto-
1823 negotiation */
1824#define PCS_MII_ISOLATE 0x0400 /* read as 0. ignored
1825 on writes */
1826#define PCS_MII_POWER_DOWN 0x0800 /* read as 0. ignored
1827 on writes */
1828#define PCS_MII_AUTONEG_EN 0x1000 /* default 1. PCS goes
1829 through automatic
1830 link config before it
1831 can be used. when 0,
1832 link can be used
1833 w/out any link config
1834 phase */
1835#define PCS_MII_10_100_SEL 0x2000 /* read as 0. ignored on
1836 writes */
1837#define PCS_MII_RESET 0x8000 /* reset PCS. self-clears
1838 when done */
1839
1840/* DEFAULT: 0x0108 */
1841#define REG_PCS_MII_STATUS 0x9004 /* PCS MII status reg */
1842#define PCS_MII_STATUS_EXTEND_CAP 0x0001 /* reads 0 */
1843#define PCS_MII_STATUS_JABBER_DETECT 0x0002 /* reads 0 */
1844#define PCS_MII_STATUS_LINK_STATUS 0x0004 /* 1 -> link up.
1845 0 -> link down. 0 is
1846 latched so that 0 is
1847 kept until read. read
1848 2x to determine if the
1849 link has gone up again */
1850#define PCS_MII_STATUS_AUTONEG_ABLE 0x0008 /* reads 1 (able to perform
1851 auto-neg) */
1852#define PCS_MII_STATUS_REMOTE_FAULT 0x0010 /* 1 -> remote fault detected
1853 from received link code
1854 word. only valid after
1855 auto-neg completed */
1856#define PCS_MII_STATUS_AUTONEG_COMP 0x0020 /* 1 -> auto-negotiation
1857 completed
1858 0 -> auto-negotiation not
1859 completed */
1860#define PCS_MII_STATUS_EXTEND_STATUS 0x0100 /* reads as 1. used as an
1861 indication that this is
1862 a 1000 Base-X PHY. writes
1863 to it are ignored */
1864
1865/* used during auto-negotiation.
1866 * DEFAULT: 0x00E0
1867 */
1868#define REG_PCS_MII_ADVERT 0x9008 /* PCS MII advertisement
1869 reg */
1870#define PCS_MII_ADVERT_FD 0x0020 /* advertise full duplex
1871 1000 Base-X */
1872#define PCS_MII_ADVERT_HD 0x0040 /* advertise half-duplex
1873 1000 Base-X */
1874#define PCS_MII_ADVERT_SYM_PAUSE 0x0080 /* advertise PAUSE
1875 symmetric capability */
1876#define PCS_MII_ADVERT_ASYM_PAUSE 0x0100 /* advertises PAUSE
1877 asymmetric capability */
1878#define PCS_MII_ADVERT_RF_MASK 0x3000 /* remote fault. write bit13
1879 to optionally indicate to
1880 link partner that chip is
1881 going off-line. bit12 will
1882 get set when signal
1883 detect == FAIL and will
1884 remain set until
1885 successful negotiation */
1886#define PCS_MII_ADVERT_ACK 0x4000 /* (ro) */
1887#define PCS_MII_ADVERT_NEXT_PAGE 0x8000 /* (ro) forced 0x0 */
1888
1889/* contents updated as a result of autonegotiation. layout and definitions
1890 * identical to PCS_MII_ADVERT
1891 */
1892#define REG_PCS_MII_LPA 0x900C /* PCS MII link partner
1893 ability reg */
1894#define PCS_MII_LPA_FD PCS_MII_ADVERT_FD
1895#define PCS_MII_LPA_HD PCS_MII_ADVERT_HD
1896#define PCS_MII_LPA_SYM_PAUSE PCS_MII_ADVERT_SYM_PAUSE
1897#define PCS_MII_LPA_ASYM_PAUSE PCS_MII_ADVERT_ASYM_PAUSE
1898#define PCS_MII_LPA_RF_MASK PCS_MII_ADVERT_RF_MASK
1899#define PCS_MII_LPA_ACK PCS_MII_ADVERT_ACK
1900#define PCS_MII_LPA_NEXT_PAGE PCS_MII_ADVERT_NEXT_PAGE
1901
1902/* DEFAULT: 0x0 */
1903#define REG_PCS_CFG 0x9010 /* PCS config reg */
1904#define PCS_CFG_EN 0x01 /* enable PCS. must be
1905 0 when modifying
1906 PCS_MII_ADVERT */
1907#define PCS_CFG_SD_OVERRIDE 0x02 /* sets signal detect to
1908 OK. bit is
1909 non-resettable */
1910#define PCS_CFG_SD_ACTIVE_LOW 0x04 /* changes interpretation
1911 of optical signal to make
1912 signal detect okay when
1913 signal is low */
1914#define PCS_CFG_JITTER_STUDY_MASK 0x18 /* used to make jitter
1915 measurements. a single
1916 code group is xmitted
1917 regularly.
1918 0x0 = normal operation
1919 0x1 = high freq test
1920 pattern, D21.5
1921 0x2 = low freq test
1922 pattern, K28.7
1923 0x3 = reserved */
1924#define PCS_CFG_10MS_TIMER_OVERRIDE 0x20 /* shortens 10-20ms auto-
1925 negotiation timer to
1926 a few cycles for test
1927 purposes */
1928
1929/* used for diagnostic purposes. bits 20-22 autoclear on read */
1930#define REG_PCS_STATE_MACHINE 0x9014 /* (ro) PCS state machine
1931 and diagnostic reg */
1932#define PCS_SM_TX_STATE_MASK 0x0000000F /* 0 and 1 indicate
1933 xmission of idle.
1934 otherwise, xmission of
1935 a packet */
1936#define PCS_SM_RX_STATE_MASK 0x000000F0 /* 0 indicates reception
1937 of idle. otherwise,
1938 reception of packet */
1939#define PCS_SM_WORD_SYNC_STATE_MASK 0x00000700 /* 0 indicates loss of
1940 sync */
1941#define PCS_SM_SEQ_DETECT_STATE_MASK 0x00001800 /* cycling through 0-3
1942 indicates reception of
1943 Config codes. cycling
1944 through 0-1 indicates
1945 reception of idles */
1946#define PCS_SM_LINK_STATE_MASK 0x0001E000
1947#define SM_LINK_STATE_UP 0x00016000 /* link state is up */
1948
1949#define PCS_SM_LOSS_LINK_C 0x00100000 /* loss of link due to
1950 recept of Config
1951 codes */
1952#define PCS_SM_LOSS_LINK_SYNC 0x00200000 /* loss of link due to
1953 loss of sync */
1954#define PCS_SM_LOSS_SIGNAL_DETECT 0x00400000 /* signal detect goes
1955 from OK to FAIL. bit29
1956 will also be set if
1957 this is set */
1958#define PCS_SM_NO_LINK_BREAKLINK 0x01000000 /* link not up due to
1959 receipt of breaklink
1960 C codes from partner.
1961 C codes w/ 0 content
1962 received triggering
1963 start/restart of
1964 autonegotiation.
1965 should be sent for
1966 no longer than 20ms */
1967#define PCS_SM_NO_LINK_SERDES 0x02000000 /* serdes being
1968 initialized. see serdes
1969 state reg */
1970#define PCS_SM_NO_LINK_C 0x04000000 /* C codes not stable or
1971 not received */
1972#define PCS_SM_NO_LINK_SYNC 0x08000000 /* word sync not
1973 achieved */
1974#define PCS_SM_NO_LINK_WAIT_C 0x10000000 /* waiting for C codes
1975 w/ ack bit set */
1976#define PCS_SM_NO_LINK_NO_IDLE 0x20000000 /* link partner continues
1977 to send C codes
1978 instead of idle
1979 symbols or pkt data */
1980
1981/* this register indicates interrupt changes in specific PCS MII status bits.
1982 * PCS_INT may be masked at the ISR level. only a single bit is implemented
1983 * for link status change.
1984 */
1985#define REG_PCS_INTR_STATUS 0x9018 /* PCS interrupt status */
1986#define PCS_INTR_STATUS_LINK_CHANGE 0x04 /* link status has changed
1987 since last read */
1988
1989/* control which network interface is used. no more than one bit should
1990 * be set.
1991 * DEFAULT: none
1992 */
1993#define REG_PCS_DATAPATH_MODE 0x9050 /* datapath mode reg */
1994#define PCS_DATAPATH_MODE_MII 0x00 /* PCS is not used and
1995 MII/GMII is selected.
1996 selection between MII and
1997 GMII is controlled by
1998 XIF_CFG */
1999#define PCS_DATAPATH_MODE_SERDES 0x02 /* PCS is used via the
2000 10-bit interface */
2001
2002/* input to serdes chip or serialink block */
2003#define REG_PCS_SERDES_CTRL 0x9054 /* serdes control reg */
2004#define PCS_SERDES_CTRL_LOOPBACK 0x01 /* enable loopback on
2005 serdes interface */
2006#define PCS_SERDES_CTRL_SYNCD_EN 0x02 /* enable sync carrier
2007 detection. should be
2008 0x0 for normal
2009 operation */
2010#define PCS_SERDES_CTRL_LOCKREF 0x04 /* frequency-lock RBC[0:1]
2011 to REFCLK when set.
2012 when clear, receiver
2013 clock locks to incoming
2014 serial data */
2015
2016/* multiplex test outputs into the PROM address (PA_3 through PA_0) pins.
2017 * should be 0x0 for normal operations.
2018 * 0b000 normal operation, PROM address[3:0] selected
2019 * 0b001 rxdma req, rxdma ack, rxdma ready, rxdma read
2020 * 0b010 rxmac req, rx ack, rx tag, rx clk shared
2021 * 0b011 txmac req, tx ack, tx tag, tx retry req
2022 * 0b100 tx tp3, tx tp2, tx tp1, tx tp0
2023 * 0b101 R period RX, R period TX, R period HP, R period BIM
2024 * DEFAULT: 0x0
2025 */
2026#define REG_PCS_SHARED_OUTPUT_SEL 0x9058 /* shared output select */
2027#define PCS_SOS_PROM_ADDR_MASK 0x0007
2028
2029/* used for diagnostics. this register indicates progress of the SERDES
2030 * boot up.
2031 * 0b00 undergoing reset
2032 * 0b01 waiting 500us while lockrefn is asserted
2033 * 0b10 waiting for comma detect
2034 * 0b11 receive data is synchronized
2035 * DEFAULT: 0x0
2036 */
2037#define REG_PCS_SERDES_STATE 0x905C /* (ro) serdes state */
2038#define PCS_SERDES_STATE_MASK 0x03
2039
2040/* used for diagnostics. indicates number of packets transmitted or received.
2041 * counters rollover w/out generating an interrupt.
2042 * DEFAULT: 0x0
2043 */
2044#define REG_PCS_PACKET_COUNT 0x9060 /* (ro) PCS packet counter */
2045#define PCS_PACKET_COUNT_TX 0x000007FF /* pkts xmitted by PCS */
2046#define PCS_PACKET_COUNT_RX 0x07FF0000 /* pkts recvd by PCS
2047 whether they
2048 encountered an error
2049 or not */
2050
2051/** LocalBus Devices. the following provides run-time access to the
2052 * Cassini's PROM
2053 ***/
2054#define REG_EXPANSION_ROM_RUN_START 0x100000 /* expansion rom run time
2055 access */
2056#define REG_EXPANSION_ROM_RUN_END 0x17FFFF
2057
2058#define REG_SECOND_LOCALBUS_START 0x180000 /* secondary local bus
2059 device */
2060#define REG_SECOND_LOCALBUS_END 0x1FFFFF
2061
2062/* entropy device */
2063#define REG_ENTROPY_START REG_SECOND_LOCALBUS_START
2064#define REG_ENTROPY_DATA (REG_ENTROPY_START + 0x00)
2065#define REG_ENTROPY_STATUS (REG_ENTROPY_START + 0x04)
2066#define ENTROPY_STATUS_DRDY 0x01
2067#define ENTROPY_STATUS_BUSY 0x02
2068#define ENTROPY_STATUS_CIPHER 0x04
2069#define ENTROPY_STATUS_BYPASS_MASK 0x18
2070#define REG_ENTROPY_MODE (REG_ENTROPY_START + 0x05)
2071#define ENTROPY_MODE_KEY_MASK 0x07
2072#define ENTROPY_MODE_ENCRYPT 0x40
2073#define REG_ENTROPY_RAND_REG (REG_ENTROPY_START + 0x06)
2074#define REG_ENTROPY_RESET (REG_ENTROPY_START + 0x07)
2075#define ENTROPY_RESET_DES_IO 0x01
2076#define ENTROPY_RESET_STC_MODE 0x02
2077#define ENTROPY_RESET_KEY_CACHE 0x04
2078#define ENTROPY_RESET_IV 0x08
2079#define REG_ENTROPY_IV (REG_ENTROPY_START + 0x08)
2080#define REG_ENTROPY_KEY0 (REG_ENTROPY_START + 0x10)
2081#define REG_ENTROPY_KEYN(x) (REG_ENTROPY_KEY0 + 4*(x))
2082
2083/* phys of interest w/ their special mii registers */
2084#define PHY_LUCENT_B0 0x00437421
2085#define LUCENT_MII_REG 0x1F
2086
2087#define PHY_NS_DP83065 0x20005c78
2088#define DP83065_MII_MEM 0x16
2089#define DP83065_MII_REGD 0x1D
2090#define DP83065_MII_REGE 0x1E
2091
2092#define PHY_BROADCOM_5411 0x00206071
2093#define PHY_BROADCOM_B0 0x00206050
2094#define BROADCOM_MII_REG4 0x14
2095#define BROADCOM_MII_REG5 0x15
2096#define BROADCOM_MII_REG7 0x17
2097#define BROADCOM_MII_REG8 0x18
2098
2099#define CAS_MII_ANNPTR 0x07
2100#define CAS_MII_ANNPRR 0x08
2101#define CAS_MII_1000_CTRL 0x09
2102#define CAS_MII_1000_STATUS 0x0A
2103#define CAS_MII_1000_EXTEND 0x0F
2104
2105#define CAS_BMSR_1000_EXTEND 0x0100 /* supports 1000Base-T extended status */
2106/*
2107 * if autoneg is disabled, here's the table:
2108 * BMCR_SPEED100 = 100Mbps
2109 * BMCR_SPEED1000 = 1000Mbps
2110 * ~(BMCR_SPEED100 | BMCR_SPEED1000) = 10Mbps
2111 */
2112#define CAS_BMCR_SPEED1000 0x0040 /* Select 1000Mbps */
2113
2114#define CAS_ADVERTISE_1000HALF 0x0100
2115#define CAS_ADVERTISE_1000FULL 0x0200
2116#define CAS_ADVERTISE_PAUSE 0x0400
2117#define CAS_ADVERTISE_ASYM_PAUSE 0x0800
2118
2119/* regular lpa register */
2120#define CAS_LPA_PAUSE CAS_ADVERTISE_PAUSE
2121#define CAS_LPA_ASYM_PAUSE CAS_ADVERTISE_ASYM_PAUSE
2122
2123/* 1000_STATUS register */
2124#define CAS_LPA_1000HALF 0x0400
2125#define CAS_LPA_1000FULL 0x0800
2126
2127#define CAS_EXTEND_1000XFULL 0x8000
2128#define CAS_EXTEND_1000XHALF 0x4000
2129#define CAS_EXTEND_1000TFULL 0x2000
2130#define CAS_EXTEND_1000THALF 0x1000
2131
2132/* cassini header parser firmware */
2133typedef struct cas_hp_inst {
2134 const char *note;
2135
2136 u16 mask, val;
2137
2138 u8 op;
2139 u8 soff, snext; /* if match succeeds, new offset and match */
2140 u8 foff, fnext; /* if match fails, new offset and match */
2141 /* output info */
2142 u8 outop; /* output opcode */
2143
2144 u16 outarg; /* output argument */
2145 u8 outenab; /* output enable: 0 = not, 1 = if match
2146 2 = if !match, 3 = always */
2147 u8 outshift; /* barrel shift right, 4 bits */
2148 u16 outmask;
2149} cas_hp_inst_t;
2150
2151/* comparison */
2152#define OP_EQ 0 /* packet == value */
2153#define OP_LT 1 /* packet < value */
2154#define OP_GT 2 /* packet > value */
2155#define OP_NP 3 /* new packet */
2156
2157/* output opcodes */
2158#define CL_REG 0
2159#define LD_FID 1
2160#define LD_SEQ 2
2161#define LD_CTL 3
2162#define LD_SAP 4
2163#define LD_R1 5
2164#define LD_L3 6
2165#define LD_SUM 7
2166#define LD_HDR 8
2167#define IM_FID 9
2168#define IM_SEQ 10
2169#define IM_SAP 11
2170#define IM_R1 12
2171#define IM_CTL 13
2172#define LD_LEN 14
2173#define ST_FLG 15
2174
2175/* match setp #s for IP4TCP4 */
2176#define S1_PCKT 0
2177#define S1_VLAN 1
2178#define S1_CFI 2
2179#define S1_8023 3
2180#define S1_LLC 4
2181#define S1_LLCc 5
2182#define S1_IPV4 6
2183#define S1_IPV4c 7
2184#define S1_IPV4F 8
2185#define S1_TCP44 9
2186#define S1_IPV6 10
2187#define S1_IPV6L 11
2188#define S1_IPV6c 12
2189#define S1_TCP64 13
2190#define S1_TCPSQ 14
2191#define S1_TCPFG 15
2192#define S1_TCPHL 16
2193#define S1_TCPHc 17
2194#define S1_CLNP 18
2195#define S1_CLNP2 19
2196#define S1_DROP 20
2197#define S2_HTTP 21
2198#define S1_ESP4 22
2199#define S1_AH4 23
2200#define S1_ESP6 24
2201#define S1_AH6 25
2202
2203#define CAS_PROG_IP46TCP4_PREAMBLE \
2204{ "packet arrival?", 0xffff, 0x0000, OP_NP, 6, S1_VLAN, 0, S1_PCKT, \
2205 CL_REG, 0x3ff, 1, 0x0, 0x0000}, \
2206{ "VLAN?", 0xffff, 0x8100, OP_EQ, 1, S1_CFI, 0, S1_8023, \
2207 IM_CTL, 0x00a, 3, 0x0, 0xffff}, \
2208{ "CFI?", 0x1000, 0x1000, OP_EQ, 0, S1_DROP, 1, S1_8023, \
2209 CL_REG, 0x000, 0, 0x0, 0x0000}, \
2210{ "8023?", 0xffff, 0x0600, OP_LT, 1, S1_LLC, 0, S1_IPV4, \
2211 CL_REG, 0x000, 0, 0x0, 0x0000}, \
2212{ "LLC?", 0xffff, 0xaaaa, OP_EQ, 1, S1_LLCc, 0, S1_CLNP, \
2213 CL_REG, 0x000, 0, 0x0, 0x0000}, \
2214{ "LLCc?", 0xff00, 0x0300, OP_EQ, 2, S1_IPV4, 0, S1_CLNP, \
2215 CL_REG, 0x000, 0, 0x0, 0x0000}, \
2216{ "IPV4?", 0xffff, 0x0800, OP_EQ, 1, S1_IPV4c, 0, S1_IPV6, \
2217 LD_SAP, 0x100, 3, 0x0, 0xffff}, \
2218{ "IPV4 cont?", 0xff00, 0x4500, OP_EQ, 3, S1_IPV4F, 0, S1_CLNP, \
2219 LD_SUM, 0x00a, 1, 0x0, 0x0000}, \
2220{ "IPV4 frag?", 0x3fff, 0x0000, OP_EQ, 1, S1_TCP44, 0, S1_CLNP, \
2221 LD_LEN, 0x03e, 1, 0x0, 0xffff}, \
2222{ "TCP44?", 0x00ff, 0x0006, OP_EQ, 7, S1_TCPSQ, 0, S1_CLNP, \
2223 LD_FID, 0x182, 1, 0x0, 0xffff}, /* FID IP4&TCP src+dst */ \
2224{ "IPV6?", 0xffff, 0x86dd, OP_EQ, 1, S1_IPV6L, 0, S1_CLNP, \
2225 LD_SUM, 0x015, 1, 0x0, 0x0000}, \
2226{ "IPV6 len", 0xf000, 0x6000, OP_EQ, 0, S1_IPV6c, 0, S1_CLNP, \
2227 IM_R1, 0x128, 1, 0x0, 0xffff}, \
2228{ "IPV6 cont?", 0x0000, 0x0000, OP_EQ, 3, S1_TCP64, 0, S1_CLNP, \
2229 LD_FID, 0x484, 1, 0x0, 0xffff}, /* FID IP6&TCP src+dst */ \
2230{ "TCP64?", 0xff00, 0x0600, OP_EQ, 18, S1_TCPSQ, 0, S1_CLNP, \
2231 LD_LEN, 0x03f, 1, 0x0, 0xffff}
2232
2233#ifdef USE_HP_IP46TCP4
2234static cas_hp_inst_t cas_prog_ip46tcp4tab[] = {
2235 CAS_PROG_IP46TCP4_PREAMBLE,
2236 { "TCP seq", /* DADDR should point to dest port */
2237 0x0000, 0x0000, OP_EQ, 0, S1_TCPFG, 4, S1_TCPFG, LD_SEQ,
2238 0x081, 3, 0x0, 0xffff}, /* Load TCP seq # */
2239 { "TCP control flags", 0x0000, 0x0000, OP_EQ, 0, S1_TCPHL, 0,
2240 S1_TCPHL, ST_FLG, 0x045, 3, 0x0, 0x002f}, /* Load TCP flags */
2241 { "TCP length", 0x0000, 0x0000, OP_EQ, 0, S1_TCPHc, 0,
2242 S1_TCPHc, LD_R1, 0x205, 3, 0xB, 0xf000},
2243 { "TCP length cont", 0x0000, 0x0000, OP_EQ, 0, S1_PCKT, 0,
2244 S1_PCKT, LD_HDR, 0x0ff, 3, 0x0, 0xffff},
2245 { "Cleanup", 0x0000, 0x0000, OP_EQ, 0, S1_CLNP2, 0, S1_CLNP2,
2246 IM_CTL, 0x001, 3, 0x0, 0x0001},
2247 { "Cleanup 2", 0x0000, 0x0000, OP_EQ, 0, S1_PCKT, 0, S1_PCKT,
2248 IM_CTL, 0x000, 0, 0x0, 0x0000},
2249 { "Drop packet", 0x0000, 0x0000, OP_EQ, 0, S1_PCKT, 0, S1_PCKT,
2250 IM_CTL, 0x080, 3, 0x0, 0xffff},
2251 { NULL },
2252};
2253#ifdef HP_IP46TCP4_DEFAULT
2254#define CAS_HP_FIRMWARE cas_prog_ip46tcp4tab
2255#endif
2256#endif
2257
2258/*
2259 * Alternate table load which excludes HTTP server traffic from reassembly.
2260 * It is substantially similar to the basic table, with one extra state
2261 * and a few extra compares. */
2262#ifdef USE_HP_IP46TCP4NOHTTP
2263static cas_hp_inst_t cas_prog_ip46tcp4nohttptab[] = {
2264 CAS_PROG_IP46TCP4_PREAMBLE,
2265 { "TCP seq", /* DADDR should point to dest port */
2266 0xFFFF, 0x0080, OP_EQ, 0, S2_HTTP, 0, S1_TCPFG, LD_SEQ,
2267 0x081, 3, 0x0, 0xffff} , /* Load TCP seq # */
2268 { "TCP control flags", 0xFFFF, 0x8080, OP_EQ, 0, S2_HTTP, 0,
2269 S1_TCPHL, ST_FLG, 0x145, 2, 0x0, 0x002f, }, /* Load TCP flags */
2270 { "TCP length", 0x0000, 0x0000, OP_EQ, 0, S1_TCPHc, 0, S1_TCPHc,
2271 LD_R1, 0x205, 3, 0xB, 0xf000},
2272 { "TCP length cont", 0x0000, 0x0000, OP_EQ, 0, S1_PCKT, 0, S1_PCKT,
2273 LD_HDR, 0x0ff, 3, 0x0, 0xffff},
2274 { "Cleanup", 0x0000, 0x0000, OP_EQ, 0, S1_CLNP2, 0, S1_CLNP2,
2275 IM_CTL, 0x001, 3, 0x0, 0x0001},
2276 { "Cleanup 2", 0x0000, 0x0000, OP_EQ, 0, S1_PCKT, 0, S1_PCKT,
2277 CL_REG, 0x002, 3, 0x0, 0x0000},
2278 { "Drop packet", 0x0000, 0x0000, OP_EQ, 0, S1_PCKT, 0, S1_PCKT,
2279 IM_CTL, 0x080, 3, 0x0, 0xffff},
2280 { "No HTTP", 0x0000, 0x0000, OP_EQ, 0, S1_PCKT, 0, S1_PCKT,
2281 IM_CTL, 0x044, 3, 0x0, 0xffff},
2282 { NULL },
2283};
2284#ifdef HP_IP46TCP4NOHTTP_DEFAULT
2285#define CAS_HP_FIRMWARE cas_prog_ip46tcp4nohttptab
2286#endif
2287#endif
2288
2289/* match step #s for IP4FRAG */
2290#define S3_IPV6c 11
2291#define S3_TCP64 12
2292#define S3_TCPSQ 13
2293#define S3_TCPFG 14
2294#define S3_TCPHL 15
2295#define S3_TCPHc 16
2296#define S3_FRAG 17
2297#define S3_FOFF 18
2298#define S3_CLNP 19
2299
2300#ifdef USE_HP_IP4FRAG
2301static cas_hp_inst_t cas_prog_ip4fragtab[] = {
2302 { "packet arrival?", 0xffff, 0x0000, OP_NP, 6, S1_VLAN, 0, S1_PCKT,
2303 CL_REG, 0x3ff, 1, 0x0, 0x0000},
2304 { "VLAN?", 0xffff, 0x8100, OP_EQ, 1, S1_CFI, 0, S1_8023,
2305 IM_CTL, 0x00a, 3, 0x0, 0xffff},
2306 { "CFI?", 0x1000, 0x1000, OP_EQ, 0, S3_CLNP, 1, S1_8023,
2307 CL_REG, 0x000, 0, 0x0, 0x0000},
2308 { "8023?", 0xffff, 0x0600, OP_LT, 1, S1_LLC, 0, S1_IPV4,
2309 CL_REG, 0x000, 0, 0x0, 0x0000},
2310 { "LLC?", 0xffff, 0xaaaa, OP_EQ, 1, S1_LLCc, 0, S3_CLNP,
2311 CL_REG, 0x000, 0, 0x0, 0x0000},
2312 { "LLCc?",0xff00, 0x0300, OP_EQ, 2, S1_IPV4, 0, S3_CLNP,
2313 CL_REG, 0x000, 0, 0x0, 0x0000},
2314 { "IPV4?", 0xffff, 0x0800, OP_EQ, 1, S1_IPV4c, 0, S1_IPV6,
2315 LD_SAP, 0x100, 3, 0x0, 0xffff},
2316 { "IPV4 cont?", 0xff00, 0x4500, OP_EQ, 3, S1_IPV4F, 0, S3_CLNP,
2317 LD_SUM, 0x00a, 1, 0x0, 0x0000},
2318 { "IPV4 frag?", 0x3fff, 0x0000, OP_EQ, 1, S1_TCP44, 0, S3_FRAG,
2319 LD_LEN, 0x03e, 3, 0x0, 0xffff},
2320 { "TCP44?", 0x00ff, 0x0006, OP_EQ, 7, S3_TCPSQ, 0, S3_CLNP,
2321 LD_FID, 0x182, 3, 0x0, 0xffff}, /* FID IP4&TCP src+dst */
2322 { "IPV6?", 0xffff, 0x86dd, OP_EQ, 1, S3_IPV6c, 0, S3_CLNP,
2323 LD_SUM, 0x015, 1, 0x0, 0x0000},
2324 { "IPV6 cont?", 0xf000, 0x6000, OP_EQ, 3, S3_TCP64, 0, S3_CLNP,
2325 LD_FID, 0x484, 1, 0x0, 0xffff}, /* FID IP6&TCP src+dst */
2326 { "TCP64?", 0xff00, 0x0600, OP_EQ, 18, S3_TCPSQ, 0, S3_CLNP,
2327 LD_LEN, 0x03f, 1, 0x0, 0xffff},
2328 { "TCP seq", /* DADDR should point to dest port */
2329 0x0000, 0x0000, OP_EQ, 0, S3_TCPFG, 4, S3_TCPFG, LD_SEQ,
2330 0x081, 3, 0x0, 0xffff}, /* Load TCP seq # */
2331 { "TCP control flags", 0x0000, 0x0000, OP_EQ, 0, S3_TCPHL, 0,
2332 S3_TCPHL, ST_FLG, 0x045, 3, 0x0, 0x002f}, /* Load TCP flags */
2333 { "TCP length", 0x0000, 0x0000, OP_EQ, 0, S3_TCPHc, 0, S3_TCPHc,
2334 LD_R1, 0x205, 3, 0xB, 0xf000},
2335 { "TCP length cont", 0x0000, 0x0000, OP_EQ, 0, S1_PCKT, 0, S1_PCKT,
2336 LD_HDR, 0x0ff, 3, 0x0, 0xffff},
2337 { "IP4 Fragment", 0x0000, 0x0000, OP_EQ, 0, S3_FOFF, 0, S3_FOFF,
2338 LD_FID, 0x103, 3, 0x0, 0xffff}, /* FID IP4 src+dst */
2339 { "IP4 frag offset", 0x0000, 0x0000, OP_EQ, 0, S3_FOFF, 0, S3_FOFF,
2340 LD_SEQ, 0x040, 1, 0xD, 0xfff8},
2341 { "Cleanup", 0x0000, 0x0000, OP_EQ, 0, S1_PCKT, 0, S1_PCKT,
2342 IM_CTL, 0x001, 3, 0x0, 0x0001},
2343 { NULL },
2344};
2345#ifdef HP_IP4FRAG_DEFAULT
2346#define CAS_HP_FIRMWARE cas_prog_ip4fragtab
2347#endif
2348#endif
2349
2350/*
2351 * Alternate table which does batching without reassembly
2352 */
2353#ifdef USE_HP_IP46TCP4BATCH
2354static cas_hp_inst_t cas_prog_ip46tcp4batchtab[] = {
2355 CAS_PROG_IP46TCP4_PREAMBLE,
2356 { "TCP seq", /* DADDR should point to dest port */
2357 0x0000, 0x0000, OP_EQ, 0, S1_TCPFG, 0, S1_TCPFG, LD_SEQ,
2358 0x081, 3, 0x0, 0xffff}, /* Load TCP seq # */
2359 { "TCP control flags", 0x0000, 0x0000, OP_EQ, 0, S1_TCPHL, 0,
2360 S1_TCPHL, ST_FLG, 0x000, 3, 0x0, 0x0000}, /* Load TCP flags */
2361 { "TCP length", 0x0000, 0x0000, OP_EQ, 0, S1_TCPHc, 0,
2362 S1_TCPHc, LD_R1, 0x205, 3, 0xB, 0xf000},
2363 { "TCP length cont", 0x0000, 0x0000, OP_EQ, 0, S1_PCKT, 0,
2364 S1_PCKT, IM_CTL, 0x040, 3, 0x0, 0xffff}, /* set batch bit */
2365 { "Cleanup", 0x0000, 0x0000, OP_EQ, 0, S1_PCKT, 0, S1_PCKT,
2366 IM_CTL, 0x001, 3, 0x0, 0x0001},
2367 { "Drop packet", 0x0000, 0x0000, OP_EQ, 0, S1_PCKT, 0,
2368 S1_PCKT, IM_CTL, 0x080, 3, 0x0, 0xffff},
2369 { NULL },
2370};
2371#ifdef HP_IP46TCP4BATCH_DEFAULT
2372#define CAS_HP_FIRMWARE cas_prog_ip46tcp4batchtab
2373#endif
2374#endif
2375
2376/* Workaround for Cassini rev2 descriptor corruption problem.
2377 * Does batching without reassembly, and sets the SAP to a known
2378 * data pattern for all packets.
2379 */
2380#ifdef USE_HP_WORKAROUND
2381static cas_hp_inst_t cas_prog_workaroundtab[] = {
2382 { "packet arrival?", 0xffff, 0x0000, OP_NP, 6, S1_VLAN, 0,
2383 S1_PCKT, CL_REG, 0x3ff, 1, 0x0, 0x0000} ,
2384 { "VLAN?", 0xffff, 0x8100, OP_EQ, 1, S1_CFI, 0, S1_8023,
2385 IM_CTL, 0x04a, 3, 0x0, 0xffff},
2386 { "CFI?", 0x1000, 0x1000, OP_EQ, 0, S1_CLNP, 1, S1_8023,
2387 CL_REG, 0x000, 0, 0x0, 0x0000},
2388 { "8023?", 0xffff, 0x0600, OP_LT, 1, S1_LLC, 0, S1_IPV4,
2389 CL_REG, 0x000, 0, 0x0, 0x0000},
2390 { "LLC?", 0xffff, 0xaaaa, OP_EQ, 1, S1_LLCc, 0, S1_CLNP,
2391 CL_REG, 0x000, 0, 0x0, 0x0000},
2392 { "LLCc?", 0xff00, 0x0300, OP_EQ, 2, S1_IPV4, 0, S1_CLNP,
2393 CL_REG, 0x000, 0, 0x0, 0x0000},
2394 { "IPV4?", 0xffff, 0x0800, OP_EQ, 1, S1_IPV4c, 0, S1_IPV6,
2395 IM_SAP, 0x6AE, 3, 0x0, 0xffff},
2396 { "IPV4 cont?", 0xff00, 0x4500, OP_EQ, 3, S1_IPV4F, 0, S1_CLNP,
2397 LD_SUM, 0x00a, 1, 0x0, 0x0000},
2398 { "IPV4 frag?", 0x3fff, 0x0000, OP_EQ, 1, S1_TCP44, 0, S1_CLNP,
2399 LD_LEN, 0x03e, 1, 0x0, 0xffff},
2400 { "TCP44?", 0x00ff, 0x0006, OP_EQ, 7, S1_TCPSQ, 0, S1_CLNP,
2401 LD_FID, 0x182, 3, 0x0, 0xffff}, /* FID IP4&TCP src+dst */
2402 { "IPV6?", 0xffff, 0x86dd, OP_EQ, 1, S1_IPV6L, 0, S1_CLNP,
2403 LD_SUM, 0x015, 1, 0x0, 0x0000},
2404 { "IPV6 len", 0xf000, 0x6000, OP_EQ, 0, S1_IPV6c, 0, S1_CLNP,
2405 IM_R1, 0x128, 1, 0x0, 0xffff},
2406 { "IPV6 cont?", 0x0000, 0x0000, OP_EQ, 3, S1_TCP64, 0, S1_CLNP,
2407 LD_FID, 0x484, 1, 0x0, 0xffff}, /* FID IP6&TCP src+dst */
2408 { "TCP64?", 0xff00, 0x0600, OP_EQ, 18, S1_TCPSQ, 0, S1_CLNP,
2409 LD_LEN, 0x03f, 1, 0x0, 0xffff},
2410 { "TCP seq", /* DADDR should point to dest port */
2411 0x0000, 0x0000, OP_EQ, 0, S1_TCPFG, 4, S1_TCPFG, LD_SEQ,
2412 0x081, 3, 0x0, 0xffff}, /* Load TCP seq # */
2413 { "TCP control flags", 0x0000, 0x0000, OP_EQ, 0, S1_TCPHL, 0,
2414 S1_TCPHL, ST_FLG, 0x045, 3, 0x0, 0x002f}, /* Load TCP flags */
2415 { "TCP length", 0x0000, 0x0000, OP_EQ, 0, S1_TCPHc, 0, S1_TCPHc,
2416 LD_R1, 0x205, 3, 0xB, 0xf000},
2417 { "TCP length cont", 0x0000, 0x0000, OP_EQ, 0, S1_PCKT, 0,
2418 S1_PCKT, LD_HDR, 0x0ff, 3, 0x0, 0xffff},
2419 { "Cleanup", 0x0000, 0x0000, OP_EQ, 0, S1_CLNP2, 0, S1_CLNP2,
2420 IM_SAP, 0x6AE, 3, 0x0, 0xffff} ,
2421 { "Cleanup 2", 0x0000, 0x0000, OP_EQ, 0, S1_PCKT, 0, S1_PCKT,
2422 IM_CTL, 0x001, 3, 0x0, 0x0001},
2423 { NULL },
2424};
2425#ifdef HP_WORKAROUND_DEFAULT
2426#define CAS_HP_FIRMWARE cas_prog_workaroundtab
2427#endif
2428#endif
2429
2430#ifdef USE_HP_ENCRYPT
2431static cas_hp_inst_t cas_prog_encryptiontab[] = {
2432 { "packet arrival?", 0xffff, 0x0000, OP_NP, 6, S1_VLAN, 0,
2433 S1_PCKT, CL_REG, 0x3ff, 1, 0x0, 0x0000},
2434 { "VLAN?", 0xffff, 0x8100, OP_EQ, 1, S1_CFI, 0, S1_8023,
2435 IM_CTL, 0x00a, 3, 0x0, 0xffff},
2436#if 0
2437//"CFI?", /* 02 FIND CFI and If FIND go to S1_DROP */
2438//0x1000, 0x1000, OP_EQ, 0, S1_DROP, 1, S1_8023, CL_REG, 0x000, 0, 0x0, 0x00
2439 00,
2440#endif
2441 { "CFI?", /* FIND CFI and If FIND go to CleanUP1 (ignore and send to host) */
2442 0x1000, 0x1000, OP_EQ, 0, S1_CLNP, 1, S1_8023,
2443 CL_REG, 0x000, 0, 0x0, 0x0000},
2444 { "8023?", 0xffff, 0x0600, OP_LT, 1, S1_LLC, 0, S1_IPV4,
2445 CL_REG, 0x000, 0, 0x0, 0x0000},
2446 { "LLC?", 0xffff, 0xaaaa, OP_EQ, 1, S1_LLCc, 0, S1_CLNP,
2447 CL_REG, 0x000, 0, 0x0, 0x0000},
2448 { "LLCc?", 0xff00, 0x0300, OP_EQ, 2, S1_IPV4, 0, S1_CLNP,
2449 CL_REG, 0x000, 0, 0x0, 0x0000},
2450 { "IPV4?", 0xffff, 0x0800, OP_EQ, 1, S1_IPV4c, 0, S1_IPV6,
2451 LD_SAP, 0x100, 3, 0x0, 0xffff},
2452 { "IPV4 cont?", 0xff00, 0x4500, OP_EQ, 3, S1_IPV4F, 0, S1_CLNP,
2453 LD_SUM, 0x00a, 1, 0x0, 0x0000},
2454 { "IPV4 frag?", 0x3fff, 0x0000, OP_EQ, 1, S1_TCP44, 0, S1_CLNP,
2455 LD_LEN, 0x03e, 1, 0x0, 0xffff},
2456 { "TCP44?", 0x00ff, 0x0006, OP_EQ, 7, S1_TCPSQ, 0, S1_ESP4,
2457 LD_FID, 0x182, 1, 0x0, 0xffff}, /* FID IP4&TCP src+dst */
2458 { "IPV6?", 0xffff, 0x86dd, OP_EQ, 1, S1_IPV6L, 0, S1_CLNP,
2459 LD_SUM, 0x015, 1, 0x0, 0x0000},
2460 { "IPV6 len", 0xf000, 0x6000, OP_EQ, 0, S1_IPV6c, 0, S1_CLNP,
2461 IM_R1, 0x128, 1, 0x0, 0xffff},
2462 { "IPV6 cont?", 0x0000, 0x0000, OP_EQ, 3, S1_TCP64, 0, S1_CLNP,
2463 LD_FID, 0x484, 1, 0x0, 0xffff}, /* FID IP6&TCP src+dst */
2464 { "TCP64?",
2465#if 0
2466//@@@0xff00, 0x0600, OP_EQ, 18, S1_TCPSQ, 0, S1_ESP6, LD_LEN, 0x03f, 1, 0x0, 0xffff,
2467#endif
2468 0xff00, 0x0600, OP_EQ, 12, S1_TCPSQ, 0, S1_ESP6, LD_LEN,
2469 0x03f, 1, 0x0, 0xffff},
2470 { "TCP seq", /* 14:DADDR should point to dest port */
2471 0xFFFF, 0x0080, OP_EQ, 0, S2_HTTP, 0, S1_TCPFG, LD_SEQ,
2472 0x081, 3, 0x0, 0xffff}, /* Load TCP seq # */
2473 { "TCP control flags", 0xFFFF, 0x8080, OP_EQ, 0, S2_HTTP, 0,
2474 S1_TCPHL, ST_FLG, 0x145, 2, 0x0, 0x002f}, /* Load TCP flags */
2475 { "TCP length", 0x0000, 0x0000, OP_EQ, 0, S1_TCPHc, 0, S1_TCPHc,
2476 LD_R1, 0x205, 3, 0xB, 0xf000} ,
2477 { "TCP length cont", 0x0000, 0x0000, OP_EQ, 0, S1_PCKT, 0,
2478 S1_PCKT, LD_HDR, 0x0ff, 3, 0x0, 0xffff},
2479 { "Cleanup", 0x0000, 0x0000, OP_EQ, 0, S1_CLNP2, 0, S1_CLNP2,
2480 IM_CTL, 0x001, 3, 0x0, 0x0001},
2481 { "Cleanup 2", 0x0000, 0x0000, OP_EQ, 0, S1_PCKT, 0, S1_PCKT,
2482 CL_REG, 0x002, 3, 0x0, 0x0000},
2483 { "Drop packet", 0x0000, 0x0000, OP_EQ, 0, S1_PCKT, 0, S1_PCKT,
2484 IM_CTL, 0x080, 3, 0x0, 0xffff},
2485 { "No HTTP", 0x0000, 0x0000, OP_EQ, 0, S1_PCKT, 0, S1_PCKT,
2486 IM_CTL, 0x044, 3, 0x0, 0xffff},
2487 { "IPV4 ESP encrypted?", /* S1_ESP4 */
2488 0x00ff, 0x0032, OP_EQ, 0, S1_CLNP2, 0, S1_AH4, IM_CTL,
2489 0x021, 1, 0x0, 0xffff},
2490 { "IPV4 AH encrypted?", /* S1_AH4 */
2491 0x00ff, 0x0033, OP_EQ, 0, S1_CLNP2, 0, S1_CLNP, IM_CTL,
2492 0x021, 1, 0x0, 0xffff},
2493 { "IPV6 ESP encrypted?", /* S1_ESP6 */
2494#if 0
2495//@@@0x00ff, 0x0032, OP_EQ, 0, S1_CLNP2, 0, S1_AH6, IM_CTL, 0x021, 1, 0x0, 0xffff,
2496#endif
2497 0xff00, 0x3200, OP_EQ, 0, S1_CLNP2, 0, S1_AH6, IM_CTL,
2498 0x021, 1, 0x0, 0xffff},
2499 { "IPV6 AH encrypted?", /* S1_AH6 */
2500#if 0
2501//@@@0x00ff, 0x0033, OP_EQ, 0, S1_CLNP2, 0, S1_CLNP, IM_CTL, 0x021, 1, 0x0, 0xffff,
2502#endif
2503 0xff00, 0x3300, OP_EQ, 0, S1_CLNP2, 0, S1_CLNP, IM_CTL,
2504 0x021, 1, 0x0, 0xffff},
2505 { NULL },
2506};
2507#ifdef HP_ENCRYPT_DEFAULT
2508#define CAS_HP_FIRMWARE cas_prog_encryptiontab
2509#endif
2510#endif
2511
2512static cas_hp_inst_t cas_prog_null[] = { {NULL} };
2513#ifdef HP_NULL_DEFAULT
2514#define CAS_HP_FIRMWARE cas_prog_null
2515#endif
2516
2517/* firmware patch for NS_DP83065 */
2518typedef struct cas_saturn_patch {
2519 u16 addr;
2520 u16 val;
2521} cas_saturn_patch_t;
2522
2523#if 1
2524cas_saturn_patch_t cas_saturn_patch[] = {
2525{0x8200, 0x007e}, {0x8201, 0x0082}, {0x8202, 0x0009},
2526{0x8203, 0x0000}, {0x8204, 0x0000}, {0x8205, 0x0000},
2527{0x8206, 0x0000}, {0x8207, 0x0000}, {0x8208, 0x0000},
2528{0x8209, 0x008e}, {0x820a, 0x008e}, {0x820b, 0x00ff},
2529{0x820c, 0x00ce}, {0x820d, 0x0082}, {0x820e, 0x0025},
2530{0x820f, 0x00ff}, {0x8210, 0x0001}, {0x8211, 0x000f},
2531{0x8212, 0x00ce}, {0x8213, 0x0084}, {0x8214, 0x0026},
2532{0x8215, 0x00ff}, {0x8216, 0x0001}, {0x8217, 0x0011},
2533{0x8218, 0x00ce}, {0x8219, 0x0085}, {0x821a, 0x003d},
2534{0x821b, 0x00df}, {0x821c, 0x00e5}, {0x821d, 0x0086},
2535{0x821e, 0x0039}, {0x821f, 0x00b7}, {0x8220, 0x008f},
2536{0x8221, 0x00f8}, {0x8222, 0x007e}, {0x8223, 0x00c3},
2537{0x8224, 0x00c2}, {0x8225, 0x0096}, {0x8226, 0x0047},
2538{0x8227, 0x0084}, {0x8228, 0x00f3}, {0x8229, 0x008a},
2539{0x822a, 0x0000}, {0x822b, 0x0097}, {0x822c, 0x0047},
2540{0x822d, 0x00ce}, {0x822e, 0x0082}, {0x822f, 0x0033},
2541{0x8230, 0x00ff}, {0x8231, 0x0001}, {0x8232, 0x000f},
2542{0x8233, 0x0096}, {0x8234, 0x0046}, {0x8235, 0x0084},
2543{0x8236, 0x000c}, {0x8237, 0x0081}, {0x8238, 0x0004},
2544{0x8239, 0x0027}, {0x823a, 0x000b}, {0x823b, 0x0096},
2545{0x823c, 0x0046}, {0x823d, 0x0084}, {0x823e, 0x000c},
2546{0x823f, 0x0081}, {0x8240, 0x0008}, {0x8241, 0x0027},
2547{0x8242, 0x0057}, {0x8243, 0x007e}, {0x8244, 0x0084},
2548{0x8245, 0x0025}, {0x8246, 0x0096}, {0x8247, 0x0047},
2549{0x8248, 0x0084}, {0x8249, 0x00f3}, {0x824a, 0x008a},
2550{0x824b, 0x0004}, {0x824c, 0x0097}, {0x824d, 0x0047},
2551{0x824e, 0x00ce}, {0x824f, 0x0082}, {0x8250, 0x0054},
2552{0x8251, 0x00ff}, {0x8252, 0x0001}, {0x8253, 0x000f},
2553{0x8254, 0x0096}, {0x8255, 0x0046}, {0x8256, 0x0084},
2554{0x8257, 0x000c}, {0x8258, 0x0081}, {0x8259, 0x0004},
2555{0x825a, 0x0026}, {0x825b, 0x0038}, {0x825c, 0x00b6},
2556{0x825d, 0x0012}, {0x825e, 0x0020}, {0x825f, 0x0084},
2557{0x8260, 0x0020}, {0x8261, 0x0026}, {0x8262, 0x0003},
2558{0x8263, 0x007e}, {0x8264, 0x0084}, {0x8265, 0x0025},
2559{0x8266, 0x0096}, {0x8267, 0x007b}, {0x8268, 0x00d6},
2560{0x8269, 0x007c}, {0x826a, 0x00fe}, {0x826b, 0x008f},
2561{0x826c, 0x0056}, {0x826d, 0x00bd}, {0x826e, 0x00f7},
2562{0x826f, 0x00b6}, {0x8270, 0x00fe}, {0x8271, 0x008f},
2563{0x8272, 0x004e}, {0x8273, 0x00bd}, {0x8274, 0x00ec},
2564{0x8275, 0x008e}, {0x8276, 0x00bd}, {0x8277, 0x00fa},
2565{0x8278, 0x00f7}, {0x8279, 0x00bd}, {0x827a, 0x00f7},
2566{0x827b, 0x0028}, {0x827c, 0x00ce}, {0x827d, 0x0082},
2567{0x827e, 0x0082}, {0x827f, 0x00ff}, {0x8280, 0x0001},
2568{0x8281, 0x000f}, {0x8282, 0x0096}, {0x8283, 0x0046},
2569{0x8284, 0x0084}, {0x8285, 0x000c}, {0x8286, 0x0081},
2570{0x8287, 0x0004}, {0x8288, 0x0026}, {0x8289, 0x000a},
2571{0x828a, 0x00b6}, {0x828b, 0x0012}, {0x828c, 0x0020},
2572{0x828d, 0x0084}, {0x828e, 0x0020}, {0x828f, 0x0027},
2573{0x8290, 0x00b5}, {0x8291, 0x007e}, {0x8292, 0x0084},
2574{0x8293, 0x0025}, {0x8294, 0x00bd}, {0x8295, 0x00f7},
2575{0x8296, 0x001f}, {0x8297, 0x007e}, {0x8298, 0x0084},
2576{0x8299, 0x001f}, {0x829a, 0x0096}, {0x829b, 0x0047},
2577{0x829c, 0x0084}, {0x829d, 0x00f3}, {0x829e, 0x008a},
2578{0x829f, 0x0008}, {0x82a0, 0x0097}, {0x82a1, 0x0047},
2579{0x82a2, 0x00de}, {0x82a3, 0x00e1}, {0x82a4, 0x00ad},
2580{0x82a5, 0x0000}, {0x82a6, 0x00ce}, {0x82a7, 0x0082},
2581{0x82a8, 0x00af}, {0x82a9, 0x00ff}, {0x82aa, 0x0001},
2582{0x82ab, 0x000f}, {0x82ac, 0x007e}, {0x82ad, 0x0084},
2583{0x82ae, 0x0025}, {0x82af, 0x0096}, {0x82b0, 0x0041},
2584{0x82b1, 0x0085}, {0x82b2, 0x0010}, {0x82b3, 0x0026},
2585{0x82b4, 0x0006}, {0x82b5, 0x0096}, {0x82b6, 0x0023},
2586{0x82b7, 0x0085}, {0x82b8, 0x0040}, {0x82b9, 0x0027},
2587{0x82ba, 0x0006}, {0x82bb, 0x00bd}, {0x82bc, 0x00ed},
2588{0x82bd, 0x0000}, {0x82be, 0x007e}, {0x82bf, 0x0083},
2589{0x82c0, 0x00a2}, {0x82c1, 0x00de}, {0x82c2, 0x0042},
2590{0x82c3, 0x00bd}, {0x82c4, 0x00eb}, {0x82c5, 0x008e},
2591{0x82c6, 0x0096}, {0x82c7, 0x0024}, {0x82c8, 0x0084},
2592{0x82c9, 0x0008}, {0x82ca, 0x0027}, {0x82cb, 0x0003},
2593{0x82cc, 0x007e}, {0x82cd, 0x0083}, {0x82ce, 0x00df},
2594{0x82cf, 0x0096}, {0x82d0, 0x007b}, {0x82d1, 0x00d6},
2595{0x82d2, 0x007c}, {0x82d3, 0x00fe}, {0x82d4, 0x008f},
2596{0x82d5, 0x0056}, {0x82d6, 0x00bd}, {0x82d7, 0x00f7},
2597{0x82d8, 0x00b6}, {0x82d9, 0x00fe}, {0x82da, 0x008f},
2598{0x82db, 0x0050}, {0x82dc, 0x00bd}, {0x82dd, 0x00ec},
2599{0x82de, 0x008e}, {0x82df, 0x00bd}, {0x82e0, 0x00fa},
2600{0x82e1, 0x00f7}, {0x82e2, 0x0086}, {0x82e3, 0x0011},
2601{0x82e4, 0x00c6}, {0x82e5, 0x0049}, {0x82e6, 0x00bd},
2602{0x82e7, 0x00e4}, {0x82e8, 0x0012}, {0x82e9, 0x00ce},
2603{0x82ea, 0x0082}, {0x82eb, 0x00ef}, {0x82ec, 0x00ff},
2604{0x82ed, 0x0001}, {0x82ee, 0x000f}, {0x82ef, 0x0096},
2605{0x82f0, 0x0046}, {0x82f1, 0x0084}, {0x82f2, 0x000c},
2606{0x82f3, 0x0081}, {0x82f4, 0x0000}, {0x82f5, 0x0027},
2607{0x82f6, 0x0017}, {0x82f7, 0x00c6}, {0x82f8, 0x0049},
2608{0x82f9, 0x00bd}, {0x82fa, 0x00e4}, {0x82fb, 0x0091},
2609{0x82fc, 0x0024}, {0x82fd, 0x000d}, {0x82fe, 0x00b6},
2610{0x82ff, 0x0012}, {0x8300, 0x0020}, {0x8301, 0x0085},
2611{0x8302, 0x0020}, {0x8303, 0x0026}, {0x8304, 0x000c},
2612{0x8305, 0x00ce}, {0x8306, 0x0082}, {0x8307, 0x00c1},
2613{0x8308, 0x00ff}, {0x8309, 0x0001}, {0x830a, 0x000f},
2614{0x830b, 0x007e}, {0x830c, 0x0084}, {0x830d, 0x0025},
2615{0x830e, 0x007e}, {0x830f, 0x0084}, {0x8310, 0x0016},
2616{0x8311, 0x00fe}, {0x8312, 0x008f}, {0x8313, 0x0052},
2617{0x8314, 0x00bd}, {0x8315, 0x00ec}, {0x8316, 0x008e},
2618{0x8317, 0x00bd}, {0x8318, 0x00fa}, {0x8319, 0x00f7},
2619{0x831a, 0x0086}, {0x831b, 0x006a}, {0x831c, 0x00c6},
2620{0x831d, 0x0049}, {0x831e, 0x00bd}, {0x831f, 0x00e4},
2621{0x8320, 0x0012}, {0x8321, 0x00ce}, {0x8322, 0x0083},
2622{0x8323, 0x0027}, {0x8324, 0x00ff}, {0x8325, 0x0001},
2623{0x8326, 0x000f}, {0x8327, 0x0096}, {0x8328, 0x0046},
2624{0x8329, 0x0084}, {0x832a, 0x000c}, {0x832b, 0x0081},
2625{0x832c, 0x0000}, {0x832d, 0x0027}, {0x832e, 0x000a},
2626{0x832f, 0x00c6}, {0x8330, 0x0049}, {0x8331, 0x00bd},
2627{0x8332, 0x00e4}, {0x8333, 0x0091}, {0x8334, 0x0025},
2628{0x8335, 0x0006}, {0x8336, 0x007e}, {0x8337, 0x0084},
2629{0x8338, 0x0025}, {0x8339, 0x007e}, {0x833a, 0x0084},
2630{0x833b, 0x0016}, {0x833c, 0x00b6}, {0x833d, 0x0018},
2631{0x833e, 0x0070}, {0x833f, 0x00bb}, {0x8340, 0x0019},
2632{0x8341, 0x0070}, {0x8342, 0x002a}, {0x8343, 0x0004},
2633{0x8344, 0x0081}, {0x8345, 0x00af}, {0x8346, 0x002e},
2634{0x8347, 0x0019}, {0x8348, 0x0096}, {0x8349, 0x007b},
2635{0x834a, 0x00f6}, {0x834b, 0x0020}, {0x834c, 0x0007},
2636{0x834d, 0x00fa}, {0x834e, 0x0020}, {0x834f, 0x0027},
2637{0x8350, 0x00c4}, {0x8351, 0x0038}, {0x8352, 0x0081},
2638{0x8353, 0x0038}, {0x8354, 0x0027}, {0x8355, 0x000b},
2639{0x8356, 0x00f6}, {0x8357, 0x0020}, {0x8358, 0x0007},
2640{0x8359, 0x00fa}, {0x835a, 0x0020}, {0x835b, 0x0027},
2641{0x835c, 0x00cb}, {0x835d, 0x0008}, {0x835e, 0x007e},
2642{0x835f, 0x0082}, {0x8360, 0x00d3}, {0x8361, 0x00bd},
2643{0x8362, 0x00f7}, {0x8363, 0x0066}, {0x8364, 0x0086},
2644{0x8365, 0x0074}, {0x8366, 0x00c6}, {0x8367, 0x0049},
2645{0x8368, 0x00bd}, {0x8369, 0x00e4}, {0x836a, 0x0012},
2646{0x836b, 0x00ce}, {0x836c, 0x0083}, {0x836d, 0x0071},
2647{0x836e, 0x00ff}, {0x836f, 0x0001}, {0x8370, 0x000f},
2648{0x8371, 0x0096}, {0x8372, 0x0046}, {0x8373, 0x0084},
2649{0x8374, 0x000c}, {0x8375, 0x0081}, {0x8376, 0x0008},
2650{0x8377, 0x0026}, {0x8378, 0x000a}, {0x8379, 0x00c6},
2651{0x837a, 0x0049}, {0x837b, 0x00bd}, {0x837c, 0x00e4},
2652{0x837d, 0x0091}, {0x837e, 0x0025}, {0x837f, 0x0006},
2653{0x8380, 0x007e}, {0x8381, 0x0084}, {0x8382, 0x0025},
2654{0x8383, 0x007e}, {0x8384, 0x0084}, {0x8385, 0x0016},
2655{0x8386, 0x00bd}, {0x8387, 0x00f7}, {0x8388, 0x003e},
2656{0x8389, 0x0026}, {0x838a, 0x000e}, {0x838b, 0x00bd},
2657{0x838c, 0x00e5}, {0x838d, 0x0009}, {0x838e, 0x0026},
2658{0x838f, 0x0006}, {0x8390, 0x00ce}, {0x8391, 0x0082},
2659{0x8392, 0x00c1}, {0x8393, 0x00ff}, {0x8394, 0x0001},
2660{0x8395, 0x000f}, {0x8396, 0x007e}, {0x8397, 0x0084},
2661{0x8398, 0x0025}, {0x8399, 0x00fe}, {0x839a, 0x008f},
2662{0x839b, 0x0054}, {0x839c, 0x00bd}, {0x839d, 0x00ec},
2663{0x839e, 0x008e}, {0x839f, 0x00bd}, {0x83a0, 0x00fa},
2664{0x83a1, 0x00f7}, {0x83a2, 0x00bd}, {0x83a3, 0x00f7},
2665{0x83a4, 0x0033}, {0x83a5, 0x0086}, {0x83a6, 0x000f},
2666{0x83a7, 0x00c6}, {0x83a8, 0x0051}, {0x83a9, 0x00bd},
2667{0x83aa, 0x00e4}, {0x83ab, 0x0012}, {0x83ac, 0x00ce},
2668{0x83ad, 0x0083}, {0x83ae, 0x00b2}, {0x83af, 0x00ff},
2669{0x83b0, 0x0001}, {0x83b1, 0x000f}, {0x83b2, 0x0096},
2670{0x83b3, 0x0046}, {0x83b4, 0x0084}, {0x83b5, 0x000c},
2671{0x83b6, 0x0081}, {0x83b7, 0x0008}, {0x83b8, 0x0026},
2672{0x83b9, 0x005c}, {0x83ba, 0x00b6}, {0x83bb, 0x0012},
2673{0x83bc, 0x0020}, {0x83bd, 0x0084}, {0x83be, 0x003f},
2674{0x83bf, 0x0081}, {0x83c0, 0x003a}, {0x83c1, 0x0027},
2675{0x83c2, 0x001c}, {0x83c3, 0x0096}, {0x83c4, 0x0023},
2676{0x83c5, 0x0085}, {0x83c6, 0x0040}, {0x83c7, 0x0027},
2677{0x83c8, 0x0003}, {0x83c9, 0x007e}, {0x83ca, 0x0084},
2678{0x83cb, 0x0025}, {0x83cc, 0x00c6}, {0x83cd, 0x0051},
2679{0x83ce, 0x00bd}, {0x83cf, 0x00e4}, {0x83d0, 0x0091},
2680{0x83d1, 0x0025}, {0x83d2, 0x0003}, {0x83d3, 0x007e},
2681{0x83d4, 0x0084}, {0x83d5, 0x0025}, {0x83d6, 0x00ce},
2682{0x83d7, 0x0082}, {0x83d8, 0x00c1}, {0x83d9, 0x00ff},
2683{0x83da, 0x0001}, {0x83db, 0x000f}, {0x83dc, 0x007e},
2684{0x83dd, 0x0084}, {0x83de, 0x0025}, {0x83df, 0x00bd},
2685{0x83e0, 0x00f8}, {0x83e1, 0x0037}, {0x83e2, 0x007c},
2686{0x83e3, 0x0000}, {0x83e4, 0x007a}, {0x83e5, 0x00ce},
2687{0x83e6, 0x0083}, {0x83e7, 0x00ee}, {0x83e8, 0x00ff},
2688{0x83e9, 0x0001}, {0x83ea, 0x000f}, {0x83eb, 0x007e},
2689{0x83ec, 0x0084}, {0x83ed, 0x0025}, {0x83ee, 0x0096},
2690{0x83ef, 0x0046}, {0x83f0, 0x0084}, {0x83f1, 0x000c},
2691{0x83f2, 0x0081}, {0x83f3, 0x0008}, {0x83f4, 0x0026},
2692{0x83f5, 0x0020}, {0x83f6, 0x0096}, {0x83f7, 0x0024},
2693{0x83f8, 0x0084}, {0x83f9, 0x0008}, {0x83fa, 0x0026},
2694{0x83fb, 0x0029}, {0x83fc, 0x00b6}, {0x83fd, 0x0018},
2695{0x83fe, 0x0082}, {0x83ff, 0x00bb}, {0x8400, 0x0019},
2696{0x8401, 0x0082}, {0x8402, 0x00b1}, {0x8403, 0x0001},
2697{0x8404, 0x003b}, {0x8405, 0x0022}, {0x8406, 0x0009},
2698{0x8407, 0x00b6}, {0x8408, 0x0012}, {0x8409, 0x0020},
2699{0x840a, 0x0084}, {0x840b, 0x0037}, {0x840c, 0x0081},
2700{0x840d, 0x0032}, {0x840e, 0x0027}, {0x840f, 0x0015},
2701{0x8410, 0x00bd}, {0x8411, 0x00f8}, {0x8412, 0x0044},
2702{0x8413, 0x007e}, {0x8414, 0x0082}, {0x8415, 0x00c1},
2703{0x8416, 0x00bd}, {0x8417, 0x00f7}, {0x8418, 0x001f},
2704{0x8419, 0x00bd}, {0x841a, 0x00f8}, {0x841b, 0x0044},
2705{0x841c, 0x00bd}, {0x841d, 0x00fc}, {0x841e, 0x0029},
2706{0x841f, 0x00ce}, {0x8420, 0x0082}, {0x8421, 0x0025},
2707{0x8422, 0x00ff}, {0x8423, 0x0001}, {0x8424, 0x000f},
2708{0x8425, 0x0039}, {0x8426, 0x0096}, {0x8427, 0x0047},
2709{0x8428, 0x0084}, {0x8429, 0x00fc}, {0x842a, 0x008a},
2710{0x842b, 0x0000}, {0x842c, 0x0097}, {0x842d, 0x0047},
2711{0x842e, 0x00ce}, {0x842f, 0x0084}, {0x8430, 0x0034},
2712{0x8431, 0x00ff}, {0x8432, 0x0001}, {0x8433, 0x0011},
2713{0x8434, 0x0096}, {0x8435, 0x0046}, {0x8436, 0x0084},
2714{0x8437, 0x0003}, {0x8438, 0x0081}, {0x8439, 0x0002},
2715{0x843a, 0x0027}, {0x843b, 0x0003}, {0x843c, 0x007e},
2716{0x843d, 0x0085}, {0x843e, 0x001e}, {0x843f, 0x0096},
2717{0x8440, 0x0047}, {0x8441, 0x0084}, {0x8442, 0x00fc},
2718{0x8443, 0x008a}, {0x8444, 0x0002}, {0x8445, 0x0097},
2719{0x8446, 0x0047}, {0x8447, 0x00de}, {0x8448, 0x00e1},
2720{0x8449, 0x00ad}, {0x844a, 0x0000}, {0x844b, 0x0086},
2721{0x844c, 0x0001}, {0x844d, 0x00b7}, {0x844e, 0x0012},
2722{0x844f, 0x0051}, {0x8450, 0x00bd}, {0x8451, 0x00f7},
2723{0x8452, 0x0014}, {0x8453, 0x00b6}, {0x8454, 0x0010},
2724{0x8455, 0x0031}, {0x8456, 0x0084}, {0x8457, 0x00fd},
2725{0x8458, 0x00b7}, {0x8459, 0x0010}, {0x845a, 0x0031},
2726{0x845b, 0x00bd}, {0x845c, 0x00f8}, {0x845d, 0x001e},
2727{0x845e, 0x0096}, {0x845f, 0x0081}, {0x8460, 0x00d6},
2728{0x8461, 0x0082}, {0x8462, 0x00fe}, {0x8463, 0x008f},
2729{0x8464, 0x005a}, {0x8465, 0x00bd}, {0x8466, 0x00f7},
2730{0x8467, 0x00b6}, {0x8468, 0x00fe}, {0x8469, 0x008f},
2731{0x846a, 0x005c}, {0x846b, 0x00bd}, {0x846c, 0x00ec},
2732{0x846d, 0x008e}, {0x846e, 0x00bd}, {0x846f, 0x00fa},
2733{0x8470, 0x00f7}, {0x8471, 0x0086}, {0x8472, 0x0008},
2734{0x8473, 0x00d6}, {0x8474, 0x0000}, {0x8475, 0x00c5},
2735{0x8476, 0x0010}, {0x8477, 0x0026}, {0x8478, 0x0002},
2736{0x8479, 0x008b}, {0x847a, 0x0020}, {0x847b, 0x00c6},
2737{0x847c, 0x0051}, {0x847d, 0x00bd}, {0x847e, 0x00e4},
2738{0x847f, 0x0012}, {0x8480, 0x00ce}, {0x8481, 0x0084},
2739{0x8482, 0x0086}, {0x8483, 0x00ff}, {0x8484, 0x0001},
2740{0x8485, 0x0011}, {0x8486, 0x0096}, {0x8487, 0x0046},
2741{0x8488, 0x0084}, {0x8489, 0x0003}, {0x848a, 0x0081},
2742{0x848b, 0x0002}, {0x848c, 0x0027}, {0x848d, 0x0003},
2743{0x848e, 0x007e}, {0x848f, 0x0085}, {0x8490, 0x000f},
2744{0x8491, 0x00c6}, {0x8492, 0x0051}, {0x8493, 0x00bd},
2745{0x8494, 0x00e4}, {0x8495, 0x0091}, {0x8496, 0x0025},
2746{0x8497, 0x0003}, {0x8498, 0x007e}, {0x8499, 0x0085},
2747{0x849a, 0x001e}, {0x849b, 0x0096}, {0x849c, 0x0044},
2748{0x849d, 0x0085}, {0x849e, 0x0010}, {0x849f, 0x0026},
2749{0x84a0, 0x000a}, {0x84a1, 0x00b6}, {0x84a2, 0x0012},
2750{0x84a3, 0x0050}, {0x84a4, 0x00ba}, {0x84a5, 0x0001},
2751{0x84a6, 0x003c}, {0x84a7, 0x0085}, {0x84a8, 0x0010},
2752{0x84a9, 0x0027}, {0x84aa, 0x00a8}, {0x84ab, 0x00bd},
2753{0x84ac, 0x00f7}, {0x84ad, 0x0066}, {0x84ae, 0x00ce},
2754{0x84af, 0x0084}, {0x84b0, 0x00b7}, {0x84b1, 0x00ff},
2755{0x84b2, 0x0001}, {0x84b3, 0x0011}, {0x84b4, 0x007e},
2756{0x84b5, 0x0085}, {0x84b6, 0x001e}, {0x84b7, 0x0096},
2757{0x84b8, 0x0046}, {0x84b9, 0x0084}, {0x84ba, 0x0003},
2758{0x84bb, 0x0081}, {0x84bc, 0x0002}, {0x84bd, 0x0026},
2759{0x84be, 0x0050}, {0x84bf, 0x00b6}, {0x84c0, 0x0012},
2760{0x84c1, 0x0030}, {0x84c2, 0x0084}, {0x84c3, 0x0003},
2761{0x84c4, 0x0081}, {0x84c5, 0x0001}, {0x84c6, 0x0027},
2762{0x84c7, 0x0003}, {0x84c8, 0x007e}, {0x84c9, 0x0085},
2763{0x84ca, 0x001e}, {0x84cb, 0x0096}, {0x84cc, 0x0044},
2764{0x84cd, 0x0085}, {0x84ce, 0x0010}, {0x84cf, 0x0026},
2765{0x84d0, 0x0013}, {0x84d1, 0x00b6}, {0x84d2, 0x0012},
2766{0x84d3, 0x0050}, {0x84d4, 0x00ba}, {0x84d5, 0x0001},
2767{0x84d6, 0x003c}, {0x84d7, 0x0085}, {0x84d8, 0x0010},
2768{0x84d9, 0x0026}, {0x84da, 0x0009}, {0x84db, 0x00ce},
2769{0x84dc, 0x0084}, {0x84dd, 0x0053}, {0x84de, 0x00ff},
2770{0x84df, 0x0001}, {0x84e0, 0x0011}, {0x84e1, 0x007e},
2771{0x84e2, 0x0085}, {0x84e3, 0x001e}, {0x84e4, 0x00b6},
2772{0x84e5, 0x0010}, {0x84e6, 0x0031}, {0x84e7, 0x008a},
2773{0x84e8, 0x0002}, {0x84e9, 0x00b7}, {0x84ea, 0x0010},
2774{0x84eb, 0x0031}, {0x84ec, 0x00bd}, {0x84ed, 0x0085},
2775{0x84ee, 0x001f}, {0x84ef, 0x00bd}, {0x84f0, 0x00f8},
2776{0x84f1, 0x0037}, {0x84f2, 0x007c}, {0x84f3, 0x0000},
2777{0x84f4, 0x0080}, {0x84f5, 0x00ce}, {0x84f6, 0x0084},
2778{0x84f7, 0x00fe}, {0x84f8, 0x00ff}, {0x84f9, 0x0001},
2779{0x84fa, 0x0011}, {0x84fb, 0x007e}, {0x84fc, 0x0085},
2780{0x84fd, 0x001e}, {0x84fe, 0x0096}, {0x84ff, 0x0046},
2781{0x8500, 0x0084}, {0x8501, 0x0003}, {0x8502, 0x0081},
2782{0x8503, 0x0002}, {0x8504, 0x0026}, {0x8505, 0x0009},
2783{0x8506, 0x00b6}, {0x8507, 0x0012}, {0x8508, 0x0030},
2784{0x8509, 0x0084}, {0x850a, 0x0003}, {0x850b, 0x0081},
2785{0x850c, 0x0001}, {0x850d, 0x0027}, {0x850e, 0x000f},
2786{0x850f, 0x00bd}, {0x8510, 0x00f8}, {0x8511, 0x0044},
2787{0x8512, 0x00bd}, {0x8513, 0x00f7}, {0x8514, 0x000b},
2788{0x8515, 0x00bd}, {0x8516, 0x00fc}, {0x8517, 0x0029},
2789{0x8518, 0x00ce}, {0x8519, 0x0084}, {0x851a, 0x0026},
2790{0x851b, 0x00ff}, {0x851c, 0x0001}, {0x851d, 0x0011},
2791{0x851e, 0x0039}, {0x851f, 0x00d6}, {0x8520, 0x0022},
2792{0x8521, 0x00c4}, {0x8522, 0x000f}, {0x8523, 0x00b6},
2793{0x8524, 0x0012}, {0x8525, 0x0030}, {0x8526, 0x00ba},
2794{0x8527, 0x0012}, {0x8528, 0x0032}, {0x8529, 0x0084},
2795{0x852a, 0x0004}, {0x852b, 0x0027}, {0x852c, 0x000d},
2796{0x852d, 0x0096}, {0x852e, 0x0022}, {0x852f, 0x0085},
2797{0x8530, 0x0004}, {0x8531, 0x0027}, {0x8532, 0x0005},
2798{0x8533, 0x00ca}, {0x8534, 0x0010}, {0x8535, 0x007e},
2799{0x8536, 0x0085}, {0x8537, 0x003a}, {0x8538, 0x00ca},
2800{0x8539, 0x0020}, {0x853a, 0x00d7}, {0x853b, 0x0022},
2801{0x853c, 0x0039}, {0x853d, 0x0086}, {0x853e, 0x0000},
2802{0x853f, 0x0097}, {0x8540, 0x0083}, {0x8541, 0x0018},
2803{0x8542, 0x00ce}, {0x8543, 0x001c}, {0x8544, 0x0000},
2804{0x8545, 0x00bd}, {0x8546, 0x00eb}, {0x8547, 0x0046},
2805{0x8548, 0x0096}, {0x8549, 0x0057}, {0x854a, 0x0085},
2806{0x854b, 0x0001}, {0x854c, 0x0027}, {0x854d, 0x0002},
2807{0x854e, 0x004f}, {0x854f, 0x0039}, {0x8550, 0x0085},
2808{0x8551, 0x0002}, {0x8552, 0x0027}, {0x8553, 0x0001},
2809{0x8554, 0x0039}, {0x8555, 0x007f}, {0x8556, 0x008f},
2810{0x8557, 0x007d}, {0x8558, 0x0086}, {0x8559, 0x0004},
2811{0x855a, 0x00b7}, {0x855b, 0x0012}, {0x855c, 0x0004},
2812{0x855d, 0x0086}, {0x855e, 0x0008}, {0x855f, 0x00b7},
2813{0x8560, 0x0012}, {0x8561, 0x0007}, {0x8562, 0x0086},
2814{0x8563, 0x0010}, {0x8564, 0x00b7}, {0x8565, 0x0012},
2815{0x8566, 0x000c}, {0x8567, 0x0086}, {0x8568, 0x0007},
2816{0x8569, 0x00b7}, {0x856a, 0x0012}, {0x856b, 0x0006},
2817{0x856c, 0x00b6}, {0x856d, 0x008f}, {0x856e, 0x007d},
2818{0x856f, 0x00b7}, {0x8570, 0x0012}, {0x8571, 0x0070},
2819{0x8572, 0x0086}, {0x8573, 0x0001}, {0x8574, 0x00ba},
2820{0x8575, 0x0012}, {0x8576, 0x0004}, {0x8577, 0x00b7},
2821{0x8578, 0x0012}, {0x8579, 0x0004}, {0x857a, 0x0001},
2822{0x857b, 0x0001}, {0x857c, 0x0001}, {0x857d, 0x0001},
2823{0x857e, 0x0001}, {0x857f, 0x0001}, {0x8580, 0x00b6},
2824{0x8581, 0x0012}, {0x8582, 0x0004}, {0x8583, 0x0084},
2825{0x8584, 0x00fe}, {0x8585, 0x008a}, {0x8586, 0x0002},
2826{0x8587, 0x00b7}, {0x8588, 0x0012}, {0x8589, 0x0004},
2827{0x858a, 0x0001}, {0x858b, 0x0001}, {0x858c, 0x0001},
2828{0x858d, 0x0001}, {0x858e, 0x0001}, {0x858f, 0x0001},
2829{0x8590, 0x0086}, {0x8591, 0x00fd}, {0x8592, 0x00b4},
2830{0x8593, 0x0012}, {0x8594, 0x0004}, {0x8595, 0x00b7},
2831{0x8596, 0x0012}, {0x8597, 0x0004}, {0x8598, 0x00b6},
2832{0x8599, 0x0012}, {0x859a, 0x0000}, {0x859b, 0x0084},
2833{0x859c, 0x0008}, {0x859d, 0x0081}, {0x859e, 0x0008},
2834{0x859f, 0x0027}, {0x85a0, 0x0016}, {0x85a1, 0x00b6},
2835{0x85a2, 0x008f}, {0x85a3, 0x007d}, {0x85a4, 0x0081},
2836{0x85a5, 0x000c}, {0x85a6, 0x0027}, {0x85a7, 0x0008},
2837{0x85a8, 0x008b}, {0x85a9, 0x0004}, {0x85aa, 0x00b7},
2838{0x85ab, 0x008f}, {0x85ac, 0x007d}, {0x85ad, 0x007e},
2839{0x85ae, 0x0085}, {0x85af, 0x006c}, {0x85b0, 0x0086},
2840{0x85b1, 0x0003}, {0x85b2, 0x0097}, {0x85b3, 0x0040},
2841{0x85b4, 0x007e}, {0x85b5, 0x0089}, {0x85b6, 0x006e},
2842{0x85b7, 0x0086}, {0x85b8, 0x0007}, {0x85b9, 0x00b7},
2843{0x85ba, 0x0012}, {0x85bb, 0x0006}, {0x85bc, 0x005f},
2844{0x85bd, 0x00f7}, {0x85be, 0x008f}, {0x85bf, 0x0082},
2845{0x85c0, 0x005f}, {0x85c1, 0x00f7}, {0x85c2, 0x008f},
2846{0x85c3, 0x007f}, {0x85c4, 0x00f7}, {0x85c5, 0x008f},
2847{0x85c6, 0x0070}, {0x85c7, 0x00f7}, {0x85c8, 0x008f},
2848{0x85c9, 0x0071}, {0x85ca, 0x00f7}, {0x85cb, 0x008f},
2849{0x85cc, 0x0072}, {0x85cd, 0x00f7}, {0x85ce, 0x008f},
2850{0x85cf, 0x0073}, {0x85d0, 0x00f7}, {0x85d1, 0x008f},
2851{0x85d2, 0x0074}, {0x85d3, 0x00f7}, {0x85d4, 0x008f},
2852{0x85d5, 0x0075}, {0x85d6, 0x00f7}, {0x85d7, 0x008f},
2853{0x85d8, 0x0076}, {0x85d9, 0x00f7}, {0x85da, 0x008f},
2854{0x85db, 0x0077}, {0x85dc, 0x00f7}, {0x85dd, 0x008f},
2855{0x85de, 0x0078}, {0x85df, 0x00f7}, {0x85e0, 0x008f},
2856{0x85e1, 0x0079}, {0x85e2, 0x00f7}, {0x85e3, 0x008f},
2857{0x85e4, 0x007a}, {0x85e5, 0x00f7}, {0x85e6, 0x008f},
2858{0x85e7, 0x007b}, {0x85e8, 0x00b6}, {0x85e9, 0x0012},
2859{0x85ea, 0x0004}, {0x85eb, 0x008a}, {0x85ec, 0x0010},
2860{0x85ed, 0x00b7}, {0x85ee, 0x0012}, {0x85ef, 0x0004},
2861{0x85f0, 0x0086}, {0x85f1, 0x00e4}, {0x85f2, 0x00b7},
2862{0x85f3, 0x0012}, {0x85f4, 0x0070}, {0x85f5, 0x00b7},
2863{0x85f6, 0x0012}, {0x85f7, 0x0007}, {0x85f8, 0x00f7},
2864{0x85f9, 0x0012}, {0x85fa, 0x0005}, {0x85fb, 0x00f7},
2865{0x85fc, 0x0012}, {0x85fd, 0x0009}, {0x85fe, 0x0086},
2866{0x85ff, 0x0008}, {0x8600, 0x00ba}, {0x8601, 0x0012},
2867{0x8602, 0x0004}, {0x8603, 0x00b7}, {0x8604, 0x0012},
2868{0x8605, 0x0004}, {0x8606, 0x0086}, {0x8607, 0x00f7},
2869{0x8608, 0x00b4}, {0x8609, 0x0012}, {0x860a, 0x0004},
2870{0x860b, 0x00b7}, {0x860c, 0x0012}, {0x860d, 0x0004},
2871{0x860e, 0x0001}, {0x860f, 0x0001}, {0x8610, 0x0001},
2872{0x8611, 0x0001}, {0x8612, 0x0001}, {0x8613, 0x0001},
2873{0x8614, 0x00b6}, {0x8615, 0x0012}, {0x8616, 0x0008},
2874{0x8617, 0x0027}, {0x8618, 0x007f}, {0x8619, 0x0081},
2875{0x861a, 0x0080}, {0x861b, 0x0026}, {0x861c, 0x000b},
2876{0x861d, 0x0086}, {0x861e, 0x0008}, {0x861f, 0x00ce},
2877{0x8620, 0x008f}, {0x8621, 0x0079}, {0x8622, 0x00bd},
2878{0x8623, 0x0089}, {0x8624, 0x007b}, {0x8625, 0x007e},
2879{0x8626, 0x0086}, {0x8627, 0x008e}, {0x8628, 0x0081},
2880{0x8629, 0x0040}, {0x862a, 0x0026}, {0x862b, 0x000b},
2881{0x862c, 0x0086}, {0x862d, 0x0004}, {0x862e, 0x00ce},
2882{0x862f, 0x008f}, {0x8630, 0x0076}, {0x8631, 0x00bd},
2883{0x8632, 0x0089}, {0x8633, 0x007b}, {0x8634, 0x007e},
2884{0x8635, 0x0086}, {0x8636, 0x008e}, {0x8637, 0x0081},
2885{0x8638, 0x0020}, {0x8639, 0x0026}, {0x863a, 0x000b},
2886{0x863b, 0x0086}, {0x863c, 0x0002}, {0x863d, 0x00ce},
2887{0x863e, 0x008f}, {0x863f, 0x0073}, {0x8640, 0x00bd},
2888{0x8641, 0x0089}, {0x8642, 0x007b}, {0x8643, 0x007e},
2889{0x8644, 0x0086}, {0x8645, 0x008e}, {0x8646, 0x0081},
2890{0x8647, 0x0010}, {0x8648, 0x0026}, {0x8649, 0x000b},
2891{0x864a, 0x0086}, {0x864b, 0x0001}, {0x864c, 0x00ce},
2892{0x864d, 0x008f}, {0x864e, 0x0070}, {0x864f, 0x00bd},
2893{0x8650, 0x0089}, {0x8651, 0x007b}, {0x8652, 0x007e},
2894{0x8653, 0x0086}, {0x8654, 0x008e}, {0x8655, 0x0081},
2895{0x8656, 0x0008}, {0x8657, 0x0026}, {0x8658, 0x000b},
2896{0x8659, 0x0086}, {0x865a, 0x0008}, {0x865b, 0x00ce},
2897{0x865c, 0x008f}, {0x865d, 0x0079}, {0x865e, 0x00bd},
2898{0x865f, 0x0089}, {0x8660, 0x007f}, {0x8661, 0x007e},
2899{0x8662, 0x0086}, {0x8663, 0x008e}, {0x8664, 0x0081},
2900{0x8665, 0x0004}, {0x8666, 0x0026}, {0x8667, 0x000b},
2901{0x8668, 0x0086}, {0x8669, 0x0004}, {0x866a, 0x00ce},
2902{0x866b, 0x008f}, {0x866c, 0x0076}, {0x866d, 0x00bd},
2903{0x866e, 0x0089}, {0x866f, 0x007f}, {0x8670, 0x007e},
2904{0x8671, 0x0086}, {0x8672, 0x008e}, {0x8673, 0x0081},
2905{0x8674, 0x0002}, {0x8675, 0x0026}, {0x8676, 0x000b},
2906{0x8677, 0x008a}, {0x8678, 0x0002}, {0x8679, 0x00ce},
2907{0x867a, 0x008f}, {0x867b, 0x0073}, {0x867c, 0x00bd},
2908{0x867d, 0x0089}, {0x867e, 0x007f}, {0x867f, 0x007e},
2909{0x8680, 0x0086}, {0x8681, 0x008e}, {0x8682, 0x0081},
2910{0x8683, 0x0001}, {0x8684, 0x0026}, {0x8685, 0x0008},
2911{0x8686, 0x0086}, {0x8687, 0x0001}, {0x8688, 0x00ce},
2912{0x8689, 0x008f}, {0x868a, 0x0070}, {0x868b, 0x00bd},
2913{0x868c, 0x0089}, {0x868d, 0x007f}, {0x868e, 0x00b6},
2914{0x868f, 0x008f}, {0x8690, 0x007f}, {0x8691, 0x0081},
2915{0x8692, 0x000f}, {0x8693, 0x0026}, {0x8694, 0x0003},
2916{0x8695, 0x007e}, {0x8696, 0x0087}, {0x8697, 0x0047},
2917{0x8698, 0x00b6}, {0x8699, 0x0012}, {0x869a, 0x0009},
2918{0x869b, 0x0084}, {0x869c, 0x0003}, {0x869d, 0x0081},
2919{0x869e, 0x0003}, {0x869f, 0x0027}, {0x86a0, 0x0006},
2920{0x86a1, 0x007c}, {0x86a2, 0x0012}, {0x86a3, 0x0009},
2921{0x86a4, 0x007e}, {0x86a5, 0x0085}, {0x86a6, 0x00fe},
2922{0x86a7, 0x00b6}, {0x86a8, 0x0012}, {0x86a9, 0x0006},
2923{0x86aa, 0x0084}, {0x86ab, 0x0007}, {0x86ac, 0x0081},
2924{0x86ad, 0x0007}, {0x86ae, 0x0027}, {0x86af, 0x0008},
2925{0x86b0, 0x008b}, {0x86b1, 0x0001}, {0x86b2, 0x00b7},
2926{0x86b3, 0x0012}, {0x86b4, 0x0006}, {0x86b5, 0x007e},
2927{0x86b6, 0x0086}, {0x86b7, 0x00d5}, {0x86b8, 0x00b6},
2928{0x86b9, 0x008f}, {0x86ba, 0x0082}, {0x86bb, 0x0026},
2929{0x86bc, 0x000a}, {0x86bd, 0x007c}, {0x86be, 0x008f},
2930{0x86bf, 0x0082}, {0x86c0, 0x004f}, {0x86c1, 0x00b7},
2931{0x86c2, 0x0012}, {0x86c3, 0x0006}, {0x86c4, 0x007e},
2932{0x86c5, 0x0085}, {0x86c6, 0x00c0}, {0x86c7, 0x00b6},
2933{0x86c8, 0x0012}, {0x86c9, 0x0006}, {0x86ca, 0x0084},
2934{0x86cb, 0x003f}, {0x86cc, 0x0081}, {0x86cd, 0x003f},
2935{0x86ce, 0x0027}, {0x86cf, 0x0010}, {0x86d0, 0x008b},
2936{0x86d1, 0x0008}, {0x86d2, 0x00b7}, {0x86d3, 0x0012},
2937{0x86d4, 0x0006}, {0x86d5, 0x00b6}, {0x86d6, 0x0012},
2938{0x86d7, 0x0009}, {0x86d8, 0x0084}, {0x86d9, 0x00fc},
2939{0x86da, 0x00b7}, {0x86db, 0x0012}, {0x86dc, 0x0009},
2940{0x86dd, 0x007e}, {0x86de, 0x0085}, {0x86df, 0x00fe},
2941{0x86e0, 0x00ce}, {0x86e1, 0x008f}, {0x86e2, 0x0070},
2942{0x86e3, 0x0018}, {0x86e4, 0x00ce}, {0x86e5, 0x008f},
2943{0x86e6, 0x0084}, {0x86e7, 0x00c6}, {0x86e8, 0x000c},
2944{0x86e9, 0x00bd}, {0x86ea, 0x0089}, {0x86eb, 0x006f},
2945{0x86ec, 0x00ce}, {0x86ed, 0x008f}, {0x86ee, 0x0084},
2946{0x86ef, 0x0018}, {0x86f0, 0x00ce}, {0x86f1, 0x008f},
2947{0x86f2, 0x0070}, {0x86f3, 0x00c6}, {0x86f4, 0x000c},
2948{0x86f5, 0x00bd}, {0x86f6, 0x0089}, {0x86f7, 0x006f},
2949{0x86f8, 0x00d6}, {0x86f9, 0x0083}, {0x86fa, 0x00c1},
2950{0x86fb, 0x004f}, {0x86fc, 0x002d}, {0x86fd, 0x0003},
2951{0x86fe, 0x007e}, {0x86ff, 0x0087}, {0x8700, 0x0040},
2952{0x8701, 0x00b6}, {0x8702, 0x008f}, {0x8703, 0x007f},
2953{0x8704, 0x0081}, {0x8705, 0x0007}, {0x8706, 0x0027},
2954{0x8707, 0x000f}, {0x8708, 0x0081}, {0x8709, 0x000b},
2955{0x870a, 0x0027}, {0x870b, 0x0015}, {0x870c, 0x0081},
2956{0x870d, 0x000d}, {0x870e, 0x0027}, {0x870f, 0x001b},
2957{0x8710, 0x0081}, {0x8711, 0x000e}, {0x8712, 0x0027},
2958{0x8713, 0x0021}, {0x8714, 0x007e}, {0x8715, 0x0087},
2959{0x8716, 0x0040}, {0x8717, 0x00f7}, {0x8718, 0x008f},
2960{0x8719, 0x007b}, {0x871a, 0x0086}, {0x871b, 0x0002},
2961{0x871c, 0x00b7}, {0x871d, 0x008f}, {0x871e, 0x007a},
2962{0x871f, 0x0020}, {0x8720, 0x001c}, {0x8721, 0x00f7},
2963{0x8722, 0x008f}, {0x8723, 0x0078}, {0x8724, 0x0086},
2964{0x8725, 0x0002}, {0x8726, 0x00b7}, {0x8727, 0x008f},
2965{0x8728, 0x0077}, {0x8729, 0x0020}, {0x872a, 0x0012},
2966{0x872b, 0x00f7}, {0x872c, 0x008f}, {0x872d, 0x0075},
2967{0x872e, 0x0086}, {0x872f, 0x0002}, {0x8730, 0x00b7},
2968{0x8731, 0x008f}, {0x8732, 0x0074}, {0x8733, 0x0020},
2969{0x8734, 0x0008}, {0x8735, 0x00f7}, {0x8736, 0x008f},
2970{0x8737, 0x0072}, {0x8738, 0x0086}, {0x8739, 0x0002},
2971{0x873a, 0x00b7}, {0x873b, 0x008f}, {0x873c, 0x0071},
2972{0x873d, 0x007e}, {0x873e, 0x0087}, {0x873f, 0x0047},
2973{0x8740, 0x0086}, {0x8741, 0x0004}, {0x8742, 0x0097},
2974{0x8743, 0x0040}, {0x8744, 0x007e}, {0x8745, 0x0089},
2975{0x8746, 0x006e}, {0x8747, 0x00ce}, {0x8748, 0x008f},
2976{0x8749, 0x0072}, {0x874a, 0x00bd}, {0x874b, 0x0089},
2977{0x874c, 0x00f7}, {0x874d, 0x00ce}, {0x874e, 0x008f},
2978{0x874f, 0x0075}, {0x8750, 0x00bd}, {0x8751, 0x0089},
2979{0x8752, 0x00f7}, {0x8753, 0x00ce}, {0x8754, 0x008f},
2980{0x8755, 0x0078}, {0x8756, 0x00bd}, {0x8757, 0x0089},
2981{0x8758, 0x00f7}, {0x8759, 0x00ce}, {0x875a, 0x008f},
2982{0x875b, 0x007b}, {0x875c, 0x00bd}, {0x875d, 0x0089},
2983{0x875e, 0x00f7}, {0x875f, 0x004f}, {0x8760, 0x00b7},
2984{0x8761, 0x008f}, {0x8762, 0x007d}, {0x8763, 0x00b7},
2985{0x8764, 0x008f}, {0x8765, 0x0081}, {0x8766, 0x00b6},
2986{0x8767, 0x008f}, {0x8768, 0x0072}, {0x8769, 0x0027},
2987{0x876a, 0x0047}, {0x876b, 0x007c}, {0x876c, 0x008f},
2988{0x876d, 0x007d}, {0x876e, 0x00b6}, {0x876f, 0x008f},
2989{0x8770, 0x0075}, {0x8771, 0x0027}, {0x8772, 0x003f},
2990{0x8773, 0x007c}, {0x8774, 0x008f}, {0x8775, 0x007d},
2991{0x8776, 0x00b6}, {0x8777, 0x008f}, {0x8778, 0x0078},
2992{0x8779, 0x0027}, {0x877a, 0x0037}, {0x877b, 0x007c},
2993{0x877c, 0x008f}, {0x877d, 0x007d}, {0x877e, 0x00b6},
2994{0x877f, 0x008f}, {0x8780, 0x007b}, {0x8781, 0x0027},
2995{0x8782, 0x002f}, {0x8783, 0x007f}, {0x8784, 0x008f},
2996{0x8785, 0x007d}, {0x8786, 0x007c}, {0x8787, 0x008f},
2997{0x8788, 0x0081}, {0x8789, 0x007a}, {0x878a, 0x008f},
2998{0x878b, 0x0072}, {0x878c, 0x0027}, {0x878d, 0x001b},
2999{0x878e, 0x007c}, {0x878f, 0x008f}, {0x8790, 0x007d},
3000{0x8791, 0x007a}, {0x8792, 0x008f}, {0x8793, 0x0075},
3001{0x8794, 0x0027}, {0x8795, 0x0016}, {0x8796, 0x007c},
3002{0x8797, 0x008f}, {0x8798, 0x007d}, {0x8799, 0x007a},
3003{0x879a, 0x008f}, {0x879b, 0x0078}, {0x879c, 0x0027},
3004{0x879d, 0x0011}, {0x879e, 0x007c}, {0x879f, 0x008f},
3005{0x87a0, 0x007d}, {0x87a1, 0x007a}, {0x87a2, 0x008f},
3006{0x87a3, 0x007b}, {0x87a4, 0x0027}, {0x87a5, 0x000c},
3007{0x87a6, 0x007e}, {0x87a7, 0x0087}, {0x87a8, 0x0083},
3008{0x87a9, 0x007a}, {0x87aa, 0x008f}, {0x87ab, 0x0075},
3009{0x87ac, 0x007a}, {0x87ad, 0x008f}, {0x87ae, 0x0078},
3010{0x87af, 0x007a}, {0x87b0, 0x008f}, {0x87b1, 0x007b},
3011{0x87b2, 0x00ce}, {0x87b3, 0x00c1}, {0x87b4, 0x00fc},
3012{0x87b5, 0x00f6}, {0x87b6, 0x008f}, {0x87b7, 0x007d},
3013{0x87b8, 0x003a}, {0x87b9, 0x00a6}, {0x87ba, 0x0000},
3014{0x87bb, 0x00b7}, {0x87bc, 0x0012}, {0x87bd, 0x0070},
3015{0x87be, 0x00b6}, {0x87bf, 0x008f}, {0x87c0, 0x0072},
3016{0x87c1, 0x0026}, {0x87c2, 0x0003}, {0x87c3, 0x007e},
3017{0x87c4, 0x0087}, {0x87c5, 0x00fa}, {0x87c6, 0x00b6},
3018{0x87c7, 0x008f}, {0x87c8, 0x0075}, {0x87c9, 0x0026},
3019{0x87ca, 0x000a}, {0x87cb, 0x0018}, {0x87cc, 0x00ce},
3020{0x87cd, 0x008f}, {0x87ce, 0x0073}, {0x87cf, 0x00bd},
3021{0x87d0, 0x0089}, {0x87d1, 0x00d5}, {0x87d2, 0x007e},
3022{0x87d3, 0x0087}, {0x87d4, 0x00fa}, {0x87d5, 0x00b6},
3023{0x87d6, 0x008f}, {0x87d7, 0x0078}, {0x87d8, 0x0026},
3024{0x87d9, 0x000a}, {0x87da, 0x0018}, {0x87db, 0x00ce},
3025{0x87dc, 0x008f}, {0x87dd, 0x0076}, {0x87de, 0x00bd},
3026{0x87df, 0x0089}, {0x87e0, 0x00d5}, {0x87e1, 0x007e},
3027{0x87e2, 0x0087}, {0x87e3, 0x00fa}, {0x87e4, 0x00b6},
3028{0x87e5, 0x008f}, {0x87e6, 0x007b}, {0x87e7, 0x0026},
3029{0x87e8, 0x000a}, {0x87e9, 0x0018}, {0x87ea, 0x00ce},
3030{0x87eb, 0x008f}, {0x87ec, 0x0079}, {0x87ed, 0x00bd},
3031{0x87ee, 0x0089}, {0x87ef, 0x00d5}, {0x87f0, 0x007e},
3032{0x87f1, 0x0087}, {0x87f2, 0x00fa}, {0x87f3, 0x0086},
3033{0x87f4, 0x0005}, {0x87f5, 0x0097}, {0x87f6, 0x0040},
3034{0x87f7, 0x007e}, {0x87f8, 0x0089}, {0x87f9, 0x0000},
3035{0x87fa, 0x00b6}, {0x87fb, 0x008f}, {0x87fc, 0x0075},
3036{0x87fd, 0x0081}, {0x87fe, 0x0007}, {0x87ff, 0x002e},
3037{0x8800, 0x00f2}, {0x8801, 0x00f6}, {0x8802, 0x0012},
3038{0x8803, 0x0006}, {0x8804, 0x00c4}, {0x8805, 0x00f8},
3039{0x8806, 0x001b}, {0x8807, 0x00b7}, {0x8808, 0x0012},
3040{0x8809, 0x0006}, {0x880a, 0x00b6}, {0x880b, 0x008f},
3041{0x880c, 0x0078}, {0x880d, 0x0081}, {0x880e, 0x0007},
3042{0x880f, 0x002e}, {0x8810, 0x00e2}, {0x8811, 0x0048},
3043{0x8812, 0x0048}, {0x8813, 0x0048}, {0x8814, 0x00f6},
3044{0x8815, 0x0012}, {0x8816, 0x0006}, {0x8817, 0x00c4},
3045{0x8818, 0x00c7}, {0x8819, 0x001b}, {0x881a, 0x00b7},
3046{0x881b, 0x0012}, {0x881c, 0x0006}, {0x881d, 0x00b6},
3047{0x881e, 0x008f}, {0x881f, 0x007b}, {0x8820, 0x0081},
3048{0x8821, 0x0007}, {0x8822, 0x002e}, {0x8823, 0x00cf},
3049{0x8824, 0x00f6}, {0x8825, 0x0012}, {0x8826, 0x0005},
3050{0x8827, 0x00c4}, {0x8828, 0x00f8}, {0x8829, 0x001b},
3051{0x882a, 0x00b7}, {0x882b, 0x0012}, {0x882c, 0x0005},
3052{0x882d, 0x0086}, {0x882e, 0x0000}, {0x882f, 0x00f6},
3053{0x8830, 0x008f}, {0x8831, 0x0071}, {0x8832, 0x00bd},
3054{0x8833, 0x0089}, {0x8834, 0x0094}, {0x8835, 0x0086},
3055{0x8836, 0x0001}, {0x8837, 0x00f6}, {0x8838, 0x008f},
3056{0x8839, 0x0074}, {0x883a, 0x00bd}, {0x883b, 0x0089},
3057{0x883c, 0x0094}, {0x883d, 0x0086}, {0x883e, 0x0002},
3058{0x883f, 0x00f6}, {0x8840, 0x008f}, {0x8841, 0x0077},
3059{0x8842, 0x00bd}, {0x8843, 0x0089}, {0x8844, 0x0094},
3060{0x8845, 0x0086}, {0x8846, 0x0003}, {0x8847, 0x00f6},
3061{0x8848, 0x008f}, {0x8849, 0x007a}, {0x884a, 0x00bd},
3062{0x884b, 0x0089}, {0x884c, 0x0094}, {0x884d, 0x00ce},
3063{0x884e, 0x008f}, {0x884f, 0x0070}, {0x8850, 0x00a6},
3064{0x8851, 0x0001}, {0x8852, 0x0081}, {0x8853, 0x0001},
3065{0x8854, 0x0027}, {0x8855, 0x0007}, {0x8856, 0x0081},
3066{0x8857, 0x0003}, {0x8858, 0x0027}, {0x8859, 0x0003},
3067{0x885a, 0x007e}, {0x885b, 0x0088}, {0x885c, 0x0066},
3068{0x885d, 0x00a6}, {0x885e, 0x0000}, {0x885f, 0x00b8},
3069{0x8860, 0x008f}, {0x8861, 0x0081}, {0x8862, 0x0084},
3070{0x8863, 0x0001}, {0x8864, 0x0026}, {0x8865, 0x000b},
3071{0x8866, 0x008c}, {0x8867, 0x008f}, {0x8868, 0x0079},
3072{0x8869, 0x002c}, {0x886a, 0x000e}, {0x886b, 0x0008},
3073{0x886c, 0x0008}, {0x886d, 0x0008}, {0x886e, 0x007e},
3074{0x886f, 0x0088}, {0x8870, 0x0050}, {0x8871, 0x00b6},
3075{0x8872, 0x0012}, {0x8873, 0x0004}, {0x8874, 0x008a},
3076{0x8875, 0x0040}, {0x8876, 0x00b7}, {0x8877, 0x0012},
3077{0x8878, 0x0004}, {0x8879, 0x00b6}, {0x887a, 0x0012},
3078{0x887b, 0x0004}, {0x887c, 0x0084}, {0x887d, 0x00fb},
3079{0x887e, 0x0084}, {0x887f, 0x00ef}, {0x8880, 0x00b7},
3080{0x8881, 0x0012}, {0x8882, 0x0004}, {0x8883, 0x00b6},
3081{0x8884, 0x0012}, {0x8885, 0x0007}, {0x8886, 0x0036},
3082{0x8887, 0x00b6}, {0x8888, 0x008f}, {0x8889, 0x007c},
3083{0x888a, 0x0048}, {0x888b, 0x0048}, {0x888c, 0x00b7},
3084{0x888d, 0x0012}, {0x888e, 0x0007}, {0x888f, 0x0086},
3085{0x8890, 0x0001}, {0x8891, 0x00ba}, {0x8892, 0x0012},
3086{0x8893, 0x0004}, {0x8894, 0x00b7}, {0x8895, 0x0012},
3087{0x8896, 0x0004}, {0x8897, 0x0001}, {0x8898, 0x0001},
3088{0x8899, 0x0001}, {0x889a, 0x0001}, {0x889b, 0x0001},
3089{0x889c, 0x0001}, {0x889d, 0x0086}, {0x889e, 0x00fe},
3090{0x889f, 0x00b4}, {0x88a0, 0x0012}, {0x88a1, 0x0004},
3091{0x88a2, 0x00b7}, {0x88a3, 0x0012}, {0x88a4, 0x0004},
3092{0x88a5, 0x0086}, {0x88a6, 0x0002}, {0x88a7, 0x00ba},
3093{0x88a8, 0x0012}, {0x88a9, 0x0004}, {0x88aa, 0x00b7},
3094{0x88ab, 0x0012}, {0x88ac, 0x0004}, {0x88ad, 0x0086},
3095{0x88ae, 0x00fd}, {0x88af, 0x00b4}, {0x88b0, 0x0012},
3096{0x88b1, 0x0004}, {0x88b2, 0x00b7}, {0x88b3, 0x0012},
3097{0x88b4, 0x0004}, {0x88b5, 0x0032}, {0x88b6, 0x00b7},
3098{0x88b7, 0x0012}, {0x88b8, 0x0007}, {0x88b9, 0x00b6},
3099{0x88ba, 0x0012}, {0x88bb, 0x0000}, {0x88bc, 0x0084},
3100{0x88bd, 0x0008}, {0x88be, 0x0081}, {0x88bf, 0x0008},
3101{0x88c0, 0x0027}, {0x88c1, 0x000f}, {0x88c2, 0x007c},
3102{0x88c3, 0x0082}, {0x88c4, 0x0008}, {0x88c5, 0x0026},
3103{0x88c6, 0x0007}, {0x88c7, 0x0086}, {0x88c8, 0x0076},
3104{0x88c9, 0x0097}, {0x88ca, 0x0040}, {0x88cb, 0x007e},
3105{0x88cc, 0x0089}, {0x88cd, 0x006e}, {0x88ce, 0x007e},
3106{0x88cf, 0x0086}, {0x88d0, 0x00ec}, {0x88d1, 0x00b6},
3107{0x88d2, 0x008f}, {0x88d3, 0x007f}, {0x88d4, 0x0081},
3108{0x88d5, 0x000f}, {0x88d6, 0x0027}, {0x88d7, 0x003c},
3109{0x88d8, 0x00bd}, {0x88d9, 0x00e6}, {0x88da, 0x00c7},
3110{0x88db, 0x00b7}, {0x88dc, 0x0012}, {0x88dd, 0x000d},
3111{0x88de, 0x00bd}, {0x88df, 0x00e6}, {0x88e0, 0x00cb},
3112{0x88e1, 0x00b6}, {0x88e2, 0x0012}, {0x88e3, 0x0004},
3113{0x88e4, 0x008a}, {0x88e5, 0x0020}, {0x88e6, 0x00b7},
3114{0x88e7, 0x0012}, {0x88e8, 0x0004}, {0x88e9, 0x00ce},
3115{0x88ea, 0x00ff}, {0x88eb, 0x00ff}, {0x88ec, 0x00b6},
3116{0x88ed, 0x0012}, {0x88ee, 0x0000}, {0x88ef, 0x0081},
3117{0x88f0, 0x000c}, {0x88f1, 0x0026}, {0x88f2, 0x0005},
3118{0x88f3, 0x0009}, {0x88f4, 0x0026}, {0x88f5, 0x00f6},
3119{0x88f6, 0x0027}, {0x88f7, 0x001c}, {0x88f8, 0x00b6},
3120{0x88f9, 0x0012}, {0x88fa, 0x0004}, {0x88fb, 0x0084},
3121{0x88fc, 0x00df}, {0x88fd, 0x00b7}, {0x88fe, 0x0012},
3122{0x88ff, 0x0004}, {0x8900, 0x0096}, {0x8901, 0x0083},
3123{0x8902, 0x0081}, {0x8903, 0x0007}, {0x8904, 0x002c},
3124{0x8905, 0x0005}, {0x8906, 0x007c}, {0x8907, 0x0000},
3125{0x8908, 0x0083}, {0x8909, 0x0020}, {0x890a, 0x0006},
3126{0x890b, 0x0096}, {0x890c, 0x0083}, {0x890d, 0x008b},
3127{0x890e, 0x0008}, {0x890f, 0x0097}, {0x8910, 0x0083},
3128{0x8911, 0x007e}, {0x8912, 0x0085}, {0x8913, 0x0041},
3129{0x8914, 0x007f}, {0x8915, 0x008f}, {0x8916, 0x007e},
3130{0x8917, 0x0086}, {0x8918, 0x0080}, {0x8919, 0x00b7},
3131{0x891a, 0x0012}, {0x891b, 0x000c}, {0x891c, 0x0086},
3132{0x891d, 0x0001}, {0x891e, 0x00b7}, {0x891f, 0x008f},
3133{0x8920, 0x007d}, {0x8921, 0x00b6}, {0x8922, 0x0012},
3134{0x8923, 0x000c}, {0x8924, 0x0084}, {0x8925, 0x007f},
3135{0x8926, 0x00b7}, {0x8927, 0x0012}, {0x8928, 0x000c},
3136{0x8929, 0x008a}, {0x892a, 0x0080}, {0x892b, 0x00b7},
3137{0x892c, 0x0012}, {0x892d, 0x000c}, {0x892e, 0x0086},
3138{0x892f, 0x000a}, {0x8930, 0x00bd}, {0x8931, 0x008a},
3139{0x8932, 0x0006}, {0x8933, 0x00b6}, {0x8934, 0x0012},
3140{0x8935, 0x000a}, {0x8936, 0x002a}, {0x8937, 0x0009},
3141{0x8938, 0x00b6}, {0x8939, 0x0012}, {0x893a, 0x000c},
3142{0x893b, 0x00ba}, {0x893c, 0x008f}, {0x893d, 0x007d},
3143{0x893e, 0x00b7}, {0x893f, 0x0012}, {0x8940, 0x000c},
3144{0x8941, 0x00b6}, {0x8942, 0x008f}, {0x8943, 0x007e},
3145{0x8944, 0x0081}, {0x8945, 0x0060}, {0x8946, 0x0027},
3146{0x8947, 0x001a}, {0x8948, 0x008b}, {0x8949, 0x0020},
3147{0x894a, 0x00b7}, {0x894b, 0x008f}, {0x894c, 0x007e},
3148{0x894d, 0x00b6}, {0x894e, 0x0012}, {0x894f, 0x000c},
3149{0x8950, 0x0084}, {0x8951, 0x009f}, {0x8952, 0x00ba},
3150{0x8953, 0x008f}, {0x8954, 0x007e}, {0x8955, 0x00b7},
3151{0x8956, 0x0012}, {0x8957, 0x000c}, {0x8958, 0x00b6},
3152{0x8959, 0x008f}, {0x895a, 0x007d}, {0x895b, 0x0048},
3153{0x895c, 0x00b7}, {0x895d, 0x008f}, {0x895e, 0x007d},
3154{0x895f, 0x007e}, {0x8960, 0x0089}, {0x8961, 0x0021},
3155{0x8962, 0x00b6}, {0x8963, 0x0012}, {0x8964, 0x0004},
3156{0x8965, 0x008a}, {0x8966, 0x0020}, {0x8967, 0x00b7},
3157{0x8968, 0x0012}, {0x8969, 0x0004}, {0x896a, 0x00bd},
3158{0x896b, 0x008a}, {0x896c, 0x000a}, {0x896d, 0x004f},
3159{0x896e, 0x0039}, {0x896f, 0x00a6}, {0x8970, 0x0000},
3160{0x8971, 0x0018}, {0x8972, 0x00a7}, {0x8973, 0x0000},
3161{0x8974, 0x0008}, {0x8975, 0x0018}, {0x8976, 0x0008},
3162{0x8977, 0x005a}, {0x8978, 0x0026}, {0x8979, 0x00f5},
3163{0x897a, 0x0039}, {0x897b, 0x0036}, {0x897c, 0x006c},
3164{0x897d, 0x0000}, {0x897e, 0x0032}, {0x897f, 0x00ba},
3165{0x8980, 0x008f}, {0x8981, 0x007f}, {0x8982, 0x00b7},
3166{0x8983, 0x008f}, {0x8984, 0x007f}, {0x8985, 0x00b6},
3167{0x8986, 0x0012}, {0x8987, 0x0009}, {0x8988, 0x0084},
3168{0x8989, 0x0003}, {0x898a, 0x00a7}, {0x898b, 0x0001},
3169{0x898c, 0x00b6}, {0x898d, 0x0012}, {0x898e, 0x0006},
3170{0x898f, 0x0084}, {0x8990, 0x003f}, {0x8991, 0x00a7},
3171{0x8992, 0x0002}, {0x8993, 0x0039}, {0x8994, 0x0036},
3172{0x8995, 0x0086}, {0x8996, 0x0003}, {0x8997, 0x00b7},
3173{0x8998, 0x008f}, {0x8999, 0x0080}, {0x899a, 0x0032},
3174{0x899b, 0x00c1}, {0x899c, 0x0000}, {0x899d, 0x0026},
3175{0x899e, 0x0006}, {0x899f, 0x00b7}, {0x89a0, 0x008f},
3176{0x89a1, 0x007c}, {0x89a2, 0x007e}, {0x89a3, 0x0089},
3177{0x89a4, 0x00c9}, {0x89a5, 0x00c1}, {0x89a6, 0x0001},
3178{0x89a7, 0x0027}, {0x89a8, 0x0018}, {0x89a9, 0x00c1},
3179{0x89aa, 0x0002}, {0x89ab, 0x0027}, {0x89ac, 0x000c},
3180{0x89ad, 0x00c1}, {0x89ae, 0x0003}, {0x89af, 0x0027},
3181{0x89b0, 0x0000}, {0x89b1, 0x00f6}, {0x89b2, 0x008f},
3182{0x89b3, 0x0080}, {0x89b4, 0x0005}, {0x89b5, 0x0005},
3183{0x89b6, 0x00f7}, {0x89b7, 0x008f}, {0x89b8, 0x0080},
3184{0x89b9, 0x00f6}, {0x89ba, 0x008f}, {0x89bb, 0x0080},
3185{0x89bc, 0x0005}, {0x89bd, 0x0005}, {0x89be, 0x00f7},
3186{0x89bf, 0x008f}, {0x89c0, 0x0080}, {0x89c1, 0x00f6},
3187{0x89c2, 0x008f}, {0x89c3, 0x0080}, {0x89c4, 0x0005},
3188{0x89c5, 0x0005}, {0x89c6, 0x00f7}, {0x89c7, 0x008f},
3189{0x89c8, 0x0080}, {0x89c9, 0x00f6}, {0x89ca, 0x008f},
3190{0x89cb, 0x0080}, {0x89cc, 0x0053}, {0x89cd, 0x00f4},
3191{0x89ce, 0x0012}, {0x89cf, 0x0007}, {0x89d0, 0x001b},
3192{0x89d1, 0x00b7}, {0x89d2, 0x0012}, {0x89d3, 0x0007},
3193{0x89d4, 0x0039}, {0x89d5, 0x00ce}, {0x89d6, 0x008f},
3194{0x89d7, 0x0070}, {0x89d8, 0x00a6}, {0x89d9, 0x0000},
3195{0x89da, 0x0018}, {0x89db, 0x00e6}, {0x89dc, 0x0000},
3196{0x89dd, 0x0018}, {0x89de, 0x00a7}, {0x89df, 0x0000},
3197{0x89e0, 0x00e7}, {0x89e1, 0x0000}, {0x89e2, 0x00a6},
3198{0x89e3, 0x0001}, {0x89e4, 0x0018}, {0x89e5, 0x00e6},
3199{0x89e6, 0x0001}, {0x89e7, 0x0018}, {0x89e8, 0x00a7},
3200{0x89e9, 0x0001}, {0x89ea, 0x00e7}, {0x89eb, 0x0001},
3201{0x89ec, 0x00a6}, {0x89ed, 0x0002}, {0x89ee, 0x0018},
3202{0x89ef, 0x00e6}, {0x89f0, 0x0002}, {0x89f1, 0x0018},
3203{0x89f2, 0x00a7}, {0x89f3, 0x0002}, {0x89f4, 0x00e7},
3204{0x89f5, 0x0002}, {0x89f6, 0x0039}, {0x89f7, 0x00a6},
3205{0x89f8, 0x0000}, {0x89f9, 0x0084}, {0x89fa, 0x0007},
3206{0x89fb, 0x00e6}, {0x89fc, 0x0000}, {0x89fd, 0x00c4},
3207{0x89fe, 0x0038}, {0x89ff, 0x0054}, {0x8a00, 0x0054},
3208{0x8a01, 0x0054}, {0x8a02, 0x001b}, {0x8a03, 0x00a7},
3209{0x8a04, 0x0000}, {0x8a05, 0x0039}, {0x8a06, 0x004a},
3210{0x8a07, 0x0026}, {0x8a08, 0x00fd}, {0x8a09, 0x0039},
3211{0x8a0a, 0x0096}, {0x8a0b, 0x0022}, {0x8a0c, 0x0084},
3212{0x8a0d, 0x000f}, {0x8a0e, 0x0097}, {0x8a0f, 0x0022},
3213{0x8a10, 0x0086}, {0x8a11, 0x0001}, {0x8a12, 0x00b7},
3214{0x8a13, 0x008f}, {0x8a14, 0x0070}, {0x8a15, 0x00b6},
3215{0x8a16, 0x0012}, {0x8a17, 0x0007}, {0x8a18, 0x00b7},
3216{0x8a19, 0x008f}, {0x8a1a, 0x0071}, {0x8a1b, 0x00f6},
3217{0x8a1c, 0x0012}, {0x8a1d, 0x000c}, {0x8a1e, 0x00c4},
3218{0x8a1f, 0x000f}, {0x8a20, 0x00c8}, {0x8a21, 0x000f},
3219{0x8a22, 0x00f7}, {0x8a23, 0x008f}, {0x8a24, 0x0072},
3220{0x8a25, 0x00f6}, {0x8a26, 0x008f}, {0x8a27, 0x0072},
3221{0x8a28, 0x00b6}, {0x8a29, 0x008f}, {0x8a2a, 0x0071},
3222{0x8a2b, 0x0084}, {0x8a2c, 0x0003}, {0x8a2d, 0x0027},
3223{0x8a2e, 0x0014}, {0x8a2f, 0x0081}, {0x8a30, 0x0001},
3224{0x8a31, 0x0027}, {0x8a32, 0x001c}, {0x8a33, 0x0081},
3225{0x8a34, 0x0002}, {0x8a35, 0x0027}, {0x8a36, 0x0024},
3226{0x8a37, 0x00f4}, {0x8a38, 0x008f}, {0x8a39, 0x0070},
3227{0x8a3a, 0x0027}, {0x8a3b, 0x002a}, {0x8a3c, 0x0096},
3228{0x8a3d, 0x0022}, {0x8a3e, 0x008a}, {0x8a3f, 0x0080},
3229{0x8a40, 0x007e}, {0x8a41, 0x008a}, {0x8a42, 0x0064},
3230{0x8a43, 0x00f4}, {0x8a44, 0x008f}, {0x8a45, 0x0070},
3231{0x8a46, 0x0027}, {0x8a47, 0x001e}, {0x8a48, 0x0096},
3232{0x8a49, 0x0022}, {0x8a4a, 0x008a}, {0x8a4b, 0x0010},
3233{0x8a4c, 0x007e}, {0x8a4d, 0x008a}, {0x8a4e, 0x0064},
3234{0x8a4f, 0x00f4}, {0x8a50, 0x008f}, {0x8a51, 0x0070},
3235{0x8a52, 0x0027}, {0x8a53, 0x0012}, {0x8a54, 0x0096},
3236{0x8a55, 0x0022}, {0x8a56, 0x008a}, {0x8a57, 0x0020},
3237{0x8a58, 0x007e}, {0x8a59, 0x008a}, {0x8a5a, 0x0064},
3238{0x8a5b, 0x00f4}, {0x8a5c, 0x008f}, {0x8a5d, 0x0070},
3239{0x8a5e, 0x0027}, {0x8a5f, 0x0006}, {0x8a60, 0x0096},
3240{0x8a61, 0x0022}, {0x8a62, 0x008a}, {0x8a63, 0x0040},
3241{0x8a64, 0x0097}, {0x8a65, 0x0022}, {0x8a66, 0x0074},
3242{0x8a67, 0x008f}, {0x8a68, 0x0071}, {0x8a69, 0x0074},
3243{0x8a6a, 0x008f}, {0x8a6b, 0x0071}, {0x8a6c, 0x0078},
3244{0x8a6d, 0x008f}, {0x8a6e, 0x0070}, {0x8a6f, 0x00b6},
3245{0x8a70, 0x008f}, {0x8a71, 0x0070}, {0x8a72, 0x0085},
3246{0x8a73, 0x0010}, {0x8a74, 0x0027}, {0x8a75, 0x00af},
3247{0x8a76, 0x00d6}, {0x8a77, 0x0022}, {0x8a78, 0x00c4},
3248{0x8a79, 0x0010}, {0x8a7a, 0x0058}, {0x8a7b, 0x00b6},
3249{0x8a7c, 0x0012}, {0x8a7d, 0x0070}, {0x8a7e, 0x0081},
3250{0x8a7f, 0x00e4}, {0x8a80, 0x0027}, {0x8a81, 0x0036},
3251{0x8a82, 0x0081}, {0x8a83, 0x00e1}, {0x8a84, 0x0026},
3252{0x8a85, 0x000c}, {0x8a86, 0x0096}, {0x8a87, 0x0022},
3253{0x8a88, 0x0084}, {0x8a89, 0x0020}, {0x8a8a, 0x0044},
3254{0x8a8b, 0x001b}, {0x8a8c, 0x00d6}, {0x8a8d, 0x0022},
3255{0x8a8e, 0x00c4}, {0x8a8f, 0x00cf}, {0x8a90, 0x0020},
3256{0x8a91, 0x0023}, {0x8a92, 0x0058}, {0x8a93, 0x0081},
3257{0x8a94, 0x00c6}, {0x8a95, 0x0026}, {0x8a96, 0x000d},
3258{0x8a97, 0x0096}, {0x8a98, 0x0022}, {0x8a99, 0x0084},
3259{0x8a9a, 0x0040}, {0x8a9b, 0x0044}, {0x8a9c, 0x0044},
3260{0x8a9d, 0x001b}, {0x8a9e, 0x00d6}, {0x8a9f, 0x0022},
3261{0x8aa0, 0x00c4}, {0x8aa1, 0x00af}, {0x8aa2, 0x0020},
3262{0x8aa3, 0x0011}, {0x8aa4, 0x0058}, {0x8aa5, 0x0081},
3263{0x8aa6, 0x0027}, {0x8aa7, 0x0026}, {0x8aa8, 0x000f},
3264{0x8aa9, 0x0096}, {0x8aaa, 0x0022}, {0x8aab, 0x0084},
3265{0x8aac, 0x0080}, {0x8aad, 0x0044}, {0x8aae, 0x0044},
3266{0x8aaf, 0x0044}, {0x8ab0, 0x001b}, {0x8ab1, 0x00d6},
3267{0x8ab2, 0x0022}, {0x8ab3, 0x00c4}, {0x8ab4, 0x006f},
3268{0x8ab5, 0x001b}, {0x8ab6, 0x0097}, {0x8ab7, 0x0022},
3269{0x8ab8, 0x0039}, {0x8ab9, 0x0027}, {0x8aba, 0x000c},
3270{0x8abb, 0x007c}, {0x8abc, 0x0082}, {0x8abd, 0x0006},
3271{0x8abe, 0x00bd}, {0x8abf, 0x00d9}, {0x8ac0, 0x00ed},
3272{0x8ac1, 0x00b6}, {0x8ac2, 0x0082}, {0x8ac3, 0x0007},
3273{0x8ac4, 0x007e}, {0x8ac5, 0x008a}, {0x8ac6, 0x00b9},
3274{0x8ac7, 0x007f}, {0x8ac8, 0x0082}, {0x8ac9, 0x0006},
3275{0x8aca, 0x0039}, { 0x0, 0x0 }
3276};
3277#else
3278cas_saturn_patch_t cas_saturn_patch[] = {
3279{0x8200, 0x007e}, {0x8201, 0x0082}, {0x8202, 0x0009},
3280{0x8203, 0x0000}, {0x8204, 0x0000}, {0x8205, 0x0000},
3281{0x8206, 0x0000}, {0x8207, 0x0000}, {0x8208, 0x0000},
3282{0x8209, 0x008e}, {0x820a, 0x008e}, {0x820b, 0x00ff},
3283{0x820c, 0x00ce}, {0x820d, 0x0082}, {0x820e, 0x0025},
3284{0x820f, 0x00ff}, {0x8210, 0x0001}, {0x8211, 0x000f},
3285{0x8212, 0x00ce}, {0x8213, 0x0084}, {0x8214, 0x0026},
3286{0x8215, 0x00ff}, {0x8216, 0x0001}, {0x8217, 0x0011},
3287{0x8218, 0x00ce}, {0x8219, 0x0085}, {0x821a, 0x003d},
3288{0x821b, 0x00df}, {0x821c, 0x00e5}, {0x821d, 0x0086},
3289{0x821e, 0x0039}, {0x821f, 0x00b7}, {0x8220, 0x008f},
3290{0x8221, 0x00f8}, {0x8222, 0x007e}, {0x8223, 0x00c3},
3291{0x8224, 0x00c2}, {0x8225, 0x0096}, {0x8226, 0x0047},
3292{0x8227, 0x0084}, {0x8228, 0x00f3}, {0x8229, 0x008a},
3293{0x822a, 0x0000}, {0x822b, 0x0097}, {0x822c, 0x0047},
3294{0x822d, 0x00ce}, {0x822e, 0x0082}, {0x822f, 0x0033},
3295{0x8230, 0x00ff}, {0x8231, 0x0001}, {0x8232, 0x000f},
3296{0x8233, 0x0096}, {0x8234, 0x0046}, {0x8235, 0x0084},
3297{0x8236, 0x000c}, {0x8237, 0x0081}, {0x8238, 0x0004},
3298{0x8239, 0x0027}, {0x823a, 0x000b}, {0x823b, 0x0096},
3299{0x823c, 0x0046}, {0x823d, 0x0084}, {0x823e, 0x000c},
3300{0x823f, 0x0081}, {0x8240, 0x0008}, {0x8241, 0x0027},
3301{0x8242, 0x0057}, {0x8243, 0x007e}, {0x8244, 0x0084},
3302{0x8245, 0x0025}, {0x8246, 0x0096}, {0x8247, 0x0047},
3303{0x8248, 0x0084}, {0x8249, 0x00f3}, {0x824a, 0x008a},
3304{0x824b, 0x0004}, {0x824c, 0x0097}, {0x824d, 0x0047},
3305{0x824e, 0x00ce}, {0x824f, 0x0082}, {0x8250, 0x0054},
3306{0x8251, 0x00ff}, {0x8252, 0x0001}, {0x8253, 0x000f},
3307{0x8254, 0x0096}, {0x8255, 0x0046}, {0x8256, 0x0084},
3308{0x8257, 0x000c}, {0x8258, 0x0081}, {0x8259, 0x0004},
3309{0x825a, 0x0026}, {0x825b, 0x0038}, {0x825c, 0x00b6},
3310{0x825d, 0x0012}, {0x825e, 0x0020}, {0x825f, 0x0084},
3311{0x8260, 0x0020}, {0x8261, 0x0026}, {0x8262, 0x0003},
3312{0x8263, 0x007e}, {0x8264, 0x0084}, {0x8265, 0x0025},
3313{0x8266, 0x0096}, {0x8267, 0x007b}, {0x8268, 0x00d6},
3314{0x8269, 0x007c}, {0x826a, 0x00fe}, {0x826b, 0x008f},
3315{0x826c, 0x0056}, {0x826d, 0x00bd}, {0x826e, 0x00f7},
3316{0x826f, 0x00b6}, {0x8270, 0x00fe}, {0x8271, 0x008f},
3317{0x8272, 0x004e}, {0x8273, 0x00bd}, {0x8274, 0x00ec},
3318{0x8275, 0x008e}, {0x8276, 0x00bd}, {0x8277, 0x00fa},
3319{0x8278, 0x00f7}, {0x8279, 0x00bd}, {0x827a, 0x00f7},
3320{0x827b, 0x0028}, {0x827c, 0x00ce}, {0x827d, 0x0082},
3321{0x827e, 0x0082}, {0x827f, 0x00ff}, {0x8280, 0x0001},
3322{0x8281, 0x000f}, {0x8282, 0x0096}, {0x8283, 0x0046},
3323{0x8284, 0x0084}, {0x8285, 0x000c}, {0x8286, 0x0081},
3324{0x8287, 0x0004}, {0x8288, 0x0026}, {0x8289, 0x000a},
3325{0x828a, 0x00b6}, {0x828b, 0x0012}, {0x828c, 0x0020},
3326{0x828d, 0x0084}, {0x828e, 0x0020}, {0x828f, 0x0027},
3327{0x8290, 0x00b5}, {0x8291, 0x007e}, {0x8292, 0x0084},
3328{0x8293, 0x0025}, {0x8294, 0x00bd}, {0x8295, 0x00f7},
3329{0x8296, 0x001f}, {0x8297, 0x007e}, {0x8298, 0x0084},
3330{0x8299, 0x001f}, {0x829a, 0x0096}, {0x829b, 0x0047},
3331{0x829c, 0x0084}, {0x829d, 0x00f3}, {0x829e, 0x008a},
3332{0x829f, 0x0008}, {0x82a0, 0x0097}, {0x82a1, 0x0047},
3333{0x82a2, 0x00de}, {0x82a3, 0x00e1}, {0x82a4, 0x00ad},
3334{0x82a5, 0x0000}, {0x82a6, 0x00ce}, {0x82a7, 0x0082},
3335{0x82a8, 0x00af}, {0x82a9, 0x00ff}, {0x82aa, 0x0001},
3336{0x82ab, 0x000f}, {0x82ac, 0x007e}, {0x82ad, 0x0084},
3337{0x82ae, 0x0025}, {0x82af, 0x0096}, {0x82b0, 0x0041},
3338{0x82b1, 0x0085}, {0x82b2, 0x0010}, {0x82b3, 0x0026},
3339{0x82b4, 0x0006}, {0x82b5, 0x0096}, {0x82b6, 0x0023},
3340{0x82b7, 0x0085}, {0x82b8, 0x0040}, {0x82b9, 0x0027},
3341{0x82ba, 0x0006}, {0x82bb, 0x00bd}, {0x82bc, 0x00ed},
3342{0x82bd, 0x0000}, {0x82be, 0x007e}, {0x82bf, 0x0083},
3343{0x82c0, 0x00a2}, {0x82c1, 0x00de}, {0x82c2, 0x0042},
3344{0x82c3, 0x00bd}, {0x82c4, 0x00eb}, {0x82c5, 0x008e},
3345{0x82c6, 0x0096}, {0x82c7, 0x0024}, {0x82c8, 0x0084},
3346{0x82c9, 0x0008}, {0x82ca, 0x0027}, {0x82cb, 0x0003},
3347{0x82cc, 0x007e}, {0x82cd, 0x0083}, {0x82ce, 0x00df},
3348{0x82cf, 0x0096}, {0x82d0, 0x007b}, {0x82d1, 0x00d6},
3349{0x82d2, 0x007c}, {0x82d3, 0x00fe}, {0x82d4, 0x008f},
3350{0x82d5, 0x0056}, {0x82d6, 0x00bd}, {0x82d7, 0x00f7},
3351{0x82d8, 0x00b6}, {0x82d9, 0x00fe}, {0x82da, 0x008f},
3352{0x82db, 0x0050}, {0x82dc, 0x00bd}, {0x82dd, 0x00ec},
3353{0x82de, 0x008e}, {0x82df, 0x00bd}, {0x82e0, 0x00fa},
3354{0x82e1, 0x00f7}, {0x82e2, 0x0086}, {0x82e3, 0x0011},
3355{0x82e4, 0x00c6}, {0x82e5, 0x0049}, {0x82e6, 0x00bd},
3356{0x82e7, 0x00e4}, {0x82e8, 0x0012}, {0x82e9, 0x00ce},
3357{0x82ea, 0x0082}, {0x82eb, 0x00ef}, {0x82ec, 0x00ff},
3358{0x82ed, 0x0001}, {0x82ee, 0x000f}, {0x82ef, 0x0096},
3359{0x82f0, 0x0046}, {0x82f1, 0x0084}, {0x82f2, 0x000c},
3360{0x82f3, 0x0081}, {0x82f4, 0x0000}, {0x82f5, 0x0027},
3361{0x82f6, 0x0017}, {0x82f7, 0x00c6}, {0x82f8, 0x0049},
3362{0x82f9, 0x00bd}, {0x82fa, 0x00e4}, {0x82fb, 0x0091},
3363{0x82fc, 0x0024}, {0x82fd, 0x000d}, {0x82fe, 0x00b6},
3364{0x82ff, 0x0012}, {0x8300, 0x0020}, {0x8301, 0x0085},
3365{0x8302, 0x0020}, {0x8303, 0x0026}, {0x8304, 0x000c},
3366{0x8305, 0x00ce}, {0x8306, 0x0082}, {0x8307, 0x00c1},
3367{0x8308, 0x00ff}, {0x8309, 0x0001}, {0x830a, 0x000f},
3368{0x830b, 0x007e}, {0x830c, 0x0084}, {0x830d, 0x0025},
3369{0x830e, 0x007e}, {0x830f, 0x0084}, {0x8310, 0x0016},
3370{0x8311, 0x00fe}, {0x8312, 0x008f}, {0x8313, 0x0052},
3371{0x8314, 0x00bd}, {0x8315, 0x00ec}, {0x8316, 0x008e},
3372{0x8317, 0x00bd}, {0x8318, 0x00fa}, {0x8319, 0x00f7},
3373{0x831a, 0x0086}, {0x831b, 0x006a}, {0x831c, 0x00c6},
3374{0x831d, 0x0049}, {0x831e, 0x00bd}, {0x831f, 0x00e4},
3375{0x8320, 0x0012}, {0x8321, 0x00ce}, {0x8322, 0x0083},
3376{0x8323, 0x0027}, {0x8324, 0x00ff}, {0x8325, 0x0001},
3377{0x8326, 0x000f}, {0x8327, 0x0096}, {0x8328, 0x0046},
3378{0x8329, 0x0084}, {0x832a, 0x000c}, {0x832b, 0x0081},
3379{0x832c, 0x0000}, {0x832d, 0x0027}, {0x832e, 0x000a},
3380{0x832f, 0x00c6}, {0x8330, 0x0049}, {0x8331, 0x00bd},
3381{0x8332, 0x00e4}, {0x8333, 0x0091}, {0x8334, 0x0025},
3382{0x8335, 0x0006}, {0x8336, 0x007e}, {0x8337, 0x0084},
3383{0x8338, 0x0025}, {0x8339, 0x007e}, {0x833a, 0x0084},
3384{0x833b, 0x0016}, {0x833c, 0x00b6}, {0x833d, 0x0018},
3385{0x833e, 0x0070}, {0x833f, 0x00bb}, {0x8340, 0x0019},
3386{0x8341, 0x0070}, {0x8342, 0x002a}, {0x8343, 0x0004},
3387{0x8344, 0x0081}, {0x8345, 0x00af}, {0x8346, 0x002e},
3388{0x8347, 0x0019}, {0x8348, 0x0096}, {0x8349, 0x007b},
3389{0x834a, 0x00f6}, {0x834b, 0x0020}, {0x834c, 0x0007},
3390{0x834d, 0x00fa}, {0x834e, 0x0020}, {0x834f, 0x0027},
3391{0x8350, 0x00c4}, {0x8351, 0x0038}, {0x8352, 0x0081},
3392{0x8353, 0x0038}, {0x8354, 0x0027}, {0x8355, 0x000b},
3393{0x8356, 0x00f6}, {0x8357, 0x0020}, {0x8358, 0x0007},
3394{0x8359, 0x00fa}, {0x835a, 0x0020}, {0x835b, 0x0027},
3395{0x835c, 0x00cb}, {0x835d, 0x0008}, {0x835e, 0x007e},
3396{0x835f, 0x0082}, {0x8360, 0x00d3}, {0x8361, 0x00bd},
3397{0x8362, 0x00f7}, {0x8363, 0x0066}, {0x8364, 0x0086},
3398{0x8365, 0x0074}, {0x8366, 0x00c6}, {0x8367, 0x0049},
3399{0x8368, 0x00bd}, {0x8369, 0x00e4}, {0x836a, 0x0012},
3400{0x836b, 0x00ce}, {0x836c, 0x0083}, {0x836d, 0x0071},
3401{0x836e, 0x00ff}, {0x836f, 0x0001}, {0x8370, 0x000f},
3402{0x8371, 0x0096}, {0x8372, 0x0046}, {0x8373, 0x0084},
3403{0x8374, 0x000c}, {0x8375, 0x0081}, {0x8376, 0x0008},
3404{0x8377, 0x0026}, {0x8378, 0x000a}, {0x8379, 0x00c6},
3405{0x837a, 0x0049}, {0x837b, 0x00bd}, {0x837c, 0x00e4},
3406{0x837d, 0x0091}, {0x837e, 0x0025}, {0x837f, 0x0006},
3407{0x8380, 0x007e}, {0x8381, 0x0084}, {0x8382, 0x0025},
3408{0x8383, 0x007e}, {0x8384, 0x0084}, {0x8385, 0x0016},
3409{0x8386, 0x00bd}, {0x8387, 0x00f7}, {0x8388, 0x003e},
3410{0x8389, 0x0026}, {0x838a, 0x000e}, {0x838b, 0x00bd},
3411{0x838c, 0x00e5}, {0x838d, 0x0009}, {0x838e, 0x0026},
3412{0x838f, 0x0006}, {0x8390, 0x00ce}, {0x8391, 0x0082},
3413{0x8392, 0x00c1}, {0x8393, 0x00ff}, {0x8394, 0x0001},
3414{0x8395, 0x000f}, {0x8396, 0x007e}, {0x8397, 0x0084},
3415{0x8398, 0x0025}, {0x8399, 0x00fe}, {0x839a, 0x008f},
3416{0x839b, 0x0054}, {0x839c, 0x00bd}, {0x839d, 0x00ec},
3417{0x839e, 0x008e}, {0x839f, 0x00bd}, {0x83a0, 0x00fa},
3418{0x83a1, 0x00f7}, {0x83a2, 0x00bd}, {0x83a3, 0x00f7},
3419{0x83a4, 0x0033}, {0x83a5, 0x0086}, {0x83a6, 0x000f},
3420{0x83a7, 0x00c6}, {0x83a8, 0x0051}, {0x83a9, 0x00bd},
3421{0x83aa, 0x00e4}, {0x83ab, 0x0012}, {0x83ac, 0x00ce},
3422{0x83ad, 0x0083}, {0x83ae, 0x00b2}, {0x83af, 0x00ff},
3423{0x83b0, 0x0001}, {0x83b1, 0x000f}, {0x83b2, 0x0096},
3424{0x83b3, 0x0046}, {0x83b4, 0x0084}, {0x83b5, 0x000c},
3425{0x83b6, 0x0081}, {0x83b7, 0x0008}, {0x83b8, 0x0026},
3426{0x83b9, 0x005c}, {0x83ba, 0x00b6}, {0x83bb, 0x0012},
3427{0x83bc, 0x0020}, {0x83bd, 0x0084}, {0x83be, 0x003f},
3428{0x83bf, 0x0081}, {0x83c0, 0x003a}, {0x83c1, 0x0027},
3429{0x83c2, 0x001c}, {0x83c3, 0x0096}, {0x83c4, 0x0023},
3430{0x83c5, 0x0085}, {0x83c6, 0x0040}, {0x83c7, 0x0027},
3431{0x83c8, 0x0003}, {0x83c9, 0x007e}, {0x83ca, 0x0084},
3432{0x83cb, 0x0025}, {0x83cc, 0x00c6}, {0x83cd, 0x0051},
3433{0x83ce, 0x00bd}, {0x83cf, 0x00e4}, {0x83d0, 0x0091},
3434{0x83d1, 0x0025}, {0x83d2, 0x0003}, {0x83d3, 0x007e},
3435{0x83d4, 0x0084}, {0x83d5, 0x0025}, {0x83d6, 0x00ce},
3436{0x83d7, 0x0082}, {0x83d8, 0x00c1}, {0x83d9, 0x00ff},
3437{0x83da, 0x0001}, {0x83db, 0x000f}, {0x83dc, 0x007e},
3438{0x83dd, 0x0084}, {0x83de, 0x0025}, {0x83df, 0x00bd},
3439{0x83e0, 0x00f8}, {0x83e1, 0x0037}, {0x83e2, 0x007c},
3440{0x83e3, 0x0000}, {0x83e4, 0x007a}, {0x83e5, 0x00ce},
3441{0x83e6, 0x0083}, {0x83e7, 0x00ee}, {0x83e8, 0x00ff},
3442{0x83e9, 0x0001}, {0x83ea, 0x000f}, {0x83eb, 0x007e},
3443{0x83ec, 0x0084}, {0x83ed, 0x0025}, {0x83ee, 0x0096},
3444{0x83ef, 0x0046}, {0x83f0, 0x0084}, {0x83f1, 0x000c},
3445{0x83f2, 0x0081}, {0x83f3, 0x0008}, {0x83f4, 0x0026},
3446{0x83f5, 0x0020}, {0x83f6, 0x0096}, {0x83f7, 0x0024},
3447{0x83f8, 0x0084}, {0x83f9, 0x0008}, {0x83fa, 0x0026},
3448{0x83fb, 0x0029}, {0x83fc, 0x00b6}, {0x83fd, 0x0018},
3449{0x83fe, 0x0082}, {0x83ff, 0x00bb}, {0x8400, 0x0019},
3450{0x8401, 0x0082}, {0x8402, 0x00b1}, {0x8403, 0x0001},
3451{0x8404, 0x003b}, {0x8405, 0x0022}, {0x8406, 0x0009},
3452{0x8407, 0x00b6}, {0x8408, 0x0012}, {0x8409, 0x0020},
3453{0x840a, 0x0084}, {0x840b, 0x0037}, {0x840c, 0x0081},
3454{0x840d, 0x0032}, {0x840e, 0x0027}, {0x840f, 0x0015},
3455{0x8410, 0x00bd}, {0x8411, 0x00f8}, {0x8412, 0x0044},
3456{0x8413, 0x007e}, {0x8414, 0x0082}, {0x8415, 0x00c1},
3457{0x8416, 0x00bd}, {0x8417, 0x00f7}, {0x8418, 0x001f},
3458{0x8419, 0x00bd}, {0x841a, 0x00f8}, {0x841b, 0x0044},
3459{0x841c, 0x00bd}, {0x841d, 0x00fc}, {0x841e, 0x0029},
3460{0x841f, 0x00ce}, {0x8420, 0x0082}, {0x8421, 0x0025},
3461{0x8422, 0x00ff}, {0x8423, 0x0001}, {0x8424, 0x000f},
3462{0x8425, 0x0039}, {0x8426, 0x0096}, {0x8427, 0x0047},
3463{0x8428, 0x0084}, {0x8429, 0x00fc}, {0x842a, 0x008a},
3464{0x842b, 0x0000}, {0x842c, 0x0097}, {0x842d, 0x0047},
3465{0x842e, 0x00ce}, {0x842f, 0x0084}, {0x8430, 0x0034},
3466{0x8431, 0x00ff}, {0x8432, 0x0001}, {0x8433, 0x0011},
3467{0x8434, 0x0096}, {0x8435, 0x0046}, {0x8436, 0x0084},
3468{0x8437, 0x0003}, {0x8438, 0x0081}, {0x8439, 0x0002},
3469{0x843a, 0x0027}, {0x843b, 0x0003}, {0x843c, 0x007e},
3470{0x843d, 0x0085}, {0x843e, 0x001e}, {0x843f, 0x0096},
3471{0x8440, 0x0047}, {0x8441, 0x0084}, {0x8442, 0x00fc},
3472{0x8443, 0x008a}, {0x8444, 0x0002}, {0x8445, 0x0097},
3473{0x8446, 0x0047}, {0x8447, 0x00de}, {0x8448, 0x00e1},
3474{0x8449, 0x00ad}, {0x844a, 0x0000}, {0x844b, 0x0086},
3475{0x844c, 0x0001}, {0x844d, 0x00b7}, {0x844e, 0x0012},
3476{0x844f, 0x0051}, {0x8450, 0x00bd}, {0x8451, 0x00f7},
3477{0x8452, 0x0014}, {0x8453, 0x00b6}, {0x8454, 0x0010},
3478{0x8455, 0x0031}, {0x8456, 0x0084}, {0x8457, 0x00fd},
3479{0x8458, 0x00b7}, {0x8459, 0x0010}, {0x845a, 0x0031},
3480{0x845b, 0x00bd}, {0x845c, 0x00f8}, {0x845d, 0x001e},
3481{0x845e, 0x0096}, {0x845f, 0x0081}, {0x8460, 0x00d6},
3482{0x8461, 0x0082}, {0x8462, 0x00fe}, {0x8463, 0x008f},
3483{0x8464, 0x005a}, {0x8465, 0x00bd}, {0x8466, 0x00f7},
3484{0x8467, 0x00b6}, {0x8468, 0x00fe}, {0x8469, 0x008f},
3485{0x846a, 0x005c}, {0x846b, 0x00bd}, {0x846c, 0x00ec},
3486{0x846d, 0x008e}, {0x846e, 0x00bd}, {0x846f, 0x00fa},
3487{0x8470, 0x00f7}, {0x8471, 0x0086}, {0x8472, 0x0008},
3488{0x8473, 0x00d6}, {0x8474, 0x0000}, {0x8475, 0x00c5},
3489{0x8476, 0x0010}, {0x8477, 0x0026}, {0x8478, 0x0002},
3490{0x8479, 0x008b}, {0x847a, 0x0020}, {0x847b, 0x00c6},
3491{0x847c, 0x0051}, {0x847d, 0x00bd}, {0x847e, 0x00e4},
3492{0x847f, 0x0012}, {0x8480, 0x00ce}, {0x8481, 0x0084},
3493{0x8482, 0x0086}, {0x8483, 0x00ff}, {0x8484, 0x0001},
3494{0x8485, 0x0011}, {0x8486, 0x0096}, {0x8487, 0x0046},
3495{0x8488, 0x0084}, {0x8489, 0x0003}, {0x848a, 0x0081},
3496{0x848b, 0x0002}, {0x848c, 0x0027}, {0x848d, 0x0003},
3497{0x848e, 0x007e}, {0x848f, 0x0085}, {0x8490, 0x000f},
3498{0x8491, 0x00c6}, {0x8492, 0x0051}, {0x8493, 0x00bd},
3499{0x8494, 0x00e4}, {0x8495, 0x0091}, {0x8496, 0x0025},
3500{0x8497, 0x0003}, {0x8498, 0x007e}, {0x8499, 0x0085},
3501{0x849a, 0x001e}, {0x849b, 0x0096}, {0x849c, 0x0044},
3502{0x849d, 0x0085}, {0x849e, 0x0010}, {0x849f, 0x0026},
3503{0x84a0, 0x000a}, {0x84a1, 0x00b6}, {0x84a2, 0x0012},
3504{0x84a3, 0x0050}, {0x84a4, 0x00ba}, {0x84a5, 0x0001},
3505{0x84a6, 0x003c}, {0x84a7, 0x0085}, {0x84a8, 0x0010},
3506{0x84a9, 0x0027}, {0x84aa, 0x00a8}, {0x84ab, 0x00bd},
3507{0x84ac, 0x00f7}, {0x84ad, 0x0066}, {0x84ae, 0x00ce},
3508{0x84af, 0x0084}, {0x84b0, 0x00b7}, {0x84b1, 0x00ff},
3509{0x84b2, 0x0001}, {0x84b3, 0x0011}, {0x84b4, 0x007e},
3510{0x84b5, 0x0085}, {0x84b6, 0x001e}, {0x84b7, 0x0096},
3511{0x84b8, 0x0046}, {0x84b9, 0x0084}, {0x84ba, 0x0003},
3512{0x84bb, 0x0081}, {0x84bc, 0x0002}, {0x84bd, 0x0026},
3513{0x84be, 0x0050}, {0x84bf, 0x00b6}, {0x84c0, 0x0012},
3514{0x84c1, 0x0030}, {0x84c2, 0x0084}, {0x84c3, 0x0003},
3515{0x84c4, 0x0081}, {0x84c5, 0x0001}, {0x84c6, 0x0027},
3516{0x84c7, 0x0003}, {0x84c8, 0x007e}, {0x84c9, 0x0085},
3517{0x84ca, 0x001e}, {0x84cb, 0x0096}, {0x84cc, 0x0044},
3518{0x84cd, 0x0085}, {0x84ce, 0x0010}, {0x84cf, 0x0026},
3519{0x84d0, 0x0013}, {0x84d1, 0x00b6}, {0x84d2, 0x0012},
3520{0x84d3, 0x0050}, {0x84d4, 0x00ba}, {0x84d5, 0x0001},
3521{0x84d6, 0x003c}, {0x84d7, 0x0085}, {0x84d8, 0x0010},
3522{0x84d9, 0x0026}, {0x84da, 0x0009}, {0x84db, 0x00ce},
3523{0x84dc, 0x0084}, {0x84dd, 0x0053}, {0x84de, 0x00ff},
3524{0x84df, 0x0001}, {0x84e0, 0x0011}, {0x84e1, 0x007e},
3525{0x84e2, 0x0085}, {0x84e3, 0x001e}, {0x84e4, 0x00b6},
3526{0x84e5, 0x0010}, {0x84e6, 0x0031}, {0x84e7, 0x008a},
3527{0x84e8, 0x0002}, {0x84e9, 0x00b7}, {0x84ea, 0x0010},
3528{0x84eb, 0x0031}, {0x84ec, 0x00bd}, {0x84ed, 0x0085},
3529{0x84ee, 0x001f}, {0x84ef, 0x00bd}, {0x84f0, 0x00f8},
3530{0x84f1, 0x0037}, {0x84f2, 0x007c}, {0x84f3, 0x0000},
3531{0x84f4, 0x0080}, {0x84f5, 0x00ce}, {0x84f6, 0x0084},
3532{0x84f7, 0x00fe}, {0x84f8, 0x00ff}, {0x84f9, 0x0001},
3533{0x84fa, 0x0011}, {0x84fb, 0x007e}, {0x84fc, 0x0085},
3534{0x84fd, 0x001e}, {0x84fe, 0x0096}, {0x84ff, 0x0046},
3535{0x8500, 0x0084}, {0x8501, 0x0003}, {0x8502, 0x0081},
3536{0x8503, 0x0002}, {0x8504, 0x0026}, {0x8505, 0x0009},
3537{0x8506, 0x00b6}, {0x8507, 0x0012}, {0x8508, 0x0030},
3538{0x8509, 0x0084}, {0x850a, 0x0003}, {0x850b, 0x0081},
3539{0x850c, 0x0001}, {0x850d, 0x0027}, {0x850e, 0x000f},
3540{0x850f, 0x00bd}, {0x8510, 0x00f8}, {0x8511, 0x0044},
3541{0x8512, 0x00bd}, {0x8513, 0x00f7}, {0x8514, 0x000b},
3542{0x8515, 0x00bd}, {0x8516, 0x00fc}, {0x8517, 0x0029},
3543{0x8518, 0x00ce}, {0x8519, 0x0084}, {0x851a, 0x0026},
3544{0x851b, 0x00ff}, {0x851c, 0x0001}, {0x851d, 0x0011},
3545{0x851e, 0x0039}, {0x851f, 0x00d6}, {0x8520, 0x0022},
3546{0x8521, 0x00c4}, {0x8522, 0x000f}, {0x8523, 0x00b6},
3547{0x8524, 0x0012}, {0x8525, 0x0030}, {0x8526, 0x00ba},
3548{0x8527, 0x0012}, {0x8528, 0x0032}, {0x8529, 0x0084},
3549{0x852a, 0x0004}, {0x852b, 0x0027}, {0x852c, 0x000d},
3550{0x852d, 0x0096}, {0x852e, 0x0022}, {0x852f, 0x0085},
3551{0x8530, 0x0004}, {0x8531, 0x0027}, {0x8532, 0x0005},
3552{0x8533, 0x00ca}, {0x8534, 0x0010}, {0x8535, 0x007e},
3553{0x8536, 0x0085}, {0x8537, 0x003a}, {0x8538, 0x00ca},
3554{0x8539, 0x0020}, {0x853a, 0x00d7}, {0x853b, 0x0022},
3555{0x853c, 0x0039}, {0x853d, 0x0086}, {0x853e, 0x0000},
3556{0x853f, 0x0097}, {0x8540, 0x0083}, {0x8541, 0x0018},
3557{0x8542, 0x00ce}, {0x8543, 0x001c}, {0x8544, 0x0000},
3558{0x8545, 0x00bd}, {0x8546, 0x00eb}, {0x8547, 0x0046},
3559{0x8548, 0x0096}, {0x8549, 0x0057}, {0x854a, 0x0085},
3560{0x854b, 0x0001}, {0x854c, 0x0027}, {0x854d, 0x0002},
3561{0x854e, 0x004f}, {0x854f, 0x0039}, {0x8550, 0x0085},
3562{0x8551, 0x0002}, {0x8552, 0x0027}, {0x8553, 0x0001},
3563{0x8554, 0x0039}, {0x8555, 0x007f}, {0x8556, 0x008f},
3564{0x8557, 0x007d}, {0x8558, 0x0086}, {0x8559, 0x0004},
3565{0x855a, 0x00b7}, {0x855b, 0x0012}, {0x855c, 0x0004},
3566{0x855d, 0x0086}, {0x855e, 0x0008}, {0x855f, 0x00b7},
3567{0x8560, 0x0012}, {0x8561, 0x0007}, {0x8562, 0x0086},
3568{0x8563, 0x0010}, {0x8564, 0x00b7}, {0x8565, 0x0012},
3569{0x8566, 0x000c}, {0x8567, 0x0086}, {0x8568, 0x0007},
3570{0x8569, 0x00b7}, {0x856a, 0x0012}, {0x856b, 0x0006},
3571{0x856c, 0x00b6}, {0x856d, 0x008f}, {0x856e, 0x007d},
3572{0x856f, 0x00b7}, {0x8570, 0x0012}, {0x8571, 0x0070},
3573{0x8572, 0x0086}, {0x8573, 0x0001}, {0x8574, 0x00ba},
3574{0x8575, 0x0012}, {0x8576, 0x0004}, {0x8577, 0x00b7},
3575{0x8578, 0x0012}, {0x8579, 0x0004}, {0x857a, 0x0001},
3576{0x857b, 0x0001}, {0x857c, 0x0001}, {0x857d, 0x0001},
3577{0x857e, 0x0001}, {0x857f, 0x0001}, {0x8580, 0x00b6},
3578{0x8581, 0x0012}, {0x8582, 0x0004}, {0x8583, 0x0084},
3579{0x8584, 0x00fe}, {0x8585, 0x008a}, {0x8586, 0x0002},
3580{0x8587, 0x00b7}, {0x8588, 0x0012}, {0x8589, 0x0004},
3581{0x858a, 0x0001}, {0x858b, 0x0001}, {0x858c, 0x0001},
3582{0x858d, 0x0001}, {0x858e, 0x0001}, {0x858f, 0x0001},
3583{0x8590, 0x0086}, {0x8591, 0x00fd}, {0x8592, 0x00b4},
3584{0x8593, 0x0012}, {0x8594, 0x0004}, {0x8595, 0x00b7},
3585{0x8596, 0x0012}, {0x8597, 0x0004}, {0x8598, 0x00b6},
3586{0x8599, 0x0012}, {0x859a, 0x0000}, {0x859b, 0x0084},
3587{0x859c, 0x0008}, {0x859d, 0x0081}, {0x859e, 0x0008},
3588{0x859f, 0x0027}, {0x85a0, 0x0016}, {0x85a1, 0x00b6},
3589{0x85a2, 0x008f}, {0x85a3, 0x007d}, {0x85a4, 0x0081},
3590{0x85a5, 0x000c}, {0x85a6, 0x0027}, {0x85a7, 0x0008},
3591{0x85a8, 0x008b}, {0x85a9, 0x0004}, {0x85aa, 0x00b7},
3592{0x85ab, 0x008f}, {0x85ac, 0x007d}, {0x85ad, 0x007e},
3593{0x85ae, 0x0085}, {0x85af, 0x006c}, {0x85b0, 0x0086},
3594{0x85b1, 0x0003}, {0x85b2, 0x0097}, {0x85b3, 0x0040},
3595{0x85b4, 0x007e}, {0x85b5, 0x0089}, {0x85b6, 0x006e},
3596{0x85b7, 0x0086}, {0x85b8, 0x0007}, {0x85b9, 0x00b7},
3597{0x85ba, 0x0012}, {0x85bb, 0x0006}, {0x85bc, 0x005f},
3598{0x85bd, 0x00f7}, {0x85be, 0x008f}, {0x85bf, 0x0082},
3599{0x85c0, 0x005f}, {0x85c1, 0x00f7}, {0x85c2, 0x008f},
3600{0x85c3, 0x007f}, {0x85c4, 0x00f7}, {0x85c5, 0x008f},
3601{0x85c6, 0x0070}, {0x85c7, 0x00f7}, {0x85c8, 0x008f},
3602{0x85c9, 0x0071}, {0x85ca, 0x00f7}, {0x85cb, 0x008f},
3603{0x85cc, 0x0072}, {0x85cd, 0x00f7}, {0x85ce, 0x008f},
3604{0x85cf, 0x0073}, {0x85d0, 0x00f7}, {0x85d1, 0x008f},
3605{0x85d2, 0x0074}, {0x85d3, 0x00f7}, {0x85d4, 0x008f},
3606{0x85d5, 0x0075}, {0x85d6, 0x00f7}, {0x85d7, 0x008f},
3607{0x85d8, 0x0076}, {0x85d9, 0x00f7}, {0x85da, 0x008f},
3608{0x85db, 0x0077}, {0x85dc, 0x00f7}, {0x85dd, 0x008f},
3609{0x85de, 0x0078}, {0x85df, 0x00f7}, {0x85e0, 0x008f},
3610{0x85e1, 0x0079}, {0x85e2, 0x00f7}, {0x85e3, 0x008f},
3611{0x85e4, 0x007a}, {0x85e5, 0x00f7}, {0x85e6, 0x008f},
3612{0x85e7, 0x007b}, {0x85e8, 0x00b6}, {0x85e9, 0x0012},
3613{0x85ea, 0x0004}, {0x85eb, 0x008a}, {0x85ec, 0x0010},
3614{0x85ed, 0x00b7}, {0x85ee, 0x0012}, {0x85ef, 0x0004},
3615{0x85f0, 0x0086}, {0x85f1, 0x00e4}, {0x85f2, 0x00b7},
3616{0x85f3, 0x0012}, {0x85f4, 0x0070}, {0x85f5, 0x00b7},
3617{0x85f6, 0x0012}, {0x85f7, 0x0007}, {0x85f8, 0x00f7},
3618{0x85f9, 0x0012}, {0x85fa, 0x0005}, {0x85fb, 0x00f7},
3619{0x85fc, 0x0012}, {0x85fd, 0x0009}, {0x85fe, 0x0086},
3620{0x85ff, 0x0008}, {0x8600, 0x00ba}, {0x8601, 0x0012},
3621{0x8602, 0x0004}, {0x8603, 0x00b7}, {0x8604, 0x0012},
3622{0x8605, 0x0004}, {0x8606, 0x0086}, {0x8607, 0x00f7},
3623{0x8608, 0x00b4}, {0x8609, 0x0012}, {0x860a, 0x0004},
3624{0x860b, 0x00b7}, {0x860c, 0x0012}, {0x860d, 0x0004},
3625{0x860e, 0x0001}, {0x860f, 0x0001}, {0x8610, 0x0001},
3626{0x8611, 0x0001}, {0x8612, 0x0001}, {0x8613, 0x0001},
3627{0x8614, 0x00b6}, {0x8615, 0x0012}, {0x8616, 0x0008},
3628{0x8617, 0x0027}, {0x8618, 0x007f}, {0x8619, 0x0081},
3629{0x861a, 0x0080}, {0x861b, 0x0026}, {0x861c, 0x000b},
3630{0x861d, 0x0086}, {0x861e, 0x0008}, {0x861f, 0x00ce},
3631{0x8620, 0x008f}, {0x8621, 0x0079}, {0x8622, 0x00bd},
3632{0x8623, 0x0089}, {0x8624, 0x007b}, {0x8625, 0x007e},
3633{0x8626, 0x0086}, {0x8627, 0x008e}, {0x8628, 0x0081},
3634{0x8629, 0x0040}, {0x862a, 0x0026}, {0x862b, 0x000b},
3635{0x862c, 0x0086}, {0x862d, 0x0004}, {0x862e, 0x00ce},
3636{0x862f, 0x008f}, {0x8630, 0x0076}, {0x8631, 0x00bd},
3637{0x8632, 0x0089}, {0x8633, 0x007b}, {0x8634, 0x007e},
3638{0x8635, 0x0086}, {0x8636, 0x008e}, {0x8637, 0x0081},
3639{0x8638, 0x0020}, {0x8639, 0x0026}, {0x863a, 0x000b},
3640{0x863b, 0x0086}, {0x863c, 0x0002}, {0x863d, 0x00ce},
3641{0x863e, 0x008f}, {0x863f, 0x0073}, {0x8640, 0x00bd},
3642{0x8641, 0x0089}, {0x8642, 0x007b}, {0x8643, 0x007e},
3643{0x8644, 0x0086}, {0x8645, 0x008e}, {0x8646, 0x0081},
3644{0x8647, 0x0010}, {0x8648, 0x0026}, {0x8649, 0x000b},
3645{0x864a, 0x0086}, {0x864b, 0x0001}, {0x864c, 0x00ce},
3646{0x864d, 0x008f}, {0x864e, 0x0070}, {0x864f, 0x00bd},
3647{0x8650, 0x0089}, {0x8651, 0x007b}, {0x8652, 0x007e},
3648{0x8653, 0x0086}, {0x8654, 0x008e}, {0x8655, 0x0081},
3649{0x8656, 0x0008}, {0x8657, 0x0026}, {0x8658, 0x000b},
3650{0x8659, 0x0086}, {0x865a, 0x0008}, {0x865b, 0x00ce},
3651{0x865c, 0x008f}, {0x865d, 0x0079}, {0x865e, 0x00bd},
3652{0x865f, 0x0089}, {0x8660, 0x007f}, {0x8661, 0x007e},
3653{0x8662, 0x0086}, {0x8663, 0x008e}, {0x8664, 0x0081},
3654{0x8665, 0x0004}, {0x8666, 0x0026}, {0x8667, 0x000b},
3655{0x8668, 0x0086}, {0x8669, 0x0004}, {0x866a, 0x00ce},
3656{0x866b, 0x008f}, {0x866c, 0x0076}, {0x866d, 0x00bd},
3657{0x866e, 0x0089}, {0x866f, 0x007f}, {0x8670, 0x007e},
3658{0x8671, 0x0086}, {0x8672, 0x008e}, {0x8673, 0x0081},
3659{0x8674, 0x0002}, {0x8675, 0x0026}, {0x8676, 0x000b},
3660{0x8677, 0x008a}, {0x8678, 0x0002}, {0x8679, 0x00ce},
3661{0x867a, 0x008f}, {0x867b, 0x0073}, {0x867c, 0x00bd},
3662{0x867d, 0x0089}, {0x867e, 0x007f}, {0x867f, 0x007e},
3663{0x8680, 0x0086}, {0x8681, 0x008e}, {0x8682, 0x0081},
3664{0x8683, 0x0001}, {0x8684, 0x0026}, {0x8685, 0x0008},
3665{0x8686, 0x0086}, {0x8687, 0x0001}, {0x8688, 0x00ce},
3666{0x8689, 0x008f}, {0x868a, 0x0070}, {0x868b, 0x00bd},
3667{0x868c, 0x0089}, {0x868d, 0x007f}, {0x868e, 0x00b6},
3668{0x868f, 0x008f}, {0x8690, 0x007f}, {0x8691, 0x0081},
3669{0x8692, 0x000f}, {0x8693, 0x0026}, {0x8694, 0x0003},
3670{0x8695, 0x007e}, {0x8696, 0x0087}, {0x8697, 0x0047},
3671{0x8698, 0x00b6}, {0x8699, 0x0012}, {0x869a, 0x0009},
3672{0x869b, 0x0084}, {0x869c, 0x0003}, {0x869d, 0x0081},
3673{0x869e, 0x0003}, {0x869f, 0x0027}, {0x86a0, 0x0006},
3674{0x86a1, 0x007c}, {0x86a2, 0x0012}, {0x86a3, 0x0009},
3675{0x86a4, 0x007e}, {0x86a5, 0x0085}, {0x86a6, 0x00fe},
3676{0x86a7, 0x00b6}, {0x86a8, 0x0012}, {0x86a9, 0x0006},
3677{0x86aa, 0x0084}, {0x86ab, 0x0007}, {0x86ac, 0x0081},
3678{0x86ad, 0x0007}, {0x86ae, 0x0027}, {0x86af, 0x0008},
3679{0x86b0, 0x008b}, {0x86b1, 0x0001}, {0x86b2, 0x00b7},
3680{0x86b3, 0x0012}, {0x86b4, 0x0006}, {0x86b5, 0x007e},
3681{0x86b6, 0x0086}, {0x86b7, 0x00d5}, {0x86b8, 0x00b6},
3682{0x86b9, 0x008f}, {0x86ba, 0x0082}, {0x86bb, 0x0026},
3683{0x86bc, 0x000a}, {0x86bd, 0x007c}, {0x86be, 0x008f},
3684{0x86bf, 0x0082}, {0x86c0, 0x004f}, {0x86c1, 0x00b7},
3685{0x86c2, 0x0012}, {0x86c3, 0x0006}, {0x86c4, 0x007e},
3686{0x86c5, 0x0085}, {0x86c6, 0x00c0}, {0x86c7, 0x00b6},
3687{0x86c8, 0x0012}, {0x86c9, 0x0006}, {0x86ca, 0x0084},
3688{0x86cb, 0x003f}, {0x86cc, 0x0081}, {0x86cd, 0x003f},
3689{0x86ce, 0x0027}, {0x86cf, 0x0010}, {0x86d0, 0x008b},
3690{0x86d1, 0x0008}, {0x86d2, 0x00b7}, {0x86d3, 0x0012},
3691{0x86d4, 0x0006}, {0x86d5, 0x00b6}, {0x86d6, 0x0012},
3692{0x86d7, 0x0009}, {0x86d8, 0x0084}, {0x86d9, 0x00fc},
3693{0x86da, 0x00b7}, {0x86db, 0x0012}, {0x86dc, 0x0009},
3694{0x86dd, 0x007e}, {0x86de, 0x0085}, {0x86df, 0x00fe},
3695{0x86e0, 0x00ce}, {0x86e1, 0x008f}, {0x86e2, 0x0070},
3696{0x86e3, 0x0018}, {0x86e4, 0x00ce}, {0x86e5, 0x008f},
3697{0x86e6, 0x0084}, {0x86e7, 0x00c6}, {0x86e8, 0x000c},
3698{0x86e9, 0x00bd}, {0x86ea, 0x0089}, {0x86eb, 0x006f},
3699{0x86ec, 0x00ce}, {0x86ed, 0x008f}, {0x86ee, 0x0084},
3700{0x86ef, 0x0018}, {0x86f0, 0x00ce}, {0x86f1, 0x008f},
3701{0x86f2, 0x0070}, {0x86f3, 0x00c6}, {0x86f4, 0x000c},
3702{0x86f5, 0x00bd}, {0x86f6, 0x0089}, {0x86f7, 0x006f},
3703{0x86f8, 0x00d6}, {0x86f9, 0x0083}, {0x86fa, 0x00c1},
3704{0x86fb, 0x004f}, {0x86fc, 0x002d}, {0x86fd, 0x0003},
3705{0x86fe, 0x007e}, {0x86ff, 0x0087}, {0x8700, 0x0040},
3706{0x8701, 0x00b6}, {0x8702, 0x008f}, {0x8703, 0x007f},
3707{0x8704, 0x0081}, {0x8705, 0x0007}, {0x8706, 0x0027},
3708{0x8707, 0x000f}, {0x8708, 0x0081}, {0x8709, 0x000b},
3709{0x870a, 0x0027}, {0x870b, 0x0015}, {0x870c, 0x0081},
3710{0x870d, 0x000d}, {0x870e, 0x0027}, {0x870f, 0x001b},
3711{0x8710, 0x0081}, {0x8711, 0x000e}, {0x8712, 0x0027},
3712{0x8713, 0x0021}, {0x8714, 0x007e}, {0x8715, 0x0087},
3713{0x8716, 0x0040}, {0x8717, 0x00f7}, {0x8718, 0x008f},
3714{0x8719, 0x007b}, {0x871a, 0x0086}, {0x871b, 0x0002},
3715{0x871c, 0x00b7}, {0x871d, 0x008f}, {0x871e, 0x007a},
3716{0x871f, 0x0020}, {0x8720, 0x001c}, {0x8721, 0x00f7},
3717{0x8722, 0x008f}, {0x8723, 0x0078}, {0x8724, 0x0086},
3718{0x8725, 0x0002}, {0x8726, 0x00b7}, {0x8727, 0x008f},
3719{0x8728, 0x0077}, {0x8729, 0x0020}, {0x872a, 0x0012},
3720{0x872b, 0x00f7}, {0x872c, 0x008f}, {0x872d, 0x0075},
3721{0x872e, 0x0086}, {0x872f, 0x0002}, {0x8730, 0x00b7},
3722{0x8731, 0x008f}, {0x8732, 0x0074}, {0x8733, 0x0020},
3723{0x8734, 0x0008}, {0x8735, 0x00f7}, {0x8736, 0x008f},
3724{0x8737, 0x0072}, {0x8738, 0x0086}, {0x8739, 0x0002},
3725{0x873a, 0x00b7}, {0x873b, 0x008f}, {0x873c, 0x0071},
3726{0x873d, 0x007e}, {0x873e, 0x0087}, {0x873f, 0x0047},
3727{0x8740, 0x0086}, {0x8741, 0x0004}, {0x8742, 0x0097},
3728{0x8743, 0x0040}, {0x8744, 0x007e}, {0x8745, 0x0089},
3729{0x8746, 0x006e}, {0x8747, 0x00ce}, {0x8748, 0x008f},
3730{0x8749, 0x0072}, {0x874a, 0x00bd}, {0x874b, 0x0089},
3731{0x874c, 0x00f7}, {0x874d, 0x00ce}, {0x874e, 0x008f},
3732{0x874f, 0x0075}, {0x8750, 0x00bd}, {0x8751, 0x0089},
3733{0x8752, 0x00f7}, {0x8753, 0x00ce}, {0x8754, 0x008f},
3734{0x8755, 0x0078}, {0x8756, 0x00bd}, {0x8757, 0x0089},
3735{0x8758, 0x00f7}, {0x8759, 0x00ce}, {0x875a, 0x008f},
3736{0x875b, 0x007b}, {0x875c, 0x00bd}, {0x875d, 0x0089},
3737{0x875e, 0x00f7}, {0x875f, 0x004f}, {0x8760, 0x00b7},
3738{0x8761, 0x008f}, {0x8762, 0x007d}, {0x8763, 0x00b7},
3739{0x8764, 0x008f}, {0x8765, 0x0081}, {0x8766, 0x00b6},
3740{0x8767, 0x008f}, {0x8768, 0x0072}, {0x8769, 0x0027},
3741{0x876a, 0x0047}, {0x876b, 0x007c}, {0x876c, 0x008f},
3742{0x876d, 0x007d}, {0x876e, 0x00b6}, {0x876f, 0x008f},
3743{0x8770, 0x0075}, {0x8771, 0x0027}, {0x8772, 0x003f},
3744{0x8773, 0x007c}, {0x8774, 0x008f}, {0x8775, 0x007d},
3745{0x8776, 0x00b6}, {0x8777, 0x008f}, {0x8778, 0x0078},
3746{0x8779, 0x0027}, {0x877a, 0x0037}, {0x877b, 0x007c},
3747{0x877c, 0x008f}, {0x877d, 0x007d}, {0x877e, 0x00b6},
3748{0x877f, 0x008f}, {0x8780, 0x007b}, {0x8781, 0x0027},
3749{0x8782, 0x002f}, {0x8783, 0x007f}, {0x8784, 0x008f},
3750{0x8785, 0x007d}, {0x8786, 0x007c}, {0x8787, 0x008f},
3751{0x8788, 0x0081}, {0x8789, 0x007a}, {0x878a, 0x008f},
3752{0x878b, 0x0072}, {0x878c, 0x0027}, {0x878d, 0x001b},
3753{0x878e, 0x007c}, {0x878f, 0x008f}, {0x8790, 0x007d},
3754{0x8791, 0x007a}, {0x8792, 0x008f}, {0x8793, 0x0075},
3755{0x8794, 0x0027}, {0x8795, 0x0016}, {0x8796, 0x007c},
3756{0x8797, 0x008f}, {0x8798, 0x007d}, {0x8799, 0x007a},
3757{0x879a, 0x008f}, {0x879b, 0x0078}, {0x879c, 0x0027},
3758{0x879d, 0x0011}, {0x879e, 0x007c}, {0x879f, 0x008f},
3759{0x87a0, 0x007d}, {0x87a1, 0x007a}, {0x87a2, 0x008f},
3760{0x87a3, 0x007b}, {0x87a4, 0x0027}, {0x87a5, 0x000c},
3761{0x87a6, 0x007e}, {0x87a7, 0x0087}, {0x87a8, 0x0083},
3762{0x87a9, 0x007a}, {0x87aa, 0x008f}, {0x87ab, 0x0075},
3763{0x87ac, 0x007a}, {0x87ad, 0x008f}, {0x87ae, 0x0078},
3764{0x87af, 0x007a}, {0x87b0, 0x008f}, {0x87b1, 0x007b},
3765{0x87b2, 0x00ce}, {0x87b3, 0x00c1}, {0x87b4, 0x00fc},
3766{0x87b5, 0x00f6}, {0x87b6, 0x008f}, {0x87b7, 0x007d},
3767{0x87b8, 0x003a}, {0x87b9, 0x00a6}, {0x87ba, 0x0000},
3768{0x87bb, 0x00b7}, {0x87bc, 0x0012}, {0x87bd, 0x0070},
3769{0x87be, 0x00b6}, {0x87bf, 0x008f}, {0x87c0, 0x0072},
3770{0x87c1, 0x0026}, {0x87c2, 0x0003}, {0x87c3, 0x007e},
3771{0x87c4, 0x0087}, {0x87c5, 0x00fa}, {0x87c6, 0x00b6},
3772{0x87c7, 0x008f}, {0x87c8, 0x0075}, {0x87c9, 0x0026},
3773{0x87ca, 0x000a}, {0x87cb, 0x0018}, {0x87cc, 0x00ce},
3774{0x87cd, 0x008f}, {0x87ce, 0x0073}, {0x87cf, 0x00bd},
3775{0x87d0, 0x0089}, {0x87d1, 0x00d5}, {0x87d2, 0x007e},
3776{0x87d3, 0x0087}, {0x87d4, 0x00fa}, {0x87d5, 0x00b6},
3777{0x87d6, 0x008f}, {0x87d7, 0x0078}, {0x87d8, 0x0026},
3778{0x87d9, 0x000a}, {0x87da, 0x0018}, {0x87db, 0x00ce},
3779{0x87dc, 0x008f}, {0x87dd, 0x0076}, {0x87de, 0x00bd},
3780{0x87df, 0x0089}, {0x87e0, 0x00d5}, {0x87e1, 0x007e},
3781{0x87e2, 0x0087}, {0x87e3, 0x00fa}, {0x87e4, 0x00b6},
3782{0x87e5, 0x008f}, {0x87e6, 0x007b}, {0x87e7, 0x0026},
3783{0x87e8, 0x000a}, {0x87e9, 0x0018}, {0x87ea, 0x00ce},
3784{0x87eb, 0x008f}, {0x87ec, 0x0079}, {0x87ed, 0x00bd},
3785{0x87ee, 0x0089}, {0x87ef, 0x00d5}, {0x87f0, 0x007e},
3786{0x87f1, 0x0087}, {0x87f2, 0x00fa}, {0x87f3, 0x0086},
3787{0x87f4, 0x0005}, {0x87f5, 0x0097}, {0x87f6, 0x0040},
3788{0x87f7, 0x007e}, {0x87f8, 0x0089}, {0x87f9, 0x006e},
3789{0x87fa, 0x00b6}, {0x87fb, 0x008f}, {0x87fc, 0x0075},
3790{0x87fd, 0x0081}, {0x87fe, 0x0007}, {0x87ff, 0x002e},
3791{0x8800, 0x00f2}, {0x8801, 0x00f6}, {0x8802, 0x0012},
3792{0x8803, 0x0006}, {0x8804, 0x00c4}, {0x8805, 0x00f8},
3793{0x8806, 0x001b}, {0x8807, 0x00b7}, {0x8808, 0x0012},
3794{0x8809, 0x0006}, {0x880a, 0x00b6}, {0x880b, 0x008f},
3795{0x880c, 0x0078}, {0x880d, 0x0081}, {0x880e, 0x0007},
3796{0x880f, 0x002e}, {0x8810, 0x00e2}, {0x8811, 0x0048},
3797{0x8812, 0x0048}, {0x8813, 0x0048}, {0x8814, 0x00f6},
3798{0x8815, 0x0012}, {0x8816, 0x0006}, {0x8817, 0x00c4},
3799{0x8818, 0x00c7}, {0x8819, 0x001b}, {0x881a, 0x00b7},
3800{0x881b, 0x0012}, {0x881c, 0x0006}, {0x881d, 0x00b6},
3801{0x881e, 0x008f}, {0x881f, 0x007b}, {0x8820, 0x0081},
3802{0x8821, 0x0007}, {0x8822, 0x002e}, {0x8823, 0x00cf},
3803{0x8824, 0x00f6}, {0x8825, 0x0012}, {0x8826, 0x0005},
3804{0x8827, 0x00c4}, {0x8828, 0x00f8}, {0x8829, 0x001b},
3805{0x882a, 0x00b7}, {0x882b, 0x0012}, {0x882c, 0x0005},
3806{0x882d, 0x0086}, {0x882e, 0x0000}, {0x882f, 0x00f6},
3807{0x8830, 0x008f}, {0x8831, 0x0071}, {0x8832, 0x00bd},
3808{0x8833, 0x0089}, {0x8834, 0x0094}, {0x8835, 0x0086},
3809{0x8836, 0x0001}, {0x8837, 0x00f6}, {0x8838, 0x008f},
3810{0x8839, 0x0074}, {0x883a, 0x00bd}, {0x883b, 0x0089},
3811{0x883c, 0x0094}, {0x883d, 0x0086}, {0x883e, 0x0002},
3812{0x883f, 0x00f6}, {0x8840, 0x008f}, {0x8841, 0x0077},
3813{0x8842, 0x00bd}, {0x8843, 0x0089}, {0x8844, 0x0094},
3814{0x8845, 0x0086}, {0x8846, 0x0003}, {0x8847, 0x00f6},
3815{0x8848, 0x008f}, {0x8849, 0x007a}, {0x884a, 0x00bd},
3816{0x884b, 0x0089}, {0x884c, 0x0094}, {0x884d, 0x00ce},
3817{0x884e, 0x008f}, {0x884f, 0x0070}, {0x8850, 0x00a6},
3818{0x8851, 0x0001}, {0x8852, 0x0081}, {0x8853, 0x0001},
3819{0x8854, 0x0027}, {0x8855, 0x0007}, {0x8856, 0x0081},
3820{0x8857, 0x0003}, {0x8858, 0x0027}, {0x8859, 0x0003},
3821{0x885a, 0x007e}, {0x885b, 0x0088}, {0x885c, 0x0066},
3822{0x885d, 0x00a6}, {0x885e, 0x0000}, {0x885f, 0x00b8},
3823{0x8860, 0x008f}, {0x8861, 0x0081}, {0x8862, 0x0084},
3824{0x8863, 0x0001}, {0x8864, 0x0026}, {0x8865, 0x000b},
3825{0x8866, 0x008c}, {0x8867, 0x008f}, {0x8868, 0x0079},
3826{0x8869, 0x002c}, {0x886a, 0x000e}, {0x886b, 0x0008},
3827{0x886c, 0x0008}, {0x886d, 0x0008}, {0x886e, 0x007e},
3828{0x886f, 0x0088}, {0x8870, 0x0050}, {0x8871, 0x00b6},
3829{0x8872, 0x0012}, {0x8873, 0x0004}, {0x8874, 0x008a},
3830{0x8875, 0x0040}, {0x8876, 0x00b7}, {0x8877, 0x0012},
3831{0x8878, 0x0004}, {0x8879, 0x00b6}, {0x887a, 0x0012},
3832{0x887b, 0x0004}, {0x887c, 0x0084}, {0x887d, 0x00fb},
3833{0x887e, 0x0084}, {0x887f, 0x00ef}, {0x8880, 0x00b7},
3834{0x8881, 0x0012}, {0x8882, 0x0004}, {0x8883, 0x00b6},
3835{0x8884, 0x0012}, {0x8885, 0x0007}, {0x8886, 0x0036},
3836{0x8887, 0x00b6}, {0x8888, 0x008f}, {0x8889, 0x007c},
3837{0x888a, 0x0048}, {0x888b, 0x0048}, {0x888c, 0x00b7},
3838{0x888d, 0x0012}, {0x888e, 0x0007}, {0x888f, 0x0086},
3839{0x8890, 0x0001}, {0x8891, 0x00ba}, {0x8892, 0x0012},
3840{0x8893, 0x0004}, {0x8894, 0x00b7}, {0x8895, 0x0012},
3841{0x8896, 0x0004}, {0x8897, 0x0001}, {0x8898, 0x0001},
3842{0x8899, 0x0001}, {0x889a, 0x0001}, {0x889b, 0x0001},
3843{0x889c, 0x0001}, {0x889d, 0x0086}, {0x889e, 0x00fe},
3844{0x889f, 0x00b4}, {0x88a0, 0x0012}, {0x88a1, 0x0004},
3845{0x88a2, 0x00b7}, {0x88a3, 0x0012}, {0x88a4, 0x0004},
3846{0x88a5, 0x0086}, {0x88a6, 0x0002}, {0x88a7, 0x00ba},
3847{0x88a8, 0x0012}, {0x88a9, 0x0004}, {0x88aa, 0x00b7},
3848{0x88ab, 0x0012}, {0x88ac, 0x0004}, {0x88ad, 0x0086},
3849{0x88ae, 0x00fd}, {0x88af, 0x00b4}, {0x88b0, 0x0012},
3850{0x88b1, 0x0004}, {0x88b2, 0x00b7}, {0x88b3, 0x0012},
3851{0x88b4, 0x0004}, {0x88b5, 0x0032}, {0x88b6, 0x00b7},
3852{0x88b7, 0x0012}, {0x88b8, 0x0007}, {0x88b9, 0x00b6},
3853{0x88ba, 0x0012}, {0x88bb, 0x0000}, {0x88bc, 0x0084},
3854{0x88bd, 0x0008}, {0x88be, 0x0081}, {0x88bf, 0x0008},
3855{0x88c0, 0x0027}, {0x88c1, 0x000f}, {0x88c2, 0x007c},
3856{0x88c3, 0x0082}, {0x88c4, 0x0008}, {0x88c5, 0x0026},
3857{0x88c6, 0x0007}, {0x88c7, 0x0086}, {0x88c8, 0x0076},
3858{0x88c9, 0x0097}, {0x88ca, 0x0040}, {0x88cb, 0x007e},
3859{0x88cc, 0x0089}, {0x88cd, 0x006e}, {0x88ce, 0x007e},
3860{0x88cf, 0x0086}, {0x88d0, 0x00ec}, {0x88d1, 0x00b6},
3861{0x88d2, 0x008f}, {0x88d3, 0x007f}, {0x88d4, 0x0081},
3862{0x88d5, 0x000f}, {0x88d6, 0x0027}, {0x88d7, 0x003c},
3863{0x88d8, 0x00bd}, {0x88d9, 0x00e6}, {0x88da, 0x00c7},
3864{0x88db, 0x00b7}, {0x88dc, 0x0012}, {0x88dd, 0x000d},
3865{0x88de, 0x00bd}, {0x88df, 0x00e6}, {0x88e0, 0x00cb},
3866{0x88e1, 0x00b6}, {0x88e2, 0x0012}, {0x88e3, 0x0004},
3867{0x88e4, 0x008a}, {0x88e5, 0x0020}, {0x88e6, 0x00b7},
3868{0x88e7, 0x0012}, {0x88e8, 0x0004}, {0x88e9, 0x00ce},
3869{0x88ea, 0x00ff}, {0x88eb, 0x00ff}, {0x88ec, 0x00b6},
3870{0x88ed, 0x0012}, {0x88ee, 0x0000}, {0x88ef, 0x0081},
3871{0x88f0, 0x000c}, {0x88f1, 0x0026}, {0x88f2, 0x0005},
3872{0x88f3, 0x0009}, {0x88f4, 0x0026}, {0x88f5, 0x00f6},
3873{0x88f6, 0x0027}, {0x88f7, 0x001c}, {0x88f8, 0x00b6},
3874{0x88f9, 0x0012}, {0x88fa, 0x0004}, {0x88fb, 0x0084},
3875{0x88fc, 0x00df}, {0x88fd, 0x00b7}, {0x88fe, 0x0012},
3876{0x88ff, 0x0004}, {0x8900, 0x0096}, {0x8901, 0x0083},
3877{0x8902, 0x0081}, {0x8903, 0x0007}, {0x8904, 0x002c},
3878{0x8905, 0x0005}, {0x8906, 0x007c}, {0x8907, 0x0000},
3879{0x8908, 0x0083}, {0x8909, 0x0020}, {0x890a, 0x0006},
3880{0x890b, 0x0096}, {0x890c, 0x0083}, {0x890d, 0x008b},
3881{0x890e, 0x0008}, {0x890f, 0x0097}, {0x8910, 0x0083},
3882{0x8911, 0x007e}, {0x8912, 0x0085}, {0x8913, 0x0041},
3883{0x8914, 0x007f}, {0x8915, 0x008f}, {0x8916, 0x007e},
3884{0x8917, 0x0086}, {0x8918, 0x0080}, {0x8919, 0x00b7},
3885{0x891a, 0x0012}, {0x891b, 0x000c}, {0x891c, 0x0086},
3886{0x891d, 0x0001}, {0x891e, 0x00b7}, {0x891f, 0x008f},
3887{0x8920, 0x007d}, {0x8921, 0x00b6}, {0x8922, 0x0012},
3888{0x8923, 0x000c}, {0x8924, 0x0084}, {0x8925, 0x007f},
3889{0x8926, 0x00b7}, {0x8927, 0x0012}, {0x8928, 0x000c},
3890{0x8929, 0x008a}, {0x892a, 0x0080}, {0x892b, 0x00b7},
3891{0x892c, 0x0012}, {0x892d, 0x000c}, {0x892e, 0x0086},
3892{0x892f, 0x000a}, {0x8930, 0x00bd}, {0x8931, 0x008a},
3893{0x8932, 0x0006}, {0x8933, 0x00b6}, {0x8934, 0x0012},
3894{0x8935, 0x000a}, {0x8936, 0x002a}, {0x8937, 0x0009},
3895{0x8938, 0x00b6}, {0x8939, 0x0012}, {0x893a, 0x000c},
3896{0x893b, 0x00ba}, {0x893c, 0x008f}, {0x893d, 0x007d},
3897{0x893e, 0x00b7}, {0x893f, 0x0012}, {0x8940, 0x000c},
3898{0x8941, 0x00b6}, {0x8942, 0x008f}, {0x8943, 0x007e},
3899{0x8944, 0x0081}, {0x8945, 0x0060}, {0x8946, 0x0027},
3900{0x8947, 0x001a}, {0x8948, 0x008b}, {0x8949, 0x0020},
3901{0x894a, 0x00b7}, {0x894b, 0x008f}, {0x894c, 0x007e},
3902{0x894d, 0x00b6}, {0x894e, 0x0012}, {0x894f, 0x000c},
3903{0x8950, 0x0084}, {0x8951, 0x009f}, {0x8952, 0x00ba},
3904{0x8953, 0x008f}, {0x8954, 0x007e}, {0x8955, 0x00b7},
3905{0x8956, 0x0012}, {0x8957, 0x000c}, {0x8958, 0x00b6},
3906{0x8959, 0x008f}, {0x895a, 0x007d}, {0x895b, 0x0048},
3907{0x895c, 0x00b7}, {0x895d, 0x008f}, {0x895e, 0x007d},
3908{0x895f, 0x007e}, {0x8960, 0x0089}, {0x8961, 0x0021},
3909{0x8962, 0x00b6}, {0x8963, 0x0012}, {0x8964, 0x0004},
3910{0x8965, 0x008a}, {0x8966, 0x0020}, {0x8967, 0x00b7},
3911{0x8968, 0x0012}, {0x8969, 0x0004}, {0x896a, 0x00bd},
3912{0x896b, 0x008a}, {0x896c, 0x000a}, {0x896d, 0x004f},
3913{0x896e, 0x0039}, {0x896f, 0x00a6}, {0x8970, 0x0000},
3914{0x8971, 0x0018}, {0x8972, 0x00a7}, {0x8973, 0x0000},
3915{0x8974, 0x0008}, {0x8975, 0x0018}, {0x8976, 0x0008},
3916{0x8977, 0x005a}, {0x8978, 0x0026}, {0x8979, 0x00f5},
3917{0x897a, 0x0039}, {0x897b, 0x0036}, {0x897c, 0x006c},
3918{0x897d, 0x0000}, {0x897e, 0x0032}, {0x897f, 0x00ba},
3919{0x8980, 0x008f}, {0x8981, 0x007f}, {0x8982, 0x00b7},
3920{0x8983, 0x008f}, {0x8984, 0x007f}, {0x8985, 0x00b6},
3921{0x8986, 0x0012}, {0x8987, 0x0009}, {0x8988, 0x0084},
3922{0x8989, 0x0003}, {0x898a, 0x00a7}, {0x898b, 0x0001},
3923{0x898c, 0x00b6}, {0x898d, 0x0012}, {0x898e, 0x0006},
3924{0x898f, 0x0084}, {0x8990, 0x003f}, {0x8991, 0x00a7},
3925{0x8992, 0x0002}, {0x8993, 0x0039}, {0x8994, 0x0036},
3926{0x8995, 0x0086}, {0x8996, 0x0003}, {0x8997, 0x00b7},
3927{0x8998, 0x008f}, {0x8999, 0x0080}, {0x899a, 0x0032},
3928{0x899b, 0x00c1}, {0x899c, 0x0000}, {0x899d, 0x0026},
3929{0x899e, 0x0006}, {0x899f, 0x00b7}, {0x89a0, 0x008f},
3930{0x89a1, 0x007c}, {0x89a2, 0x007e}, {0x89a3, 0x0089},
3931{0x89a4, 0x00c9}, {0x89a5, 0x00c1}, {0x89a6, 0x0001},
3932{0x89a7, 0x0027}, {0x89a8, 0x0018}, {0x89a9, 0x00c1},
3933{0x89aa, 0x0002}, {0x89ab, 0x0027}, {0x89ac, 0x000c},
3934{0x89ad, 0x00c1}, {0x89ae, 0x0003}, {0x89af, 0x0027},
3935{0x89b0, 0x0000}, {0x89b1, 0x00f6}, {0x89b2, 0x008f},
3936{0x89b3, 0x0080}, {0x89b4, 0x0005}, {0x89b5, 0x0005},
3937{0x89b6, 0x00f7}, {0x89b7, 0x008f}, {0x89b8, 0x0080},
3938{0x89b9, 0x00f6}, {0x89ba, 0x008f}, {0x89bb, 0x0080},
3939{0x89bc, 0x0005}, {0x89bd, 0x0005}, {0x89be, 0x00f7},
3940{0x89bf, 0x008f}, {0x89c0, 0x0080}, {0x89c1, 0x00f6},
3941{0x89c2, 0x008f}, {0x89c3, 0x0080}, {0x89c4, 0x0005},
3942{0x89c5, 0x0005}, {0x89c6, 0x00f7}, {0x89c7, 0x008f},
3943{0x89c8, 0x0080}, {0x89c9, 0x00f6}, {0x89ca, 0x008f},
3944{0x89cb, 0x0080}, {0x89cc, 0x0053}, {0x89cd, 0x00f4},
3945{0x89ce, 0x0012}, {0x89cf, 0x0007}, {0x89d0, 0x001b},
3946{0x89d1, 0x00b7}, {0x89d2, 0x0012}, {0x89d3, 0x0007},
3947{0x89d4, 0x0039}, {0x89d5, 0x00ce}, {0x89d6, 0x008f},
3948{0x89d7, 0x0070}, {0x89d8, 0x00a6}, {0x89d9, 0x0000},
3949{0x89da, 0x0018}, {0x89db, 0x00e6}, {0x89dc, 0x0000},
3950{0x89dd, 0x0018}, {0x89de, 0x00a7}, {0x89df, 0x0000},
3951{0x89e0, 0x00e7}, {0x89e1, 0x0000}, {0x89e2, 0x00a6},
3952{0x89e3, 0x0001}, {0x89e4, 0x0018}, {0x89e5, 0x00e6},
3953{0x89e6, 0x0001}, {0x89e7, 0x0018}, {0x89e8, 0x00a7},
3954{0x89e9, 0x0001}, {0x89ea, 0x00e7}, {0x89eb, 0x0001},
3955{0x89ec, 0x00a6}, {0x89ed, 0x0002}, {0x89ee, 0x0018},
3956{0x89ef, 0x00e6}, {0x89f0, 0x0002}, {0x89f1, 0x0018},
3957{0x89f2, 0x00a7}, {0x89f3, 0x0002}, {0x89f4, 0x00e7},
3958{0x89f5, 0x0002}, {0x89f6, 0x0039}, {0x89f7, 0x00a6},
3959{0x89f8, 0x0000}, {0x89f9, 0x0084}, {0x89fa, 0x0007},
3960{0x89fb, 0x00e6}, {0x89fc, 0x0000}, {0x89fd, 0x00c4},
3961{0x89fe, 0x0038}, {0x89ff, 0x0054}, {0x8a00, 0x0054},
3962{0x8a01, 0x0054}, {0x8a02, 0x001b}, {0x8a03, 0x00a7},
3963{0x8a04, 0x0000}, {0x8a05, 0x0039}, {0x8a06, 0x004a},
3964{0x8a07, 0x0026}, {0x8a08, 0x00fd}, {0x8a09, 0x0039},
3965{0x8a0a, 0x0096}, {0x8a0b, 0x0022}, {0x8a0c, 0x0084},
3966{0x8a0d, 0x000f}, {0x8a0e, 0x0097}, {0x8a0f, 0x0022},
3967{0x8a10, 0x0086}, {0x8a11, 0x0001}, {0x8a12, 0x00b7},
3968{0x8a13, 0x008f}, {0x8a14, 0x0070}, {0x8a15, 0x00b6},
3969{0x8a16, 0x0012}, {0x8a17, 0x0007}, {0x8a18, 0x00b7},
3970{0x8a19, 0x008f}, {0x8a1a, 0x0071}, {0x8a1b, 0x00f6},
3971{0x8a1c, 0x0012}, {0x8a1d, 0x000c}, {0x8a1e, 0x00c4},
3972{0x8a1f, 0x000f}, {0x8a20, 0x00c8}, {0x8a21, 0x000f},
3973{0x8a22, 0x00f7}, {0x8a23, 0x008f}, {0x8a24, 0x0072},
3974{0x8a25, 0x00f6}, {0x8a26, 0x008f}, {0x8a27, 0x0072},
3975{0x8a28, 0x00b6}, {0x8a29, 0x008f}, {0x8a2a, 0x0071},
3976{0x8a2b, 0x0084}, {0x8a2c, 0x0003}, {0x8a2d, 0x0027},
3977{0x8a2e, 0x0014}, {0x8a2f, 0x0081}, {0x8a30, 0x0001},
3978{0x8a31, 0x0027}, {0x8a32, 0x001c}, {0x8a33, 0x0081},
3979{0x8a34, 0x0002}, {0x8a35, 0x0027}, {0x8a36, 0x0024},
3980{0x8a37, 0x00f4}, {0x8a38, 0x008f}, {0x8a39, 0x0070},
3981{0x8a3a, 0x0027}, {0x8a3b, 0x002a}, {0x8a3c, 0x0096},
3982{0x8a3d, 0x0022}, {0x8a3e, 0x008a}, {0x8a3f, 0x0080},
3983{0x8a40, 0x007e}, {0x8a41, 0x008a}, {0x8a42, 0x0064},
3984{0x8a43, 0x00f4}, {0x8a44, 0x008f}, {0x8a45, 0x0070},
3985{0x8a46, 0x0027}, {0x8a47, 0x001e}, {0x8a48, 0x0096},
3986{0x8a49, 0x0022}, {0x8a4a, 0x008a}, {0x8a4b, 0x0010},
3987{0x8a4c, 0x007e}, {0x8a4d, 0x008a}, {0x8a4e, 0x0064},
3988{0x8a4f, 0x00f4}, {0x8a50, 0x008f}, {0x8a51, 0x0070},
3989{0x8a52, 0x0027}, {0x8a53, 0x0012}, {0x8a54, 0x0096},
3990{0x8a55, 0x0022}, {0x8a56, 0x008a}, {0x8a57, 0x0020},
3991{0x8a58, 0x007e}, {0x8a59, 0x008a}, {0x8a5a, 0x0064},
3992{0x8a5b, 0x00f4}, {0x8a5c, 0x008f}, {0x8a5d, 0x0070},
3993{0x8a5e, 0x0027}, {0x8a5f, 0x0006}, {0x8a60, 0x0096},
3994{0x8a61, 0x0022}, {0x8a62, 0x008a}, {0x8a63, 0x0040},
3995{0x8a64, 0x0097}, {0x8a65, 0x0022}, {0x8a66, 0x0074},
3996{0x8a67, 0x008f}, {0x8a68, 0x0071}, {0x8a69, 0x0074},
3997{0x8a6a, 0x008f}, {0x8a6b, 0x0071}, {0x8a6c, 0x0078},
3998{0x8a6d, 0x008f}, {0x8a6e, 0x0070}, {0x8a6f, 0x00b6},
3999{0x8a70, 0x008f}, {0x8a71, 0x0070}, {0x8a72, 0x0085},
4000{0x8a73, 0x0010}, {0x8a74, 0x0027}, {0x8a75, 0x00af},
4001{0x8a76, 0x00d6}, {0x8a77, 0x0022}, {0x8a78, 0x00c4},
4002{0x8a79, 0x0010}, {0x8a7a, 0x0058}, {0x8a7b, 0x00b6},
4003{0x8a7c, 0x0012}, {0x8a7d, 0x0070}, {0x8a7e, 0x0081},
4004{0x8a7f, 0x00e4}, {0x8a80, 0x0027}, {0x8a81, 0x0036},
4005{0x8a82, 0x0081}, {0x8a83, 0x00e1}, {0x8a84, 0x0026},
4006{0x8a85, 0x000c}, {0x8a86, 0x0096}, {0x8a87, 0x0022},
4007{0x8a88, 0x0084}, {0x8a89, 0x0020}, {0x8a8a, 0x0044},
4008{0x8a8b, 0x001b}, {0x8a8c, 0x00d6}, {0x8a8d, 0x0022},
4009{0x8a8e, 0x00c4}, {0x8a8f, 0x00cf}, {0x8a90, 0x0020},
4010{0x8a91, 0x0023}, {0x8a92, 0x0058}, {0x8a93, 0x0081},
4011{0x8a94, 0x00c6}, {0x8a95, 0x0026}, {0x8a96, 0x000d},
4012{0x8a97, 0x0096}, {0x8a98, 0x0022}, {0x8a99, 0x0084},
4013{0x8a9a, 0x0040}, {0x8a9b, 0x0044}, {0x8a9c, 0x0044},
4014{0x8a9d, 0x001b}, {0x8a9e, 0x00d6}, {0x8a9f, 0x0022},
4015{0x8aa0, 0x00c4}, {0x8aa1, 0x00af}, {0x8aa2, 0x0020},
4016{0x8aa3, 0x0011}, {0x8aa4, 0x0058}, {0x8aa5, 0x0081},
4017{0x8aa6, 0x0027}, {0x8aa7, 0x0026}, {0x8aa8, 0x000f},
4018{0x8aa9, 0x0096}, {0x8aaa, 0x0022}, {0x8aab, 0x0084},
4019{0x8aac, 0x0080}, {0x8aad, 0x0044}, {0x8aae, 0x0044},
4020{0x8aaf, 0x0044}, {0x8ab0, 0x001b}, {0x8ab1, 0x00d6},
4021{0x8ab2, 0x0022}, {0x8ab3, 0x00c4}, {0x8ab4, 0x006f},
4022{0x8ab5, 0x001b}, {0x8ab6, 0x0097}, {0x8ab7, 0x0022},
4023{0x8ab8, 0x0039}, {0x8ab9, 0x0027}, {0x8aba, 0x000c},
4024{0x8abb, 0x007c}, {0x8abc, 0x0082}, {0x8abd, 0x0006},
4025{0x8abe, 0x00bd}, {0x8abf, 0x00d9}, {0x8ac0, 0x00ed},
4026{0x8ac1, 0x00b6}, {0x8ac2, 0x0082}, {0x8ac3, 0x0007},
4027{0x8ac4, 0x007e}, {0x8ac5, 0x008a}, {0x8ac6, 0x00b9},
4028{0x8ac7, 0x007f}, {0x8ac8, 0x0082}, {0x8ac9, 0x0006},
4029{0x8aca, 0x0039}, { 0x0, 0x0 }
4030};
4031#endif
4032
4033
4034/* phy types */
4035#define CAS_PHY_UNKNOWN 0x00
4036#define CAS_PHY_SERDES 0x01
4037#define CAS_PHY_MII_MDIO0 0x02
4038#define CAS_PHY_MII_MDIO1 0x04
4039#define CAS_PHY_MII(x) ((x) & (CAS_PHY_MII_MDIO0 | CAS_PHY_MII_MDIO1))
4040
4041/* _RING_INDEX is the index for the ring sizes to be used. _RING_SIZE
4042 * is the actual size. the default index for the various rings is
4043 * 8. NOTE: there a bunch of alignment constraints for the rings. to
4044 * deal with that, i just allocate rings to create the desired
4045 * alignment. here are the constraints:
4046 * RX DESC and COMP rings must be 8KB aligned
4047 * TX DESC must be 2KB aligned.
4048 * if you change the numbers, be cognizant of how the alignment will change
4049 * in INIT_BLOCK as well.
4050 */
4051
4052#define DESC_RING_I_TO_S(x) (32*(1 << (x)))
4053#define COMP_RING_I_TO_S(x) (128*(1 << (x)))
4054#define TX_DESC_RING_INDEX 4 /* 512 = 8k */
4055#define RX_DESC_RING_INDEX 4 /* 512 = 8k */
4056#define RX_COMP_RING_INDEX 4 /* 2048 = 64k: should be 4x rx ring size */
4057
4058#if (TX_DESC_RING_INDEX > 8) || (TX_DESC_RING_INDEX < 0)
4059#error TX_DESC_RING_INDEX must be between 0 and 8
4060#endif
4061
4062#if (RX_DESC_RING_INDEX > 8) || (RX_DESC_RING_INDEX < 0)
4063#error RX_DESC_RING_INDEX must be between 0 and 8
4064#endif
4065
4066#if (RX_COMP_RING_INDEX > 8) || (RX_COMP_RING_INDEX < 0)
4067#error RX_COMP_RING_INDEX must be between 0 and 8
4068#endif
4069
4070#define N_TX_RINGS MAX_TX_RINGS /* for QoS */
4071#define N_TX_RINGS_MASK MAX_TX_RINGS_MASK
4072#define N_RX_DESC_RINGS MAX_RX_DESC_RINGS /* 1 for ipsec */
4073#define N_RX_COMP_RINGS 0x1 /* for mult. PCI interrupts */
4074
4075/* number of flows that can go through re-assembly */
4076#define N_RX_FLOWS 64
4077
4078#define TX_DESC_RING_SIZE DESC_RING_I_TO_S(TX_DESC_RING_INDEX)
4079#define RX_DESC_RING_SIZE DESC_RING_I_TO_S(RX_DESC_RING_INDEX)
4080#define RX_COMP_RING_SIZE COMP_RING_I_TO_S(RX_COMP_RING_INDEX)
4081#define TX_DESC_RINGN_INDEX(x) TX_DESC_RING_INDEX
4082#define RX_DESC_RINGN_INDEX(x) RX_DESC_RING_INDEX
4083#define RX_COMP_RINGN_INDEX(x) RX_COMP_RING_INDEX
4084#define TX_DESC_RINGN_SIZE(x) TX_DESC_RING_SIZE
4085#define RX_DESC_RINGN_SIZE(x) RX_DESC_RING_SIZE
4086#define RX_COMP_RINGN_SIZE(x) RX_COMP_RING_SIZE
4087
4088/* convert values */
4089#define CAS_BASE(x, y) (((y) << (x ## _SHIFT)) & (x ## _MASK))
4090#define CAS_VAL(x, y) (((y) & (x ## _MASK)) >> (x ## _SHIFT))
4091#define CAS_TX_RINGN_BASE(y) ((TX_DESC_RINGN_INDEX(y) << \
4092 TX_CFG_DESC_RINGN_SHIFT(y)) & \
4093 TX_CFG_DESC_RINGN_MASK(y))
4094
4095/* min is 2k, but we can't do jumbo frames unless it's at least 8k */
4096#define CAS_MIN_PAGE_SHIFT 11 /* 2048 */
4097#define CAS_JUMBO_PAGE_SHIFT 13 /* 8192 */
4098#define CAS_MAX_PAGE_SHIFT 14 /* 16384 */
4099
4100#define TX_DESC_BUFLEN_MASK 0x0000000000003FFFULL /* buffer length in
4101 bytes. 0 - 9256 */
4102#define TX_DESC_BUFLEN_SHIFT 0
4103#define TX_DESC_CSUM_START_MASK 0x00000000001F8000ULL /* checksum start. #
4104 of bytes to be
4105 skipped before
4106 csum calc begins.
4107 value must be
4108 even */
4109#define TX_DESC_CSUM_START_SHIFT 15
4110#define TX_DESC_CSUM_STUFF_MASK 0x000000001FE00000ULL /* checksum stuff.
4111 byte offset w/in
4112 the pkt for the
4113 1st csum byte.
4114 must be > 8 */
4115#define TX_DESC_CSUM_STUFF_SHIFT 21
4116#define TX_DESC_CSUM_EN 0x0000000020000000ULL /* enable checksum */
4117#define TX_DESC_EOF 0x0000000040000000ULL /* end of frame */
4118#define TX_DESC_SOF 0x0000000080000000ULL /* start of frame */
4119#define TX_DESC_INTME 0x0000000100000000ULL /* interrupt me */
4120#define TX_DESC_NO_CRC 0x0000000200000000ULL /* debugging only.
4121 CRC will not be
4122 inserted into
4123 outgoing frame. */
4124struct cas_tx_desc {
4125 u64 control;
4126 u64 buffer;
4127};
4128
4129/* descriptor ring for free buffers contains page-sized buffers. the index
4130 * value is not used by the hw in any way. it's just stored and returned in
4131 * the completion ring.
4132 */
4133struct cas_rx_desc {
4134 u64 index;
4135 u64 buffer;
4136};
4137
4138/* received packets are put on the completion ring. */
4139/* word 1 */
4140#define RX_COMP1_DATA_SIZE_MASK 0x0000000007FFE000ULL
4141#define RX_COMP1_DATA_SIZE_SHIFT 13
4142#define RX_COMP1_DATA_OFF_MASK 0x000001FFF8000000ULL
4143#define RX_COMP1_DATA_OFF_SHIFT 27
4144#define RX_COMP1_DATA_INDEX_MASK 0x007FFE0000000000ULL
4145#define RX_COMP1_DATA_INDEX_SHIFT 41
4146#define RX_COMP1_SKIP_MASK 0x0180000000000000ULL
4147#define RX_COMP1_SKIP_SHIFT 55
4148#define RX_COMP1_RELEASE_NEXT 0x0200000000000000ULL
4149#define RX_COMP1_SPLIT_PKT 0x0400000000000000ULL
4150#define RX_COMP1_RELEASE_FLOW 0x0800000000000000ULL
4151#define RX_COMP1_RELEASE_DATA 0x1000000000000000ULL
4152#define RX_COMP1_RELEASE_HDR 0x2000000000000000ULL
4153#define RX_COMP1_TYPE_MASK 0xC000000000000000ULL
4154#define RX_COMP1_TYPE_SHIFT 62
4155
4156/* word 2 */
4157#define RX_COMP2_NEXT_INDEX_MASK 0x00000007FFE00000ULL
4158#define RX_COMP2_NEXT_INDEX_SHIFT 21
4159#define RX_COMP2_HDR_SIZE_MASK 0x00000FF800000000ULL
4160#define RX_COMP2_HDR_SIZE_SHIFT 35
4161#define RX_COMP2_HDR_OFF_MASK 0x0003F00000000000ULL
4162#define RX_COMP2_HDR_OFF_SHIFT 44
4163#define RX_COMP2_HDR_INDEX_MASK 0xFFFC000000000000ULL
4164#define RX_COMP2_HDR_INDEX_SHIFT 50
4165
4166/* word 3 */
4167#define RX_COMP3_SMALL_PKT 0x0000000000000001ULL
4168#define RX_COMP3_JUMBO_PKT 0x0000000000000002ULL
4169#define RX_COMP3_JUMBO_HDR_SPLIT_EN 0x0000000000000004ULL
4170#define RX_COMP3_CSUM_START_MASK 0x000000000007F000ULL
4171#define RX_COMP3_CSUM_START_SHIFT 12
4172#define RX_COMP3_FLOWID_MASK 0x0000000001F80000ULL
4173#define RX_COMP3_FLOWID_SHIFT 19
4174#define RX_COMP3_OPCODE_MASK 0x000000000E000000ULL
4175#define RX_COMP3_OPCODE_SHIFT 25
4176#define RX_COMP3_FORCE_FLAG 0x0000000010000000ULL
4177#define RX_COMP3_NO_ASSIST 0x0000000020000000ULL
4178#define RX_COMP3_LOAD_BAL_MASK 0x000001F800000000ULL
4179#define RX_COMP3_LOAD_BAL_SHIFT 35
4180#define RX_PLUS_COMP3_ENC_PKT 0x0000020000000000ULL /* cas+ */
4181#define RX_COMP3_L3_HEAD_OFF_MASK 0x0000FE0000000000ULL /* cas */
4182#define RX_COMP3_L3_HEAD_OFF_SHIFT 41
4183#define RX_PLUS_COMP_L3_HEAD_OFF_MASK 0x0000FC0000000000ULL /* cas+ */
4184#define RX_PLUS_COMP_L3_HEAD_OFF_SHIFT 42
4185#define RX_COMP3_SAP_MASK 0xFFFF000000000000ULL
4186#define RX_COMP3_SAP_SHIFT 48
4187
4188/* word 4 */
4189#define RX_COMP4_TCP_CSUM_MASK 0x000000000000FFFFULL
4190#define RX_COMP4_TCP_CSUM_SHIFT 0
4191#define RX_COMP4_PKT_LEN_MASK 0x000000003FFF0000ULL
4192#define RX_COMP4_PKT_LEN_SHIFT 16
4193#define RX_COMP4_PERFECT_MATCH_MASK 0x00000003C0000000ULL
4194#define RX_COMP4_PERFECT_MATCH_SHIFT 30
4195#define RX_COMP4_ZERO 0x0000080000000000ULL
4196#define RX_COMP4_HASH_VAL_MASK 0x0FFFF00000000000ULL
4197#define RX_COMP4_HASH_VAL_SHIFT 44
4198#define RX_COMP4_HASH_PASS 0x1000000000000000ULL
4199#define RX_COMP4_BAD 0x4000000000000000ULL
4200#define RX_COMP4_LEN_MISMATCH 0x8000000000000000ULL
4201
4202/* we encode the following: ring/index/release. only 14 bits
4203 * are usable.
4204 * NOTE: the encoding is dependent upon RX_DESC_RING_SIZE and
4205 * MAX_RX_DESC_RINGS. */
4206#define RX_INDEX_NUM_MASK 0x0000000000000FFFULL
4207#define RX_INDEX_NUM_SHIFT 0
4208#define RX_INDEX_RING_MASK 0x0000000000001000ULL
4209#define RX_INDEX_RING_SHIFT 12
4210#define RX_INDEX_RELEASE 0x0000000000002000ULL
4211
4212struct cas_rx_comp {
4213 u64 word1;
4214 u64 word2;
4215 u64 word3;
4216 u64 word4;
4217};
4218
4219enum link_state {
4220 link_down = 0, /* No link, will retry */
4221 link_aneg, /* Autoneg in progress */
4222 link_force_try, /* Try Forced link speed */
4223 link_force_ret, /* Forced mode worked, retrying autoneg */
4224 link_force_ok, /* Stay in forced mode */
4225 link_up /* Link is up */
4226};
4227
4228typedef struct cas_page {
4229 struct list_head list;
4230 struct page *buffer;
4231 dma_addr_t dma_addr;
4232 int used;
4233} cas_page_t;
4234
4235
4236/* some alignment constraints:
4237 * TX DESC, RX DESC, and RX COMP must each be 8K aligned.
4238 * TX COMPWB must be 8-byte aligned.
4239 * to accomplish this, here's what we do:
4240 *
4241 * INIT_BLOCK_RX_COMP = 64k (already aligned)
4242 * INIT_BLOCK_RX_DESC = 8k
4243 * INIT_BLOCK_TX = 8k
4244 * INIT_BLOCK_RX1_DESC = 8k
4245 * TX COMPWB
4246 */
4247#define INIT_BLOCK_TX (TX_DESC_RING_SIZE)
4248#define INIT_BLOCK_RX_DESC (RX_DESC_RING_SIZE)
4249#define INIT_BLOCK_RX_COMP (RX_COMP_RING_SIZE)
4250
4251struct cas_init_block {
4252 struct cas_rx_comp rxcs[N_RX_COMP_RINGS][INIT_BLOCK_RX_COMP];
4253 struct cas_rx_desc rxds[N_RX_DESC_RINGS][INIT_BLOCK_RX_DESC];
4254 struct cas_tx_desc txds[N_TX_RINGS][INIT_BLOCK_TX];
4255 u64 tx_compwb;
4256};
4257
4258/* tiny buffers to deal with target abort issue. we allocate a bit
4259 * over so that we don't have target abort issues with these buffers
4260 * as well.
4261 */
4262#define TX_TINY_BUF_LEN 0x100
4263#define TX_TINY_BUF_BLOCK ((INIT_BLOCK_TX + 1)*TX_TINY_BUF_LEN)
4264
4265struct cas_tiny_count {
4266 int nbufs;
4267 int used;
4268};
4269
4270struct cas {
4271 spinlock_t lock; /* for most bits */
4272 spinlock_t tx_lock[N_TX_RINGS]; /* tx bits */
4273 spinlock_t stat_lock[N_TX_RINGS + 1]; /* for stat gathering */
4274 spinlock_t rx_inuse_lock; /* rx inuse list */
4275 spinlock_t rx_spare_lock; /* rx spare list */
4276
4277 void __iomem *regs;
4278 int tx_new[N_TX_RINGS], tx_old[N_TX_RINGS];
4279 int rx_old[N_RX_DESC_RINGS];
4280 int rx_cur[N_RX_COMP_RINGS], rx_new[N_RX_COMP_RINGS];
4281 int rx_last[N_RX_DESC_RINGS];
4282
4283 /* Set when chip is actually in operational state
4284 * (ie. not power managed) */
4285 int hw_running;
4286 int opened;
4287 struct semaphore pm_sem; /* open/close/suspend/resume */
4288
4289 struct cas_init_block *init_block;
4290 struct cas_tx_desc *init_txds[MAX_TX_RINGS];
4291 struct cas_rx_desc *init_rxds[MAX_RX_DESC_RINGS];
4292 struct cas_rx_comp *init_rxcs[MAX_RX_COMP_RINGS];
4293
4294 /* we use sk_buffs for tx and pages for rx. the rx skbuffs
4295 * are there for flow re-assembly. */
4296 struct sk_buff *tx_skbs[N_TX_RINGS][TX_DESC_RING_SIZE];
4297 struct sk_buff_head rx_flows[N_RX_FLOWS];
4298 cas_page_t *rx_pages[N_RX_DESC_RINGS][RX_DESC_RING_SIZE];
4299 struct list_head rx_spare_list, rx_inuse_list;
4300 int rx_spares_needed;
4301
4302 /* for small packets when copying would be quicker than
4303 mapping */
4304 struct cas_tiny_count tx_tiny_use[N_TX_RINGS][TX_DESC_RING_SIZE];
4305 u8 *tx_tiny_bufs[N_TX_RINGS];
4306
4307 u32 msg_enable;
4308
4309 /* N_TX_RINGS must be >= N_RX_DESC_RINGS */
4310 struct net_device_stats net_stats[N_TX_RINGS + 1];
4311
4312 u32 pci_cfg[64 >> 2];
4313 u8 pci_revision;
4314
4315 int phy_type;
4316 int phy_addr;
4317 u32 phy_id;
4318#define CAS_FLAG_1000MB_CAP 0x00000001
4319#define CAS_FLAG_REG_PLUS 0x00000002
4320#define CAS_FLAG_TARGET_ABORT 0x00000004
4321#define CAS_FLAG_SATURN 0x00000008
4322#define CAS_FLAG_RXD_POST_MASK 0x000000F0
4323#define CAS_FLAG_RXD_POST_SHIFT 4
4324#define CAS_FLAG_RXD_POST(x) ((1 << (CAS_FLAG_RXD_POST_SHIFT + (x))) & \
4325 CAS_FLAG_RXD_POST_MASK)
4326#define CAS_FLAG_ENTROPY_DEV 0x00000100
4327#define CAS_FLAG_NO_HW_CSUM 0x00000200
4328 u32 cas_flags;
4329 int packet_min; /* minimum packet size */
4330 int tx_fifo_size;
4331 int rx_fifo_size;
4332 int rx_pause_off;
4333 int rx_pause_on;
4334 int crc_size; /* 4 if half-duplex */
4335
4336 int pci_irq_INTC;
4337 int min_frame_size; /* for tx fifo workaround */
4338
4339 /* page size allocation */
4340 int page_size;
4341 int page_order;
4342 int mtu_stride;
4343
4344 u32 mac_rx_cfg;
4345
4346 /* Autoneg & PHY control */
4347 int link_cntl;
4348 int link_fcntl;
4349 enum link_state lstate;
4350 struct timer_list link_timer;
4351 int timer_ticks;
4352 struct work_struct reset_task;
4353#if 0
4354 atomic_t reset_task_pending;
4355#else
4356 atomic_t reset_task_pending;
4357 atomic_t reset_task_pending_mtu;
4358 atomic_t reset_task_pending_spare;
4359 atomic_t reset_task_pending_all;
4360#endif
4361
4362#ifdef CONFIG_CASSINI_QGE_DEBUG
4363 atomic_t interrupt_seen; /* 1 if any interrupts are getting through */
4364#endif
4365
4366 /* Link-down problem workaround */
4367#define LINK_TRANSITION_UNKNOWN 0
4368#define LINK_TRANSITION_ON_FAILURE 1
4369#define LINK_TRANSITION_STILL_FAILED 2
4370#define LINK_TRANSITION_LINK_UP 3
4371#define LINK_TRANSITION_LINK_CONFIG 4
4372#define LINK_TRANSITION_LINK_DOWN 5
4373#define LINK_TRANSITION_REQUESTED_RESET 6
4374 int link_transition;
4375 int link_transition_jiffies_valid;
4376 unsigned long link_transition_jiffies;
4377
4378 /* Tuning */
4379 u8 orig_cacheline_size; /* value when loaded */
4380#define CAS_PREF_CACHELINE_SIZE 0x20 /* Minimum desired */
4381
4382 /* Diagnostic counters and state. */
4383 int casreg_len; /* reg-space size for dumping */
4384 u64 pause_entered;
4385 u16 pause_last_time_recvd;
4386
4387 dma_addr_t block_dvma, tx_tiny_dvma[N_TX_RINGS];
4388 struct pci_dev *pdev;
4389 struct net_device *dev;
4390};
4391
4392#define TX_DESC_NEXT(r, x) (((x) + 1) & (TX_DESC_RINGN_SIZE(r) - 1))
4393#define RX_DESC_ENTRY(r, x) ((x) & (RX_DESC_RINGN_SIZE(r) - 1))
4394#define RX_COMP_ENTRY(r, x) ((x) & (RX_COMP_RINGN_SIZE(r) - 1))
4395
4396#define TX_BUFF_COUNT(r, x, y) ((x) <= (y) ? ((y) - (x)) : \
4397 (TX_DESC_RINGN_SIZE(r) - (x) + (y)))
4398
4399#define TX_BUFFS_AVAIL(cp, i) ((cp)->tx_old[(i)] <= (cp)->tx_new[(i)] ? \
4400 (cp)->tx_old[(i)] + (TX_DESC_RINGN_SIZE(i) - 1) - (cp)->tx_new[(i)] : \
4401 (cp)->tx_old[(i)] - (cp)->tx_new[(i)] - 1)
4402
4403#define CAS_ALIGN(addr, align) \
4404 (((unsigned long) (addr) + ((align) - 1UL)) & ~((align) - 1))
4405
4406#define RX_FIFO_SIZE 16384
4407#define EXPANSION_ROM_SIZE 65536
4408
4409#define CAS_MC_EXACT_MATCH_SIZE 15
4410#define CAS_MC_HASH_SIZE 256
4411#define CAS_MC_HASH_MAX (CAS_MC_EXACT_MATCH_SIZE + \
4412 CAS_MC_HASH_SIZE)
4413
4414#define TX_TARGET_ABORT_LEN 0x20
4415#define RX_SWIVEL_OFF_VAL 0x2
4416#define RX_AE_FREEN_VAL(x) (RX_DESC_RINGN_SIZE(x) >> 1)
4417#define RX_AE_COMP_VAL (RX_COMP_RING_SIZE >> 1)
4418#define RX_BLANK_INTR_PKT_VAL 0x05
4419#define RX_BLANK_INTR_TIME_VAL 0x0F
4420#define HP_TCP_THRESH_VAL 1530 /* reduce to enable reassembly */
4421
4422#define RX_SPARE_COUNT (RX_DESC_RING_SIZE >> 1)
4423#define RX_SPARE_RECOVER_VAL (RX_SPARE_COUNT >> 2)
4424
4425#endif /* _CASSINI_H */
diff --git a/drivers/net/cs89x0.c b/drivers/net/cs89x0.c
index cdc07ccd7332..a6078ad9b654 100644
--- a/drivers/net/cs89x0.c
+++ b/drivers/net/cs89x0.c
@@ -140,6 +140,7 @@
140 140
141#include <asm/system.h> 141#include <asm/system.h>
142#include <asm/io.h> 142#include <asm/io.h>
143#include <asm/irq.h>
143#if ALLOW_DMA 144#if ALLOW_DMA
144#include <asm/dma.h> 145#include <asm/dma.h>
145#endif 146#endif
diff --git a/drivers/net/ibmveth.c b/drivers/net/ibmveth.c
index 32d5fabd4b10..a2c4dd4fb221 100644
--- a/drivers/net/ibmveth.c
+++ b/drivers/net/ibmveth.c
@@ -99,7 +99,7 @@ static irqreturn_t ibmveth_interrupt(int irq, void *dev_instance, struct pt_regs
99static inline void ibmveth_schedule_replenishing(struct ibmveth_adapter*); 99static inline void ibmveth_schedule_replenishing(struct ibmveth_adapter*);
100 100
101#ifdef CONFIG_PROC_FS 101#ifdef CONFIG_PROC_FS
102#define IBMVETH_PROC_DIR "ibmveth" 102#define IBMVETH_PROC_DIR "net/ibmveth"
103static struct proc_dir_entry *ibmveth_proc_dir; 103static struct proc_dir_entry *ibmveth_proc_dir;
104#endif 104#endif
105 105
@@ -1010,7 +1010,7 @@ static int __devexit ibmveth_remove(struct vio_dev *dev)
1010#ifdef CONFIG_PROC_FS 1010#ifdef CONFIG_PROC_FS
1011static void ibmveth_proc_register_driver(void) 1011static void ibmveth_proc_register_driver(void)
1012{ 1012{
1013 ibmveth_proc_dir = create_proc_entry(IBMVETH_PROC_DIR, S_IFDIR, proc_net); 1013 ibmveth_proc_dir = proc_mkdir(IBMVETH_PROC_DIR, NULL);
1014 if (ibmveth_proc_dir) { 1014 if (ibmveth_proc_dir) {
1015 SET_MODULE_OWNER(ibmveth_proc_dir); 1015 SET_MODULE_OWNER(ibmveth_proc_dir);
1016 } 1016 }
@@ -1018,7 +1018,7 @@ static void ibmveth_proc_register_driver(void)
1018 1018
1019static void ibmveth_proc_unregister_driver(void) 1019static void ibmveth_proc_unregister_driver(void)
1020{ 1020{
1021 remove_proc_entry(IBMVETH_PROC_DIR, proc_net); 1021 remove_proc_entry(IBMVETH_PROC_DIR, NULL);
1022} 1022}
1023 1023
1024static void *ibmveth_seq_start(struct seq_file *seq, loff_t *pos) 1024static void *ibmveth_seq_start(struct seq_file *seq, loff_t *pos)
diff --git a/drivers/net/irda/vlsi_ir.c b/drivers/net/irda/vlsi_ir.c
index 6d9de626c967..651c5a6578fd 100644
--- a/drivers/net/irda/vlsi_ir.c
+++ b/drivers/net/irda/vlsi_ir.c
@@ -1875,11 +1875,11 @@ static int __init vlsi_mod_init(void)
1875 1875
1876 sirpulse = !!sirpulse; 1876 sirpulse = !!sirpulse;
1877 1877
1878 /* create_proc_entry returns NULL if !CONFIG_PROC_FS. 1878 /* proc_mkdir returns NULL if !CONFIG_PROC_FS.
1879 * Failure to create the procfs entry is handled like running 1879 * Failure to create the procfs entry is handled like running
1880 * without procfs - it's not required for the driver to work. 1880 * without procfs - it's not required for the driver to work.
1881 */ 1881 */
1882 vlsi_proc_root = create_proc_entry(PROC_DIR, S_IFDIR, NULL); 1882 vlsi_proc_root = proc_mkdir(PROC_DIR, NULL);
1883 if (vlsi_proc_root) { 1883 if (vlsi_proc_root) {
1884 /* protect registered procdir against module removal. 1884 /* protect registered procdir against module removal.
1885 * Because we are in the module init path there's no race 1885 * Because we are in the module init path there's no race
diff --git a/drivers/net/ns83820.c b/drivers/net/ns83820.c
index ed72a23c85dd..bc354a80c099 100644
--- a/drivers/net/ns83820.c
+++ b/drivers/net/ns83820.c
@@ -584,7 +584,7 @@ static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
584 return 0; 584 return 0;
585} 585}
586 586
587static inline int rx_refill(struct net_device *ndev, int gfp) 587static inline int rx_refill(struct net_device *ndev, unsigned int gfp)
588{ 588{
589 struct ns83820 *dev = PRIV(ndev); 589 struct ns83820 *dev = PRIV(ndev);
590 unsigned i; 590 unsigned i;
diff --git a/drivers/net/pcmcia/smc91c92_cs.c b/drivers/net/pcmcia/smc91c92_cs.c
index d652e1eddb45..c7cca842e5ee 100644
--- a/drivers/net/pcmcia/smc91c92_cs.c
+++ b/drivers/net/pcmcia/smc91c92_cs.c
@@ -1832,7 +1832,7 @@ static void fill_multicast_tbl(int count, struct dev_mc_list *addrs,
1832{ 1832{
1833 struct dev_mc_list *mc_addr; 1833 struct dev_mc_list *mc_addr;
1834 1834
1835 for (mc_addr = addrs; mc_addr && --count > 0; mc_addr = mc_addr->next) { 1835 for (mc_addr = addrs; mc_addr && count-- > 0; mc_addr = mc_addr->next) {
1836 u_int position = ether_crc(6, mc_addr->dmi_addr); 1836 u_int position = ether_crc(6, mc_addr->dmi_addr);
1837#ifndef final_version /* Verify multicast address. */ 1837#ifndef final_version /* Verify multicast address. */
1838 if ((mc_addr->dmi_addr[0] & 1) == 0) 1838 if ((mc_addr->dmi_addr[0] & 1) == 0)
diff --git a/drivers/net/pppoe.c b/drivers/net/pppoe.c
index 82f236cc3b9b..a842ecc60a34 100644
--- a/drivers/net/pppoe.c
+++ b/drivers/net/pppoe.c
@@ -1070,7 +1070,7 @@ static int __init pppoe_proc_init(void)
1070{ 1070{
1071 struct proc_dir_entry *p; 1071 struct proc_dir_entry *p;
1072 1072
1073 p = create_proc_entry("pppoe", S_IRUGO, proc_net); 1073 p = create_proc_entry("net/pppoe", S_IRUGO, NULL);
1074 if (!p) 1074 if (!p)
1075 return -ENOMEM; 1075 return -ENOMEM;
1076 1076
@@ -1142,7 +1142,7 @@ static void __exit pppoe_exit(void)
1142 dev_remove_pack(&pppoes_ptype); 1142 dev_remove_pack(&pppoes_ptype);
1143 dev_remove_pack(&pppoed_ptype); 1143 dev_remove_pack(&pppoed_ptype);
1144 unregister_netdevice_notifier(&pppoe_notifier); 1144 unregister_netdevice_notifier(&pppoe_notifier);
1145 remove_proc_entry("pppoe", proc_net); 1145 remove_proc_entry("net/pppoe", NULL);
1146 proto_unregister(&pppoe_sk_proto); 1146 proto_unregister(&pppoe_sk_proto);
1147} 1147}
1148 1148
diff --git a/drivers/net/r8169.c b/drivers/net/r8169.c
index 40c40eba2581..159b56a56ef4 100644
--- a/drivers/net/r8169.c
+++ b/drivers/net/r8169.c
@@ -92,8 +92,7 @@ VERSION 2.2LK <2005/01/25>
92#endif /* RTL8169_DEBUG */ 92#endif /* RTL8169_DEBUG */
93 93
94#define R8169_MSG_DEFAULT \ 94#define R8169_MSG_DEFAULT \
95 (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | NETIF_MSG_IFUP | \ 95 (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN)
96 NETIF_MSG_IFDOWN)
97 96
98#define TX_BUFFS_AVAIL(tp) \ 97#define TX_BUFFS_AVAIL(tp) \
99 (tp->dirty_tx + NUM_TX_DESC - tp->cur_tx - 1) 98 (tp->dirty_tx + NUM_TX_DESC - tp->cur_tx - 1)
diff --git a/drivers/net/sk98lin/skge.c b/drivers/net/sk98lin/skge.c
index 2e72d79a143c..b18c92cb629e 100644
--- a/drivers/net/sk98lin/skge.c
+++ b/drivers/net/sk98lin/skge.c
@@ -235,7 +235,7 @@ static int SkDrvDeInitAdapter(SK_AC *pAC, int devNbr);
235 * Extern Function Prototypes 235 * Extern Function Prototypes
236 * 236 *
237 ******************************************************************************/ 237 ******************************************************************************/
238static const char SKRootName[] = "sk98lin"; 238static const char SKRootName[] = "net/sk98lin";
239static struct proc_dir_entry *pSkRootDir; 239static struct proc_dir_entry *pSkRootDir;
240extern struct file_operations sk_proc_fops; 240extern struct file_operations sk_proc_fops;
241 241
@@ -5242,20 +5242,20 @@ static int __init skge_init(void)
5242{ 5242{
5243 int error; 5243 int error;
5244 5244
5245 pSkRootDir = proc_mkdir(SKRootName, proc_net); 5245 pSkRootDir = proc_mkdir(SKRootName, NULL);
5246 if (pSkRootDir) 5246 if (pSkRootDir)
5247 pSkRootDir->owner = THIS_MODULE; 5247 pSkRootDir->owner = THIS_MODULE;
5248 5248
5249 error = pci_register_driver(&skge_driver); 5249 error = pci_register_driver(&skge_driver);
5250 if (error) 5250 if (error)
5251 proc_net_remove(SKRootName); 5251 remove_proc_entry(SKRootName, NULL);
5252 return error; 5252 return error;
5253} 5253}
5254 5254
5255static void __exit skge_exit(void) 5255static void __exit skge_exit(void)
5256{ 5256{
5257 pci_unregister_driver(&skge_driver); 5257 pci_unregister_driver(&skge_driver);
5258 proc_net_remove(SKRootName); 5258 remove_proc_entry(SKRootName, NULL);
5259 5259
5260} 5260}
5261 5261
diff --git a/drivers/net/skge.c b/drivers/net/skge.c
index 189203c95330..572f121b1f4e 100644
--- a/drivers/net/skge.c
+++ b/drivers/net/skge.c
@@ -1644,6 +1644,22 @@ static void yukon_reset(struct skge_hw *hw, int port)
1644 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); 1644 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
1645} 1645}
1646 1646
1647/* Apparently, early versions of Yukon-Lite had wrong chip_id? */
1648static int is_yukon_lite_a0(struct skge_hw *hw)
1649{
1650 u32 reg;
1651 int ret;
1652
1653 if (hw->chip_id != CHIP_ID_YUKON)
1654 return 0;
1655
1656 reg = skge_read32(hw, B2_FAR);
1657 skge_write8(hw, B2_FAR + 3, 0xff);
1658 ret = (skge_read8(hw, B2_FAR + 3) != 0);
1659 skge_write32(hw, B2_FAR, reg);
1660 return ret;
1661}
1662
1647static void yukon_mac_init(struct skge_hw *hw, int port) 1663static void yukon_mac_init(struct skge_hw *hw, int port)
1648{ 1664{
1649 struct skge_port *skge = netdev_priv(hw->dev[port]); 1665 struct skge_port *skge = netdev_priv(hw->dev[port]);
@@ -1759,9 +1775,11 @@ static void yukon_mac_init(struct skge_hw *hw, int port)
1759 /* Configure Rx MAC FIFO */ 1775 /* Configure Rx MAC FIFO */
1760 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK); 1776 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
1761 reg = GMF_OPER_ON | GMF_RX_F_FL_ON; 1777 reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
1762 if (hw->chip_id == CHIP_ID_YUKON_LITE && 1778
1763 hw->chip_rev >= CHIP_REV_YU_LITE_A3) 1779 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
1780 if (is_yukon_lite_a0(hw))
1764 reg &= ~GMF_RX_F_FL_ON; 1781 reg &= ~GMF_RX_F_FL_ON;
1782
1765 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR); 1783 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
1766 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg); 1784 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
1767 /* 1785 /*
@@ -2820,21 +2838,29 @@ static void skge_netpoll(struct net_device *dev)
2820static int skge_set_mac_address(struct net_device *dev, void *p) 2838static int skge_set_mac_address(struct net_device *dev, void *p)
2821{ 2839{
2822 struct skge_port *skge = netdev_priv(dev); 2840 struct skge_port *skge = netdev_priv(dev);
2823 struct sockaddr *addr = p; 2841 struct skge_hw *hw = skge->hw;
2824 int err = 0; 2842 unsigned port = skge->port;
2843 const struct sockaddr *addr = p;
2825 2844
2826 if (!is_valid_ether_addr(addr->sa_data)) 2845 if (!is_valid_ether_addr(addr->sa_data))
2827 return -EADDRNOTAVAIL; 2846 return -EADDRNOTAVAIL;
2828 2847
2829 skge_down(dev); 2848 spin_lock_bh(&hw->phy_lock);
2830 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); 2849 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
2831 memcpy_toio(skge->hw->regs + B2_MAC_1 + skge->port*8, 2850 memcpy_toio(hw->regs + B2_MAC_1 + port*8,
2832 dev->dev_addr, ETH_ALEN); 2851 dev->dev_addr, ETH_ALEN);
2833 memcpy_toio(skge->hw->regs + B2_MAC_2 + skge->port*8, 2852 memcpy_toio(hw->regs + B2_MAC_2 + port*8,
2834 dev->dev_addr, ETH_ALEN); 2853 dev->dev_addr, ETH_ALEN);
2835 if (dev->flags & IFF_UP) 2854
2836 err = skge_up(dev); 2855 if (hw->chip_id == CHIP_ID_GENESIS)
2837 return err; 2856 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
2857 else {
2858 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
2859 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
2860 }
2861 spin_unlock_bh(&hw->phy_lock);
2862
2863 return 0;
2838} 2864}
2839 2865
2840static const struct { 2866static const struct {
diff --git a/drivers/net/tg3.c b/drivers/net/tg3.c
index 81f4aedf534c..1802c3b48799 100644
--- a/drivers/net/tg3.c
+++ b/drivers/net/tg3.c
@@ -67,8 +67,8 @@
67 67
68#define DRV_MODULE_NAME "tg3" 68#define DRV_MODULE_NAME "tg3"
69#define PFX DRV_MODULE_NAME ": " 69#define PFX DRV_MODULE_NAME ": "
70#define DRV_MODULE_VERSION "3.40" 70#define DRV_MODULE_VERSION "3.42"
71#define DRV_MODULE_RELDATE "September 15, 2005" 71#define DRV_MODULE_RELDATE "Oct 3, 2005"
72 72
73#define TG3_DEF_MAC_MODE 0 73#define TG3_DEF_MAC_MODE 0
74#define TG3_DEF_RX_MODE 0 74#define TG3_DEF_RX_MODE 0
@@ -3389,7 +3389,8 @@ static irqreturn_t tg3_test_isr(int irq, void *dev_id,
3389 struct tg3 *tp = netdev_priv(dev); 3389 struct tg3 *tp = netdev_priv(dev);
3390 struct tg3_hw_status *sblk = tp->hw_status; 3390 struct tg3_hw_status *sblk = tp->hw_status;
3391 3391
3392 if (sblk->status & SD_STATUS_UPDATED) { 3392 if ((sblk->status & SD_STATUS_UPDATED) ||
3393 !(tr32(TG3PCI_PCISTATE) & PCISTATE_INT_NOT_ACTIVE)) {
3393 tw32_mailbox(MAILBOX_INTERRUPT_0 + TG3_64BIT_REG_LOW, 3394 tw32_mailbox(MAILBOX_INTERRUPT_0 + TG3_64BIT_REG_LOW,
3394 0x00000001); 3395 0x00000001);
3395 return IRQ_RETVAL(1); 3396 return IRQ_RETVAL(1);
@@ -5395,6 +5396,9 @@ static int tg3_set_mac_addr(struct net_device *dev, void *p)
5395 struct tg3 *tp = netdev_priv(dev); 5396 struct tg3 *tp = netdev_priv(dev);
5396 struct sockaddr *addr = p; 5397 struct sockaddr *addr = p;
5397 5398
5399 if (!is_valid_ether_addr(addr->sa_data))
5400 return -EINVAL;
5401
5398 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 5402 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5399 5403
5400 spin_lock_bh(&tp->lock); 5404 spin_lock_bh(&tp->lock);
@@ -5806,6 +5810,13 @@ static int tg3_reset_hw(struct tg3 *tp)
5806 } 5810 }
5807 memset(tp->hw_status, 0, TG3_HW_STATUS_SIZE); 5811 memset(tp->hw_status, 0, TG3_HW_STATUS_SIZE);
5808 5812
5813 if (tp->tg3_flags2 & TG3_FLG2_MII_SERDES) {
5814 tp->tg3_flags2 &= ~TG3_FLG2_PARALLEL_DETECT;
5815 /* reset to prevent losing 1st rx packet intermittently */
5816 tw32_f(MAC_RX_MODE, RX_MODE_RESET);
5817 udelay(10);
5818 }
5819
5809 tp->mac_mode = MAC_MODE_TXSTAT_ENABLE | MAC_MODE_RXSTAT_ENABLE | 5820 tp->mac_mode = MAC_MODE_TXSTAT_ENABLE | MAC_MODE_RXSTAT_ENABLE |
5810 MAC_MODE_TDE_ENABLE | MAC_MODE_RDE_ENABLE | MAC_MODE_FHDE_ENABLE; 5821 MAC_MODE_TDE_ENABLE | MAC_MODE_RDE_ENABLE | MAC_MODE_FHDE_ENABLE;
5811 tw32_f(MAC_MODE, tp->mac_mode | MAC_MODE_RXSTAT_CLEAR | MAC_MODE_TXSTAT_CLEAR); 5822 tw32_f(MAC_MODE, tp->mac_mode | MAC_MODE_RXSTAT_CLEAR | MAC_MODE_TXSTAT_CLEAR);
@@ -5937,7 +5948,7 @@ static int tg3_reset_hw(struct tg3 *tp)
5937 tw32(MAC_LED_CTRL, tp->led_ctrl); 5948 tw32(MAC_LED_CTRL, tp->led_ctrl);
5938 5949
5939 tw32(MAC_MI_STAT, MAC_MI_STAT_LNKSTAT_ATTN_ENAB); 5950 tw32(MAC_MI_STAT, MAC_MI_STAT_LNKSTAT_ATTN_ENAB);
5940 if (tp->tg3_flags2 & TG3_FLG2_ANY_SERDES) { 5951 if (tp->tg3_flags2 & TG3_FLG2_PHY_SERDES) {
5941 tw32_f(MAC_RX_MODE, RX_MODE_RESET); 5952 tw32_f(MAC_RX_MODE, RX_MODE_RESET);
5942 udelay(10); 5953 udelay(10);
5943 } 5954 }
@@ -7360,12 +7371,17 @@ static int tg3_nway_reset(struct net_device *dev)
7360 if (!netif_running(dev)) 7371 if (!netif_running(dev))
7361 return -EAGAIN; 7372 return -EAGAIN;
7362 7373
7374 if (tp->tg3_flags2 & TG3_FLG2_PHY_SERDES)
7375 return -EINVAL;
7376
7363 spin_lock_bh(&tp->lock); 7377 spin_lock_bh(&tp->lock);
7364 r = -EINVAL; 7378 r = -EINVAL;
7365 tg3_readphy(tp, MII_BMCR, &bmcr); 7379 tg3_readphy(tp, MII_BMCR, &bmcr);
7366 if (!tg3_readphy(tp, MII_BMCR, &bmcr) && 7380 if (!tg3_readphy(tp, MII_BMCR, &bmcr) &&
7367 (bmcr & BMCR_ANENABLE)) { 7381 ((bmcr & BMCR_ANENABLE) ||
7368 tg3_writephy(tp, MII_BMCR, bmcr | BMCR_ANRESTART); 7382 (tp->tg3_flags2 & TG3_FLG2_PARALLEL_DETECT))) {
7383 tg3_writephy(tp, MII_BMCR, bmcr | BMCR_ANRESTART |
7384 BMCR_ANENABLE);
7369 r = 0; 7385 r = 0;
7370 } 7386 }
7371 spin_unlock_bh(&tp->lock); 7387 spin_unlock_bh(&tp->lock);
@@ -7927,19 +7943,32 @@ static int tg3_run_loopback(struct tg3 *tp, int loopback_mode)
7927 struct tg3_rx_buffer_desc *desc; 7943 struct tg3_rx_buffer_desc *desc;
7928 7944
7929 if (loopback_mode == TG3_MAC_LOOPBACK) { 7945 if (loopback_mode == TG3_MAC_LOOPBACK) {
7946 /* HW errata - mac loopback fails in some cases on 5780.
7947 * Normal traffic and PHY loopback are not affected by
7948 * errata.
7949 */
7950 if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5780)
7951 return 0;
7952
7930 mac_mode = (tp->mac_mode & ~MAC_MODE_PORT_MODE_MASK) | 7953 mac_mode = (tp->mac_mode & ~MAC_MODE_PORT_MODE_MASK) |
7931 MAC_MODE_PORT_INT_LPBACK | MAC_MODE_LINK_POLARITY | 7954 MAC_MODE_PORT_INT_LPBACK | MAC_MODE_LINK_POLARITY |
7932 MAC_MODE_PORT_MODE_GMII; 7955 MAC_MODE_PORT_MODE_GMII;
7933 tw32(MAC_MODE, mac_mode); 7956 tw32(MAC_MODE, mac_mode);
7934 } else if (loopback_mode == TG3_PHY_LOOPBACK) { 7957 } else if (loopback_mode == TG3_PHY_LOOPBACK) {
7958 tg3_writephy(tp, MII_BMCR, BMCR_LOOPBACK | BMCR_FULLDPLX |
7959 BMCR_SPEED1000);
7960 udelay(40);
7961 /* reset to prevent losing 1st rx packet intermittently */
7962 if (tp->tg3_flags2 & TG3_FLG2_MII_SERDES) {
7963 tw32_f(MAC_RX_MODE, RX_MODE_RESET);
7964 udelay(10);
7965 tw32_f(MAC_RX_MODE, tp->rx_mode);
7966 }
7935 mac_mode = (tp->mac_mode & ~MAC_MODE_PORT_MODE_MASK) | 7967 mac_mode = (tp->mac_mode & ~MAC_MODE_PORT_MODE_MASK) |
7936 MAC_MODE_LINK_POLARITY | MAC_MODE_PORT_MODE_GMII; 7968 MAC_MODE_LINK_POLARITY | MAC_MODE_PORT_MODE_GMII;
7937 if ((tp->phy_id & PHY_ID_MASK) == PHY_ID_BCM5401) 7969 if ((tp->phy_id & PHY_ID_MASK) == PHY_ID_BCM5401)
7938 mac_mode &= ~MAC_MODE_LINK_POLARITY; 7970 mac_mode &= ~MAC_MODE_LINK_POLARITY;
7939 tw32(MAC_MODE, mac_mode); 7971 tw32(MAC_MODE, mac_mode);
7940
7941 tg3_writephy(tp, MII_BMCR, BMCR_LOOPBACK | BMCR_FULLDPLX |
7942 BMCR_SPEED1000);
7943 } 7972 }
7944 else 7973 else
7945 return -EINVAL; 7974 return -EINVAL;
@@ -9255,8 +9284,8 @@ static int __devinit tg3_get_invariants(struct tg3 *tp)
9255 static struct pci_device_id write_reorder_chipsets[] = { 9284 static struct pci_device_id write_reorder_chipsets[] = {
9256 { PCI_DEVICE(PCI_VENDOR_ID_AMD, 9285 { PCI_DEVICE(PCI_VENDOR_ID_AMD,
9257 PCI_DEVICE_ID_AMD_FE_GATE_700C) }, 9286 PCI_DEVICE_ID_AMD_FE_GATE_700C) },
9258 { PCI_DEVICE(PCI_VENDOR_ID_AMD, 9287 { PCI_DEVICE(PCI_VENDOR_ID_VIA,
9259 PCI_DEVICE_ID_AMD_K8_NB) }, 9288 PCI_DEVICE_ID_VIA_8385_0) },
9260 { }, 9289 { },
9261 }; 9290 };
9262 u32 misc_ctrl_reg; 9291 u32 misc_ctrl_reg;
@@ -9271,15 +9300,6 @@ static int __devinit tg3_get_invariants(struct tg3 *tp)
9271 tp->tg3_flags2 |= TG3_FLG2_SUN_570X; 9300 tp->tg3_flags2 |= TG3_FLG2_SUN_570X;
9272#endif 9301#endif
9273 9302
9274 /* If we have an AMD 762 or K8 chipset, write
9275 * reordering to the mailbox registers done by the host
9276 * controller can cause major troubles. We read back from
9277 * every mailbox register write to force the writes to be
9278 * posted to the chip in order.
9279 */
9280 if (pci_dev_present(write_reorder_chipsets))
9281 tp->tg3_flags |= TG3_FLAG_MBOX_WRITE_REORDER;
9282
9283 /* Force memory write invalidate off. If we leave it on, 9303 /* Force memory write invalidate off. If we leave it on,
9284 * then on 5700_BX chips we have to enable a workaround. 9304 * then on 5700_BX chips we have to enable a workaround.
9285 * The workaround is to set the TG3PCI_DMA_RW_CTRL boundary 9305 * The workaround is to set the TG3PCI_DMA_RW_CTRL boundary
@@ -9410,6 +9430,16 @@ static int __devinit tg3_get_invariants(struct tg3 *tp)
9410 if (pci_find_capability(tp->pdev, PCI_CAP_ID_EXP) != 0) 9430 if (pci_find_capability(tp->pdev, PCI_CAP_ID_EXP) != 0)
9411 tp->tg3_flags2 |= TG3_FLG2_PCI_EXPRESS; 9431 tp->tg3_flags2 |= TG3_FLG2_PCI_EXPRESS;
9412 9432
9433 /* If we have an AMD 762 or VIA K8T800 chipset, write
9434 * reordering to the mailbox registers done by the host
9435 * controller can cause major troubles. We read back from
9436 * every mailbox register write to force the writes to be
9437 * posted to the chip in order.
9438 */
9439 if (pci_dev_present(write_reorder_chipsets) &&
9440 !(tp->tg3_flags2 & TG3_FLG2_PCI_EXPRESS))
9441 tp->tg3_flags |= TG3_FLAG_MBOX_WRITE_REORDER;
9442
9413 if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5703 && 9443 if (GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5703 &&
9414 tp->pci_lat_timer < 64) { 9444 tp->pci_lat_timer < 64) {
9415 tp->pci_lat_timer = 64; 9445 tp->pci_lat_timer = 64;
@@ -10324,6 +10354,44 @@ static char * __devinit tg3_phy_string(struct tg3 *tp)
10324 }; 10354 };
10325} 10355}
10326 10356
10357static char * __devinit tg3_bus_string(struct tg3 *tp, char *str)
10358{
10359 if (tp->tg3_flags2 & TG3_FLG2_PCI_EXPRESS) {
10360 strcpy(str, "PCI Express");
10361 return str;
10362 } else if (tp->tg3_flags & TG3_FLAG_PCIX_MODE) {
10363 u32 clock_ctrl = tr32(TG3PCI_CLOCK_CTRL) & 0x1f;
10364
10365 strcpy(str, "PCIX:");
10366
10367 if ((clock_ctrl == 7) ||
10368 ((tr32(GRC_MISC_CFG) & GRC_MISC_CFG_BOARD_ID_MASK) ==
10369 GRC_MISC_CFG_BOARD_ID_5704CIOBE))
10370 strcat(str, "133MHz");
10371 else if (clock_ctrl == 0)
10372 strcat(str, "33MHz");
10373 else if (clock_ctrl == 2)
10374 strcat(str, "50MHz");
10375 else if (clock_ctrl == 4)
10376 strcat(str, "66MHz");
10377 else if (clock_ctrl == 6)
10378 strcat(str, "100MHz");
10379 else if (clock_ctrl == 7)
10380 strcat(str, "133MHz");
10381 } else {
10382 strcpy(str, "PCI:");
10383 if (tp->tg3_flags & TG3_FLAG_PCI_HIGH_SPEED)
10384 strcat(str, "66MHz");
10385 else
10386 strcat(str, "33MHz");
10387 }
10388 if (tp->tg3_flags & TG3_FLAG_PCI_32BIT)
10389 strcat(str, ":32-bit");
10390 else
10391 strcat(str, ":64-bit");
10392 return str;
10393}
10394
10327static struct pci_dev * __devinit tg3_find_5704_peer(struct tg3 *tp) 10395static struct pci_dev * __devinit tg3_find_5704_peer(struct tg3 *tp)
10328{ 10396{
10329 struct pci_dev *peer; 10397 struct pci_dev *peer;
@@ -10386,6 +10454,7 @@ static int __devinit tg3_init_one(struct pci_dev *pdev,
10386 struct net_device *dev; 10454 struct net_device *dev;
10387 struct tg3 *tp; 10455 struct tg3 *tp;
10388 int i, err, pci_using_dac, pm_cap; 10456 int i, err, pci_using_dac, pm_cap;
10457 char str[40];
10389 10458
10390 if (tg3_version_printed++ == 0) 10459 if (tg3_version_printed++ == 0)
10391 printk(KERN_INFO "%s", version); 10460 printk(KERN_INFO "%s", version);
@@ -10631,16 +10700,12 @@ static int __devinit tg3_init_one(struct pci_dev *pdev,
10631 10700
10632 pci_set_drvdata(pdev, dev); 10701 pci_set_drvdata(pdev, dev);
10633 10702
10634 printk(KERN_INFO "%s: Tigon3 [partno(%s) rev %04x PHY(%s)] (PCI%s:%s:%s) %sBaseT Ethernet ", 10703 printk(KERN_INFO "%s: Tigon3 [partno(%s) rev %04x PHY(%s)] (%s) %sBaseT Ethernet ",
10635 dev->name, 10704 dev->name,
10636 tp->board_part_number, 10705 tp->board_part_number,
10637 tp->pci_chip_rev_id, 10706 tp->pci_chip_rev_id,
10638 tg3_phy_string(tp), 10707 tg3_phy_string(tp),
10639 ((tp->tg3_flags & TG3_FLAG_PCIX_MODE) ? "X" : ""), 10708 tg3_bus_string(tp, str),
10640 ((tp->tg3_flags & TG3_FLAG_PCI_HIGH_SPEED) ?
10641 ((tp->tg3_flags & TG3_FLAG_PCIX_MODE) ? "133MHz" : "66MHz") :
10642 ((tp->tg3_flags & TG3_FLAG_PCIX_MODE) ? "100MHz" : "33MHz")),
10643 ((tp->tg3_flags & TG3_FLAG_PCI_32BIT) ? "32-bit" : "64-bit"),
10644 (tp->tg3_flags & TG3_FLAG_10_100_ONLY) ? "10/100" : "10/100/1000"); 10709 (tp->tg3_flags & TG3_FLAG_10_100_ONLY) ? "10/100" : "10/100/1000");
10645 10710
10646 for (i = 0; i < 6; i++) 10711 for (i = 0; i < 6; i++)
diff --git a/drivers/net/tg3.h b/drivers/net/tg3.h
index c184b773e585..2e733c60bfa4 100644
--- a/drivers/net/tg3.h
+++ b/drivers/net/tg3.h
@@ -2246,6 +2246,7 @@ struct tg3 {
2246 (X) == PHY_ID_BCM5411 || (X) == PHY_ID_BCM5701 || \ 2246 (X) == PHY_ID_BCM5411 || (X) == PHY_ID_BCM5701 || \
2247 (X) == PHY_ID_BCM5703 || (X) == PHY_ID_BCM5704 || \ 2247 (X) == PHY_ID_BCM5703 || (X) == PHY_ID_BCM5704 || \
2248 (X) == PHY_ID_BCM5705 || (X) == PHY_ID_BCM5750 || \ 2248 (X) == PHY_ID_BCM5705 || (X) == PHY_ID_BCM5750 || \
2249 (X) == PHY_ID_BCM5752 || (X) == PHY_ID_BCM5780 || \
2249 (X) == PHY_ID_BCM8002) 2250 (X) == PHY_ID_BCM8002)
2250 2251
2251 struct tg3_hw_stats *hw_stats; 2252 struct tg3_hw_stats *hw_stats;
diff --git a/drivers/net/wan/sdlamain.c b/drivers/net/wan/sdlamain.c
index 74e151acef3e..7a8b22a7ea31 100644
--- a/drivers/net/wan/sdlamain.c
+++ b/drivers/net/wan/sdlamain.c
@@ -57,6 +57,7 @@
57#include <linux/ioport.h> /* request_region(), release_region() */ 57#include <linux/ioport.h> /* request_region(), release_region() */
58#include <linux/wanrouter.h> /* WAN router definitions */ 58#include <linux/wanrouter.h> /* WAN router definitions */
59#include <linux/wanpipe.h> /* WANPIPE common user API definitions */ 59#include <linux/wanpipe.h> /* WANPIPE common user API definitions */
60#include <linux/rcupdate.h>
60 61
61#include <linux/in.h> 62#include <linux/in.h>
62#include <asm/io.h> /* phys_to_virt() */ 63#include <asm/io.h> /* phys_to_virt() */
@@ -1268,37 +1269,41 @@ unsigned long get_ip_address(struct net_device *dev, int option)
1268 1269
1269 struct in_ifaddr *ifaddr; 1270 struct in_ifaddr *ifaddr;
1270 struct in_device *in_dev; 1271 struct in_device *in_dev;
1272 unsigned long addr = 0;
1271 1273
1272 if ((in_dev = __in_dev_get(dev)) == NULL){ 1274 rcu_read_lock();
1273 return 0; 1275 if ((in_dev = __in_dev_get_rcu(dev)) == NULL){
1276 goto out;
1274 } 1277 }
1275 1278
1276 if ((ifaddr = in_dev->ifa_list)== NULL ){ 1279 if ((ifaddr = in_dev->ifa_list)== NULL ){
1277 return 0; 1280 goto out;
1278 } 1281 }
1279 1282
1280 switch (option){ 1283 switch (option){
1281 1284
1282 case WAN_LOCAL_IP: 1285 case WAN_LOCAL_IP:
1283 return ifaddr->ifa_local; 1286 addr = ifaddr->ifa_local;
1284 break; 1287 break;
1285 1288
1286 case WAN_POINTOPOINT_IP: 1289 case WAN_POINTOPOINT_IP:
1287 return ifaddr->ifa_address; 1290 addr = ifaddr->ifa_address;
1288 break; 1291 break;
1289 1292
1290 case WAN_NETMASK_IP: 1293 case WAN_NETMASK_IP:
1291 return ifaddr->ifa_mask; 1294 addr = ifaddr->ifa_mask;
1292 break; 1295 break;
1293 1296
1294 case WAN_BROADCAST_IP: 1297 case WAN_BROADCAST_IP:
1295 return ifaddr->ifa_broadcast; 1298 addr = ifaddr->ifa_broadcast;
1296 break; 1299 break;
1297 default: 1300 default:
1298 return 0; 1301 break;
1299 } 1302 }
1300 1303
1301 return 0; 1304out:
1305 rcu_read_unlock();
1306 return addr;
1302} 1307}
1303 1308
1304void add_gateway(sdla_t *card, struct net_device *dev) 1309void add_gateway(sdla_t *card, struct net_device *dev)
diff --git a/drivers/net/wan/syncppp.c b/drivers/net/wan/syncppp.c
index 3731b22f6757..2d1bba06a085 100644
--- a/drivers/net/wan/syncppp.c
+++ b/drivers/net/wan/syncppp.c
@@ -767,7 +767,7 @@ static void sppp_cisco_input (struct sppp *sp, struct sk_buff *skb)
767 u32 addr = 0, mask = ~0; /* FIXME: is the mask correct? */ 767 u32 addr = 0, mask = ~0; /* FIXME: is the mask correct? */
768#ifdef CONFIG_INET 768#ifdef CONFIG_INET
769 rcu_read_lock(); 769 rcu_read_lock();
770 if ((in_dev = __in_dev_get(dev)) != NULL) 770 if ((in_dev = __in_dev_get_rcu(dev)) != NULL)
771 { 771 {
772 for (ifa=in_dev->ifa_list; ifa != NULL; 772 for (ifa=in_dev->ifa_list; ifa != NULL;
773 ifa=ifa->ifa_next) { 773 ifa=ifa->ifa_next) {
diff --git a/drivers/net/wireless/strip.c b/drivers/net/wireless/strip.c
index 4b0acae22b0d..7bc7fc823128 100644
--- a/drivers/net/wireless/strip.c
+++ b/drivers/net/wireless/strip.c
@@ -1352,7 +1352,7 @@ static unsigned char *strip_make_packet(unsigned char *buffer,
1352 struct in_device *in_dev; 1352 struct in_device *in_dev;
1353 1353
1354 rcu_read_lock(); 1354 rcu_read_lock();
1355 in_dev = __in_dev_get(strip_info->dev); 1355 in_dev = __in_dev_get_rcu(strip_info->dev);
1356 if (in_dev == NULL) { 1356 if (in_dev == NULL) {
1357 rcu_read_unlock(); 1357 rcu_read_unlock();
1358 return NULL; 1358 return NULL;
@@ -1508,7 +1508,7 @@ static void strip_send(struct strip *strip_info, struct sk_buff *skb)
1508 1508
1509 brd = addr = 0; 1509 brd = addr = 0;
1510 rcu_read_lock(); 1510 rcu_read_lock();
1511 in_dev = __in_dev_get(strip_info->dev); 1511 in_dev = __in_dev_get_rcu(strip_info->dev);
1512 if (in_dev) { 1512 if (in_dev) {
1513 if (in_dev->ifa_list) { 1513 if (in_dev->ifa_list) {
1514 brd = in_dev->ifa_list->ifa_broadcast; 1514 brd = in_dev->ifa_list->ifa_broadcast;
diff --git a/drivers/parisc/led.c b/drivers/parisc/led.c
index e90fb72a6962..286902298e33 100644
--- a/drivers/parisc/led.c
+++ b/drivers/parisc/led.c
@@ -37,6 +37,7 @@
37#include <linux/proc_fs.h> 37#include <linux/proc_fs.h>
38#include <linux/ctype.h> 38#include <linux/ctype.h>
39#include <linux/blkdev.h> 39#include <linux/blkdev.h>
40#include <linux/rcupdate.h>
40#include <asm/io.h> 41#include <asm/io.h>
41#include <asm/processor.h> 42#include <asm/processor.h>
42#include <asm/hardware.h> 43#include <asm/hardware.h>
@@ -358,9 +359,10 @@ static __inline__ int led_get_net_activity(void)
358 /* we are running as tasklet, so locking dev_base 359 /* we are running as tasklet, so locking dev_base
359 * for reading should be OK */ 360 * for reading should be OK */
360 read_lock(&dev_base_lock); 361 read_lock(&dev_base_lock);
362 rcu_read_lock();
361 for (dev = dev_base; dev; dev = dev->next) { 363 for (dev = dev_base; dev; dev = dev->next) {
362 struct net_device_stats *stats; 364 struct net_device_stats *stats;
363 struct in_device *in_dev = __in_dev_get(dev); 365 struct in_device *in_dev = __in_dev_get_rcu(dev);
364 if (!in_dev || !in_dev->ifa_list) 366 if (!in_dev || !in_dev->ifa_list)
365 continue; 367 continue;
366 if (LOOPBACK(in_dev->ifa_list->ifa_local)) 368 if (LOOPBACK(in_dev->ifa_list->ifa_local))
@@ -371,6 +373,7 @@ static __inline__ int led_get_net_activity(void)
371 rx_total += stats->rx_packets; 373 rx_total += stats->rx_packets;
372 tx_total += stats->tx_packets; 374 tx_total += stats->tx_packets;
373 } 375 }
376 rcu_read_unlock();
374 read_unlock(&dev_base_lock); 377 read_unlock(&dev_base_lock);
375 378
376 retval = 0; 379 retval = 0;
diff --git a/drivers/pci/probe.c b/drivers/pci/probe.c
index c77d5b1bbff6..005786416bb5 100644
--- a/drivers/pci/probe.c
+++ b/drivers/pci/probe.c
@@ -402,6 +402,12 @@ static void pci_enable_crs(struct pci_dev *dev)
402static void __devinit pci_fixup_parent_subordinate_busnr(struct pci_bus *child, int max) 402static void __devinit pci_fixup_parent_subordinate_busnr(struct pci_bus *child, int max)
403{ 403{
404 struct pci_bus *parent = child->parent; 404 struct pci_bus *parent = child->parent;
405
406 /* Attempts to fix that up are really dangerous unless
407 we're going to re-assign all bus numbers. */
408 if (!pcibios_assign_all_busses())
409 return;
410
405 while (parent->parent && parent->subordinate < max) { 411 while (parent->parent && parent->subordinate < max) {
406 parent->subordinate = max; 412 parent->subordinate = max;
407 pci_write_config_byte(parent->self, PCI_SUBORDINATE_BUS, max); 413 pci_write_config_byte(parent->self, PCI_SUBORDINATE_BUS, max);
@@ -478,8 +484,18 @@ int __devinit pci_scan_bridge(struct pci_bus *bus, struct pci_dev * dev, int max
478 * We need to assign a number to this bus which we always 484 * We need to assign a number to this bus which we always
479 * do in the second pass. 485 * do in the second pass.
480 */ 486 */
481 if (!pass) 487 if (!pass) {
488 if (pcibios_assign_all_busses())
489 /* Temporarily disable forwarding of the
490 configuration cycles on all bridges in
491 this bus segment to avoid possible
492 conflicts in the second pass between two
493 bridges programmed with overlapping
494 bus ranges. */
495 pci_write_config_dword(dev, PCI_PRIMARY_BUS,
496 buses & ~0xffffff);
482 return max; 497 return max;
498 }
483 499
484 /* Clear errors */ 500 /* Clear errors */
485 pci_write_config_word(dev, PCI_STATUS, 0xffff); 501 pci_write_config_word(dev, PCI_STATUS, 0xffff);
diff --git a/drivers/pcmcia/Kconfig b/drivers/pcmcia/Kconfig
index ddc741e6ecbf..36cc9a96a338 100644
--- a/drivers/pcmcia/Kconfig
+++ b/drivers/pcmcia/Kconfig
@@ -146,7 +146,7 @@ config I82365
146 146
147config TCIC 147config TCIC
148 tristate "Databook TCIC host bridge support" 148 tristate "Databook TCIC host bridge support"
149 depends on PCMCIA 149 depends on PCMCIA && ISA
150 select PCCARD_NONSTATIC 150 select PCCARD_NONSTATIC
151 help 151 help
152 Say Y here to include support for the Databook TCIC family of PCMCIA 152 Say Y here to include support for the Databook TCIC family of PCMCIA
diff --git a/drivers/pcmcia/cardbus.c b/drivers/pcmcia/cardbus.c
index 1d755e20880c..3f6d51d11374 100644
--- a/drivers/pcmcia/cardbus.c
+++ b/drivers/pcmcia/cardbus.c
@@ -228,6 +228,11 @@ int cb_alloc(struct pcmcia_socket * s)
228 pci_bus_size_bridges(bus); 228 pci_bus_size_bridges(bus);
229 pci_bus_assign_resources(bus); 229 pci_bus_assign_resources(bus);
230 cardbus_assign_irqs(bus, s->pci_irq); 230 cardbus_assign_irqs(bus, s->pci_irq);
231
232 /* socket specific tune function */
233 if (s->tune_bridge)
234 s->tune_bridge(s, bus);
235
231 pci_enable_bridges(bus); 236 pci_enable_bridges(bus);
232 pci_bus_add_devices(bus); 237 pci_bus_add_devices(bus);
233 238
diff --git a/drivers/pcmcia/omap_cf.c b/drivers/pcmcia/omap_cf.c
index 08d1c9288264..94be9e51654e 100644
--- a/drivers/pcmcia/omap_cf.c
+++ b/drivers/pcmcia/omap_cf.c
@@ -22,7 +22,6 @@
22 22
23#include <asm/hardware.h> 23#include <asm/hardware.h>
24#include <asm/io.h> 24#include <asm/io.h>
25#include <asm/mach-types.h>
26#include <asm/sizes.h> 25#include <asm/sizes.h>
27 26
28#include <asm/arch/mux.h> 27#include <asm/arch/mux.h>
diff --git a/drivers/pcmcia/rsrc_nonstatic.c b/drivers/pcmcia/rsrc_nonstatic.c
index c42455d20eb6..f9a5c70284b5 100644
--- a/drivers/pcmcia/rsrc_nonstatic.c
+++ b/drivers/pcmcia/rsrc_nonstatic.c
@@ -691,7 +691,7 @@ static int adjust_memory(struct pcmcia_socket *s, unsigned int action, unsigned
691 unsigned long size = end - start + 1; 691 unsigned long size = end - start + 1;
692 int ret = 0; 692 int ret = 0;
693 693
694 if (end <= start) 694 if (end < start)
695 return -EINVAL; 695 return -EINVAL;
696 696
697 down(&rsrc_sem); 697 down(&rsrc_sem);
@@ -724,7 +724,7 @@ static int adjust_io(struct pcmcia_socket *s, unsigned int action, unsigned long
724 unsigned long size = end - start + 1; 724 unsigned long size = end - start + 1;
725 int ret = 0; 725 int ret = 0;
726 726
727 if (end <= start) 727 if (end < start)
728 return -EINVAL; 728 return -EINVAL;
729 729
730 if (end > IO_SPACE_LIMIT) 730 if (end > IO_SPACE_LIMIT)
@@ -817,7 +817,7 @@ static int nonstatic_autoadd_resources(struct pcmcia_socket *s)
817 817
818 /* if we got at least one of IO, and one of MEM, we can be glad and 818 /* if we got at least one of IO, and one of MEM, we can be glad and
819 * activate the PCMCIA subsystem */ 819 * activate the PCMCIA subsystem */
820 if (done & (IORESOURCE_MEM | IORESOURCE_IO)) 820 if (done == (IORESOURCE_MEM | IORESOURCE_IO))
821 s->resource_setup_done = 1; 821 s->resource_setup_done = 1;
822 822
823 return 0; 823 return 0;
@@ -925,7 +925,7 @@ static ssize_t store_io_db(struct class_device *class_dev, const char *buf, size
925 return -EINVAL; 925 return -EINVAL;
926 } 926 }
927 } 927 }
928 if (end_addr <= start_addr) 928 if (end_addr < start_addr)
929 return -EINVAL; 929 return -EINVAL;
930 930
931 ret = adjust_io(s, add, start_addr, end_addr); 931 ret = adjust_io(s, add, start_addr, end_addr);
@@ -977,7 +977,7 @@ static ssize_t store_mem_db(struct class_device *class_dev, const char *buf, siz
977 return -EINVAL; 977 return -EINVAL;
978 } 978 }
979 } 979 }
980 if (end_addr <= start_addr) 980 if (end_addr < start_addr)
981 return -EINVAL; 981 return -EINVAL;
982 982
983 ret = adjust_memory(s, add, start_addr, end_addr); 983 ret = adjust_memory(s, add, start_addr, end_addr);
diff --git a/drivers/pcmcia/ti113x.h b/drivers/pcmcia/ti113x.h
index fbe233e19ceb..da0b404561c9 100644
--- a/drivers/pcmcia/ti113x.h
+++ b/drivers/pcmcia/ti113x.h
@@ -59,6 +59,7 @@
59 59
60#define TI122X_SCR_SER_STEP 0xc0000000 60#define TI122X_SCR_SER_STEP 0xc0000000
61#define TI122X_SCR_INTRTIE 0x20000000 61#define TI122X_SCR_INTRTIE 0x20000000
62#define TIXX21_SCR_TIEALL 0x10000000
62#define TI122X_SCR_CBRSVD 0x00400000 63#define TI122X_SCR_CBRSVD 0x00400000
63#define TI122X_SCR_MRBURSTDN 0x00008000 64#define TI122X_SCR_MRBURSTDN 0x00008000
64#define TI122X_SCR_MRBURSTUP 0x00004000 65#define TI122X_SCR_MRBURSTUP 0x00004000
@@ -153,6 +154,12 @@
153/* EnE test register */ 154/* EnE test register */
154#define ENE_TEST_C9 0xc9 /* 8bit */ 155#define ENE_TEST_C9 0xc9 /* 8bit */
155#define ENE_TEST_C9_TLTENABLE 0x02 156#define ENE_TEST_C9_TLTENABLE 0x02
157#define ENE_TEST_C9_PFENABLE_F0 0x04
158#define ENE_TEST_C9_PFENABLE_F1 0x08
159#define ENE_TEST_C9_PFENABLE (ENE_TEST_C9_PFENABLE_F0 | ENE_TEST_C9_PFENABLE_F0)
160#define ENE_TEST_C9_WPDISALBLE_F0 0x40
161#define ENE_TEST_C9_WPDISALBLE_F1 0x80
162#define ENE_TEST_C9_WPDISALBLE (ENE_TEST_C9_WPDISALBLE_F0 | ENE_TEST_C9_WPDISALBLE_F1)
156 163
157/* 164/*
158 * Texas Instruments CardBus controller overrides. 165 * Texas Instruments CardBus controller overrides.
@@ -618,6 +625,7 @@ static int ti12xx_2nd_slot_empty(struct yenta_socket *socket)
618 int devfn; 625 int devfn;
619 unsigned int state; 626 unsigned int state;
620 int ret = 1; 627 int ret = 1;
628 u32 sysctl;
621 629
622 /* catch the two-slot controllers */ 630 /* catch the two-slot controllers */
623 switch (socket->dev->device) { 631 switch (socket->dev->device) {
@@ -640,6 +648,24 @@ static int ti12xx_2nd_slot_empty(struct yenta_socket *socket)
640 */ 648 */
641 break; 649 break;
642 650
651 case PCI_DEVICE_ID_TI_X515:
652 case PCI_DEVICE_ID_TI_X420:
653 case PCI_DEVICE_ID_TI_X620:
654 case PCI_DEVICE_ID_TI_XX21_XX11:
655 case PCI_DEVICE_ID_TI_7410:
656 case PCI_DEVICE_ID_TI_7610:
657 /*
658 * those are either single or dual slot CB with additional functions
659 * like 1394, smartcard reader, etc. check the TIEALL flag for them
660 * the TIEALL flag binds the IRQ of all functions toghether.
661 * we catch the single slot variants later.
662 */
663 sysctl = config_readl(socket, TI113X_SYSTEM_CONTROL);
664 if (sysctl & TIXX21_SCR_TIEALL)
665 return 0;
666
667 break;
668
643 /* single-slot controllers have the 2nd slot empty always :) */ 669 /* single-slot controllers have the 2nd slot empty always :) */
644 default: 670 default:
645 return 1; 671 return 1;
@@ -652,6 +678,15 @@ static int ti12xx_2nd_slot_empty(struct yenta_socket *socket)
652 if (!func) 678 if (!func)
653 return 1; 679 return 1;
654 680
681 /*
682 * check that the device id of both slots match. this is needed for the
683 * XX21 and the XX11 controller that share the same device id for single
684 * and dual slot controllers. return '2nd slot empty'. we already checked
685 * if the interrupt is tied to another function.
686 */
687 if (socket->dev->device != func->device)
688 goto out;
689
655 slot2 = pci_get_drvdata(func); 690 slot2 = pci_get_drvdata(func);
656 if (!slot2) 691 if (!slot2)
657 goto out; 692 goto out;
@@ -791,16 +826,6 @@ static int ti12xx_override(struct yenta_socket *socket)
791 config_writel(socket, TI113X_SYSTEM_CONTROL, val); 826 config_writel(socket, TI113X_SYSTEM_CONTROL, val);
792 827
793 /* 828 /*
794 * for EnE bridges only: clear testbit TLTEnable. this makes the
795 * RME Hammerfall DSP sound card working.
796 */
797 if (socket->dev->vendor == PCI_VENDOR_ID_ENE) {
798 u8 test_c9 = config_readb(socket, ENE_TEST_C9);
799 test_c9 &= ~ENE_TEST_C9_TLTENABLE;
800 config_writeb(socket, ENE_TEST_C9, test_c9);
801 }
802
803 /*
804 * Yenta expects controllers to use CSCINT to route 829 * Yenta expects controllers to use CSCINT to route
805 * CSC interrupts to PCI rather than INTVAL. 830 * CSC interrupts to PCI rather than INTVAL.
806 */ 831 */
@@ -841,5 +866,75 @@ static int ti1250_override(struct yenta_socket *socket)
841 return ti12xx_override(socket); 866 return ti12xx_override(socket);
842} 867}
843 868
869
870/**
871 * EnE specific part. EnE bridges are register compatible with TI bridges but
872 * have their own test registers and more important their own little problems.
873 * Some fixup code to make everybody happy (TM).
874 */
875
876/**
877 * set/clear various test bits:
878 * Defaults to clear the bit.
879 * - mask (u8) defines what bits to change
880 * - bits (u8) is the values to change them to
881 * -> it's
882 * current = (current & ~mask) | bits
883 */
884/* pci ids of devices that wants to have the bit set */
885#define DEVID(_vend,_dev,_subvend,_subdev,mask,bits) { \
886 .vendor = _vend, \
887 .device = _dev, \
888 .subvendor = _subvend, \
889 .subdevice = _subdev, \
890 .driver_data = ((mask) << 8 | (bits)), \
891 }
892static struct pci_device_id ene_tune_tbl[] = {
893 /* Echo Audio products based on motorola DSP56301 and DSP56361 */
894 DEVID(PCI_VENDOR_ID_MOTOROLA, 0x1801, 0xECC0, PCI_ANY_ID,
895 ENE_TEST_C9_TLTENABLE | ENE_TEST_C9_PFENABLE, ENE_TEST_C9_TLTENABLE),
896 DEVID(PCI_VENDOR_ID_MOTOROLA, 0x3410, 0xECC0, PCI_ANY_ID,
897 ENE_TEST_C9_TLTENABLE | ENE_TEST_C9_PFENABLE, ENE_TEST_C9_TLTENABLE),
898
899 {}
900};
901
902static void ene_tune_bridge(struct pcmcia_socket *sock, struct pci_bus *bus)
903{
904 struct yenta_socket *socket = container_of(sock, struct yenta_socket, socket);
905 struct pci_dev *dev;
906 struct pci_device_id *id = NULL;
907 u8 test_c9, old_c9, mask, bits;
908
909 list_for_each_entry(dev, &bus->devices, bus_list) {
910 id = (struct pci_device_id *) pci_match_id(ene_tune_tbl, dev);
911 if (id)
912 break;
913 }
914
915 test_c9 = old_c9 = config_readb(socket, ENE_TEST_C9);
916 if (id) {
917 mask = (id->driver_data >> 8) & 0xFF;
918 bits = id->driver_data & 0xFF;
919
920 test_c9 = (test_c9 & ~mask) | bits;
921 }
922 else
923 /* default to clear TLTEnable bit, old behaviour */
924 test_c9 &= ~ENE_TEST_C9_TLTENABLE;
925
926 printk(KERN_INFO "yenta EnE: chaning testregister 0xC9, %02x -> %02x\n", old_c9, test_c9);
927 config_writeb(socket, ENE_TEST_C9, test_c9);
928}
929
930
931static int ene_override(struct yenta_socket *socket)
932{
933 /* install tune_bridge() function */
934 socket->socket.tune_bridge = ene_tune_bridge;
935
936 return ti1250_override(socket);
937}
938
844#endif /* _LINUX_TI113X_H */ 939#endif /* _LINUX_TI113X_H */
845 940
diff --git a/drivers/pcmcia/yenta_socket.c b/drivers/pcmcia/yenta_socket.c
index ba4d78e5b121..db9f952f9e3c 100644
--- a/drivers/pcmcia/yenta_socket.c
+++ b/drivers/pcmcia/yenta_socket.c
@@ -559,12 +559,6 @@ static void yenta_interrogate(struct yenta_socket *socket)
559static int yenta_sock_init(struct pcmcia_socket *sock) 559static int yenta_sock_init(struct pcmcia_socket *sock)
560{ 560{
561 struct yenta_socket *socket = container_of(sock, struct yenta_socket, socket); 561 struct yenta_socket *socket = container_of(sock, struct yenta_socket, socket);
562 u16 bridge;
563
564 bridge = config_readw(socket, CB_BRIDGE_CONTROL) & ~CB_BRIDGE_INTR;
565 if (!socket->cb_irq)
566 bridge |= CB_BRIDGE_INTR;
567 config_writew(socket, CB_BRIDGE_CONTROL, bridge);
568 562
569 exca_writeb(socket, I365_GBLCTL, 0x00); 563 exca_writeb(socket, I365_GBLCTL, 0x00);
570 exca_writeb(socket, I365_GENCTL, 0x00); 564 exca_writeb(socket, I365_GENCTL, 0x00);
@@ -819,6 +813,7 @@ enum {
819 CARDBUS_TYPE_TOPIC95, 813 CARDBUS_TYPE_TOPIC95,
820 CARDBUS_TYPE_TOPIC97, 814 CARDBUS_TYPE_TOPIC97,
821 CARDBUS_TYPE_O2MICRO, 815 CARDBUS_TYPE_O2MICRO,
816 CARDBUS_TYPE_ENE,
822}; 817};
823 818
824/* 819/*
@@ -865,6 +860,12 @@ static struct cardbus_type cardbus_type[] = {
865 .override = o2micro_override, 860 .override = o2micro_override,
866 .restore_state = o2micro_restore_state, 861 .restore_state = o2micro_restore_state,
867 }, 862 },
863 [CARDBUS_TYPE_ENE] = {
864 .override = ene_override,
865 .save_state = ti_save_state,
866 .restore_state = ti_restore_state,
867 .sock_init = ti_init,
868 },
868}; 869};
869 870
870 871
@@ -883,16 +884,8 @@ static unsigned int yenta_probe_irq(struct yenta_socket *socket, u32 isa_irq_mas
883{ 884{
884 int i; 885 int i;
885 unsigned long val; 886 unsigned long val;
886 u16 bridge_ctrl;
887 u32 mask; 887 u32 mask;
888 888
889 /* Set up ISA irq routing to probe the ISA irqs.. */
890 bridge_ctrl = config_readw(socket, CB_BRIDGE_CONTROL);
891 if (!(bridge_ctrl & CB_BRIDGE_INTR)) {
892 bridge_ctrl |= CB_BRIDGE_INTR;
893 config_writew(socket, CB_BRIDGE_CONTROL, bridge_ctrl);
894 }
895
896 /* 889 /*
897 * Probe for usable interrupts using the force 890 * Probe for usable interrupts using the force
898 * register to generate bogus card status events. 891 * register to generate bogus card status events.
@@ -914,9 +907,6 @@ static unsigned int yenta_probe_irq(struct yenta_socket *socket, u32 isa_irq_mas
914 907
915 mask = probe_irq_mask(val) & 0xffff; 908 mask = probe_irq_mask(val) & 0xffff;
916 909
917 bridge_ctrl &= ~CB_BRIDGE_INTR;
918 config_writew(socket, CB_BRIDGE_CONTROL, bridge_ctrl);
919
920 return mask; 910 return mask;
921} 911}
922 912
@@ -944,18 +934,11 @@ static irqreturn_t yenta_probe_handler(int irq, void *dev_id, struct pt_regs *re
944/* probes the PCI interrupt, use only on override functions */ 934/* probes the PCI interrupt, use only on override functions */
945static int yenta_probe_cb_irq(struct yenta_socket *socket) 935static int yenta_probe_cb_irq(struct yenta_socket *socket)
946{ 936{
947 u16 bridge_ctrl;
948
949 if (!socket->cb_irq) 937 if (!socket->cb_irq)
950 return -1; 938 return -1;
951 939
952 socket->probe_status = 0; 940 socket->probe_status = 0;
953 941
954 /* disable ISA interrupts */
955 bridge_ctrl = config_readw(socket, CB_BRIDGE_CONTROL);
956 bridge_ctrl &= ~CB_BRIDGE_INTR;
957 config_writew(socket, CB_BRIDGE_CONTROL, bridge_ctrl);
958
959 if (request_irq(socket->cb_irq, yenta_probe_handler, SA_SHIRQ, "yenta", socket)) { 942 if (request_irq(socket->cb_irq, yenta_probe_handler, SA_SHIRQ, "yenta", socket)) {
960 printk(KERN_WARNING "Yenta: request_irq() in yenta_probe_cb_irq() failed!\n"); 943 printk(KERN_WARNING "Yenta: request_irq() in yenta_probe_cb_irq() failed!\n");
961 return -1; 944 return -1;
@@ -966,7 +949,7 @@ static int yenta_probe_cb_irq(struct yenta_socket *socket)
966 cb_writel(socket, CB_SOCKET_EVENT, -1); 949 cb_writel(socket, CB_SOCKET_EVENT, -1);
967 cb_writel(socket, CB_SOCKET_MASK, CB_CSTSMASK); 950 cb_writel(socket, CB_SOCKET_MASK, CB_CSTSMASK);
968 cb_writel(socket, CB_SOCKET_FORCE, CB_FCARDSTS); 951 cb_writel(socket, CB_SOCKET_FORCE, CB_FCARDSTS);
969 952
970 msleep(100); 953 msleep(100);
971 954
972 /* disable interrupts */ 955 /* disable interrupts */
@@ -1004,11 +987,12 @@ static void yenta_config_init(struct yenta_socket *socket)
1004{ 987{
1005 u16 bridge; 988 u16 bridge;
1006 struct pci_dev *dev = socket->dev; 989 struct pci_dev *dev = socket->dev;
990 struct pci_bus_region region;
1007 991
1008 pci_set_power_state(socket->dev, 0); 992 pcibios_resource_to_bus(socket->dev, &region, &dev->resource[0]);
1009 993
1010 config_writel(socket, CB_LEGACY_MODE_BASE, 0); 994 config_writel(socket, CB_LEGACY_MODE_BASE, 0);
1011 config_writel(socket, PCI_BASE_ADDRESS_0, dev->resource[0].start); 995 config_writel(socket, PCI_BASE_ADDRESS_0, region.start);
1012 config_writew(socket, PCI_COMMAND, 996 config_writew(socket, PCI_COMMAND,
1013 PCI_COMMAND_IO | 997 PCI_COMMAND_IO |
1014 PCI_COMMAND_MEMORY | 998 PCI_COMMAND_MEMORY |
@@ -1031,8 +1015,8 @@ static void yenta_config_init(struct yenta_socket *socket)
1031 * - PCI interrupts enabled if a PCI interrupt exists.. 1015 * - PCI interrupts enabled if a PCI interrupt exists..
1032 */ 1016 */
1033 bridge = config_readw(socket, CB_BRIDGE_CONTROL); 1017 bridge = config_readw(socket, CB_BRIDGE_CONTROL);
1034 bridge &= ~(CB_BRIDGE_CRST | CB_BRIDGE_PREFETCH1 | CB_BRIDGE_INTR | CB_BRIDGE_ISAEN | CB_BRIDGE_VGAEN); 1018 bridge &= ~(CB_BRIDGE_CRST | CB_BRIDGE_PREFETCH1 | CB_BRIDGE_ISAEN | CB_BRIDGE_VGAEN);
1035 bridge |= CB_BRIDGE_PREFETCH0 | CB_BRIDGE_POSTEN | CB_BRIDGE_INTR; 1019 bridge |= CB_BRIDGE_PREFETCH0 | CB_BRIDGE_POSTEN;
1036 config_writew(socket, CB_BRIDGE_CONTROL, bridge); 1020 config_writew(socket, CB_BRIDGE_CONTROL, bridge);
1037} 1021}
1038 1022
@@ -1265,10 +1249,22 @@ static struct pci_device_id yenta_table [] = {
1265 CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1250, TI1250), 1249 CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1250, TI1250),
1266 CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1410, TI1250), 1250 CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1410, TI1250),
1267 1251
1268 CB_ID(PCI_VENDOR_ID_ENE, PCI_DEVICE_ID_ENE_1211, TI12XX), 1252 CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_XX21_XX11, TI12XX),
1269 CB_ID(PCI_VENDOR_ID_ENE, PCI_DEVICE_ID_ENE_1225, TI12XX), 1253 CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_X515, TI12XX),
1270 CB_ID(PCI_VENDOR_ID_ENE, PCI_DEVICE_ID_ENE_1410, TI1250), 1254 CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_X420, TI12XX),
1271 CB_ID(PCI_VENDOR_ID_ENE, PCI_DEVICE_ID_ENE_1420, TI12XX), 1255 CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_X620, TI12XX),
1256 CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_7410, TI12XX),
1257 CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_7510, TI12XX),
1258 CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_7610, TI12XX),
1259
1260 CB_ID(PCI_VENDOR_ID_ENE, PCI_DEVICE_ID_ENE_710, TI12XX),
1261 CB_ID(PCI_VENDOR_ID_ENE, PCI_DEVICE_ID_ENE_712, TI12XX),
1262 CB_ID(PCI_VENDOR_ID_ENE, PCI_DEVICE_ID_ENE_720, TI12XX),
1263 CB_ID(PCI_VENDOR_ID_ENE, PCI_DEVICE_ID_ENE_722, TI12XX),
1264 CB_ID(PCI_VENDOR_ID_ENE, PCI_DEVICE_ID_ENE_1211, ENE),
1265 CB_ID(PCI_VENDOR_ID_ENE, PCI_DEVICE_ID_ENE_1225, ENE),
1266 CB_ID(PCI_VENDOR_ID_ENE, PCI_DEVICE_ID_ENE_1410, ENE),
1267 CB_ID(PCI_VENDOR_ID_ENE, PCI_DEVICE_ID_ENE_1420, ENE),
1272 1268
1273 CB_ID(PCI_VENDOR_ID_RICOH, PCI_DEVICE_ID_RICOH_RL5C465, RICOH), 1269 CB_ID(PCI_VENDOR_ID_RICOH, PCI_DEVICE_ID_RICOH_RL5C465, RICOH),
1274 CB_ID(PCI_VENDOR_ID_RICOH, PCI_DEVICE_ID_RICOH_RL5C466, RICOH), 1270 CB_ID(PCI_VENDOR_ID_RICOH, PCI_DEVICE_ID_RICOH_RL5C466, RICOH),
diff --git a/drivers/s390/net/qeth.h b/drivers/s390/net/qeth.h
index 2ad4797ce024..9963479ba89f 100644
--- a/drivers/s390/net/qeth.h
+++ b/drivers/s390/net/qeth.h
@@ -686,6 +686,7 @@ struct qeth_seqno {
686 __u32 pdu_hdr; 686 __u32 pdu_hdr;
687 __u32 pdu_hdr_ack; 687 __u32 pdu_hdr_ack;
688 __u16 ipa; 688 __u16 ipa;
689 __u32 pkt_seqno;
689}; 690};
690 691
691struct qeth_reply { 692struct qeth_reply {
@@ -848,6 +849,7 @@ qeth_realloc_headroom(struct qeth_card *card, struct sk_buff **skb, int size)
848 "on interface %s", QETH_CARD_IFNAME(card)); 849 "on interface %s", QETH_CARD_IFNAME(card));
849 return -ENOMEM; 850 return -ENOMEM;
850 } 851 }
852 kfree_skb(*skb);
851 *skb = new_skb; 853 *skb = new_skb;
852 } 854 }
853 return 0; 855 return 0;
diff --git a/drivers/s390/net/qeth_main.c b/drivers/s390/net/qeth_main.c
index 86582cf1e19e..bd28e2438d7f 100644
--- a/drivers/s390/net/qeth_main.c
+++ b/drivers/s390/net/qeth_main.c
@@ -511,7 +511,7 @@ static int
511__qeth_set_offline(struct ccwgroup_device *cgdev, int recovery_mode) 511__qeth_set_offline(struct ccwgroup_device *cgdev, int recovery_mode)
512{ 512{
513 struct qeth_card *card = (struct qeth_card *) cgdev->dev.driver_data; 513 struct qeth_card *card = (struct qeth_card *) cgdev->dev.driver_data;
514 int rc = 0; 514 int rc = 0, rc2 = 0, rc3 = 0;
515 enum qeth_card_states recover_flag; 515 enum qeth_card_states recover_flag;
516 516
517 QETH_DBF_TEXT(setup, 3, "setoffl"); 517 QETH_DBF_TEXT(setup, 3, "setoffl");
@@ -523,11 +523,13 @@ __qeth_set_offline(struct ccwgroup_device *cgdev, int recovery_mode)
523 CARD_BUS_ID(card)); 523 CARD_BUS_ID(card));
524 return -ERESTARTSYS; 524 return -ERESTARTSYS;
525 } 525 }
526 if ((rc = ccw_device_set_offline(CARD_DDEV(card))) || 526 rc = ccw_device_set_offline(CARD_DDEV(card));
527 (rc = ccw_device_set_offline(CARD_WDEV(card))) || 527 rc2 = ccw_device_set_offline(CARD_WDEV(card));
528 (rc = ccw_device_set_offline(CARD_RDEV(card)))) { 528 rc3 = ccw_device_set_offline(CARD_RDEV(card));
529 if (!rc)
530 rc = (rc2) ? rc2 : rc3;
531 if (rc)
529 QETH_DBF_TEXT_(setup, 2, "1err%d", rc); 532 QETH_DBF_TEXT_(setup, 2, "1err%d", rc);
530 }
531 if (recover_flag == CARD_STATE_UP) 533 if (recover_flag == CARD_STATE_UP)
532 card->state = CARD_STATE_RECOVER; 534 card->state = CARD_STATE_RECOVER;
533 qeth_notify_processes(); 535 qeth_notify_processes();
@@ -1046,6 +1048,7 @@ qeth_setup_card(struct qeth_card *card)
1046 spin_lock_init(&card->vlanlock); 1048 spin_lock_init(&card->vlanlock);
1047 card->vlangrp = NULL; 1049 card->vlangrp = NULL;
1048#endif 1050#endif
1051 spin_lock_init(&card->lock);
1049 spin_lock_init(&card->ip_lock); 1052 spin_lock_init(&card->ip_lock);
1050 spin_lock_init(&card->thread_mask_lock); 1053 spin_lock_init(&card->thread_mask_lock);
1051 card->thread_start_mask = 0; 1054 card->thread_start_mask = 0;
@@ -1626,16 +1629,6 @@ qeth_cmd_timeout(unsigned long data)
1626 spin_unlock_irqrestore(&reply->card->lock, flags); 1629 spin_unlock_irqrestore(&reply->card->lock, flags);
1627} 1630}
1628 1631
1629static void
1630qeth_reset_ip_addresses(struct qeth_card *card)
1631{
1632 QETH_DBF_TEXT(trace, 2, "rstipadd");
1633
1634 qeth_clear_ip_list(card, 0, 1);
1635 /* this function will also schedule the SET_IP_THREAD */
1636 qeth_set_multicast_list(card->dev);
1637}
1638
1639static struct qeth_ipa_cmd * 1632static struct qeth_ipa_cmd *
1640qeth_check_ipa_data(struct qeth_card *card, struct qeth_cmd_buffer *iob) 1633qeth_check_ipa_data(struct qeth_card *card, struct qeth_cmd_buffer *iob)
1641{ 1634{
@@ -1664,9 +1657,8 @@ qeth_check_ipa_data(struct qeth_card *card, struct qeth_cmd_buffer *iob)
1664 "IP address reset.\n", 1657 "IP address reset.\n",
1665 QETH_CARD_IFNAME(card), 1658 QETH_CARD_IFNAME(card),
1666 card->info.chpid); 1659 card->info.chpid);
1667 card->lan_online = 1;
1668 netif_carrier_on(card->dev); 1660 netif_carrier_on(card->dev);
1669 qeth_reset_ip_addresses(card); 1661 qeth_schedule_recovery(card);
1670 return NULL; 1662 return NULL;
1671 case IPA_CMD_REGISTER_LOCAL_ADDR: 1663 case IPA_CMD_REGISTER_LOCAL_ADDR:
1672 QETH_DBF_TEXT(trace,3, "irla"); 1664 QETH_DBF_TEXT(trace,3, "irla");
@@ -2387,6 +2379,7 @@ qeth_layer2_rebuild_skb(struct qeth_card *card, struct sk_buff *skb,
2387 skb_pull(skb, VLAN_HLEN); 2379 skb_pull(skb, VLAN_HLEN);
2388 } 2380 }
2389#endif 2381#endif
2382 *((__u32 *)skb->cb) = ++card->seqno.pkt_seqno;
2390 return vlan_id; 2383 return vlan_id;
2391} 2384}
2392 2385
@@ -3014,7 +3007,7 @@ qeth_alloc_buffer_pool(struct qeth_card *card)
3014 return -ENOMEM; 3007 return -ENOMEM;
3015 } 3008 }
3016 for(j = 0; j < QETH_MAX_BUFFER_ELEMENTS(card); ++j){ 3009 for(j = 0; j < QETH_MAX_BUFFER_ELEMENTS(card); ++j){
3017 ptr = (void *) __get_free_page(GFP_KERNEL); 3010 ptr = (void *) __get_free_page(GFP_KERNEL|GFP_DMA);
3018 if (!ptr) { 3011 if (!ptr) {
3019 while (j > 0) 3012 while (j > 0)
3020 free_page((unsigned long) 3013 free_page((unsigned long)
@@ -3058,7 +3051,8 @@ qeth_alloc_qdio_buffers(struct qeth_card *card)
3058 if (card->qdio.state == QETH_QDIO_ALLOCATED) 3051 if (card->qdio.state == QETH_QDIO_ALLOCATED)
3059 return 0; 3052 return 0;
3060 3053
3061 card->qdio.in_q = kmalloc(sizeof(struct qeth_qdio_q), GFP_KERNEL); 3054 card->qdio.in_q = kmalloc(sizeof(struct qeth_qdio_q),
3055 GFP_KERNEL|GFP_DMA);
3062 if (!card->qdio.in_q) 3056 if (!card->qdio.in_q)
3063 return - ENOMEM; 3057 return - ENOMEM;
3064 QETH_DBF_TEXT(setup, 2, "inq"); 3058 QETH_DBF_TEXT(setup, 2, "inq");
@@ -3083,7 +3077,7 @@ qeth_alloc_qdio_buffers(struct qeth_card *card)
3083 } 3077 }
3084 for (i = 0; i < card->qdio.no_out_queues; ++i){ 3078 for (i = 0; i < card->qdio.no_out_queues; ++i){
3085 card->qdio.out_qs[i] = kmalloc(sizeof(struct qeth_qdio_out_q), 3079 card->qdio.out_qs[i] = kmalloc(sizeof(struct qeth_qdio_out_q),
3086 GFP_KERNEL); 3080 GFP_KERNEL|GFP_DMA);
3087 if (!card->qdio.out_qs[i]){ 3081 if (!card->qdio.out_qs[i]){
3088 while (i > 0) 3082 while (i > 0)
3089 kfree(card->qdio.out_qs[--i]); 3083 kfree(card->qdio.out_qs[--i]);
@@ -5200,7 +5194,7 @@ qeth_free_vlan_addresses4(struct qeth_card *card, unsigned short vid)
5200 if (!card->vlangrp) 5194 if (!card->vlangrp)
5201 return; 5195 return;
5202 rcu_read_lock(); 5196 rcu_read_lock();
5203 in_dev = __in_dev_get(card->vlangrp->vlan_devices[vid]); 5197 in_dev = __in_dev_get_rcu(card->vlangrp->vlan_devices[vid]);
5204 if (!in_dev) 5198 if (!in_dev)
5205 goto out; 5199 goto out;
5206 for (ifa = in_dev->ifa_list; ifa; ifa = ifa->ifa_next) { 5200 for (ifa = in_dev->ifa_list; ifa; ifa = ifa->ifa_next) {
@@ -6470,6 +6464,9 @@ qeth_query_ipassists_cb(struct qeth_card *card, struct qeth_reply *reply,
6470 if (cmd->hdr.prot_version == QETH_PROT_IPV4) { 6464 if (cmd->hdr.prot_version == QETH_PROT_IPV4) {
6471 card->options.ipa4.supported_funcs = cmd->hdr.ipa_supported; 6465 card->options.ipa4.supported_funcs = cmd->hdr.ipa_supported;
6472 card->options.ipa4.enabled_funcs = cmd->hdr.ipa_enabled; 6466 card->options.ipa4.enabled_funcs = cmd->hdr.ipa_enabled;
6467 /* Disable IPV6 support hard coded for Hipersockets */
6468 if(card->info.type == QETH_CARD_TYPE_IQD)
6469 card->options.ipa4.supported_funcs &= ~IPA_IPV6;
6473 } else { 6470 } else {
6474#ifdef CONFIG_QETH_IPV6 6471#ifdef CONFIG_QETH_IPV6
6475 card->options.ipa6.supported_funcs = cmd->hdr.ipa_supported; 6472 card->options.ipa6.supported_funcs = cmd->hdr.ipa_supported;
@@ -7725,7 +7722,7 @@ qeth_arp_constructor(struct neighbour *neigh)
7725 goto out; 7722 goto out;
7726 7723
7727 rcu_read_lock(); 7724 rcu_read_lock();
7728 in_dev = rcu_dereference(__in_dev_get(dev)); 7725 in_dev = __in_dev_get_rcu(dev);
7729 if (in_dev == NULL) { 7726 if (in_dev == NULL) {
7730 rcu_read_unlock(); 7727 rcu_read_unlock();
7731 return -EINVAL; 7728 return -EINVAL;
diff --git a/drivers/scsi/3w-9xxx.c b/drivers/scsi/3w-9xxx.c
index a6ac61611f35..a748fbfb6692 100644
--- a/drivers/scsi/3w-9xxx.c
+++ b/drivers/scsi/3w-9xxx.c
@@ -60,6 +60,7 @@
60 Remove un-needed eh_abort handler. 60 Remove un-needed eh_abort handler.
61 Add support for embedded firmware error strings. 61 Add support for embedded firmware error strings.
62 2.26.02.003 - Correctly handle single sgl's with use_sg=1. 62 2.26.02.003 - Correctly handle single sgl's with use_sg=1.
63 2.26.02.004 - Add support for 9550SX controllers.
63*/ 64*/
64 65
65#include <linux/module.h> 66#include <linux/module.h>
@@ -82,7 +83,7 @@
82#include "3w-9xxx.h" 83#include "3w-9xxx.h"
83 84
84/* Globals */ 85/* Globals */
85#define TW_DRIVER_VERSION "2.26.02.003" 86#define TW_DRIVER_VERSION "2.26.02.004"
86static TW_Device_Extension *twa_device_extension_list[TW_MAX_SLOT]; 87static TW_Device_Extension *twa_device_extension_list[TW_MAX_SLOT];
87static unsigned int twa_device_extension_count; 88static unsigned int twa_device_extension_count;
88static int twa_major = -1; 89static int twa_major = -1;
@@ -892,11 +893,6 @@ static int twa_decode_bits(TW_Device_Extension *tw_dev, u32 status_reg_value)
892 writel(TW_CONTROL_CLEAR_QUEUE_ERROR, TW_CONTROL_REG_ADDR(tw_dev)); 893 writel(TW_CONTROL_CLEAR_QUEUE_ERROR, TW_CONTROL_REG_ADDR(tw_dev));
893 } 894 }
894 895
895 if (status_reg_value & TW_STATUS_SBUF_WRITE_ERROR) {
896 TW_PRINTK(tw_dev->host, TW_DRIVER, 0xf, "SBUF Write Error: clearing");
897 writel(TW_CONTROL_CLEAR_SBUF_WRITE_ERROR, TW_CONTROL_REG_ADDR(tw_dev));
898 }
899
900 if (status_reg_value & TW_STATUS_MICROCONTROLLER_ERROR) { 896 if (status_reg_value & TW_STATUS_MICROCONTROLLER_ERROR) {
901 if (tw_dev->reset_print == 0) { 897 if (tw_dev->reset_print == 0) {
902 TW_PRINTK(tw_dev->host, TW_DRIVER, 0x10, "Microcontroller Error: clearing"); 898 TW_PRINTK(tw_dev->host, TW_DRIVER, 0x10, "Microcontroller Error: clearing");
@@ -930,6 +926,36 @@ out:
930 return retval; 926 return retval;
931} /* End twa_empty_response_queue() */ 927} /* End twa_empty_response_queue() */
932 928
929/* This function will clear the pchip/response queue on 9550SX */
930static int twa_empty_response_queue_large(TW_Device_Extension *tw_dev)
931{
932 u32 status_reg_value, response_que_value;
933 int count = 0, retval = 1;
934
935 if (tw_dev->tw_pci_dev->device == PCI_DEVICE_ID_3WARE_9550SX) {
936 status_reg_value = readl(TW_STATUS_REG_ADDR(tw_dev));
937
938 while (((status_reg_value & TW_STATUS_RESPONSE_QUEUE_EMPTY) == 0) && (count < TW_MAX_RESPONSE_DRAIN)) {
939 response_que_value = readl(TW_RESPONSE_QUEUE_REG_ADDR_LARGE(tw_dev));
940 if ((response_que_value & TW_9550SX_DRAIN_COMPLETED) == TW_9550SX_DRAIN_COMPLETED) {
941 /* P-chip settle time */
942 msleep(500);
943 retval = 0;
944 goto out;
945 }
946 status_reg_value = readl(TW_STATUS_REG_ADDR(tw_dev));
947 count++;
948 }
949 if (count == TW_MAX_RESPONSE_DRAIN)
950 goto out;
951
952 retval = 0;
953 } else
954 retval = 0;
955out:
956 return retval;
957} /* End twa_empty_response_queue_large() */
958
933/* This function passes sense keys from firmware to scsi layer */ 959/* This function passes sense keys from firmware to scsi layer */
934static int twa_fill_sense(TW_Device_Extension *tw_dev, int request_id, int copy_sense, int print_host) 960static int twa_fill_sense(TW_Device_Extension *tw_dev, int request_id, int copy_sense, int print_host)
935{ 961{
@@ -1613,8 +1639,16 @@ static int twa_reset_sequence(TW_Device_Extension *tw_dev, int soft_reset)
1613 int tries = 0, retval = 1, flashed = 0, do_soft_reset = soft_reset; 1639 int tries = 0, retval = 1, flashed = 0, do_soft_reset = soft_reset;
1614 1640
1615 while (tries < TW_MAX_RESET_TRIES) { 1641 while (tries < TW_MAX_RESET_TRIES) {
1616 if (do_soft_reset) 1642 if (do_soft_reset) {
1617 TW_SOFT_RESET(tw_dev); 1643 TW_SOFT_RESET(tw_dev);
1644 /* Clear pchip/response queue on 9550SX */
1645 if (twa_empty_response_queue_large(tw_dev)) {
1646 TW_PRINTK(tw_dev->host, TW_DRIVER, 0x36, "Response queue (large) empty failed during reset sequence");
1647 do_soft_reset = 1;
1648 tries++;
1649 continue;
1650 }
1651 }
1618 1652
1619 /* Make sure controller is in a good state */ 1653 /* Make sure controller is in a good state */
1620 if (twa_poll_status(tw_dev, TW_STATUS_MICROCONTROLLER_READY | (do_soft_reset == 1 ? TW_STATUS_ATTENTION_INTERRUPT : 0), 60)) { 1654 if (twa_poll_status(tw_dev, TW_STATUS_MICROCONTROLLER_READY | (do_soft_reset == 1 ? TW_STATUS_ATTENTION_INTERRUPT : 0), 60)) {
@@ -2034,7 +2068,10 @@ static int __devinit twa_probe(struct pci_dev *pdev, const struct pci_device_id
2034 goto out_free_device_extension; 2068 goto out_free_device_extension;
2035 } 2069 }
2036 2070
2037 mem_addr = pci_resource_start(pdev, 1); 2071 if (pdev->device == PCI_DEVICE_ID_3WARE_9000)
2072 mem_addr = pci_resource_start(pdev, 1);
2073 else
2074 mem_addr = pci_resource_start(pdev, 2);
2038 2075
2039 /* Save base address */ 2076 /* Save base address */
2040 tw_dev->base_addr = ioremap(mem_addr, PAGE_SIZE); 2077 tw_dev->base_addr = ioremap(mem_addr, PAGE_SIZE);
@@ -2148,6 +2185,8 @@ static void twa_remove(struct pci_dev *pdev)
2148static struct pci_device_id twa_pci_tbl[] __devinitdata = { 2185static struct pci_device_id twa_pci_tbl[] __devinitdata = {
2149 { PCI_VENDOR_ID_3WARE, PCI_DEVICE_ID_3WARE_9000, 2186 { PCI_VENDOR_ID_3WARE, PCI_DEVICE_ID_3WARE_9000,
2150 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 2187 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2188 { PCI_VENDOR_ID_3WARE, PCI_DEVICE_ID_3WARE_9550SX,
2189 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2151 { } 2190 { }
2152}; 2191};
2153MODULE_DEVICE_TABLE(pci, twa_pci_tbl); 2192MODULE_DEVICE_TABLE(pci, twa_pci_tbl);
diff --git a/drivers/scsi/3w-9xxx.h b/drivers/scsi/3w-9xxx.h
index 8c8ecbed3b58..46f22cdc8298 100644
--- a/drivers/scsi/3w-9xxx.h
+++ b/drivers/scsi/3w-9xxx.h
@@ -267,7 +267,6 @@ static twa_message_type twa_error_table[] = {
267#define TW_CONTROL_CLEAR_PARITY_ERROR 0x00800000 267#define TW_CONTROL_CLEAR_PARITY_ERROR 0x00800000
268#define TW_CONTROL_CLEAR_QUEUE_ERROR 0x00400000 268#define TW_CONTROL_CLEAR_QUEUE_ERROR 0x00400000
269#define TW_CONTROL_CLEAR_PCI_ABORT 0x00100000 269#define TW_CONTROL_CLEAR_PCI_ABORT 0x00100000
270#define TW_CONTROL_CLEAR_SBUF_WRITE_ERROR 0x00000008
271 270
272/* Status register bit definitions */ 271/* Status register bit definitions */
273#define TW_STATUS_MAJOR_VERSION_MASK 0xF0000000 272#define TW_STATUS_MAJOR_VERSION_MASK 0xF0000000
@@ -285,9 +284,8 @@ static twa_message_type twa_error_table[] = {
285#define TW_STATUS_MICROCONTROLLER_READY 0x00002000 284#define TW_STATUS_MICROCONTROLLER_READY 0x00002000
286#define TW_STATUS_COMMAND_QUEUE_EMPTY 0x00001000 285#define TW_STATUS_COMMAND_QUEUE_EMPTY 0x00001000
287#define TW_STATUS_EXPECTED_BITS 0x00002000 286#define TW_STATUS_EXPECTED_BITS 0x00002000
288#define TW_STATUS_UNEXPECTED_BITS 0x00F00008 287#define TW_STATUS_UNEXPECTED_BITS 0x00F00000
289#define TW_STATUS_SBUF_WRITE_ERROR 0x00000008 288#define TW_STATUS_VALID_INTERRUPT 0x00DF0000
290#define TW_STATUS_VALID_INTERRUPT 0x00DF0008
291 289
292/* RESPONSE QUEUE BIT DEFINITIONS */ 290/* RESPONSE QUEUE BIT DEFINITIONS */
293#define TW_RESPONSE_ID_MASK 0x00000FF0 291#define TW_RESPONSE_ID_MASK 0x00000FF0
@@ -324,9 +322,9 @@ static twa_message_type twa_error_table[] = {
324 322
325/* Compatibility defines */ 323/* Compatibility defines */
326#define TW_9000_ARCH_ID 0x5 324#define TW_9000_ARCH_ID 0x5
327#define TW_CURRENT_DRIVER_SRL 28 325#define TW_CURRENT_DRIVER_SRL 30
328#define TW_CURRENT_DRIVER_BUILD 9 326#define TW_CURRENT_DRIVER_BUILD 80
329#define TW_CURRENT_DRIVER_BRANCH 4 327#define TW_CURRENT_DRIVER_BRANCH 0
330 328
331/* Phase defines */ 329/* Phase defines */
332#define TW_PHASE_INITIAL 0 330#define TW_PHASE_INITIAL 0
@@ -334,6 +332,7 @@ static twa_message_type twa_error_table[] = {
334#define TW_PHASE_SGLIST 2 332#define TW_PHASE_SGLIST 2
335 333
336/* Misc defines */ 334/* Misc defines */
335#define TW_9550SX_DRAIN_COMPLETED 0xFFFF
337#define TW_SECTOR_SIZE 512 336#define TW_SECTOR_SIZE 512
338#define TW_ALIGNMENT_9000 4 /* 4 bytes */ 337#define TW_ALIGNMENT_9000 4 /* 4 bytes */
339#define TW_ALIGNMENT_9000_SGL 0x3 338#define TW_ALIGNMENT_9000_SGL 0x3
@@ -417,6 +416,9 @@ static twa_message_type twa_error_table[] = {
417#ifndef PCI_DEVICE_ID_3WARE_9000 416#ifndef PCI_DEVICE_ID_3WARE_9000
418#define PCI_DEVICE_ID_3WARE_9000 0x1002 417#define PCI_DEVICE_ID_3WARE_9000 0x1002
419#endif 418#endif
419#ifndef PCI_DEVICE_ID_3WARE_9550SX
420#define PCI_DEVICE_ID_3WARE_9550SX 0x1003
421#endif
420 422
421/* Bitmask macros to eliminate bitfields */ 423/* Bitmask macros to eliminate bitfields */
422 424
@@ -443,6 +445,7 @@ static twa_message_type twa_error_table[] = {
443#define TW_STATUS_REG_ADDR(x) ((unsigned char __iomem *)x->base_addr + 0x4) 445#define TW_STATUS_REG_ADDR(x) ((unsigned char __iomem *)x->base_addr + 0x4)
444#define TW_COMMAND_QUEUE_REG_ADDR(x) (sizeof(dma_addr_t) > 4 ? ((unsigned char __iomem *)x->base_addr + 0x20) : ((unsigned char __iomem *)x->base_addr + 0x8)) 446#define TW_COMMAND_QUEUE_REG_ADDR(x) (sizeof(dma_addr_t) > 4 ? ((unsigned char __iomem *)x->base_addr + 0x20) : ((unsigned char __iomem *)x->base_addr + 0x8))
445#define TW_RESPONSE_QUEUE_REG_ADDR(x) ((unsigned char __iomem *)x->base_addr + 0xC) 447#define TW_RESPONSE_QUEUE_REG_ADDR(x) ((unsigned char __iomem *)x->base_addr + 0xC)
448#define TW_RESPONSE_QUEUE_REG_ADDR_LARGE(x) ((unsigned char __iomem *)x->base_addr + 0x30)
446#define TW_CLEAR_ALL_INTERRUPTS(x) (writel(TW_STATUS_VALID_INTERRUPT, TW_CONTROL_REG_ADDR(x))) 449#define TW_CLEAR_ALL_INTERRUPTS(x) (writel(TW_STATUS_VALID_INTERRUPT, TW_CONTROL_REG_ADDR(x)))
447#define TW_CLEAR_ATTENTION_INTERRUPT(x) (writel(TW_CONTROL_CLEAR_ATTENTION_INTERRUPT, TW_CONTROL_REG_ADDR(x))) 450#define TW_CLEAR_ATTENTION_INTERRUPT(x) (writel(TW_CONTROL_CLEAR_ATTENTION_INTERRUPT, TW_CONTROL_REG_ADDR(x)))
448#define TW_CLEAR_HOST_INTERRUPT(x) (writel(TW_CONTROL_CLEAR_HOST_INTERRUPT, TW_CONTROL_REG_ADDR(x))) 451#define TW_CLEAR_HOST_INTERRUPT(x) (writel(TW_CONTROL_CLEAR_HOST_INTERRUPT, TW_CONTROL_REG_ADDR(x)))
diff --git a/drivers/scsi/Makefile b/drivers/scsi/Makefile
index 1e4edbdf2730..48529d180ca8 100644
--- a/drivers/scsi/Makefile
+++ b/drivers/scsi/Makefile
@@ -99,6 +99,7 @@ obj-$(CONFIG_SCSI_DC395x) += dc395x.o
99obj-$(CONFIG_SCSI_DC390T) += tmscsim.o 99obj-$(CONFIG_SCSI_DC390T) += tmscsim.o
100obj-$(CONFIG_MEGARAID_LEGACY) += megaraid.o 100obj-$(CONFIG_MEGARAID_LEGACY) += megaraid.o
101obj-$(CONFIG_MEGARAID_NEWGEN) += megaraid/ 101obj-$(CONFIG_MEGARAID_NEWGEN) += megaraid/
102obj-$(CONFIG_MEGARAID_SAS) += megaraid/
102obj-$(CONFIG_SCSI_ACARD) += atp870u.o 103obj-$(CONFIG_SCSI_ACARD) += atp870u.o
103obj-$(CONFIG_SCSI_SUNESP) += esp.o 104obj-$(CONFIG_SCSI_SUNESP) += esp.o
104obj-$(CONFIG_SCSI_GDTH) += gdth.o 105obj-$(CONFIG_SCSI_GDTH) += gdth.o
diff --git a/drivers/scsi/aacraid/aachba.c b/drivers/scsi/aacraid/aachba.c
index a8e3dfcd0dc7..93416f760e5a 100644
--- a/drivers/scsi/aacraid/aachba.c
+++ b/drivers/scsi/aacraid/aachba.c
@@ -313,18 +313,37 @@ int aac_get_containers(struct aac_dev *dev)
313 } 313 }
314 dresp = (struct aac_mount *)fib_data(fibptr); 314 dresp = (struct aac_mount *)fib_data(fibptr);
315 315
316 if ((le32_to_cpu(dresp->status) == ST_OK) &&
317 (le32_to_cpu(dresp->mnt[0].vol) == CT_NONE)) {
318 dinfo->command = cpu_to_le32(VM_NameServe64);
319 dinfo->count = cpu_to_le32(index);
320 dinfo->type = cpu_to_le32(FT_FILESYS);
321
322 if (fib_send(ContainerCommand,
323 fibptr,
324 sizeof(struct aac_query_mount),
325 FsaNormal,
326 1, 1,
327 NULL, NULL) < 0)
328 continue;
329 } else
330 dresp->mnt[0].capacityhigh = 0;
331
316 dprintk ((KERN_DEBUG 332 dprintk ((KERN_DEBUG
317 "VM_NameServe cid=%d status=%d vol=%d state=%d cap=%u\n", 333 "VM_NameServe cid=%d status=%d vol=%d state=%d cap=%llu\n",
318 (int)index, (int)le32_to_cpu(dresp->status), 334 (int)index, (int)le32_to_cpu(dresp->status),
319 (int)le32_to_cpu(dresp->mnt[0].vol), 335 (int)le32_to_cpu(dresp->mnt[0].vol),
320 (int)le32_to_cpu(dresp->mnt[0].state), 336 (int)le32_to_cpu(dresp->mnt[0].state),
321 (unsigned)le32_to_cpu(dresp->mnt[0].capacity))); 337 ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
338 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32)));
322 if ((le32_to_cpu(dresp->status) == ST_OK) && 339 if ((le32_to_cpu(dresp->status) == ST_OK) &&
323 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) && 340 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
324 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) { 341 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
325 fsa_dev_ptr[index].valid = 1; 342 fsa_dev_ptr[index].valid = 1;
326 fsa_dev_ptr[index].type = le32_to_cpu(dresp->mnt[0].vol); 343 fsa_dev_ptr[index].type = le32_to_cpu(dresp->mnt[0].vol);
327 fsa_dev_ptr[index].size = le32_to_cpu(dresp->mnt[0].capacity); 344 fsa_dev_ptr[index].size
345 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
346 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
328 if (le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) 347 if (le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY)
329 fsa_dev_ptr[index].ro = 1; 348 fsa_dev_ptr[index].ro = 1;
330 } 349 }
@@ -460,7 +479,7 @@ static int aac_get_container_name(struct scsi_cmnd * scsicmd, int cid)
460 * is updated in the struct fsa_dev_info structure rather than returned. 479 * is updated in the struct fsa_dev_info structure rather than returned.
461 */ 480 */
462 481
463static int probe_container(struct aac_dev *dev, int cid) 482int probe_container(struct aac_dev *dev, int cid)
464{ 483{
465 struct fsa_dev_info *fsa_dev_ptr; 484 struct fsa_dev_info *fsa_dev_ptr;
466 int status; 485 int status;
@@ -497,11 +516,29 @@ static int probe_container(struct aac_dev *dev, int cid)
497 dresp = (struct aac_mount *) fib_data(fibptr); 516 dresp = (struct aac_mount *) fib_data(fibptr);
498 517
499 if ((le32_to_cpu(dresp->status) == ST_OK) && 518 if ((le32_to_cpu(dresp->status) == ST_OK) &&
519 (le32_to_cpu(dresp->mnt[0].vol) == CT_NONE)) {
520 dinfo->command = cpu_to_le32(VM_NameServe64);
521 dinfo->count = cpu_to_le32(cid);
522 dinfo->type = cpu_to_le32(FT_FILESYS);
523
524 if (fib_send(ContainerCommand,
525 fibptr,
526 sizeof(struct aac_query_mount),
527 FsaNormal,
528 1, 1,
529 NULL, NULL) < 0)
530 goto error;
531 } else
532 dresp->mnt[0].capacityhigh = 0;
533
534 if ((le32_to_cpu(dresp->status) == ST_OK) &&
500 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) && 535 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
501 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) { 536 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
502 fsa_dev_ptr[cid].valid = 1; 537 fsa_dev_ptr[cid].valid = 1;
503 fsa_dev_ptr[cid].type = le32_to_cpu(dresp->mnt[0].vol); 538 fsa_dev_ptr[cid].type = le32_to_cpu(dresp->mnt[0].vol);
504 fsa_dev_ptr[cid].size = le32_to_cpu(dresp->mnt[0].capacity); 539 fsa_dev_ptr[cid].size
540 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
541 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
505 if (le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) 542 if (le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY)
506 fsa_dev_ptr[cid].ro = 1; 543 fsa_dev_ptr[cid].ro = 1;
507 } 544 }
@@ -655,7 +692,7 @@ int aac_get_adapter_info(struct aac_dev* dev)
655 fibptr, 692 fibptr,
656 sizeof(*info), 693 sizeof(*info),
657 FsaNormal, 694 FsaNormal,
658 1, 1, 695 -1, 1, /* First `interrupt' command uses special wait */
659 NULL, 696 NULL,
660 NULL); 697 NULL);
661 698
@@ -806,8 +843,8 @@ int aac_get_adapter_info(struct aac_dev* dev)
806 if (!(dev->raw_io_interface)) { 843 if (!(dev->raw_io_interface)) {
807 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size - 844 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
808 sizeof(struct aac_fibhdr) - 845 sizeof(struct aac_fibhdr) -
809 sizeof(struct aac_write) + sizeof(struct sgmap)) / 846 sizeof(struct aac_write) + sizeof(struct sgentry)) /
810 sizeof(struct sgmap); 847 sizeof(struct sgentry);
811 if (dev->dac_support) { 848 if (dev->dac_support) {
812 /* 849 /*
813 * 38 scatter gather elements 850 * 38 scatter gather elements
@@ -816,8 +853,8 @@ int aac_get_adapter_info(struct aac_dev* dev)
816 (dev->max_fib_size - 853 (dev->max_fib_size -
817 sizeof(struct aac_fibhdr) - 854 sizeof(struct aac_fibhdr) -
818 sizeof(struct aac_write64) + 855 sizeof(struct aac_write64) +
819 sizeof(struct sgmap64)) / 856 sizeof(struct sgentry64)) /
820 sizeof(struct sgmap64); 857 sizeof(struct sgentry64);
821 } 858 }
822 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT; 859 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
823 if(!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) { 860 if(!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
@@ -854,7 +891,40 @@ static void io_callback(void *context, struct fib * fibptr)
854 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 891 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
855 cid = ID_LUN_TO_CONTAINER(scsicmd->device->id, scsicmd->device->lun); 892 cid = ID_LUN_TO_CONTAINER(scsicmd->device->id, scsicmd->device->lun);
856 893
857 dprintk((KERN_DEBUG "io_callback[cpu %d]: lba = %u, t = %ld.\n", smp_processor_id(), ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3], jiffies)); 894 if (nblank(dprintk(x))) {
895 u64 lba;
896 switch (scsicmd->cmnd[0]) {
897 case WRITE_6:
898 case READ_6:
899 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
900 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
901 break;
902 case WRITE_16:
903 case READ_16:
904 lba = ((u64)scsicmd->cmnd[2] << 56) |
905 ((u64)scsicmd->cmnd[3] << 48) |
906 ((u64)scsicmd->cmnd[4] << 40) |
907 ((u64)scsicmd->cmnd[5] << 32) |
908 ((u64)scsicmd->cmnd[6] << 24) |
909 (scsicmd->cmnd[7] << 16) |
910 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
911 break;
912 case WRITE_12:
913 case READ_12:
914 lba = ((u64)scsicmd->cmnd[2] << 24) |
915 (scsicmd->cmnd[3] << 16) |
916 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
917 break;
918 default:
919 lba = ((u64)scsicmd->cmnd[2] << 24) |
920 (scsicmd->cmnd[3] << 16) |
921 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
922 break;
923 }
924 printk(KERN_DEBUG
925 "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
926 smp_processor_id(), (unsigned long long)lba, jiffies);
927 }
858 928
859 if (fibptr == NULL) 929 if (fibptr == NULL)
860 BUG(); 930 BUG();
@@ -895,7 +965,7 @@ static void io_callback(void *context, struct fib * fibptr)
895 965
896static int aac_read(struct scsi_cmnd * scsicmd, int cid) 966static int aac_read(struct scsi_cmnd * scsicmd, int cid)
897{ 967{
898 u32 lba; 968 u64 lba;
899 u32 count; 969 u32 count;
900 int status; 970 int status;
901 971
@@ -907,23 +977,69 @@ static int aac_read(struct scsi_cmnd * scsicmd, int cid)
907 /* 977 /*
908 * Get block address and transfer length 978 * Get block address and transfer length
909 */ 979 */
910 if (scsicmd->cmnd[0] == READ_6) /* 6 byte command */ 980 switch (scsicmd->cmnd[0]) {
911 { 981 case READ_6:
912 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", cid)); 982 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", cid));
913 983
914 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 984 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
985 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
915 count = scsicmd->cmnd[4]; 986 count = scsicmd->cmnd[4];
916 987
917 if (count == 0) 988 if (count == 0)
918 count = 256; 989 count = 256;
919 } else { 990 break;
991 case READ_16:
992 dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", cid));
993
994 lba = ((u64)scsicmd->cmnd[2] << 56) |
995 ((u64)scsicmd->cmnd[3] << 48) |
996 ((u64)scsicmd->cmnd[4] << 40) |
997 ((u64)scsicmd->cmnd[5] << 32) |
998 ((u64)scsicmd->cmnd[6] << 24) |
999 (scsicmd->cmnd[7] << 16) |
1000 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1001 count = (scsicmd->cmnd[10] << 24) |
1002 (scsicmd->cmnd[11] << 16) |
1003 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1004 break;
1005 case READ_12:
1006 dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", cid));
1007
1008 lba = ((u64)scsicmd->cmnd[2] << 24) |
1009 (scsicmd->cmnd[3] << 16) |
1010 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1011 count = (scsicmd->cmnd[6] << 24) |
1012 (scsicmd->cmnd[7] << 16) |
1013 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1014 break;
1015 default:
920 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", cid)); 1016 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", cid));
921 1017
922 lba = (scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 1018 lba = ((u64)scsicmd->cmnd[2] << 24) |
1019 (scsicmd->cmnd[3] << 16) |
1020 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
923 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 1021 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1022 break;
924 } 1023 }
925 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %u, t = %ld.\n", 1024 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
926 smp_processor_id(), (unsigned long long)lba, jiffies)); 1025 smp_processor_id(), (unsigned long long)lba, jiffies));
1026 if ((!(dev->raw_io_interface) || !(dev->raw_io_64)) &&
1027 (lba & 0xffffffff00000000LL)) {
1028 dprintk((KERN_DEBUG "aac_read: Illegal lba\n"));
1029 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1030 SAM_STAT_CHECK_CONDITION;
1031 set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1032 HARDWARE_ERROR,
1033 SENCODE_INTERNAL_TARGET_FAILURE,
1034 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
1035 0, 0);
1036 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1037 (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
1038 ? sizeof(scsicmd->sense_buffer)
1039 : sizeof(dev->fsa_dev[cid].sense_data));
1040 scsicmd->scsi_done(scsicmd);
1041 return 0;
1042 }
927 /* 1043 /*
928 * Alocate and initialize a Fib 1044 * Alocate and initialize a Fib
929 */ 1045 */
@@ -936,8 +1052,8 @@ static int aac_read(struct scsi_cmnd * scsicmd, int cid)
936 if (dev->raw_io_interface) { 1052 if (dev->raw_io_interface) {
937 struct aac_raw_io *readcmd; 1053 struct aac_raw_io *readcmd;
938 readcmd = (struct aac_raw_io *) fib_data(cmd_fibcontext); 1054 readcmd = (struct aac_raw_io *) fib_data(cmd_fibcontext);
939 readcmd->block[0] = cpu_to_le32(lba); 1055 readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
940 readcmd->block[1] = 0; 1056 readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
941 readcmd->count = cpu_to_le32(count<<9); 1057 readcmd->count = cpu_to_le32(count<<9);
942 readcmd->cid = cpu_to_le16(cid); 1058 readcmd->cid = cpu_to_le16(cid);
943 readcmd->flags = cpu_to_le16(1); 1059 readcmd->flags = cpu_to_le16(1);
@@ -964,7 +1080,7 @@ static int aac_read(struct scsi_cmnd * scsicmd, int cid)
964 readcmd->command = cpu_to_le32(VM_CtHostRead64); 1080 readcmd->command = cpu_to_le32(VM_CtHostRead64);
965 readcmd->cid = cpu_to_le16(cid); 1081 readcmd->cid = cpu_to_le16(cid);
966 readcmd->sector_count = cpu_to_le16(count); 1082 readcmd->sector_count = cpu_to_le16(count);
967 readcmd->block = cpu_to_le32(lba); 1083 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
968 readcmd->pad = 0; 1084 readcmd->pad = 0;
969 readcmd->flags = 0; 1085 readcmd->flags = 0;
970 1086
@@ -989,7 +1105,7 @@ static int aac_read(struct scsi_cmnd * scsicmd, int cid)
989 readcmd = (struct aac_read *) fib_data(cmd_fibcontext); 1105 readcmd = (struct aac_read *) fib_data(cmd_fibcontext);
990 readcmd->command = cpu_to_le32(VM_CtBlockRead); 1106 readcmd->command = cpu_to_le32(VM_CtBlockRead);
991 readcmd->cid = cpu_to_le32(cid); 1107 readcmd->cid = cpu_to_le32(cid);
992 readcmd->block = cpu_to_le32(lba); 1108 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
993 readcmd->count = cpu_to_le32(count * 512); 1109 readcmd->count = cpu_to_le32(count * 512);
994 1110
995 aac_build_sg(scsicmd, &readcmd->sg); 1111 aac_build_sg(scsicmd, &readcmd->sg);
@@ -1031,7 +1147,7 @@ static int aac_read(struct scsi_cmnd * scsicmd, int cid)
1031 1147
1032static int aac_write(struct scsi_cmnd * scsicmd, int cid) 1148static int aac_write(struct scsi_cmnd * scsicmd, int cid)
1033{ 1149{
1034 u32 lba; 1150 u64 lba;
1035 u32 count; 1151 u32 count;
1036 int status; 1152 int status;
1037 u16 fibsize; 1153 u16 fibsize;
@@ -1048,13 +1164,48 @@ static int aac_write(struct scsi_cmnd * scsicmd, int cid)
1048 count = scsicmd->cmnd[4]; 1164 count = scsicmd->cmnd[4];
1049 if (count == 0) 1165 if (count == 0)
1050 count = 256; 1166 count = 256;
1167 } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
1168 dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", cid));
1169
1170 lba = ((u64)scsicmd->cmnd[2] << 56) |
1171 ((u64)scsicmd->cmnd[3] << 48) |
1172 ((u64)scsicmd->cmnd[4] << 40) |
1173 ((u64)scsicmd->cmnd[5] << 32) |
1174 ((u64)scsicmd->cmnd[6] << 24) |
1175 (scsicmd->cmnd[7] << 16) |
1176 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1177 count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
1178 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1179 } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
1180 dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", cid));
1181
1182 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
1183 | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1184 count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
1185 | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1051 } else { 1186 } else {
1052 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", cid)); 1187 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", cid));
1053 lba = (scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 1188 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1054 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 1189 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1055 } 1190 }
1056 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %u, t = %ld.\n", 1191 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
1057 smp_processor_id(), (unsigned long long)lba, jiffies)); 1192 smp_processor_id(), (unsigned long long)lba, jiffies));
1193 if ((!(dev->raw_io_interface) || !(dev->raw_io_64))
1194 && (lba & 0xffffffff00000000LL)) {
1195 dprintk((KERN_DEBUG "aac_write: Illegal lba\n"));
1196 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1197 set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1198 HARDWARE_ERROR,
1199 SENCODE_INTERNAL_TARGET_FAILURE,
1200 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
1201 0, 0);
1202 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1203 (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
1204 ? sizeof(scsicmd->sense_buffer)
1205 : sizeof(dev->fsa_dev[cid].sense_data));
1206 scsicmd->scsi_done(scsicmd);
1207 return 0;
1208 }
1058 /* 1209 /*
1059 * Allocate and initialize a Fib then setup a BlockWrite command 1210 * Allocate and initialize a Fib then setup a BlockWrite command
1060 */ 1211 */
@@ -1068,8 +1219,8 @@ static int aac_write(struct scsi_cmnd * scsicmd, int cid)
1068 if (dev->raw_io_interface) { 1219 if (dev->raw_io_interface) {
1069 struct aac_raw_io *writecmd; 1220 struct aac_raw_io *writecmd;
1070 writecmd = (struct aac_raw_io *) fib_data(cmd_fibcontext); 1221 writecmd = (struct aac_raw_io *) fib_data(cmd_fibcontext);
1071 writecmd->block[0] = cpu_to_le32(lba); 1222 writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1072 writecmd->block[1] = 0; 1223 writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1073 writecmd->count = cpu_to_le32(count<<9); 1224 writecmd->count = cpu_to_le32(count<<9);
1074 writecmd->cid = cpu_to_le16(cid); 1225 writecmd->cid = cpu_to_le16(cid);
1075 writecmd->flags = 0; 1226 writecmd->flags = 0;
@@ -1096,7 +1247,7 @@ static int aac_write(struct scsi_cmnd * scsicmd, int cid)
1096 writecmd->command = cpu_to_le32(VM_CtHostWrite64); 1247 writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1097 writecmd->cid = cpu_to_le16(cid); 1248 writecmd->cid = cpu_to_le16(cid);
1098 writecmd->sector_count = cpu_to_le16(count); 1249 writecmd->sector_count = cpu_to_le16(count);
1099 writecmd->block = cpu_to_le32(lba); 1250 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1100 writecmd->pad = 0; 1251 writecmd->pad = 0;
1101 writecmd->flags = 0; 1252 writecmd->flags = 0;
1102 1253
@@ -1121,7 +1272,7 @@ static int aac_write(struct scsi_cmnd * scsicmd, int cid)
1121 writecmd = (struct aac_write *) fib_data(cmd_fibcontext); 1272 writecmd = (struct aac_write *) fib_data(cmd_fibcontext);
1122 writecmd->command = cpu_to_le32(VM_CtBlockWrite); 1273 writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1123 writecmd->cid = cpu_to_le32(cid); 1274 writecmd->cid = cpu_to_le32(cid);
1124 writecmd->block = cpu_to_le32(lba); 1275 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1125 writecmd->count = cpu_to_le32(count * 512); 1276 writecmd->count = cpu_to_le32(count * 512);
1126 writecmd->sg.count = cpu_to_le32(1); 1277 writecmd->sg.count = cpu_to_le32(1);
1127 /* ->stable is not used - it did mean which type of write */ 1278 /* ->stable is not used - it did mean which type of write */
@@ -1310,11 +1461,18 @@ int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
1310 */ 1461 */
1311 if ((fsa_dev_ptr[cid].valid & 1) == 0) { 1462 if ((fsa_dev_ptr[cid].valid & 1) == 0) {
1312 switch (scsicmd->cmnd[0]) { 1463 switch (scsicmd->cmnd[0]) {
1464 case SERVICE_ACTION_IN:
1465 if (!(dev->raw_io_interface) ||
1466 !(dev->raw_io_64) ||
1467 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
1468 break;
1313 case INQUIRY: 1469 case INQUIRY:
1314 case READ_CAPACITY: 1470 case READ_CAPACITY:
1315 case TEST_UNIT_READY: 1471 case TEST_UNIT_READY:
1316 spin_unlock_irq(host->host_lock); 1472 spin_unlock_irq(host->host_lock);
1317 probe_container(dev, cid); 1473 probe_container(dev, cid);
1474 if ((fsa_dev_ptr[cid].valid & 1) == 0)
1475 fsa_dev_ptr[cid].valid = 0;
1318 spin_lock_irq(host->host_lock); 1476 spin_lock_irq(host->host_lock);
1319 if (fsa_dev_ptr[cid].valid == 0) { 1477 if (fsa_dev_ptr[cid].valid == 0) {
1320 scsicmd->result = DID_NO_CONNECT << 16; 1478 scsicmd->result = DID_NO_CONNECT << 16;
@@ -1375,7 +1533,6 @@ int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
1375 memset(&inq_data, 0, sizeof (struct inquiry_data)); 1533 memset(&inq_data, 0, sizeof (struct inquiry_data));
1376 1534
1377 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */ 1535 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */
1378 inq_data.inqd_dtq = 0x80; /* set RMB bit to one indicating that the medium is removable */
1379 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */ 1536 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
1380 inq_data.inqd_len = 31; 1537 inq_data.inqd_len = 31;
1381 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ 1538 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
@@ -1397,13 +1554,55 @@ int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
1397 aac_internal_transfer(scsicmd, &inq_data, 0, sizeof(inq_data)); 1554 aac_internal_transfer(scsicmd, &inq_data, 0, sizeof(inq_data));
1398 return aac_get_container_name(scsicmd, cid); 1555 return aac_get_container_name(scsicmd, cid);
1399 } 1556 }
1557 case SERVICE_ACTION_IN:
1558 if (!(dev->raw_io_interface) ||
1559 !(dev->raw_io_64) ||
1560 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
1561 break;
1562 {
1563 u64 capacity;
1564 char cp[12];
1565 unsigned int offset = 0;
1566
1567 dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
1568 capacity = fsa_dev_ptr[cid].size - 1;
1569 if (scsicmd->cmnd[13] > 12) {
1570 offset = scsicmd->cmnd[13] - 12;
1571 if (offset > sizeof(cp))
1572 break;
1573 memset(cp, 0, offset);
1574 aac_internal_transfer(scsicmd, cp, 0, offset);
1575 }
1576 cp[0] = (capacity >> 56) & 0xff;
1577 cp[1] = (capacity >> 48) & 0xff;
1578 cp[2] = (capacity >> 40) & 0xff;
1579 cp[3] = (capacity >> 32) & 0xff;
1580 cp[4] = (capacity >> 24) & 0xff;
1581 cp[5] = (capacity >> 16) & 0xff;
1582 cp[6] = (capacity >> 8) & 0xff;
1583 cp[7] = (capacity >> 0) & 0xff;
1584 cp[8] = 0;
1585 cp[9] = 0;
1586 cp[10] = 2;
1587 cp[11] = 0;
1588 aac_internal_transfer(scsicmd, cp, offset, sizeof(cp));
1589
1590 /* Do not cache partition table for arrays */
1591 scsicmd->device->removable = 1;
1592
1593 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1594 scsicmd->scsi_done(scsicmd);
1595
1596 return 0;
1597 }
1598
1400 case READ_CAPACITY: 1599 case READ_CAPACITY:
1401 { 1600 {
1402 u32 capacity; 1601 u32 capacity;
1403 char cp[8]; 1602 char cp[8];
1404 1603
1405 dprintk((KERN_DEBUG "READ CAPACITY command.\n")); 1604 dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
1406 if (fsa_dev_ptr[cid].size <= 0x100000000LL) 1605 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
1407 capacity = fsa_dev_ptr[cid].size - 1; 1606 capacity = fsa_dev_ptr[cid].size - 1;
1408 else 1607 else
1409 capacity = (u32)-1; 1608 capacity = (u32)-1;
@@ -1417,6 +1616,8 @@ int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
1417 cp[6] = 2; 1616 cp[6] = 2;
1418 cp[7] = 0; 1617 cp[7] = 0;
1419 aac_internal_transfer(scsicmd, cp, 0, sizeof(cp)); 1618 aac_internal_transfer(scsicmd, cp, 0, sizeof(cp));
1619 /* Do not cache partition table for arrays */
1620 scsicmd->device->removable = 1;
1420 1621
1421 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 1622 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1422 scsicmd->scsi_done(scsicmd); 1623 scsicmd->scsi_done(scsicmd);
@@ -1497,6 +1698,8 @@ int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
1497 { 1698 {
1498 case READ_6: 1699 case READ_6:
1499 case READ_10: 1700 case READ_10:
1701 case READ_12:
1702 case READ_16:
1500 /* 1703 /*
1501 * Hack to keep track of ordinal number of the device that 1704 * Hack to keep track of ordinal number of the device that
1502 * corresponds to a container. Needed to convert 1705 * corresponds to a container. Needed to convert
@@ -1504,17 +1707,19 @@ int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
1504 */ 1707 */
1505 1708
1506 spin_unlock_irq(host->host_lock); 1709 spin_unlock_irq(host->host_lock);
1507 if (scsicmd->request->rq_disk) 1710 if (scsicmd->request->rq_disk)
1508 memcpy(fsa_dev_ptr[cid].devname, 1711 strlcpy(fsa_dev_ptr[cid].devname,
1509 scsicmd->request->rq_disk->disk_name, 1712 scsicmd->request->rq_disk->disk_name,
1510 8); 1713 min(sizeof(fsa_dev_ptr[cid].devname),
1511 1714 sizeof(scsicmd->request->rq_disk->disk_name) + 1));
1512 ret = aac_read(scsicmd, cid); 1715 ret = aac_read(scsicmd, cid);
1513 spin_lock_irq(host->host_lock); 1716 spin_lock_irq(host->host_lock);
1514 return ret; 1717 return ret;
1515 1718
1516 case WRITE_6: 1719 case WRITE_6:
1517 case WRITE_10: 1720 case WRITE_10:
1721 case WRITE_12:
1722 case WRITE_16:
1518 spin_unlock_irq(host->host_lock); 1723 spin_unlock_irq(host->host_lock);
1519 ret = aac_write(scsicmd, cid); 1724 ret = aac_write(scsicmd, cid);
1520 spin_lock_irq(host->host_lock); 1725 spin_lock_irq(host->host_lock);
@@ -1745,6 +1950,8 @@ static void aac_srb_callback(void *context, struct fib * fibptr)
1745 case WRITE_10: 1950 case WRITE_10:
1746 case READ_12: 1951 case READ_12:
1747 case WRITE_12: 1952 case WRITE_12:
1953 case READ_16:
1954 case WRITE_16:
1748 if(le32_to_cpu(srbreply->data_xfer_length) < scsicmd->underflow ) { 1955 if(le32_to_cpu(srbreply->data_xfer_length) < scsicmd->underflow ) {
1749 printk(KERN_WARNING"aacraid: SCSI CMD underflow\n"); 1956 printk(KERN_WARNING"aacraid: SCSI CMD underflow\n");
1750 } else { 1957 } else {
@@ -1850,8 +2057,8 @@ static void aac_srb_callback(void *context, struct fib * fibptr)
1850 sizeof(scsicmd->sense_buffer) : 2057 sizeof(scsicmd->sense_buffer) :
1851 le32_to_cpu(srbreply->sense_data_size); 2058 le32_to_cpu(srbreply->sense_data_size);
1852#ifdef AAC_DETAILED_STATUS_INFO 2059#ifdef AAC_DETAILED_STATUS_INFO
1853 dprintk((KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n", 2060 printk(KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n",
1854 le32_to_cpu(srbreply->status), len)); 2061 le32_to_cpu(srbreply->status), len);
1855#endif 2062#endif
1856 memcpy(scsicmd->sense_buffer, srbreply->sense_data, len); 2063 memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
1857 2064
diff --git a/drivers/scsi/aacraid/aacraid.h b/drivers/scsi/aacraid/aacraid.h
index e40528185d48..4a99d2f000f4 100644
--- a/drivers/scsi/aacraid/aacraid.h
+++ b/drivers/scsi/aacraid/aacraid.h
@@ -1,6 +1,10 @@
1#if (!defined(dprintk)) 1#if (!defined(dprintk))
2# define dprintk(x) 2# define dprintk(x)
3#endif 3#endif
4/* eg: if (nblank(dprintk(x))) */
5#define _nblank(x) #x
6#define nblank(x) _nblank(x)[0]
7
4 8
5/*------------------------------------------------------------------------------ 9/*------------------------------------------------------------------------------
6 * D E F I N E S 10 * D E F I N E S
@@ -302,7 +306,6 @@ enum aac_queue_types {
302 */ 306 */
303 307
304#define FsaNormal 1 308#define FsaNormal 1
305#define FsaHigh 2
306 309
307/* 310/*
308 * Define the FIB. The FIB is the where all the requested data and 311 * Define the FIB. The FIB is the where all the requested data and
@@ -546,8 +549,6 @@ struct aac_queue {
546 /* This is only valid for adapter to host command queues. */ 549 /* This is only valid for adapter to host command queues. */
547 spinlock_t *lock; /* Spinlock for this queue must take this lock before accessing the lock */ 550 spinlock_t *lock; /* Spinlock for this queue must take this lock before accessing the lock */
548 spinlock_t lockdata; /* Actual lock (used only on one side of the lock) */ 551 spinlock_t lockdata; /* Actual lock (used only on one side of the lock) */
549 unsigned long SavedIrql; /* Previous IRQL when the spin lock is taken */
550 u32 padding; /* Padding - FIXME - can remove I believe */
551 struct list_head cmdq; /* A queue of FIBs which need to be prcessed by the FS thread. This is */ 552 struct list_head cmdq; /* A queue of FIBs which need to be prcessed by the FS thread. This is */
552 /* only valid for command queues which receive entries from the adapter. */ 553 /* only valid for command queues which receive entries from the adapter. */
553 struct list_head pendingq; /* A queue of outstanding fib's to the adapter. */ 554 struct list_head pendingq; /* A queue of outstanding fib's to the adapter. */
@@ -776,7 +777,9 @@ struct fsa_dev_info {
776 u64 last; 777 u64 last;
777 u64 size; 778 u64 size;
778 u32 type; 779 u32 type;
780 u32 config_waiting_on;
779 u16 queue_depth; 781 u16 queue_depth;
782 u8 config_needed;
780 u8 valid; 783 u8 valid;
781 u8 ro; 784 u8 ro;
782 u8 locked; 785 u8 locked;
@@ -1012,6 +1015,7 @@ struct aac_dev
1012 /* macro side-effects BEWARE */ 1015 /* macro side-effects BEWARE */
1013# define raw_io_interface \ 1016# define raw_io_interface \
1014 init->InitStructRevision==cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION_4) 1017 init->InitStructRevision==cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION_4)
1018 u8 raw_io_64;
1015 u8 printf_enabled; 1019 u8 printf_enabled;
1016}; 1020};
1017 1021
@@ -1362,8 +1366,10 @@ struct aac_srb_reply
1362#define VM_CtBlockVerify64 18 1366#define VM_CtBlockVerify64 18
1363#define VM_CtHostRead64 19 1367#define VM_CtHostRead64 19
1364#define VM_CtHostWrite64 20 1368#define VM_CtHostWrite64 20
1369#define VM_DrvErrTblLog 21
1370#define VM_NameServe64 22
1365 1371
1366#define MAX_VMCOMMAND_NUM 21 /* used for sizing stats array - leave last */ 1372#define MAX_VMCOMMAND_NUM 23 /* used for sizing stats array - leave last */
1367 1373
1368/* 1374/*
1369 * Descriptive information (eg, vital stats) 1375 * Descriptive information (eg, vital stats)
@@ -1472,6 +1478,7 @@ struct aac_mntent {
1472 manager (eg, filesystem) */ 1478 manager (eg, filesystem) */
1473 __le32 altoid; /* != oid <==> snapshot or 1479 __le32 altoid; /* != oid <==> snapshot or
1474 broken mirror exists */ 1480 broken mirror exists */
1481 __le32 capacityhigh;
1475}; 1482};
1476 1483
1477#define FSCS_NOTCLEAN 0x0001 /* fsck is neccessary before mounting */ 1484#define FSCS_NOTCLEAN 0x0001 /* fsck is neccessary before mounting */
@@ -1707,6 +1714,7 @@ extern struct aac_common aac_config;
1707#define AifCmdJobProgress 2 /* Progress report */ 1714#define AifCmdJobProgress 2 /* Progress report */
1708#define AifJobCtrZero 101 /* Array Zero progress */ 1715#define AifJobCtrZero 101 /* Array Zero progress */
1709#define AifJobStsSuccess 1 /* Job completes */ 1716#define AifJobStsSuccess 1 /* Job completes */
1717#define AifJobStsRunning 102 /* Job running */
1710#define AifCmdAPIReport 3 /* Report from other user of API */ 1718#define AifCmdAPIReport 3 /* Report from other user of API */
1711#define AifCmdDriverNotify 4 /* Notify host driver of event */ 1719#define AifCmdDriverNotify 4 /* Notify host driver of event */
1712#define AifDenMorphComplete 200 /* A morph operation completed */ 1720#define AifDenMorphComplete 200 /* A morph operation completed */
@@ -1777,6 +1785,7 @@ int fib_adapter_complete(struct fib * fibptr, unsigned short size);
1777struct aac_driver_ident* aac_get_driver_ident(int devtype); 1785struct aac_driver_ident* aac_get_driver_ident(int devtype);
1778int aac_get_adapter_info(struct aac_dev* dev); 1786int aac_get_adapter_info(struct aac_dev* dev);
1779int aac_send_shutdown(struct aac_dev *dev); 1787int aac_send_shutdown(struct aac_dev *dev);
1788int probe_container(struct aac_dev *dev, int cid);
1780extern int numacb; 1789extern int numacb;
1781extern int acbsize; 1790extern int acbsize;
1782extern char aac_driver_version[]; 1791extern char aac_driver_version[];
diff --git a/drivers/scsi/aacraid/comminit.c b/drivers/scsi/aacraid/comminit.c
index 75abd0453289..59a341b2aedc 100644
--- a/drivers/scsi/aacraid/comminit.c
+++ b/drivers/scsi/aacraid/comminit.c
@@ -195,7 +195,7 @@ int aac_send_shutdown(struct aac_dev * dev)
195 fibctx, 195 fibctx,
196 sizeof(struct aac_close), 196 sizeof(struct aac_close),
197 FsaNormal, 197 FsaNormal,
198 1, 1, 198 -2 /* Timeout silently */, 1,
199 NULL, NULL); 199 NULL, NULL);
200 200
201 if (status == 0) 201 if (status == 0)
@@ -313,8 +313,15 @@ struct aac_dev *aac_init_adapter(struct aac_dev *dev)
313 dev->max_fib_size = sizeof(struct hw_fib); 313 dev->max_fib_size = sizeof(struct hw_fib);
314 dev->sg_tablesize = host->sg_tablesize = (dev->max_fib_size 314 dev->sg_tablesize = host->sg_tablesize = (dev->max_fib_size
315 - sizeof(struct aac_fibhdr) 315 - sizeof(struct aac_fibhdr)
316 - sizeof(struct aac_write) + sizeof(struct sgmap)) 316 - sizeof(struct aac_write) + sizeof(struct sgentry))
317 / sizeof(struct sgmap); 317 / sizeof(struct sgentry);
318 dev->raw_io_64 = 0;
319 if ((!aac_adapter_sync_cmd(dev, GET_ADAPTER_PROPERTIES,
320 0, 0, 0, 0, 0, 0, status+0, status+1, status+2, NULL, NULL)) &&
321 (status[0] == 0x00000001)) {
322 if (status[1] & AAC_OPT_NEW_COMM_64)
323 dev->raw_io_64 = 1;
324 }
318 if ((!aac_adapter_sync_cmd(dev, GET_COMM_PREFERRED_SETTINGS, 325 if ((!aac_adapter_sync_cmd(dev, GET_COMM_PREFERRED_SETTINGS,
319 0, 0, 0, 0, 0, 0, 326 0, 0, 0, 0, 0, 0,
320 status+0, status+1, status+2, status+3, status+4)) 327 status+0, status+1, status+2, status+3, status+4))
@@ -342,8 +349,8 @@ struct aac_dev *aac_init_adapter(struct aac_dev *dev)
342 dev->max_fib_size = 512; 349 dev->max_fib_size = 512;
343 dev->sg_tablesize = host->sg_tablesize 350 dev->sg_tablesize = host->sg_tablesize
344 = (512 - sizeof(struct aac_fibhdr) 351 = (512 - sizeof(struct aac_fibhdr)
345 - sizeof(struct aac_write) + sizeof(struct sgmap)) 352 - sizeof(struct aac_write) + sizeof(struct sgentry))
346 / sizeof(struct sgmap); 353 / sizeof(struct sgentry);
347 host->can_queue = AAC_NUM_IO_FIB; 354 host->can_queue = AAC_NUM_IO_FIB;
348 } else if (acbsize == 2048) { 355 } else if (acbsize == 2048) {
349 host->max_sectors = 512; 356 host->max_sectors = 512;
diff --git a/drivers/scsi/aacraid/commsup.c b/drivers/scsi/aacraid/commsup.c
index a1d303f03480..e4d543a474ae 100644
--- a/drivers/scsi/aacraid/commsup.c
+++ b/drivers/scsi/aacraid/commsup.c
@@ -39,7 +39,9 @@
39#include <linux/completion.h> 39#include <linux/completion.h>
40#include <linux/blkdev.h> 40#include <linux/blkdev.h>
41#include <scsi/scsi_host.h> 41#include <scsi/scsi_host.h>
42#include <scsi/scsi_device.h>
42#include <asm/semaphore.h> 43#include <asm/semaphore.h>
44#include <asm/delay.h>
43 45
44#include "aacraid.h" 46#include "aacraid.h"
45 47
@@ -269,40 +271,22 @@ static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entr
269 /* Interrupt Moderation, only interrupt for first two entries */ 271 /* Interrupt Moderation, only interrupt for first two entries */
270 if (idx != le32_to_cpu(*(q->headers.consumer))) { 272 if (idx != le32_to_cpu(*(q->headers.consumer))) {
271 if (--idx == 0) { 273 if (--idx == 0) {
272 if (qid == AdapHighCmdQueue) 274 if (qid == AdapNormCmdQueue)
273 idx = ADAP_HIGH_CMD_ENTRIES;
274 else if (qid == AdapNormCmdQueue)
275 idx = ADAP_NORM_CMD_ENTRIES; 275 idx = ADAP_NORM_CMD_ENTRIES;
276 else if (qid == AdapHighRespQueue) 276 else
277 idx = ADAP_HIGH_RESP_ENTRIES;
278 else if (qid == AdapNormRespQueue)
279 idx = ADAP_NORM_RESP_ENTRIES; 277 idx = ADAP_NORM_RESP_ENTRIES;
280 } 278 }
281 if (idx != le32_to_cpu(*(q->headers.consumer))) 279 if (idx != le32_to_cpu(*(q->headers.consumer)))
282 *nonotify = 1; 280 *nonotify = 1;
283 } 281 }
284 282
285 if (qid == AdapHighCmdQueue) { 283 if (qid == AdapNormCmdQueue) {
286 if (*index >= ADAP_HIGH_CMD_ENTRIES)
287 *index = 0;
288 } else if (qid == AdapNormCmdQueue) {
289 if (*index >= ADAP_NORM_CMD_ENTRIES) 284 if (*index >= ADAP_NORM_CMD_ENTRIES)
290 *index = 0; /* Wrap to front of the Producer Queue. */ 285 *index = 0; /* Wrap to front of the Producer Queue. */
291 } 286 } else {
292 else if (qid == AdapHighRespQueue)
293 {
294 if (*index >= ADAP_HIGH_RESP_ENTRIES)
295 *index = 0;
296 }
297 else if (qid == AdapNormRespQueue)
298 {
299 if (*index >= ADAP_NORM_RESP_ENTRIES) 287 if (*index >= ADAP_NORM_RESP_ENTRIES)
300 *index = 0; /* Wrap to front of the Producer Queue. */ 288 *index = 0; /* Wrap to front of the Producer Queue. */
301 } 289 }
302 else {
303 printk("aacraid: invalid qid\n");
304 BUG();
305 }
306 290
307 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */ 291 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
308 printk(KERN_WARNING "Queue %d full, %u outstanding.\n", 292 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
@@ -334,12 +318,8 @@ static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_f
334{ 318{
335 struct aac_entry * entry = NULL; 319 struct aac_entry * entry = NULL;
336 int map = 0; 320 int map = 0;
337 struct aac_queue * q = &dev->queues->queue[qid];
338
339 spin_lock_irqsave(q->lock, q->SavedIrql);
340 321
341 if (qid == AdapHighCmdQueue || qid == AdapNormCmdQueue) 322 if (qid == AdapNormCmdQueue) {
342 {
343 /* if no entries wait for some if caller wants to */ 323 /* if no entries wait for some if caller wants to */
344 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) 324 while (!aac_get_entry(dev, qid, &entry, index, nonotify))
345 { 325 {
@@ -350,9 +330,7 @@ static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_f
350 */ 330 */
351 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 331 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
352 map = 1; 332 map = 1;
353 } 333 } else {
354 else if (qid == AdapHighRespQueue || qid == AdapNormRespQueue)
355 {
356 while(!aac_get_entry(dev, qid, &entry, index, nonotify)) 334 while(!aac_get_entry(dev, qid, &entry, index, nonotify))
357 { 335 {
358 /* if no entries wait for some if caller wants to */ 336 /* if no entries wait for some if caller wants to */
@@ -375,42 +353,6 @@ static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_f
375 return 0; 353 return 0;
376} 354}
377 355
378
379/**
380 * aac_insert_entry - insert a queue entry
381 * @dev: Adapter
382 * @index: Index of entry to insert
383 * @qid: Queue number
384 * @nonotify: Suppress adapter notification
385 *
386 * Gets the next free QE off the requested priorty adapter command
387 * queue and associates the Fib with the QE. The QE represented by
388 * index is ready to insert on the queue when this routine returns
389 * success.
390 */
391
392static int aac_insert_entry(struct aac_dev * dev, u32 index, u32 qid, unsigned long nonotify)
393{
394 struct aac_queue * q = &dev->queues->queue[qid];
395
396 if(q == NULL)
397 BUG();
398 *(q->headers.producer) = cpu_to_le32(index + 1);
399 spin_unlock_irqrestore(q->lock, q->SavedIrql);
400
401 if (qid == AdapHighCmdQueue ||
402 qid == AdapNormCmdQueue ||
403 qid == AdapHighRespQueue ||
404 qid == AdapNormRespQueue)
405 {
406 if (!nonotify)
407 aac_adapter_notify(dev, qid);
408 }
409 else
410 printk("Suprise insert!\n");
411 return 0;
412}
413
414/* 356/*
415 * Define the highest level of host to adapter communication routines. 357 * Define the highest level of host to adapter communication routines.
416 * These routines will support host to adapter FS commuication. These 358 * These routines will support host to adapter FS commuication. These
@@ -439,12 +381,13 @@ static int aac_insert_entry(struct aac_dev * dev, u32 index, u32 qid, unsigned l
439int fib_send(u16 command, struct fib * fibptr, unsigned long size, int priority, int wait, int reply, fib_callback callback, void * callback_data) 381int fib_send(u16 command, struct fib * fibptr, unsigned long size, int priority, int wait, int reply, fib_callback callback, void * callback_data)
440{ 382{
441 u32 index; 383 u32 index;
442 u32 qid;
443 struct aac_dev * dev = fibptr->dev; 384 struct aac_dev * dev = fibptr->dev;
444 unsigned long nointr = 0; 385 unsigned long nointr = 0;
445 struct hw_fib * hw_fib = fibptr->hw_fib; 386 struct hw_fib * hw_fib = fibptr->hw_fib;
446 struct aac_queue * q; 387 struct aac_queue * q;
447 unsigned long flags = 0; 388 unsigned long flags = 0;
389 unsigned long qflags;
390
448 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned))) 391 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
449 return -EBUSY; 392 return -EBUSY;
450 /* 393 /*
@@ -497,26 +440,8 @@ int fib_send(u16 command, struct fib * fibptr, unsigned long size, int priority
497 * Get a queue entry connect the FIB to it and send an notify 440 * Get a queue entry connect the FIB to it and send an notify
498 * the adapter a command is ready. 441 * the adapter a command is ready.
499 */ 442 */
500 if (priority == FsaHigh) { 443 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
501 hw_fib->header.XferState |= cpu_to_le32(HighPriority);
502 qid = AdapHighCmdQueue;
503 } else {
504 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
505 qid = AdapNormCmdQueue;
506 }
507 q = &dev->queues->queue[qid];
508 444
509 if(wait)
510 spin_lock_irqsave(&fibptr->event_lock, flags);
511 if(aac_queue_get( dev, &index, qid, hw_fib, 1, fibptr, &nointr)<0)
512 return -EWOULDBLOCK;
513 dprintk((KERN_DEBUG "fib_send: inserting a queue entry at index %d.\n",index));
514 dprintk((KERN_DEBUG "Fib contents:.\n"));
515 dprintk((KERN_DEBUG " Command = %d.\n", hw_fib->header.Command));
516 dprintk((KERN_DEBUG " XferState = %x.\n", hw_fib->header.XferState));
517 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib));
518 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
519 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
520 /* 445 /*
521 * Fill in the Callback and CallbackContext if we are not 446 * Fill in the Callback and CallbackContext if we are not
522 * going to wait. 447 * going to wait.
@@ -525,22 +450,67 @@ int fib_send(u16 command, struct fib * fibptr, unsigned long size, int priority
525 fibptr->callback = callback; 450 fibptr->callback = callback;
526 fibptr->callback_data = callback_data; 451 fibptr->callback_data = callback_data;
527 } 452 }
528 FIB_COUNTER_INCREMENT(aac_config.FibsSent);
529 list_add_tail(&fibptr->queue, &q->pendingq);
530 q->numpending++;
531 453
532 fibptr->done = 0; 454 fibptr->done = 0;
533 fibptr->flags = 0; 455 fibptr->flags = 0;
534 456
535 if(aac_insert_entry(dev, index, qid, (nointr & aac_config.irq_mod)) < 0) 457 FIB_COUNTER_INCREMENT(aac_config.FibsSent);
536 return -EWOULDBLOCK; 458
459 dprintk((KERN_DEBUG "fib_send: inserting a queue entry at index %d.\n",index));
460 dprintk((KERN_DEBUG "Fib contents:.\n"));
461 dprintk((KERN_DEBUG " Command = %d.\n", hw_fib->header.Command));
462 dprintk((KERN_DEBUG " XferState = %x.\n", hw_fib->header.XferState));
463 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib));
464 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
465 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
466
467 q = &dev->queues->queue[AdapNormCmdQueue];
468
469 if(wait)
470 spin_lock_irqsave(&fibptr->event_lock, flags);
471 spin_lock_irqsave(q->lock, qflags);
472 aac_queue_get( dev, &index, AdapNormCmdQueue, hw_fib, 1, fibptr, &nointr);
473
474 list_add_tail(&fibptr->queue, &q->pendingq);
475 q->numpending++;
476 *(q->headers.producer) = cpu_to_le32(index + 1);
477 spin_unlock_irqrestore(q->lock, qflags);
478 if (!(nointr & aac_config.irq_mod))
479 aac_adapter_notify(dev, AdapNormCmdQueue);
537 /* 480 /*
538 * If the caller wanted us to wait for response wait now. 481 * If the caller wanted us to wait for response wait now.
539 */ 482 */
540 483
541 if (wait) { 484 if (wait) {
542 spin_unlock_irqrestore(&fibptr->event_lock, flags); 485 spin_unlock_irqrestore(&fibptr->event_lock, flags);
543 down(&fibptr->event_wait); 486 /* Only set for first known interruptable command */
487 if (wait < 0) {
488 /*
489 * *VERY* Dangerous to time out a command, the
490 * assumption is made that we have no hope of
491 * functioning because an interrupt routing or other
492 * hardware failure has occurred.
493 */
494 unsigned long count = 36000000L; /* 3 minutes */
495 unsigned long qflags;
496 while (down_trylock(&fibptr->event_wait)) {
497 if (--count == 0) {
498 spin_lock_irqsave(q->lock, qflags);
499 q->numpending--;
500 list_del(&fibptr->queue);
501 spin_unlock_irqrestore(q->lock, qflags);
502 if (wait == -1) {
503 printk(KERN_ERR "aacraid: fib_send: first asynchronous command timed out.\n"
504 "Usually a result of a PCI interrupt routing problem;\n"
505 "update mother board BIOS or consider utilizing one of\n"
506 "the SAFE mode kernel options (acpi, apic etc)\n");
507 }
508 return -ETIMEDOUT;
509 }
510 udelay(5);
511 }
512 } else
513 down(&fibptr->event_wait);
544 if(fibptr->done == 0) 514 if(fibptr->done == 0)
545 BUG(); 515 BUG();
546 516
@@ -622,15 +592,9 @@ void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
622 case HostNormCmdQueue: 592 case HostNormCmdQueue:
623 notify = HostNormCmdNotFull; 593 notify = HostNormCmdNotFull;
624 break; 594 break;
625 case HostHighCmdQueue:
626 notify = HostHighCmdNotFull;
627 break;
628 case HostNormRespQueue: 595 case HostNormRespQueue:
629 notify = HostNormRespNotFull; 596 notify = HostNormRespNotFull;
630 break; 597 break;
631 case HostHighRespQueue:
632 notify = HostHighRespNotFull;
633 break;
634 default: 598 default:
635 BUG(); 599 BUG();
636 return; 600 return;
@@ -652,9 +616,13 @@ int fib_adapter_complete(struct fib * fibptr, unsigned short size)
652{ 616{
653 struct hw_fib * hw_fib = fibptr->hw_fib; 617 struct hw_fib * hw_fib = fibptr->hw_fib;
654 struct aac_dev * dev = fibptr->dev; 618 struct aac_dev * dev = fibptr->dev;
619 struct aac_queue * q;
655 unsigned long nointr = 0; 620 unsigned long nointr = 0;
656 if (hw_fib->header.XferState == 0) 621 unsigned long qflags;
622
623 if (hw_fib->header.XferState == 0) {
657 return 0; 624 return 0;
625 }
658 /* 626 /*
659 * If we plan to do anything check the structure type first. 627 * If we plan to do anything check the structure type first.
660 */ 628 */
@@ -669,37 +637,21 @@ int fib_adapter_complete(struct fib * fibptr, unsigned short size)
669 * send the completed cdb to the adapter. 637 * send the completed cdb to the adapter.
670 */ 638 */
671 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) { 639 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
640 u32 index;
672 hw_fib->header.XferState |= cpu_to_le32(HostProcessed); 641 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
673 if (hw_fib->header.XferState & cpu_to_le32(HighPriority)) { 642 if (size) {
674 u32 index; 643 size += sizeof(struct aac_fibhdr);
675 if (size) 644 if (size > le16_to_cpu(hw_fib->header.SenderSize))
676 { 645 return -EMSGSIZE;
677 size += sizeof(struct aac_fibhdr); 646 hw_fib->header.Size = cpu_to_le16(size);
678 if (size > le16_to_cpu(hw_fib->header.SenderSize))
679 return -EMSGSIZE;
680 hw_fib->header.Size = cpu_to_le16(size);
681 }
682 if(aac_queue_get(dev, &index, AdapHighRespQueue, hw_fib, 1, NULL, &nointr) < 0) {
683 return -EWOULDBLOCK;
684 }
685 if (aac_insert_entry(dev, index, AdapHighRespQueue, (nointr & (int)aac_config.irq_mod)) != 0) {
686 }
687 } else if (hw_fib->header.XferState &
688 cpu_to_le32(NormalPriority)) {
689 u32 index;
690
691 if (size) {
692 size += sizeof(struct aac_fibhdr);
693 if (size > le16_to_cpu(hw_fib->header.SenderSize))
694 return -EMSGSIZE;
695 hw_fib->header.Size = cpu_to_le16(size);
696 }
697 if (aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr) < 0)
698 return -EWOULDBLOCK;
699 if (aac_insert_entry(dev, index, AdapNormRespQueue, (nointr & (int)aac_config.irq_mod)) != 0)
700 {
701 }
702 } 647 }
648 q = &dev->queues->queue[AdapNormRespQueue];
649 spin_lock_irqsave(q->lock, qflags);
650 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
651 *(q->headers.producer) = cpu_to_le32(index + 1);
652 spin_unlock_irqrestore(q->lock, qflags);
653 if (!(nointr & (int)aac_config.irq_mod))
654 aac_adapter_notify(dev, AdapNormRespQueue);
703 } 655 }
704 else 656 else
705 { 657 {
@@ -791,6 +743,268 @@ void aac_printf(struct aac_dev *dev, u32 val)
791 memset(cp, 0, 256); 743 memset(cp, 0, 256);
792} 744}
793 745
746
747/**
748 * aac_handle_aif - Handle a message from the firmware
749 * @dev: Which adapter this fib is from
750 * @fibptr: Pointer to fibptr from adapter
751 *
752 * This routine handles a driver notify fib from the adapter and
753 * dispatches it to the appropriate routine for handling.
754 */
755
756static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
757{
758 struct hw_fib * hw_fib = fibptr->hw_fib;
759 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
760 int busy;
761 u32 container;
762 struct scsi_device *device;
763 enum {
764 NOTHING,
765 DELETE,
766 ADD,
767 CHANGE
768 } device_config_needed;
769
770 /* Sniff for container changes */
771
772 if (!dev)
773 return;
774 container = (u32)-1;
775
776 /*
777 * We have set this up to try and minimize the number of
778 * re-configures that take place. As a result of this when
779 * certain AIF's come in we will set a flag waiting for another
780 * type of AIF before setting the re-config flag.
781 */
782 switch (le32_to_cpu(aifcmd->command)) {
783 case AifCmdDriverNotify:
784 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
785 /*
786 * Morph or Expand complete
787 */
788 case AifDenMorphComplete:
789 case AifDenVolumeExtendComplete:
790 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
791 if (container >= dev->maximum_num_containers)
792 break;
793
794 /*
795 * Find the Scsi_Device associated with the SCSI
796 * address. Make sure we have the right array, and if
797 * so set the flag to initiate a new re-config once we
798 * see an AifEnConfigChange AIF come through.
799 */
800
801 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
802 device = scsi_device_lookup(dev->scsi_host_ptr,
803 CONTAINER_TO_CHANNEL(container),
804 CONTAINER_TO_ID(container),
805 CONTAINER_TO_LUN(container));
806 if (device) {
807 dev->fsa_dev[container].config_needed = CHANGE;
808 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
809 scsi_device_put(device);
810 }
811 }
812 }
813
814 /*
815 * If we are waiting on something and this happens to be
816 * that thing then set the re-configure flag.
817 */
818 if (container != (u32)-1) {
819 if (container >= dev->maximum_num_containers)
820 break;
821 if (dev->fsa_dev[container].config_waiting_on ==
822 le32_to_cpu(*(u32 *)aifcmd->data))
823 dev->fsa_dev[container].config_waiting_on = 0;
824 } else for (container = 0;
825 container < dev->maximum_num_containers; ++container) {
826 if (dev->fsa_dev[container].config_waiting_on ==
827 le32_to_cpu(*(u32 *)aifcmd->data))
828 dev->fsa_dev[container].config_waiting_on = 0;
829 }
830 break;
831
832 case AifCmdEventNotify:
833 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
834 /*
835 * Add an Array.
836 */
837 case AifEnAddContainer:
838 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
839 if (container >= dev->maximum_num_containers)
840 break;
841 dev->fsa_dev[container].config_needed = ADD;
842 dev->fsa_dev[container].config_waiting_on =
843 AifEnConfigChange;
844 break;
845
846 /*
847 * Delete an Array.
848 */
849 case AifEnDeleteContainer:
850 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
851 if (container >= dev->maximum_num_containers)
852 break;
853 dev->fsa_dev[container].config_needed = DELETE;
854 dev->fsa_dev[container].config_waiting_on =
855 AifEnConfigChange;
856 break;
857
858 /*
859 * Container change detected. If we currently are not
860 * waiting on something else, setup to wait on a Config Change.
861 */
862 case AifEnContainerChange:
863 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
864 if (container >= dev->maximum_num_containers)
865 break;
866 if (dev->fsa_dev[container].config_waiting_on)
867 break;
868 dev->fsa_dev[container].config_needed = CHANGE;
869 dev->fsa_dev[container].config_waiting_on =
870 AifEnConfigChange;
871 break;
872
873 case AifEnConfigChange:
874 break;
875
876 }
877
878 /*
879 * If we are waiting on something and this happens to be
880 * that thing then set the re-configure flag.
881 */
882 if (container != (u32)-1) {
883 if (container >= dev->maximum_num_containers)
884 break;
885 if (dev->fsa_dev[container].config_waiting_on ==
886 le32_to_cpu(*(u32 *)aifcmd->data))
887 dev->fsa_dev[container].config_waiting_on = 0;
888 } else for (container = 0;
889 container < dev->maximum_num_containers; ++container) {
890 if (dev->fsa_dev[container].config_waiting_on ==
891 le32_to_cpu(*(u32 *)aifcmd->data))
892 dev->fsa_dev[container].config_waiting_on = 0;
893 }
894 break;
895
896 case AifCmdJobProgress:
897 /*
898 * These are job progress AIF's. When a Clear is being
899 * done on a container it is initially created then hidden from
900 * the OS. When the clear completes we don't get a config
901 * change so we monitor the job status complete on a clear then
902 * wait for a container change.
903 */
904
905 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
906 && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5])
907 || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) {
908 for (container = 0;
909 container < dev->maximum_num_containers;
910 ++container) {
911 /*
912 * Stomp on all config sequencing for all
913 * containers?
914 */
915 dev->fsa_dev[container].config_waiting_on =
916 AifEnContainerChange;
917 dev->fsa_dev[container].config_needed = ADD;
918 }
919 }
920 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
921 && (((u32 *)aifcmd->data)[6] == 0)
922 && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) {
923 for (container = 0;
924 container < dev->maximum_num_containers;
925 ++container) {
926 /*
927 * Stomp on all config sequencing for all
928 * containers?
929 */
930 dev->fsa_dev[container].config_waiting_on =
931 AifEnContainerChange;
932 dev->fsa_dev[container].config_needed = DELETE;
933 }
934 }
935 break;
936 }
937
938 device_config_needed = NOTHING;
939 for (container = 0; container < dev->maximum_num_containers;
940 ++container) {
941 if ((dev->fsa_dev[container].config_waiting_on == 0)
942 && (dev->fsa_dev[container].config_needed != NOTHING)) {
943 device_config_needed =
944 dev->fsa_dev[container].config_needed;
945 dev->fsa_dev[container].config_needed = NOTHING;
946 break;
947 }
948 }
949 if (device_config_needed == NOTHING)
950 return;
951
952 /*
953 * If we decided that a re-configuration needs to be done,
954 * schedule it here on the way out the door, please close the door
955 * behind you.
956 */
957
958 busy = 0;
959
960
961 /*
962 * Find the Scsi_Device associated with the SCSI address,
963 * and mark it as changed, invalidating the cache. This deals
964 * with changes to existing device IDs.
965 */
966
967 if (!dev || !dev->scsi_host_ptr)
968 return;
969 /*
970 * force reload of disk info via probe_container
971 */
972 if ((device_config_needed == CHANGE)
973 && (dev->fsa_dev[container].valid == 1))
974 dev->fsa_dev[container].valid = 2;
975 if ((device_config_needed == CHANGE) ||
976 (device_config_needed == ADD))
977 probe_container(dev, container);
978 device = scsi_device_lookup(dev->scsi_host_ptr,
979 CONTAINER_TO_CHANNEL(container),
980 CONTAINER_TO_ID(container),
981 CONTAINER_TO_LUN(container));
982 if (device) {
983 switch (device_config_needed) {
984 case DELETE:
985 scsi_remove_device(device);
986 break;
987 case CHANGE:
988 if (!dev->fsa_dev[container].valid) {
989 scsi_remove_device(device);
990 break;
991 }
992 scsi_rescan_device(&device->sdev_gendev);
993
994 default:
995 break;
996 }
997 scsi_device_put(device);
998 }
999 if (device_config_needed == ADD) {
1000 scsi_add_device(dev->scsi_host_ptr,
1001 CONTAINER_TO_CHANNEL(container),
1002 CONTAINER_TO_ID(container),
1003 CONTAINER_TO_LUN(container));
1004 }
1005
1006}
1007
794/** 1008/**
795 * aac_command_thread - command processing thread 1009 * aac_command_thread - command processing thread
796 * @dev: Adapter to monitor 1010 * @dev: Adapter to monitor
@@ -805,7 +1019,6 @@ int aac_command_thread(struct aac_dev * dev)
805{ 1019{
806 struct hw_fib *hw_fib, *hw_newfib; 1020 struct hw_fib *hw_fib, *hw_newfib;
807 struct fib *fib, *newfib; 1021 struct fib *fib, *newfib;
808 struct aac_queue_block *queues = dev->queues;
809 struct aac_fib_context *fibctx; 1022 struct aac_fib_context *fibctx;
810 unsigned long flags; 1023 unsigned long flags;
811 DECLARE_WAITQUEUE(wait, current); 1024 DECLARE_WAITQUEUE(wait, current);
@@ -825,21 +1038,22 @@ int aac_command_thread(struct aac_dev * dev)
825 * Let the DPC know it has a place to send the AIF's to. 1038 * Let the DPC know it has a place to send the AIF's to.
826 */ 1039 */
827 dev->aif_thread = 1; 1040 dev->aif_thread = 1;
828 add_wait_queue(&queues->queue[HostNormCmdQueue].cmdready, &wait); 1041 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
829 set_current_state(TASK_INTERRUPTIBLE); 1042 set_current_state(TASK_INTERRUPTIBLE);
1043 dprintk ((KERN_INFO "aac_command_thread start\n"));
830 while(1) 1044 while(1)
831 { 1045 {
832 spin_lock_irqsave(queues->queue[HostNormCmdQueue].lock, flags); 1046 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
833 while(!list_empty(&(queues->queue[HostNormCmdQueue].cmdq))) { 1047 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
834 struct list_head *entry; 1048 struct list_head *entry;
835 struct aac_aifcmd * aifcmd; 1049 struct aac_aifcmd * aifcmd;
836 1050
837 set_current_state(TASK_RUNNING); 1051 set_current_state(TASK_RUNNING);
838 1052
839 entry = queues->queue[HostNormCmdQueue].cmdq.next; 1053 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
840 list_del(entry); 1054 list_del(entry);
841 1055
842 spin_unlock_irqrestore(queues->queue[HostNormCmdQueue].lock, flags); 1056 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
843 fib = list_entry(entry, struct fib, fiblink); 1057 fib = list_entry(entry, struct fib, fiblink);
844 /* 1058 /*
845 * We will process the FIB here or pass it to a 1059 * We will process the FIB here or pass it to a
@@ -860,6 +1074,7 @@ int aac_command_thread(struct aac_dev * dev)
860 aifcmd = (struct aac_aifcmd *) hw_fib->data; 1074 aifcmd = (struct aac_aifcmd *) hw_fib->data;
861 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) { 1075 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
862 /* Handle Driver Notify Events */ 1076 /* Handle Driver Notify Events */
1077 aac_handle_aif(dev, fib);
863 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 1078 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
864 fib_adapter_complete(fib, (u16)sizeof(u32)); 1079 fib_adapter_complete(fib, (u16)sizeof(u32));
865 } else { 1080 } else {
@@ -869,9 +1084,62 @@ int aac_command_thread(struct aac_dev * dev)
869 1084
870 u32 time_now, time_last; 1085 u32 time_now, time_last;
871 unsigned long flagv; 1086 unsigned long flagv;
872 1087 unsigned num;
1088 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1089 struct fib ** fib_pool, ** fib_p;
1090
1091 /* Sniff events */
1092 if ((aifcmd->command ==
1093 cpu_to_le32(AifCmdEventNotify)) ||
1094 (aifcmd->command ==
1095 cpu_to_le32(AifCmdJobProgress))) {
1096 aac_handle_aif(dev, fib);
1097 }
1098
873 time_now = jiffies/HZ; 1099 time_now = jiffies/HZ;
874 1100
1101 /*
1102 * Warning: no sleep allowed while
1103 * holding spinlock. We take the estimate
1104 * and pre-allocate a set of fibs outside the
1105 * lock.
1106 */
1107 num = le32_to_cpu(dev->init->AdapterFibsSize)
1108 / sizeof(struct hw_fib); /* some extra */
1109 spin_lock_irqsave(&dev->fib_lock, flagv);
1110 entry = dev->fib_list.next;
1111 while (entry != &dev->fib_list) {
1112 entry = entry->next;
1113 ++num;
1114 }
1115 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1116 hw_fib_pool = NULL;
1117 fib_pool = NULL;
1118 if (num
1119 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1120 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1121 hw_fib_p = hw_fib_pool;
1122 fib_p = fib_pool;
1123 while (hw_fib_p < &hw_fib_pool[num]) {
1124 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1125 --hw_fib_p;
1126 break;
1127 }
1128 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1129 kfree(*(--hw_fib_p));
1130 break;
1131 }
1132 }
1133 if ((num = hw_fib_p - hw_fib_pool) == 0) {
1134 kfree(fib_pool);
1135 fib_pool = NULL;
1136 kfree(hw_fib_pool);
1137 hw_fib_pool = NULL;
1138 }
1139 } else if (hw_fib_pool) {
1140 kfree(hw_fib_pool);
1141 hw_fib_pool = NULL;
1142 }
875 spin_lock_irqsave(&dev->fib_lock, flagv); 1143 spin_lock_irqsave(&dev->fib_lock, flagv);
876 entry = dev->fib_list.next; 1144 entry = dev->fib_list.next;
877 /* 1145 /*
@@ -880,6 +1148,8 @@ int aac_command_thread(struct aac_dev * dev)
880 * fib, and then set the event to wake up the 1148 * fib, and then set the event to wake up the
881 * thread that is waiting for it. 1149 * thread that is waiting for it.
882 */ 1150 */
1151 hw_fib_p = hw_fib_pool;
1152 fib_p = fib_pool;
883 while (entry != &dev->fib_list) { 1153 while (entry != &dev->fib_list) {
884 /* 1154 /*
885 * Extract the fibctx 1155 * Extract the fibctx
@@ -912,9 +1182,11 @@ int aac_command_thread(struct aac_dev * dev)
912 * Warning: no sleep allowed while 1182 * Warning: no sleep allowed while
913 * holding spinlock 1183 * holding spinlock
914 */ 1184 */
915 hw_newfib = kmalloc(sizeof(struct hw_fib), GFP_ATOMIC); 1185 if (hw_fib_p < &hw_fib_pool[num]) {
916 newfib = kmalloc(sizeof(struct fib), GFP_ATOMIC); 1186 hw_newfib = *hw_fib_p;
917 if (newfib && hw_newfib) { 1187 *(hw_fib_p++) = NULL;
1188 newfib = *fib_p;
1189 *(fib_p++) = NULL;
918 /* 1190 /*
919 * Make the copy of the FIB 1191 * Make the copy of the FIB
920 */ 1192 */
@@ -929,15 +1201,11 @@ int aac_command_thread(struct aac_dev * dev)
929 fibctx->count++; 1201 fibctx->count++;
930 /* 1202 /*
931 * Set the event to wake up the 1203 * Set the event to wake up the
932 * thread that will waiting. 1204 * thread that is waiting.
933 */ 1205 */
934 up(&fibctx->wait_sem); 1206 up(&fibctx->wait_sem);
935 } else { 1207 } else {
936 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); 1208 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
937 if(newfib)
938 kfree(newfib);
939 if(hw_newfib)
940 kfree(hw_newfib);
941 } 1209 }
942 entry = entry->next; 1210 entry = entry->next;
943 } 1211 }
@@ -947,21 +1215,38 @@ int aac_command_thread(struct aac_dev * dev)
947 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 1215 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
948 fib_adapter_complete(fib, sizeof(u32)); 1216 fib_adapter_complete(fib, sizeof(u32));
949 spin_unlock_irqrestore(&dev->fib_lock, flagv); 1217 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1218 /* Free up the remaining resources */
1219 hw_fib_p = hw_fib_pool;
1220 fib_p = fib_pool;
1221 while (hw_fib_p < &hw_fib_pool[num]) {
1222 if (*hw_fib_p)
1223 kfree(*hw_fib_p);
1224 if (*fib_p)
1225 kfree(*fib_p);
1226 ++fib_p;
1227 ++hw_fib_p;
1228 }
1229 if (hw_fib_pool)
1230 kfree(hw_fib_pool);
1231 if (fib_pool)
1232 kfree(fib_pool);
950 } 1233 }
951 spin_lock_irqsave(queues->queue[HostNormCmdQueue].lock, flags);
952 kfree(fib); 1234 kfree(fib);
1235 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
953 } 1236 }
954 /* 1237 /*
955 * There are no more AIF's 1238 * There are no more AIF's
956 */ 1239 */
957 spin_unlock_irqrestore(queues->queue[HostNormCmdQueue].lock, flags); 1240 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
958 schedule(); 1241 schedule();
959 1242
960 if(signal_pending(current)) 1243 if(signal_pending(current))
961 break; 1244 break;
962 set_current_state(TASK_INTERRUPTIBLE); 1245 set_current_state(TASK_INTERRUPTIBLE);
963 } 1246 }
964 remove_wait_queue(&queues->queue[HostNormCmdQueue].cmdready, &wait); 1247 if (dev->queues)
1248 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
965 dev->aif_thread = 0; 1249 dev->aif_thread = 0;
966 complete_and_exit(&dev->aif_completion, 0); 1250 complete_and_exit(&dev->aif_completion, 0);
1251 return 0;
967} 1252}
diff --git a/drivers/scsi/aacraid/linit.c b/drivers/scsi/aacraid/linit.c
index 4ff29d7f5825..de8490a92831 100644
--- a/drivers/scsi/aacraid/linit.c
+++ b/drivers/scsi/aacraid/linit.c
@@ -748,7 +748,8 @@ static int __devinit aac_probe_one(struct pci_dev *pdev,
748 unique_id++; 748 unique_id++;
749 } 749 }
750 750
751 if (pci_enable_device(pdev)) 751 error = pci_enable_device(pdev);
752 if (error)
752 goto out; 753 goto out;
753 754
754 if (pci_set_dma_mask(pdev, 0xFFFFFFFFULL) || 755 if (pci_set_dma_mask(pdev, 0xFFFFFFFFULL) ||
@@ -772,6 +773,7 @@ static int __devinit aac_probe_one(struct pci_dev *pdev,
772 shost->irq = pdev->irq; 773 shost->irq = pdev->irq;
773 shost->base = pci_resource_start(pdev, 0); 774 shost->base = pci_resource_start(pdev, 0);
774 shost->unique_id = unique_id; 775 shost->unique_id = unique_id;
776 shost->max_cmd_len = 16;
775 777
776 aac = (struct aac_dev *)shost->hostdata; 778 aac = (struct aac_dev *)shost->hostdata;
777 aac->scsi_host_ptr = shost; 779 aac->scsi_host_ptr = shost;
@@ -799,7 +801,9 @@ static int __devinit aac_probe_one(struct pci_dev *pdev,
799 goto out_free_fibs; 801 goto out_free_fibs;
800 802
801 aac->maximum_num_channels = aac_drivers[index].channels; 803 aac->maximum_num_channels = aac_drivers[index].channels;
802 aac_get_adapter_info(aac); 804 error = aac_get_adapter_info(aac);
805 if (error < 0)
806 goto out_deinit;
803 807
804 /* 808 /*
805 * Lets override negotiations and drop the maximum SG limit to 34 809 * Lets override negotiations and drop the maximum SG limit to 34
@@ -927,8 +931,8 @@ static int __init aac_init(void)
927 printk(KERN_INFO "Adaptec %s driver (%s)\n", 931 printk(KERN_INFO "Adaptec %s driver (%s)\n",
928 AAC_DRIVERNAME, aac_driver_version); 932 AAC_DRIVERNAME, aac_driver_version);
929 933
930 error = pci_module_init(&aac_pci_driver); 934 error = pci_register_driver(&aac_pci_driver);
931 if (error) 935 if (error < 0)
932 return error; 936 return error;
933 937
934 aac_cfg_major = register_chrdev( 0, "aac", &aac_cfg_fops); 938 aac_cfg_major = register_chrdev( 0, "aac", &aac_cfg_fops);
diff --git a/drivers/scsi/aic7xxx/aic7770_osm.c b/drivers/scsi/aic7xxx/aic7770_osm.c
index 70c5fb59c9ea..d754b3267863 100644
--- a/drivers/scsi/aic7xxx/aic7770_osm.c
+++ b/drivers/scsi/aic7xxx/aic7770_osm.c
@@ -112,6 +112,9 @@ aic7770_remove(struct device *dev)
112 struct ahc_softc *ahc = dev_get_drvdata(dev); 112 struct ahc_softc *ahc = dev_get_drvdata(dev);
113 u_long s; 113 u_long s;
114 114
115 if (ahc->platform_data && ahc->platform_data->host)
116 scsi_remove_host(ahc->platform_data->host);
117
115 ahc_lock(ahc, &s); 118 ahc_lock(ahc, &s);
116 ahc_intr_enable(ahc, FALSE); 119 ahc_intr_enable(ahc, FALSE);
117 ahc_unlock(ahc, &s); 120 ahc_unlock(ahc, &s);
diff --git a/drivers/scsi/aic7xxx/aic79xx_osm.c b/drivers/scsi/aic7xxx/aic79xx_osm.c
index 6b6d4e287793..95c285cc83e4 100644
--- a/drivers/scsi/aic7xxx/aic79xx_osm.c
+++ b/drivers/scsi/aic7xxx/aic79xx_osm.c
@@ -1192,11 +1192,6 @@ ahd_platform_free(struct ahd_softc *ahd)
1192 int i, j; 1192 int i, j;
1193 1193
1194 if (ahd->platform_data != NULL) { 1194 if (ahd->platform_data != NULL) {
1195 if (ahd->platform_data->host != NULL) {
1196 scsi_remove_host(ahd->platform_data->host);
1197 scsi_host_put(ahd->platform_data->host);
1198 }
1199
1200 /* destroy all of the device and target objects */ 1195 /* destroy all of the device and target objects */
1201 for (i = 0; i < AHD_NUM_TARGETS; i++) { 1196 for (i = 0; i < AHD_NUM_TARGETS; i++) {
1202 starget = ahd->platform_data->starget[i]; 1197 starget = ahd->platform_data->starget[i];
@@ -1226,6 +1221,9 @@ ahd_platform_free(struct ahd_softc *ahd)
1226 release_mem_region(ahd->platform_data->mem_busaddr, 1221 release_mem_region(ahd->platform_data->mem_busaddr,
1227 0x1000); 1222 0x1000);
1228 } 1223 }
1224 if (ahd->platform_data->host)
1225 scsi_host_put(ahd->platform_data->host);
1226
1229 free(ahd->platform_data, M_DEVBUF); 1227 free(ahd->platform_data, M_DEVBUF);
1230 } 1228 }
1231} 1229}
diff --git a/drivers/scsi/aic7xxx/aic79xx_osm_pci.c b/drivers/scsi/aic7xxx/aic79xx_osm_pci.c
index 390b53852d4b..bf360ae021ab 100644
--- a/drivers/scsi/aic7xxx/aic79xx_osm_pci.c
+++ b/drivers/scsi/aic7xxx/aic79xx_osm_pci.c
@@ -95,6 +95,9 @@ ahd_linux_pci_dev_remove(struct pci_dev *pdev)
95 struct ahd_softc *ahd = pci_get_drvdata(pdev); 95 struct ahd_softc *ahd = pci_get_drvdata(pdev);
96 u_long s; 96 u_long s;
97 97
98 if (ahd->platform_data && ahd->platform_data->host)
99 scsi_remove_host(ahd->platform_data->host);
100
98 ahd_lock(ahd, &s); 101 ahd_lock(ahd, &s);
99 ahd_intr_enable(ahd, FALSE); 102 ahd_intr_enable(ahd, FALSE);
100 ahd_unlock(ahd, &s); 103 ahd_unlock(ahd, &s);
diff --git a/drivers/scsi/aic7xxx/aic7xxx_osm.c b/drivers/scsi/aic7xxx/aic7xxx_osm.c
index 876d1de8480d..6ee1435d37fa 100644
--- a/drivers/scsi/aic7xxx/aic7xxx_osm.c
+++ b/drivers/scsi/aic7xxx/aic7xxx_osm.c
@@ -1209,11 +1209,6 @@ ahc_platform_free(struct ahc_softc *ahc)
1209 int i, j; 1209 int i, j;
1210 1210
1211 if (ahc->platform_data != NULL) { 1211 if (ahc->platform_data != NULL) {
1212 if (ahc->platform_data->host != NULL) {
1213 scsi_remove_host(ahc->platform_data->host);
1214 scsi_host_put(ahc->platform_data->host);
1215 }
1216
1217 /* destroy all of the device and target objects */ 1212 /* destroy all of the device and target objects */
1218 for (i = 0; i < AHC_NUM_TARGETS; i++) { 1213 for (i = 0; i < AHC_NUM_TARGETS; i++) {
1219 starget = ahc->platform_data->starget[i]; 1214 starget = ahc->platform_data->starget[i];
@@ -1242,6 +1237,9 @@ ahc_platform_free(struct ahc_softc *ahc)
1242 0x1000); 1237 0x1000);
1243 } 1238 }
1244 1239
1240 if (ahc->platform_data->host)
1241 scsi_host_put(ahc->platform_data->host);
1242
1245 free(ahc->platform_data, M_DEVBUF); 1243 free(ahc->platform_data, M_DEVBUF);
1246 } 1244 }
1247} 1245}
diff --git a/drivers/scsi/aic7xxx/aic7xxx_osm_pci.c b/drivers/scsi/aic7xxx/aic7xxx_osm_pci.c
index 3ce77ddc889e..cb30d9c1153d 100644
--- a/drivers/scsi/aic7xxx/aic7xxx_osm_pci.c
+++ b/drivers/scsi/aic7xxx/aic7xxx_osm_pci.c
@@ -143,6 +143,9 @@ ahc_linux_pci_dev_remove(struct pci_dev *pdev)
143 struct ahc_softc *ahc = pci_get_drvdata(pdev); 143 struct ahc_softc *ahc = pci_get_drvdata(pdev);
144 u_long s; 144 u_long s;
145 145
146 if (ahc->platform_data && ahc->platform_data->host)
147 scsi_remove_host(ahc->platform_data->host);
148
146 ahc_lock(ahc, &s); 149 ahc_lock(ahc, &s);
147 ahc_intr_enable(ahc, FALSE); 150 ahc_intr_enable(ahc, FALSE);
148 ahc_unlock(ahc, &s); 151 ahc_unlock(ahc, &s);
diff --git a/drivers/scsi/ata_piix.c b/drivers/scsi/ata_piix.c
index 87e0c36f1554..d71cef767cec 100644
--- a/drivers/scsi/ata_piix.c
+++ b/drivers/scsi/ata_piix.c
@@ -442,7 +442,6 @@ static void piix_sata_phy_reset(struct ata_port *ap)
442 * piix_set_piomode - Initialize host controller PATA PIO timings 442 * piix_set_piomode - Initialize host controller PATA PIO timings
443 * @ap: Port whose timings we are configuring 443 * @ap: Port whose timings we are configuring
444 * @adev: um 444 * @adev: um
445 * @pio: PIO mode, 0 - 4
446 * 445 *
447 * Set PIO mode for device, in host controller PCI config space. 446 * Set PIO mode for device, in host controller PCI config space.
448 * 447 *
diff --git a/drivers/scsi/hosts.c b/drivers/scsi/hosts.c
index f2a72d33132c..02fe371b0ab8 100644
--- a/drivers/scsi/hosts.c
+++ b/drivers/scsi/hosts.c
@@ -176,6 +176,7 @@ void scsi_remove_host(struct Scsi_Host *shost)
176 transport_unregister_device(&shost->shost_gendev); 176 transport_unregister_device(&shost->shost_gendev);
177 class_device_unregister(&shost->shost_classdev); 177 class_device_unregister(&shost->shost_classdev);
178 device_del(&shost->shost_gendev); 178 device_del(&shost->shost_gendev);
179 scsi_proc_hostdir_rm(shost->hostt);
179} 180}
180EXPORT_SYMBOL(scsi_remove_host); 181EXPORT_SYMBOL(scsi_remove_host);
181 182
@@ -262,7 +263,6 @@ static void scsi_host_dev_release(struct device *dev)
262 if (shost->work_q) 263 if (shost->work_q)
263 destroy_workqueue(shost->work_q); 264 destroy_workqueue(shost->work_q);
264 265
265 scsi_proc_hostdir_rm(shost->hostt);
266 scsi_destroy_command_freelist(shost); 266 scsi_destroy_command_freelist(shost);
267 kfree(shost->shost_data); 267 kfree(shost->shost_data);
268 268
diff --git a/drivers/scsi/libata-core.c b/drivers/scsi/libata-core.c
index d92273cbe0de..e5b01997117a 100644
--- a/drivers/scsi/libata-core.c
+++ b/drivers/scsi/libata-core.c
@@ -4132,6 +4132,53 @@ err_out:
4132} 4132}
4133 4133
4134/** 4134/**
4135 * ata_host_set_remove - PCI layer callback for device removal
4136 * @host_set: ATA host set that was removed
4137 *
4138 * Unregister all objects associated with this host set. Free those
4139 * objects.
4140 *
4141 * LOCKING:
4142 * Inherited from calling layer (may sleep).
4143 */
4144
4145
4146void ata_host_set_remove(struct ata_host_set *host_set)
4147{
4148 struct ata_port *ap;
4149 unsigned int i;
4150
4151 for (i = 0; i < host_set->n_ports; i++) {
4152 ap = host_set->ports[i];
4153 scsi_remove_host(ap->host);
4154 }
4155
4156 free_irq(host_set->irq, host_set);
4157
4158 for (i = 0; i < host_set->n_ports; i++) {
4159 ap = host_set->ports[i];
4160
4161 ata_scsi_release(ap->host);
4162
4163 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4164 struct ata_ioports *ioaddr = &ap->ioaddr;
4165
4166 if (ioaddr->cmd_addr == 0x1f0)
4167 release_region(0x1f0, 8);
4168 else if (ioaddr->cmd_addr == 0x170)
4169 release_region(0x170, 8);
4170 }
4171
4172 scsi_host_put(ap->host);
4173 }
4174
4175 if (host_set->ops->host_stop)
4176 host_set->ops->host_stop(host_set);
4177
4178 kfree(host_set);
4179}
4180
4181/**
4135 * ata_scsi_release - SCSI layer callback hook for host unload 4182 * ata_scsi_release - SCSI layer callback hook for host unload
4136 * @host: libata host to be unloaded 4183 * @host: libata host to be unloaded
4137 * 4184 *
@@ -4471,39 +4518,8 @@ void ata_pci_remove_one (struct pci_dev *pdev)
4471{ 4518{
4472 struct device *dev = pci_dev_to_dev(pdev); 4519 struct device *dev = pci_dev_to_dev(pdev);
4473 struct ata_host_set *host_set = dev_get_drvdata(dev); 4520 struct ata_host_set *host_set = dev_get_drvdata(dev);
4474 struct ata_port *ap;
4475 unsigned int i;
4476
4477 for (i = 0; i < host_set->n_ports; i++) {
4478 ap = host_set->ports[i];
4479
4480 scsi_remove_host(ap->host);
4481 }
4482
4483 free_irq(host_set->irq, host_set);
4484
4485 for (i = 0; i < host_set->n_ports; i++) {
4486 ap = host_set->ports[i];
4487
4488 ata_scsi_release(ap->host);
4489
4490 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4491 struct ata_ioports *ioaddr = &ap->ioaddr;
4492
4493 if (ioaddr->cmd_addr == 0x1f0)
4494 release_region(0x1f0, 8);
4495 else if (ioaddr->cmd_addr == 0x170)
4496 release_region(0x170, 8);
4497 }
4498
4499 scsi_host_put(ap->host);
4500 }
4501
4502 if (host_set->ops->host_stop)
4503 host_set->ops->host_stop(host_set);
4504
4505 kfree(host_set);
4506 4521
4522 ata_host_set_remove(host_set);
4507 pci_release_regions(pdev); 4523 pci_release_regions(pdev);
4508 pci_disable_device(pdev); 4524 pci_disable_device(pdev);
4509 dev_set_drvdata(dev, NULL); 4525 dev_set_drvdata(dev, NULL);
@@ -4573,6 +4589,7 @@ module_exit(ata_exit);
4573EXPORT_SYMBOL_GPL(ata_std_bios_param); 4589EXPORT_SYMBOL_GPL(ata_std_bios_param);
4574EXPORT_SYMBOL_GPL(ata_std_ports); 4590EXPORT_SYMBOL_GPL(ata_std_ports);
4575EXPORT_SYMBOL_GPL(ata_device_add); 4591EXPORT_SYMBOL_GPL(ata_device_add);
4592EXPORT_SYMBOL_GPL(ata_host_set_remove);
4576EXPORT_SYMBOL_GPL(ata_sg_init); 4593EXPORT_SYMBOL_GPL(ata_sg_init);
4577EXPORT_SYMBOL_GPL(ata_sg_init_one); 4594EXPORT_SYMBOL_GPL(ata_sg_init_one);
4578EXPORT_SYMBOL_GPL(ata_qc_complete); 4595EXPORT_SYMBOL_GPL(ata_qc_complete);
diff --git a/drivers/scsi/lpfc/lpfc_attr.c b/drivers/scsi/lpfc/lpfc_attr.c
index 86eaf6d408d5..acae7c48ef7d 100644
--- a/drivers/scsi/lpfc/lpfc_attr.c
+++ b/drivers/scsi/lpfc/lpfc_attr.c
@@ -973,10 +973,10 @@ lpfc_get_host_fabric_name (struct Scsi_Host *shost)
973 if ((phba->fc_flag & FC_FABRIC) || 973 if ((phba->fc_flag & FC_FABRIC) ||
974 ((phba->fc_topology == TOPOLOGY_LOOP) && 974 ((phba->fc_topology == TOPOLOGY_LOOP) &&
975 (phba->fc_flag & FC_PUBLIC_LOOP))) 975 (phba->fc_flag & FC_PUBLIC_LOOP)))
976 node_name = wwn_to_u64(phba->fc_fabparam.nodeName.wwn); 976 node_name = wwn_to_u64(phba->fc_fabparam.nodeName.u.wwn);
977 else 977 else
978 /* fabric is local port if there is no F/FL_Port */ 978 /* fabric is local port if there is no F/FL_Port */
979 node_name = wwn_to_u64(phba->fc_nodename.wwn); 979 node_name = wwn_to_u64(phba->fc_nodename.u.wwn);
980 980
981 spin_unlock_irq(shost->host_lock); 981 spin_unlock_irq(shost->host_lock);
982 982
@@ -1110,7 +1110,7 @@ lpfc_get_starget_node_name(struct scsi_target *starget)
1110 /* Search the mapped list for this target ID */ 1110 /* Search the mapped list for this target ID */
1111 list_for_each_entry(ndlp, &phba->fc_nlpmap_list, nlp_listp) { 1111 list_for_each_entry(ndlp, &phba->fc_nlpmap_list, nlp_listp) {
1112 if (starget->id == ndlp->nlp_sid) { 1112 if (starget->id == ndlp->nlp_sid) {
1113 node_name = wwn_to_u64(ndlp->nlp_nodename.wwn); 1113 node_name = wwn_to_u64(ndlp->nlp_nodename.u.wwn);
1114 break; 1114 break;
1115 } 1115 }
1116 } 1116 }
@@ -1131,7 +1131,7 @@ lpfc_get_starget_port_name(struct scsi_target *starget)
1131 /* Search the mapped list for this target ID */ 1131 /* Search the mapped list for this target ID */
1132 list_for_each_entry(ndlp, &phba->fc_nlpmap_list, nlp_listp) { 1132 list_for_each_entry(ndlp, &phba->fc_nlpmap_list, nlp_listp) {
1133 if (starget->id == ndlp->nlp_sid) { 1133 if (starget->id == ndlp->nlp_sid) {
1134 port_name = wwn_to_u64(ndlp->nlp_portname.wwn); 1134 port_name = wwn_to_u64(ndlp->nlp_portname.u.wwn);
1135 break; 1135 break;
1136 } 1136 }
1137 } 1137 }
diff --git a/drivers/scsi/lpfc/lpfc_hbadisc.c b/drivers/scsi/lpfc/lpfc_hbadisc.c
index 4fb8eb0c84cf..56052f4510c3 100644
--- a/drivers/scsi/lpfc/lpfc_hbadisc.c
+++ b/drivers/scsi/lpfc/lpfc_hbadisc.c
@@ -1019,8 +1019,8 @@ lpfc_register_remote_port(struct lpfc_hba * phba,
1019 struct fc_rport_identifiers rport_ids; 1019 struct fc_rport_identifiers rport_ids;
1020 1020
1021 /* Remote port has reappeared. Re-register w/ FC transport */ 1021 /* Remote port has reappeared. Re-register w/ FC transport */
1022 rport_ids.node_name = wwn_to_u64(ndlp->nlp_nodename.wwn); 1022 rport_ids.node_name = wwn_to_u64(ndlp->nlp_nodename.u.wwn);
1023 rport_ids.port_name = wwn_to_u64(ndlp->nlp_portname.wwn); 1023 rport_ids.port_name = wwn_to_u64(ndlp->nlp_portname.u.wwn);
1024 rport_ids.port_id = ndlp->nlp_DID; 1024 rport_ids.port_id = ndlp->nlp_DID;
1025 rport_ids.roles = FC_RPORT_ROLE_UNKNOWN; 1025 rport_ids.roles = FC_RPORT_ROLE_UNKNOWN;
1026 if (ndlp->nlp_type & NLP_FCP_TARGET) 1026 if (ndlp->nlp_type & NLP_FCP_TARGET)
diff --git a/drivers/scsi/lpfc/lpfc_hw.h b/drivers/scsi/lpfc/lpfc_hw.h
index 047a87c26cc0..86c41981188b 100644
--- a/drivers/scsi/lpfc/lpfc_hw.h
+++ b/drivers/scsi/lpfc/lpfc_hw.h
@@ -280,9 +280,9 @@ struct lpfc_name {
280#define NAME_CCITT_GR_TYPE 0xE 280#define NAME_CCITT_GR_TYPE 0xE
281 uint8_t IEEEextLsb; /* FC Word 0, bit 16:23, IEEE extended Lsb */ 281 uint8_t IEEEextLsb; /* FC Word 0, bit 16:23, IEEE extended Lsb */
282 uint8_t IEEE[6]; /* FC IEEE address */ 282 uint8_t IEEE[6]; /* FC IEEE address */
283 }; 283 } s;
284 uint8_t wwn[8]; 284 uint8_t wwn[8];
285 }; 285 } u;
286}; 286};
287 287
288struct csp { 288struct csp {
diff --git a/drivers/scsi/lpfc/lpfc_init.c b/drivers/scsi/lpfc/lpfc_init.c
index 454058f655db..0856ff7d3b33 100644
--- a/drivers/scsi/lpfc/lpfc_init.c
+++ b/drivers/scsi/lpfc/lpfc_init.c
@@ -285,7 +285,7 @@ lpfc_config_port_post(struct lpfc_hba * phba)
285 if (phba->SerialNumber[0] == 0) { 285 if (phba->SerialNumber[0] == 0) {
286 uint8_t *outptr; 286 uint8_t *outptr;
287 287
288 outptr = (uint8_t *) & phba->fc_nodename.IEEE[0]; 288 outptr = &phba->fc_nodename.u.s.IEEE[0];
289 for (i = 0; i < 12; i++) { 289 for (i = 0; i < 12; i++) {
290 status = *outptr++; 290 status = *outptr++;
291 j = ((status & 0xf0) >> 4); 291 j = ((status & 0xf0) >> 4);
@@ -1523,8 +1523,8 @@ lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid)
1523 * Must done after lpfc_sli_hba_setup() 1523 * Must done after lpfc_sli_hba_setup()
1524 */ 1524 */
1525 1525
1526 fc_host_node_name(host) = wwn_to_u64(phba->fc_nodename.wwn); 1526 fc_host_node_name(host) = wwn_to_u64(phba->fc_nodename.u.wwn);
1527 fc_host_port_name(host) = wwn_to_u64(phba->fc_portname.wwn); 1527 fc_host_port_name(host) = wwn_to_u64(phba->fc_portname.u.wwn);
1528 fc_host_supported_classes(host) = FC_COS_CLASS3; 1528 fc_host_supported_classes(host) = FC_COS_CLASS3;
1529 1529
1530 memset(fc_host_supported_fc4s(host), 0, 1530 memset(fc_host_supported_fc4s(host), 0,
diff --git a/drivers/scsi/megaraid.c b/drivers/scsi/megaraid.c
index 6f308ebe3e79..61a6fd810bb4 100644
--- a/drivers/scsi/megaraid.c
+++ b/drivers/scsi/megaraid.c
@@ -621,8 +621,6 @@ mega_build_cmd(adapter_t *adapter, Scsi_Cmnd *cmd, int *busy)
621 if(islogical) { 621 if(islogical) {
622 switch (cmd->cmnd[0]) { 622 switch (cmd->cmnd[0]) {
623 case TEST_UNIT_READY: 623 case TEST_UNIT_READY:
624 memset(cmd->request_buffer, 0, cmd->request_bufflen);
625
626#if MEGA_HAVE_CLUSTERING 624#if MEGA_HAVE_CLUSTERING
627 /* 625 /*
628 * Do we support clustering and is the support enabled 626 * Do we support clustering and is the support enabled
@@ -652,11 +650,28 @@ mega_build_cmd(adapter_t *adapter, Scsi_Cmnd *cmd, int *busy)
652 return NULL; 650 return NULL;
653#endif 651#endif
654 652
655 case MODE_SENSE: 653 case MODE_SENSE: {
654 char *buf;
655
656 if (cmd->use_sg) {
657 struct scatterlist *sg;
658
659 sg = (struct scatterlist *)cmd->request_buffer;
660 buf = kmap_atomic(sg->page, KM_IRQ0) +
661 sg->offset;
662 } else
663 buf = cmd->request_buffer;
656 memset(cmd->request_buffer, 0, cmd->cmnd[4]); 664 memset(cmd->request_buffer, 0, cmd->cmnd[4]);
665 if (cmd->use_sg) {
666 struct scatterlist *sg;
667
668 sg = (struct scatterlist *)cmd->request_buffer;
669 kunmap_atomic(buf - sg->offset, KM_IRQ0);
670 }
657 cmd->result = (DID_OK << 16); 671 cmd->result = (DID_OK << 16);
658 cmd->scsi_done(cmd); 672 cmd->scsi_done(cmd);
659 return NULL; 673 return NULL;
674 }
660 675
661 case READ_CAPACITY: 676 case READ_CAPACITY:
662 case INQUIRY: 677 case INQUIRY:
@@ -1685,14 +1700,23 @@ mega_rundoneq (adapter_t *adapter)
1685static void 1700static void
1686mega_free_scb(adapter_t *adapter, scb_t *scb) 1701mega_free_scb(adapter_t *adapter, scb_t *scb)
1687{ 1702{
1703 unsigned long length;
1704
1688 switch( scb->dma_type ) { 1705 switch( scb->dma_type ) {
1689 1706
1690 case MEGA_DMA_TYPE_NONE: 1707 case MEGA_DMA_TYPE_NONE:
1691 break; 1708 break;
1692 1709
1693 case MEGA_BULK_DATA: 1710 case MEGA_BULK_DATA:
1711 if (scb->cmd->use_sg == 0)
1712 length = scb->cmd->request_bufflen;
1713 else {
1714 struct scatterlist *sgl =
1715 (struct scatterlist *)scb->cmd->request_buffer;
1716 length = sgl->length;
1717 }
1694 pci_unmap_page(adapter->dev, scb->dma_h_bulkdata, 1718 pci_unmap_page(adapter->dev, scb->dma_h_bulkdata,
1695 scb->cmd->request_bufflen, scb->dma_direction); 1719 length, scb->dma_direction);
1696 break; 1720 break;
1697 1721
1698 case MEGA_SGLIST: 1722 case MEGA_SGLIST:
@@ -1741,6 +1765,7 @@ mega_build_sglist(adapter_t *adapter, scb_t *scb, u32 *buf, u32 *len)
1741 struct scatterlist *sgl; 1765 struct scatterlist *sgl;
1742 struct page *page; 1766 struct page *page;
1743 unsigned long offset; 1767 unsigned long offset;
1768 unsigned int length;
1744 Scsi_Cmnd *cmd; 1769 Scsi_Cmnd *cmd;
1745 int sgcnt; 1770 int sgcnt;
1746 int idx; 1771 int idx;
@@ -1748,14 +1773,23 @@ mega_build_sglist(adapter_t *adapter, scb_t *scb, u32 *buf, u32 *len)
1748 cmd = scb->cmd; 1773 cmd = scb->cmd;
1749 1774
1750 /* Scatter-gather not used */ 1775 /* Scatter-gather not used */
1751 if( !cmd->use_sg ) { 1776 if( cmd->use_sg == 0 || (cmd->use_sg == 1 &&
1752 1777 !adapter->has_64bit_addr)) {
1753 page = virt_to_page(cmd->request_buffer); 1778
1754 offset = offset_in_page(cmd->request_buffer); 1779 if (cmd->use_sg == 0) {
1780 page = virt_to_page(cmd->request_buffer);
1781 offset = offset_in_page(cmd->request_buffer);
1782 length = cmd->request_bufflen;
1783 } else {
1784 sgl = (struct scatterlist *)cmd->request_buffer;
1785 page = sgl->page;
1786 offset = sgl->offset;
1787 length = sgl->length;
1788 }
1755 1789
1756 scb->dma_h_bulkdata = pci_map_page(adapter->dev, 1790 scb->dma_h_bulkdata = pci_map_page(adapter->dev,
1757 page, offset, 1791 page, offset,
1758 cmd->request_bufflen, 1792 length,
1759 scb->dma_direction); 1793 scb->dma_direction);
1760 scb->dma_type = MEGA_BULK_DATA; 1794 scb->dma_type = MEGA_BULK_DATA;
1761 1795
@@ -1765,14 +1799,14 @@ mega_build_sglist(adapter_t *adapter, scb_t *scb, u32 *buf, u32 *len)
1765 */ 1799 */
1766 if( adapter->has_64bit_addr ) { 1800 if( adapter->has_64bit_addr ) {
1767 scb->sgl64[0].address = scb->dma_h_bulkdata; 1801 scb->sgl64[0].address = scb->dma_h_bulkdata;
1768 scb->sgl64[0].length = cmd->request_bufflen; 1802 scb->sgl64[0].length = length;
1769 *buf = (u32)scb->sgl_dma_addr; 1803 *buf = (u32)scb->sgl_dma_addr;
1770 *len = (u32)cmd->request_bufflen; 1804 *len = (u32)length;
1771 return 1; 1805 return 1;
1772 } 1806 }
1773 else { 1807 else {
1774 *buf = (u32)scb->dma_h_bulkdata; 1808 *buf = (u32)scb->dma_h_bulkdata;
1775 *len = (u32)cmd->request_bufflen; 1809 *len = (u32)length;
1776 } 1810 }
1777 return 0; 1811 return 0;
1778 } 1812 }
@@ -1791,27 +1825,23 @@ mega_build_sglist(adapter_t *adapter, scb_t *scb, u32 *buf, u32 *len)
1791 1825
1792 if( sgcnt > adapter->sglen ) BUG(); 1826 if( sgcnt > adapter->sglen ) BUG();
1793 1827
1828 *len = 0;
1829
1794 for( idx = 0; idx < sgcnt; idx++, sgl++ ) { 1830 for( idx = 0; idx < sgcnt; idx++, sgl++ ) {
1795 1831
1796 if( adapter->has_64bit_addr ) { 1832 if( adapter->has_64bit_addr ) {
1797 scb->sgl64[idx].address = sg_dma_address(sgl); 1833 scb->sgl64[idx].address = sg_dma_address(sgl);
1798 scb->sgl64[idx].length = sg_dma_len(sgl); 1834 *len += scb->sgl64[idx].length = sg_dma_len(sgl);
1799 } 1835 }
1800 else { 1836 else {
1801 scb->sgl[idx].address = sg_dma_address(sgl); 1837 scb->sgl[idx].address = sg_dma_address(sgl);
1802 scb->sgl[idx].length = sg_dma_len(sgl); 1838 *len += scb->sgl[idx].length = sg_dma_len(sgl);
1803 } 1839 }
1804 } 1840 }
1805 1841
1806 /* Reset pointer and length fields */ 1842 /* Reset pointer and length fields */
1807 *buf = scb->sgl_dma_addr; 1843 *buf = scb->sgl_dma_addr;
1808 1844
1809 /*
1810 * For passthru command, dataxferlen must be set, even for commands
1811 * with a sg list
1812 */
1813 *len = (u32)cmd->request_bufflen;
1814
1815 /* Return count of SG requests */ 1845 /* Return count of SG requests */
1816 return sgcnt; 1846 return sgcnt;
1817} 1847}
diff --git a/drivers/scsi/megaraid/Kconfig.megaraid b/drivers/scsi/megaraid/Kconfig.megaraid
index 917d591d90b2..7363e12663ac 100644
--- a/drivers/scsi/megaraid/Kconfig.megaraid
+++ b/drivers/scsi/megaraid/Kconfig.megaraid
@@ -76,3 +76,12 @@ config MEGARAID_LEGACY
76 To compile this driver as a module, choose M here: the 76 To compile this driver as a module, choose M here: the
77 module will be called megaraid 77 module will be called megaraid
78endif 78endif
79
80config MEGARAID_SAS
81 tristate "LSI Logic MegaRAID SAS RAID Module"
82 depends on PCI && SCSI
83 help
84 Module for LSI Logic's SAS based RAID controllers.
85 To compile this driver as a module, choose 'm' here.
86 Module will be called megaraid_sas
87
diff --git a/drivers/scsi/megaraid/Makefile b/drivers/scsi/megaraid/Makefile
index 6dd99f275722..f469915b97c3 100644
--- a/drivers/scsi/megaraid/Makefile
+++ b/drivers/scsi/megaraid/Makefile
@@ -1,2 +1,3 @@
1obj-$(CONFIG_MEGARAID_MM) += megaraid_mm.o 1obj-$(CONFIG_MEGARAID_MM) += megaraid_mm.o
2obj-$(CONFIG_MEGARAID_MAILBOX) += megaraid_mbox.o 2obj-$(CONFIG_MEGARAID_MAILBOX) += megaraid_mbox.o
3obj-$(CONFIG_MEGARAID_SAS) += megaraid_sas.o
diff --git a/drivers/scsi/megaraid/megaraid_sas.c b/drivers/scsi/megaraid/megaraid_sas.c
new file mode 100644
index 000000000000..1b3148e842af
--- /dev/null
+++ b/drivers/scsi/megaraid/megaraid_sas.c
@@ -0,0 +1,2805 @@
1/*
2 *
3 * Linux MegaRAID driver for SAS based RAID controllers
4 *
5 * Copyright (c) 2003-2005 LSI Logic Corporation.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 *
12 * FILE : megaraid_sas.c
13 * Version : v00.00.02.00-rc4
14 *
15 * Authors:
16 * Sreenivas Bagalkote <Sreenivas.Bagalkote@lsil.com>
17 * Sumant Patro <Sumant.Patro@lsil.com>
18 *
19 * List of supported controllers
20 *
21 * OEM Product Name VID DID SSVID SSID
22 * --- ------------ --- --- ---- ----
23 */
24
25#include <linux/kernel.h>
26#include <linux/types.h>
27#include <linux/pci.h>
28#include <linux/list.h>
29#include <linux/version.h>
30#include <linux/moduleparam.h>
31#include <linux/module.h>
32#include <linux/spinlock.h>
33#include <linux/interrupt.h>
34#include <linux/delay.h>
35#include <linux/uio.h>
36#include <asm/uaccess.h>
37#include <linux/compat.h>
38
39#include <scsi/scsi.h>
40#include <scsi/scsi_cmnd.h>
41#include <scsi/scsi_device.h>
42#include <scsi/scsi_host.h>
43#include "megaraid_sas.h"
44
45MODULE_LICENSE("GPL");
46MODULE_VERSION(MEGASAS_VERSION);
47MODULE_AUTHOR("sreenivas.bagalkote@lsil.com");
48MODULE_DESCRIPTION("LSI Logic MegaRAID SAS Driver");
49
50/*
51 * PCI ID table for all supported controllers
52 */
53static struct pci_device_id megasas_pci_table[] = {
54
55 {
56 PCI_VENDOR_ID_LSI_LOGIC,
57 PCI_DEVICE_ID_LSI_SAS1064R,
58 PCI_ANY_ID,
59 PCI_ANY_ID,
60 },
61 {
62 PCI_VENDOR_ID_DELL,
63 PCI_DEVICE_ID_DELL_PERC5,
64 PCI_ANY_ID,
65 PCI_ANY_ID,
66 },
67 {0} /* Terminating entry */
68};
69
70MODULE_DEVICE_TABLE(pci, megasas_pci_table);
71
72static int megasas_mgmt_majorno;
73static struct megasas_mgmt_info megasas_mgmt_info;
74static struct fasync_struct *megasas_async_queue;
75static DECLARE_MUTEX(megasas_async_queue_mutex);
76
77/**
78 * megasas_get_cmd - Get a command from the free pool
79 * @instance: Adapter soft state
80 *
81 * Returns a free command from the pool
82 */
83static inline struct megasas_cmd *megasas_get_cmd(struct megasas_instance
84 *instance)
85{
86 unsigned long flags;
87 struct megasas_cmd *cmd = NULL;
88
89 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
90
91 if (!list_empty(&instance->cmd_pool)) {
92 cmd = list_entry((&instance->cmd_pool)->next,
93 struct megasas_cmd, list);
94 list_del_init(&cmd->list);
95 } else {
96 printk(KERN_ERR "megasas: Command pool empty!\n");
97 }
98
99 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
100 return cmd;
101}
102
103/**
104 * megasas_return_cmd - Return a cmd to free command pool
105 * @instance: Adapter soft state
106 * @cmd: Command packet to be returned to free command pool
107 */
108static inline void
109megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
110{
111 unsigned long flags;
112
113 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
114
115 cmd->scmd = NULL;
116 list_add_tail(&cmd->list, &instance->cmd_pool);
117
118 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
119}
120
121/**
122 * megasas_enable_intr - Enables interrupts
123 * @regs: MFI register set
124 */
125static inline void
126megasas_enable_intr(struct megasas_register_set __iomem * regs)
127{
128 writel(1, &(regs)->outbound_intr_mask);
129
130 /* Dummy readl to force pci flush */
131 readl(&regs->outbound_intr_mask);
132}
133
134/**
135 * megasas_disable_intr - Disables interrupts
136 * @regs: MFI register set
137 */
138static inline void
139megasas_disable_intr(struct megasas_register_set __iomem * regs)
140{
141 u32 mask = readl(&regs->outbound_intr_mask) & (~0x00000001);
142 writel(mask, &regs->outbound_intr_mask);
143
144 /* Dummy readl to force pci flush */
145 readl(&regs->outbound_intr_mask);
146}
147
148/**
149 * megasas_issue_polled - Issues a polling command
150 * @instance: Adapter soft state
151 * @cmd: Command packet to be issued
152 *
153 * For polling, MFI requires the cmd_status to be set to 0xFF before posting.
154 */
155static int
156megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd)
157{
158 int i;
159 u32 msecs = MFI_POLL_TIMEOUT_SECS * 1000;
160
161 struct megasas_header *frame_hdr = &cmd->frame->hdr;
162
163 frame_hdr->cmd_status = 0xFF;
164 frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
165
166 /*
167 * Issue the frame using inbound queue port
168 */
169 writel(cmd->frame_phys_addr >> 3,
170 &instance->reg_set->inbound_queue_port);
171
172 /*
173 * Wait for cmd_status to change
174 */
175 for (i = 0; (i < msecs) && (frame_hdr->cmd_status == 0xff); i++) {
176 rmb();
177 msleep(1);
178 }
179
180 if (frame_hdr->cmd_status == 0xff)
181 return -ETIME;
182
183 return 0;
184}
185
186/**
187 * megasas_issue_blocked_cmd - Synchronous wrapper around regular FW cmds
188 * @instance: Adapter soft state
189 * @cmd: Command to be issued
190 *
191 * This function waits on an event for the command to be returned from ISR.
192 * Used to issue ioctl commands.
193 */
194static int
195megasas_issue_blocked_cmd(struct megasas_instance *instance,
196 struct megasas_cmd *cmd)
197{
198 cmd->cmd_status = ENODATA;
199
200 writel(cmd->frame_phys_addr >> 3,
201 &instance->reg_set->inbound_queue_port);
202
203 wait_event(instance->int_cmd_wait_q, (cmd->cmd_status != ENODATA));
204
205 return 0;
206}
207
208/**
209 * megasas_issue_blocked_abort_cmd - Aborts previously issued cmd
210 * @instance: Adapter soft state
211 * @cmd_to_abort: Previously issued cmd to be aborted
212 *
213 * MFI firmware can abort previously issued AEN comamnd (automatic event
214 * notification). The megasas_issue_blocked_abort_cmd() issues such abort
215 * cmd and blocks till it is completed.
216 */
217static int
218megasas_issue_blocked_abort_cmd(struct megasas_instance *instance,
219 struct megasas_cmd *cmd_to_abort)
220{
221 struct megasas_cmd *cmd;
222 struct megasas_abort_frame *abort_fr;
223
224 cmd = megasas_get_cmd(instance);
225
226 if (!cmd)
227 return -1;
228
229 abort_fr = &cmd->frame->abort;
230
231 /*
232 * Prepare and issue the abort frame
233 */
234 abort_fr->cmd = MFI_CMD_ABORT;
235 abort_fr->cmd_status = 0xFF;
236 abort_fr->flags = 0;
237 abort_fr->abort_context = cmd_to_abort->index;
238 abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
239 abort_fr->abort_mfi_phys_addr_hi = 0;
240
241 cmd->sync_cmd = 1;
242 cmd->cmd_status = 0xFF;
243
244 writel(cmd->frame_phys_addr >> 3,
245 &instance->reg_set->inbound_queue_port);
246
247 /*
248 * Wait for this cmd to complete
249 */
250 wait_event(instance->abort_cmd_wait_q, (cmd->cmd_status != 0xFF));
251
252 megasas_return_cmd(instance, cmd);
253 return 0;
254}
255
256/**
257 * megasas_make_sgl32 - Prepares 32-bit SGL
258 * @instance: Adapter soft state
259 * @scp: SCSI command from the mid-layer
260 * @mfi_sgl: SGL to be filled in
261 *
262 * If successful, this function returns the number of SG elements. Otherwise,
263 * it returnes -1.
264 */
265static inline int
266megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp,
267 union megasas_sgl *mfi_sgl)
268{
269 int i;
270 int sge_count;
271 struct scatterlist *os_sgl;
272
273 /*
274 * Return 0 if there is no data transfer
275 */
276 if (!scp->request_buffer || !scp->request_bufflen)
277 return 0;
278
279 if (!scp->use_sg) {
280 mfi_sgl->sge32[0].phys_addr = pci_map_single(instance->pdev,
281 scp->
282 request_buffer,
283 scp->
284 request_bufflen,
285 scp->
286 sc_data_direction);
287 mfi_sgl->sge32[0].length = scp->request_bufflen;
288
289 return 1;
290 }
291
292 os_sgl = (struct scatterlist *)scp->request_buffer;
293 sge_count = pci_map_sg(instance->pdev, os_sgl, scp->use_sg,
294 scp->sc_data_direction);
295
296 for (i = 0; i < sge_count; i++, os_sgl++) {
297 mfi_sgl->sge32[i].length = sg_dma_len(os_sgl);
298 mfi_sgl->sge32[i].phys_addr = sg_dma_address(os_sgl);
299 }
300
301 return sge_count;
302}
303
304/**
305 * megasas_make_sgl64 - Prepares 64-bit SGL
306 * @instance: Adapter soft state
307 * @scp: SCSI command from the mid-layer
308 * @mfi_sgl: SGL to be filled in
309 *
310 * If successful, this function returns the number of SG elements. Otherwise,
311 * it returnes -1.
312 */
313static inline int
314megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp,
315 union megasas_sgl *mfi_sgl)
316{
317 int i;
318 int sge_count;
319 struct scatterlist *os_sgl;
320
321 /*
322 * Return 0 if there is no data transfer
323 */
324 if (!scp->request_buffer || !scp->request_bufflen)
325 return 0;
326
327 if (!scp->use_sg) {
328 mfi_sgl->sge64[0].phys_addr = pci_map_single(instance->pdev,
329 scp->
330 request_buffer,
331 scp->
332 request_bufflen,
333 scp->
334 sc_data_direction);
335
336 mfi_sgl->sge64[0].length = scp->request_bufflen;
337
338 return 1;
339 }
340
341 os_sgl = (struct scatterlist *)scp->request_buffer;
342 sge_count = pci_map_sg(instance->pdev, os_sgl, scp->use_sg,
343 scp->sc_data_direction);
344
345 for (i = 0; i < sge_count; i++, os_sgl++) {
346 mfi_sgl->sge64[i].length = sg_dma_len(os_sgl);
347 mfi_sgl->sge64[i].phys_addr = sg_dma_address(os_sgl);
348 }
349
350 return sge_count;
351}
352
353/**
354 * megasas_build_dcdb - Prepares a direct cdb (DCDB) command
355 * @instance: Adapter soft state
356 * @scp: SCSI command
357 * @cmd: Command to be prepared in
358 *
359 * This function prepares CDB commands. These are typcially pass-through
360 * commands to the devices.
361 */
362static inline int
363megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp,
364 struct megasas_cmd *cmd)
365{
366 u32 sge_sz;
367 int sge_bytes;
368 u32 is_logical;
369 u32 device_id;
370 u16 flags = 0;
371 struct megasas_pthru_frame *pthru;
372
373 is_logical = MEGASAS_IS_LOGICAL(scp);
374 device_id = MEGASAS_DEV_INDEX(instance, scp);
375 pthru = (struct megasas_pthru_frame *)cmd->frame;
376
377 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
378 flags = MFI_FRAME_DIR_WRITE;
379 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
380 flags = MFI_FRAME_DIR_READ;
381 else if (scp->sc_data_direction == PCI_DMA_NONE)
382 flags = MFI_FRAME_DIR_NONE;
383
384 /*
385 * Prepare the DCDB frame
386 */
387 pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO;
388 pthru->cmd_status = 0x0;
389 pthru->scsi_status = 0x0;
390 pthru->target_id = device_id;
391 pthru->lun = scp->device->lun;
392 pthru->cdb_len = scp->cmd_len;
393 pthru->timeout = 0;
394 pthru->flags = flags;
395 pthru->data_xfer_len = scp->request_bufflen;
396
397 memcpy(pthru->cdb, scp->cmnd, scp->cmd_len);
398
399 /*
400 * Construct SGL
401 */
402 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
403 sizeof(struct megasas_sge32);
404
405 if (IS_DMA64) {
406 pthru->flags |= MFI_FRAME_SGL64;
407 pthru->sge_count = megasas_make_sgl64(instance, scp,
408 &pthru->sgl);
409 } else
410 pthru->sge_count = megasas_make_sgl32(instance, scp,
411 &pthru->sgl);
412
413 /*
414 * Sense info specific
415 */
416 pthru->sense_len = SCSI_SENSE_BUFFERSIZE;
417 pthru->sense_buf_phys_addr_hi = 0;
418 pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
419
420 sge_bytes = sge_sz * pthru->sge_count;
421
422 /*
423 * Compute the total number of frames this command consumes. FW uses
424 * this number to pull sufficient number of frames from host memory.
425 */
426 cmd->frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
427 ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) + 1;
428
429 if (cmd->frame_count > 7)
430 cmd->frame_count = 8;
431
432 return cmd->frame_count;
433}
434
435/**
436 * megasas_build_ldio - Prepares IOs to logical devices
437 * @instance: Adapter soft state
438 * @scp: SCSI command
439 * @cmd: Command to to be prepared
440 *
441 * Frames (and accompanying SGLs) for regular SCSI IOs use this function.
442 */
443static inline int
444megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp,
445 struct megasas_cmd *cmd)
446{
447 u32 sge_sz;
448 int sge_bytes;
449 u32 device_id;
450 u8 sc = scp->cmnd[0];
451 u16 flags = 0;
452 struct megasas_io_frame *ldio;
453
454 device_id = MEGASAS_DEV_INDEX(instance, scp);
455 ldio = (struct megasas_io_frame *)cmd->frame;
456
457 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
458 flags = MFI_FRAME_DIR_WRITE;
459 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
460 flags = MFI_FRAME_DIR_READ;
461
462 /*
463 * Preare the Logical IO frame: 2nd bit is zero for all read cmds
464 */
465 ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ;
466 ldio->cmd_status = 0x0;
467 ldio->scsi_status = 0x0;
468 ldio->target_id = device_id;
469 ldio->timeout = 0;
470 ldio->reserved_0 = 0;
471 ldio->pad_0 = 0;
472 ldio->flags = flags;
473 ldio->start_lba_hi = 0;
474 ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0;
475
476 /*
477 * 6-byte READ(0x08) or WRITE(0x0A) cdb
478 */
479 if (scp->cmd_len == 6) {
480 ldio->lba_count = (u32) scp->cmnd[4];
481 ldio->start_lba_lo = ((u32) scp->cmnd[1] << 16) |
482 ((u32) scp->cmnd[2] << 8) | (u32) scp->cmnd[3];
483
484 ldio->start_lba_lo &= 0x1FFFFF;
485 }
486
487 /*
488 * 10-byte READ(0x28) or WRITE(0x2A) cdb
489 */
490 else if (scp->cmd_len == 10) {
491 ldio->lba_count = (u32) scp->cmnd[8] |
492 ((u32) scp->cmnd[7] << 8);
493 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
494 ((u32) scp->cmnd[3] << 16) |
495 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
496 }
497
498 /*
499 * 12-byte READ(0xA8) or WRITE(0xAA) cdb
500 */
501 else if (scp->cmd_len == 12) {
502 ldio->lba_count = ((u32) scp->cmnd[6] << 24) |
503 ((u32) scp->cmnd[7] << 16) |
504 ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
505
506 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
507 ((u32) scp->cmnd[3] << 16) |
508 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
509 }
510
511 /*
512 * 16-byte READ(0x88) or WRITE(0x8A) cdb
513 */
514 else if (scp->cmd_len == 16) {
515 ldio->lba_count = ((u32) scp->cmnd[10] << 24) |
516 ((u32) scp->cmnd[11] << 16) |
517 ((u32) scp->cmnd[12] << 8) | (u32) scp->cmnd[13];
518
519 ldio->start_lba_lo = ((u32) scp->cmnd[6] << 24) |
520 ((u32) scp->cmnd[7] << 16) |
521 ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
522
523 ldio->start_lba_hi = ((u32) scp->cmnd[2] << 24) |
524 ((u32) scp->cmnd[3] << 16) |
525 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
526
527 }
528
529 /*
530 * Construct SGL
531 */
532 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
533 sizeof(struct megasas_sge32);
534
535 if (IS_DMA64) {
536 ldio->flags |= MFI_FRAME_SGL64;
537 ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl);
538 } else
539 ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl);
540
541 /*
542 * Sense info specific
543 */
544 ldio->sense_len = SCSI_SENSE_BUFFERSIZE;
545 ldio->sense_buf_phys_addr_hi = 0;
546 ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
547
548 sge_bytes = sge_sz * ldio->sge_count;
549
550 cmd->frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
551 ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) + 1;
552
553 if (cmd->frame_count > 7)
554 cmd->frame_count = 8;
555
556 return cmd->frame_count;
557}
558
559/**
560 * megasas_build_cmd - Prepares a command packet
561 * @instance: Adapter soft state
562 * @scp: SCSI command
563 * @frame_count: [OUT] Number of frames used to prepare this command
564 */
565static inline struct megasas_cmd *megasas_build_cmd(struct megasas_instance
566 *instance,
567 struct scsi_cmnd *scp,
568 int *frame_count)
569{
570 u32 logical_cmd;
571 struct megasas_cmd *cmd;
572
573 /*
574 * Find out if this is logical or physical drive command.
575 */
576 logical_cmd = MEGASAS_IS_LOGICAL(scp);
577
578 /*
579 * Logical drive command
580 */
581 if (logical_cmd) {
582
583 if (scp->device->id >= MEGASAS_MAX_LD) {
584 scp->result = DID_BAD_TARGET << 16;
585 return NULL;
586 }
587
588 switch (scp->cmnd[0]) {
589
590 case READ_10:
591 case WRITE_10:
592 case READ_12:
593 case WRITE_12:
594 case READ_6:
595 case WRITE_6:
596 case READ_16:
597 case WRITE_16:
598 /*
599 * Fail for LUN > 0
600 */
601 if (scp->device->lun) {
602 scp->result = DID_BAD_TARGET << 16;
603 return NULL;
604 }
605
606 cmd = megasas_get_cmd(instance);
607
608 if (!cmd) {
609 scp->result = DID_IMM_RETRY << 16;
610 return NULL;
611 }
612
613 *frame_count = megasas_build_ldio(instance, scp, cmd);
614
615 if (!(*frame_count)) {
616 megasas_return_cmd(instance, cmd);
617 return NULL;
618 }
619
620 return cmd;
621
622 default:
623 /*
624 * Fail for LUN > 0
625 */
626 if (scp->device->lun) {
627 scp->result = DID_BAD_TARGET << 16;
628 return NULL;
629 }
630
631 cmd = megasas_get_cmd(instance);
632
633 if (!cmd) {
634 scp->result = DID_IMM_RETRY << 16;
635 return NULL;
636 }
637
638 *frame_count = megasas_build_dcdb(instance, scp, cmd);
639
640 if (!(*frame_count)) {
641 megasas_return_cmd(instance, cmd);
642 return NULL;
643 }
644
645 return cmd;
646 }
647 } else {
648 cmd = megasas_get_cmd(instance);
649
650 if (!cmd) {
651 scp->result = DID_IMM_RETRY << 16;
652 return NULL;
653 }
654
655 *frame_count = megasas_build_dcdb(instance, scp, cmd);
656
657 if (!(*frame_count)) {
658 megasas_return_cmd(instance, cmd);
659 return NULL;
660 }
661
662 return cmd;
663 }
664
665 return NULL;
666}
667
668/**
669 * megasas_queue_command - Queue entry point
670 * @scmd: SCSI command to be queued
671 * @done: Callback entry point
672 */
673static int
674megasas_queue_command(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *))
675{
676 u32 frame_count;
677 unsigned long flags;
678 struct megasas_cmd *cmd;
679 struct megasas_instance *instance;
680
681 instance = (struct megasas_instance *)
682 scmd->device->host->hostdata;
683 scmd->scsi_done = done;
684 scmd->result = 0;
685
686 cmd = megasas_build_cmd(instance, scmd, &frame_count);
687
688 if (!cmd) {
689 done(scmd);
690 return 0;
691 }
692
693 cmd->scmd = scmd;
694 scmd->SCp.ptr = (char *)cmd;
695 scmd->SCp.sent_command = jiffies;
696
697 /*
698 * Issue the command to the FW
699 */
700 spin_lock_irqsave(&instance->instance_lock, flags);
701 instance->fw_outstanding++;
702 spin_unlock_irqrestore(&instance->instance_lock, flags);
703
704 writel(((cmd->frame_phys_addr >> 3) | (cmd->frame_count - 1)),
705 &instance->reg_set->inbound_queue_port);
706
707 return 0;
708}
709
710/**
711 * megasas_wait_for_outstanding - Wait for all outstanding cmds
712 * @instance: Adapter soft state
713 *
714 * This function waits for upto MEGASAS_RESET_WAIT_TIME seconds for FW to
715 * complete all its outstanding commands. Returns error if one or more IOs
716 * are pending after this time period. It also marks the controller dead.
717 */
718static int megasas_wait_for_outstanding(struct megasas_instance *instance)
719{
720 int i;
721 u32 wait_time = MEGASAS_RESET_WAIT_TIME;
722
723 for (i = 0; i < wait_time; i++) {
724
725 if (!instance->fw_outstanding)
726 break;
727
728 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
729 printk(KERN_NOTICE "megasas: [%2d]waiting for %d "
730 "commands to complete\n", i,
731 instance->fw_outstanding);
732 }
733
734 msleep(1000);
735 }
736
737 if (instance->fw_outstanding) {
738 instance->hw_crit_error = 1;
739 return FAILED;
740 }
741
742 return SUCCESS;
743}
744
745/**
746 * megasas_generic_reset - Generic reset routine
747 * @scmd: Mid-layer SCSI command
748 *
749 * This routine implements a generic reset handler for device, bus and host
750 * reset requests. Device, bus and host specific reset handlers can use this
751 * function after they do their specific tasks.
752 */
753static int megasas_generic_reset(struct scsi_cmnd *scmd)
754{
755 int ret_val;
756 struct megasas_instance *instance;
757
758 instance = (struct megasas_instance *)scmd->device->host->hostdata;
759
760 printk(KERN_NOTICE "megasas: RESET -%ld cmd=%x <c=%d t=%d l=%d>\n",
761 scmd->serial_number, scmd->cmnd[0], scmd->device->channel,
762 scmd->device->id, scmd->device->lun);
763
764 if (instance->hw_crit_error) {
765 printk(KERN_ERR "megasas: cannot recover from previous reset "
766 "failures\n");
767 return FAILED;
768 }
769
770 spin_unlock(scmd->device->host->host_lock);
771
772 ret_val = megasas_wait_for_outstanding(instance);
773
774 if (ret_val == SUCCESS)
775 printk(KERN_NOTICE "megasas: reset successful \n");
776 else
777 printk(KERN_ERR "megasas: failed to do reset\n");
778
779 spin_lock(scmd->device->host->host_lock);
780
781 return ret_val;
782}
783
784static enum scsi_eh_timer_return megasas_reset_timer(struct scsi_cmnd *scmd)
785{
786 unsigned long seconds;
787
788 if (scmd->SCp.ptr) {
789 seconds = (jiffies - scmd->SCp.sent_command) / HZ;
790
791 if (seconds < 90) {
792 return EH_RESET_TIMER;
793 } else {
794 return EH_NOT_HANDLED;
795 }
796 }
797
798 return EH_HANDLED;
799}
800
801/**
802 * megasas_reset_device - Device reset handler entry point
803 */
804static int megasas_reset_device(struct scsi_cmnd *scmd)
805{
806 int ret;
807
808 /*
809 * First wait for all commands to complete
810 */
811 ret = megasas_generic_reset(scmd);
812
813 return ret;
814}
815
816/**
817 * megasas_reset_bus_host - Bus & host reset handler entry point
818 */
819static int megasas_reset_bus_host(struct scsi_cmnd *scmd)
820{
821 int ret;
822
823 /*
824 * Frist wait for all commands to complete
825 */
826 ret = megasas_generic_reset(scmd);
827
828 return ret;
829}
830
831/**
832 * megasas_service_aen - Processes an event notification
833 * @instance: Adapter soft state
834 * @cmd: AEN command completed by the ISR
835 *
836 * For AEN, driver sends a command down to FW that is held by the FW till an
837 * event occurs. When an event of interest occurs, FW completes the command
838 * that it was previously holding.
839 *
840 * This routines sends SIGIO signal to processes that have registered with the
841 * driver for AEN.
842 */
843static void
844megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
845{
846 /*
847 * Don't signal app if it is just an aborted previously registered aen
848 */
849 if (!cmd->abort_aen)
850 kill_fasync(&megasas_async_queue, SIGIO, POLL_IN);
851 else
852 cmd->abort_aen = 0;
853
854 instance->aen_cmd = NULL;
855 megasas_return_cmd(instance, cmd);
856}
857
858/*
859 * Scsi host template for megaraid_sas driver
860 */
861static struct scsi_host_template megasas_template = {
862
863 .module = THIS_MODULE,
864 .name = "LSI Logic SAS based MegaRAID driver",
865 .proc_name = "megaraid_sas",
866 .queuecommand = megasas_queue_command,
867 .eh_device_reset_handler = megasas_reset_device,
868 .eh_bus_reset_handler = megasas_reset_bus_host,
869 .eh_host_reset_handler = megasas_reset_bus_host,
870 .eh_timed_out = megasas_reset_timer,
871 .use_clustering = ENABLE_CLUSTERING,
872};
873
874/**
875 * megasas_complete_int_cmd - Completes an internal command
876 * @instance: Adapter soft state
877 * @cmd: Command to be completed
878 *
879 * The megasas_issue_blocked_cmd() function waits for a command to complete
880 * after it issues a command. This function wakes up that waiting routine by
881 * calling wake_up() on the wait queue.
882 */
883static void
884megasas_complete_int_cmd(struct megasas_instance *instance,
885 struct megasas_cmd *cmd)
886{
887 cmd->cmd_status = cmd->frame->io.cmd_status;
888
889 if (cmd->cmd_status == ENODATA) {
890 cmd->cmd_status = 0;
891 }
892 wake_up(&instance->int_cmd_wait_q);
893}
894
895/**
896 * megasas_complete_abort - Completes aborting a command
897 * @instance: Adapter soft state
898 * @cmd: Cmd that was issued to abort another cmd
899 *
900 * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q
901 * after it issues an abort on a previously issued command. This function
902 * wakes up all functions waiting on the same wait queue.
903 */
904static void
905megasas_complete_abort(struct megasas_instance *instance,
906 struct megasas_cmd *cmd)
907{
908 if (cmd->sync_cmd) {
909 cmd->sync_cmd = 0;
910 cmd->cmd_status = 0;
911 wake_up(&instance->abort_cmd_wait_q);
912 }
913
914 return;
915}
916
917/**
918 * megasas_unmap_sgbuf - Unmap SG buffers
919 * @instance: Adapter soft state
920 * @cmd: Completed command
921 */
922static inline void
923megasas_unmap_sgbuf(struct megasas_instance *instance, struct megasas_cmd *cmd)
924{
925 dma_addr_t buf_h;
926 u8 opcode;
927
928 if (cmd->scmd->use_sg) {
929 pci_unmap_sg(instance->pdev, cmd->scmd->request_buffer,
930 cmd->scmd->use_sg, cmd->scmd->sc_data_direction);
931 return;
932 }
933
934 if (!cmd->scmd->request_bufflen)
935 return;
936
937 opcode = cmd->frame->hdr.cmd;
938
939 if ((opcode == MFI_CMD_LD_READ) || (opcode == MFI_CMD_LD_WRITE)) {
940 if (IS_DMA64)
941 buf_h = cmd->frame->io.sgl.sge64[0].phys_addr;
942 else
943 buf_h = cmd->frame->io.sgl.sge32[0].phys_addr;
944 } else {
945 if (IS_DMA64)
946 buf_h = cmd->frame->pthru.sgl.sge64[0].phys_addr;
947 else
948 buf_h = cmd->frame->pthru.sgl.sge32[0].phys_addr;
949 }
950
951 pci_unmap_single(instance->pdev, buf_h, cmd->scmd->request_bufflen,
952 cmd->scmd->sc_data_direction);
953 return;
954}
955
956/**
957 * megasas_complete_cmd - Completes a command
958 * @instance: Adapter soft state
959 * @cmd: Command to be completed
960 * @alt_status: If non-zero, use this value as status to
961 * SCSI mid-layer instead of the value returned
962 * by the FW. This should be used if caller wants
963 * an alternate status (as in the case of aborted
964 * commands)
965 */
966static inline void
967megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
968 u8 alt_status)
969{
970 int exception = 0;
971 struct megasas_header *hdr = &cmd->frame->hdr;
972 unsigned long flags;
973
974 if (cmd->scmd) {
975 cmd->scmd->SCp.ptr = (char *)0;
976 }
977
978 switch (hdr->cmd) {
979
980 case MFI_CMD_PD_SCSI_IO:
981 case MFI_CMD_LD_SCSI_IO:
982
983 /*
984 * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been
985 * issued either through an IO path or an IOCTL path. If it
986 * was via IOCTL, we will send it to internal completion.
987 */
988 if (cmd->sync_cmd) {
989 cmd->sync_cmd = 0;
990 megasas_complete_int_cmd(instance, cmd);
991 break;
992 }
993
994 /*
995 * Don't export physical disk devices to mid-layer.
996 */
997 if (!MEGASAS_IS_LOGICAL(cmd->scmd) &&
998 (hdr->cmd_status == MFI_STAT_OK) &&
999 (cmd->scmd->cmnd[0] == INQUIRY)) {
1000
1001 if (((*(u8 *) cmd->scmd->request_buffer) & 0x1F) ==
1002 TYPE_DISK) {
1003 cmd->scmd->result = DID_BAD_TARGET << 16;
1004 exception = 1;
1005 }
1006 }
1007
1008 case MFI_CMD_LD_READ:
1009 case MFI_CMD_LD_WRITE:
1010
1011 if (alt_status) {
1012 cmd->scmd->result = alt_status << 16;
1013 exception = 1;
1014 }
1015
1016 if (exception) {
1017
1018 spin_lock_irqsave(&instance->instance_lock, flags);
1019 instance->fw_outstanding--;
1020 spin_unlock_irqrestore(&instance->instance_lock, flags);
1021
1022 megasas_unmap_sgbuf(instance, cmd);
1023 cmd->scmd->scsi_done(cmd->scmd);
1024 megasas_return_cmd(instance, cmd);
1025
1026 break;
1027 }
1028
1029 switch (hdr->cmd_status) {
1030
1031 case MFI_STAT_OK:
1032 cmd->scmd->result = DID_OK << 16;
1033 break;
1034
1035 case MFI_STAT_SCSI_IO_FAILED:
1036 case MFI_STAT_LD_INIT_IN_PROGRESS:
1037 cmd->scmd->result =
1038 (DID_ERROR << 16) | hdr->scsi_status;
1039 break;
1040
1041 case MFI_STAT_SCSI_DONE_WITH_ERROR:
1042
1043 cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status;
1044
1045 if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) {
1046 memset(cmd->scmd->sense_buffer, 0,
1047 SCSI_SENSE_BUFFERSIZE);
1048 memcpy(cmd->scmd->sense_buffer, cmd->sense,
1049 hdr->sense_len);
1050
1051 cmd->scmd->result |= DRIVER_SENSE << 24;
1052 }
1053
1054 break;
1055
1056 case MFI_STAT_LD_OFFLINE:
1057 case MFI_STAT_DEVICE_NOT_FOUND:
1058 cmd->scmd->result = DID_BAD_TARGET << 16;
1059 break;
1060
1061 default:
1062 printk(KERN_DEBUG "megasas: MFI FW status %#x\n",
1063 hdr->cmd_status);
1064 cmd->scmd->result = DID_ERROR << 16;
1065 break;
1066 }
1067
1068 spin_lock_irqsave(&instance->instance_lock, flags);
1069 instance->fw_outstanding--;
1070 spin_unlock_irqrestore(&instance->instance_lock, flags);
1071
1072 megasas_unmap_sgbuf(instance, cmd);
1073 cmd->scmd->scsi_done(cmd->scmd);
1074 megasas_return_cmd(instance, cmd);
1075
1076 break;
1077
1078 case MFI_CMD_SMP:
1079 case MFI_CMD_STP:
1080 case MFI_CMD_DCMD:
1081
1082 /*
1083 * See if got an event notification
1084 */
1085 if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_WAIT)
1086 megasas_service_aen(instance, cmd);
1087 else
1088 megasas_complete_int_cmd(instance, cmd);
1089
1090 break;
1091
1092 case MFI_CMD_ABORT:
1093 /*
1094 * Cmd issued to abort another cmd returned
1095 */
1096 megasas_complete_abort(instance, cmd);
1097 break;
1098
1099 default:
1100 printk("megasas: Unknown command completed! [0x%X]\n",
1101 hdr->cmd);
1102 break;
1103 }
1104}
1105
1106/**
1107 * megasas_deplete_reply_queue - Processes all completed commands
1108 * @instance: Adapter soft state
1109 * @alt_status: Alternate status to be returned to
1110 * SCSI mid-layer instead of the status
1111 * returned by the FW
1112 */
1113static inline int
1114megasas_deplete_reply_queue(struct megasas_instance *instance, u8 alt_status)
1115{
1116 u32 status;
1117 u32 producer;
1118 u32 consumer;
1119 u32 context;
1120 struct megasas_cmd *cmd;
1121
1122 /*
1123 * Check if it is our interrupt
1124 */
1125 status = readl(&instance->reg_set->outbound_intr_status);
1126
1127 if (!(status & MFI_OB_INTR_STATUS_MASK)) {
1128 return IRQ_NONE;
1129 }
1130
1131 /*
1132 * Clear the interrupt by writing back the same value
1133 */
1134 writel(status, &instance->reg_set->outbound_intr_status);
1135
1136 producer = *instance->producer;
1137 consumer = *instance->consumer;
1138
1139 while (consumer != producer) {
1140 context = instance->reply_queue[consumer];
1141
1142 cmd = instance->cmd_list[context];
1143
1144 megasas_complete_cmd(instance, cmd, alt_status);
1145
1146 consumer++;
1147 if (consumer == (instance->max_fw_cmds + 1)) {
1148 consumer = 0;
1149 }
1150 }
1151
1152 *instance->consumer = producer;
1153
1154 return IRQ_HANDLED;
1155}
1156
1157/**
1158 * megasas_isr - isr entry point
1159 */
1160static irqreturn_t megasas_isr(int irq, void *devp, struct pt_regs *regs)
1161{
1162 return megasas_deplete_reply_queue((struct megasas_instance *)devp,
1163 DID_OK);
1164}
1165
1166/**
1167 * megasas_transition_to_ready - Move the FW to READY state
1168 * @reg_set: MFI register set
1169 *
1170 * During the initialization, FW passes can potentially be in any one of
1171 * several possible states. If the FW in operational, waiting-for-handshake
1172 * states, driver must take steps to bring it to ready state. Otherwise, it
1173 * has to wait for the ready state.
1174 */
1175static int
1176megasas_transition_to_ready(struct megasas_register_set __iomem * reg_set)
1177{
1178 int i;
1179 u8 max_wait;
1180 u32 fw_state;
1181 u32 cur_state;
1182
1183 fw_state = readl(&reg_set->outbound_msg_0) & MFI_STATE_MASK;
1184
1185 while (fw_state != MFI_STATE_READY) {
1186
1187 printk(KERN_INFO "megasas: Waiting for FW to come to ready"
1188 " state\n");
1189 switch (fw_state) {
1190
1191 case MFI_STATE_FAULT:
1192
1193 printk(KERN_DEBUG "megasas: FW in FAULT state!!\n");
1194 return -ENODEV;
1195
1196 case MFI_STATE_WAIT_HANDSHAKE:
1197 /*
1198 * Set the CLR bit in inbound doorbell
1199 */
1200 writel(MFI_INIT_CLEAR_HANDSHAKE,
1201 &reg_set->inbound_doorbell);
1202
1203 max_wait = 2;
1204 cur_state = MFI_STATE_WAIT_HANDSHAKE;
1205 break;
1206
1207 case MFI_STATE_OPERATIONAL:
1208 /*
1209 * Bring it to READY state; assuming max wait 2 secs
1210 */
1211 megasas_disable_intr(reg_set);
1212 writel(MFI_INIT_READY, &reg_set->inbound_doorbell);
1213
1214 max_wait = 10;
1215 cur_state = MFI_STATE_OPERATIONAL;
1216 break;
1217
1218 case MFI_STATE_UNDEFINED:
1219 /*
1220 * This state should not last for more than 2 seconds
1221 */
1222 max_wait = 2;
1223 cur_state = MFI_STATE_UNDEFINED;
1224 break;
1225
1226 case MFI_STATE_BB_INIT:
1227 max_wait = 2;
1228 cur_state = MFI_STATE_BB_INIT;
1229 break;
1230
1231 case MFI_STATE_FW_INIT:
1232 max_wait = 20;
1233 cur_state = MFI_STATE_FW_INIT;
1234 break;
1235
1236 case MFI_STATE_FW_INIT_2:
1237 max_wait = 20;
1238 cur_state = MFI_STATE_FW_INIT_2;
1239 break;
1240
1241 case MFI_STATE_DEVICE_SCAN:
1242 max_wait = 20;
1243 cur_state = MFI_STATE_DEVICE_SCAN;
1244 break;
1245
1246 case MFI_STATE_FLUSH_CACHE:
1247 max_wait = 20;
1248 cur_state = MFI_STATE_FLUSH_CACHE;
1249 break;
1250
1251 default:
1252 printk(KERN_DEBUG "megasas: Unknown state 0x%x\n",
1253 fw_state);
1254 return -ENODEV;
1255 }
1256
1257 /*
1258 * The cur_state should not last for more than max_wait secs
1259 */
1260 for (i = 0; i < (max_wait * 1000); i++) {
1261 fw_state = MFI_STATE_MASK &
1262 readl(&reg_set->outbound_msg_0);
1263
1264 if (fw_state == cur_state) {
1265 msleep(1);
1266 } else
1267 break;
1268 }
1269
1270 /*
1271 * Return error if fw_state hasn't changed after max_wait
1272 */
1273 if (fw_state == cur_state) {
1274 printk(KERN_DEBUG "FW state [%d] hasn't changed "
1275 "in %d secs\n", fw_state, max_wait);
1276 return -ENODEV;
1277 }
1278 };
1279
1280 return 0;
1281}
1282
1283/**
1284 * megasas_teardown_frame_pool - Destroy the cmd frame DMA pool
1285 * @instance: Adapter soft state
1286 */
1287static void megasas_teardown_frame_pool(struct megasas_instance *instance)
1288{
1289 int i;
1290 u32 max_cmd = instance->max_fw_cmds;
1291 struct megasas_cmd *cmd;
1292
1293 if (!instance->frame_dma_pool)
1294 return;
1295
1296 /*
1297 * Return all frames to pool
1298 */
1299 for (i = 0; i < max_cmd; i++) {
1300
1301 cmd = instance->cmd_list[i];
1302
1303 if (cmd->frame)
1304 pci_pool_free(instance->frame_dma_pool, cmd->frame,
1305 cmd->frame_phys_addr);
1306
1307 if (cmd->sense)
1308 pci_pool_free(instance->sense_dma_pool, cmd->frame,
1309 cmd->sense_phys_addr);
1310 }
1311
1312 /*
1313 * Now destroy the pool itself
1314 */
1315 pci_pool_destroy(instance->frame_dma_pool);
1316 pci_pool_destroy(instance->sense_dma_pool);
1317
1318 instance->frame_dma_pool = NULL;
1319 instance->sense_dma_pool = NULL;
1320}
1321
1322/**
1323 * megasas_create_frame_pool - Creates DMA pool for cmd frames
1324 * @instance: Adapter soft state
1325 *
1326 * Each command packet has an embedded DMA memory buffer that is used for
1327 * filling MFI frame and the SG list that immediately follows the frame. This
1328 * function creates those DMA memory buffers for each command packet by using
1329 * PCI pool facility.
1330 */
1331static int megasas_create_frame_pool(struct megasas_instance *instance)
1332{
1333 int i;
1334 u32 max_cmd;
1335 u32 sge_sz;
1336 u32 sgl_sz;
1337 u32 total_sz;
1338 u32 frame_count;
1339 struct megasas_cmd *cmd;
1340
1341 max_cmd = instance->max_fw_cmds;
1342
1343 /*
1344 * Size of our frame is 64 bytes for MFI frame, followed by max SG
1345 * elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer
1346 */
1347 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
1348 sizeof(struct megasas_sge32);
1349
1350 /*
1351 * Calculated the number of 64byte frames required for SGL
1352 */
1353 sgl_sz = sge_sz * instance->max_num_sge;
1354 frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE;
1355
1356 /*
1357 * We need one extra frame for the MFI command
1358 */
1359 frame_count++;
1360
1361 total_sz = MEGAMFI_FRAME_SIZE * frame_count;
1362 /*
1363 * Use DMA pool facility provided by PCI layer
1364 */
1365 instance->frame_dma_pool = pci_pool_create("megasas frame pool",
1366 instance->pdev, total_sz, 64,
1367 0);
1368
1369 if (!instance->frame_dma_pool) {
1370 printk(KERN_DEBUG "megasas: failed to setup frame pool\n");
1371 return -ENOMEM;
1372 }
1373
1374 instance->sense_dma_pool = pci_pool_create("megasas sense pool",
1375 instance->pdev, 128, 4, 0);
1376
1377 if (!instance->sense_dma_pool) {
1378 printk(KERN_DEBUG "megasas: failed to setup sense pool\n");
1379
1380 pci_pool_destroy(instance->frame_dma_pool);
1381 instance->frame_dma_pool = NULL;
1382
1383 return -ENOMEM;
1384 }
1385
1386 /*
1387 * Allocate and attach a frame to each of the commands in cmd_list.
1388 * By making cmd->index as the context instead of the &cmd, we can
1389 * always use 32bit context regardless of the architecture
1390 */
1391 for (i = 0; i < max_cmd; i++) {
1392
1393 cmd = instance->cmd_list[i];
1394
1395 cmd->frame = pci_pool_alloc(instance->frame_dma_pool,
1396 GFP_KERNEL, &cmd->frame_phys_addr);
1397
1398 cmd->sense = pci_pool_alloc(instance->sense_dma_pool,
1399 GFP_KERNEL, &cmd->sense_phys_addr);
1400
1401 /*
1402 * megasas_teardown_frame_pool() takes care of freeing
1403 * whatever has been allocated
1404 */
1405 if (!cmd->frame || !cmd->sense) {
1406 printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n");
1407 megasas_teardown_frame_pool(instance);
1408 return -ENOMEM;
1409 }
1410
1411 cmd->frame->io.context = cmd->index;
1412 }
1413
1414 return 0;
1415}
1416
1417/**
1418 * megasas_free_cmds - Free all the cmds in the free cmd pool
1419 * @instance: Adapter soft state
1420 */
1421static void megasas_free_cmds(struct megasas_instance *instance)
1422{
1423 int i;
1424 /* First free the MFI frame pool */
1425 megasas_teardown_frame_pool(instance);
1426
1427 /* Free all the commands in the cmd_list */
1428 for (i = 0; i < instance->max_fw_cmds; i++)
1429 kfree(instance->cmd_list[i]);
1430
1431 /* Free the cmd_list buffer itself */
1432 kfree(instance->cmd_list);
1433 instance->cmd_list = NULL;
1434
1435 INIT_LIST_HEAD(&instance->cmd_pool);
1436}
1437
1438/**
1439 * megasas_alloc_cmds - Allocates the command packets
1440 * @instance: Adapter soft state
1441 *
1442 * Each command that is issued to the FW, whether IO commands from the OS or
1443 * internal commands like IOCTLs, are wrapped in local data structure called
1444 * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to
1445 * the FW.
1446 *
1447 * Each frame has a 32-bit field called context (tag). This context is used
1448 * to get back the megasas_cmd from the frame when a frame gets completed in
1449 * the ISR. Typically the address of the megasas_cmd itself would be used as
1450 * the context. But we wanted to keep the differences between 32 and 64 bit
1451 * systems to the mininum. We always use 32 bit integers for the context. In
1452 * this driver, the 32 bit values are the indices into an array cmd_list.
1453 * This array is used only to look up the megasas_cmd given the context. The
1454 * free commands themselves are maintained in a linked list called cmd_pool.
1455 */
1456static int megasas_alloc_cmds(struct megasas_instance *instance)
1457{
1458 int i;
1459 int j;
1460 u32 max_cmd;
1461 struct megasas_cmd *cmd;
1462
1463 max_cmd = instance->max_fw_cmds;
1464
1465 /*
1466 * instance->cmd_list is an array of struct megasas_cmd pointers.
1467 * Allocate the dynamic array first and then allocate individual
1468 * commands.
1469 */
1470 instance->cmd_list = kmalloc(sizeof(struct megasas_cmd *) * max_cmd,
1471 GFP_KERNEL);
1472
1473 if (!instance->cmd_list) {
1474 printk(KERN_DEBUG "megasas: out of memory\n");
1475 return -ENOMEM;
1476 }
1477
1478 memset(instance->cmd_list, 0, sizeof(struct megasas_cmd *) * max_cmd);
1479
1480 for (i = 0; i < max_cmd; i++) {
1481 instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd),
1482 GFP_KERNEL);
1483
1484 if (!instance->cmd_list[i]) {
1485
1486 for (j = 0; j < i; j++)
1487 kfree(instance->cmd_list[j]);
1488
1489 kfree(instance->cmd_list);
1490 instance->cmd_list = NULL;
1491
1492 return -ENOMEM;
1493 }
1494 }
1495
1496 /*
1497 * Add all the commands to command pool (instance->cmd_pool)
1498 */
1499 for (i = 0; i < max_cmd; i++) {
1500 cmd = instance->cmd_list[i];
1501 memset(cmd, 0, sizeof(struct megasas_cmd));
1502 cmd->index = i;
1503 cmd->instance = instance;
1504
1505 list_add_tail(&cmd->list, &instance->cmd_pool);
1506 }
1507
1508 /*
1509 * Create a frame pool and assign one frame to each cmd
1510 */
1511 if (megasas_create_frame_pool(instance)) {
1512 printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n");
1513 megasas_free_cmds(instance);
1514 }
1515
1516 return 0;
1517}
1518
1519/**
1520 * megasas_get_controller_info - Returns FW's controller structure
1521 * @instance: Adapter soft state
1522 * @ctrl_info: Controller information structure
1523 *
1524 * Issues an internal command (DCMD) to get the FW's controller structure.
1525 * This information is mainly used to find out the maximum IO transfer per
1526 * command supported by the FW.
1527 */
1528static int
1529megasas_get_ctrl_info(struct megasas_instance *instance,
1530 struct megasas_ctrl_info *ctrl_info)
1531{
1532 int ret = 0;
1533 struct megasas_cmd *cmd;
1534 struct megasas_dcmd_frame *dcmd;
1535 struct megasas_ctrl_info *ci;
1536 dma_addr_t ci_h = 0;
1537
1538 cmd = megasas_get_cmd(instance);
1539
1540 if (!cmd) {
1541 printk(KERN_DEBUG "megasas: Failed to get a free cmd\n");
1542 return -ENOMEM;
1543 }
1544
1545 dcmd = &cmd->frame->dcmd;
1546
1547 ci = pci_alloc_consistent(instance->pdev,
1548 sizeof(struct megasas_ctrl_info), &ci_h);
1549
1550 if (!ci) {
1551 printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n");
1552 megasas_return_cmd(instance, cmd);
1553 return -ENOMEM;
1554 }
1555
1556 memset(ci, 0, sizeof(*ci));
1557 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1558
1559 dcmd->cmd = MFI_CMD_DCMD;
1560 dcmd->cmd_status = 0xFF;
1561 dcmd->sge_count = 1;
1562 dcmd->flags = MFI_FRAME_DIR_READ;
1563 dcmd->timeout = 0;
1564 dcmd->data_xfer_len = sizeof(struct megasas_ctrl_info);
1565 dcmd->opcode = MR_DCMD_CTRL_GET_INFO;
1566 dcmd->sgl.sge32[0].phys_addr = ci_h;
1567 dcmd->sgl.sge32[0].length = sizeof(struct megasas_ctrl_info);
1568
1569 if (!megasas_issue_polled(instance, cmd)) {
1570 ret = 0;
1571 memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info));
1572 } else {
1573 ret = -1;
1574 }
1575
1576 pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info),
1577 ci, ci_h);
1578
1579 megasas_return_cmd(instance, cmd);
1580 return ret;
1581}
1582
1583/**
1584 * megasas_init_mfi - Initializes the FW
1585 * @instance: Adapter soft state
1586 *
1587 * This is the main function for initializing MFI firmware.
1588 */
1589static int megasas_init_mfi(struct megasas_instance *instance)
1590{
1591 u32 context_sz;
1592 u32 reply_q_sz;
1593 u32 max_sectors_1;
1594 u32 max_sectors_2;
1595 struct megasas_register_set __iomem *reg_set;
1596
1597 struct megasas_cmd *cmd;
1598 struct megasas_ctrl_info *ctrl_info;
1599
1600 struct megasas_init_frame *init_frame;
1601 struct megasas_init_queue_info *initq_info;
1602 dma_addr_t init_frame_h;
1603 dma_addr_t initq_info_h;
1604
1605 /*
1606 * Map the message registers
1607 */
1608 instance->base_addr = pci_resource_start(instance->pdev, 0);
1609
1610 if (pci_request_regions(instance->pdev, "megasas: LSI Logic")) {
1611 printk(KERN_DEBUG "megasas: IO memory region busy!\n");
1612 return -EBUSY;
1613 }
1614
1615 instance->reg_set = ioremap_nocache(instance->base_addr, 8192);
1616
1617 if (!instance->reg_set) {
1618 printk(KERN_DEBUG "megasas: Failed to map IO mem\n");
1619 goto fail_ioremap;
1620 }
1621
1622 reg_set = instance->reg_set;
1623
1624 /*
1625 * We expect the FW state to be READY
1626 */
1627 if (megasas_transition_to_ready(instance->reg_set))
1628 goto fail_ready_state;
1629
1630 /*
1631 * Get various operational parameters from status register
1632 */
1633 instance->max_fw_cmds = readl(&reg_set->outbound_msg_0) & 0x00FFFF;
1634 instance->max_num_sge = (readl(&reg_set->outbound_msg_0) & 0xFF0000) >>
1635 0x10;
1636 /*
1637 * Create a pool of commands
1638 */
1639 if (megasas_alloc_cmds(instance))
1640 goto fail_alloc_cmds;
1641
1642 /*
1643 * Allocate memory for reply queue. Length of reply queue should
1644 * be _one_ more than the maximum commands handled by the firmware.
1645 *
1646 * Note: When FW completes commands, it places corresponding contex
1647 * values in this circular reply queue. This circular queue is a fairly
1648 * typical producer-consumer queue. FW is the producer (of completed
1649 * commands) and the driver is the consumer.
1650 */
1651 context_sz = sizeof(u32);
1652 reply_q_sz = context_sz * (instance->max_fw_cmds + 1);
1653
1654 instance->reply_queue = pci_alloc_consistent(instance->pdev,
1655 reply_q_sz,
1656 &instance->reply_queue_h);
1657
1658 if (!instance->reply_queue) {
1659 printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n");
1660 goto fail_reply_queue;
1661 }
1662
1663 /*
1664 * Prepare a init frame. Note the init frame points to queue info
1665 * structure. Each frame has SGL allocated after first 64 bytes. For
1666 * this frame - since we don't need any SGL - we use SGL's space as
1667 * queue info structure
1668 *
1669 * We will not get a NULL command below. We just created the pool.
1670 */
1671 cmd = megasas_get_cmd(instance);
1672
1673 init_frame = (struct megasas_init_frame *)cmd->frame;
1674 initq_info = (struct megasas_init_queue_info *)
1675 ((unsigned long)init_frame + 64);
1676
1677 init_frame_h = cmd->frame_phys_addr;
1678 initq_info_h = init_frame_h + 64;
1679
1680 memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
1681 memset(initq_info, 0, sizeof(struct megasas_init_queue_info));
1682
1683 initq_info->reply_queue_entries = instance->max_fw_cmds + 1;
1684 initq_info->reply_queue_start_phys_addr_lo = instance->reply_queue_h;
1685
1686 initq_info->producer_index_phys_addr_lo = instance->producer_h;
1687 initq_info->consumer_index_phys_addr_lo = instance->consumer_h;
1688
1689 init_frame->cmd = MFI_CMD_INIT;
1690 init_frame->cmd_status = 0xFF;
1691 init_frame->queue_info_new_phys_addr_lo = initq_info_h;
1692
1693 init_frame->data_xfer_len = sizeof(struct megasas_init_queue_info);
1694
1695 /*
1696 * Issue the init frame in polled mode
1697 */
1698 if (megasas_issue_polled(instance, cmd)) {
1699 printk(KERN_DEBUG "megasas: Failed to init firmware\n");
1700 goto fail_fw_init;
1701 }
1702
1703 megasas_return_cmd(instance, cmd);
1704
1705 ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL);
1706
1707 /*
1708 * Compute the max allowed sectors per IO: The controller info has two
1709 * limits on max sectors. Driver should use the minimum of these two.
1710 *
1711 * 1 << stripe_sz_ops.min = max sectors per strip
1712 *
1713 * Note that older firmwares ( < FW ver 30) didn't report information
1714 * to calculate max_sectors_1. So the number ended up as zero always.
1715 */
1716 if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) {
1717
1718 max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) *
1719 ctrl_info->max_strips_per_io;
1720 max_sectors_2 = ctrl_info->max_request_size;
1721
1722 instance->max_sectors_per_req = (max_sectors_1 < max_sectors_2)
1723 ? max_sectors_1 : max_sectors_2;
1724 } else
1725 instance->max_sectors_per_req = instance->max_num_sge *
1726 PAGE_SIZE / 512;
1727
1728 kfree(ctrl_info);
1729
1730 return 0;
1731
1732 fail_fw_init:
1733 megasas_return_cmd(instance, cmd);
1734
1735 pci_free_consistent(instance->pdev, reply_q_sz,
1736 instance->reply_queue, instance->reply_queue_h);
1737 fail_reply_queue:
1738 megasas_free_cmds(instance);
1739
1740 fail_alloc_cmds:
1741 fail_ready_state:
1742 iounmap(instance->reg_set);
1743
1744 fail_ioremap:
1745 pci_release_regions(instance->pdev);
1746
1747 return -EINVAL;
1748}
1749
1750/**
1751 * megasas_release_mfi - Reverses the FW initialization
1752 * @intance: Adapter soft state
1753 */
1754static void megasas_release_mfi(struct megasas_instance *instance)
1755{
1756 u32 reply_q_sz = sizeof(u32) * (instance->max_fw_cmds + 1);
1757
1758 pci_free_consistent(instance->pdev, reply_q_sz,
1759 instance->reply_queue, instance->reply_queue_h);
1760
1761 megasas_free_cmds(instance);
1762
1763 iounmap(instance->reg_set);
1764
1765 pci_release_regions(instance->pdev);
1766}
1767
1768/**
1769 * megasas_get_seq_num - Gets latest event sequence numbers
1770 * @instance: Adapter soft state
1771 * @eli: FW event log sequence numbers information
1772 *
1773 * FW maintains a log of all events in a non-volatile area. Upper layers would
1774 * usually find out the latest sequence number of the events, the seq number at
1775 * the boot etc. They would "read" all the events below the latest seq number
1776 * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq
1777 * number), they would subsribe to AEN (asynchronous event notification) and
1778 * wait for the events to happen.
1779 */
1780static int
1781megasas_get_seq_num(struct megasas_instance *instance,
1782 struct megasas_evt_log_info *eli)
1783{
1784 struct megasas_cmd *cmd;
1785 struct megasas_dcmd_frame *dcmd;
1786 struct megasas_evt_log_info *el_info;
1787 dma_addr_t el_info_h = 0;
1788
1789 cmd = megasas_get_cmd(instance);
1790
1791 if (!cmd) {
1792 return -ENOMEM;
1793 }
1794
1795 dcmd = &cmd->frame->dcmd;
1796 el_info = pci_alloc_consistent(instance->pdev,
1797 sizeof(struct megasas_evt_log_info),
1798 &el_info_h);
1799
1800 if (!el_info) {
1801 megasas_return_cmd(instance, cmd);
1802 return -ENOMEM;
1803 }
1804
1805 memset(el_info, 0, sizeof(*el_info));
1806 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1807
1808 dcmd->cmd = MFI_CMD_DCMD;
1809 dcmd->cmd_status = 0x0;
1810 dcmd->sge_count = 1;
1811 dcmd->flags = MFI_FRAME_DIR_READ;
1812 dcmd->timeout = 0;
1813 dcmd->data_xfer_len = sizeof(struct megasas_evt_log_info);
1814 dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
1815 dcmd->sgl.sge32[0].phys_addr = el_info_h;
1816 dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_log_info);
1817
1818 megasas_issue_blocked_cmd(instance, cmd);
1819
1820 /*
1821 * Copy the data back into callers buffer
1822 */
1823 memcpy(eli, el_info, sizeof(struct megasas_evt_log_info));
1824
1825 pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info),
1826 el_info, el_info_h);
1827
1828 megasas_return_cmd(instance, cmd);
1829
1830 return 0;
1831}
1832
1833/**
1834 * megasas_register_aen - Registers for asynchronous event notification
1835 * @instance: Adapter soft state
1836 * @seq_num: The starting sequence number
1837 * @class_locale: Class of the event
1838 *
1839 * This function subscribes for AEN for events beyond the @seq_num. It requests
1840 * to be notified if and only if the event is of type @class_locale
1841 */
1842static int
1843megasas_register_aen(struct megasas_instance *instance, u32 seq_num,
1844 u32 class_locale_word)
1845{
1846 int ret_val;
1847 struct megasas_cmd *cmd;
1848 struct megasas_dcmd_frame *dcmd;
1849 union megasas_evt_class_locale curr_aen;
1850 union megasas_evt_class_locale prev_aen;
1851
1852 /*
1853 * If there an AEN pending already (aen_cmd), check if the
1854 * class_locale of that pending AEN is inclusive of the new
1855 * AEN request we currently have. If it is, then we don't have
1856 * to do anything. In other words, whichever events the current
1857 * AEN request is subscribing to, have already been subscribed
1858 * to.
1859 *
1860 * If the old_cmd is _not_ inclusive, then we have to abort
1861 * that command, form a class_locale that is superset of both
1862 * old and current and re-issue to the FW
1863 */
1864
1865 curr_aen.word = class_locale_word;
1866
1867 if (instance->aen_cmd) {
1868
1869 prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
1870
1871 /*
1872 * A class whose enum value is smaller is inclusive of all
1873 * higher values. If a PROGRESS (= -1) was previously
1874 * registered, then a new registration requests for higher
1875 * classes need not be sent to FW. They are automatically
1876 * included.
1877 *
1878 * Locale numbers don't have such hierarchy. They are bitmap
1879 * values
1880 */
1881 if ((prev_aen.members.class <= curr_aen.members.class) &&
1882 !((prev_aen.members.locale & curr_aen.members.locale) ^
1883 curr_aen.members.locale)) {
1884 /*
1885 * Previously issued event registration includes
1886 * current request. Nothing to do.
1887 */
1888 return 0;
1889 } else {
1890 curr_aen.members.locale |= prev_aen.members.locale;
1891
1892 if (prev_aen.members.class < curr_aen.members.class)
1893 curr_aen.members.class = prev_aen.members.class;
1894
1895 instance->aen_cmd->abort_aen = 1;
1896 ret_val = megasas_issue_blocked_abort_cmd(instance,
1897 instance->
1898 aen_cmd);
1899
1900 if (ret_val) {
1901 printk(KERN_DEBUG "megasas: Failed to abort "
1902 "previous AEN command\n");
1903 return ret_val;
1904 }
1905 }
1906 }
1907
1908 cmd = megasas_get_cmd(instance);
1909
1910 if (!cmd)
1911 return -ENOMEM;
1912
1913 dcmd = &cmd->frame->dcmd;
1914
1915 memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail));
1916
1917 /*
1918 * Prepare DCMD for aen registration
1919 */
1920 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1921
1922 dcmd->cmd = MFI_CMD_DCMD;
1923 dcmd->cmd_status = 0x0;
1924 dcmd->sge_count = 1;
1925 dcmd->flags = MFI_FRAME_DIR_READ;
1926 dcmd->timeout = 0;
1927 dcmd->data_xfer_len = sizeof(struct megasas_evt_detail);
1928 dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
1929 dcmd->mbox.w[0] = seq_num;
1930 dcmd->mbox.w[1] = curr_aen.word;
1931 dcmd->sgl.sge32[0].phys_addr = (u32) instance->evt_detail_h;
1932 dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_detail);
1933
1934 /*
1935 * Store reference to the cmd used to register for AEN. When an
1936 * application wants us to register for AEN, we have to abort this
1937 * cmd and re-register with a new EVENT LOCALE supplied by that app
1938 */
1939 instance->aen_cmd = cmd;
1940
1941 /*
1942 * Issue the aen registration frame
1943 */
1944 writel(cmd->frame_phys_addr >> 3,
1945 &instance->reg_set->inbound_queue_port);
1946
1947 return 0;
1948}
1949
1950/**
1951 * megasas_start_aen - Subscribes to AEN during driver load time
1952 * @instance: Adapter soft state
1953 */
1954static int megasas_start_aen(struct megasas_instance *instance)
1955{
1956 struct megasas_evt_log_info eli;
1957 union megasas_evt_class_locale class_locale;
1958
1959 /*
1960 * Get the latest sequence number from FW
1961 */
1962 memset(&eli, 0, sizeof(eli));
1963
1964 if (megasas_get_seq_num(instance, &eli))
1965 return -1;
1966
1967 /*
1968 * Register AEN with FW for latest sequence number plus 1
1969 */
1970 class_locale.members.reserved = 0;
1971 class_locale.members.locale = MR_EVT_LOCALE_ALL;
1972 class_locale.members.class = MR_EVT_CLASS_DEBUG;
1973
1974 return megasas_register_aen(instance, eli.newest_seq_num + 1,
1975 class_locale.word);
1976}
1977
1978/**
1979 * megasas_io_attach - Attaches this driver to SCSI mid-layer
1980 * @instance: Adapter soft state
1981 */
1982static int megasas_io_attach(struct megasas_instance *instance)
1983{
1984 struct Scsi_Host *host = instance->host;
1985
1986 /*
1987 * Export parameters required by SCSI mid-layer
1988 */
1989 host->irq = instance->pdev->irq;
1990 host->unique_id = instance->unique_id;
1991 host->can_queue = instance->max_fw_cmds - MEGASAS_INT_CMDS;
1992 host->this_id = instance->init_id;
1993 host->sg_tablesize = instance->max_num_sge;
1994 host->max_sectors = instance->max_sectors_per_req;
1995 host->cmd_per_lun = 128;
1996 host->max_channel = MEGASAS_MAX_CHANNELS - 1;
1997 host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL;
1998 host->max_lun = MEGASAS_MAX_LUN;
1999
2000 /*
2001 * Notify the mid-layer about the new controller
2002 */
2003 if (scsi_add_host(host, &instance->pdev->dev)) {
2004 printk(KERN_DEBUG "megasas: scsi_add_host failed\n");
2005 return -ENODEV;
2006 }
2007
2008 /*
2009 * Trigger SCSI to scan our drives
2010 */
2011 scsi_scan_host(host);
2012 return 0;
2013}
2014
2015/**
2016 * megasas_probe_one - PCI hotplug entry point
2017 * @pdev: PCI device structure
2018 * @id: PCI ids of supported hotplugged adapter
2019 */
2020static int __devinit
2021megasas_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
2022{
2023 int rval;
2024 struct Scsi_Host *host;
2025 struct megasas_instance *instance;
2026
2027 /*
2028 * Announce PCI information
2029 */
2030 printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ",
2031 pdev->vendor, pdev->device, pdev->subsystem_vendor,
2032 pdev->subsystem_device);
2033
2034 printk("bus %d:slot %d:func %d\n",
2035 pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2036
2037 /*
2038 * PCI prepping: enable device set bus mastering and dma mask
2039 */
2040 rval = pci_enable_device(pdev);
2041
2042 if (rval) {
2043 return rval;
2044 }
2045
2046 pci_set_master(pdev);
2047
2048 /*
2049 * All our contollers are capable of performing 64-bit DMA
2050 */
2051 if (IS_DMA64) {
2052 if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) != 0) {
2053
2054 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2055 goto fail_set_dma_mask;
2056 }
2057 } else {
2058 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2059 goto fail_set_dma_mask;
2060 }
2061
2062 host = scsi_host_alloc(&megasas_template,
2063 sizeof(struct megasas_instance));
2064
2065 if (!host) {
2066 printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n");
2067 goto fail_alloc_instance;
2068 }
2069
2070 instance = (struct megasas_instance *)host->hostdata;
2071 memset(instance, 0, sizeof(*instance));
2072
2073 instance->producer = pci_alloc_consistent(pdev, sizeof(u32),
2074 &instance->producer_h);
2075 instance->consumer = pci_alloc_consistent(pdev, sizeof(u32),
2076 &instance->consumer_h);
2077
2078 if (!instance->producer || !instance->consumer) {
2079 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2080 "producer, consumer\n");
2081 goto fail_alloc_dma_buf;
2082 }
2083
2084 *instance->producer = 0;
2085 *instance->consumer = 0;
2086
2087 instance->evt_detail = pci_alloc_consistent(pdev,
2088 sizeof(struct
2089 megasas_evt_detail),
2090 &instance->evt_detail_h);
2091
2092 if (!instance->evt_detail) {
2093 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2094 "event detail structure\n");
2095 goto fail_alloc_dma_buf;
2096 }
2097
2098 /*
2099 * Initialize locks and queues
2100 */
2101 INIT_LIST_HEAD(&instance->cmd_pool);
2102
2103 init_waitqueue_head(&instance->int_cmd_wait_q);
2104 init_waitqueue_head(&instance->abort_cmd_wait_q);
2105
2106 spin_lock_init(&instance->cmd_pool_lock);
2107 spin_lock_init(&instance->instance_lock);
2108
2109 sema_init(&instance->aen_mutex, 1);
2110 sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS);
2111
2112 /*
2113 * Initialize PCI related and misc parameters
2114 */
2115 instance->pdev = pdev;
2116 instance->host = host;
2117 instance->unique_id = pdev->bus->number << 8 | pdev->devfn;
2118 instance->init_id = MEGASAS_DEFAULT_INIT_ID;
2119
2120 /*
2121 * Initialize MFI Firmware
2122 */
2123 if (megasas_init_mfi(instance))
2124 goto fail_init_mfi;
2125
2126 /*
2127 * Register IRQ
2128 */
2129 if (request_irq(pdev->irq, megasas_isr, SA_SHIRQ, "megasas", instance)) {
2130 printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
2131 goto fail_irq;
2132 }
2133
2134 megasas_enable_intr(instance->reg_set);
2135
2136 /*
2137 * Store instance in PCI softstate
2138 */
2139 pci_set_drvdata(pdev, instance);
2140
2141 /*
2142 * Add this controller to megasas_mgmt_info structure so that it
2143 * can be exported to management applications
2144 */
2145 megasas_mgmt_info.count++;
2146 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance;
2147 megasas_mgmt_info.max_index++;
2148
2149 /*
2150 * Initiate AEN (Asynchronous Event Notification)
2151 */
2152 if (megasas_start_aen(instance)) {
2153 printk(KERN_DEBUG "megasas: start aen failed\n");
2154 goto fail_start_aen;
2155 }
2156
2157 /*
2158 * Register with SCSI mid-layer
2159 */
2160 if (megasas_io_attach(instance))
2161 goto fail_io_attach;
2162
2163 return 0;
2164
2165 fail_start_aen:
2166 fail_io_attach:
2167 megasas_mgmt_info.count--;
2168 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL;
2169 megasas_mgmt_info.max_index--;
2170
2171 pci_set_drvdata(pdev, NULL);
2172 megasas_disable_intr(instance->reg_set);
2173 free_irq(instance->pdev->irq, instance);
2174
2175 megasas_release_mfi(instance);
2176
2177 fail_irq:
2178 fail_init_mfi:
2179 fail_alloc_dma_buf:
2180 if (instance->evt_detail)
2181 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2182 instance->evt_detail,
2183 instance->evt_detail_h);
2184
2185 if (instance->producer)
2186 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2187 instance->producer_h);
2188 if (instance->consumer)
2189 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2190 instance->consumer_h);
2191 scsi_host_put(host);
2192
2193 fail_alloc_instance:
2194 fail_set_dma_mask:
2195 pci_disable_device(pdev);
2196
2197 return -ENODEV;
2198}
2199
2200/**
2201 * megasas_flush_cache - Requests FW to flush all its caches
2202 * @instance: Adapter soft state
2203 */
2204static void megasas_flush_cache(struct megasas_instance *instance)
2205{
2206 struct megasas_cmd *cmd;
2207 struct megasas_dcmd_frame *dcmd;
2208
2209 cmd = megasas_get_cmd(instance);
2210
2211 if (!cmd)
2212 return;
2213
2214 dcmd = &cmd->frame->dcmd;
2215
2216 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2217
2218 dcmd->cmd = MFI_CMD_DCMD;
2219 dcmd->cmd_status = 0x0;
2220 dcmd->sge_count = 0;
2221 dcmd->flags = MFI_FRAME_DIR_NONE;
2222 dcmd->timeout = 0;
2223 dcmd->data_xfer_len = 0;
2224 dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH;
2225 dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
2226
2227 megasas_issue_blocked_cmd(instance, cmd);
2228
2229 megasas_return_cmd(instance, cmd);
2230
2231 return;
2232}
2233
2234/**
2235 * megasas_shutdown_controller - Instructs FW to shutdown the controller
2236 * @instance: Adapter soft state
2237 */
2238static void megasas_shutdown_controller(struct megasas_instance *instance)
2239{
2240 struct megasas_cmd *cmd;
2241 struct megasas_dcmd_frame *dcmd;
2242
2243 cmd = megasas_get_cmd(instance);
2244
2245 if (!cmd)
2246 return;
2247
2248 if (instance->aen_cmd)
2249 megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd);
2250
2251 dcmd = &cmd->frame->dcmd;
2252
2253 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2254
2255 dcmd->cmd = MFI_CMD_DCMD;
2256 dcmd->cmd_status = 0x0;
2257 dcmd->sge_count = 0;
2258 dcmd->flags = MFI_FRAME_DIR_NONE;
2259 dcmd->timeout = 0;
2260 dcmd->data_xfer_len = 0;
2261 dcmd->opcode = MR_DCMD_CTRL_SHUTDOWN;
2262
2263 megasas_issue_blocked_cmd(instance, cmd);
2264
2265 megasas_return_cmd(instance, cmd);
2266
2267 return;
2268}
2269
2270/**
2271 * megasas_detach_one - PCI hot"un"plug entry point
2272 * @pdev: PCI device structure
2273 */
2274static void megasas_detach_one(struct pci_dev *pdev)
2275{
2276 int i;
2277 struct Scsi_Host *host;
2278 struct megasas_instance *instance;
2279
2280 instance = pci_get_drvdata(pdev);
2281 host = instance->host;
2282
2283 scsi_remove_host(instance->host);
2284 megasas_flush_cache(instance);
2285 megasas_shutdown_controller(instance);
2286
2287 /*
2288 * Take the instance off the instance array. Note that we will not
2289 * decrement the max_index. We let this array be sparse array
2290 */
2291 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2292 if (megasas_mgmt_info.instance[i] == instance) {
2293 megasas_mgmt_info.count--;
2294 megasas_mgmt_info.instance[i] = NULL;
2295
2296 break;
2297 }
2298 }
2299
2300 pci_set_drvdata(instance->pdev, NULL);
2301
2302 megasas_disable_intr(instance->reg_set);
2303
2304 free_irq(instance->pdev->irq, instance);
2305
2306 megasas_release_mfi(instance);
2307
2308 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2309 instance->evt_detail, instance->evt_detail_h);
2310
2311 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2312 instance->producer_h);
2313
2314 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2315 instance->consumer_h);
2316
2317 scsi_host_put(host);
2318
2319 pci_set_drvdata(pdev, NULL);
2320
2321 pci_disable_device(pdev);
2322
2323 return;
2324}
2325
2326/**
2327 * megasas_shutdown - Shutdown entry point
2328 * @device: Generic device structure
2329 */
2330static void megasas_shutdown(struct pci_dev *pdev)
2331{
2332 struct megasas_instance *instance = pci_get_drvdata(pdev);
2333 megasas_flush_cache(instance);
2334}
2335
2336/**
2337 * megasas_mgmt_open - char node "open" entry point
2338 */
2339static int megasas_mgmt_open(struct inode *inode, struct file *filep)
2340{
2341 /*
2342 * Allow only those users with admin rights
2343 */
2344 if (!capable(CAP_SYS_ADMIN))
2345 return -EACCES;
2346
2347 return 0;
2348}
2349
2350/**
2351 * megasas_mgmt_release - char node "release" entry point
2352 */
2353static int megasas_mgmt_release(struct inode *inode, struct file *filep)
2354{
2355 filep->private_data = NULL;
2356 fasync_helper(-1, filep, 0, &megasas_async_queue);
2357
2358 return 0;
2359}
2360
2361/**
2362 * megasas_mgmt_fasync - Async notifier registration from applications
2363 *
2364 * This function adds the calling process to a driver global queue. When an
2365 * event occurs, SIGIO will be sent to all processes in this queue.
2366 */
2367static int megasas_mgmt_fasync(int fd, struct file *filep, int mode)
2368{
2369 int rc;
2370
2371 down(&megasas_async_queue_mutex);
2372
2373 rc = fasync_helper(fd, filep, mode, &megasas_async_queue);
2374
2375 up(&megasas_async_queue_mutex);
2376
2377 if (rc >= 0) {
2378 /* For sanity check when we get ioctl */
2379 filep->private_data = filep;
2380 return 0;
2381 }
2382
2383 printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc);
2384
2385 return rc;
2386}
2387
2388/**
2389 * megasas_mgmt_fw_ioctl - Issues management ioctls to FW
2390 * @instance: Adapter soft state
2391 * @argp: User's ioctl packet
2392 */
2393static int
2394megasas_mgmt_fw_ioctl(struct megasas_instance *instance,
2395 struct megasas_iocpacket __user * user_ioc,
2396 struct megasas_iocpacket *ioc)
2397{
2398 struct megasas_sge32 *kern_sge32;
2399 struct megasas_cmd *cmd;
2400 void *kbuff_arr[MAX_IOCTL_SGE];
2401 dma_addr_t buf_handle = 0;
2402 int error = 0, i;
2403 void *sense = NULL;
2404 dma_addr_t sense_handle;
2405 u32 *sense_ptr;
2406
2407 memset(kbuff_arr, 0, sizeof(kbuff_arr));
2408
2409 if (ioc->sge_count > MAX_IOCTL_SGE) {
2410 printk(KERN_DEBUG "megasas: SGE count [%d] > max limit [%d]\n",
2411 ioc->sge_count, MAX_IOCTL_SGE);
2412 return -EINVAL;
2413 }
2414
2415 cmd = megasas_get_cmd(instance);
2416 if (!cmd) {
2417 printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n");
2418 return -ENOMEM;
2419 }
2420
2421 /*
2422 * User's IOCTL packet has 2 frames (maximum). Copy those two
2423 * frames into our cmd's frames. cmd->frame's context will get
2424 * overwritten when we copy from user's frames. So set that value
2425 * alone separately
2426 */
2427 memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE);
2428 cmd->frame->hdr.context = cmd->index;
2429
2430 /*
2431 * The management interface between applications and the fw uses
2432 * MFI frames. E.g, RAID configuration changes, LD property changes
2433 * etc are accomplishes through different kinds of MFI frames. The
2434 * driver needs to care only about substituting user buffers with
2435 * kernel buffers in SGLs. The location of SGL is embedded in the
2436 * struct iocpacket itself.
2437 */
2438 kern_sge32 = (struct megasas_sge32 *)
2439 ((unsigned long)cmd->frame + ioc->sgl_off);
2440
2441 /*
2442 * For each user buffer, create a mirror buffer and copy in
2443 */
2444 for (i = 0; i < ioc->sge_count; i++) {
2445 kbuff_arr[i] = pci_alloc_consistent(instance->pdev,
2446 ioc->sgl[i].iov_len,
2447 &buf_handle);
2448 if (!kbuff_arr[i]) {
2449 printk(KERN_DEBUG "megasas: Failed to alloc "
2450 "kernel SGL buffer for IOCTL \n");
2451 error = -ENOMEM;
2452 goto out;
2453 }
2454
2455 /*
2456 * We don't change the dma_coherent_mask, so
2457 * pci_alloc_consistent only returns 32bit addresses
2458 */
2459 kern_sge32[i].phys_addr = (u32) buf_handle;
2460 kern_sge32[i].length = ioc->sgl[i].iov_len;
2461
2462 /*
2463 * We created a kernel buffer corresponding to the
2464 * user buffer. Now copy in from the user buffer
2465 */
2466 if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base,
2467 (u32) (ioc->sgl[i].iov_len))) {
2468 error = -EFAULT;
2469 goto out;
2470 }
2471 }
2472
2473 if (ioc->sense_len) {
2474 sense = pci_alloc_consistent(instance->pdev, ioc->sense_len,
2475 &sense_handle);
2476 if (!sense) {
2477 error = -ENOMEM;
2478 goto out;
2479 }
2480
2481 sense_ptr =
2482 (u32 *) ((unsigned long)cmd->frame + ioc->sense_off);
2483 *sense_ptr = sense_handle;
2484 }
2485
2486 /*
2487 * Set the sync_cmd flag so that the ISR knows not to complete this
2488 * cmd to the SCSI mid-layer
2489 */
2490 cmd->sync_cmd = 1;
2491 megasas_issue_blocked_cmd(instance, cmd);
2492 cmd->sync_cmd = 0;
2493
2494 /*
2495 * copy out the kernel buffers to user buffers
2496 */
2497 for (i = 0; i < ioc->sge_count; i++) {
2498 if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i],
2499 ioc->sgl[i].iov_len)) {
2500 error = -EFAULT;
2501 goto out;
2502 }
2503 }
2504
2505 /*
2506 * copy out the sense
2507 */
2508 if (ioc->sense_len) {
2509 /*
2510 * sense_ptr points to the location that has the user
2511 * sense buffer address
2512 */
2513 sense_ptr = (u32 *) ((unsigned long)ioc->frame.raw +
2514 ioc->sense_off);
2515
2516 if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)),
2517 sense, ioc->sense_len)) {
2518 error = -EFAULT;
2519 goto out;
2520 }
2521 }
2522
2523 /*
2524 * copy the status codes returned by the fw
2525 */
2526 if (copy_to_user(&user_ioc->frame.hdr.cmd_status,
2527 &cmd->frame->hdr.cmd_status, sizeof(u8))) {
2528 printk(KERN_DEBUG "megasas: Error copying out cmd_status\n");
2529 error = -EFAULT;
2530 }
2531
2532 out:
2533 if (sense) {
2534 pci_free_consistent(instance->pdev, ioc->sense_len,
2535 sense, sense_handle);
2536 }
2537
2538 for (i = 0; i < ioc->sge_count && kbuff_arr[i]; i++) {
2539 pci_free_consistent(instance->pdev,
2540 kern_sge32[i].length,
2541 kbuff_arr[i], kern_sge32[i].phys_addr);
2542 }
2543
2544 megasas_return_cmd(instance, cmd);
2545 return error;
2546}
2547
2548static struct megasas_instance *megasas_lookup_instance(u16 host_no)
2549{
2550 int i;
2551
2552 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2553
2554 if ((megasas_mgmt_info.instance[i]) &&
2555 (megasas_mgmt_info.instance[i]->host->host_no == host_no))
2556 return megasas_mgmt_info.instance[i];
2557 }
2558
2559 return NULL;
2560}
2561
2562static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg)
2563{
2564 struct megasas_iocpacket __user *user_ioc =
2565 (struct megasas_iocpacket __user *)arg;
2566 struct megasas_iocpacket *ioc;
2567 struct megasas_instance *instance;
2568 int error;
2569
2570 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
2571 if (!ioc)
2572 return -ENOMEM;
2573
2574 if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) {
2575 error = -EFAULT;
2576 goto out_kfree_ioc;
2577 }
2578
2579 instance = megasas_lookup_instance(ioc->host_no);
2580 if (!instance) {
2581 error = -ENODEV;
2582 goto out_kfree_ioc;
2583 }
2584
2585 /*
2586 * We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds
2587 */
2588 if (down_interruptible(&instance->ioctl_sem)) {
2589 error = -ERESTARTSYS;
2590 goto out_kfree_ioc;
2591 }
2592 error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc);
2593 up(&instance->ioctl_sem);
2594
2595 out_kfree_ioc:
2596 kfree(ioc);
2597 return error;
2598}
2599
2600static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg)
2601{
2602 struct megasas_instance *instance;
2603 struct megasas_aen aen;
2604 int error;
2605
2606 if (file->private_data != file) {
2607 printk(KERN_DEBUG "megasas: fasync_helper was not "
2608 "called first\n");
2609 return -EINVAL;
2610 }
2611
2612 if (copy_from_user(&aen, (void __user *)arg, sizeof(aen)))
2613 return -EFAULT;
2614
2615 instance = megasas_lookup_instance(aen.host_no);
2616
2617 if (!instance)
2618 return -ENODEV;
2619
2620 down(&instance->aen_mutex);
2621 error = megasas_register_aen(instance, aen.seq_num,
2622 aen.class_locale_word);
2623 up(&instance->aen_mutex);
2624 return error;
2625}
2626
2627/**
2628 * megasas_mgmt_ioctl - char node ioctl entry point
2629 */
2630static long
2631megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2632{
2633 switch (cmd) {
2634 case MEGASAS_IOC_FIRMWARE:
2635 return megasas_mgmt_ioctl_fw(file, arg);
2636
2637 case MEGASAS_IOC_GET_AEN:
2638 return megasas_mgmt_ioctl_aen(file, arg);
2639 }
2640
2641 return -ENOTTY;
2642}
2643
2644#ifdef CONFIG_COMPAT
2645static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg)
2646{
2647 struct compat_megasas_iocpacket __user *cioc =
2648 (struct compat_megasas_iocpacket __user *)arg;
2649 struct megasas_iocpacket __user *ioc =
2650 compat_alloc_user_space(sizeof(struct megasas_iocpacket));
2651 int i;
2652 int error = 0;
2653
2654 clear_user(ioc, sizeof(*ioc));
2655
2656 if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) ||
2657 copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) ||
2658 copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) ||
2659 copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) ||
2660 copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) ||
2661 copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32)))
2662 return -EFAULT;
2663
2664 for (i = 0; i < MAX_IOCTL_SGE; i++) {
2665 compat_uptr_t ptr;
2666
2667 if (get_user(ptr, &cioc->sgl[i].iov_base) ||
2668 put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) ||
2669 copy_in_user(&ioc->sgl[i].iov_len,
2670 &cioc->sgl[i].iov_len, sizeof(compat_size_t)))
2671 return -EFAULT;
2672 }
2673
2674 error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc);
2675
2676 if (copy_in_user(&cioc->frame.hdr.cmd_status,
2677 &ioc->frame.hdr.cmd_status, sizeof(u8))) {
2678 printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n");
2679 return -EFAULT;
2680 }
2681 return error;
2682}
2683
2684static long
2685megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd,
2686 unsigned long arg)
2687{
2688 switch (cmd) {
2689 case MEGASAS_IOC_FIRMWARE:{
2690 return megasas_mgmt_compat_ioctl_fw(file, arg);
2691 }
2692 case MEGASAS_IOC_GET_AEN:
2693 return megasas_mgmt_ioctl_aen(file, arg);
2694 }
2695
2696 return -ENOTTY;
2697}
2698#endif
2699
2700/*
2701 * File operations structure for management interface
2702 */
2703static struct file_operations megasas_mgmt_fops = {
2704 .owner = THIS_MODULE,
2705 .open = megasas_mgmt_open,
2706 .release = megasas_mgmt_release,
2707 .fasync = megasas_mgmt_fasync,
2708 .unlocked_ioctl = megasas_mgmt_ioctl,
2709#ifdef CONFIG_COMPAT
2710 .compat_ioctl = megasas_mgmt_compat_ioctl,
2711#endif
2712};
2713
2714/*
2715 * PCI hotplug support registration structure
2716 */
2717static struct pci_driver megasas_pci_driver = {
2718
2719 .name = "megaraid_sas",
2720 .id_table = megasas_pci_table,
2721 .probe = megasas_probe_one,
2722 .remove = __devexit_p(megasas_detach_one),
2723 .shutdown = megasas_shutdown,
2724};
2725
2726/*
2727 * Sysfs driver attributes
2728 */
2729static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf)
2730{
2731 return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n",
2732 MEGASAS_VERSION);
2733}
2734
2735static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL);
2736
2737static ssize_t
2738megasas_sysfs_show_release_date(struct device_driver *dd, char *buf)
2739{
2740 return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n",
2741 MEGASAS_RELDATE);
2742}
2743
2744static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date,
2745 NULL);
2746
2747/**
2748 * megasas_init - Driver load entry point
2749 */
2750static int __init megasas_init(void)
2751{
2752 int rval;
2753
2754 /*
2755 * Announce driver version and other information
2756 */
2757 printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION,
2758 MEGASAS_EXT_VERSION);
2759
2760 memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info));
2761
2762 /*
2763 * Register character device node
2764 */
2765 rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops);
2766
2767 if (rval < 0) {
2768 printk(KERN_DEBUG "megasas: failed to open device node\n");
2769 return rval;
2770 }
2771
2772 megasas_mgmt_majorno = rval;
2773
2774 /*
2775 * Register ourselves as PCI hotplug module
2776 */
2777 rval = pci_module_init(&megasas_pci_driver);
2778
2779 if (rval) {
2780 printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n");
2781 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
2782 }
2783
2784 driver_create_file(&megasas_pci_driver.driver, &driver_attr_version);
2785 driver_create_file(&megasas_pci_driver.driver,
2786 &driver_attr_release_date);
2787
2788 return rval;
2789}
2790
2791/**
2792 * megasas_exit - Driver unload entry point
2793 */
2794static void __exit megasas_exit(void)
2795{
2796 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
2797 driver_remove_file(&megasas_pci_driver.driver,
2798 &driver_attr_release_date);
2799
2800 pci_unregister_driver(&megasas_pci_driver);
2801 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
2802}
2803
2804module_init(megasas_init);
2805module_exit(megasas_exit);
diff --git a/drivers/scsi/megaraid/megaraid_sas.h b/drivers/scsi/megaraid/megaraid_sas.h
new file mode 100644
index 000000000000..eaec9d531424
--- /dev/null
+++ b/drivers/scsi/megaraid/megaraid_sas.h
@@ -0,0 +1,1142 @@
1/*
2 *
3 * Linux MegaRAID driver for SAS based RAID controllers
4 *
5 * Copyright (c) 2003-2005 LSI Logic Corporation.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 *
12 * FILE : megaraid_sas.h
13 */
14
15#ifndef LSI_MEGARAID_SAS_H
16#define LSI_MEGARAID_SAS_H
17
18/**
19 * MegaRAID SAS Driver meta data
20 */
21#define MEGASAS_VERSION "00.00.02.00-rc4"
22#define MEGASAS_RELDATE "Sep 16, 2005"
23#define MEGASAS_EXT_VERSION "Fri Sep 16 12:37:08 EDT 2005"
24
25/*
26 * =====================================
27 * MegaRAID SAS MFI firmware definitions
28 * =====================================
29 */
30
31/*
32 * MFI stands for MegaRAID SAS FW Interface. This is just a moniker for
33 * protocol between the software and firmware. Commands are issued using
34 * "message frames"
35 */
36
37/**
38 * FW posts its state in upper 4 bits of outbound_msg_0 register
39 */
40#define MFI_STATE_MASK 0xF0000000
41#define MFI_STATE_UNDEFINED 0x00000000
42#define MFI_STATE_BB_INIT 0x10000000
43#define MFI_STATE_FW_INIT 0x40000000
44#define MFI_STATE_WAIT_HANDSHAKE 0x60000000
45#define MFI_STATE_FW_INIT_2 0x70000000
46#define MFI_STATE_DEVICE_SCAN 0x80000000
47#define MFI_STATE_FLUSH_CACHE 0xA0000000
48#define MFI_STATE_READY 0xB0000000
49#define MFI_STATE_OPERATIONAL 0xC0000000
50#define MFI_STATE_FAULT 0xF0000000
51
52#define MEGAMFI_FRAME_SIZE 64
53
54/**
55 * During FW init, clear pending cmds & reset state using inbound_msg_0
56 *
57 * ABORT : Abort all pending cmds
58 * READY : Move from OPERATIONAL to READY state; discard queue info
59 * MFIMODE : Discard (possible) low MFA posted in 64-bit mode (??)
60 * CLR_HANDSHAKE: FW is waiting for HANDSHAKE from BIOS or Driver
61 */
62#define MFI_INIT_ABORT 0x00000000
63#define MFI_INIT_READY 0x00000002
64#define MFI_INIT_MFIMODE 0x00000004
65#define MFI_INIT_CLEAR_HANDSHAKE 0x00000008
66#define MFI_RESET_FLAGS MFI_INIT_READY|MFI_INIT_MFIMODE
67
68/**
69 * MFI frame flags
70 */
71#define MFI_FRAME_POST_IN_REPLY_QUEUE 0x0000
72#define MFI_FRAME_DONT_POST_IN_REPLY_QUEUE 0x0001
73#define MFI_FRAME_SGL32 0x0000
74#define MFI_FRAME_SGL64 0x0002
75#define MFI_FRAME_SENSE32 0x0000
76#define MFI_FRAME_SENSE64 0x0004
77#define MFI_FRAME_DIR_NONE 0x0000
78#define MFI_FRAME_DIR_WRITE 0x0008
79#define MFI_FRAME_DIR_READ 0x0010
80#define MFI_FRAME_DIR_BOTH 0x0018
81
82/**
83 * Definition for cmd_status
84 */
85#define MFI_CMD_STATUS_POLL_MODE 0xFF
86
87/**
88 * MFI command opcodes
89 */
90#define MFI_CMD_INIT 0x00
91#define MFI_CMD_LD_READ 0x01
92#define MFI_CMD_LD_WRITE 0x02
93#define MFI_CMD_LD_SCSI_IO 0x03
94#define MFI_CMD_PD_SCSI_IO 0x04
95#define MFI_CMD_DCMD 0x05
96#define MFI_CMD_ABORT 0x06
97#define MFI_CMD_SMP 0x07
98#define MFI_CMD_STP 0x08
99
100#define MR_DCMD_CTRL_GET_INFO 0x01010000
101
102#define MR_DCMD_CTRL_CACHE_FLUSH 0x01101000
103#define MR_FLUSH_CTRL_CACHE 0x01
104#define MR_FLUSH_DISK_CACHE 0x02
105
106#define MR_DCMD_CTRL_SHUTDOWN 0x01050000
107#define MR_ENABLE_DRIVE_SPINDOWN 0x01
108
109#define MR_DCMD_CTRL_EVENT_GET_INFO 0x01040100
110#define MR_DCMD_CTRL_EVENT_GET 0x01040300
111#define MR_DCMD_CTRL_EVENT_WAIT 0x01040500
112#define MR_DCMD_LD_GET_PROPERTIES 0x03030000
113
114#define MR_DCMD_CLUSTER 0x08000000
115#define MR_DCMD_CLUSTER_RESET_ALL 0x08010100
116#define MR_DCMD_CLUSTER_RESET_LD 0x08010200
117
118/**
119 * MFI command completion codes
120 */
121enum MFI_STAT {
122 MFI_STAT_OK = 0x00,
123 MFI_STAT_INVALID_CMD = 0x01,
124 MFI_STAT_INVALID_DCMD = 0x02,
125 MFI_STAT_INVALID_PARAMETER = 0x03,
126 MFI_STAT_INVALID_SEQUENCE_NUMBER = 0x04,
127 MFI_STAT_ABORT_NOT_POSSIBLE = 0x05,
128 MFI_STAT_APP_HOST_CODE_NOT_FOUND = 0x06,
129 MFI_STAT_APP_IN_USE = 0x07,
130 MFI_STAT_APP_NOT_INITIALIZED = 0x08,
131 MFI_STAT_ARRAY_INDEX_INVALID = 0x09,
132 MFI_STAT_ARRAY_ROW_NOT_EMPTY = 0x0a,
133 MFI_STAT_CONFIG_RESOURCE_CONFLICT = 0x0b,
134 MFI_STAT_DEVICE_NOT_FOUND = 0x0c,
135 MFI_STAT_DRIVE_TOO_SMALL = 0x0d,
136 MFI_STAT_FLASH_ALLOC_FAIL = 0x0e,
137 MFI_STAT_FLASH_BUSY = 0x0f,
138 MFI_STAT_FLASH_ERROR = 0x10,
139 MFI_STAT_FLASH_IMAGE_BAD = 0x11,
140 MFI_STAT_FLASH_IMAGE_INCOMPLETE = 0x12,
141 MFI_STAT_FLASH_NOT_OPEN = 0x13,
142 MFI_STAT_FLASH_NOT_STARTED = 0x14,
143 MFI_STAT_FLUSH_FAILED = 0x15,
144 MFI_STAT_HOST_CODE_NOT_FOUNT = 0x16,
145 MFI_STAT_LD_CC_IN_PROGRESS = 0x17,
146 MFI_STAT_LD_INIT_IN_PROGRESS = 0x18,
147 MFI_STAT_LD_LBA_OUT_OF_RANGE = 0x19,
148 MFI_STAT_LD_MAX_CONFIGURED = 0x1a,
149 MFI_STAT_LD_NOT_OPTIMAL = 0x1b,
150 MFI_STAT_LD_RBLD_IN_PROGRESS = 0x1c,
151 MFI_STAT_LD_RECON_IN_PROGRESS = 0x1d,
152 MFI_STAT_LD_WRONG_RAID_LEVEL = 0x1e,
153 MFI_STAT_MAX_SPARES_EXCEEDED = 0x1f,
154 MFI_STAT_MEMORY_NOT_AVAILABLE = 0x20,
155 MFI_STAT_MFC_HW_ERROR = 0x21,
156 MFI_STAT_NO_HW_PRESENT = 0x22,
157 MFI_STAT_NOT_FOUND = 0x23,
158 MFI_STAT_NOT_IN_ENCL = 0x24,
159 MFI_STAT_PD_CLEAR_IN_PROGRESS = 0x25,
160 MFI_STAT_PD_TYPE_WRONG = 0x26,
161 MFI_STAT_PR_DISABLED = 0x27,
162 MFI_STAT_ROW_INDEX_INVALID = 0x28,
163 MFI_STAT_SAS_CONFIG_INVALID_ACTION = 0x29,
164 MFI_STAT_SAS_CONFIG_INVALID_DATA = 0x2a,
165 MFI_STAT_SAS_CONFIG_INVALID_PAGE = 0x2b,
166 MFI_STAT_SAS_CONFIG_INVALID_TYPE = 0x2c,
167 MFI_STAT_SCSI_DONE_WITH_ERROR = 0x2d,
168 MFI_STAT_SCSI_IO_FAILED = 0x2e,
169 MFI_STAT_SCSI_RESERVATION_CONFLICT = 0x2f,
170 MFI_STAT_SHUTDOWN_FAILED = 0x30,
171 MFI_STAT_TIME_NOT_SET = 0x31,
172 MFI_STAT_WRONG_STATE = 0x32,
173 MFI_STAT_LD_OFFLINE = 0x33,
174 MFI_STAT_PEER_NOTIFICATION_REJECTED = 0x34,
175 MFI_STAT_PEER_NOTIFICATION_FAILED = 0x35,
176 MFI_STAT_RESERVATION_IN_PROGRESS = 0x36,
177 MFI_STAT_I2C_ERRORS_DETECTED = 0x37,
178 MFI_STAT_PCI_ERRORS_DETECTED = 0x38,
179
180 MFI_STAT_INVALID_STATUS = 0xFF
181};
182
183/*
184 * Number of mailbox bytes in DCMD message frame
185 */
186#define MFI_MBOX_SIZE 12
187
188enum MR_EVT_CLASS {
189
190 MR_EVT_CLASS_DEBUG = -2,
191 MR_EVT_CLASS_PROGRESS = -1,
192 MR_EVT_CLASS_INFO = 0,
193 MR_EVT_CLASS_WARNING = 1,
194 MR_EVT_CLASS_CRITICAL = 2,
195 MR_EVT_CLASS_FATAL = 3,
196 MR_EVT_CLASS_DEAD = 4,
197
198};
199
200enum MR_EVT_LOCALE {
201
202 MR_EVT_LOCALE_LD = 0x0001,
203 MR_EVT_LOCALE_PD = 0x0002,
204 MR_EVT_LOCALE_ENCL = 0x0004,
205 MR_EVT_LOCALE_BBU = 0x0008,
206 MR_EVT_LOCALE_SAS = 0x0010,
207 MR_EVT_LOCALE_CTRL = 0x0020,
208 MR_EVT_LOCALE_CONFIG = 0x0040,
209 MR_EVT_LOCALE_CLUSTER = 0x0080,
210 MR_EVT_LOCALE_ALL = 0xffff,
211
212};
213
214enum MR_EVT_ARGS {
215
216 MR_EVT_ARGS_NONE,
217 MR_EVT_ARGS_CDB_SENSE,
218 MR_EVT_ARGS_LD,
219 MR_EVT_ARGS_LD_COUNT,
220 MR_EVT_ARGS_LD_LBA,
221 MR_EVT_ARGS_LD_OWNER,
222 MR_EVT_ARGS_LD_LBA_PD_LBA,
223 MR_EVT_ARGS_LD_PROG,
224 MR_EVT_ARGS_LD_STATE,
225 MR_EVT_ARGS_LD_STRIP,
226 MR_EVT_ARGS_PD,
227 MR_EVT_ARGS_PD_ERR,
228 MR_EVT_ARGS_PD_LBA,
229 MR_EVT_ARGS_PD_LBA_LD,
230 MR_EVT_ARGS_PD_PROG,
231 MR_EVT_ARGS_PD_STATE,
232 MR_EVT_ARGS_PCI,
233 MR_EVT_ARGS_RATE,
234 MR_EVT_ARGS_STR,
235 MR_EVT_ARGS_TIME,
236 MR_EVT_ARGS_ECC,
237
238};
239
240/*
241 * SAS controller properties
242 */
243struct megasas_ctrl_prop {
244
245 u16 seq_num;
246 u16 pred_fail_poll_interval;
247 u16 intr_throttle_count;
248 u16 intr_throttle_timeouts;
249 u8 rebuild_rate;
250 u8 patrol_read_rate;
251 u8 bgi_rate;
252 u8 cc_rate;
253 u8 recon_rate;
254 u8 cache_flush_interval;
255 u8 spinup_drv_count;
256 u8 spinup_delay;
257 u8 cluster_enable;
258 u8 coercion_mode;
259 u8 alarm_enable;
260 u8 disable_auto_rebuild;
261 u8 disable_battery_warn;
262 u8 ecc_bucket_size;
263 u16 ecc_bucket_leak_rate;
264 u8 restore_hotspare_on_insertion;
265 u8 expose_encl_devices;
266 u8 reserved[38];
267
268} __attribute__ ((packed));
269
270/*
271 * SAS controller information
272 */
273struct megasas_ctrl_info {
274
275 /*
276 * PCI device information
277 */
278 struct {
279
280 u16 vendor_id;
281 u16 device_id;
282 u16 sub_vendor_id;
283 u16 sub_device_id;
284 u8 reserved[24];
285
286 } __attribute__ ((packed)) pci;
287
288 /*
289 * Host interface information
290 */
291 struct {
292
293 u8 PCIX:1;
294 u8 PCIE:1;
295 u8 iSCSI:1;
296 u8 SAS_3G:1;
297 u8 reserved_0:4;
298 u8 reserved_1[6];
299 u8 port_count;
300 u64 port_addr[8];
301
302 } __attribute__ ((packed)) host_interface;
303
304 /*
305 * Device (backend) interface information
306 */
307 struct {
308
309 u8 SPI:1;
310 u8 SAS_3G:1;
311 u8 SATA_1_5G:1;
312 u8 SATA_3G:1;
313 u8 reserved_0:4;
314 u8 reserved_1[6];
315 u8 port_count;
316 u64 port_addr[8];
317
318 } __attribute__ ((packed)) device_interface;
319
320 /*
321 * List of components residing in flash. All str are null terminated
322 */
323 u32 image_check_word;
324 u32 image_component_count;
325
326 struct {
327
328 char name[8];
329 char version[32];
330 char build_date[16];
331 char built_time[16];
332
333 } __attribute__ ((packed)) image_component[8];
334
335 /*
336 * List of flash components that have been flashed on the card, but
337 * are not in use, pending reset of the adapter. This list will be
338 * empty if a flash operation has not occurred. All stings are null
339 * terminated
340 */
341 u32 pending_image_component_count;
342
343 struct {
344
345 char name[8];
346 char version[32];
347 char build_date[16];
348 char build_time[16];
349
350 } __attribute__ ((packed)) pending_image_component[8];
351
352 u8 max_arms;
353 u8 max_spans;
354 u8 max_arrays;
355 u8 max_lds;
356
357 char product_name[80];
358 char serial_no[32];
359
360 /*
361 * Other physical/controller/operation information. Indicates the
362 * presence of the hardware
363 */
364 struct {
365
366 u32 bbu:1;
367 u32 alarm:1;
368 u32 nvram:1;
369 u32 uart:1;
370 u32 reserved:28;
371
372 } __attribute__ ((packed)) hw_present;
373
374 u32 current_fw_time;
375
376 /*
377 * Maximum data transfer sizes
378 */
379 u16 max_concurrent_cmds;
380 u16 max_sge_count;
381 u32 max_request_size;
382
383 /*
384 * Logical and physical device counts
385 */
386 u16 ld_present_count;
387 u16 ld_degraded_count;
388 u16 ld_offline_count;
389
390 u16 pd_present_count;
391 u16 pd_disk_present_count;
392 u16 pd_disk_pred_failure_count;
393 u16 pd_disk_failed_count;
394
395 /*
396 * Memory size information
397 */
398 u16 nvram_size;
399 u16 memory_size;
400 u16 flash_size;
401
402 /*
403 * Error counters
404 */
405 u16 mem_correctable_error_count;
406 u16 mem_uncorrectable_error_count;
407
408 /*
409 * Cluster information
410 */
411 u8 cluster_permitted;
412 u8 cluster_active;
413
414 /*
415 * Additional max data transfer sizes
416 */
417 u16 max_strips_per_io;
418
419 /*
420 * Controller capabilities structures
421 */
422 struct {
423
424 u32 raid_level_0:1;
425 u32 raid_level_1:1;
426 u32 raid_level_5:1;
427 u32 raid_level_1E:1;
428 u32 raid_level_6:1;
429 u32 reserved:27;
430
431 } __attribute__ ((packed)) raid_levels;
432
433 struct {
434
435 u32 rbld_rate:1;
436 u32 cc_rate:1;
437 u32 bgi_rate:1;
438 u32 recon_rate:1;
439 u32 patrol_rate:1;
440 u32 alarm_control:1;
441 u32 cluster_supported:1;
442 u32 bbu:1;
443 u32 spanning_allowed:1;
444 u32 dedicated_hotspares:1;
445 u32 revertible_hotspares:1;
446 u32 foreign_config_import:1;
447 u32 self_diagnostic:1;
448 u32 mixed_redundancy_arr:1;
449 u32 global_hot_spares:1;
450 u32 reserved:17;
451
452 } __attribute__ ((packed)) adapter_operations;
453
454 struct {
455
456 u32 read_policy:1;
457 u32 write_policy:1;
458 u32 io_policy:1;
459 u32 access_policy:1;
460 u32 disk_cache_policy:1;
461 u32 reserved:27;
462
463 } __attribute__ ((packed)) ld_operations;
464
465 struct {
466
467 u8 min;
468 u8 max;
469 u8 reserved[2];
470
471 } __attribute__ ((packed)) stripe_sz_ops;
472
473 struct {
474
475 u32 force_online:1;
476 u32 force_offline:1;
477 u32 force_rebuild:1;
478 u32 reserved:29;
479
480 } __attribute__ ((packed)) pd_operations;
481
482 struct {
483
484 u32 ctrl_supports_sas:1;
485 u32 ctrl_supports_sata:1;
486 u32 allow_mix_in_encl:1;
487 u32 allow_mix_in_ld:1;
488 u32 allow_sata_in_cluster:1;
489 u32 reserved:27;
490
491 } __attribute__ ((packed)) pd_mix_support;
492
493 /*
494 * Define ECC single-bit-error bucket information
495 */
496 u8 ecc_bucket_count;
497 u8 reserved_2[11];
498
499 /*
500 * Include the controller properties (changeable items)
501 */
502 struct megasas_ctrl_prop properties;
503
504 /*
505 * Define FW pkg version (set in envt v'bles on OEM basis)
506 */
507 char package_version[0x60];
508
509 u8 pad[0x800 - 0x6a0];
510
511} __attribute__ ((packed));
512
513/*
514 * ===============================
515 * MegaRAID SAS driver definitions
516 * ===============================
517 */
518#define MEGASAS_MAX_PD_CHANNELS 2
519#define MEGASAS_MAX_LD_CHANNELS 2
520#define MEGASAS_MAX_CHANNELS (MEGASAS_MAX_PD_CHANNELS + \
521 MEGASAS_MAX_LD_CHANNELS)
522#define MEGASAS_MAX_DEV_PER_CHANNEL 128
523#define MEGASAS_DEFAULT_INIT_ID -1
524#define MEGASAS_MAX_LUN 8
525#define MEGASAS_MAX_LD 64
526
527/*
528 * When SCSI mid-layer calls driver's reset routine, driver waits for
529 * MEGASAS_RESET_WAIT_TIME seconds for all outstanding IO to complete. Note
530 * that the driver cannot _actually_ abort or reset pending commands. While
531 * it is waiting for the commands to complete, it prints a diagnostic message
532 * every MEGASAS_RESET_NOTICE_INTERVAL seconds
533 */
534#define MEGASAS_RESET_WAIT_TIME 180
535#define MEGASAS_RESET_NOTICE_INTERVAL 5
536
537#define MEGASAS_IOCTL_CMD 0
538
539/*
540 * FW reports the maximum of number of commands that it can accept (maximum
541 * commands that can be outstanding) at any time. The driver must report a
542 * lower number to the mid layer because it can issue a few internal commands
543 * itself (E.g, AEN, abort cmd, IOCTLs etc). The number of commands it needs
544 * is shown below
545 */
546#define MEGASAS_INT_CMDS 32
547
548/*
549 * FW can accept both 32 and 64 bit SGLs. We want to allocate 32/64 bit
550 * SGLs based on the size of dma_addr_t
551 */
552#define IS_DMA64 (sizeof(dma_addr_t) == 8)
553
554#define MFI_OB_INTR_STATUS_MASK 0x00000002
555#define MFI_POLL_TIMEOUT_SECS 10
556
557struct megasas_register_set {
558
559 u32 reserved_0[4]; /*0000h */
560
561 u32 inbound_msg_0; /*0010h */
562 u32 inbound_msg_1; /*0014h */
563 u32 outbound_msg_0; /*0018h */
564 u32 outbound_msg_1; /*001Ch */
565
566 u32 inbound_doorbell; /*0020h */
567 u32 inbound_intr_status; /*0024h */
568 u32 inbound_intr_mask; /*0028h */
569
570 u32 outbound_doorbell; /*002Ch */
571 u32 outbound_intr_status; /*0030h */
572 u32 outbound_intr_mask; /*0034h */
573
574 u32 reserved_1[2]; /*0038h */
575
576 u32 inbound_queue_port; /*0040h */
577 u32 outbound_queue_port; /*0044h */
578
579 u32 reserved_2; /*004Ch */
580
581 u32 index_registers[1004]; /*0050h */
582
583} __attribute__ ((packed));
584
585struct megasas_sge32 {
586
587 u32 phys_addr;
588 u32 length;
589
590} __attribute__ ((packed));
591
592struct megasas_sge64 {
593
594 u64 phys_addr;
595 u32 length;
596
597} __attribute__ ((packed));
598
599union megasas_sgl {
600
601 struct megasas_sge32 sge32[1];
602 struct megasas_sge64 sge64[1];
603
604} __attribute__ ((packed));
605
606struct megasas_header {
607
608 u8 cmd; /*00h */
609 u8 sense_len; /*01h */
610 u8 cmd_status; /*02h */
611 u8 scsi_status; /*03h */
612
613 u8 target_id; /*04h */
614 u8 lun; /*05h */
615 u8 cdb_len; /*06h */
616 u8 sge_count; /*07h */
617
618 u32 context; /*08h */
619 u32 pad_0; /*0Ch */
620
621 u16 flags; /*10h */
622 u16 timeout; /*12h */
623 u32 data_xferlen; /*14h */
624
625} __attribute__ ((packed));
626
627union megasas_sgl_frame {
628
629 struct megasas_sge32 sge32[8];
630 struct megasas_sge64 sge64[5];
631
632} __attribute__ ((packed));
633
634struct megasas_init_frame {
635
636 u8 cmd; /*00h */
637 u8 reserved_0; /*01h */
638 u8 cmd_status; /*02h */
639
640 u8 reserved_1; /*03h */
641 u32 reserved_2; /*04h */
642
643 u32 context; /*08h */
644 u32 pad_0; /*0Ch */
645
646 u16 flags; /*10h */
647 u16 reserved_3; /*12h */
648 u32 data_xfer_len; /*14h */
649
650 u32 queue_info_new_phys_addr_lo; /*18h */
651 u32 queue_info_new_phys_addr_hi; /*1Ch */
652 u32 queue_info_old_phys_addr_lo; /*20h */
653 u32 queue_info_old_phys_addr_hi; /*24h */
654
655 u32 reserved_4[6]; /*28h */
656
657} __attribute__ ((packed));
658
659struct megasas_init_queue_info {
660
661 u32 init_flags; /*00h */
662 u32 reply_queue_entries; /*04h */
663
664 u32 reply_queue_start_phys_addr_lo; /*08h */
665 u32 reply_queue_start_phys_addr_hi; /*0Ch */
666 u32 producer_index_phys_addr_lo; /*10h */
667 u32 producer_index_phys_addr_hi; /*14h */
668 u32 consumer_index_phys_addr_lo; /*18h */
669 u32 consumer_index_phys_addr_hi; /*1Ch */
670
671} __attribute__ ((packed));
672
673struct megasas_io_frame {
674
675 u8 cmd; /*00h */
676 u8 sense_len; /*01h */
677 u8 cmd_status; /*02h */
678 u8 scsi_status; /*03h */
679
680 u8 target_id; /*04h */
681 u8 access_byte; /*05h */
682 u8 reserved_0; /*06h */
683 u8 sge_count; /*07h */
684
685 u32 context; /*08h */
686 u32 pad_0; /*0Ch */
687
688 u16 flags; /*10h */
689 u16 timeout; /*12h */
690 u32 lba_count; /*14h */
691
692 u32 sense_buf_phys_addr_lo; /*18h */
693 u32 sense_buf_phys_addr_hi; /*1Ch */
694
695 u32 start_lba_lo; /*20h */
696 u32 start_lba_hi; /*24h */
697
698 union megasas_sgl sgl; /*28h */
699
700} __attribute__ ((packed));
701
702struct megasas_pthru_frame {
703
704 u8 cmd; /*00h */
705 u8 sense_len; /*01h */
706 u8 cmd_status; /*02h */
707 u8 scsi_status; /*03h */
708
709 u8 target_id; /*04h */
710 u8 lun; /*05h */
711 u8 cdb_len; /*06h */
712 u8 sge_count; /*07h */
713
714 u32 context; /*08h */
715 u32 pad_0; /*0Ch */
716
717 u16 flags; /*10h */
718 u16 timeout; /*12h */
719 u32 data_xfer_len; /*14h */
720
721 u32 sense_buf_phys_addr_lo; /*18h */
722 u32 sense_buf_phys_addr_hi; /*1Ch */
723
724 u8 cdb[16]; /*20h */
725 union megasas_sgl sgl; /*30h */
726
727} __attribute__ ((packed));
728
729struct megasas_dcmd_frame {
730
731 u8 cmd; /*00h */
732 u8 reserved_0; /*01h */
733 u8 cmd_status; /*02h */
734 u8 reserved_1[4]; /*03h */
735 u8 sge_count; /*07h */
736
737 u32 context; /*08h */
738 u32 pad_0; /*0Ch */
739
740 u16 flags; /*10h */
741 u16 timeout; /*12h */
742
743 u32 data_xfer_len; /*14h */
744 u32 opcode; /*18h */
745
746 union { /*1Ch */
747 u8 b[12];
748 u16 s[6];
749 u32 w[3];
750 } mbox;
751
752 union megasas_sgl sgl; /*28h */
753
754} __attribute__ ((packed));
755
756struct megasas_abort_frame {
757
758 u8 cmd; /*00h */
759 u8 reserved_0; /*01h */
760 u8 cmd_status; /*02h */
761
762 u8 reserved_1; /*03h */
763 u32 reserved_2; /*04h */
764
765 u32 context; /*08h */
766 u32 pad_0; /*0Ch */
767
768 u16 flags; /*10h */
769 u16 reserved_3; /*12h */
770 u32 reserved_4; /*14h */
771
772 u32 abort_context; /*18h */
773 u32 pad_1; /*1Ch */
774
775 u32 abort_mfi_phys_addr_lo; /*20h */
776 u32 abort_mfi_phys_addr_hi; /*24h */
777
778 u32 reserved_5[6]; /*28h */
779
780} __attribute__ ((packed));
781
782struct megasas_smp_frame {
783
784 u8 cmd; /*00h */
785 u8 reserved_1; /*01h */
786 u8 cmd_status; /*02h */
787 u8 connection_status; /*03h */
788
789 u8 reserved_2[3]; /*04h */
790 u8 sge_count; /*07h */
791
792 u32 context; /*08h */
793 u32 pad_0; /*0Ch */
794
795 u16 flags; /*10h */
796 u16 timeout; /*12h */
797
798 u32 data_xfer_len; /*14h */
799 u64 sas_addr; /*18h */
800
801 union {
802 struct megasas_sge32 sge32[2]; /* [0]: resp [1]: req */
803 struct megasas_sge64 sge64[2]; /* [0]: resp [1]: req */
804 } sgl;
805
806} __attribute__ ((packed));
807
808struct megasas_stp_frame {
809
810 u8 cmd; /*00h */
811 u8 reserved_1; /*01h */
812 u8 cmd_status; /*02h */
813 u8 reserved_2; /*03h */
814
815 u8 target_id; /*04h */
816 u8 reserved_3[2]; /*05h */
817 u8 sge_count; /*07h */
818
819 u32 context; /*08h */
820 u32 pad_0; /*0Ch */
821
822 u16 flags; /*10h */
823 u16 timeout; /*12h */
824
825 u32 data_xfer_len; /*14h */
826
827 u16 fis[10]; /*18h */
828 u32 stp_flags;
829
830 union {
831 struct megasas_sge32 sge32[2]; /* [0]: resp [1]: data */
832 struct megasas_sge64 sge64[2]; /* [0]: resp [1]: data */
833 } sgl;
834
835} __attribute__ ((packed));
836
837union megasas_frame {
838
839 struct megasas_header hdr;
840 struct megasas_init_frame init;
841 struct megasas_io_frame io;
842 struct megasas_pthru_frame pthru;
843 struct megasas_dcmd_frame dcmd;
844 struct megasas_abort_frame abort;
845 struct megasas_smp_frame smp;
846 struct megasas_stp_frame stp;
847
848 u8 raw_bytes[64];
849};
850
851struct megasas_cmd;
852
853union megasas_evt_class_locale {
854
855 struct {
856 u16 locale;
857 u8 reserved;
858 s8 class;
859 } __attribute__ ((packed)) members;
860
861 u32 word;
862
863} __attribute__ ((packed));
864
865struct megasas_evt_log_info {
866 u32 newest_seq_num;
867 u32 oldest_seq_num;
868 u32 clear_seq_num;
869 u32 shutdown_seq_num;
870 u32 boot_seq_num;
871
872} __attribute__ ((packed));
873
874struct megasas_progress {
875
876 u16 progress;
877 u16 elapsed_seconds;
878
879} __attribute__ ((packed));
880
881struct megasas_evtarg_ld {
882
883 u16 target_id;
884 u8 ld_index;
885 u8 reserved;
886
887} __attribute__ ((packed));
888
889struct megasas_evtarg_pd {
890 u16 device_id;
891 u8 encl_index;
892 u8 slot_number;
893
894} __attribute__ ((packed));
895
896struct megasas_evt_detail {
897
898 u32 seq_num;
899 u32 time_stamp;
900 u32 code;
901 union megasas_evt_class_locale cl;
902 u8 arg_type;
903 u8 reserved1[15];
904
905 union {
906 struct {
907 struct megasas_evtarg_pd pd;
908 u8 cdb_length;
909 u8 sense_length;
910 u8 reserved[2];
911 u8 cdb[16];
912 u8 sense[64];
913 } __attribute__ ((packed)) cdbSense;
914
915 struct megasas_evtarg_ld ld;
916
917 struct {
918 struct megasas_evtarg_ld ld;
919 u64 count;
920 } __attribute__ ((packed)) ld_count;
921
922 struct {
923 u64 lba;
924 struct megasas_evtarg_ld ld;
925 } __attribute__ ((packed)) ld_lba;
926
927 struct {
928 struct megasas_evtarg_ld ld;
929 u32 prevOwner;
930 u32 newOwner;
931 } __attribute__ ((packed)) ld_owner;
932
933 struct {
934 u64 ld_lba;
935 u64 pd_lba;
936 struct megasas_evtarg_ld ld;
937 struct megasas_evtarg_pd pd;
938 } __attribute__ ((packed)) ld_lba_pd_lba;
939
940 struct {
941 struct megasas_evtarg_ld ld;
942 struct megasas_progress prog;
943 } __attribute__ ((packed)) ld_prog;
944
945 struct {
946 struct megasas_evtarg_ld ld;
947 u32 prev_state;
948 u32 new_state;
949 } __attribute__ ((packed)) ld_state;
950
951 struct {
952 u64 strip;
953 struct megasas_evtarg_ld ld;
954 } __attribute__ ((packed)) ld_strip;
955
956 struct megasas_evtarg_pd pd;
957
958 struct {
959 struct megasas_evtarg_pd pd;
960 u32 err;
961 } __attribute__ ((packed)) pd_err;
962
963 struct {
964 u64 lba;
965 struct megasas_evtarg_pd pd;
966 } __attribute__ ((packed)) pd_lba;
967
968 struct {
969 u64 lba;
970 struct megasas_evtarg_pd pd;
971 struct megasas_evtarg_ld ld;
972 } __attribute__ ((packed)) pd_lba_ld;
973
974 struct {
975 struct megasas_evtarg_pd pd;
976 struct megasas_progress prog;
977 } __attribute__ ((packed)) pd_prog;
978
979 struct {
980 struct megasas_evtarg_pd pd;
981 u32 prevState;
982 u32 newState;
983 } __attribute__ ((packed)) pd_state;
984
985 struct {
986 u16 vendorId;
987 u16 deviceId;
988 u16 subVendorId;
989 u16 subDeviceId;
990 } __attribute__ ((packed)) pci;
991
992 u32 rate;
993 char str[96];
994
995 struct {
996 u32 rtc;
997 u32 elapsedSeconds;
998 } __attribute__ ((packed)) time;
999
1000 struct {
1001 u32 ecar;
1002 u32 elog;
1003 char str[64];
1004 } __attribute__ ((packed)) ecc;
1005
1006 u8 b[96];
1007 u16 s[48];
1008 u32 w[24];
1009 u64 d[12];
1010 } args;
1011
1012 char description[128];
1013
1014} __attribute__ ((packed));
1015
1016struct megasas_instance {
1017
1018 u32 *producer;
1019 dma_addr_t producer_h;
1020 u32 *consumer;
1021 dma_addr_t consumer_h;
1022
1023 u32 *reply_queue;
1024 dma_addr_t reply_queue_h;
1025
1026 unsigned long base_addr;
1027 struct megasas_register_set __iomem *reg_set;
1028
1029 s8 init_id;
1030 u8 reserved[3];
1031
1032 u16 max_num_sge;
1033 u16 max_fw_cmds;
1034 u32 max_sectors_per_req;
1035
1036 struct megasas_cmd **cmd_list;
1037 struct list_head cmd_pool;
1038 spinlock_t cmd_pool_lock;
1039 struct dma_pool *frame_dma_pool;
1040 struct dma_pool *sense_dma_pool;
1041
1042 struct megasas_evt_detail *evt_detail;
1043 dma_addr_t evt_detail_h;
1044 struct megasas_cmd *aen_cmd;
1045 struct semaphore aen_mutex;
1046 struct semaphore ioctl_sem;
1047
1048 struct Scsi_Host *host;
1049
1050 wait_queue_head_t int_cmd_wait_q;
1051 wait_queue_head_t abort_cmd_wait_q;
1052
1053 struct pci_dev *pdev;
1054 u32 unique_id;
1055
1056 u32 fw_outstanding;
1057 u32 hw_crit_error;
1058 spinlock_t instance_lock;
1059};
1060
1061#define MEGASAS_IS_LOGICAL(scp) \
1062 (scp->device->channel < MEGASAS_MAX_PD_CHANNELS) ? 0 : 1
1063
1064#define MEGASAS_DEV_INDEX(inst, scp) \
1065 ((scp->device->channel % 2) * MEGASAS_MAX_DEV_PER_CHANNEL) + \
1066 scp->device->id
1067
1068struct megasas_cmd {
1069
1070 union megasas_frame *frame;
1071 dma_addr_t frame_phys_addr;
1072 u8 *sense;
1073 dma_addr_t sense_phys_addr;
1074
1075 u32 index;
1076 u8 sync_cmd;
1077 u8 cmd_status;
1078 u16 abort_aen;
1079
1080 struct list_head list;
1081 struct scsi_cmnd *scmd;
1082 struct megasas_instance *instance;
1083 u32 frame_count;
1084};
1085
1086#define MAX_MGMT_ADAPTERS 1024
1087#define MAX_IOCTL_SGE 16
1088
1089struct megasas_iocpacket {
1090
1091 u16 host_no;
1092 u16 __pad1;
1093 u32 sgl_off;
1094 u32 sge_count;
1095 u32 sense_off;
1096 u32 sense_len;
1097 union {
1098 u8 raw[128];
1099 struct megasas_header hdr;
1100 } frame;
1101
1102 struct iovec sgl[MAX_IOCTL_SGE];
1103
1104} __attribute__ ((packed));
1105
1106struct megasas_aen {
1107 u16 host_no;
1108 u16 __pad1;
1109 u32 seq_num;
1110 u32 class_locale_word;
1111} __attribute__ ((packed));
1112
1113#ifdef CONFIG_COMPAT
1114struct compat_megasas_iocpacket {
1115 u16 host_no;
1116 u16 __pad1;
1117 u32 sgl_off;
1118 u32 sge_count;
1119 u32 sense_off;
1120 u32 sense_len;
1121 union {
1122 u8 raw[128];
1123 struct megasas_header hdr;
1124 } frame;
1125 struct compat_iovec sgl[MAX_IOCTL_SGE];
1126} __attribute__ ((packed));
1127
1128#define MEGASAS_IOC_FIRMWARE _IOWR('M', 1, struct compat_megasas_iocpacket)
1129#else
1130#define MEGASAS_IOC_FIRMWARE _IOWR('M', 1, struct megasas_iocpacket)
1131#endif
1132
1133#define MEGASAS_IOC_GET_AEN _IOW('M', 3, struct megasas_aen)
1134
1135struct megasas_mgmt_info {
1136
1137 u16 count;
1138 struct megasas_instance *instance[MAX_MGMT_ADAPTERS];
1139 int max_index;
1140};
1141
1142#endif /*LSI_MEGARAID_SAS_H */
diff --git a/drivers/scsi/mesh.c b/drivers/scsi/mesh.c
index a4857db4f9b8..b235556b7b65 100644
--- a/drivers/scsi/mesh.c
+++ b/drivers/scsi/mesh.c
@@ -1959,22 +1959,35 @@ static int mesh_probe(struct macio_dev *mdev, const struct of_device_id *match)
1959 /* Set it up */ 1959 /* Set it up */
1960 mesh_init(ms); 1960 mesh_init(ms);
1961 1961
1962 /* XXX FIXME: error should be fatal */ 1962 /* Request interrupt */
1963 if (request_irq(ms->meshintr, do_mesh_interrupt, 0, "MESH", ms)) 1963 if (request_irq(ms->meshintr, do_mesh_interrupt, 0, "MESH", ms)) {
1964 printk(KERN_ERR "MESH: can't get irq %d\n", ms->meshintr); 1964 printk(KERN_ERR "MESH: can't get irq %d\n", ms->meshintr);
1965 goto out_shutdown;
1966 }
1965 1967
1966 /* XXX FIXME: handle failure */ 1968 /* Add scsi host & scan */
1967 scsi_add_host(mesh_host, &mdev->ofdev.dev); 1969 if (scsi_add_host(mesh_host, &mdev->ofdev.dev))
1970 goto out_release_irq;
1968 scsi_scan_host(mesh_host); 1971 scsi_scan_host(mesh_host);
1969 1972
1970 return 0; 1973 return 0;
1971 1974
1972out_unmap: 1975 out_release_irq:
1976 free_irq(ms->meshintr, ms);
1977 out_shutdown:
1978 /* shutdown & reset bus in case of error or macos can be confused
1979 * at reboot if the bus was set to synchronous mode already
1980 */
1981 mesh_shutdown(mdev);
1982 set_mesh_power(ms, 0);
1983 pci_free_consistent(macio_get_pci_dev(mdev), ms->dma_cmd_size,
1984 ms->dma_cmd_space, ms->dma_cmd_bus);
1985 out_unmap:
1973 iounmap(ms->dma); 1986 iounmap(ms->dma);
1974 iounmap(ms->mesh); 1987 iounmap(ms->mesh);
1975out_free: 1988 out_free:
1976 scsi_host_put(mesh_host); 1989 scsi_host_put(mesh_host);
1977out_release: 1990 out_release:
1978 macio_release_resources(mdev); 1991 macio_release_resources(mdev);
1979 1992
1980 return -ENODEV; 1993 return -ENODEV;
@@ -2001,7 +2014,7 @@ static int mesh_remove(struct macio_dev *mdev)
2001 2014
2002 /* Free DMA commands memory */ 2015 /* Free DMA commands memory */
2003 pci_free_consistent(macio_get_pci_dev(mdev), ms->dma_cmd_size, 2016 pci_free_consistent(macio_get_pci_dev(mdev), ms->dma_cmd_size,
2004 ms->dma_cmd_space, ms->dma_cmd_bus); 2017 ms->dma_cmd_space, ms->dma_cmd_bus);
2005 2018
2006 /* Release memory resources */ 2019 /* Release memory resources */
2007 macio_release_resources(mdev); 2020 macio_release_resources(mdev);
diff --git a/drivers/scsi/qla2xxx/qla_rscn.c b/drivers/scsi/qla2xxx/qla_rscn.c
index bdc3bc74bbe1..1eba98828636 100644
--- a/drivers/scsi/qla2xxx/qla_rscn.c
+++ b/drivers/scsi/qla2xxx/qla_rscn.c
@@ -330,6 +330,8 @@ qla2x00_update_login_fcport(scsi_qla_host_t *ha, struct mbx_entry *mbxstat,
330 fcport->flags &= ~FCF_FAILOVER_NEEDED; 330 fcport->flags &= ~FCF_FAILOVER_NEEDED;
331 fcport->iodesc_idx_sent = IODESC_INVALID_INDEX; 331 fcport->iodesc_idx_sent = IODESC_INVALID_INDEX;
332 atomic_set(&fcport->state, FCS_ONLINE); 332 atomic_set(&fcport->state, FCS_ONLINE);
333 if (fcport->rport)
334 fc_remote_port_unblock(fcport->rport);
333} 335}
334 336
335 337
diff --git a/drivers/scsi/sata_nv.c b/drivers/scsi/sata_nv.c
index a1d62dee3be6..c05653c7779d 100644
--- a/drivers/scsi/sata_nv.c
+++ b/drivers/scsi/sata_nv.c
@@ -158,6 +158,8 @@ static struct pci_device_id nv_pci_tbl[] = {
158 PCI_ANY_ID, PCI_ANY_ID, 0, 0, MCP51 }, 158 PCI_ANY_ID, PCI_ANY_ID, 0, 0, MCP51 },
159 { PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA, 159 { PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA,
160 PCI_ANY_ID, PCI_ANY_ID, 0, 0, MCP55 }, 160 PCI_ANY_ID, PCI_ANY_ID, 0, 0, MCP55 },
161 { PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA2,
162 PCI_ANY_ID, PCI_ANY_ID, 0, 0, MCP55 },
161 { PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID, 163 { PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID,
162 PCI_ANY_ID, PCI_ANY_ID, 164 PCI_ANY_ID, PCI_ANY_ID,
163 PCI_CLASS_STORAGE_IDE<<8, 0xffff00, GENERIC }, 165 PCI_CLASS_STORAGE_IDE<<8, 0xffff00, GENERIC },
diff --git a/drivers/scsi/scsi_scan.c b/drivers/scsi/scsi_scan.c
index fcf9f6cbb142..327c5d7e5bd2 100644
--- a/drivers/scsi/scsi_scan.c
+++ b/drivers/scsi/scsi_scan.c
@@ -587,6 +587,7 @@ static int scsi_probe_lun(struct scsi_device *sdev, char *inq_result,
587 if (sdev->scsi_level >= 2 || 587 if (sdev->scsi_level >= 2 ||
588 (sdev->scsi_level == 1 && (inq_result[3] & 0x0f) == 1)) 588 (sdev->scsi_level == 1 && (inq_result[3] & 0x0f) == 1))
589 sdev->scsi_level++; 589 sdev->scsi_level++;
590 sdev->sdev_target->scsi_level = sdev->scsi_level;
590 591
591 return 0; 592 return 0;
592} 593}
@@ -771,6 +772,15 @@ static int scsi_add_lun(struct scsi_device *sdev, char *inq_result, int *bflags)
771 return SCSI_SCAN_LUN_PRESENT; 772 return SCSI_SCAN_LUN_PRESENT;
772} 773}
773 774
775static inline void scsi_destroy_sdev(struct scsi_device *sdev)
776{
777 if (sdev->host->hostt->slave_destroy)
778 sdev->host->hostt->slave_destroy(sdev);
779 transport_destroy_device(&sdev->sdev_gendev);
780 put_device(&sdev->sdev_gendev);
781}
782
783
774/** 784/**
775 * scsi_probe_and_add_lun - probe a LUN, if a LUN is found add it 785 * scsi_probe_and_add_lun - probe a LUN, if a LUN is found add it
776 * @starget: pointer to target device structure 786 * @starget: pointer to target device structure
@@ -803,9 +813,9 @@ static int scsi_probe_and_add_lun(struct scsi_target *starget,
803 * The rescan flag is used as an optimization, the first scan of a 813 * The rescan flag is used as an optimization, the first scan of a
804 * host adapter calls into here with rescan == 0. 814 * host adapter calls into here with rescan == 0.
805 */ 815 */
806 if (rescan) { 816 sdev = scsi_device_lookup_by_target(starget, lun);
807 sdev = scsi_device_lookup_by_target(starget, lun); 817 if (sdev) {
808 if (sdev) { 818 if (rescan || sdev->sdev_state != SDEV_CREATED) {
809 SCSI_LOG_SCAN_BUS(3, printk(KERN_INFO 819 SCSI_LOG_SCAN_BUS(3, printk(KERN_INFO
810 "scsi scan: device exists on %s\n", 820 "scsi scan: device exists on %s\n",
811 sdev->sdev_gendev.bus_id)); 821 sdev->sdev_gendev.bus_id));
@@ -820,9 +830,9 @@ static int scsi_probe_and_add_lun(struct scsi_target *starget,
820 sdev->model); 830 sdev->model);
821 return SCSI_SCAN_LUN_PRESENT; 831 return SCSI_SCAN_LUN_PRESENT;
822 } 832 }
823 } 833 scsi_device_put(sdev);
824 834 } else
825 sdev = scsi_alloc_sdev(starget, lun, hostdata); 835 sdev = scsi_alloc_sdev(starget, lun, hostdata);
826 if (!sdev) 836 if (!sdev)
827 goto out; 837 goto out;
828 838
@@ -877,12 +887,8 @@ static int scsi_probe_and_add_lun(struct scsi_target *starget,
877 res = SCSI_SCAN_NO_RESPONSE; 887 res = SCSI_SCAN_NO_RESPONSE;
878 } 888 }
879 } 889 }
880 } else { 890 } else
881 if (sdev->host->hostt->slave_destroy) 891 scsi_destroy_sdev(sdev);
882 sdev->host->hostt->slave_destroy(sdev);
883 transport_destroy_device(&sdev->sdev_gendev);
884 put_device(&sdev->sdev_gendev);
885 }
886 out: 892 out:
887 return res; 893 return res;
888} 894}
@@ -1054,7 +1060,7 @@ EXPORT_SYMBOL(int_to_scsilun);
1054 * 0: scan completed (or no memory, so further scanning is futile) 1060 * 0: scan completed (or no memory, so further scanning is futile)
1055 * 1: no report lun scan, or not configured 1061 * 1: no report lun scan, or not configured
1056 **/ 1062 **/
1057static int scsi_report_lun_scan(struct scsi_device *sdev, int bflags, 1063static int scsi_report_lun_scan(struct scsi_target *starget, int bflags,
1058 int rescan) 1064 int rescan)
1059{ 1065{
1060 char devname[64]; 1066 char devname[64];
@@ -1067,7 +1073,8 @@ static int scsi_report_lun_scan(struct scsi_device *sdev, int bflags,
1067 struct scsi_lun *lunp, *lun_data; 1073 struct scsi_lun *lunp, *lun_data;
1068 u8 *data; 1074 u8 *data;
1069 struct scsi_sense_hdr sshdr; 1075 struct scsi_sense_hdr sshdr;
1070 struct scsi_target *starget = scsi_target(sdev); 1076 struct scsi_device *sdev;
1077 struct Scsi_Host *shost = dev_to_shost(&starget->dev);
1071 1078
1072 /* 1079 /*
1073 * Only support SCSI-3 and up devices if BLIST_NOREPORTLUN is not set. 1080 * Only support SCSI-3 and up devices if BLIST_NOREPORTLUN is not set.
@@ -1075,15 +1082,23 @@ static int scsi_report_lun_scan(struct scsi_device *sdev, int bflags,
1075 * support more than 8 LUNs. 1082 * support more than 8 LUNs.
1076 */ 1083 */
1077 if ((bflags & BLIST_NOREPORTLUN) || 1084 if ((bflags & BLIST_NOREPORTLUN) ||
1078 sdev->scsi_level < SCSI_2 || 1085 starget->scsi_level < SCSI_2 ||
1079 (sdev->scsi_level < SCSI_3 && 1086 (starget->scsi_level < SCSI_3 &&
1080 (!(bflags & BLIST_REPORTLUN2) || sdev->host->max_lun <= 8)) ) 1087 (!(bflags & BLIST_REPORTLUN2) || shost->max_lun <= 8)) )
1081 return 1; 1088 return 1;
1082 if (bflags & BLIST_NOLUN) 1089 if (bflags & BLIST_NOLUN)
1083 return 0; 1090 return 0;
1084 1091
1092 if (!(sdev = scsi_device_lookup_by_target(starget, 0))) {
1093 sdev = scsi_alloc_sdev(starget, 0, NULL);
1094 if (!sdev)
1095 return 0;
1096 if (scsi_device_get(sdev))
1097 return 0;
1098 }
1099
1085 sprintf(devname, "host %d channel %d id %d", 1100 sprintf(devname, "host %d channel %d id %d",
1086 sdev->host->host_no, sdev->channel, sdev->id); 1101 shost->host_no, sdev->channel, sdev->id);
1087 1102
1088 /* 1103 /*
1089 * Allocate enough to hold the header (the same size as one scsi_lun) 1104 * Allocate enough to hold the header (the same size as one scsi_lun)
@@ -1098,8 +1113,10 @@ static int scsi_report_lun_scan(struct scsi_device *sdev, int bflags,
1098 length = (max_scsi_report_luns + 1) * sizeof(struct scsi_lun); 1113 length = (max_scsi_report_luns + 1) * sizeof(struct scsi_lun);
1099 lun_data = kmalloc(length, GFP_ATOMIC | 1114 lun_data = kmalloc(length, GFP_ATOMIC |
1100 (sdev->host->unchecked_isa_dma ? __GFP_DMA : 0)); 1115 (sdev->host->unchecked_isa_dma ? __GFP_DMA : 0));
1101 if (!lun_data) 1116 if (!lun_data) {
1117 printk(ALLOC_FAILURE_MSG, __FUNCTION__);
1102 goto out; 1118 goto out;
1119 }
1103 1120
1104 scsi_cmd[0] = REPORT_LUNS; 1121 scsi_cmd[0] = REPORT_LUNS;
1105 1122
@@ -1201,10 +1218,6 @@ static int scsi_report_lun_scan(struct scsi_device *sdev, int bflags,
1201 for (i = 0; i < sizeof(struct scsi_lun); i++) 1218 for (i = 0; i < sizeof(struct scsi_lun); i++)
1202 printk("%02x", data[i]); 1219 printk("%02x", data[i]);
1203 printk(" has a LUN larger than currently supported.\n"); 1220 printk(" has a LUN larger than currently supported.\n");
1204 } else if (lun == 0) {
1205 /*
1206 * LUN 0 has already been scanned.
1207 */
1208 } else if (lun > sdev->host->max_lun) { 1221 } else if (lun > sdev->host->max_lun) {
1209 printk(KERN_WARNING "scsi: %s lun%d has a LUN larger" 1222 printk(KERN_WARNING "scsi: %s lun%d has a LUN larger"
1210 " than allowed by the host adapter\n", 1223 " than allowed by the host adapter\n",
@@ -1227,13 +1240,13 @@ static int scsi_report_lun_scan(struct scsi_device *sdev, int bflags,
1227 } 1240 }
1228 1241
1229 kfree(lun_data); 1242 kfree(lun_data);
1230 return 0;
1231
1232 out: 1243 out:
1233 /* 1244 scsi_device_put(sdev);
1234 * We are out of memory, don't try scanning any further. 1245 if (sdev->sdev_state == SDEV_CREATED)
1235 */ 1246 /*
1236 printk(ALLOC_FAILURE_MSG, __FUNCTION__); 1247 * the sdev we used didn't appear in the report luns scan
1248 */
1249 scsi_destroy_sdev(sdev);
1237 return 0; 1250 return 0;
1238} 1251}
1239 1252
@@ -1299,7 +1312,6 @@ static void __scsi_scan_target(struct device *parent, unsigned int channel,
1299 struct Scsi_Host *shost = dev_to_shost(parent); 1312 struct Scsi_Host *shost = dev_to_shost(parent);
1300 int bflags = 0; 1313 int bflags = 0;
1301 int res; 1314 int res;
1302 struct scsi_device *sdev = NULL;
1303 struct scsi_target *starget; 1315 struct scsi_target *starget;
1304 1316
1305 if (shost->this_id == id) 1317 if (shost->this_id == id)
@@ -1325,27 +1337,16 @@ static void __scsi_scan_target(struct device *parent, unsigned int channel,
1325 * Scan LUN 0, if there is some response, scan further. Ideally, we 1337 * Scan LUN 0, if there is some response, scan further. Ideally, we
1326 * would not configure LUN 0 until all LUNs are scanned. 1338 * would not configure LUN 0 until all LUNs are scanned.
1327 */ 1339 */
1328 res = scsi_probe_and_add_lun(starget, 0, &bflags, &sdev, rescan, NULL); 1340 res = scsi_probe_and_add_lun(starget, 0, &bflags, NULL, rescan, NULL);
1329 if (res == SCSI_SCAN_LUN_PRESENT) { 1341 if (res == SCSI_SCAN_LUN_PRESENT || res == SCSI_SCAN_TARGET_PRESENT) {
1330 if (scsi_report_lun_scan(sdev, bflags, rescan) != 0) 1342 if (scsi_report_lun_scan(starget, bflags, rescan) != 0)
1331 /* 1343 /*
1332 * The REPORT LUN did not scan the target, 1344 * The REPORT LUN did not scan the target,
1333 * do a sequential scan. 1345 * do a sequential scan.
1334 */ 1346 */
1335 scsi_sequential_lun_scan(starget, bflags, 1347 scsi_sequential_lun_scan(starget, bflags,
1336 res, sdev->scsi_level, rescan); 1348 res, starget->scsi_level, rescan);
1337 } else if (res == SCSI_SCAN_TARGET_PRESENT) {
1338 /*
1339 * There's a target here, but lun 0 is offline so we
1340 * can't use the report_lun scan. Fall back to a
1341 * sequential lun scan with a bflags of SPARSELUN and
1342 * a default scsi level of SCSI_2
1343 */
1344 scsi_sequential_lun_scan(starget, BLIST_SPARSELUN,
1345 SCSI_SCAN_TARGET_PRESENT, SCSI_2, rescan);
1346 } 1349 }
1347 if (sdev)
1348 scsi_device_put(sdev);
1349 1350
1350 out_reap: 1351 out_reap:
1351 /* now determine if the target has any children at all 1352 /* now determine if the target has any children at all
@@ -1542,10 +1543,7 @@ void scsi_free_host_dev(struct scsi_device *sdev)
1542{ 1543{
1543 BUG_ON(sdev->id != sdev->host->this_id); 1544 BUG_ON(sdev->id != sdev->host->this_id);
1544 1545
1545 if (sdev->host->hostt->slave_destroy) 1546 scsi_destroy_sdev(sdev);
1546 sdev->host->hostt->slave_destroy(sdev);
1547 transport_destroy_device(&sdev->sdev_gendev);
1548 put_device(&sdev->sdev_gendev);
1549} 1547}
1550EXPORT_SYMBOL(scsi_free_host_dev); 1548EXPORT_SYMBOL(scsi_free_host_dev);
1551 1549
diff --git a/drivers/scsi/scsi_transport_sas.c b/drivers/scsi/scsi_transport_sas.c
index ff724bbe6611..1d145d2f9a38 100644
--- a/drivers/scsi/scsi_transport_sas.c
+++ b/drivers/scsi/scsi_transport_sas.c
@@ -628,17 +628,16 @@ sas_rphy_delete(struct sas_rphy *rphy)
628 struct Scsi_Host *shost = dev_to_shost(parent->dev.parent); 628 struct Scsi_Host *shost = dev_to_shost(parent->dev.parent);
629 struct sas_host_attrs *sas_host = to_sas_host_attrs(shost); 629 struct sas_host_attrs *sas_host = to_sas_host_attrs(shost);
630 630
631 transport_destroy_device(&rphy->dev); 631 scsi_remove_target(dev);
632 632
633 scsi_remove_target(&rphy->dev); 633 transport_remove_device(dev);
634 device_del(dev);
635 transport_destroy_device(dev);
634 636
635 spin_lock(&sas_host->lock); 637 spin_lock(&sas_host->lock);
636 list_del(&rphy->list); 638 list_del(&rphy->list);
637 spin_unlock(&sas_host->lock); 639 spin_unlock(&sas_host->lock);
638 640
639 transport_remove_device(dev);
640 device_del(dev);
641 transport_destroy_device(dev);
642 put_device(&parent->dev); 641 put_device(&parent->dev);
643} 642}
644EXPORT_SYMBOL(sas_rphy_delete); 643EXPORT_SYMBOL(sas_rphy_delete);
diff --git a/drivers/scsi/sg.c b/drivers/scsi/sg.c
index 4d09a6e4dd2e..ad94367df430 100644
--- a/drivers/scsi/sg.c
+++ b/drivers/scsi/sg.c
@@ -2849,8 +2849,7 @@ sg_proc_init(void)
2849 struct proc_dir_entry *pdep; 2849 struct proc_dir_entry *pdep;
2850 struct sg_proc_leaf * leaf; 2850 struct sg_proc_leaf * leaf;
2851 2851
2852 sg_proc_sgp = create_proc_entry(sg_proc_sg_dirname, 2852 sg_proc_sgp = proc_mkdir(sg_proc_sg_dirname, NULL);
2853 S_IFDIR | S_IRUGO | S_IXUGO, NULL);
2854 if (!sg_proc_sgp) 2853 if (!sg_proc_sgp)
2855 return 1; 2854 return 1;
2856 for (k = 0; k < num_leaves; ++k) { 2855 for (k = 0; k < num_leaves; ++k) {
diff --git a/drivers/serial/clps711x.c b/drivers/serial/clps711x.c
index 78c1f36ad9b7..87ef368384fb 100644
--- a/drivers/serial/clps711x.c
+++ b/drivers/serial/clps711x.c
@@ -98,7 +98,7 @@ static irqreturn_t clps711xuart_int_rx(int irq, void *dev_id, struct pt_regs *re
98{ 98{
99 struct uart_port *port = dev_id; 99 struct uart_port *port = dev_id;
100 struct tty_struct *tty = port->info->tty; 100 struct tty_struct *tty = port->info->tty;
101 unsigned int status, ch, flg, ignored = 0; 101 unsigned int status, ch, flg;
102 102
103 status = clps_readl(SYSFLG(port)); 103 status = clps_readl(SYSFLG(port));
104 while (!(status & SYSFLG_URXFE)) { 104 while (!(status & SYSFLG_URXFE)) {
diff --git a/drivers/serial/imx.c b/drivers/serial/imx.c
index 4c985e6b3784..4e1e80adaf11 100644
--- a/drivers/serial/imx.c
+++ b/drivers/serial/imx.c
@@ -860,7 +860,7 @@ imx_console_setup(struct console *co, char *options)
860 return uart_set_options(&sport->port, co, baud, parity, bits, flow); 860 return uart_set_options(&sport->port, co, baud, parity, bits, flow);
861} 861}
862 862
863extern struct uart_driver imx_reg; 863static struct uart_driver imx_reg;
864static struct console imx_console = { 864static struct console imx_console = {
865 .name = "ttySMX", 865 .name = "ttySMX",
866 .write = imx_console_write, 866 .write = imx_console_write,
diff --git a/drivers/serial/ioc4_serial.c b/drivers/serial/ioc4_serial.c
index 0c5c96a582b3..f88fdd480685 100644
--- a/drivers/serial/ioc4_serial.c
+++ b/drivers/serial/ioc4_serial.c
@@ -973,18 +973,6 @@ static irqreturn_t ioc4_intr(int irq, void *arg, struct pt_regs *regs)
973 this_ir &= ~this_mir; 973 this_ir &= ~this_mir;
974 } 974 }
975 } 975 }
976 if (this_ir) {
977 printk(KERN_ERR
978 "unknown IOC4 %s interrupt 0x%x, sio_ir = 0x%x,"
979 " sio_ies = 0x%x, other_ir = 0x%x :"
980 "other_ies = 0x%x\n",
981 (intr_type == IOC4_SIO_INTR_TYPE) ? "sio" :
982 "other", this_ir,
983 readl(&soft->is_ioc4_misc_addr->sio_ir.raw),
984 readl(&soft->is_ioc4_misc_addr->sio_ies.raw),
985 readl(&soft->is_ioc4_misc_addr->other_ir.raw),
986 readl(&soft->is_ioc4_misc_addr->other_ies.raw));
987 }
988 } 976 }
989#ifdef DEBUG_INTERRUPTS 977#ifdef DEBUG_INTERRUPTS
990 { 978 {
diff --git a/drivers/serial/s3c2410.c b/drivers/serial/s3c2410.c
index c361c6fb0809..50d7870d92bb 100644
--- a/drivers/serial/s3c2410.c
+++ b/drivers/serial/s3c2410.c
@@ -82,8 +82,6 @@
82#include <asm/arch/regs-serial.h> 82#include <asm/arch/regs-serial.h>
83#include <asm/arch/regs-gpio.h> 83#include <asm/arch/regs-gpio.h>
84 84
85#include <asm/mach-types.h>
86
87/* structures */ 85/* structures */
88 86
89struct s3c24xx_uart_info { 87struct s3c24xx_uart_info {
@@ -753,8 +751,8 @@ static void s3c24xx_serial_set_termios(struct uart_port *port,
753{ 751{
754 struct s3c2410_uartcfg *cfg = s3c24xx_port_to_cfg(port); 752 struct s3c2410_uartcfg *cfg = s3c24xx_port_to_cfg(port);
755 struct s3c24xx_uart_port *ourport = to_ourport(port); 753 struct s3c24xx_uart_port *ourport = to_ourport(port);
756 struct s3c24xx_uart_clksrc *clksrc; 754 struct s3c24xx_uart_clksrc *clksrc = NULL;
757 struct clk *clk; 755 struct clk *clk = NULL;
758 unsigned long flags; 756 unsigned long flags;
759 unsigned int baud, quot; 757 unsigned int baud, quot;
760 unsigned int ulcon; 758 unsigned int ulcon;
diff --git a/drivers/serial/serial_cs.c b/drivers/serial/serial_cs.c
index 1ae0b381c162..2c7d3ef76e8e 100644
--- a/drivers/serial/serial_cs.c
+++ b/drivers/serial/serial_cs.c
@@ -859,6 +859,7 @@ static struct pcmcia_device_id serial_ids[] = {
859 PCMCIA_MFC_DEVICE_CIS_MANF_CARD(1, 0x0175, 0x0000, "DP83903.cis"), 859 PCMCIA_MFC_DEVICE_CIS_MANF_CARD(1, 0x0175, 0x0000, "DP83903.cis"),
860 PCMCIA_MFC_DEVICE_CIS_MANF_CARD(1, 0x0101, 0x0035, "3CXEM556.cis"), 860 PCMCIA_MFC_DEVICE_CIS_MANF_CARD(1, 0x0101, 0x0035, "3CXEM556.cis"),
861 PCMCIA_MFC_DEVICE_CIS_MANF_CARD(1, 0x0101, 0x003d, "3CXEM556.cis"), 861 PCMCIA_MFC_DEVICE_CIS_MANF_CARD(1, 0x0101, 0x003d, "3CXEM556.cis"),
862 PCMCIA_DEVICE_CIS_MANF_CARD(0x0192, 0x0710, "SW_7xx_SER.cis"), /* Sierra Wireless AC710/AC750 GPRS Network Adapter R1 */
862 PCMCIA_DEVICE_CIS_PROD_ID12("MultiTech", "PCMCIA 56K DataFax", 0x842047ee, 0xc2efcf03, "MT5634ZLX.cis"), 863 PCMCIA_DEVICE_CIS_PROD_ID12("MultiTech", "PCMCIA 56K DataFax", 0x842047ee, 0xc2efcf03, "MT5634ZLX.cis"),
863 PCMCIA_DEVICE_CIS_PROD_ID12("ADVANTECH", "COMpad-32/85B-4", 0x96913a85, 0xcec8f102, "COMpad4.cis"), 864 PCMCIA_DEVICE_CIS_PROD_ID12("ADVANTECH", "COMpad-32/85B-4", 0x96913a85, 0xcec8f102, "COMpad4.cis"),
864 PCMCIA_DEVICE_CIS_PROD_ID123("ADVANTECH", "COMpad-32/85", "1.0", 0x96913a85, 0x8fbe92ae, 0x0877b627, "COMpad2.cis"), 865 PCMCIA_DEVICE_CIS_PROD_ID123("ADVANTECH", "COMpad-32/85", "1.0", 0x96913a85, 0x8fbe92ae, 0x0877b627, "COMpad2.cis"),
diff --git a/drivers/usb/core/hcd-pci.c b/drivers/usb/core/hcd-pci.c
index cbb451d227d2..6385d1a99b60 100644
--- a/drivers/usb/core/hcd-pci.c
+++ b/drivers/usb/core/hcd-pci.c
@@ -242,7 +242,6 @@ int usb_hcd_pci_suspend (struct pci_dev *dev, pm_message_t message)
242 case HC_STATE_SUSPENDED: 242 case HC_STATE_SUSPENDED:
243 /* no DMA or IRQs except when HC is active */ 243 /* no DMA or IRQs except when HC is active */
244 if (dev->current_state == PCI_D0) { 244 if (dev->current_state == PCI_D0) {
245 free_irq (hcd->irq, hcd);
246 pci_save_state (dev); 245 pci_save_state (dev);
247 pci_disable_device (dev); 246 pci_disable_device (dev);
248 } 247 }
@@ -374,14 +373,6 @@ int usb_hcd_pci_resume (struct pci_dev *dev)
374 373
375 hcd->state = HC_STATE_RESUMING; 374 hcd->state = HC_STATE_RESUMING;
376 hcd->saw_irq = 0; 375 hcd->saw_irq = 0;
377 retval = request_irq (dev->irq, usb_hcd_irq, SA_SHIRQ,
378 hcd->irq_descr, hcd);
379 if (retval < 0) {
380 dev_err (hcd->self.controller,
381 "can't restore IRQ after resume!\n");
382 usb_hc_died (hcd);
383 return retval;
384 }
385 376
386 retval = hcd->driver->resume (hcd); 377 retval = hcd->driver->resume (hcd);
387 if (!HC_IS_RUNNING (hcd->state)) { 378 if (!HC_IS_RUNNING (hcd->state)) {
diff --git a/drivers/usb/host/ohci-lh7a404.c b/drivers/usb/host/ohci-lh7a404.c
index 817620d73841..859aca7be753 100644
--- a/drivers/usb/host/ohci-lh7a404.c
+++ b/drivers/usb/host/ohci-lh7a404.c
@@ -17,8 +17,6 @@
17 */ 17 */
18 18
19#include <asm/hardware.h> 19#include <asm/hardware.h>
20#include <asm/mach-types.h>
21#include <asm/arch/hardware.h>
22 20
23 21
24extern int usb_disabled(void); 22extern int usb_disabled(void);
diff --git a/drivers/usb/host/ohci-omap.c b/drivers/usb/host/ohci-omap.c
index 5cde76faab93..d8f3ba7ad52e 100644
--- a/drivers/usb/host/ohci-omap.c
+++ b/drivers/usb/host/ohci-omap.c
@@ -18,7 +18,6 @@
18#include <asm/io.h> 18#include <asm/io.h>
19#include <asm/mach-types.h> 19#include <asm/mach-types.h>
20 20
21#include <asm/arch/hardware.h>
22#include <asm/arch/mux.h> 21#include <asm/arch/mux.h>
23#include <asm/arch/irqs.h> 22#include <asm/arch/irqs.h>
24#include <asm/arch/gpio.h> 23#include <asm/arch/gpio.h>
diff --git a/drivers/usb/host/ohci-s3c2410.c b/drivers/usb/host/ohci-s3c2410.c
index 3d9bcf78a9a4..da7d5478f74d 100644
--- a/drivers/usb/host/ohci-s3c2410.c
+++ b/drivers/usb/host/ohci-s3c2410.c
@@ -20,7 +20,6 @@
20*/ 20*/
21 21
22#include <asm/hardware.h> 22#include <asm/hardware.h>
23#include <asm/mach-types.h>
24#include <asm/hardware/clock.h> 23#include <asm/hardware/clock.h>
25#include <asm/arch/usb-control.h> 24#include <asm/arch/usb-control.h>
26 25
diff --git a/drivers/usb/media/vicam.c b/drivers/usb/media/vicam.c
index 4a5857c53f11..0bc0b1247a6b 100644
--- a/drivers/usb/media/vicam.c
+++ b/drivers/usb/media/vicam.c
@@ -1148,7 +1148,7 @@ vicam_write_proc_gain(struct file *file, const char *buffer,
1148static void 1148static void
1149vicam_create_proc_root(void) 1149vicam_create_proc_root(void)
1150{ 1150{
1151 vicam_proc_root = create_proc_entry("video/vicam", S_IFDIR, 0); 1151 vicam_proc_root = proc_mkdir("video/vicam", NULL);
1152 1152
1153 if (vicam_proc_root) 1153 if (vicam_proc_root)
1154 vicam_proc_root->owner = THIS_MODULE; 1154 vicam_proc_root->owner = THIS_MODULE;
@@ -1181,7 +1181,7 @@ vicam_create_proc_entry(struct vicam_camera *cam)
1181 1181
1182 sprintf(name, "video%d", cam->vdev.minor); 1182 sprintf(name, "video%d", cam->vdev.minor);
1183 1183
1184 cam->proc_dir = create_proc_entry(name, S_IFDIR, vicam_proc_root); 1184 cam->proc_dir = proc_mkdir(name, vicam_proc_root);
1185 1185
1186 if ( !cam->proc_dir ) 1186 if ( !cam->proc_dir )
1187 return; // FIXME: We should probably return an error here 1187 return; // FIXME: We should probably return an error here
diff --git a/drivers/video/Kconfig b/drivers/video/Kconfig
index 773ae11b4a19..1cd942abb580 100644
--- a/drivers/video/Kconfig
+++ b/drivers/video/Kconfig
@@ -768,6 +768,7 @@ config FB_INTEL
768 select FB_CFB_FILLRECT 768 select FB_CFB_FILLRECT
769 select FB_CFB_COPYAREA 769 select FB_CFB_COPYAREA
770 select FB_CFB_IMAGEBLIT 770 select FB_CFB_IMAGEBLIT
771 select FB_SOFT_CURSOR
771 help 772 help
772 This driver supports the on-board graphics built in to the Intel 773 This driver supports the on-board graphics built in to the Intel
773 830M/845G/852GM/855GM/865G chipsets. 774 830M/845G/852GM/855GM/865G chipsets.
diff --git a/drivers/video/aty/radeon_base.c b/drivers/video/aty/radeon_base.c
index 046b47860266..8a24a66d9ba8 100644
--- a/drivers/video/aty/radeon_base.c
+++ b/drivers/video/aty/radeon_base.c
@@ -475,7 +475,7 @@ static int __devinit radeon_probe_pll_params(struct radeonfb_info *rinfo)
475 */ 475 */
476 476
477 /* Flush PCI buffers ? */ 477 /* Flush PCI buffers ? */
478 tmp = INREG(DEVICE_ID); 478 tmp = INREG16(DEVICE_ID);
479 479
480 local_irq_disable(); 480 local_irq_disable();
481 481
diff --git a/drivers/video/aty/radeon_pm.c b/drivers/video/aty/radeon_pm.c
index 59a1b6f85067..097d668c4fe5 100644
--- a/drivers/video/aty/radeon_pm.c
+++ b/drivers/video/aty/radeon_pm.c
@@ -62,9 +62,9 @@ static void radeon_pm_disable_dynamic_mode(struct radeonfb_info *rinfo)
62 OUTPLL(pllSCLK_CNTL, tmp); 62 OUTPLL(pllSCLK_CNTL, tmp);
63 return; 63 return;
64 } 64 }
65 /* RV350 (M10) */ 65 /* RV350 (M10/M11) */
66 if (rinfo->family == CHIP_FAMILY_RV350) { 66 if (rinfo->family == CHIP_FAMILY_RV350) {
67 /* for RV350/M10, no delays are required. */ 67 /* for RV350/M10/M11, no delays are required. */
68 tmp = INPLL(pllSCLK_CNTL2); 68 tmp = INPLL(pllSCLK_CNTL2);
69 tmp |= (SCLK_CNTL2__R300_FORCE_TCL | 69 tmp |= (SCLK_CNTL2__R300_FORCE_TCL |
70 SCLK_CNTL2__R300_FORCE_GA | 70 SCLK_CNTL2__R300_FORCE_GA |
@@ -248,7 +248,7 @@ static void radeon_pm_enable_dynamic_mode(struct radeonfb_info *rinfo)
248 return; 248 return;
249 } 249 }
250 250
251 /* M10 */ 251 /* M10/M11 */
252 if (rinfo->family == CHIP_FAMILY_RV350) { 252 if (rinfo->family == CHIP_FAMILY_RV350) {
253 tmp = INPLL(pllSCLK_CNTL2); 253 tmp = INPLL(pllSCLK_CNTL2);
254 tmp &= ~(SCLK_CNTL2__R300_FORCE_TCL | 254 tmp &= ~(SCLK_CNTL2__R300_FORCE_TCL |
@@ -1155,7 +1155,7 @@ static void radeon_pm_full_reset_sdram(struct radeonfb_info *rinfo)
1155 OUTREG( CRTC_GEN_CNTL, (crtcGenCntl | CRTC_GEN_CNTL__CRTC_DISP_REQ_EN_B) ); 1155 OUTREG( CRTC_GEN_CNTL, (crtcGenCntl | CRTC_GEN_CNTL__CRTC_DISP_REQ_EN_B) );
1156 OUTREG( CRTC2_GEN_CNTL, (crtcGenCntl2 | CRTC2_GEN_CNTL__CRTC2_DISP_REQ_EN_B) ); 1156 OUTREG( CRTC2_GEN_CNTL, (crtcGenCntl2 | CRTC2_GEN_CNTL__CRTC2_DISP_REQ_EN_B) );
1157 1157
1158 /* This is the code for the Aluminium PowerBooks M10 */ 1158 /* This is the code for the Aluminium PowerBooks M10 / iBooks M11 */
1159 if (rinfo->family == CHIP_FAMILY_RV350) { 1159 if (rinfo->family == CHIP_FAMILY_RV350) {
1160 u32 sdram_mode_reg = rinfo->save_regs[35]; 1160 u32 sdram_mode_reg = rinfo->save_regs[35];
1161 static u32 default_mrtable[] = 1161 static u32 default_mrtable[] =
@@ -2741,9 +2741,11 @@ void radeonfb_pm_init(struct radeonfb_info *rinfo, int dynclk)
2741 rinfo->pm_mode |= radeon_pm_d2; 2741 rinfo->pm_mode |= radeon_pm_d2;
2742 2742
2743 /* We can restart Jasper (M10 chip in albooks), BlueStone (7500 chip 2743 /* We can restart Jasper (M10 chip in albooks), BlueStone (7500 chip
2744 * in some desktop G4s), and Via (M9+ chip on iBook G4) 2744 * in some desktop G4s), Via (M9+ chip on iBook G4) and
2745 * Snowy (M11 chip on iBook G4 manufactured after July 2005)
2745 */ 2746 */
2746 if (!strcmp(rinfo->of_node->name, "ATY,JasperParent")) { 2747 if (!strcmp(rinfo->of_node->name, "ATY,JasperParent") ||
2748 !strcmp(rinfo->of_node->name, "ATY,SnowyParent")) {
2747 rinfo->reinit_func = radeon_reinitialize_M10; 2749 rinfo->reinit_func = radeon_reinitialize_M10;
2748 rinfo->pm_mode |= radeon_pm_off; 2750 rinfo->pm_mode |= radeon_pm_off;
2749 } 2751 }
diff --git a/drivers/video/aty/radeonfb.h b/drivers/video/aty/radeonfb.h
index 659bc9f62244..01b8b2f78514 100644
--- a/drivers/video/aty/radeonfb.h
+++ b/drivers/video/aty/radeonfb.h
@@ -395,6 +395,8 @@ static inline void _radeon_msleep(struct radeonfb_info *rinfo, unsigned long ms)
395 395
396#define INREG8(addr) readb((rinfo->mmio_base)+addr) 396#define INREG8(addr) readb((rinfo->mmio_base)+addr)
397#define OUTREG8(addr,val) writeb(val, (rinfo->mmio_base)+addr) 397#define OUTREG8(addr,val) writeb(val, (rinfo->mmio_base)+addr)
398#define INREG16(addr) readw((rinfo->mmio_base)+addr)
399#define OUTREG16(addr,val) writew(val, (rinfo->mmio_base)+addr)
398#define INREG(addr) readl((rinfo->mmio_base)+addr) 400#define INREG(addr) readl((rinfo->mmio_base)+addr)
399#define OUTREG(addr,val) writel(val, (rinfo->mmio_base)+addr) 401#define OUTREG(addr,val) writel(val, (rinfo->mmio_base)+addr)
400 402
diff --git a/drivers/video/aty/xlinit.c b/drivers/video/aty/xlinit.c
index 0bea0d8d7821..a085cbf74ecb 100644
--- a/drivers/video/aty/xlinit.c
+++ b/drivers/video/aty/xlinit.c
@@ -253,9 +253,11 @@ int atyfb_xl_init(struct fb_info *info)
253 aty_st_le32(0xFC, 0x00000000, par); 253 aty_st_le32(0xFC, 0x00000000, par);
254 254
255#if defined (CONFIG_FB_ATY_GENERIC_LCD) 255#if defined (CONFIG_FB_ATY_GENERIC_LCD)
256 int i; 256 {
257 for (i=0; i<sizeof(lcd_tbl)/sizeof(lcd_tbl_t); i++) { 257 int i;
258 aty_st_lcd(lcd_tbl[i].lcd_reg, lcd_tbl[i].val, par); 258
259 for (i = 0; i < ARRAY_SIZE(lcd_tbl); i++)
260 aty_st_lcd(lcd_tbl[i].lcd_reg, lcd_tbl[i].val, par);
259 } 261 }
260#endif 262#endif
261 263
diff --git a/drivers/video/backlight/corgi_bl.c b/drivers/video/backlight/corgi_bl.c
index 630f2dfa9699..3c72c627e65e 100644
--- a/drivers/video/backlight/corgi_bl.c
+++ b/drivers/video/backlight/corgi_bl.c
@@ -19,7 +19,6 @@
19#include <linux/fb.h> 19#include <linux/fb.h>
20#include <linux/backlight.h> 20#include <linux/backlight.h>
21 21
22#include <asm/mach-types.h>
23#include <asm/arch/sharpsl.h> 22#include <asm/arch/sharpsl.h>
24 23
25#define CORGI_DEFAULT_INTENSITY 0x1f 24#define CORGI_DEFAULT_INTENSITY 0x1f
diff --git a/drivers/video/cyblafb.c b/drivers/video/cyblafb.c
index ae2762cb5608..6992100a508c 100644
--- a/drivers/video/cyblafb.c
+++ b/drivers/video/cyblafb.c
@@ -410,20 +410,21 @@ static void cyblafb_imageblit(struct fb_info *info,
410 out32(GE0C,point(image->dx+image->width-1,image->dy+image->height-1)); 410 out32(GE0C,point(image->dx+image->width-1,image->dy+image->height-1));
411 411
412 while(index < index_end) { 412 while(index < index_end) {
413 const char *p = image->data + index;
413 for(i=0;i<width_dds;i++) { 414 for(i=0;i<width_dds;i++) {
414 out32(GE9C,*((u32*) ((u32)image->data + index))); 415 out32(GE9C,*(u32*)p);
416 p+=4;
415 index+=4; 417 index+=4;
416 } 418 }
417 switch(width_dbs) { 419 switch(width_dbs) {
418 case 0: break; 420 case 0: break;
419 case 8: out32(GE9C,*((u8*)((u32)image->data+index))); 421 case 8: out32(GE9C,*(u8*)p);
420 index+=1; 422 index+=1;
421 break; 423 break;
422 case 16: out32(GE9C,*((u16*)((u32)image->data+index))); 424 case 16: out32(GE9C,*(u16*)p);
423 index+=2; 425 index+=2;
424 break; 426 break;
425 case 24: out32(GE9C,(u32)(*((u16*)((u32)image->data+index))) | 427 case 24: out32(GE9C,*(u16*)p | *(u8*)(p+2)<<16);
426 (u32)(*((u8*)((u32)image->data+index+2)))<<16);
427 index+=3; 428 index+=3;
428 break; 429 break;
429 } 430 }
diff --git a/drivers/video/i810/i810-i2c.c b/drivers/video/i810/i810-i2c.c
index fda53aac1fc1..689d2586366d 100644
--- a/drivers/video/i810/i810-i2c.c
+++ b/drivers/video/i810/i810-i2c.c
@@ -44,7 +44,7 @@ static void i810i2c_setscl(void *data, int state)
44{ 44{
45 struct i810fb_i2c_chan *chan = (struct i810fb_i2c_chan *)data; 45 struct i810fb_i2c_chan *chan = (struct i810fb_i2c_chan *)data;
46 struct i810fb_par *par = chan->par; 46 struct i810fb_par *par = chan->par;
47 u8 *mmio = par->mmio_start_virtual; 47 u8 __iomem *mmio = par->mmio_start_virtual;
48 48
49 i810_writel(mmio, GPIOB, (state ? SCL_VAL_OUT : 0) | SCL_DIR | 49 i810_writel(mmio, GPIOB, (state ? SCL_VAL_OUT : 0) | SCL_DIR |
50 SCL_DIR_MASK | SCL_VAL_MASK); 50 SCL_DIR_MASK | SCL_VAL_MASK);
@@ -55,7 +55,7 @@ static void i810i2c_setsda(void *data, int state)
55{ 55{
56 struct i810fb_i2c_chan *chan = (struct i810fb_i2c_chan *)data; 56 struct i810fb_i2c_chan *chan = (struct i810fb_i2c_chan *)data;
57 struct i810fb_par *par = chan->par; 57 struct i810fb_par *par = chan->par;
58 u8 *mmio = par->mmio_start_virtual; 58 u8 __iomem *mmio = par->mmio_start_virtual;
59 59
60 i810_writel(mmio, GPIOB, (state ? SDA_VAL_OUT : 0) | SDA_DIR | 60 i810_writel(mmio, GPIOB, (state ? SDA_VAL_OUT : 0) | SDA_DIR |
61 SDA_DIR_MASK | SDA_VAL_MASK); 61 SDA_DIR_MASK | SDA_VAL_MASK);
@@ -66,7 +66,7 @@ static int i810i2c_getscl(void *data)
66{ 66{
67 struct i810fb_i2c_chan *chan = (struct i810fb_i2c_chan *)data; 67 struct i810fb_i2c_chan *chan = (struct i810fb_i2c_chan *)data;
68 struct i810fb_par *par = chan->par; 68 struct i810fb_par *par = chan->par;
69 u8 *mmio = par->mmio_start_virtual; 69 u8 __iomem *mmio = par->mmio_start_virtual;
70 70
71 i810_writel(mmio, GPIOB, SCL_DIR_MASK); 71 i810_writel(mmio, GPIOB, SCL_DIR_MASK);
72 i810_writel(mmio, GPIOB, 0); 72 i810_writel(mmio, GPIOB, 0);
@@ -77,7 +77,7 @@ static int i810i2c_getsda(void *data)
77{ 77{
78 struct i810fb_i2c_chan *chan = (struct i810fb_i2c_chan *)data; 78 struct i810fb_i2c_chan *chan = (struct i810fb_i2c_chan *)data;
79 struct i810fb_par *par = chan->par; 79 struct i810fb_par *par = chan->par;
80 u8 *mmio = par->mmio_start_virtual; 80 u8 __iomem *mmio = par->mmio_start_virtual;
81 81
82 i810_writel(mmio, GPIOB, SDA_DIR_MASK); 82 i810_writel(mmio, GPIOB, SDA_DIR_MASK);
83 i810_writel(mmio, GPIOB, 0); 83 i810_writel(mmio, GPIOB, 0);
@@ -88,7 +88,7 @@ static void i810ddc_setscl(void *data, int state)
88{ 88{
89 struct i810fb_i2c_chan *chan = (struct i810fb_i2c_chan *)data; 89 struct i810fb_i2c_chan *chan = (struct i810fb_i2c_chan *)data;
90 struct i810fb_par *par = chan->par; 90 struct i810fb_par *par = chan->par;
91 u8 *mmio = par->mmio_start_virtual; 91 u8 __iomem *mmio = par->mmio_start_virtual;
92 92
93 i810_writel(mmio, GPIOA, (state ? SCL_VAL_OUT : 0) | SCL_DIR | 93 i810_writel(mmio, GPIOA, (state ? SCL_VAL_OUT : 0) | SCL_DIR |
94 SCL_DIR_MASK | SCL_VAL_MASK); 94 SCL_DIR_MASK | SCL_VAL_MASK);
@@ -99,7 +99,7 @@ static void i810ddc_setsda(void *data, int state)
99{ 99{
100 struct i810fb_i2c_chan *chan = (struct i810fb_i2c_chan *)data; 100 struct i810fb_i2c_chan *chan = (struct i810fb_i2c_chan *)data;
101 struct i810fb_par *par = chan->par; 101 struct i810fb_par *par = chan->par;
102 u8 *mmio = par->mmio_start_virtual; 102 u8 __iomem *mmio = par->mmio_start_virtual;
103 103
104 i810_writel(mmio, GPIOA, (state ? SDA_VAL_OUT : 0) | SDA_DIR | 104 i810_writel(mmio, GPIOA, (state ? SDA_VAL_OUT : 0) | SDA_DIR |
105 SDA_DIR_MASK | SDA_VAL_MASK); 105 SDA_DIR_MASK | SDA_VAL_MASK);
@@ -110,7 +110,7 @@ static int i810ddc_getscl(void *data)
110{ 110{
111 struct i810fb_i2c_chan *chan = (struct i810fb_i2c_chan *)data; 111 struct i810fb_i2c_chan *chan = (struct i810fb_i2c_chan *)data;
112 struct i810fb_par *par = chan->par; 112 struct i810fb_par *par = chan->par;
113 u8 *mmio = par->mmio_start_virtual; 113 u8 __iomem *mmio = par->mmio_start_virtual;
114 114
115 i810_writel(mmio, GPIOA, SCL_DIR_MASK); 115 i810_writel(mmio, GPIOA, SCL_DIR_MASK);
116 i810_writel(mmio, GPIOA, 0); 116 i810_writel(mmio, GPIOA, 0);
@@ -121,7 +121,7 @@ static int i810ddc_getsda(void *data)
121{ 121{
122 struct i810fb_i2c_chan *chan = (struct i810fb_i2c_chan *)data; 122 struct i810fb_i2c_chan *chan = (struct i810fb_i2c_chan *)data;
123 struct i810fb_par *par = chan->par; 123 struct i810fb_par *par = chan->par;
124 u8 *mmio = par->mmio_start_virtual; 124 u8 __iomem *mmio = par->mmio_start_virtual;
125 125
126 i810_writel(mmio, GPIOA, SDA_DIR_MASK); 126 i810_writel(mmio, GPIOA, SDA_DIR_MASK);
127 i810_writel(mmio, GPIOA, 0); 127 i810_writel(mmio, GPIOA, 0);
diff --git a/drivers/video/imxfb.c b/drivers/video/imxfb.c
index 6c2244cf0e74..1d54d3d6960b 100644
--- a/drivers/video/imxfb.c
+++ b/drivers/video/imxfb.c
@@ -36,7 +36,6 @@
36 36
37#include <asm/hardware.h> 37#include <asm/hardware.h>
38#include <asm/io.h> 38#include <asm/io.h>
39#include <asm/mach-types.h>
40#include <asm/uaccess.h> 39#include <asm/uaccess.h>
41#include <asm/arch/imxfb.h> 40#include <asm/arch/imxfb.h>
42 41
diff --git a/drivers/video/intelfb/intelfbdrv.c b/drivers/video/intelfb/intelfbdrv.c
index bf62e6ed0382..80a09344f1aa 100644
--- a/drivers/video/intelfb/intelfbdrv.c
+++ b/drivers/video/intelfb/intelfbdrv.c
@@ -226,7 +226,7 @@ MODULE_DEVICE_TABLE(pci, intelfb_pci_table);
226 226
227static int accel = 1; 227static int accel = 1;
228static int vram = 4; 228static int vram = 4;
229static int hwcursor = 1; 229static int hwcursor = 0;
230static int mtrr = 1; 230static int mtrr = 1;
231static int fixed = 0; 231static int fixed = 0;
232static int noinit = 0; 232static int noinit = 0;
@@ -609,15 +609,9 @@ intelfb_pci_register(struct pci_dev *pdev, const struct pci_device_id *ent)
609 dinfo->accel = 0; 609 dinfo->accel = 0;
610 } 610 }
611 611
612 if (MB(voffset) < stolen_size)
613 offset = (stolen_size >> 12);
614 else
615 offset = ROUND_UP_TO_PAGE(MB(voffset))/GTT_PAGE_SIZE;
616
617 /* Framebuffer parameters - Use all the stolen memory if >= vram */ 612 /* Framebuffer parameters - Use all the stolen memory if >= vram */
618 if (ROUND_UP_TO_PAGE(stolen_size) >= ((offset << 12) + MB(vram))) { 613 if (ROUND_UP_TO_PAGE(stolen_size) >= MB(vram)) {
619 dinfo->fb.size = ROUND_UP_TO_PAGE(stolen_size); 614 dinfo->fb.size = ROUND_UP_TO_PAGE(stolen_size);
620 dinfo->fb.offset = 0;
621 dinfo->fbmem_gart = 0; 615 dinfo->fbmem_gart = 0;
622 } else { 616 } else {
623 dinfo->fb.size = MB(vram); 617 dinfo->fb.size = MB(vram);
@@ -648,6 +642,11 @@ intelfb_pci_register(struct pci_dev *pdev, const struct pci_device_id *ent)
648 return -ENODEV; 642 return -ENODEV;
649 } 643 }
650 644
645 if (MB(voffset) < stolen_size)
646 offset = (stolen_size >> 12);
647 else
648 offset = ROUND_UP_TO_PAGE(MB(voffset))/GTT_PAGE_SIZE;
649
651 /* set the mem offsets - set them after the already used pages */ 650 /* set the mem offsets - set them after the already used pages */
652 if (dinfo->accel) { 651 if (dinfo->accel) {
653 dinfo->ring.offset = offset + gtt_info.current_memory; 652 dinfo->ring.offset = offset + gtt_info.current_memory;
@@ -662,10 +661,11 @@ intelfb_pci_register(struct pci_dev *pdev, const struct pci_device_id *ent)
662 + (dinfo->cursor.size >> 12); 661 + (dinfo->cursor.size >> 12);
663 } 662 }
664 663
664 /* Allocate memories (which aren't stolen) */
665 /* Map the fb and MMIO regions */ 665 /* Map the fb and MMIO regions */
666 /* ioremap only up to the end of used aperture */ 666 /* ioremap only up to the end of used aperture */
667 dinfo->aperture.virtual = (u8 __iomem *)ioremap_nocache 667 dinfo->aperture.virtual = (u8 __iomem *)ioremap_nocache
668 (dinfo->aperture.physical, (dinfo->fb.offset << 12) 668 (dinfo->aperture.physical, ((offset + dinfo->fb.offset) << 12)
669 + dinfo->fb.size); 669 + dinfo->fb.size);
670 if (!dinfo->aperture.virtual) { 670 if (!dinfo->aperture.virtual) {
671 ERR_MSG("Cannot remap FB region.\n"); 671 ERR_MSG("Cannot remap FB region.\n");
@@ -682,7 +682,6 @@ intelfb_pci_register(struct pci_dev *pdev, const struct pci_device_id *ent)
682 return -ENODEV; 682 return -ENODEV;
683 } 683 }
684 684
685 /* Allocate memories (which aren't stolen) */
686 if (dinfo->accel) { 685 if (dinfo->accel) {
687 if (!(dinfo->gtt_ring_mem = 686 if (!(dinfo->gtt_ring_mem =
688 agp_allocate_memory(bridge, dinfo->ring.size >> 12, 687 agp_allocate_memory(bridge, dinfo->ring.size >> 12,
@@ -1484,7 +1483,7 @@ intelfb_cursor(struct fb_info *info, struct fb_cursor *cursor)
1484#endif 1483#endif
1485 1484
1486 if (!dinfo->hwcursor) 1485 if (!dinfo->hwcursor)
1487 return -ENXIO; 1486 return soft_cursor(info, cursor);
1488 1487
1489 intelfbhw_cursor_hide(dinfo); 1488 intelfbhw_cursor_hide(dinfo);
1490 1489
diff --git a/drivers/video/pxafb.c b/drivers/video/pxafb.c
index 34d4dcc0320a..194eed0a238c 100644
--- a/drivers/video/pxafb.c
+++ b/drivers/video/pxafb.c
@@ -260,9 +260,9 @@ static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
260 } 260 }
261 261
262#ifdef CONFIG_CPU_FREQ 262#ifdef CONFIG_CPU_FREQ
263 DPRINTK("dma period = %d ps, clock = %d kHz\n", 263 pr_debug("pxafb: dma period = %d ps, clock = %d kHz\n",
264 pxafb_display_dma_period(var), 264 pxafb_display_dma_period(var),
265 get_clk_frequency_khz(0)); 265 get_clk_frequency_khz(0));
266#endif 266#endif
267 267
268 return 0; 268 return 0;
@@ -270,7 +270,7 @@ static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
270 270
271static inline void pxafb_set_truecolor(u_int is_true_color) 271static inline void pxafb_set_truecolor(u_int is_true_color)
272{ 272{
273 DPRINTK("true_color = %d\n", is_true_color); 273 pr_debug("pxafb: true_color = %d\n", is_true_color);
274 // do your machine-specific setup if needed 274 // do your machine-specific setup if needed
275} 275}
276 276
@@ -284,7 +284,7 @@ static int pxafb_set_par(struct fb_info *info)
284 struct fb_var_screeninfo *var = &info->var; 284 struct fb_var_screeninfo *var = &info->var;
285 unsigned long palette_mem_size; 285 unsigned long palette_mem_size;
286 286
287 DPRINTK("set_par\n"); 287 pr_debug("pxafb: set_par\n");
288 288
289 if (var->bits_per_pixel == 16) 289 if (var->bits_per_pixel == 16)
290 fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR; 290 fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
@@ -308,7 +308,7 @@ static int pxafb_set_par(struct fb_info *info)
308 308
309 palette_mem_size = fbi->palette_size * sizeof(u16); 309 palette_mem_size = fbi->palette_size * sizeof(u16);
310 310
311 DPRINTK("palette_mem_size = 0x%08lx\n", (u_long) palette_mem_size); 311 pr_debug("pxafb: palette_mem_size = 0x%08lx\n", palette_mem_size);
312 312
313 fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size); 313 fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
314 fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size; 314 fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
@@ -369,7 +369,7 @@ static int pxafb_blank(int blank, struct fb_info *info)
369 struct pxafb_info *fbi = (struct pxafb_info *)info; 369 struct pxafb_info *fbi = (struct pxafb_info *)info;
370 int i; 370 int i;
371 371
372 DPRINTK("pxafb_blank: blank=%d\n", blank); 372 pr_debug("pxafb: blank=%d\n", blank);
373 373
374 switch (blank) { 374 switch (blank) {
375 case FB_BLANK_POWERDOWN: 375 case FB_BLANK_POWERDOWN:
@@ -508,15 +508,15 @@ static int pxafb_activate_var(struct fb_var_screeninfo *var, struct pxafb_info *
508 u_long flags; 508 u_long flags;
509 u_int lines_per_panel, pcd = get_pcd(var->pixclock); 509 u_int lines_per_panel, pcd = get_pcd(var->pixclock);
510 510
511 DPRINTK("Configuring PXA LCD\n"); 511 pr_debug("pxafb: Configuring PXA LCD\n");
512 512
513 DPRINTK("var: xres=%d hslen=%d lm=%d rm=%d\n", 513 pr_debug("var: xres=%d hslen=%d lm=%d rm=%d\n",
514 var->xres, var->hsync_len, 514 var->xres, var->hsync_len,
515 var->left_margin, var->right_margin); 515 var->left_margin, var->right_margin);
516 DPRINTK("var: yres=%d vslen=%d um=%d bm=%d\n", 516 pr_debug("var: yres=%d vslen=%d um=%d bm=%d\n",
517 var->yres, var->vsync_len, 517 var->yres, var->vsync_len,
518 var->upper_margin, var->lower_margin); 518 var->upper_margin, var->lower_margin);
519 DPRINTK("var: pixclock=%d pcd=%d\n", var->pixclock, pcd); 519 pr_debug("var: pixclock=%d pcd=%d\n", var->pixclock, pcd);
520 520
521#if DEBUG_VAR 521#if DEBUG_VAR
522 if (var->xres < 16 || var->xres > 1024) 522 if (var->xres < 16 || var->xres > 1024)
@@ -589,10 +589,10 @@ static int pxafb_activate_var(struct fb_var_screeninfo *var, struct pxafb_info *
589 if (pcd) 589 if (pcd)
590 new_regs.lccr3 |= LCCR3_PixClkDiv(pcd); 590 new_regs.lccr3 |= LCCR3_PixClkDiv(pcd);
591 591
592 DPRINTK("nlccr0 = 0x%08x\n", new_regs.lccr0); 592 pr_debug("nlccr0 = 0x%08x\n", new_regs.lccr0);
593 DPRINTK("nlccr1 = 0x%08x\n", new_regs.lccr1); 593 pr_debug("nlccr1 = 0x%08x\n", new_regs.lccr1);
594 DPRINTK("nlccr2 = 0x%08x\n", new_regs.lccr2); 594 pr_debug("nlccr2 = 0x%08x\n", new_regs.lccr2);
595 DPRINTK("nlccr3 = 0x%08x\n", new_regs.lccr3); 595 pr_debug("nlccr3 = 0x%08x\n", new_regs.lccr3);
596 596
597 /* Update shadow copy atomically */ 597 /* Update shadow copy atomically */
598 local_irq_save(flags); 598 local_irq_save(flags);
@@ -637,24 +637,24 @@ static int pxafb_activate_var(struct fb_var_screeninfo *var, struct pxafb_info *
637 } 637 }
638 638
639#if 0 639#if 0
640 DPRINTK("fbi->dmadesc_fblow_cpu = 0x%p\n", fbi->dmadesc_fblow_cpu); 640 pr_debug("fbi->dmadesc_fblow_cpu = 0x%p\n", fbi->dmadesc_fblow_cpu);
641 DPRINTK("fbi->dmadesc_fbhigh_cpu = 0x%p\n", fbi->dmadesc_fbhigh_cpu); 641 pr_debug("fbi->dmadesc_fbhigh_cpu = 0x%p\n", fbi->dmadesc_fbhigh_cpu);
642 DPRINTK("fbi->dmadesc_palette_cpu = 0x%p\n", fbi->dmadesc_palette_cpu); 642 pr_debug("fbi->dmadesc_palette_cpu = 0x%p\n", fbi->dmadesc_palette_cpu);
643 DPRINTK("fbi->dmadesc_fblow_dma = 0x%x\n", fbi->dmadesc_fblow_dma); 643 pr_debug("fbi->dmadesc_fblow_dma = 0x%x\n", fbi->dmadesc_fblow_dma);
644 DPRINTK("fbi->dmadesc_fbhigh_dma = 0x%x\n", fbi->dmadesc_fbhigh_dma); 644 pr_debug("fbi->dmadesc_fbhigh_dma = 0x%x\n", fbi->dmadesc_fbhigh_dma);
645 DPRINTK("fbi->dmadesc_palette_dma = 0x%x\n", fbi->dmadesc_palette_dma); 645 pr_debug("fbi->dmadesc_palette_dma = 0x%x\n", fbi->dmadesc_palette_dma);
646 646
647 DPRINTK("fbi->dmadesc_fblow_cpu->fdadr = 0x%x\n", fbi->dmadesc_fblow_cpu->fdadr); 647 pr_debug("fbi->dmadesc_fblow_cpu->fdadr = 0x%x\n", fbi->dmadesc_fblow_cpu->fdadr);
648 DPRINTK("fbi->dmadesc_fbhigh_cpu->fdadr = 0x%x\n", fbi->dmadesc_fbhigh_cpu->fdadr); 648 pr_debug("fbi->dmadesc_fbhigh_cpu->fdadr = 0x%x\n", fbi->dmadesc_fbhigh_cpu->fdadr);
649 DPRINTK("fbi->dmadesc_palette_cpu->fdadr = 0x%x\n", fbi->dmadesc_palette_cpu->fdadr); 649 pr_debug("fbi->dmadesc_palette_cpu->fdadr = 0x%x\n", fbi->dmadesc_palette_cpu->fdadr);
650 650
651 DPRINTK("fbi->dmadesc_fblow_cpu->fsadr = 0x%x\n", fbi->dmadesc_fblow_cpu->fsadr); 651 pr_debug("fbi->dmadesc_fblow_cpu->fsadr = 0x%x\n", fbi->dmadesc_fblow_cpu->fsadr);
652 DPRINTK("fbi->dmadesc_fbhigh_cpu->fsadr = 0x%x\n", fbi->dmadesc_fbhigh_cpu->fsadr); 652 pr_debug("fbi->dmadesc_fbhigh_cpu->fsadr = 0x%x\n", fbi->dmadesc_fbhigh_cpu->fsadr);
653 DPRINTK("fbi->dmadesc_palette_cpu->fsadr = 0x%x\n", fbi->dmadesc_palette_cpu->fsadr); 653 pr_debug("fbi->dmadesc_palette_cpu->fsadr = 0x%x\n", fbi->dmadesc_palette_cpu->fsadr);
654 654
655 DPRINTK("fbi->dmadesc_fblow_cpu->ldcmd = 0x%x\n", fbi->dmadesc_fblow_cpu->ldcmd); 655 pr_debug("fbi->dmadesc_fblow_cpu->ldcmd = 0x%x\n", fbi->dmadesc_fblow_cpu->ldcmd);
656 DPRINTK("fbi->dmadesc_fbhigh_cpu->ldcmd = 0x%x\n", fbi->dmadesc_fbhigh_cpu->ldcmd); 656 pr_debug("fbi->dmadesc_fbhigh_cpu->ldcmd = 0x%x\n", fbi->dmadesc_fbhigh_cpu->ldcmd);
657 DPRINTK("fbi->dmadesc_palette_cpu->ldcmd = 0x%x\n", fbi->dmadesc_palette_cpu->ldcmd); 657 pr_debug("fbi->dmadesc_palette_cpu->ldcmd = 0x%x\n", fbi->dmadesc_palette_cpu->ldcmd);
658#endif 658#endif
659 659
660 fbi->reg_lccr0 = new_regs.lccr0; 660 fbi->reg_lccr0 = new_regs.lccr0;
@@ -684,7 +684,7 @@ static int pxafb_activate_var(struct fb_var_screeninfo *var, struct pxafb_info *
684 */ 684 */
685static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on) 685static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on)
686{ 686{
687 DPRINTK("backlight o%s\n", on ? "n" : "ff"); 687 pr_debug("pxafb: backlight o%s\n", on ? "n" : "ff");
688 688
689 if (pxafb_backlight_power) 689 if (pxafb_backlight_power)
690 pxafb_backlight_power(on); 690 pxafb_backlight_power(on);
@@ -692,7 +692,7 @@ static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on)
692 692
693static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on) 693static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on)
694{ 694{
695 DPRINTK("LCD power o%s\n", on ? "n" : "ff"); 695 pr_debug("pxafb: LCD power o%s\n", on ? "n" : "ff");
696 696
697 if (pxafb_lcd_power) 697 if (pxafb_lcd_power)
698 pxafb_lcd_power(on); 698 pxafb_lcd_power(on);
@@ -740,13 +740,13 @@ static void pxafb_setup_gpio(struct pxafb_info *fbi)
740 740
741static void pxafb_enable_controller(struct pxafb_info *fbi) 741static void pxafb_enable_controller(struct pxafb_info *fbi)
742{ 742{
743 DPRINTK("Enabling LCD controller\n"); 743 pr_debug("pxafb: Enabling LCD controller\n");
744 DPRINTK("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr0); 744 pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr0);
745 DPRINTK("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr1); 745 pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr1);
746 DPRINTK("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0); 746 pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0);
747 DPRINTK("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1); 747 pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1);
748 DPRINTK("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2); 748 pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2);
749 DPRINTK("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3); 749 pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3);
750 750
751 /* enable LCD controller clock */ 751 /* enable LCD controller clock */
752 pxa_set_cken(CKEN16_LCD, 1); 752 pxa_set_cken(CKEN16_LCD, 1);
@@ -761,19 +761,19 @@ static void pxafb_enable_controller(struct pxafb_info *fbi)
761 FDADR1 = fbi->fdadr1; 761 FDADR1 = fbi->fdadr1;
762 LCCR0 |= LCCR0_ENB; 762 LCCR0 |= LCCR0_ENB;
763 763
764 DPRINTK("FDADR0 0x%08x\n", (unsigned int) FDADR0); 764 pr_debug("FDADR0 0x%08x\n", (unsigned int) FDADR0);
765 DPRINTK("FDADR1 0x%08x\n", (unsigned int) FDADR1); 765 pr_debug("FDADR1 0x%08x\n", (unsigned int) FDADR1);
766 DPRINTK("LCCR0 0x%08x\n", (unsigned int) LCCR0); 766 pr_debug("LCCR0 0x%08x\n", (unsigned int) LCCR0);
767 DPRINTK("LCCR1 0x%08x\n", (unsigned int) LCCR1); 767 pr_debug("LCCR1 0x%08x\n", (unsigned int) LCCR1);
768 DPRINTK("LCCR2 0x%08x\n", (unsigned int) LCCR2); 768 pr_debug("LCCR2 0x%08x\n", (unsigned int) LCCR2);
769 DPRINTK("LCCR3 0x%08x\n", (unsigned int) LCCR3); 769 pr_debug("LCCR3 0x%08x\n", (unsigned int) LCCR3);
770} 770}
771 771
772static void pxafb_disable_controller(struct pxafb_info *fbi) 772static void pxafb_disable_controller(struct pxafb_info *fbi)
773{ 773{
774 DECLARE_WAITQUEUE(wait, current); 774 DECLARE_WAITQUEUE(wait, current);
775 775
776 DPRINTK("Disabling LCD controller\n"); 776 pr_debug("pxafb: disabling LCD controller\n");
777 777
778 set_current_state(TASK_UNINTERRUPTIBLE); 778 set_current_state(TASK_UNINTERRUPTIBLE);
779 add_wait_queue(&fbi->ctrlr_wait, &wait); 779 add_wait_queue(&fbi->ctrlr_wait, &wait);
@@ -1039,7 +1039,7 @@ static int __init pxafb_map_video_memory(struct pxafb_info *fbi)
1039 fbi->palette_size = fbi->fb.var.bits_per_pixel == 8 ? 256 : 16; 1039 fbi->palette_size = fbi->fb.var.bits_per_pixel == 8 ? 256 : 16;
1040 1040
1041 palette_mem_size = fbi->palette_size * sizeof(u16); 1041 palette_mem_size = fbi->palette_size * sizeof(u16);
1042 DPRINTK("palette_mem_size = 0x%08lx\n", (u_long) palette_mem_size); 1042 pr_debug("pxafb: palette_mem_size = 0x%08lx\n", palette_mem_size);
1043 1043
1044 fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size); 1044 fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
1045 fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size; 1045 fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
diff --git a/drivers/video/pxafb.h b/drivers/video/pxafb.h
index 22c00be786a8..47f41f70db7a 100644
--- a/drivers/video/pxafb.h
+++ b/drivers/video/pxafb.h
@@ -114,15 +114,6 @@ struct pxafb_info {
114#define PXA_NAME "PXA" 114#define PXA_NAME "PXA"
115 115
116/* 116/*
117 * Debug macros
118 */
119#if DEBUG
120# define DPRINTK(fmt, args...) printk("%s: " fmt, __FUNCTION__ , ## args)
121#else
122# define DPRINTK(fmt, args...)
123#endif
124
125/*
126 * Minimum X and Y resolutions 117 * Minimum X and Y resolutions
127 */ 118 */
128#define MIN_XRES 64 119#define MIN_XRES 64
diff --git a/drivers/video/s3c2410fb.c b/drivers/video/s3c2410fb.c
index 00c0223a352e..5ab79afb53b7 100644
--- a/drivers/video/s3c2410fb.c
+++ b/drivers/video/s3c2410fb.c
@@ -228,8 +228,8 @@ static int s3c2410fb_check_var(struct fb_var_screeninfo *var,
228 * information 228 * information
229*/ 229*/
230 230
231static int s3c2410fb_activate_var(struct s3c2410fb_info *fbi, 231static void s3c2410fb_activate_var(struct s3c2410fb_info *fbi,
232 struct fb_var_screeninfo *var) 232 struct fb_var_screeninfo *var)
233{ 233{
234 fbi->regs.lcdcon1 &= ~S3C2410_LCDCON1_MODEMASK; 234 fbi->regs.lcdcon1 &= ~S3C2410_LCDCON1_MODEMASK;
235 235