aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/usb/gadget/f_ecm.c
diff options
context:
space:
mode:
authorMike Turquette <mturquette@linaro.org>2013-12-20 15:53:02 -0500
committerMike Turquette <mturquette@linaro.org>2013-12-20 15:53:02 -0500
commit7cba64cd901b21c6c162f8dce4353acec29ae2a8 (patch)
treeb2f86681050be4395efc4d5edb51c386d21196cb /drivers/usb/gadget/f_ecm.c
parent24c039f6acacd63e739b39a030197d5a2945e0d2 (diff)
parentba52f8a986089e263ea28e231b6a405769ae1235 (diff)
Merge tag 'zynq-clk-for-3.14-v2' of git://git.xilinx.com/linux-xlnx into clk-next
arm: Xilinx Zynq clk patches for v3.14 - Add support for fclk-enable feature
Diffstat (limited to 'drivers/usb/gadget/f_ecm.c')
0 files changed, 0 insertions, 0 deletions
/a> 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
//SPDX-License-Identifier: GPL-2.0
/*
 * CFB: Cipher FeedBack mode
 *
 * Copyright (c) 2018 James.Bottomley@HansenPartnership.com
 *
 * CFB is a stream cipher mode which is layered on to a block
 * encryption scheme.  It works very much like a one time pad where
 * the pad is generated initially from the encrypted IV and then
 * subsequently from the encrypted previous block of ciphertext.  The
 * pad is XOR'd into the plain text to get the final ciphertext.
 *
 * The scheme of CFB is best described by wikipedia:
 *
 * https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#CFB
 *
 * Note that since the pad for both encryption and decryption is
 * generated by an encryption operation, CFB never uses the block
 * decryption function.
 */

#include <crypto/algapi.h>
#include <crypto/internal/skcipher.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/types.h>

struct crypto_cfb_ctx {
	struct crypto_cipher *child;
};

static unsigned int crypto_cfb_bsize(struct crypto_skcipher *tfm)
{
	struct crypto_cfb_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct crypto_cipher *child = ctx->child;

	return crypto_cipher_blocksize(child);
}

static void crypto_cfb_encrypt_one(struct crypto_skcipher *tfm,
					  const u8 *src, u8 *dst)
{
	struct crypto_cfb_ctx *ctx = crypto_skcipher_ctx(tfm);

	crypto_cipher_encrypt_one(ctx->child, dst, src);
}

/* final encrypt and decrypt is the same */
static void crypto_cfb_final(struct skcipher_walk *walk,
			     struct crypto_skcipher *tfm)
{
	const unsigned long alignmask = crypto_skcipher_alignmask(tfm);
	u8 tmp[MAX_CIPHER_BLOCKSIZE + MAX_CIPHER_ALIGNMASK];
	u8 *stream = PTR_ALIGN(tmp + 0, alignmask + 1);
	u8 *src = walk->src.virt.addr;
	u8 *dst = walk->dst.virt.addr;
	u8 *iv = walk->iv;
	unsigned int nbytes = walk->nbytes;

	crypto_cfb_encrypt_one(tfm, iv, stream);
	crypto_xor_cpy(dst, stream, src, nbytes);
}

static int crypto_cfb_encrypt_segment(struct skcipher_walk *walk,
				      struct crypto_skcipher *tfm)
{
	const unsigned int bsize = crypto_cfb_bsize(tfm);
	unsigned int nbytes = walk->nbytes;
	u8 *src = walk->src.virt.addr;
	u8 *dst = walk->dst.virt.addr;
	u8 *iv = walk->iv;

	do {
		crypto_cfb_encrypt_one(tfm, iv, dst);
		crypto_xor(dst, src, bsize);
		memcpy(iv, dst, bsize);

		src += bsize;
		dst += bsize;
	} while ((nbytes -= bsize) >= bsize);

	return nbytes;
}

static int crypto_cfb_encrypt_inplace(struct skcipher_walk *walk,
				      struct crypto_skcipher *tfm)
{
	const unsigned int bsize = crypto_cfb_bsize(tfm);
	unsigned int nbytes = walk->nbytes;
	u8 *src = walk->src.virt.addr;
	u8 *iv = walk->iv;
	u8 tmp[MAX_CIPHER_BLOCKSIZE];

	do {
		crypto_cfb_encrypt_one(tfm, iv, tmp);
		crypto_xor(src, tmp, bsize);
		iv = src;

		src += bsize;
	} while ((nbytes -= bsize) >= bsize);

	memcpy(walk->iv, iv, bsize);

	return nbytes;
}

static int crypto_cfb_encrypt(struct skcipher_request *req)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct skcipher_walk walk;
	unsigned int bsize = crypto_cfb_bsize(tfm);
	int err;

	err = skcipher_walk_virt(&walk, req, false);

	while (walk.nbytes >= bsize) {
		if (walk.src.virt.addr == walk.dst.virt.addr)
			err = crypto_cfb_encrypt_inplace(&walk, tfm);
		else
			err = crypto_cfb_encrypt_segment(&walk, tfm);
		err = skcipher_walk_done(&walk, err);
	}

	if (walk.nbytes) {
		crypto_cfb_final(&walk, tfm);
		err = skcipher_walk_done(&walk, 0);
	}

	return err;
}

static int crypto_cfb_decrypt_segment(struct skcipher_walk *walk,
				      struct crypto_skcipher *tfm)
{
	const unsigned int bsize = crypto_cfb_bsize(tfm);
	unsigned int nbytes = walk->nbytes;
	u8 *src = walk->src.virt.addr;
	u8 *dst = walk->dst.virt.addr;
	u8 *iv = walk->iv;

	do {
		crypto_cfb_encrypt_one(tfm, iv, dst);
		crypto_xor(dst, iv, bsize);
		iv = src;

		src += bsize;
		dst += bsize;
	} while ((nbytes -= bsize) >= bsize);

	memcpy(walk->iv, iv, bsize);

	return nbytes;
}

static int crypto_cfb_decrypt_inplace(struct skcipher_walk *walk,
				      struct crypto_skcipher *tfm)
{
	const unsigned int bsize = crypto_cfb_bsize(tfm);
	unsigned int nbytes = walk->nbytes;
	u8 *src = walk->src.virt.addr;
	u8 *iv = walk->iv;
	u8 tmp[MAX_CIPHER_BLOCKSIZE];

	do {
		crypto_cfb_encrypt_one(tfm, iv, tmp);
		memcpy(iv, src, bsize);
		crypto_xor(src, tmp, bsize);
		src += bsize;
	} while ((nbytes -= bsize) >= bsize);

	memcpy(walk->iv, iv, bsize);

	return nbytes;
}

static int crypto_cfb_decrypt_blocks(struct skcipher_walk *walk,
				     struct crypto_skcipher *tfm)
{
	if (walk->src.virt.addr == walk->dst.virt.addr)
		return crypto_cfb_decrypt_inplace(walk, tfm);
	else
		return crypto_cfb_decrypt_segment(walk, tfm);
}

static int crypto_cfb_setkey(struct crypto_skcipher *parent, const u8 *key,
			     unsigned int keylen)
{
	struct crypto_cfb_ctx *ctx = crypto_skcipher_ctx(parent);
	struct crypto_cipher *child = ctx->child;
	int err;

	crypto_cipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
	crypto_cipher_set_flags(child, crypto_skcipher_get_flags(parent) &
				       CRYPTO_TFM_REQ_MASK);
	err = crypto_cipher_setkey(child, key, keylen);
	crypto_skcipher_set_flags(parent, crypto_cipher_get_flags(child) &
					  CRYPTO_TFM_RES_MASK);
	return err;
}

static int crypto_cfb_decrypt(struct skcipher_request *req)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct skcipher_walk walk;
	const unsigned int bsize = crypto_cfb_bsize(tfm);
	int err;

	err = skcipher_walk_virt(&walk, req, false);

	while (walk.nbytes >= bsize) {
		err = crypto_cfb_decrypt_blocks(&walk, tfm);
		err = skcipher_walk_done(&walk, err);
	}

	if (walk.nbytes) {
		crypto_cfb_final(&walk, tfm);
		err = skcipher_walk_done(&walk, 0);
	}

	return err;
}

static int crypto_cfb_init_tfm(struct crypto_skcipher *tfm)
{
	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
	struct crypto_spawn *spawn = skcipher_instance_ctx(inst);
	struct crypto_cfb_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct crypto_cipher *cipher;

	cipher = crypto_spawn_cipher(spawn);
	if (IS_ERR(cipher))
		return PTR_ERR(cipher);

	ctx->child = cipher;
	return 0;
}

static void crypto_cfb_exit_tfm(struct crypto_skcipher *tfm)
{
	struct crypto_cfb_ctx *ctx = crypto_skcipher_ctx(tfm);

	crypto_free_cipher(ctx->child);
}

static void crypto_cfb_free(struct skcipher_instance *inst)
{
	crypto_drop_skcipher(skcipher_instance_ctx(inst));
	kfree(inst);
}

static int crypto_cfb_create(struct crypto_template *tmpl, struct rtattr **tb)
{
	struct skcipher_instance *inst;
	struct crypto_attr_type *algt;
	struct crypto_spawn *spawn;
	struct crypto_alg *alg;
	u32 mask;
	int err;

	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER);
	if (err)
		return err;

	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
	if (!inst)
		return -ENOMEM;

	algt = crypto_get_attr_type(tb);
	err = PTR_ERR(algt);
	if (IS_ERR(algt))
		goto err_free_inst;

	mask = CRYPTO_ALG_TYPE_MASK |
		crypto_requires_off(algt->type, algt->mask,
				    CRYPTO_ALG_NEED_FALLBACK);

	alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER, mask);
	err = PTR_ERR(alg);
	if (IS_ERR(alg))
		goto err_free_inst;

	spawn = skcipher_instance_ctx(inst);
	err = crypto_init_spawn(spawn, alg, skcipher_crypto_instance(inst),
				CRYPTO_ALG_TYPE_MASK);
	crypto_mod_put(alg);
	if (err)
		goto err_free_inst;

	err = crypto_inst_setname(skcipher_crypto_instance(inst), "cfb", alg);
	if (err)
		goto err_drop_spawn;

	inst->alg.base.cra_priority = alg->cra_priority;
	/* we're a stream cipher independend of the crypto cra_blocksize */
	inst->alg.base.cra_blocksize = 1;
	inst->alg.base.cra_alignmask = alg->cra_alignmask;

	inst->alg.ivsize = alg->cra_blocksize;
	inst->alg.min_keysize = alg->cra_cipher.cia_min_keysize;
	inst->alg.max_keysize = alg->cra_cipher.cia_max_keysize;

	inst->alg.base.cra_ctxsize = sizeof(struct crypto_cfb_ctx);

	inst->alg.init = crypto_cfb_init_tfm;
	inst->alg.exit = crypto_cfb_exit_tfm;

	inst->alg.setkey = crypto_cfb_setkey;
	inst->alg.encrypt = crypto_cfb_encrypt;
	inst->alg.decrypt = crypto_cfb_decrypt;

	inst->free = crypto_cfb_free;

	err = skcipher_register_instance(tmpl, inst);
	if (err)
		goto err_drop_spawn;

out:
	return err;

err_drop_spawn:
	crypto_drop_spawn(spawn);
err_free_inst:
	kfree(inst);
	goto out;
}

static struct crypto_template crypto_cfb_tmpl = {
	.name = "cfb",
	.create = crypto_cfb_create,
	.module = THIS_MODULE,
};

static int __init crypto_cfb_module_init(void)
{
	return crypto_register_template(&crypto_cfb_tmpl);
}

static void __exit crypto_cfb_module_exit(void)
{
	crypto_unregister_template(&crypto_cfb_tmpl);
}

module_init(crypto_cfb_module_init);
module_exit(crypto_cfb_module_exit);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("CFB block cipher algorithm");
MODULE_ALIAS_CRYPTO("cfb");