aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/s390/char/tape_core.c
diff options
context:
space:
mode:
authorCarsten Otte <cotte@de.ibm.com>2009-03-26 10:24:38 -0400
committerMartin Schwidefsky <schwidefsky@de.ibm.com>2009-03-26 10:24:25 -0400
commitab640db01013192f6867785a7def7c9d9ec8903d (patch)
tree3df0fb5b788eeaaa4b0540fbf136b20c9ffd56f4 /drivers/s390/char/tape_core.c
parent1edad85b16fdda43c8ab809e2779e8bf64ab8bb2 (diff)
[S390] tape message cleanup
This is a cleanup of all the messages this driver prints. It uses the dev_message macros now. Signed-off-by: Carsten Otte <cotte@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Diffstat (limited to 'drivers/s390/char/tape_core.c')
-rw-r--r--drivers/s390/char/tape_core.c62
1 files changed, 9 insertions, 53 deletions
diff --git a/drivers/s390/char/tape_core.c b/drivers/s390/char/tape_core.c
index f9bb51fa7f5b..1b6a24412465 100644
--- a/drivers/s390/char/tape_core.c
+++ b/drivers/s390/char/tape_core.c
@@ -11,6 +11,7 @@
11 * Stefan Bader <shbader@de.ibm.com> 11 * Stefan Bader <shbader@de.ibm.com>
12 */ 12 */
13 13
14#define KMSG_COMPONENT "tape"
14#include <linux/module.h> 15#include <linux/module.h>
15#include <linux/init.h> // for kernel parameters 16#include <linux/init.h> // for kernel parameters
16#include <linux/kmod.h> // for requesting modules 17#include <linux/kmod.h> // for requesting modules
@@ -25,7 +26,6 @@
25#include "tape.h" 26#include "tape.h"
26#include "tape_std.h" 27#include "tape_std.h"
27 28
28#define PRINTK_HEADER "TAPE_CORE: "
29#define LONG_BUSY_TIMEOUT 180 /* seconds */ 29#define LONG_BUSY_TIMEOUT 180 /* seconds */
30 30
31static void __tape_do_irq (struct ccw_device *, unsigned long, struct irb *); 31static void __tape_do_irq (struct ccw_device *, unsigned long, struct irb *);
@@ -214,13 +214,13 @@ tape_med_state_set(struct tape_device *device, enum tape_medium_state newstate)
214 switch(newstate){ 214 switch(newstate){
215 case MS_UNLOADED: 215 case MS_UNLOADED:
216 device->tape_generic_status |= GMT_DR_OPEN(~0); 216 device->tape_generic_status |= GMT_DR_OPEN(~0);
217 PRINT_INFO("(%s): Tape is unloaded\n", 217 dev_info(&device->cdev->dev, "The tape cartridge has been "
218 dev_name(&device->cdev->dev)); 218 "successfully unloaded\n");
219 break; 219 break;
220 case MS_LOADED: 220 case MS_LOADED:
221 device->tape_generic_status &= ~GMT_DR_OPEN(~0); 221 device->tape_generic_status &= ~GMT_DR_OPEN(~0);
222 PRINT_INFO("(%s): Tape has been mounted\n", 222 dev_info(&device->cdev->dev, "A tape cartridge has been "
223 dev_name(&device->cdev->dev)); 223 "mounted\n");
224 break; 224 break;
225 default: 225 default:
226 // print nothing 226 // print nothing
@@ -333,7 +333,6 @@ tape_generic_online(struct tape_device *device,
333 /* Let the discipline have a go at the device. */ 333 /* Let the discipline have a go at the device. */
334 device->discipline = discipline; 334 device->discipline = discipline;
335 if (!try_module_get(discipline->owner)) { 335 if (!try_module_get(discipline->owner)) {
336 PRINT_ERR("Cannot get module. Module gone.\n");
337 return -EINVAL; 336 return -EINVAL;
338 } 337 }
339 338
@@ -391,7 +390,6 @@ int
391tape_generic_offline(struct tape_device *device) 390tape_generic_offline(struct tape_device *device)
392{ 391{
393 if (!device) { 392 if (!device) {
394 PRINT_ERR("tape_generic_offline: no such device\n");
395 return -ENODEV; 393 return -ENODEV;
396 } 394 }
397 395
@@ -413,9 +411,6 @@ tape_generic_offline(struct tape_device *device)
413 DBF_EVENT(3, "(%08x): Set offline failed " 411 DBF_EVENT(3, "(%08x): Set offline failed "
414 "- drive in use.\n", 412 "- drive in use.\n",
415 device->cdev_id); 413 device->cdev_id);
416 PRINT_WARN("(%s): Set offline failed "
417 "- drive in use.\n",
418 dev_name(&device->cdev->dev));
419 spin_unlock_irq(get_ccwdev_lock(device->cdev)); 414 spin_unlock_irq(get_ccwdev_lock(device->cdev));
420 return -EBUSY; 415 return -EBUSY;
421 } 416 }
@@ -435,14 +430,11 @@ tape_alloc_device(void)
435 device = kzalloc(sizeof(struct tape_device), GFP_KERNEL); 430 device = kzalloc(sizeof(struct tape_device), GFP_KERNEL);
436 if (device == NULL) { 431 if (device == NULL) {
437 DBF_EXCEPTION(2, "ti:no mem\n"); 432 DBF_EXCEPTION(2, "ti:no mem\n");
438 PRINT_INFO ("can't allocate memory for "
439 "tape info structure\n");
440 return ERR_PTR(-ENOMEM); 433 return ERR_PTR(-ENOMEM);
441 } 434 }
442 device->modeset_byte = kmalloc(1, GFP_KERNEL | GFP_DMA); 435 device->modeset_byte = kmalloc(1, GFP_KERNEL | GFP_DMA);
443 if (device->modeset_byte == NULL) { 436 if (device->modeset_byte == NULL) {
444 DBF_EXCEPTION(2, "ti:no mem\n"); 437 DBF_EXCEPTION(2, "ti:no mem\n");
445 PRINT_INFO("can't allocate memory for modeset byte\n");
446 kfree(device); 438 kfree(device);
447 return ERR_PTR(-ENOMEM); 439 return ERR_PTR(-ENOMEM);
448 } 440 }
@@ -490,7 +482,6 @@ tape_put_device(struct tape_device *device)
490 } else { 482 } else {
491 if (remain < 0) { 483 if (remain < 0) {
492 DBF_EVENT(4, "put device without reference\n"); 484 DBF_EVENT(4, "put device without reference\n");
493 PRINT_ERR("put device without reference\n");
494 } else { 485 } else {
495 DBF_EVENT(4, "tape_free_device(%p)\n", device); 486 DBF_EVENT(4, "tape_free_device(%p)\n", device);
496 kfree(device->modeset_byte); 487 kfree(device->modeset_byte);
@@ -538,8 +529,6 @@ tape_generic_probe(struct ccw_device *cdev)
538 ret = sysfs_create_group(&cdev->dev.kobj, &tape_attr_group); 529 ret = sysfs_create_group(&cdev->dev.kobj, &tape_attr_group);
539 if (ret) { 530 if (ret) {
540 tape_put_device(device); 531 tape_put_device(device);
541 PRINT_ERR("probe failed for tape device %s\n",
542 dev_name(&cdev->dev));
543 return ret; 532 return ret;
544 } 533 }
545 cdev->dev.driver_data = device; 534 cdev->dev.driver_data = device;
@@ -547,7 +536,6 @@ tape_generic_probe(struct ccw_device *cdev)
547 device->cdev = cdev; 536 device->cdev = cdev;
548 ccw_device_get_id(cdev, &dev_id); 537 ccw_device_get_id(cdev, &dev_id);
549 device->cdev_id = devid_to_int(&dev_id); 538 device->cdev_id = devid_to_int(&dev_id);
550 PRINT_INFO("tape device %s found\n", dev_name(&cdev->dev));
551 return ret; 539 return ret;
552} 540}
553 541
@@ -584,7 +572,6 @@ tape_generic_remove(struct ccw_device *cdev)
584 572
585 device = cdev->dev.driver_data; 573 device = cdev->dev.driver_data;
586 if (!device) { 574 if (!device) {
587 PRINT_ERR("No device pointer in tape_generic_remove!\n");
588 return; 575 return;
589 } 576 }
590 DBF_LH(3, "(%08x): tape_generic_remove(%p)\n", device->cdev_id, cdev); 577 DBF_LH(3, "(%08x): tape_generic_remove(%p)\n", device->cdev_id, cdev);
@@ -615,10 +602,8 @@ tape_generic_remove(struct ccw_device *cdev)
615 */ 602 */
616 DBF_EVENT(3, "(%08x): Drive in use vanished!\n", 603 DBF_EVENT(3, "(%08x): Drive in use vanished!\n",
617 device->cdev_id); 604 device->cdev_id);
618 PRINT_WARN("(%s): Drive in use vanished - " 605 dev_warn(&device->cdev->dev, "A tape unit was detached"
619 "expect trouble!\n", 606 " while in use\n");
620 dev_name(&device->cdev->dev));
621 PRINT_WARN("State was %i\n", device->tape_state);
622 tape_state_set(device, TS_NOT_OPER); 607 tape_state_set(device, TS_NOT_OPER);
623 __tape_discard_requests(device); 608 __tape_discard_requests(device);
624 spin_unlock_irq(get_ccwdev_lock(device->cdev)); 609 spin_unlock_irq(get_ccwdev_lock(device->cdev));
@@ -830,30 +815,6 @@ __tape_end_request(
830} 815}
831 816
832/* 817/*
833 * Write sense data to console/dbf
834 */
835void
836tape_dump_sense(struct tape_device* device, struct tape_request *request,
837 struct irb *irb)
838{
839 unsigned int *sptr;
840
841 PRINT_INFO("-------------------------------------------------\n");
842 PRINT_INFO("DSTAT : %02x CSTAT: %02x CPA: %04x\n",
843 irb->scsw.cmd.dstat, irb->scsw.cmd.cstat, irb->scsw.cmd.cpa);
844 PRINT_INFO("DEVICE: %s\n", dev_name(&device->cdev->dev));
845 if (request != NULL)
846 PRINT_INFO("OP : %s\n", tape_op_verbose[request->op]);
847
848 sptr = (unsigned int *) irb->ecw;
849 PRINT_INFO("Sense data: %08X %08X %08X %08X \n",
850 sptr[0], sptr[1], sptr[2], sptr[3]);
851 PRINT_INFO("Sense data: %08X %08X %08X %08X \n",
852 sptr[4], sptr[5], sptr[6], sptr[7]);
853 PRINT_INFO("--------------------------------------------------\n");
854}
855
856/*
857 * Write sense data to dbf 818 * Write sense data to dbf
858 */ 819 */
859void 820void
@@ -1051,8 +1012,6 @@ __tape_do_irq (struct ccw_device *cdev, unsigned long intparm, struct irb *irb)
1051 1012
1052 device = (struct tape_device *) cdev->dev.driver_data; 1013 device = (struct tape_device *) cdev->dev.driver_data;
1053 if (device == NULL) { 1014 if (device == NULL) {
1054 PRINT_ERR("could not get device structure for %s "
1055 "in interrupt\n", dev_name(&cdev->dev));
1056 return; 1015 return;
1057 } 1016 }
1058 request = (struct tape_request *) intparm; 1017 request = (struct tape_request *) intparm;
@@ -1064,13 +1023,13 @@ __tape_do_irq (struct ccw_device *cdev, unsigned long intparm, struct irb *irb)
1064 /* FIXME: What to do with the request? */ 1023 /* FIXME: What to do with the request? */
1065 switch (PTR_ERR(irb)) { 1024 switch (PTR_ERR(irb)) {
1066 case -ETIMEDOUT: 1025 case -ETIMEDOUT:
1067 PRINT_WARN("(%s): Request timed out\n", 1026 DBF_LH(1, "(%s): Request timed out\n",
1068 dev_name(&cdev->dev)); 1027 dev_name(&cdev->dev));
1069 case -EIO: 1028 case -EIO:
1070 __tape_end_request(device, request, -EIO); 1029 __tape_end_request(device, request, -EIO);
1071 break; 1030 break;
1072 default: 1031 default:
1073 PRINT_ERR("(%s): Unexpected i/o error %li\n", 1032 DBF_LH(1, "(%s): Unexpected i/o error %li\n",
1074 dev_name(&cdev->dev), 1033 dev_name(&cdev->dev),
1075 PTR_ERR(irb)); 1034 PTR_ERR(irb));
1076 } 1035 }
@@ -1182,8 +1141,6 @@ __tape_do_irq (struct ccw_device *cdev, unsigned long intparm, struct irb *irb)
1182 default: 1141 default:
1183 if (rc > 0) { 1142 if (rc > 0) {
1184 DBF_EVENT(6, "xunknownrc\n"); 1143 DBF_EVENT(6, "xunknownrc\n");
1185 PRINT_ERR("Invalid return code from discipline "
1186 "interrupt function.\n");
1187 __tape_end_request(device, request, -EIO); 1144 __tape_end_request(device, request, -EIO);
1188 } else { 1145 } else {
1189 __tape_end_request(device, request, rc); 1146 __tape_end_request(device, request, rc);
@@ -1323,7 +1280,6 @@ EXPORT_SYMBOL(tape_state_set);
1323EXPORT_SYMBOL(tape_med_state_set); 1280EXPORT_SYMBOL(tape_med_state_set);
1324EXPORT_SYMBOL(tape_alloc_request); 1281EXPORT_SYMBOL(tape_alloc_request);
1325EXPORT_SYMBOL(tape_free_request); 1282EXPORT_SYMBOL(tape_free_request);
1326EXPORT_SYMBOL(tape_dump_sense);
1327EXPORT_SYMBOL(tape_dump_sense_dbf); 1283EXPORT_SYMBOL(tape_dump_sense_dbf);
1328EXPORT_SYMBOL(tape_do_io); 1284EXPORT_SYMBOL(tape_do_io);
1329EXPORT_SYMBOL(tape_do_io_async); 1285EXPORT_SYMBOL(tape_do_io_async);
03' href='#n2103'>2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
/*******************************************************************************

  Intel PRO/1000 Linux driver
  Copyright(c) 1999 - 2009 Intel Corporation.

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

/*
 * 82562G 10/100 Network Connection
 * 82562G-2 10/100 Network Connection
 * 82562GT 10/100 Network Connection
 * 82562GT-2 10/100 Network Connection
 * 82562V 10/100 Network Connection
 * 82562V-2 10/100 Network Connection
 * 82566DC-2 Gigabit Network Connection
 * 82566DC Gigabit Network Connection
 * 82566DM-2 Gigabit Network Connection
 * 82566DM Gigabit Network Connection
 * 82566MC Gigabit Network Connection
 * 82566MM Gigabit Network Connection
 * 82567LM Gigabit Network Connection
 * 82567LF Gigabit Network Connection
 * 82567V Gigabit Network Connection
 * 82567LM-2 Gigabit Network Connection
 * 82567LF-2 Gigabit Network Connection
 * 82567V-2 Gigabit Network Connection
 * 82567LF-3 Gigabit Network Connection
 * 82567LM-3 Gigabit Network Connection
 * 82567LM-4 Gigabit Network Connection
 * 82577LM Gigabit Network Connection
 * 82577LC Gigabit Network Connection
 * 82578DM Gigabit Network Connection
 * 82578DC Gigabit Network Connection
 */

#include "e1000.h"

#define ICH_FLASH_GFPREG		0x0000
#define ICH_FLASH_HSFSTS		0x0004
#define ICH_FLASH_HSFCTL		0x0006
#define ICH_FLASH_FADDR			0x0008
#define ICH_FLASH_FDATA0		0x0010
#define ICH_FLASH_PR0			0x0074

#define ICH_FLASH_READ_COMMAND_TIMEOUT	500
#define ICH_FLASH_WRITE_COMMAND_TIMEOUT	500
#define ICH_FLASH_ERASE_COMMAND_TIMEOUT	3000000
#define ICH_FLASH_LINEAR_ADDR_MASK	0x00FFFFFF
#define ICH_FLASH_CYCLE_REPEAT_COUNT	10

#define ICH_CYCLE_READ			0
#define ICH_CYCLE_WRITE			2
#define ICH_CYCLE_ERASE			3

#define FLASH_GFPREG_BASE_MASK		0x1FFF
#define FLASH_SECTOR_ADDR_SHIFT		12

#define ICH_FLASH_SEG_SIZE_256		256
#define ICH_FLASH_SEG_SIZE_4K		4096
#define ICH_FLASH_SEG_SIZE_8K		8192
#define ICH_FLASH_SEG_SIZE_64K		65536


#define E1000_ICH_FWSM_RSPCIPHY	0x00000040 /* Reset PHY on PCI Reset */

#define E1000_ICH_MNG_IAMT_MODE		0x2

#define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
				 (ID_LED_DEF1_OFF2 <<  8) | \
				 (ID_LED_DEF1_ON2  <<  4) | \
				 (ID_LED_DEF1_DEF2))

#define E1000_ICH_NVM_SIG_WORD		0x13
#define E1000_ICH_NVM_SIG_MASK		0xC000
#define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
#define E1000_ICH_NVM_SIG_VALUE         0x80

#define E1000_ICH8_LAN_INIT_TIMEOUT	1500

#define E1000_FEXTNVM_SW_CONFIG		1
#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */

#define PCIE_ICH8_SNOOP_ALL		PCIE_NO_SNOOP_ALL

#define E1000_ICH_RAR_ENTRIES		7

#define PHY_PAGE_SHIFT 5
#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
			   ((reg) & MAX_PHY_REG_ADDRESS))
#define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
#define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */

#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS	0x0002
#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
#define IGP3_VR_CTRL_MODE_SHUTDOWN	0x0200

#define HV_LED_CONFIG		PHY_REG(768, 30) /* LED Configuration */

#define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */

/* SMBus Address Phy Register */
#define HV_SMB_ADDR            PHY_REG(768, 26)
#define HV_SMB_ADDR_PEC_EN     0x0200
#define HV_SMB_ADDR_VALID      0x0080

/* Strapping Option Register - RO */
#define E1000_STRAP                     0x0000C
#define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17

/* OEM Bits Phy Register */
#define HV_OEM_BITS            PHY_REG(768, 25)
#define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
#define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */

#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
#define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */

/* KMRN Mode Control */
#define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
#define HV_KMRN_MDIO_SLOW      0x0400

/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
/* Offset 04h HSFSTS */
union ich8_hws_flash_status {
	struct ich8_hsfsts {
		u16 flcdone    :1; /* bit 0 Flash Cycle Done */
		u16 flcerr     :1; /* bit 1 Flash Cycle Error */
		u16 dael       :1; /* bit 2 Direct Access error Log */
		u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
		u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
		u16 reserved1  :2; /* bit 13:6 Reserved */
		u16 reserved2  :6; /* bit 13:6 Reserved */
		u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
		u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
	} hsf_status;
	u16 regval;
};

/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
/* Offset 06h FLCTL */
union ich8_hws_flash_ctrl {
	struct ich8_hsflctl {
		u16 flcgo      :1;   /* 0 Flash Cycle Go */
		u16 flcycle    :2;   /* 2:1 Flash Cycle */
		u16 reserved   :5;   /* 7:3 Reserved  */
		u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
		u16 flockdn    :6;   /* 15:10 Reserved */
	} hsf_ctrl;
	u16 regval;
};

/* ICH Flash Region Access Permissions */
union ich8_hws_flash_regacc {
	struct ich8_flracc {
		u32 grra      :8; /* 0:7 GbE region Read Access */
		u32 grwa      :8; /* 8:15 GbE region Write Access */
		u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
		u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
	} hsf_flregacc;
	u16 regval;
};

/* ICH Flash Protected Region */
union ich8_flash_protected_range {
	struct ich8_pr {
		u32 base:13;     /* 0:12 Protected Range Base */
		u32 reserved1:2; /* 13:14 Reserved */
		u32 rpe:1;       /* 15 Read Protection Enable */
		u32 limit:13;    /* 16:28 Protected Range Limit */
		u32 reserved2:2; /* 29:30 Reserved */
		u32 wpe:1;       /* 31 Write Protection Enable */
	} range;
	u32 regval;
};

static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
						u32 offset, u8 byte);
static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 *data);
static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
					 u16 *data);
static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 size, u16 *data);
static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);

static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
{
	return readw(hw->flash_address + reg);
}

static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
{
	return readl(hw->flash_address + reg);
}

static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
{
	writew(val, hw->flash_address + reg);
}

static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
{
	writel(val, hw->flash_address + reg);
}

#define er16flash(reg)		__er16flash(hw, (reg))
#define er32flash(reg)		__er32flash(hw, (reg))
#define ew16flash(reg,val)	__ew16flash(hw, (reg), (val))
#define ew32flash(reg,val)	__ew32flash(hw, (reg), (val))

/**
 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific PHY parameters and function pointers.
 **/
static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = 0;

	phy->addr                     = 1;
	phy->reset_delay_us           = 100;

	phy->ops.read_reg             = e1000_read_phy_reg_hv;
	phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
	phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
	phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
	phy->ops.write_reg            = e1000_write_phy_reg_hv;
	phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
	phy->ops.power_up             = e1000_power_up_phy_copper;
	phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
	phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;

	phy->id = e1000_phy_unknown;
	ret_val = e1000e_get_phy_id(hw);
	if (ret_val)
		goto out;
	if ((phy->id == 0) || (phy->id == PHY_REVISION_MASK)) {
		/*
		 * In case the PHY needs to be in mdio slow mode (eg. 82577),
		 * set slow mode and try to get the PHY id again.
		 */
		ret_val = e1000_set_mdio_slow_mode_hv(hw);
		if (ret_val)
			goto out;
		ret_val = e1000e_get_phy_id(hw);
		if (ret_val)
			goto out;
	}
	phy->type = e1000e_get_phy_type_from_id(phy->id);

	switch (phy->type) {
	case e1000_phy_82577:
		phy->ops.check_polarity = e1000_check_polarity_82577;
		phy->ops.force_speed_duplex =
			e1000_phy_force_speed_duplex_82577;
		phy->ops.get_cable_length = e1000_get_cable_length_82577;
		phy->ops.get_info = e1000_get_phy_info_82577;
		phy->ops.commit = e1000e_phy_sw_reset;
	case e1000_phy_82578:
		phy->ops.check_polarity = e1000_check_polarity_m88;
		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
		phy->ops.get_info = e1000e_get_phy_info_m88;
		break;
	default:
		ret_val = -E1000_ERR_PHY;
		break;
	}

out:
	return ret_val;
}

/**
 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific PHY parameters and function pointers.
 **/
static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 i = 0;

	phy->addr			= 1;
	phy->reset_delay_us		= 100;

	phy->ops.power_up               = e1000_power_up_phy_copper;
	phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;

	/*
	 * We may need to do this twice - once for IGP and if that fails,
	 * we'll set BM func pointers and try again
	 */
	ret_val = e1000e_determine_phy_address(hw);
	if (ret_val) {
		phy->ops.write_reg = e1000e_write_phy_reg_bm;
		phy->ops.read_reg  = e1000e_read_phy_reg_bm;
		ret_val = e1000e_determine_phy_address(hw);
		if (ret_val) {
			e_dbg("Cannot determine PHY addr. Erroring out\n");
			return ret_val;
		}
	}

	phy->id = 0;
	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
	       (i++ < 100)) {
		msleep(1);
		ret_val = e1000e_get_phy_id(hw);
		if (ret_val)
			return ret_val;
	}

	/* Verify phy id */
	switch (phy->id) {
	case IGP03E1000_E_PHY_ID:
		phy->type = e1000_phy_igp_3;
		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
		phy->ops.get_info = e1000e_get_phy_info_igp;
		phy->ops.check_polarity = e1000_check_polarity_igp;
		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
		break;
	case IFE_E_PHY_ID:
	case IFE_PLUS_E_PHY_ID:
	case IFE_C_E_PHY_ID:
		phy->type = e1000_phy_ife;
		phy->autoneg_mask = E1000_ALL_NOT_GIG;
		phy->ops.get_info = e1000_get_phy_info_ife;
		phy->ops.check_polarity = e1000_check_polarity_ife;
		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
		break;
	case BME1000_E_PHY_ID:
		phy->type = e1000_phy_bm;
		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
		phy->ops.read_reg = e1000e_read_phy_reg_bm;
		phy->ops.write_reg = e1000e_write_phy_reg_bm;
		phy->ops.commit = e1000e_phy_sw_reset;
		phy->ops.get_info = e1000e_get_phy_info_m88;
		phy->ops.check_polarity = e1000_check_polarity_m88;
		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
		break;
	default:
		return -E1000_ERR_PHY;
		break;
	}

	return 0;
}

/**
 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific NVM parameters and function
 *  pointers.
 **/
static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u32 gfpreg, sector_base_addr, sector_end_addr;
	u16 i;

	/* Can't read flash registers if the register set isn't mapped. */
	if (!hw->flash_address) {
		e_dbg("ERROR: Flash registers not mapped\n");
		return -E1000_ERR_CONFIG;
	}

	nvm->type = e1000_nvm_flash_sw;

	gfpreg = er32flash(ICH_FLASH_GFPREG);

	/*
	 * sector_X_addr is a "sector"-aligned address (4096 bytes)
	 * Add 1 to sector_end_addr since this sector is included in
	 * the overall size.
	 */
	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;

	/* flash_base_addr is byte-aligned */
	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;

	/*
	 * find total size of the NVM, then cut in half since the total
	 * size represents two separate NVM banks.
	 */
	nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
				<< FLASH_SECTOR_ADDR_SHIFT;
	nvm->flash_bank_size /= 2;
	/* Adjust to word count */
	nvm->flash_bank_size /= sizeof(u16);

	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;

	/* Clear shadow ram */
	for (i = 0; i < nvm->word_size; i++) {
		dev_spec->shadow_ram[i].modified = false;
		dev_spec->shadow_ram[i].value    = 0xFFFF;
	}

	return 0;
}

/**
 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific MAC parameters and function
 *  pointers.
 **/
static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_mac_info *mac = &hw->mac;

	/* Set media type function pointer */
	hw->phy.media_type = e1000_media_type_copper;

	/* Set mta register count */
	mac->mta_reg_count = 32;
	/* Set rar entry count */
	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
	if (mac->type == e1000_ich8lan)
		mac->rar_entry_count--;
	/* Set if manageability features are enabled. */
	mac->arc_subsystem_valid = true;
	/* Adaptive IFS supported */
	mac->adaptive_ifs = true;

	/* LED operations */
	switch (mac->type) {
	case e1000_ich8lan:
	case e1000_ich9lan:
	case e1000_ich10lan:
		/* ID LED init */
		mac->ops.id_led_init = e1000e_id_led_init;
		/* setup LED */
		mac->ops.setup_led = e1000e_setup_led_generic;
		/* cleanup LED */
		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
		/* turn on/off LED */
		mac->ops.led_on = e1000_led_on_ich8lan;
		mac->ops.led_off = e1000_led_off_ich8lan;
		break;
	case e1000_pchlan:
		/* ID LED init */
		mac->ops.id_led_init = e1000_id_led_init_pchlan;
		/* setup LED */
		mac->ops.setup_led = e1000_setup_led_pchlan;
		/* cleanup LED */
		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
		/* turn on/off LED */
		mac->ops.led_on = e1000_led_on_pchlan;
		mac->ops.led_off = e1000_led_off_pchlan;
		break;
	default:
		break;
	}

	/* Enable PCS Lock-loss workaround for ICH8 */
	if (mac->type == e1000_ich8lan)
		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);

	return 0;
}

/**
 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
 *  @hw: pointer to the HW structure
 *
 *  Checks to see of the link status of the hardware has changed.  If a
 *  change in link status has been detected, then we read the PHY registers
 *  to get the current speed/duplex if link exists.
 **/
static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	bool link;

	/*
	 * We only want to go out to the PHY registers to see if Auto-Neg
	 * has completed and/or if our link status has changed.  The
	 * get_link_status flag is set upon receiving a Link Status
	 * Change or Rx Sequence Error interrupt.
	 */
	if (!mac->get_link_status) {
		ret_val = 0;
		goto out;
	}

	/*
	 * First we want to see if the MII Status Register reports
	 * link.  If so, then we want to get the current speed/duplex
	 * of the PHY.
	 */
	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
		goto out;

	if (hw->mac.type == e1000_pchlan) {
		ret_val = e1000_k1_gig_workaround_hv(hw, link);
		if (ret_val)
			goto out;
	}

	if (!link)
		goto out; /* No link detected */

	mac->get_link_status = false;

	if (hw->phy.type == e1000_phy_82578) {
		ret_val = e1000_link_stall_workaround_hv(hw);
		if (ret_val)
			goto out;
	}

	/*
	 * Check if there was DownShift, must be checked
	 * immediately after link-up
	 */
	e1000e_check_downshift(hw);

	/*
	 * If we are forcing speed/duplex, then we simply return since
	 * we have already determined whether we have link or not.
	 */
	if (!mac->autoneg) {
		ret_val = -E1000_ERR_CONFIG;
		goto out;
	}

	/*
	 * Auto-Neg is enabled.  Auto Speed Detection takes care
	 * of MAC speed/duplex configuration.  So we only need to
	 * configure Collision Distance in the MAC.
	 */
	e1000e_config_collision_dist(hw);

	/*
	 * Configure Flow Control now that Auto-Neg has completed.
	 * First, we need to restore the desired flow control
	 * settings because we may have had to re-autoneg with a
	 * different link partner.
	 */
	ret_val = e1000e_config_fc_after_link_up(hw);
	if (ret_val)
		e_dbg("Error configuring flow control\n");

out:
	return ret_val;
}

static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	s32 rc;

	rc = e1000_init_mac_params_ich8lan(adapter);
	if (rc)
		return rc;

	rc = e1000_init_nvm_params_ich8lan(hw);
	if (rc)
		return rc;

	if (hw->mac.type == e1000_pchlan)
		rc = e1000_init_phy_params_pchlan(hw);
	else
		rc = e1000_init_phy_params_ich8lan(hw);
	if (rc)
		return rc;

	if (adapter->hw.phy.type == e1000_phy_ife) {
		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
	}

	if ((adapter->hw.mac.type == e1000_ich8lan) &&
	    (adapter->hw.phy.type == e1000_phy_igp_3))
		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;

	return 0;
}

static DEFINE_MUTEX(nvm_mutex);

/**
 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
 *  @hw: pointer to the HW structure
 *
 *  Acquires the mutex for performing NVM operations.
 **/
static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
{
	mutex_lock(&nvm_mutex);

	return 0;
}

/**
 *  e1000_release_nvm_ich8lan - Release NVM mutex
 *  @hw: pointer to the HW structure
 *
 *  Releases the mutex used while performing NVM operations.
 **/
static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
{
	mutex_unlock(&nvm_mutex);

	return;
}

static DEFINE_MUTEX(swflag_mutex);

/**
 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
 *  @hw: pointer to the HW structure
 *
 *  Acquires the software control flag for performing PHY and select
 *  MAC CSR accesses.
 **/
static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
{
	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
	s32 ret_val = 0;

	mutex_lock(&swflag_mutex);

	while (timeout) {
		extcnf_ctrl = er32(EXTCNF_CTRL);
		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
			break;

		mdelay(1);
		timeout--;
	}

	if (!timeout) {
		e_dbg("SW/FW/HW has locked the resource for too long.\n");
		ret_val = -E1000_ERR_CONFIG;
		goto out;
	}

	timeout = SW_FLAG_TIMEOUT;

	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
	ew32(EXTCNF_CTRL, extcnf_ctrl);

	while (timeout) {
		extcnf_ctrl = er32(EXTCNF_CTRL);
		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
			break;

		mdelay(1);
		timeout--;
	}

	if (!timeout) {
		e_dbg("Failed to acquire the semaphore.\n");
		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
		ew32(EXTCNF_CTRL, extcnf_ctrl);
		ret_val = -E1000_ERR_CONFIG;
		goto out;
	}

out:
	if (ret_val)
		mutex_unlock(&swflag_mutex);

	return ret_val;
}

/**
 *  e1000_release_swflag_ich8lan - Release software control flag
 *  @hw: pointer to the HW structure
 *
 *  Releases the software control flag for performing PHY and select
 *  MAC CSR accesses.
 **/
static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
{
	u32 extcnf_ctrl;

	extcnf_ctrl = er32(EXTCNF_CTRL);
	extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
	ew32(EXTCNF_CTRL, extcnf_ctrl);

	mutex_unlock(&swflag_mutex);

	return;
}

/**
 *  e1000_check_mng_mode_ich8lan - Checks management mode
 *  @hw: pointer to the HW structure
 *
 *  This checks if the adapter has manageability enabled.
 *  This is a function pointer entry point only called by read/write
 *  routines for the PHY and NVM parts.
 **/
static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
{
	u32 fwsm;

	fwsm = er32(FWSM);

	return (fwsm & E1000_FWSM_MODE_MASK) ==
		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
}

/**
 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
 *  @hw: pointer to the HW structure
 *
 *  Checks if firmware is blocking the reset of the PHY.
 *  This is a function pointer entry point only called by
 *  reset routines.
 **/
static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
{
	u32 fwsm;

	fwsm = er32(FWSM);

	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
}

/**
 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
 *  @hw:   pointer to the HW structure
 *
 *  SW should configure the LCD from the NVM extended configuration region
 *  as a workaround for certain parts.
 **/
static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
	s32 ret_val;
	u16 word_addr, reg_data, reg_addr, phy_page = 0;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return ret_val;

	/*
	 * Initialize the PHY from the NVM on ICH platforms.  This
	 * is needed due to an issue where the NVM configuration is
	 * not properly autoloaded after power transitions.
	 * Therefore, after each PHY reset, we will load the
	 * configuration data out of the NVM manually.
	 */
	if ((hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) ||
		(hw->mac.type == e1000_pchlan)) {
		struct e1000_adapter *adapter = hw->adapter;

		/* Check if SW needs to configure the PHY */
		if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
		    (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M) ||
		    (hw->mac.type == e1000_pchlan))
			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
		else
			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;

		data = er32(FEXTNVM);
		if (!(data & sw_cfg_mask))
			goto out;

		/* Wait for basic configuration completes before proceeding */
		e1000_lan_init_done_ich8lan(hw);

		/*
		 * Make sure HW does not configure LCD from PHY
		 * extended configuration before SW configuration
		 */
		data = er32(EXTCNF_CTRL);
		if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
			goto out;

		cnf_size = er32(EXTCNF_SIZE);
		cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
		cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
		if (!cnf_size)
			goto out;

		cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
		cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;

		if (!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
		    (hw->mac.type == e1000_pchlan)) {
			/*
			 * HW configures the SMBus address and LEDs when the
			 * OEM and LCD Write Enable bits are set in the NVM.
			 * When both NVM bits are cleared, SW will configure
			 * them instead.
			 */
			data = er32(STRAP);
			data &= E1000_STRAP_SMBUS_ADDRESS_MASK;
			reg_data = data >> E1000_STRAP_SMBUS_ADDRESS_SHIFT;
			reg_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
			ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR,
			                                        reg_data);
			if (ret_val)
				goto out;

			data = er32(LEDCTL);
			ret_val = e1000_write_phy_reg_hv_locked(hw,
			                                        HV_LED_CONFIG,
			                                        (u16)data);
			if (ret_val)
				goto out;
		}
		/* Configure LCD from extended configuration region. */

		/* cnf_base_addr is in DWORD */
		word_addr = (u16)(cnf_base_addr << 1);

		for (i = 0; i < cnf_size; i++) {
			ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
			                           &reg_data);
			if (ret_val)
				goto out;

			ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
			                           1, &reg_addr);
			if (ret_val)
				goto out;

			/* Save off the PHY page for future writes. */
			if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
				phy_page = reg_data;
				continue;
			}

			reg_addr &= PHY_REG_MASK;
			reg_addr |= phy_page;

			ret_val = phy->ops.write_reg_locked(hw,
			                                    (u32)reg_addr,
			                                    reg_data);
			if (ret_val)
				goto out;
		}
	}

out:
	hw->phy.ops.release(hw);
	return ret_val;
}

/**
 *  e1000_k1_gig_workaround_hv - K1 Si workaround
 *  @hw:   pointer to the HW structure
 *  @link: link up bool flag
 *
 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
 *  If link is down, the function will restore the default K1 setting located
 *  in the NVM.
 **/
static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
{
	s32 ret_val = 0;
	u16 status_reg = 0;
	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;

	if (hw->mac.type != e1000_pchlan)
		goto out;

	/* Wrap the whole flow with the sw flag */
	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		goto out;

	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
	if (link) {
		if (hw->phy.type == e1000_phy_82578) {
			ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
			                                          &status_reg);
			if (ret_val)
				goto release;

			status_reg &= BM_CS_STATUS_LINK_UP |
			              BM_CS_STATUS_RESOLVED |
			              BM_CS_STATUS_SPEED_MASK;

			if (status_reg == (BM_CS_STATUS_LINK_UP |
			                   BM_CS_STATUS_RESOLVED |
			                   BM_CS_STATUS_SPEED_1000))
				k1_enable = false;
		}

		if (hw->phy.type == e1000_phy_82577) {
			ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
			                                          &status_reg);
			if (ret_val)
				goto release;

			status_reg &= HV_M_STATUS_LINK_UP |
			              HV_M_STATUS_AUTONEG_COMPLETE |
			              HV_M_STATUS_SPEED_MASK;

			if (status_reg == (HV_M_STATUS_LINK_UP |
			                   HV_M_STATUS_AUTONEG_COMPLETE |
			                   HV_M_STATUS_SPEED_1000))
				k1_enable = false;
		}

		/* Link stall fix for link up */
		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
		                                           0x0100);
		if (ret_val)
			goto release;

	} else {
		/* Link stall fix for link down */
		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
		                                           0x4100);
		if (ret_val)
			goto release;
	}

	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);

release:
	hw->phy.ops.release(hw);
out:
	return ret_val;
}

/**
 *  e1000_configure_k1_ich8lan - Configure K1 power state
 *  @hw: pointer to the HW structure
 *  @enable: K1 state to configure
 *
 *  Configure the K1 power state based on the provided parameter.
 *  Assumes semaphore already acquired.
 *
 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
 **/
s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
{
	s32 ret_val = 0;
	u32 ctrl_reg = 0;
	u32 ctrl_ext = 0;
	u32 reg = 0;
	u16 kmrn_reg = 0;

	ret_val = e1000e_read_kmrn_reg_locked(hw,
	                                     E1000_KMRNCTRLSTA_K1_CONFIG,
	                                     &kmrn_reg);
	if (ret_val)
		goto out;

	if (k1_enable)
		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
	else
		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;

	ret_val = e1000e_write_kmrn_reg_locked(hw,
	                                      E1000_KMRNCTRLSTA_K1_CONFIG,
	                                      kmrn_reg);
	if (ret_val)
		goto out;

	udelay(20);
	ctrl_ext = er32(CTRL_EXT);
	ctrl_reg = er32(CTRL);

	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
	reg |= E1000_CTRL_FRCSPD;
	ew32(CTRL, reg);

	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
	udelay(20);
	ew32(CTRL, ctrl_reg);
	ew32(CTRL_EXT, ctrl_ext);
	udelay(20);

out:
	return ret_val;
}

/**
 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
 *  @hw:       pointer to the HW structure
 *  @d0_state: boolean if entering d0 or d3 device state
 *
 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
 **/
static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
{
	s32 ret_val = 0;
	u32 mac_reg;
	u16 oem_reg;

	if (hw->mac.type != e1000_pchlan)
		return ret_val;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return ret_val;

	mac_reg = er32(EXTCNF_CTRL);
	if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
		goto out;

	mac_reg = er32(FEXTNVM);
	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
		goto out;

	mac_reg = er32(PHY_CTRL);

	ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
	if (ret_val)
		goto out;

	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);

	if (d0_state) {
		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
			oem_reg |= HV_OEM_BITS_GBE_DIS;

		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
			oem_reg |= HV_OEM_BITS_LPLU;
	} else {
		if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
			oem_reg |= HV_OEM_BITS_GBE_DIS;

		if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
			oem_reg |= HV_OEM_BITS_LPLU;
	}
	/* Restart auto-neg to activate the bits */
	if (!e1000_check_reset_block(hw))
		oem_reg |= HV_OEM_BITS_RESTART_AN;
	ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);

out:
	hw->phy.ops.release(hw);

	return ret_val;
}


/**
 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
 *  @hw:   pointer to the HW structure
 **/
static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 data;

	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
	if (ret_val)
		return ret_val;

	data |= HV_KMRN_MDIO_SLOW;

	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);

	return ret_val;
}

/**
 *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
 *  done after every PHY reset.
 **/
static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 phy_data;

	if (hw->mac.type != e1000_pchlan)
		return ret_val;

	/* Set MDIO slow mode before any other MDIO access */
	if (hw->phy.type == e1000_phy_82577) {
		ret_val = e1000_set_mdio_slow_mode_hv(hw);
		if (ret_val)
			goto out;
	}

	if (((hw->phy.type == e1000_phy_82577) &&
	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
		/* Disable generation of early preamble */
		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
		if (ret_val)
			return ret_val;

		/* Preamble tuning for SSC */
		ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
		if (ret_val)
			return ret_val;
	}

	if (hw->phy.type == e1000_phy_82578) {
		/*
		 * Return registers to default by doing a soft reset then
		 * writing 0x3140 to the control register.
		 */
		if (hw->phy.revision < 2) {
			e1000e_phy_sw_reset(hw);
			ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
		}
	}

	/* Select page 0 */
	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return ret_val;

	hw->phy.addr = 1;
	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
	hw->phy.ops.release(hw);
	if (ret_val)
		goto out;

	/*
	 * Configure the K1 Si workaround during phy reset assuming there is
	 * link so that it disables K1 if link is in 1Gbps.
	 */
	ret_val = e1000_k1_gig_workaround_hv(hw, true);
	if (ret_val)
		goto out;

	/* Workaround for link disconnects on a busy hub in half duplex */
	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		goto out;
	ret_val = hw->phy.ops.read_reg_locked(hw,
	                                      PHY_REG(BM_PORT_CTRL_PAGE, 17),
	                                      &phy_data);
	if (ret_val)
		goto release;
	ret_val = hw->phy.ops.write_reg_locked(hw,
	                                       PHY_REG(BM_PORT_CTRL_PAGE, 17),
	                                       phy_data & 0x00FF);
release:
	hw->phy.ops.release(hw);
out:
	return ret_val;
}

/**
 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
 *  @hw: pointer to the HW structure
 *
 *  Check the appropriate indication the MAC has finished configuring the
 *  PHY after a software reset.
 **/
static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
{
	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;

	/* Wait for basic configuration completes before proceeding */
	do {
		data = er32(STATUS);
		data &= E1000_STATUS_LAN_INIT_DONE;
		udelay(100);
	} while ((!data) && --loop);

	/*
	 * If basic configuration is incomplete before the above loop
	 * count reaches 0, loading the configuration from NVM will
	 * leave the PHY in a bad state possibly resulting in no link.
	 */
	if (loop == 0)
		e_dbg("LAN_INIT_DONE not set, increase timeout\n");

	/* Clear the Init Done bit for the next init event */
	data = er32(STATUS);
	data &= ~E1000_STATUS_LAN_INIT_DONE;
	ew32(STATUS, data);
}

/**
 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
 *  @hw: pointer to the HW structure
 *
 *  Resets the PHY
 *  This is a function pointer entry point called by drivers
 *  or other shared routines.
 **/
static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 reg;

	ret_val = e1000e_phy_hw_reset_generic(hw);
	if (ret_val)
		return ret_val;

	/* Allow time for h/w to get to a quiescent state after reset */
	mdelay(10);

	/* Perform any necessary post-reset workarounds */
	if (hw->mac.type == e1000_pchlan) {
		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
		if (ret_val)
			return ret_val;
	}

	/* Dummy read to clear the phy wakeup bit after lcd reset */
	if (hw->mac.type == e1000_pchlan)
		e1e_rphy(hw, BM_WUC, &reg);

	/* Configure the LCD with the extended configuration region in NVM */
	ret_val = e1000_sw_lcd_config_ich8lan(hw);
	if (ret_val)
		goto out;

	/* Configure the LCD with the OEM bits in NVM */
	if (hw->mac.type == e1000_pchlan)
		ret_val = e1000_oem_bits_config_ich8lan(hw, true);

out:
	return 0;
}

/**
 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
 *  @hw: pointer to the HW structure
 *  @active: true to enable LPLU, false to disable
 *
 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
 *  the phy speed. This function will manually set the LPLU bit and restart
 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
 *  since it configures the same bit.
 **/
static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
{
	s32 ret_val = 0;
	u16 oem_reg;

	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
	if (ret_val)
		goto out;

	if (active)
		oem_reg |= HV_OEM_BITS_LPLU;
	else
		oem_reg &= ~HV_OEM_BITS_LPLU;

	oem_reg |= HV_OEM_BITS_RESTART_AN;
	ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);

out:
	return ret_val;
}

/**
 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
 *  @hw: pointer to the HW structure
 *  @active: true to enable LPLU, false to disable
 *
 *  Sets the LPLU D0 state according to the active flag.  When
 *  activating LPLU this function also disables smart speed
 *  and vice versa.  LPLU will not be activated unless the
 *  device autonegotiation advertisement meets standards of
 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 phy_ctrl;
	s32 ret_val = 0;
	u16 data;

	if (phy->type == e1000_phy_ife)
		return ret_val;

	phy_ctrl = er32(PHY_CTRL);

	if (active) {
		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);

		if (phy->type != e1000_phy_igp_3)
			return 0;

		/*
		 * Call gig speed drop workaround on LPLU before accessing
		 * any PHY registers
		 */
		if (hw->mac.type == e1000_ich8lan)
			e1000e_gig_downshift_workaround_ich8lan(hw);

		/* When LPLU is enabled, we should disable SmartSpeed */
		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
		if (ret_val)
			return ret_val;
	} else {
		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);

		if (phy->type != e1000_phy_igp_3)
			return 0;

		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
		 * SmartSpeed, so performance is maintained.
		 */
		if (phy->smart_speed == e1000_smart_speed_on) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   &data);
			if (ret_val)
				return ret_val;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   data);
			if (ret_val)
				return ret_val;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   &data);
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   data);
			if (ret_val)
				return ret_val;
		}
	}

	return 0;
}

/**
 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
 *  @hw: pointer to the HW structure
 *  @active: true to enable LPLU, false to disable
 *
 *  Sets the LPLU D3 state according to the active flag.  When
 *  activating LPLU this function also disables smart speed
 *  and vice versa.  LPLU will not be activated unless the
 *  device autonegotiation advertisement meets standards of
 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 phy_ctrl;
	s32 ret_val;
	u16 data;

	phy_ctrl = er32(PHY_CTRL);

	if (!active) {
		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);

		if (phy->type != e1000_phy_igp_3)
			return 0;

		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
		 * SmartSpeed, so performance is maintained.
		 */
		if (phy->smart_speed == e1000_smart_speed_on) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   &data);
			if (ret_val)
				return ret_val;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   data);
			if (ret_val)
				return ret_val;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   &data);
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   data);
			if (ret_val)
				return ret_val;
		}
	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);

		if (phy->type != e1000_phy_igp_3)
			return 0;

		/*
		 * Call gig speed drop workaround on LPLU before accessing
		 * any PHY registers
		 */
		if (hw->mac.type == e1000_ich8lan)
			e1000e_gig_downshift_workaround_ich8lan(hw);

		/* When LPLU is enabled, we should disable SmartSpeed */
		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
		if (ret_val)
			return ret_val;

		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
	}

	return 0;
}

/**
 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
 *  @hw: pointer to the HW structure
 *  @bank:  pointer to the variable that returns the active bank
 *
 *  Reads signature byte from the NVM using the flash access registers.
 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
 **/
static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
{
	u32 eecd;
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
	u8 sig_byte = 0;
	s32 ret_val = 0;

	switch (hw->mac.type) {
	case e1000_ich8lan:
	case e1000_ich9lan:
		eecd = er32(EECD);
		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
		    E1000_EECD_SEC1VAL_VALID_MASK) {
			if (eecd & E1000_EECD_SEC1VAL)
				*bank = 1;
			else
				*bank = 0;

			return 0;
		}
		e_dbg("Unable to determine valid NVM bank via EEC - "
		       "reading flash signature\n");
		/* fall-thru */
	default:
		/* set bank to 0 in case flash read fails */
		*bank = 0;

		/* Check bank 0 */
		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
		                                        &sig_byte);
		if (ret_val)
			return ret_val;
		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
		    E1000_ICH_NVM_SIG_VALUE) {
			*bank = 0;
			return 0;
		}

		/* Check bank 1 */
		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
		                                        bank1_offset,
		                                        &sig_byte);
		if (ret_val)
			return ret_val;
		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
		    E1000_ICH_NVM_SIG_VALUE) {
			*bank = 1;
			return 0;
		}

		e_dbg("ERROR: No valid NVM bank present\n");
		return -E1000_ERR_NVM;
	}

	return 0;
}

/**
 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the word(s) to read.
 *  @words: Size of data to read in words
 *  @data: Pointer to the word(s) to read at offset.
 *
 *  Reads a word(s) from the NVM using the flash access registers.
 **/
static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
				  u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u32 act_offset;
	s32 ret_val = 0;
	u32 bank = 0;
	u16 i, word;

	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
	    (words == 0)) {
		e_dbg("nvm parameter(s) out of bounds\n");
		ret_val = -E1000_ERR_NVM;
		goto out;
	}

	nvm->ops.acquire(hw);

	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
	if (ret_val) {
		e_dbg("Could not detect valid bank, assuming bank 0\n");
		bank = 0;
	}

	act_offset = (bank) ? nvm->flash_bank_size : 0;
	act_offset += offset;

	ret_val = 0;
	for (i = 0; i < words; i++) {
		if ((dev_spec->shadow_ram) &&
		    (dev_spec->shadow_ram[offset+i].modified)) {
			data[i] = dev_spec->shadow_ram[offset+i].value;
		} else {
			ret_val = e1000_read_flash_word_ich8lan(hw,
								act_offset + i,
								&word);
			if (ret_val)
				break;
			data[i] = word;
		}
	}

	nvm->ops.release(hw);

out:
	if (ret_val)
		e_dbg("NVM read error: %d\n", ret_val);

	return ret_val;
}

/**
 *  e1000_flash_cycle_init_ich8lan - Initialize flash
 *  @hw: pointer to the HW structure
 *
 *  This function does initial flash setup so that a new read/write/erase cycle
 *  can be started.
 **/
static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
{
	union ich8_hws_flash_status hsfsts;
	s32 ret_val = -E1000_ERR_NVM;
	s32 i = 0;

	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);

	/* Check if the flash descriptor is valid */
	if (hsfsts.hsf_status.fldesvalid == 0) {
		e_dbg("Flash descriptor invalid.  "
			 "SW Sequencing must be used.");
		return -E1000_ERR_NVM;
	}

	/* Clear FCERR and DAEL in hw status by writing 1 */
	hsfsts.hsf_status.flcerr = 1;
	hsfsts.hsf_status.dael = 1;

	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);

	/*
	 * Either we should have a hardware SPI cycle in progress
	 * bit to check against, in order to start a new cycle or
	 * FDONE bit should be changed in the hardware so that it
	 * is 1 after hardware reset, which can then be used as an
	 * indication whether a cycle is in progress or has been
	 * completed.
	 */

	if (hsfsts.hsf_status.flcinprog == 0) {
		/*
		 * There is no cycle running at present,
		 * so we can start a cycle.
		 * Begin by setting Flash Cycle Done.
		 */
		hsfsts.hsf_status.flcdone = 1;
		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
		ret_val = 0;
	} else {
		/*
		 * Otherwise poll for sometime so the current
		 * cycle has a chance to end before giving up.
		 */
		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
			hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
			if (hsfsts.hsf_status.flcinprog == 0) {
				ret_val = 0;
				break;
			}
			udelay(1);
		}
		if (ret_val == 0) {
			/*
			 * Successful in waiting for previous cycle to timeout,
			 * now set the Flash Cycle Done.
			 */
			hsfsts.hsf_status.flcdone = 1;
			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
		} else {
			e_dbg("Flash controller busy, cannot get access");
		}
	}

	return ret_val;
}

/**
 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
 *  @hw: pointer to the HW structure
 *  @timeout: maximum time to wait for completion
 *
 *  This function starts a flash cycle and waits for its completion.
 **/
static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
{
	union ich8_hws_flash_ctrl hsflctl;
	union ich8_hws_flash_status hsfsts;
	s32 ret_val = -E1000_ERR_NVM;
	u32 i = 0;

	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
	hsflctl.hsf_ctrl.flcgo = 1;
	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

	/* wait till FDONE bit is set to 1 */
	do {
		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
		if (hsfsts.hsf_status.flcdone == 1)
			break;
		udelay(1);
	} while (i++ < timeout);

	if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
		return 0;

	return ret_val;
}

/**
 *  e1000_read_flash_word_ich8lan - Read word from flash
 *  @hw: pointer to the HW structure
 *  @offset: offset to data location
 *  @data: pointer to the location for storing the data
 *
 *  Reads the flash word at offset into data.  Offset is converted
 *  to bytes before read.
 **/
static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
					 u16 *data)
{
	/* Must convert offset into bytes. */
	offset <<= 1;

	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
}

/**
 *  e1000_read_flash_byte_ich8lan - Read byte from flash
 *  @hw: pointer to the HW structure
 *  @offset: The offset of the byte to read.
 *  @data: Pointer to a byte to store the value read.
 *
 *  Reads a single byte from the NVM using the flash access registers.
 **/
static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 *data)
{
	s32 ret_val;
	u16 word = 0;

	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
	if (ret_val)
		return ret_val;

	*data = (u8)word;

	return 0;
}

/**
 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the byte or word to read.
 *  @size: Size of data to read, 1=byte 2=word
 *  @data: Pointer to the word to store the value read.
 *
 *  Reads a byte or word from the NVM using the flash access registers.
 **/
static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 size, u16 *data)
{
	union ich8_hws_flash_status hsfsts;
	union ich8_hws_flash_ctrl hsflctl;
	u32 flash_linear_addr;
	u32 flash_data = 0;
	s32 ret_val = -E1000_ERR_NVM;
	u8 count = 0;

	if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
		return -E1000_ERR_NVM;

	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
			    hw->nvm.flash_base_addr;

	do {
		udelay(1);
		/* Steps */
		ret_val = e1000_flash_cycle_init_ich8lan(hw);
		if (ret_val != 0)
			break;

		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
		hsflctl.hsf_ctrl.fldbcount = size - 1;
		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);

		ret_val = e1000_flash_cycle_ich8lan(hw,
						ICH_FLASH_READ_COMMAND_TIMEOUT);

		/*
		 * Check if FCERR is set to 1, if set to 1, clear it
		 * and try the whole sequence a few more times, else
		 * read in (shift in) the Flash Data0, the order is
		 * least significant byte first msb to lsb
		 */
		if (ret_val == 0) {
			flash_data = er32flash(ICH_FLASH_FDATA0);
			if (size == 1) {
				*data = (u8)(flash_data & 0x000000FF);
			} else if (size == 2) {
				*data = (u16)(flash_data & 0x0000FFFF);
			}
			break;
		} else {
			/*
			 * If we've gotten here, then things are probably
			 * completely hosed, but if the error condition is
			 * detected, it won't hurt to give it another try...
			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
			 */
			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
			if (hsfsts.hsf_status.flcerr == 1) {
				/* Repeat for some time before giving up. */
				continue;
			} else if (hsfsts.hsf_status.flcdone == 0) {
				e_dbg("Timeout error - flash cycle "
					 "did not complete.");
				break;
			}
		}
	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);

	return ret_val;
}

/**
 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the word(s) to write.
 *  @words: Size of data to write in words
 *  @data: Pointer to the word(s) to write at offset.
 *
 *  Writes a byte or word to the NVM using the flash access registers.
 **/
static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
				   u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u16 i;

	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
	    (words == 0)) {
		e_dbg("nvm parameter(s) out of bounds\n");
		return -E1000_ERR_NVM;
	}

	nvm->ops.acquire(hw);

	for (i = 0; i < words; i++) {
		dev_spec->shadow_ram[offset+i].modified = true;
		dev_spec->shadow_ram[offset+i].value = data[i];
	}

	nvm->ops.release(hw);

	return 0;
}

/**
 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
 *  @hw: pointer to the HW structure
 *
 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
 *  which writes the checksum to the shadow ram.  The changes in the shadow
 *  ram are then committed to the EEPROM by processing each bank at a time
 *  checking for the modified bit and writing only the pending changes.
 *  After a successful commit, the shadow ram is cleared and is ready for
 *  future writes.
 **/
static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
	s32 ret_val;
	u16 data;

	ret_val = e1000e_update_nvm_checksum_generic(hw);
	if (ret_val)
		goto out;

	if (nvm->type != e1000_nvm_flash_sw)
		goto out;

	nvm->ops.acquire(hw);

	/*
	 * We're writing to the opposite bank so if we're on bank 1,
	 * write to bank 0 etc.  We also need to erase the segment that
	 * is going to be written
	 */
	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
	if (ret_val) {
		e_dbg("Could not detect valid bank, assuming bank 0\n");
		bank = 0;
	}

	if (bank == 0) {
		new_bank_offset = nvm->flash_bank_size;
		old_bank_offset = 0;
		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
		if (ret_val) {
			nvm->ops.release(hw);
			goto out;
		}
	} else {
		old_bank_offset = nvm->flash_bank_size;
		new_bank_offset = 0;
		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
		if (ret_val) {
			nvm->ops.release(hw);
			goto out;
		}
	}

	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
		/*
		 * Determine whether to write the value stored
		 * in the other NVM bank or a modified value stored
		 * in the shadow RAM
		 */
		if (dev_spec->shadow_ram[i].modified) {
			data = dev_spec->shadow_ram[i].value;
		} else {
			ret_val = e1000_read_flash_word_ich8lan(hw, i +
			                                        old_bank_offset,
			                                        &data);
			if (ret_val)
				break;
		}

		/*
		 * If the word is 0x13, then make sure the signature bits
		 * (15:14) are 11b until the commit has completed.
		 * This will allow us to write 10b which indicates the
		 * signature is valid.  We want to do this after the write
		 * has completed so that we don't mark the segment valid
		 * while the write is still in progress
		 */
		if (i == E1000_ICH_NVM_SIG_WORD)
			data |= E1000_ICH_NVM_SIG_MASK;

		/* Convert offset to bytes. */
		act_offset = (i + new_bank_offset) << 1;

		udelay(100);
		/* Write the bytes to the new bank. */
		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
							       act_offset,
							       (u8)data);
		if (ret_val)
			break;

		udelay(100);
		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
							  act_offset + 1,
							  (u8)(data >> 8));
		if (ret_val)
			break;
	}

	/*
	 * Don't bother writing the segment valid bits if sector
	 * programming failed.
	 */
	if (ret_val) {
		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
		e_dbg("Flash commit failed.\n");
		nvm->ops.release(hw);
		goto out;
	}

	/*
	 * Finally validate the new segment by setting bit 15:14
	 * to 10b in word 0x13 , this can be done without an
	 * erase as well since these bits are 11 to start with
	 * and we need to change bit 14 to 0b
	 */
	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
	if (ret_val) {
		nvm->ops.release(hw);
		goto out;
	}
	data &= 0xBFFF;
	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
						       act_offset * 2 + 1,
						       (u8)(data >> 8));
	if (ret_val) {
		nvm->ops.release(hw);
		goto out;
	}

	/*
	 * And invalidate the previously valid segment by setting
	 * its signature word (0x13) high_byte to 0b. This can be
	 * done without an erase because flash erase sets all bits
	 * to 1's. We can write 1's to 0's without an erase
	 */
	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
	if (ret_val) {
		nvm->ops.release(hw);
		goto out;
	}

	/* Great!  Everything worked, we can now clear the cached entries. */
	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
		dev_spec->shadow_ram[i].modified = false;
		dev_spec->shadow_ram[i].value = 0xFFFF;
	}

	nvm->ops.release(hw);

	/*
	 * Reload the EEPROM, or else modifications will not appear
	 * until after the next adapter reset.
	 */
	e1000e_reload_nvm(hw);
	msleep(10);

out:
	if (ret_val)
		e_dbg("NVM update error: %d\n", ret_val);

	return ret_val;
}

/**
 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
 *  calculated, in which case we need to calculate the checksum and set bit 6.
 **/
static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 data;

	/*
	 * Read 0x19 and check bit 6.  If this bit is 0, the checksum
	 * needs to be fixed.  This bit is an indication that the NVM
	 * was prepared by OEM software and did not calculate the
	 * checksum...a likely scenario.
	 */
	ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
	if (ret_val)
		return ret_val;

	if ((data & 0x40) == 0) {
		data |= 0x40;
		ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
		if (ret_val)
			return ret_val;
		ret_val = e1000e_update_nvm_checksum(hw);
		if (ret_val)
			return ret_val;
	}

	return e1000e_validate_nvm_checksum_generic(hw);
}

/**
 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
 *  @hw: pointer to the HW structure
 *
 *  To prevent malicious write/erase of the NVM, set it to be read-only
 *  so that the hardware ignores all write/erase cycles of the NVM via
 *  the flash control registers.  The shadow-ram copy of the NVM will
 *  still be updated, however any updates to this copy will not stick
 *  across driver reloads.
 **/
void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	union ich8_flash_protected_range pr0;
	union ich8_hws_flash_status hsfsts;
	u32 gfpreg;

	nvm->ops.acquire(hw);

	gfpreg = er32flash(ICH_FLASH_GFPREG);

	/* Write-protect GbE Sector of NVM */
	pr0.regval = er32flash(ICH_FLASH_PR0);
	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
	pr0.range.wpe = true;
	ew32flash(ICH_FLASH_PR0, pr0.regval);

	/*
	 * Lock down a subset of GbE Flash Control Registers, e.g.
	 * PR0 to prevent the write-protection from being lifted.
	 * Once FLOCKDN is set, the registers protected by it cannot
	 * be written until FLOCKDN is cleared by a hardware reset.
	 */
	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
	hsfsts.hsf_status.flockdn = true;
	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);

	nvm->ops.release(hw);
}

/**
 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the byte/word to read.
 *  @size: Size of data to read, 1=byte 2=word
 *  @data: The byte(s) to write to the NVM.
 *
 *  Writes one/two bytes to the NVM using the flash access registers.
 **/
static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
					  u8 size, u16 data)
{
	union ich8_hws_flash_status hsfsts;
	union ich8_hws_flash_ctrl hsflctl;
	u32 flash_linear_addr;
	u32 flash_data = 0;
	s32 ret_val;
	u8 count = 0;

	if (size < 1 || size > 2 || data > size * 0xff ||
	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
		return -E1000_ERR_NVM;

	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
			    hw->nvm.flash_base_addr;

	do {
		udelay(1);
		/* Steps */
		ret_val = e1000_flash_cycle_init_ich8lan(hw);
		if (ret_val)
			break;

		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
		hsflctl.hsf_ctrl.fldbcount = size -1;
		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);

		if (size == 1)
			flash_data = (u32)data & 0x00FF;
		else
			flash_data = (u32)data;

		ew32flash(ICH_FLASH_FDATA0, flash_data);

		/*
		 * check if FCERR is set to 1 , if set to 1, clear it
		 * and try the whole sequence a few more times else done
		 */
		ret_val = e1000_flash_cycle_ich8lan(hw,
					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
		if (!ret_val)
			break;

		/*
		 * If we're here, then things are most likely
		 * completely hosed, but if the error condition
		 * is detected, it won't hurt to give it another
		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
		 */
		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
		if (hsfsts.hsf_status.flcerr == 1)
			/* Repeat for some time before giving up. */
			continue;
		if (hsfsts.hsf_status.flcdone == 0) {
			e_dbg("Timeout error - flash cycle "
				 "did not complete.");
			break;
		}
	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);

	return ret_val;
}

/**
 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
 *  @hw: pointer to the HW structure
 *  @offset: The index of the byte to read.
 *  @data: The byte to write to the NVM.
 *
 *  Writes a single byte to the NVM using the flash access registers.
 **/
static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
					  u8 data)
{
	u16 word = (u16)data;

	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
}

/**
 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset of the byte to write.
 *  @byte: The byte to write to the NVM.
 *
 *  Writes a single byte to the NVM using the flash access registers.
 *  Goes through a retry algorithm before giving up.
 **/
static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
						u32 offset, u8 byte)
{
	s32 ret_val;
	u16 program_retries;

	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
	if (!ret_val)
		return ret_val;

	for (program_retries = 0; program_retries < 100; program_retries++) {
		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
		udelay(100);
		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
		if (!ret_val)
			break;
	}
	if (program_retries == 100)
		return -E1000_ERR_NVM;

	return 0;
}

/**
 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
 *  @hw: pointer to the HW structure
 *  @bank: 0 for first bank, 1 for second bank, etc.
 *
 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
 *  bank N is 4096 * N + flash_reg_addr.
 **/
static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	union ich8_hws_flash_status hsfsts;
	union ich8_hws_flash_ctrl hsflctl;
	u32 flash_linear_addr;
	/* bank size is in 16bit words - adjust to bytes */
	u32 flash_bank_size = nvm->flash_bank_size * 2;
	s32 ret_val;
	s32 count = 0;
	s32 j, iteration, sector_size;

	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);

	/*
	 * Determine HW Sector size: Read BERASE bits of hw flash status
	 * register
	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
	 *     consecutive sectors.  The start index for the nth Hw sector
	 *     can be calculated as = bank * 4096 + n * 256
	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
	 *     The start index for the nth Hw sector can be calculated
	 *     as = bank * 4096
	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
	 *     (ich9 only, otherwise error condition)
	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
	 */
	switch (hsfsts.hsf_status.berasesz) {
	case 0:
		/* Hw sector size 256 */
		sector_size = ICH_FLASH_SEG_SIZE_256;
		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
		break;
	case 1:
		sector_size = ICH_FLASH_SEG_SIZE_4K;
		iteration = 1;
		break;
	case 2:
		sector_size = ICH_FLASH_SEG_SIZE_8K;
		iteration = 1;
		break;
	case 3:
		sector_size = ICH_FLASH_SEG_SIZE_64K;
		iteration = 1;
		break;
	default:
		return -E1000_ERR_NVM;
	}

	/* Start with the base address, then add the sector offset. */
	flash_linear_addr = hw->nvm.flash_base_addr;
	flash_linear_addr += (bank) ? flash_bank_size : 0;

	for (j = 0; j < iteration ; j++) {
		do {
			/* Steps */
			ret_val = e1000_flash_cycle_init_ich8lan(hw);
			if (ret_val)
				return ret_val;

			/*
			 * Write a value 11 (block Erase) in Flash
			 * Cycle field in hw flash control
			 */
			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

			/*
			 * Write the last 24 bits of an index within the
			 * block into Flash Linear address field in Flash
			 * Address.
			 */
			flash_linear_addr += (j * sector_size);
			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);

			ret_val = e1000_flash_cycle_ich8lan(hw,
					       ICH_FLASH_ERASE_COMMAND_TIMEOUT);
			if (ret_val == 0)
				break;

			/*
			 * Check if FCERR is set to 1.  If 1,
			 * clear it and try the whole sequence
			 * a few more times else Done
			 */
			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
			if (hsfsts.hsf_status.flcerr == 1)
				/* repeat for some time before giving up */
				continue;
			else if (hsfsts.hsf_status.flcdone == 0)
				return ret_val;
		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
	}

	return 0;
}

/**
 *  e1000_valid_led_default_ich8lan - Set the default LED settings
 *  @hw: pointer to the HW structure
 *  @data: Pointer to the LED settings
 *
 *  Reads the LED default settings from the NVM to data.  If the NVM LED
 *  settings is all 0's or F's, set the LED default to a valid LED default
 *  setting.
 **/
static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
{
	s32 ret_val;

	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
	if (ret_val) {
		e_dbg("NVM Read Error\n");
		return ret_val;
	}

	if (*data == ID_LED_RESERVED_0000 ||
	    *data == ID_LED_RESERVED_FFFF)
		*data = ID_LED_DEFAULT_ICH8LAN;

	return 0;
}

/**
 *  e1000_id_led_init_pchlan - store LED configurations
 *  @hw: pointer to the HW structure
 *
 *  PCH does not control LEDs via the LEDCTL register, rather it uses
 *  the PHY LED configuration register.
 *
 *  PCH also does not have an "always on" or "always off" mode which
 *  complicates the ID feature.  Instead of using the "on" mode to indicate
 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
 *  use "link_up" mode.  The LEDs will still ID on request if there is no
 *  link based on logic in e1000_led_[on|off]_pchlan().
 **/
static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
	u16 data, i, temp, shift;

	/* Get default ID LED modes */
	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
	if (ret_val)
		goto out;

	mac->ledctl_default = er32(LEDCTL);
	mac->ledctl_mode1 = mac->ledctl_default;
	mac->ledctl_mode2 = mac->ledctl_default;

	for (i = 0; i < 4; i++) {
		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
		shift = (i * 5);
		switch (temp) {
		case ID_LED_ON1_DEF2:
		case ID_LED_ON1_ON2:
		case ID_LED_ON1_OFF2:
			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode1 |= (ledctl_on << shift);
			break;
		case ID_LED_OFF1_DEF2:
		case ID_LED_OFF1_ON2:
		case ID_LED_OFF1_OFF2:
			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode1 |= (ledctl_off << shift);
			break;
		default:
			/* Do nothing */
			break;
		}
		switch (temp) {
		case ID_LED_DEF1_ON2:
		case ID_LED_ON1_ON2:
		case ID_LED_OFF1_ON2:
			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode2 |= (ledctl_on << shift);
			break;
		case ID_LED_DEF1_OFF2:
		case ID_LED_ON1_OFF2:
		case ID_LED_OFF1_OFF2:
			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode2 |= (ledctl_off << shift);
			break;
		default:
			/* Do nothing */
			break;
		}
	}

out:
	return ret_val;
}

/**
 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
 *  @hw: pointer to the HW structure
 *
 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
 *  register, so the the bus width is hard coded.
 **/
static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
{
	struct e1000_bus_info *bus = &hw->bus;
	s32 ret_val;

	ret_val = e1000e_get_bus_info_pcie(hw);

	/*
	 * ICH devices are "PCI Express"-ish.  They have
	 * a configuration space, but do not contain
	 * PCI Express Capability registers, so bus width
	 * must be hardcoded.
	 */
	if (bus->width == e1000_bus_width_unknown)
		bus->width = e1000_bus_width_pcie_x1;

	return ret_val;
}

/**
 *  e1000_reset_hw_ich8lan - Reset the hardware
 *  @hw: pointer to the HW structure
 *
 *  Does a full reset of the hardware which includes a reset of the PHY and
 *  MAC.
 **/
static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
{
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u16 reg;
	u32 ctrl, icr, kab;
	s32 ret_val;

	/*
	 * Prevent the PCI-E bus from sticking if there is no TLP connection
	 * on the last TLP read/write transaction when MAC is reset.
	 */
	ret_val = e1000e_disable_pcie_master(hw);
	if (ret_val) {
		e_dbg("PCI-E Master disable polling has failed.\n");
	}

	e_dbg("Masking off all interrupts\n");
	ew32(IMC, 0xffffffff);

	/*
	 * Disable the Transmit and Receive units.  Then delay to allow
	 * any pending transactions to complete before we hit the MAC
	 * with the global reset.
	 */
	ew32(RCTL, 0);
	ew32(TCTL, E1000_TCTL_PSP);
	e1e_flush();

	msleep(10);

	/* Workaround for ICH8 bit corruption issue in FIFO memory */
	if (hw->mac.type == e1000_ich8lan) {
		/* Set Tx and Rx buffer allocation to 8k apiece. */
		ew32(PBA, E1000_PBA_8K);
		/* Set Packet Buffer Size to 16k. */
		ew32(PBS, E1000_PBS_16K);
	}

	if (hw->mac.type == e1000_pchlan) {
		/* Save the NVM K1 bit setting*/
		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
		if (ret_val)
			return ret_val;

		if (reg & E1000_NVM_K1_ENABLE)
			dev_spec->nvm_k1_enabled = true;
		else
			dev_spec->nvm_k1_enabled = false;
	}

	ctrl = er32(CTRL);

	if (!e1000_check_reset_block(hw)) {
		/* Clear PHY Reset Asserted bit */
		if (hw->mac.type >= e1000_pchlan) {
			u32 status = er32(STATUS);
			ew32(STATUS, status & ~E1000_STATUS_PHYRA);
		}

		/*
		 * PHY HW reset requires MAC CORE reset at the same
		 * time to make sure the interface between MAC and the
		 * external PHY is reset.
		 */
		ctrl |= E1000_CTRL_PHY_RST;
	}
	ret_val = e1000_acquire_swflag_ich8lan(hw);
	e_dbg("Issuing a global reset to ich8lan\n");
	ew32(CTRL, (ctrl | E1000_CTRL_RST));
	msleep(20);

	if (!ret_val)
		e1000_release_swflag_ich8lan(hw);

	/* Perform any necessary post-reset workarounds */
	if (hw->mac.type == e1000_pchlan)
		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);

	if (ctrl & E1000_CTRL_PHY_RST)
		ret_val = hw->phy.ops.get_cfg_done(hw);

	if (hw->mac.type >= e1000_ich10lan) {
		e1000_lan_init_done_ich8lan(hw);
	} else {
		ret_val = e1000e_get_auto_rd_done(hw);
		if (ret_val) {
			/*
			 * When auto config read does not complete, do not
			 * return with an error. This can happen in situations
			 * where there is no eeprom and prevents getting link.
			 */
			e_dbg("Auto Read Done did not complete\n");
		}
	}
	/* Dummy read to clear the phy wakeup bit after lcd reset */
	if (hw->mac.type == e1000_pchlan)
		e1e_rphy(hw, BM_WUC, &reg);

	ret_val = e1000_sw_lcd_config_ich8lan(hw);
	if (ret_val)
		goto out;

	if (hw->mac.type == e1000_pchlan) {
		ret_val = e1000_oem_bits_config_ich8lan(hw, true);
		if (ret_val)
			goto out;
	}
	/*
	 * For PCH, this write will make sure that any noise
	 * will be detected as a CRC error and be dropped rather than show up
	 * as a bad packet to the DMA engine.
	 */
	if (hw->mac.type == e1000_pchlan)
		ew32(CRC_OFFSET, 0x65656565);

	ew32(IMC, 0xffffffff);
	icr = er32(ICR);

	kab = er32(KABGTXD);
	kab |= E1000_KABGTXD_BGSQLBIAS;
	ew32(KABGTXD, kab);

out:
	return ret_val;
}

/**
 *  e1000_init_hw_ich8lan - Initialize the hardware
 *  @hw: pointer to the HW structure
 *
 *  Prepares the hardware for transmit and receive by doing the following:
 *   - initialize hardware bits
 *   - initialize LED identification
 *   - setup receive address registers
 *   - setup flow control
 *   - setup transmit descriptors
 *   - clear statistics
 **/
static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 ctrl_ext, txdctl, snoop;
	s32 ret_val;
	u16 i;

	e1000_initialize_hw_bits_ich8lan(hw);

	/* Initialize identification LED */
	ret_val = mac->ops.id_led_init(hw);
	if (ret_val)
		e_dbg("Error initializing identification LED\n");
		/* This is not fatal and we should not stop init due to this */

	/* Setup the receive address. */
	e1000e_init_rx_addrs(hw, mac->rar_entry_count);

	/* Zero out the Multicast HASH table */
	e_dbg("Zeroing the MTA\n");
	for (i = 0; i < mac->mta_reg_count; i++)
		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);

	/*
	 * The 82578 Rx buffer will stall if wakeup is enabled in host and
	 * the ME.  Reading the BM_WUC register will clear the host wakeup bit.
	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
	 */
	if (hw->phy.type == e1000_phy_82578) {
		hw->phy.ops.read_reg(hw, BM_WUC, &i);
		ret_val = e1000_phy_hw_reset_ich8lan(hw);
		if (ret_val)
			return ret_val;
	}

	/* Setup link and flow control */
	ret_val = e1000_setup_link_ich8lan(hw);

	/* Set the transmit descriptor write-back policy for both queues */
	txdctl = er32(TXDCTL(0));
	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
		 E1000_TXDCTL_FULL_TX_DESC_WB;
	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
	ew32(TXDCTL(0), txdctl);
	txdctl = er32(TXDCTL(1));
	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
		 E1000_TXDCTL_FULL_TX_DESC_WB;
	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
	ew32(TXDCTL(1), txdctl);

	/*
	 * ICH8 has opposite polarity of no_snoop bits.
	 * By default, we should use snoop behavior.
	 */
	if (mac->type == e1000_ich8lan)
		snoop = PCIE_ICH8_SNOOP_ALL;
	else
		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
	e1000e_set_pcie_no_snoop(hw, snoop);

	ctrl_ext = er32(CTRL_EXT);
	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
	ew32(CTRL_EXT, ctrl_ext);

	/*
	 * Clear all of the statistics registers (clear on read).  It is
	 * important that we do this after we have tried to establish link
	 * because the symbol error count will increment wildly if there
	 * is no link.
	 */
	e1000_clear_hw_cntrs_ich8lan(hw);

	return 0;
}
/**
 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
 *  @hw: pointer to the HW structure
 *
 *  Sets/Clears required hardware bits necessary for correctly setting up the
 *  hardware for transmit and receive.
 **/
static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
{
	u32 reg;

	/* Extended Device Control */
	reg = er32(CTRL_EXT);
	reg |= (1 << 22);
	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
	if (hw->mac.type >= e1000_pchlan)
		reg |= E1000_CTRL_EXT_PHYPDEN;
	ew32(CTRL_EXT, reg);

	/* Transmit Descriptor Control 0 */
	reg = er32(TXDCTL(0));
	reg |= (1 << 22);
	ew32(TXDCTL(0), reg);

	/* Transmit Descriptor Control 1 */
	reg = er32(TXDCTL(1));
	reg |= (1 << 22);
	ew32(TXDCTL(1), reg);

	/* Transmit Arbitration Control 0 */
	reg = er32(TARC(0));
	if (hw->mac.type == e1000_ich8lan)
		reg |= (1 << 28) | (1 << 29);
	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
	ew32(TARC(0), reg);

	/* Transmit Arbitration Control 1 */
	reg = er32(TARC(1));
	if (er32(TCTL) & E1000_TCTL_MULR)
		reg &= ~(1 << 28);
	else
		reg |= (1 << 28);
	reg |= (1 << 24) | (1 << 26) | (1 << 30);
	ew32(TARC(1), reg);

	/* Device Status */
	if (hw->mac.type == e1000_ich8lan) {
		reg = er32(STATUS);
		reg &= ~(1 << 31);
		ew32(STATUS, reg);
	}
}

/**
 *  e1000_setup_link_ich8lan - Setup flow control and link settings
 *  @hw: pointer to the HW structure
 *
 *  Determines which flow control settings to use, then configures flow
 *  control.  Calls the appropriate media-specific link configuration
 *  function.  Assuming the adapter has a valid link partner, a valid link
 *  should be established.  Assumes the hardware has previously been reset
 *  and the transmitter and receiver are not enabled.
 **/
static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val;

	if (e1000_check_reset_block(hw))
		return 0;

	/*
	 * ICH parts do not have a word in the NVM to determine
	 * the default flow control setting, so we explicitly
	 * set it to full.
	 */
	if (hw->fc.requested_mode == e1000_fc_default) {
		/* Workaround h/w hang when Tx flow control enabled */
		if (hw->mac.type == e1000_pchlan)
			hw->fc.requested_mode = e1000_fc_rx_pause;
		else
			hw->fc.requested_mode = e1000_fc_full;
	}

	/*
	 * Save off the requested flow control mode for use later.  Depending
	 * on the link partner's capabilities, we may or may not use this mode.
	 */
	hw->fc.current_mode = hw->fc.requested_mode;

	e_dbg("After fix-ups FlowControl is now = %x\n",
		hw->fc.current_mode);

	/* Continue to configure the copper link. */
	ret_val = e1000_setup_copper_link_ich8lan(hw);
	if (ret_val)
		return ret_val;

	ew32(FCTTV, hw->fc.pause_time);
	if ((hw->phy.type == e1000_phy_82578) ||
	    (hw->phy.type == e1000_phy_82577)) {
		ret_val = hw->phy.ops.write_reg(hw,
		                             PHY_REG(BM_PORT_CTRL_PAGE, 27),
		                             hw->fc.pause_time);
		if (ret_val)
			return ret_val;
	}

	return e1000e_set_fc_watermarks(hw);
}

/**
 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
 *  @hw: pointer to the HW structure
 *
 *  Configures the kumeran interface to the PHY to wait the appropriate time
 *  when polling the PHY, then call the generic setup_copper_link to finish
 *  configuring the copper link.
 **/
static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val;
	u16 reg_data;

	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_SLU;
	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	ew32(CTRL, ctrl);

	/*
	 * Set the mac to wait the maximum time between each iteration
	 * and increase the max iterations when polling the phy;
	 * this fixes erroneous timeouts at 10Mbps.
	 */
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
	if (ret_val)
		return ret_val;
	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
	                               &reg_data);
	if (ret_val)
		return ret_val;
	reg_data |= 0x3F;
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
	                                reg_data);
	if (ret_val)
		return ret_val;

	switch (hw->phy.type) {
	case e1000_phy_igp_3:
		ret_val = e1000e_copper_link_setup_igp(hw);
		if (ret_val)
			return ret_val;
		break;
	case e1000_phy_bm:
	case e1000_phy_82578:
		ret_val = e1000e_copper_link_setup_m88(hw);
		if (ret_val)
			return ret_val;
		break;
	case e1000_phy_82577:
		ret_val = e1000_copper_link_setup_82577(hw);
		if (ret_val)
			return ret_val;
		break;
	case e1000_phy_ife:
		ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
		                               &reg_data);
		if (ret_val)
			return ret_val;

		reg_data &= ~IFE_PMC_AUTO_MDIX;

		switch (hw->phy.mdix) {
		case 1:
			reg_data &= ~IFE_PMC_FORCE_MDIX;
			break;
		case 2:
			reg_data |= IFE_PMC_FORCE_MDIX;
			break;
		case 0:
		default:
			reg_data |= IFE_PMC_AUTO_MDIX;
			break;
		}
		ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
		                                reg_data);
		if (ret_val)
			return ret_val;
		break;
	default:
		break;
	}
	return e1000e_setup_copper_link(hw);
}

/**
 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
 *  @hw: pointer to the HW structure
 *  @speed: pointer to store current link speed
 *  @duplex: pointer to store the current link duplex
 *
 *  Calls the generic get_speed_and_duplex to retrieve the current link
 *  information and then calls the Kumeran lock loss workaround for links at
 *  gigabit speeds.
 **/
static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
					  u16 *duplex)
{
	s32 ret_val;

	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
	if (ret_val)
		return ret_val;

	if ((hw->mac.type == e1000_ich8lan) &&
	    (hw->phy.type == e1000_phy_igp_3) &&
	    (*speed == SPEED_1000)) {
		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
	}

	return ret_val;
}

/**
 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
 *  @hw: pointer to the HW structure
 *
 *  Work-around for 82566 Kumeran PCS lock loss:
 *  On link status change (i.e. PCI reset, speed change) and link is up and
 *  speed is gigabit-
 *    0) if workaround is optionally disabled do nothing
 *    1) wait 1ms for Kumeran link to come up
 *    2) check Kumeran Diagnostic register PCS lock loss bit
 *    3) if not set the link is locked (all is good), otherwise...
 *    4) reset the PHY
 *    5) repeat up to 10 times
 *  Note: this is only called for IGP3 copper when speed is 1gb.
 **/
static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
{
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u32 phy_ctrl;
	s32 ret_val;
	u16 i, data;
	bool link;

	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
		return 0;

	/*
	 * Make sure link is up before proceeding.  If not just return.
	 * Attempting this while link is negotiating fouled up link
	 * stability
	 */
	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (!link)
		return 0;

	for (i = 0; i < 10; i++) {
		/* read once to clear */
		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
		if (ret_val)
			return ret_val;
		/* and again to get new status */
		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
		if (ret_val)
			return ret_val;

		/* check for PCS lock */
		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
			return 0;

		/* Issue PHY reset */
		e1000_phy_hw_reset(hw);
		mdelay(5);
	}
	/* Disable GigE link negotiation */
	phy_ctrl = er32(PHY_CTRL);
	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
	ew32(PHY_CTRL, phy_ctrl);

	/*
	 * Call gig speed drop workaround on Gig disable before accessing
	 * any PHY registers
	 */
	e1000e_gig_downshift_workaround_ich8lan(hw);

	/* unable to acquire PCS lock */
	return -E1000_ERR_PHY;
}

/**
 *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
 *  @hw: pointer to the HW structure
 *  @state: boolean value used to set the current Kumeran workaround state
 *
 *  If ICH8, set the current Kumeran workaround state (enabled - true
 *  /disabled - false).
 **/
void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
						 bool state)
{
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;

	if (hw->mac.type != e1000_ich8lan) {
		e_dbg("Workaround applies to ICH8 only.\n");
		return;
	}

	dev_spec->kmrn_lock_loss_workaround_enabled = state;
}

/**
 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
 *  @hw: pointer to the HW structure
 *
 *  Workaround for 82566 power-down on D3 entry:
 *    1) disable gigabit link
 *    2) write VR power-down enable
 *    3) read it back
 *  Continue if successful, else issue LCD reset and repeat
 **/
void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
{
	u32 reg;
	u16 data;
	u8  retry = 0;

	if (hw->phy.type != e1000_phy_igp_3)
		return;

	/* Try the workaround twice (if needed) */
	do {
		/* Disable link */
		reg = er32(PHY_CTRL);
		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
		ew32(PHY_CTRL, reg);

		/*
		 * Call gig speed drop workaround on Gig disable before
		 * accessing any PHY registers
		 */
		if (hw->mac.type == e1000_ich8lan)
			e1000e_gig_downshift_workaround_ich8lan(hw);

		/* Write VR power-down enable */
		e1e_rphy(hw, IGP3_VR_CTRL, &data);
		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);

		/* Read it back and test */
		e1e_rphy(hw, IGP3_VR_CTRL, &data);
		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
			break;

		/* Issue PHY reset and repeat at most one more time */
		reg = er32(CTRL);
		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
		retry++;
	} while (retry);
}

/**
 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
 *  @hw: pointer to the HW structure
 *
 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
 *  LPLU, Gig disable, MDIC PHY reset):
 *    1) Set Kumeran Near-end loopback
 *    2) Clear Kumeran Near-end loopback
 *  Should only be called for ICH8[m] devices with IGP_3 Phy.
 **/
void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 reg_data;

	if ((hw->mac.type != e1000_ich8lan) ||
	    (hw->phy.type != e1000_phy_igp_3))
		return;

	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
				      &reg_data);
	if (ret_val)
		return;
	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
				       reg_data);
	if (ret_val)
		return;
	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
				       reg_data);
}

/**
 *  e1000e_disable_gig_wol_ich8lan - disable gig during WoL
 *  @hw: pointer to the HW structure
 *
 *  During S0 to Sx transition, it is possible the link remains at gig
 *  instead of negotiating to a lower speed.  Before going to Sx, set
 *  'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
 *  to a lower speed.
 *
 *  Should only be called for applicable parts.
 **/
void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
{
	u32 phy_ctrl;

	switch (hw->mac.type) {
	case e1000_ich8lan:
	case e1000_ich9lan:
	case e1000_ich10lan:
	case e1000_pchlan:
		phy_ctrl = er32(PHY_CTRL);
		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
		            E1000_PHY_CTRL_GBE_DISABLE;
		ew32(PHY_CTRL, phy_ctrl);

		if (hw->mac.type == e1000_pchlan)
			e1000_phy_hw_reset_ich8lan(hw);
	default:
		break;
	}

	return;
}

/**
 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
 *  @hw: pointer to the HW structure
 *
 *  Return the LED back to the default configuration.