diff options
author | Glenn Elliott <gelliott@cs.unc.edu> | 2012-03-04 19:47:13 -0500 |
---|---|---|
committer | Glenn Elliott <gelliott@cs.unc.edu> | 2012-03-04 19:47:13 -0500 |
commit | c71c03bda1e86c9d5198c5d83f712e695c4f2a1e (patch) | |
tree | ecb166cb3e2b7e2adb3b5e292245fefd23381ac8 /drivers/tty/vt/keyboard.c | |
parent | ea53c912f8a86a8567697115b6a0d8152beee5c8 (diff) | |
parent | 6a00f206debf8a5c8899055726ad127dbeeed098 (diff) |
Merge branch 'mpi-master' into wip-k-fmlpwip-k-fmlp
Conflicts:
litmus/sched_cedf.c
Diffstat (limited to 'drivers/tty/vt/keyboard.c')
-rw-r--r-- | drivers/tty/vt/keyboard.c | 1453 |
1 files changed, 1453 insertions, 0 deletions
diff --git a/drivers/tty/vt/keyboard.c b/drivers/tty/vt/keyboard.c new file mode 100644 index 000000000000..3761ccf0f340 --- /dev/null +++ b/drivers/tty/vt/keyboard.c | |||
@@ -0,0 +1,1453 @@ | |||
1 | /* | ||
2 | * Written for linux by Johan Myreen as a translation from | ||
3 | * the assembly version by Linus (with diacriticals added) | ||
4 | * | ||
5 | * Some additional features added by Christoph Niemann (ChN), March 1993 | ||
6 | * | ||
7 | * Loadable keymaps by Risto Kankkunen, May 1993 | ||
8 | * | ||
9 | * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993 | ||
10 | * Added decr/incr_console, dynamic keymaps, Unicode support, | ||
11 | * dynamic function/string keys, led setting, Sept 1994 | ||
12 | * `Sticky' modifier keys, 951006. | ||
13 | * | ||
14 | * 11-11-96: SAK should now work in the raw mode (Martin Mares) | ||
15 | * | ||
16 | * Modified to provide 'generic' keyboard support by Hamish Macdonald | ||
17 | * Merge with the m68k keyboard driver and split-off of the PC low-level | ||
18 | * parts by Geert Uytterhoeven, May 1997 | ||
19 | * | ||
20 | * 27-05-97: Added support for the Magic SysRq Key (Martin Mares) | ||
21 | * 30-07-98: Dead keys redone, aeb@cwi.nl. | ||
22 | * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik) | ||
23 | */ | ||
24 | |||
25 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | ||
26 | |||
27 | #include <linux/consolemap.h> | ||
28 | #include <linux/module.h> | ||
29 | #include <linux/sched.h> | ||
30 | #include <linux/tty.h> | ||
31 | #include <linux/tty_flip.h> | ||
32 | #include <linux/mm.h> | ||
33 | #include <linux/string.h> | ||
34 | #include <linux/init.h> | ||
35 | #include <linux/slab.h> | ||
36 | #include <linux/irq.h> | ||
37 | |||
38 | #include <linux/kbd_kern.h> | ||
39 | #include <linux/kbd_diacr.h> | ||
40 | #include <linux/vt_kern.h> | ||
41 | #include <linux/input.h> | ||
42 | #include <linux/reboot.h> | ||
43 | #include <linux/notifier.h> | ||
44 | #include <linux/jiffies.h> | ||
45 | |||
46 | extern void ctrl_alt_del(void); | ||
47 | |||
48 | /* | ||
49 | * Exported functions/variables | ||
50 | */ | ||
51 | |||
52 | #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META)) | ||
53 | |||
54 | /* | ||
55 | * Some laptops take the 789uiojklm,. keys as number pad when NumLock is on. | ||
56 | * This seems a good reason to start with NumLock off. On HIL keyboards | ||
57 | * of PARISC machines however there is no NumLock key and everyone expects the keypad | ||
58 | * to be used for numbers. | ||
59 | */ | ||
60 | |||
61 | #if defined(CONFIG_PARISC) && (defined(CONFIG_KEYBOARD_HIL) || defined(CONFIG_KEYBOARD_HIL_OLD)) | ||
62 | #define KBD_DEFLEDS (1 << VC_NUMLOCK) | ||
63 | #else | ||
64 | #define KBD_DEFLEDS 0 | ||
65 | #endif | ||
66 | |||
67 | #define KBD_DEFLOCK 0 | ||
68 | |||
69 | void compute_shiftstate(void); | ||
70 | |||
71 | /* | ||
72 | * Handler Tables. | ||
73 | */ | ||
74 | |||
75 | #define K_HANDLERS\ | ||
76 | k_self, k_fn, k_spec, k_pad,\ | ||
77 | k_dead, k_cons, k_cur, k_shift,\ | ||
78 | k_meta, k_ascii, k_lock, k_lowercase,\ | ||
79 | k_slock, k_dead2, k_brl, k_ignore | ||
80 | |||
81 | typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value, | ||
82 | char up_flag); | ||
83 | static k_handler_fn K_HANDLERS; | ||
84 | static k_handler_fn *k_handler[16] = { K_HANDLERS }; | ||
85 | |||
86 | #define FN_HANDLERS\ | ||
87 | fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\ | ||
88 | fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\ | ||
89 | fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\ | ||
90 | fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\ | ||
91 | fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num | ||
92 | |||
93 | typedef void (fn_handler_fn)(struct vc_data *vc); | ||
94 | static fn_handler_fn FN_HANDLERS; | ||
95 | static fn_handler_fn *fn_handler[] = { FN_HANDLERS }; | ||
96 | |||
97 | /* | ||
98 | * Variables exported for vt_ioctl.c | ||
99 | */ | ||
100 | |||
101 | /* maximum values each key_handler can handle */ | ||
102 | const int max_vals[] = { | ||
103 | 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1, | ||
104 | NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1, | ||
105 | 255, NR_LOCK - 1, 255, NR_BRL - 1 | ||
106 | }; | ||
107 | |||
108 | const int NR_TYPES = ARRAY_SIZE(max_vals); | ||
109 | |||
110 | struct kbd_struct kbd_table[MAX_NR_CONSOLES]; | ||
111 | EXPORT_SYMBOL_GPL(kbd_table); | ||
112 | static struct kbd_struct *kbd = kbd_table; | ||
113 | |||
114 | struct vt_spawn_console vt_spawn_con = { | ||
115 | .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock), | ||
116 | .pid = NULL, | ||
117 | .sig = 0, | ||
118 | }; | ||
119 | |||
120 | /* | ||
121 | * Variables exported for vt.c | ||
122 | */ | ||
123 | |||
124 | int shift_state = 0; | ||
125 | |||
126 | /* | ||
127 | * Internal Data. | ||
128 | */ | ||
129 | |||
130 | static struct input_handler kbd_handler; | ||
131 | static DEFINE_SPINLOCK(kbd_event_lock); | ||
132 | static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */ | ||
133 | static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */ | ||
134 | static bool dead_key_next; | ||
135 | static int npadch = -1; /* -1 or number assembled on pad */ | ||
136 | static unsigned int diacr; | ||
137 | static char rep; /* flag telling character repeat */ | ||
138 | |||
139 | static unsigned char ledstate = 0xff; /* undefined */ | ||
140 | static unsigned char ledioctl; | ||
141 | |||
142 | static struct ledptr { | ||
143 | unsigned int *addr; | ||
144 | unsigned int mask; | ||
145 | unsigned char valid:1; | ||
146 | } ledptrs[3]; | ||
147 | |||
148 | /* | ||
149 | * Notifier list for console keyboard events | ||
150 | */ | ||
151 | static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list); | ||
152 | |||
153 | int register_keyboard_notifier(struct notifier_block *nb) | ||
154 | { | ||
155 | return atomic_notifier_chain_register(&keyboard_notifier_list, nb); | ||
156 | } | ||
157 | EXPORT_SYMBOL_GPL(register_keyboard_notifier); | ||
158 | |||
159 | int unregister_keyboard_notifier(struct notifier_block *nb) | ||
160 | { | ||
161 | return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb); | ||
162 | } | ||
163 | EXPORT_SYMBOL_GPL(unregister_keyboard_notifier); | ||
164 | |||
165 | /* | ||
166 | * Translation of scancodes to keycodes. We set them on only the first | ||
167 | * keyboard in the list that accepts the scancode and keycode. | ||
168 | * Explanation for not choosing the first attached keyboard anymore: | ||
169 | * USB keyboards for example have two event devices: one for all "normal" | ||
170 | * keys and one for extra function keys (like "volume up", "make coffee", | ||
171 | * etc.). So this means that scancodes for the extra function keys won't | ||
172 | * be valid for the first event device, but will be for the second. | ||
173 | */ | ||
174 | |||
175 | struct getset_keycode_data { | ||
176 | struct input_keymap_entry ke; | ||
177 | int error; | ||
178 | }; | ||
179 | |||
180 | static int getkeycode_helper(struct input_handle *handle, void *data) | ||
181 | { | ||
182 | struct getset_keycode_data *d = data; | ||
183 | |||
184 | d->error = input_get_keycode(handle->dev, &d->ke); | ||
185 | |||
186 | return d->error == 0; /* stop as soon as we successfully get one */ | ||
187 | } | ||
188 | |||
189 | int getkeycode(unsigned int scancode) | ||
190 | { | ||
191 | struct getset_keycode_data d = { | ||
192 | .ke = { | ||
193 | .flags = 0, | ||
194 | .len = sizeof(scancode), | ||
195 | .keycode = 0, | ||
196 | }, | ||
197 | .error = -ENODEV, | ||
198 | }; | ||
199 | |||
200 | memcpy(d.ke.scancode, &scancode, sizeof(scancode)); | ||
201 | |||
202 | input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper); | ||
203 | |||
204 | return d.error ?: d.ke.keycode; | ||
205 | } | ||
206 | |||
207 | static int setkeycode_helper(struct input_handle *handle, void *data) | ||
208 | { | ||
209 | struct getset_keycode_data *d = data; | ||
210 | |||
211 | d->error = input_set_keycode(handle->dev, &d->ke); | ||
212 | |||
213 | return d->error == 0; /* stop as soon as we successfully set one */ | ||
214 | } | ||
215 | |||
216 | int setkeycode(unsigned int scancode, unsigned int keycode) | ||
217 | { | ||
218 | struct getset_keycode_data d = { | ||
219 | .ke = { | ||
220 | .flags = 0, | ||
221 | .len = sizeof(scancode), | ||
222 | .keycode = keycode, | ||
223 | }, | ||
224 | .error = -ENODEV, | ||
225 | }; | ||
226 | |||
227 | memcpy(d.ke.scancode, &scancode, sizeof(scancode)); | ||
228 | |||
229 | input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper); | ||
230 | |||
231 | return d.error; | ||
232 | } | ||
233 | |||
234 | /* | ||
235 | * Making beeps and bells. Note that we prefer beeps to bells, but when | ||
236 | * shutting the sound off we do both. | ||
237 | */ | ||
238 | |||
239 | static int kd_sound_helper(struct input_handle *handle, void *data) | ||
240 | { | ||
241 | unsigned int *hz = data; | ||
242 | struct input_dev *dev = handle->dev; | ||
243 | |||
244 | if (test_bit(EV_SND, dev->evbit)) { | ||
245 | if (test_bit(SND_TONE, dev->sndbit)) { | ||
246 | input_inject_event(handle, EV_SND, SND_TONE, *hz); | ||
247 | if (*hz) | ||
248 | return 0; | ||
249 | } | ||
250 | if (test_bit(SND_BELL, dev->sndbit)) | ||
251 | input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0); | ||
252 | } | ||
253 | |||
254 | return 0; | ||
255 | } | ||
256 | |||
257 | static void kd_nosound(unsigned long ignored) | ||
258 | { | ||
259 | static unsigned int zero; | ||
260 | |||
261 | input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper); | ||
262 | } | ||
263 | |||
264 | static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0); | ||
265 | |||
266 | void kd_mksound(unsigned int hz, unsigned int ticks) | ||
267 | { | ||
268 | del_timer_sync(&kd_mksound_timer); | ||
269 | |||
270 | input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper); | ||
271 | |||
272 | if (hz && ticks) | ||
273 | mod_timer(&kd_mksound_timer, jiffies + ticks); | ||
274 | } | ||
275 | EXPORT_SYMBOL(kd_mksound); | ||
276 | |||
277 | /* | ||
278 | * Setting the keyboard rate. | ||
279 | */ | ||
280 | |||
281 | static int kbd_rate_helper(struct input_handle *handle, void *data) | ||
282 | { | ||
283 | struct input_dev *dev = handle->dev; | ||
284 | struct kbd_repeat *rep = data; | ||
285 | |||
286 | if (test_bit(EV_REP, dev->evbit)) { | ||
287 | |||
288 | if (rep[0].delay > 0) | ||
289 | input_inject_event(handle, | ||
290 | EV_REP, REP_DELAY, rep[0].delay); | ||
291 | if (rep[0].period > 0) | ||
292 | input_inject_event(handle, | ||
293 | EV_REP, REP_PERIOD, rep[0].period); | ||
294 | |||
295 | rep[1].delay = dev->rep[REP_DELAY]; | ||
296 | rep[1].period = dev->rep[REP_PERIOD]; | ||
297 | } | ||
298 | |||
299 | return 0; | ||
300 | } | ||
301 | |||
302 | int kbd_rate(struct kbd_repeat *rep) | ||
303 | { | ||
304 | struct kbd_repeat data[2] = { *rep }; | ||
305 | |||
306 | input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper); | ||
307 | *rep = data[1]; /* Copy currently used settings */ | ||
308 | |||
309 | return 0; | ||
310 | } | ||
311 | |||
312 | /* | ||
313 | * Helper Functions. | ||
314 | */ | ||
315 | static void put_queue(struct vc_data *vc, int ch) | ||
316 | { | ||
317 | struct tty_struct *tty = vc->port.tty; | ||
318 | |||
319 | if (tty) { | ||
320 | tty_insert_flip_char(tty, ch, 0); | ||
321 | con_schedule_flip(tty); | ||
322 | } | ||
323 | } | ||
324 | |||
325 | static void puts_queue(struct vc_data *vc, char *cp) | ||
326 | { | ||
327 | struct tty_struct *tty = vc->port.tty; | ||
328 | |||
329 | if (!tty) | ||
330 | return; | ||
331 | |||
332 | while (*cp) { | ||
333 | tty_insert_flip_char(tty, *cp, 0); | ||
334 | cp++; | ||
335 | } | ||
336 | con_schedule_flip(tty); | ||
337 | } | ||
338 | |||
339 | static void applkey(struct vc_data *vc, int key, char mode) | ||
340 | { | ||
341 | static char buf[] = { 0x1b, 'O', 0x00, 0x00 }; | ||
342 | |||
343 | buf[1] = (mode ? 'O' : '['); | ||
344 | buf[2] = key; | ||
345 | puts_queue(vc, buf); | ||
346 | } | ||
347 | |||
348 | /* | ||
349 | * Many other routines do put_queue, but I think either | ||
350 | * they produce ASCII, or they produce some user-assigned | ||
351 | * string, and in both cases we might assume that it is | ||
352 | * in utf-8 already. | ||
353 | */ | ||
354 | static void to_utf8(struct vc_data *vc, uint c) | ||
355 | { | ||
356 | if (c < 0x80) | ||
357 | /* 0******* */ | ||
358 | put_queue(vc, c); | ||
359 | else if (c < 0x800) { | ||
360 | /* 110***** 10****** */ | ||
361 | put_queue(vc, 0xc0 | (c >> 6)); | ||
362 | put_queue(vc, 0x80 | (c & 0x3f)); | ||
363 | } else if (c < 0x10000) { | ||
364 | if (c >= 0xD800 && c < 0xE000) | ||
365 | return; | ||
366 | if (c == 0xFFFF) | ||
367 | return; | ||
368 | /* 1110**** 10****** 10****** */ | ||
369 | put_queue(vc, 0xe0 | (c >> 12)); | ||
370 | put_queue(vc, 0x80 | ((c >> 6) & 0x3f)); | ||
371 | put_queue(vc, 0x80 | (c & 0x3f)); | ||
372 | } else if (c < 0x110000) { | ||
373 | /* 11110*** 10****** 10****** 10****** */ | ||
374 | put_queue(vc, 0xf0 | (c >> 18)); | ||
375 | put_queue(vc, 0x80 | ((c >> 12) & 0x3f)); | ||
376 | put_queue(vc, 0x80 | ((c >> 6) & 0x3f)); | ||
377 | put_queue(vc, 0x80 | (c & 0x3f)); | ||
378 | } | ||
379 | } | ||
380 | |||
381 | /* | ||
382 | * Called after returning from RAW mode or when changing consoles - recompute | ||
383 | * shift_down[] and shift_state from key_down[] maybe called when keymap is | ||
384 | * undefined, so that shiftkey release is seen | ||
385 | */ | ||
386 | void compute_shiftstate(void) | ||
387 | { | ||
388 | unsigned int i, j, k, sym, val; | ||
389 | |||
390 | shift_state = 0; | ||
391 | memset(shift_down, 0, sizeof(shift_down)); | ||
392 | |||
393 | for (i = 0; i < ARRAY_SIZE(key_down); i++) { | ||
394 | |||
395 | if (!key_down[i]) | ||
396 | continue; | ||
397 | |||
398 | k = i * BITS_PER_LONG; | ||
399 | |||
400 | for (j = 0; j < BITS_PER_LONG; j++, k++) { | ||
401 | |||
402 | if (!test_bit(k, key_down)) | ||
403 | continue; | ||
404 | |||
405 | sym = U(key_maps[0][k]); | ||
406 | if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK) | ||
407 | continue; | ||
408 | |||
409 | val = KVAL(sym); | ||
410 | if (val == KVAL(K_CAPSSHIFT)) | ||
411 | val = KVAL(K_SHIFT); | ||
412 | |||
413 | shift_down[val]++; | ||
414 | shift_state |= (1 << val); | ||
415 | } | ||
416 | } | ||
417 | } | ||
418 | |||
419 | /* | ||
420 | * We have a combining character DIACR here, followed by the character CH. | ||
421 | * If the combination occurs in the table, return the corresponding value. | ||
422 | * Otherwise, if CH is a space or equals DIACR, return DIACR. | ||
423 | * Otherwise, conclude that DIACR was not combining after all, | ||
424 | * queue it and return CH. | ||
425 | */ | ||
426 | static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch) | ||
427 | { | ||
428 | unsigned int d = diacr; | ||
429 | unsigned int i; | ||
430 | |||
431 | diacr = 0; | ||
432 | |||
433 | if ((d & ~0xff) == BRL_UC_ROW) { | ||
434 | if ((ch & ~0xff) == BRL_UC_ROW) | ||
435 | return d | ch; | ||
436 | } else { | ||
437 | for (i = 0; i < accent_table_size; i++) | ||
438 | if (accent_table[i].diacr == d && accent_table[i].base == ch) | ||
439 | return accent_table[i].result; | ||
440 | } | ||
441 | |||
442 | if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d) | ||
443 | return d; | ||
444 | |||
445 | if (kbd->kbdmode == VC_UNICODE) | ||
446 | to_utf8(vc, d); | ||
447 | else { | ||
448 | int c = conv_uni_to_8bit(d); | ||
449 | if (c != -1) | ||
450 | put_queue(vc, c); | ||
451 | } | ||
452 | |||
453 | return ch; | ||
454 | } | ||
455 | |||
456 | /* | ||
457 | * Special function handlers | ||
458 | */ | ||
459 | static void fn_enter(struct vc_data *vc) | ||
460 | { | ||
461 | if (diacr) { | ||
462 | if (kbd->kbdmode == VC_UNICODE) | ||
463 | to_utf8(vc, diacr); | ||
464 | else { | ||
465 | int c = conv_uni_to_8bit(diacr); | ||
466 | if (c != -1) | ||
467 | put_queue(vc, c); | ||
468 | } | ||
469 | diacr = 0; | ||
470 | } | ||
471 | |||
472 | put_queue(vc, 13); | ||
473 | if (vc_kbd_mode(kbd, VC_CRLF)) | ||
474 | put_queue(vc, 10); | ||
475 | } | ||
476 | |||
477 | static void fn_caps_toggle(struct vc_data *vc) | ||
478 | { | ||
479 | if (rep) | ||
480 | return; | ||
481 | |||
482 | chg_vc_kbd_led(kbd, VC_CAPSLOCK); | ||
483 | } | ||
484 | |||
485 | static void fn_caps_on(struct vc_data *vc) | ||
486 | { | ||
487 | if (rep) | ||
488 | return; | ||
489 | |||
490 | set_vc_kbd_led(kbd, VC_CAPSLOCK); | ||
491 | } | ||
492 | |||
493 | static void fn_show_ptregs(struct vc_data *vc) | ||
494 | { | ||
495 | struct pt_regs *regs = get_irq_regs(); | ||
496 | |||
497 | if (regs) | ||
498 | show_regs(regs); | ||
499 | } | ||
500 | |||
501 | static void fn_hold(struct vc_data *vc) | ||
502 | { | ||
503 | struct tty_struct *tty = vc->port.tty; | ||
504 | |||
505 | if (rep || !tty) | ||
506 | return; | ||
507 | |||
508 | /* | ||
509 | * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty); | ||
510 | * these routines are also activated by ^S/^Q. | ||
511 | * (And SCROLLOCK can also be set by the ioctl KDSKBLED.) | ||
512 | */ | ||
513 | if (tty->stopped) | ||
514 | start_tty(tty); | ||
515 | else | ||
516 | stop_tty(tty); | ||
517 | } | ||
518 | |||
519 | static void fn_num(struct vc_data *vc) | ||
520 | { | ||
521 | if (vc_kbd_mode(kbd, VC_APPLIC)) | ||
522 | applkey(vc, 'P', 1); | ||
523 | else | ||
524 | fn_bare_num(vc); | ||
525 | } | ||
526 | |||
527 | /* | ||
528 | * Bind this to Shift-NumLock if you work in application keypad mode | ||
529 | * but want to be able to change the NumLock flag. | ||
530 | * Bind this to NumLock if you prefer that the NumLock key always | ||
531 | * changes the NumLock flag. | ||
532 | */ | ||
533 | static void fn_bare_num(struct vc_data *vc) | ||
534 | { | ||
535 | if (!rep) | ||
536 | chg_vc_kbd_led(kbd, VC_NUMLOCK); | ||
537 | } | ||
538 | |||
539 | static void fn_lastcons(struct vc_data *vc) | ||
540 | { | ||
541 | /* switch to the last used console, ChN */ | ||
542 | set_console(last_console); | ||
543 | } | ||
544 | |||
545 | static void fn_dec_console(struct vc_data *vc) | ||
546 | { | ||
547 | int i, cur = fg_console; | ||
548 | |||
549 | /* Currently switching? Queue this next switch relative to that. */ | ||
550 | if (want_console != -1) | ||
551 | cur = want_console; | ||
552 | |||
553 | for (i = cur - 1; i != cur; i--) { | ||
554 | if (i == -1) | ||
555 | i = MAX_NR_CONSOLES - 1; | ||
556 | if (vc_cons_allocated(i)) | ||
557 | break; | ||
558 | } | ||
559 | set_console(i); | ||
560 | } | ||
561 | |||
562 | static void fn_inc_console(struct vc_data *vc) | ||
563 | { | ||
564 | int i, cur = fg_console; | ||
565 | |||
566 | /* Currently switching? Queue this next switch relative to that. */ | ||
567 | if (want_console != -1) | ||
568 | cur = want_console; | ||
569 | |||
570 | for (i = cur+1; i != cur; i++) { | ||
571 | if (i == MAX_NR_CONSOLES) | ||
572 | i = 0; | ||
573 | if (vc_cons_allocated(i)) | ||
574 | break; | ||
575 | } | ||
576 | set_console(i); | ||
577 | } | ||
578 | |||
579 | static void fn_send_intr(struct vc_data *vc) | ||
580 | { | ||
581 | struct tty_struct *tty = vc->port.tty; | ||
582 | |||
583 | if (!tty) | ||
584 | return; | ||
585 | tty_insert_flip_char(tty, 0, TTY_BREAK); | ||
586 | con_schedule_flip(tty); | ||
587 | } | ||
588 | |||
589 | static void fn_scroll_forw(struct vc_data *vc) | ||
590 | { | ||
591 | scrollfront(vc, 0); | ||
592 | } | ||
593 | |||
594 | static void fn_scroll_back(struct vc_data *vc) | ||
595 | { | ||
596 | scrollback(vc, 0); | ||
597 | } | ||
598 | |||
599 | static void fn_show_mem(struct vc_data *vc) | ||
600 | { | ||
601 | show_mem(0); | ||
602 | } | ||
603 | |||
604 | static void fn_show_state(struct vc_data *vc) | ||
605 | { | ||
606 | show_state(); | ||
607 | } | ||
608 | |||
609 | static void fn_boot_it(struct vc_data *vc) | ||
610 | { | ||
611 | ctrl_alt_del(); | ||
612 | } | ||
613 | |||
614 | static void fn_compose(struct vc_data *vc) | ||
615 | { | ||
616 | dead_key_next = true; | ||
617 | } | ||
618 | |||
619 | static void fn_spawn_con(struct vc_data *vc) | ||
620 | { | ||
621 | spin_lock(&vt_spawn_con.lock); | ||
622 | if (vt_spawn_con.pid) | ||
623 | if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) { | ||
624 | put_pid(vt_spawn_con.pid); | ||
625 | vt_spawn_con.pid = NULL; | ||
626 | } | ||
627 | spin_unlock(&vt_spawn_con.lock); | ||
628 | } | ||
629 | |||
630 | static void fn_SAK(struct vc_data *vc) | ||
631 | { | ||
632 | struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work; | ||
633 | schedule_work(SAK_work); | ||
634 | } | ||
635 | |||
636 | static void fn_null(struct vc_data *vc) | ||
637 | { | ||
638 | compute_shiftstate(); | ||
639 | } | ||
640 | |||
641 | /* | ||
642 | * Special key handlers | ||
643 | */ | ||
644 | static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag) | ||
645 | { | ||
646 | } | ||
647 | |||
648 | static void k_spec(struct vc_data *vc, unsigned char value, char up_flag) | ||
649 | { | ||
650 | if (up_flag) | ||
651 | return; | ||
652 | if (value >= ARRAY_SIZE(fn_handler)) | ||
653 | return; | ||
654 | if ((kbd->kbdmode == VC_RAW || | ||
655 | kbd->kbdmode == VC_MEDIUMRAW || | ||
656 | kbd->kbdmode == VC_OFF) && | ||
657 | value != KVAL(K_SAK)) | ||
658 | return; /* SAK is allowed even in raw mode */ | ||
659 | fn_handler[value](vc); | ||
660 | } | ||
661 | |||
662 | static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag) | ||
663 | { | ||
664 | pr_err("k_lowercase was called - impossible\n"); | ||
665 | } | ||
666 | |||
667 | static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag) | ||
668 | { | ||
669 | if (up_flag) | ||
670 | return; /* no action, if this is a key release */ | ||
671 | |||
672 | if (diacr) | ||
673 | value = handle_diacr(vc, value); | ||
674 | |||
675 | if (dead_key_next) { | ||
676 | dead_key_next = false; | ||
677 | diacr = value; | ||
678 | return; | ||
679 | } | ||
680 | if (kbd->kbdmode == VC_UNICODE) | ||
681 | to_utf8(vc, value); | ||
682 | else { | ||
683 | int c = conv_uni_to_8bit(value); | ||
684 | if (c != -1) | ||
685 | put_queue(vc, c); | ||
686 | } | ||
687 | } | ||
688 | |||
689 | /* | ||
690 | * Handle dead key. Note that we now may have several | ||
691 | * dead keys modifying the same character. Very useful | ||
692 | * for Vietnamese. | ||
693 | */ | ||
694 | static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag) | ||
695 | { | ||
696 | if (up_flag) | ||
697 | return; | ||
698 | |||
699 | diacr = (diacr ? handle_diacr(vc, value) : value); | ||
700 | } | ||
701 | |||
702 | static void k_self(struct vc_data *vc, unsigned char value, char up_flag) | ||
703 | { | ||
704 | k_unicode(vc, conv_8bit_to_uni(value), up_flag); | ||
705 | } | ||
706 | |||
707 | static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag) | ||
708 | { | ||
709 | k_deadunicode(vc, value, up_flag); | ||
710 | } | ||
711 | |||
712 | /* | ||
713 | * Obsolete - for backwards compatibility only | ||
714 | */ | ||
715 | static void k_dead(struct vc_data *vc, unsigned char value, char up_flag) | ||
716 | { | ||
717 | static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' }; | ||
718 | |||
719 | k_deadunicode(vc, ret_diacr[value], up_flag); | ||
720 | } | ||
721 | |||
722 | static void k_cons(struct vc_data *vc, unsigned char value, char up_flag) | ||
723 | { | ||
724 | if (up_flag) | ||
725 | return; | ||
726 | |||
727 | set_console(value); | ||
728 | } | ||
729 | |||
730 | static void k_fn(struct vc_data *vc, unsigned char value, char up_flag) | ||
731 | { | ||
732 | if (up_flag) | ||
733 | return; | ||
734 | |||
735 | if ((unsigned)value < ARRAY_SIZE(func_table)) { | ||
736 | if (func_table[value]) | ||
737 | puts_queue(vc, func_table[value]); | ||
738 | } else | ||
739 | pr_err("k_fn called with value=%d\n", value); | ||
740 | } | ||
741 | |||
742 | static void k_cur(struct vc_data *vc, unsigned char value, char up_flag) | ||
743 | { | ||
744 | static const char cur_chars[] = "BDCA"; | ||
745 | |||
746 | if (up_flag) | ||
747 | return; | ||
748 | |||
749 | applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE)); | ||
750 | } | ||
751 | |||
752 | static void k_pad(struct vc_data *vc, unsigned char value, char up_flag) | ||
753 | { | ||
754 | static const char pad_chars[] = "0123456789+-*/\015,.?()#"; | ||
755 | static const char app_map[] = "pqrstuvwxylSRQMnnmPQS"; | ||
756 | |||
757 | if (up_flag) | ||
758 | return; /* no action, if this is a key release */ | ||
759 | |||
760 | /* kludge... shift forces cursor/number keys */ | ||
761 | if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) { | ||
762 | applkey(vc, app_map[value], 1); | ||
763 | return; | ||
764 | } | ||
765 | |||
766 | if (!vc_kbd_led(kbd, VC_NUMLOCK)) { | ||
767 | |||
768 | switch (value) { | ||
769 | case KVAL(K_PCOMMA): | ||
770 | case KVAL(K_PDOT): | ||
771 | k_fn(vc, KVAL(K_REMOVE), 0); | ||
772 | return; | ||
773 | case KVAL(K_P0): | ||
774 | k_fn(vc, KVAL(K_INSERT), 0); | ||
775 | return; | ||
776 | case KVAL(K_P1): | ||
777 | k_fn(vc, KVAL(K_SELECT), 0); | ||
778 | return; | ||
779 | case KVAL(K_P2): | ||
780 | k_cur(vc, KVAL(K_DOWN), 0); | ||
781 | return; | ||
782 | case KVAL(K_P3): | ||
783 | k_fn(vc, KVAL(K_PGDN), 0); | ||
784 | return; | ||
785 | case KVAL(K_P4): | ||
786 | k_cur(vc, KVAL(K_LEFT), 0); | ||
787 | return; | ||
788 | case KVAL(K_P6): | ||
789 | k_cur(vc, KVAL(K_RIGHT), 0); | ||
790 | return; | ||
791 | case KVAL(K_P7): | ||
792 | k_fn(vc, KVAL(K_FIND), 0); | ||
793 | return; | ||
794 | case KVAL(K_P8): | ||
795 | k_cur(vc, KVAL(K_UP), 0); | ||
796 | return; | ||
797 | case KVAL(K_P9): | ||
798 | k_fn(vc, KVAL(K_PGUP), 0); | ||
799 | return; | ||
800 | case KVAL(K_P5): | ||
801 | applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC)); | ||
802 | return; | ||
803 | } | ||
804 | } | ||
805 | |||
806 | put_queue(vc, pad_chars[value]); | ||
807 | if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF)) | ||
808 | put_queue(vc, 10); | ||
809 | } | ||
810 | |||
811 | static void k_shift(struct vc_data *vc, unsigned char value, char up_flag) | ||
812 | { | ||
813 | int old_state = shift_state; | ||
814 | |||
815 | if (rep) | ||
816 | return; | ||
817 | /* | ||
818 | * Mimic typewriter: | ||
819 | * a CapsShift key acts like Shift but undoes CapsLock | ||
820 | */ | ||
821 | if (value == KVAL(K_CAPSSHIFT)) { | ||
822 | value = KVAL(K_SHIFT); | ||
823 | if (!up_flag) | ||
824 | clr_vc_kbd_led(kbd, VC_CAPSLOCK); | ||
825 | } | ||
826 | |||
827 | if (up_flag) { | ||
828 | /* | ||
829 | * handle the case that two shift or control | ||
830 | * keys are depressed simultaneously | ||
831 | */ | ||
832 | if (shift_down[value]) | ||
833 | shift_down[value]--; | ||
834 | } else | ||
835 | shift_down[value]++; | ||
836 | |||
837 | if (shift_down[value]) | ||
838 | shift_state |= (1 << value); | ||
839 | else | ||
840 | shift_state &= ~(1 << value); | ||
841 | |||
842 | /* kludge */ | ||
843 | if (up_flag && shift_state != old_state && npadch != -1) { | ||
844 | if (kbd->kbdmode == VC_UNICODE) | ||
845 | to_utf8(vc, npadch); | ||
846 | else | ||
847 | put_queue(vc, npadch & 0xff); | ||
848 | npadch = -1; | ||
849 | } | ||
850 | } | ||
851 | |||
852 | static void k_meta(struct vc_data *vc, unsigned char value, char up_flag) | ||
853 | { | ||
854 | if (up_flag) | ||
855 | return; | ||
856 | |||
857 | if (vc_kbd_mode(kbd, VC_META)) { | ||
858 | put_queue(vc, '\033'); | ||
859 | put_queue(vc, value); | ||
860 | } else | ||
861 | put_queue(vc, value | 0x80); | ||
862 | } | ||
863 | |||
864 | static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag) | ||
865 | { | ||
866 | int base; | ||
867 | |||
868 | if (up_flag) | ||
869 | return; | ||
870 | |||
871 | if (value < 10) { | ||
872 | /* decimal input of code, while Alt depressed */ | ||
873 | base = 10; | ||
874 | } else { | ||
875 | /* hexadecimal input of code, while AltGr depressed */ | ||
876 | value -= 10; | ||
877 | base = 16; | ||
878 | } | ||
879 | |||
880 | if (npadch == -1) | ||
881 | npadch = value; | ||
882 | else | ||
883 | npadch = npadch * base + value; | ||
884 | } | ||
885 | |||
886 | static void k_lock(struct vc_data *vc, unsigned char value, char up_flag) | ||
887 | { | ||
888 | if (up_flag || rep) | ||
889 | return; | ||
890 | |||
891 | chg_vc_kbd_lock(kbd, value); | ||
892 | } | ||
893 | |||
894 | static void k_slock(struct vc_data *vc, unsigned char value, char up_flag) | ||
895 | { | ||
896 | k_shift(vc, value, up_flag); | ||
897 | if (up_flag || rep) | ||
898 | return; | ||
899 | |||
900 | chg_vc_kbd_slock(kbd, value); | ||
901 | /* try to make Alt, oops, AltGr and such work */ | ||
902 | if (!key_maps[kbd->lockstate ^ kbd->slockstate]) { | ||
903 | kbd->slockstate = 0; | ||
904 | chg_vc_kbd_slock(kbd, value); | ||
905 | } | ||
906 | } | ||
907 | |||
908 | /* by default, 300ms interval for combination release */ | ||
909 | static unsigned brl_timeout = 300; | ||
910 | MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)"); | ||
911 | module_param(brl_timeout, uint, 0644); | ||
912 | |||
913 | static unsigned brl_nbchords = 1; | ||
914 | MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)"); | ||
915 | module_param(brl_nbchords, uint, 0644); | ||
916 | |||
917 | static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag) | ||
918 | { | ||
919 | static unsigned long chords; | ||
920 | static unsigned committed; | ||
921 | |||
922 | if (!brl_nbchords) | ||
923 | k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag); | ||
924 | else { | ||
925 | committed |= pattern; | ||
926 | chords++; | ||
927 | if (chords == brl_nbchords) { | ||
928 | k_unicode(vc, BRL_UC_ROW | committed, up_flag); | ||
929 | chords = 0; | ||
930 | committed = 0; | ||
931 | } | ||
932 | } | ||
933 | } | ||
934 | |||
935 | static void k_brl(struct vc_data *vc, unsigned char value, char up_flag) | ||
936 | { | ||
937 | static unsigned pressed, committing; | ||
938 | static unsigned long releasestart; | ||
939 | |||
940 | if (kbd->kbdmode != VC_UNICODE) { | ||
941 | if (!up_flag) | ||
942 | pr_warning("keyboard mode must be unicode for braille patterns\n"); | ||
943 | return; | ||
944 | } | ||
945 | |||
946 | if (!value) { | ||
947 | k_unicode(vc, BRL_UC_ROW, up_flag); | ||
948 | return; | ||
949 | } | ||
950 | |||
951 | if (value > 8) | ||
952 | return; | ||
953 | |||
954 | if (!up_flag) { | ||
955 | pressed |= 1 << (value - 1); | ||
956 | if (!brl_timeout) | ||
957 | committing = pressed; | ||
958 | } else if (brl_timeout) { | ||
959 | if (!committing || | ||
960 | time_after(jiffies, | ||
961 | releasestart + msecs_to_jiffies(brl_timeout))) { | ||
962 | committing = pressed; | ||
963 | releasestart = jiffies; | ||
964 | } | ||
965 | pressed &= ~(1 << (value - 1)); | ||
966 | if (!pressed && committing) { | ||
967 | k_brlcommit(vc, committing, 0); | ||
968 | committing = 0; | ||
969 | } | ||
970 | } else { | ||
971 | if (committing) { | ||
972 | k_brlcommit(vc, committing, 0); | ||
973 | committing = 0; | ||
974 | } | ||
975 | pressed &= ~(1 << (value - 1)); | ||
976 | } | ||
977 | } | ||
978 | |||
979 | /* | ||
980 | * The leds display either (i) the status of NumLock, CapsLock, ScrollLock, | ||
981 | * or (ii) whatever pattern of lights people want to show using KDSETLED, | ||
982 | * or (iii) specified bits of specified words in kernel memory. | ||
983 | */ | ||
984 | unsigned char getledstate(void) | ||
985 | { | ||
986 | return ledstate; | ||
987 | } | ||
988 | |||
989 | void setledstate(struct kbd_struct *kbd, unsigned int led) | ||
990 | { | ||
991 | if (!(led & ~7)) { | ||
992 | ledioctl = led; | ||
993 | kbd->ledmode = LED_SHOW_IOCTL; | ||
994 | } else | ||
995 | kbd->ledmode = LED_SHOW_FLAGS; | ||
996 | |||
997 | set_leds(); | ||
998 | } | ||
999 | |||
1000 | static inline unsigned char getleds(void) | ||
1001 | { | ||
1002 | struct kbd_struct *kbd = kbd_table + fg_console; | ||
1003 | unsigned char leds; | ||
1004 | int i; | ||
1005 | |||
1006 | if (kbd->ledmode == LED_SHOW_IOCTL) | ||
1007 | return ledioctl; | ||
1008 | |||
1009 | leds = kbd->ledflagstate; | ||
1010 | |||
1011 | if (kbd->ledmode == LED_SHOW_MEM) { | ||
1012 | for (i = 0; i < 3; i++) | ||
1013 | if (ledptrs[i].valid) { | ||
1014 | if (*ledptrs[i].addr & ledptrs[i].mask) | ||
1015 | leds |= (1 << i); | ||
1016 | else | ||
1017 | leds &= ~(1 << i); | ||
1018 | } | ||
1019 | } | ||
1020 | return leds; | ||
1021 | } | ||
1022 | |||
1023 | static int kbd_update_leds_helper(struct input_handle *handle, void *data) | ||
1024 | { | ||
1025 | unsigned char leds = *(unsigned char *)data; | ||
1026 | |||
1027 | if (test_bit(EV_LED, handle->dev->evbit)) { | ||
1028 | input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01)); | ||
1029 | input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02)); | ||
1030 | input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04)); | ||
1031 | input_inject_event(handle, EV_SYN, SYN_REPORT, 0); | ||
1032 | } | ||
1033 | |||
1034 | return 0; | ||
1035 | } | ||
1036 | |||
1037 | /* | ||
1038 | * This is the tasklet that updates LED state on all keyboards | ||
1039 | * attached to the box. The reason we use tasklet is that we | ||
1040 | * need to handle the scenario when keyboard handler is not | ||
1041 | * registered yet but we already getting updates form VT to | ||
1042 | * update led state. | ||
1043 | */ | ||
1044 | static void kbd_bh(unsigned long dummy) | ||
1045 | { | ||
1046 | unsigned char leds = getleds(); | ||
1047 | |||
1048 | if (leds != ledstate) { | ||
1049 | input_handler_for_each_handle(&kbd_handler, &leds, | ||
1050 | kbd_update_leds_helper); | ||
1051 | ledstate = leds; | ||
1052 | } | ||
1053 | } | ||
1054 | |||
1055 | DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0); | ||
1056 | |||
1057 | #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\ | ||
1058 | defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\ | ||
1059 | defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\ | ||
1060 | (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\ | ||
1061 | defined(CONFIG_AVR32) | ||
1062 | |||
1063 | #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\ | ||
1064 | ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001)) | ||
1065 | |||
1066 | static const unsigned short x86_keycodes[256] = | ||
1067 | { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, | ||
1068 | 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, | ||
1069 | 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, | ||
1070 | 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, | ||
1071 | 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, | ||
1072 | 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92, | ||
1073 | 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339, | ||
1074 | 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349, | ||
1075 | 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355, | ||
1076 | 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361, | ||
1077 | 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114, | ||
1078 | 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116, | ||
1079 | 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307, | ||
1080 | 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330, | ||
1081 | 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 }; | ||
1082 | |||
1083 | #ifdef CONFIG_SPARC | ||
1084 | static int sparc_l1_a_state; | ||
1085 | extern void sun_do_break(void); | ||
1086 | #endif | ||
1087 | |||
1088 | static int emulate_raw(struct vc_data *vc, unsigned int keycode, | ||
1089 | unsigned char up_flag) | ||
1090 | { | ||
1091 | int code; | ||
1092 | |||
1093 | switch (keycode) { | ||
1094 | |||
1095 | case KEY_PAUSE: | ||
1096 | put_queue(vc, 0xe1); | ||
1097 | put_queue(vc, 0x1d | up_flag); | ||
1098 | put_queue(vc, 0x45 | up_flag); | ||
1099 | break; | ||
1100 | |||
1101 | case KEY_HANGEUL: | ||
1102 | if (!up_flag) | ||
1103 | put_queue(vc, 0xf2); | ||
1104 | break; | ||
1105 | |||
1106 | case KEY_HANJA: | ||
1107 | if (!up_flag) | ||
1108 | put_queue(vc, 0xf1); | ||
1109 | break; | ||
1110 | |||
1111 | case KEY_SYSRQ: | ||
1112 | /* | ||
1113 | * Real AT keyboards (that's what we're trying | ||
1114 | * to emulate here emit 0xe0 0x2a 0xe0 0x37 when | ||
1115 | * pressing PrtSc/SysRq alone, but simply 0x54 | ||
1116 | * when pressing Alt+PrtSc/SysRq. | ||
1117 | */ | ||
1118 | if (test_bit(KEY_LEFTALT, key_down) || | ||
1119 | test_bit(KEY_RIGHTALT, key_down)) { | ||
1120 | put_queue(vc, 0x54 | up_flag); | ||
1121 | } else { | ||
1122 | put_queue(vc, 0xe0); | ||
1123 | put_queue(vc, 0x2a | up_flag); | ||
1124 | put_queue(vc, 0xe0); | ||
1125 | put_queue(vc, 0x37 | up_flag); | ||
1126 | } | ||
1127 | break; | ||
1128 | |||
1129 | default: | ||
1130 | if (keycode > 255) | ||
1131 | return -1; | ||
1132 | |||
1133 | code = x86_keycodes[keycode]; | ||
1134 | if (!code) | ||
1135 | return -1; | ||
1136 | |||
1137 | if (code & 0x100) | ||
1138 | put_queue(vc, 0xe0); | ||
1139 | put_queue(vc, (code & 0x7f) | up_flag); | ||
1140 | |||
1141 | break; | ||
1142 | } | ||
1143 | |||
1144 | return 0; | ||
1145 | } | ||
1146 | |||
1147 | #else | ||
1148 | |||
1149 | #define HW_RAW(dev) 0 | ||
1150 | |||
1151 | static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag) | ||
1152 | { | ||
1153 | if (keycode > 127) | ||
1154 | return -1; | ||
1155 | |||
1156 | put_queue(vc, keycode | up_flag); | ||
1157 | return 0; | ||
1158 | } | ||
1159 | #endif | ||
1160 | |||
1161 | static void kbd_rawcode(unsigned char data) | ||
1162 | { | ||
1163 | struct vc_data *vc = vc_cons[fg_console].d; | ||
1164 | |||
1165 | kbd = kbd_table + vc->vc_num; | ||
1166 | if (kbd->kbdmode == VC_RAW) | ||
1167 | put_queue(vc, data); | ||
1168 | } | ||
1169 | |||
1170 | static void kbd_keycode(unsigned int keycode, int down, int hw_raw) | ||
1171 | { | ||
1172 | struct vc_data *vc = vc_cons[fg_console].d; | ||
1173 | unsigned short keysym, *key_map; | ||
1174 | unsigned char type; | ||
1175 | bool raw_mode; | ||
1176 | struct tty_struct *tty; | ||
1177 | int shift_final; | ||
1178 | struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down }; | ||
1179 | int rc; | ||
1180 | |||
1181 | tty = vc->port.tty; | ||
1182 | |||
1183 | if (tty && (!tty->driver_data)) { | ||
1184 | /* No driver data? Strange. Okay we fix it then. */ | ||
1185 | tty->driver_data = vc; | ||
1186 | } | ||
1187 | |||
1188 | kbd = kbd_table + vc->vc_num; | ||
1189 | |||
1190 | #ifdef CONFIG_SPARC | ||
1191 | if (keycode == KEY_STOP) | ||
1192 | sparc_l1_a_state = down; | ||
1193 | #endif | ||
1194 | |||
1195 | rep = (down == 2); | ||
1196 | |||
1197 | raw_mode = (kbd->kbdmode == VC_RAW); | ||
1198 | if (raw_mode && !hw_raw) | ||
1199 | if (emulate_raw(vc, keycode, !down << 7)) | ||
1200 | if (keycode < BTN_MISC && printk_ratelimit()) | ||
1201 | pr_warning("can't emulate rawmode for keycode %d\n", | ||
1202 | keycode); | ||
1203 | |||
1204 | #ifdef CONFIG_SPARC | ||
1205 | if (keycode == KEY_A && sparc_l1_a_state) { | ||
1206 | sparc_l1_a_state = false; | ||
1207 | sun_do_break(); | ||
1208 | } | ||
1209 | #endif | ||
1210 | |||
1211 | if (kbd->kbdmode == VC_MEDIUMRAW) { | ||
1212 | /* | ||
1213 | * This is extended medium raw mode, with keys above 127 | ||
1214 | * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing | ||
1215 | * the 'up' flag if needed. 0 is reserved, so this shouldn't | ||
1216 | * interfere with anything else. The two bytes after 0 will | ||
1217 | * always have the up flag set not to interfere with older | ||
1218 | * applications. This allows for 16384 different keycodes, | ||
1219 | * which should be enough. | ||
1220 | */ | ||
1221 | if (keycode < 128) { | ||
1222 | put_queue(vc, keycode | (!down << 7)); | ||
1223 | } else { | ||
1224 | put_queue(vc, !down << 7); | ||
1225 | put_queue(vc, (keycode >> 7) | 0x80); | ||
1226 | put_queue(vc, keycode | 0x80); | ||
1227 | } | ||
1228 | raw_mode = true; | ||
1229 | } | ||
1230 | |||
1231 | if (down) | ||
1232 | set_bit(keycode, key_down); | ||
1233 | else | ||
1234 | clear_bit(keycode, key_down); | ||
1235 | |||
1236 | if (rep && | ||
1237 | (!vc_kbd_mode(kbd, VC_REPEAT) || | ||
1238 | (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) { | ||
1239 | /* | ||
1240 | * Don't repeat a key if the input buffers are not empty and the | ||
1241 | * characters get aren't echoed locally. This makes key repeat | ||
1242 | * usable with slow applications and under heavy loads. | ||
1243 | */ | ||
1244 | return; | ||
1245 | } | ||
1246 | |||
1247 | param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate; | ||
1248 | param.ledstate = kbd->ledflagstate; | ||
1249 | key_map = key_maps[shift_final]; | ||
1250 | |||
1251 | rc = atomic_notifier_call_chain(&keyboard_notifier_list, | ||
1252 | KBD_KEYCODE, ¶m); | ||
1253 | if (rc == NOTIFY_STOP || !key_map) { | ||
1254 | atomic_notifier_call_chain(&keyboard_notifier_list, | ||
1255 | KBD_UNBOUND_KEYCODE, ¶m); | ||
1256 | compute_shiftstate(); | ||
1257 | kbd->slockstate = 0; | ||
1258 | return; | ||
1259 | } | ||
1260 | |||
1261 | if (keycode < NR_KEYS) | ||
1262 | keysym = key_map[keycode]; | ||
1263 | else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8) | ||
1264 | keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1)); | ||
1265 | else | ||
1266 | return; | ||
1267 | |||
1268 | type = KTYP(keysym); | ||
1269 | |||
1270 | if (type < 0xf0) { | ||
1271 | param.value = keysym; | ||
1272 | rc = atomic_notifier_call_chain(&keyboard_notifier_list, | ||
1273 | KBD_UNICODE, ¶m); | ||
1274 | if (rc != NOTIFY_STOP) | ||
1275 | if (down && !raw_mode) | ||
1276 | to_utf8(vc, keysym); | ||
1277 | return; | ||
1278 | } | ||
1279 | |||
1280 | type -= 0xf0; | ||
1281 | |||
1282 | if (type == KT_LETTER) { | ||
1283 | type = KT_LATIN; | ||
1284 | if (vc_kbd_led(kbd, VC_CAPSLOCK)) { | ||
1285 | key_map = key_maps[shift_final ^ (1 << KG_SHIFT)]; | ||
1286 | if (key_map) | ||
1287 | keysym = key_map[keycode]; | ||
1288 | } | ||
1289 | } | ||
1290 | |||
1291 | param.value = keysym; | ||
1292 | rc = atomic_notifier_call_chain(&keyboard_notifier_list, | ||
1293 | KBD_KEYSYM, ¶m); | ||
1294 | if (rc == NOTIFY_STOP) | ||
1295 | return; | ||
1296 | |||
1297 | if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT) | ||
1298 | return; | ||
1299 | |||
1300 | (*k_handler[type])(vc, keysym & 0xff, !down); | ||
1301 | |||
1302 | param.ledstate = kbd->ledflagstate; | ||
1303 | atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m); | ||
1304 | |||
1305 | if (type != KT_SLOCK) | ||
1306 | kbd->slockstate = 0; | ||
1307 | } | ||
1308 | |||
1309 | static void kbd_event(struct input_handle *handle, unsigned int event_type, | ||
1310 | unsigned int event_code, int value) | ||
1311 | { | ||
1312 | /* We are called with interrupts disabled, just take the lock */ | ||
1313 | spin_lock(&kbd_event_lock); | ||
1314 | |||
1315 | if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev)) | ||
1316 | kbd_rawcode(value); | ||
1317 | if (event_type == EV_KEY) | ||
1318 | kbd_keycode(event_code, value, HW_RAW(handle->dev)); | ||
1319 | |||
1320 | spin_unlock(&kbd_event_lock); | ||
1321 | |||
1322 | tasklet_schedule(&keyboard_tasklet); | ||
1323 | do_poke_blanked_console = 1; | ||
1324 | schedule_console_callback(); | ||
1325 | } | ||
1326 | |||
1327 | static bool kbd_match(struct input_handler *handler, struct input_dev *dev) | ||
1328 | { | ||
1329 | int i; | ||
1330 | |||
1331 | if (test_bit(EV_SND, dev->evbit)) | ||
1332 | return true; | ||
1333 | |||
1334 | if (test_bit(EV_KEY, dev->evbit)) { | ||
1335 | for (i = KEY_RESERVED; i < BTN_MISC; i++) | ||
1336 | if (test_bit(i, dev->keybit)) | ||
1337 | return true; | ||
1338 | for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++) | ||
1339 | if (test_bit(i, dev->keybit)) | ||
1340 | return true; | ||
1341 | } | ||
1342 | |||
1343 | return false; | ||
1344 | } | ||
1345 | |||
1346 | /* | ||
1347 | * When a keyboard (or other input device) is found, the kbd_connect | ||
1348 | * function is called. The function then looks at the device, and if it | ||
1349 | * likes it, it can open it and get events from it. In this (kbd_connect) | ||
1350 | * function, we should decide which VT to bind that keyboard to initially. | ||
1351 | */ | ||
1352 | static int kbd_connect(struct input_handler *handler, struct input_dev *dev, | ||
1353 | const struct input_device_id *id) | ||
1354 | { | ||
1355 | struct input_handle *handle; | ||
1356 | int error; | ||
1357 | |||
1358 | handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL); | ||
1359 | if (!handle) | ||
1360 | return -ENOMEM; | ||
1361 | |||
1362 | handle->dev = dev; | ||
1363 | handle->handler = handler; | ||
1364 | handle->name = "kbd"; | ||
1365 | |||
1366 | error = input_register_handle(handle); | ||
1367 | if (error) | ||
1368 | goto err_free_handle; | ||
1369 | |||
1370 | error = input_open_device(handle); | ||
1371 | if (error) | ||
1372 | goto err_unregister_handle; | ||
1373 | |||
1374 | return 0; | ||
1375 | |||
1376 | err_unregister_handle: | ||
1377 | input_unregister_handle(handle); | ||
1378 | err_free_handle: | ||
1379 | kfree(handle); | ||
1380 | return error; | ||
1381 | } | ||
1382 | |||
1383 | static void kbd_disconnect(struct input_handle *handle) | ||
1384 | { | ||
1385 | input_close_device(handle); | ||
1386 | input_unregister_handle(handle); | ||
1387 | kfree(handle); | ||
1388 | } | ||
1389 | |||
1390 | /* | ||
1391 | * Start keyboard handler on the new keyboard by refreshing LED state to | ||
1392 | * match the rest of the system. | ||
1393 | */ | ||
1394 | static void kbd_start(struct input_handle *handle) | ||
1395 | { | ||
1396 | tasklet_disable(&keyboard_tasklet); | ||
1397 | |||
1398 | if (ledstate != 0xff) | ||
1399 | kbd_update_leds_helper(handle, &ledstate); | ||
1400 | |||
1401 | tasklet_enable(&keyboard_tasklet); | ||
1402 | } | ||
1403 | |||
1404 | static const struct input_device_id kbd_ids[] = { | ||
1405 | { | ||
1406 | .flags = INPUT_DEVICE_ID_MATCH_EVBIT, | ||
1407 | .evbit = { BIT_MASK(EV_KEY) }, | ||
1408 | }, | ||
1409 | |||
1410 | { | ||
1411 | .flags = INPUT_DEVICE_ID_MATCH_EVBIT, | ||
1412 | .evbit = { BIT_MASK(EV_SND) }, | ||
1413 | }, | ||
1414 | |||
1415 | { }, /* Terminating entry */ | ||
1416 | }; | ||
1417 | |||
1418 | MODULE_DEVICE_TABLE(input, kbd_ids); | ||
1419 | |||
1420 | static struct input_handler kbd_handler = { | ||
1421 | .event = kbd_event, | ||
1422 | .match = kbd_match, | ||
1423 | .connect = kbd_connect, | ||
1424 | .disconnect = kbd_disconnect, | ||
1425 | .start = kbd_start, | ||
1426 | .name = "kbd", | ||
1427 | .id_table = kbd_ids, | ||
1428 | }; | ||
1429 | |||
1430 | int __init kbd_init(void) | ||
1431 | { | ||
1432 | int i; | ||
1433 | int error; | ||
1434 | |||
1435 | for (i = 0; i < MAX_NR_CONSOLES; i++) { | ||
1436 | kbd_table[i].ledflagstate = KBD_DEFLEDS; | ||
1437 | kbd_table[i].default_ledflagstate = KBD_DEFLEDS; | ||
1438 | kbd_table[i].ledmode = LED_SHOW_FLAGS; | ||
1439 | kbd_table[i].lockstate = KBD_DEFLOCK; | ||
1440 | kbd_table[i].slockstate = 0; | ||
1441 | kbd_table[i].modeflags = KBD_DEFMODE; | ||
1442 | kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE; | ||
1443 | } | ||
1444 | |||
1445 | error = input_register_handler(&kbd_handler); | ||
1446 | if (error) | ||
1447 | return error; | ||
1448 | |||
1449 | tasklet_enable(&keyboard_tasklet); | ||
1450 | tasklet_schedule(&keyboard_tasklet); | ||
1451 | |||
1452 | return 0; | ||
1453 | } | ||