aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net
diff options
context:
space:
mode:
authorBob Copeland <me@bobcopeland.com>2010-08-15 13:03:12 -0400
committerJohn W. Linville <linville@tuxdriver.com>2010-08-24 16:28:00 -0400
commita180a13081708b78d42232c6d922ce3de63f12e0 (patch)
tree79c83c9d496d487cf9582541012234700b581a62 /drivers/net
parentb61279809860690fe5c9fcb40441008d31fabab6 (diff)
ath5k: clean up some comments
This fixes a few misspellings, word repetitions, and some grammar nits in ath5k comments. No code changes. Signed-off-by: Bob Copeland <me@bobcopeland.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
Diffstat (limited to 'drivers/net')
-rw-r--r--drivers/net/wireless/ath/ath5k/ani.c6
-rw-r--r--drivers/net/wireless/ath/ath5k/attach.c6
-rw-r--r--drivers/net/wireless/ath/ath5k/base.c58
-rw-r--r--drivers/net/wireless/ath/ath5k/dma.c4
-rw-r--r--drivers/net/wireless/ath/ath5k/eeprom.c4
-rw-r--r--drivers/net/wireless/ath/ath5k/phy.c15
-rw-r--r--drivers/net/wireless/ath/ath5k/reg.h2
-rw-r--r--drivers/net/wireless/ath/ath5k/reset.c22
-rw-r--r--drivers/net/wireless/ath/ath5k/rfbuffer.h4
9 files changed, 59 insertions, 62 deletions
diff --git a/drivers/net/wireless/ath/ath5k/ani.c b/drivers/net/wireless/ath/ath5k/ani.c
index 26dbe65fedb0..e4a5f046bba4 100644
--- a/drivers/net/wireless/ath/ath5k/ani.c
+++ b/drivers/net/wireless/ath/ath5k/ani.c
@@ -552,9 +552,9 @@ ath5k_ani_mib_intr(struct ath5k_hw *ah)
552 if (ah->ah_sc->ani_state.ani_mode != ATH5K_ANI_MODE_AUTO) 552 if (ah->ah_sc->ani_state.ani_mode != ATH5K_ANI_MODE_AUTO)
553 return; 553 return;
554 554
555 /* if one of the errors triggered, we can get a superfluous second 555 /* If one of the errors triggered, we can get a superfluous second
556 * interrupt, even though we have already reset the register. the 556 * interrupt, even though we have already reset the register. The
557 * function detects that so we can return early */ 557 * function detects that so we can return early. */
558 if (ath5k_ani_save_and_clear_phy_errors(ah, as) == 0) 558 if (ath5k_ani_save_and_clear_phy_errors(ah, as) == 0)
559 return; 559 return;
560 560
diff --git a/drivers/net/wireless/ath/ath5k/attach.c b/drivers/net/wireless/ath/ath5k/attach.c
index e72a1e5421d7..aabad4f13e2a 100644
--- a/drivers/net/wireless/ath/ath5k/attach.c
+++ b/drivers/net/wireless/ath/ath5k/attach.c
@@ -139,12 +139,12 @@ int ath5k_hw_attach(struct ath5k_softc *sc)
139 else 139 else
140 ah->ah_version = AR5K_AR5212; 140 ah->ah_version = AR5K_AR5212;
141 141
142 /*Fill the ath5k_hw struct with the needed functions*/ 142 /* Fill the ath5k_hw struct with the needed functions */
143 ret = ath5k_hw_init_desc_functions(ah); 143 ret = ath5k_hw_init_desc_functions(ah);
144 if (ret) 144 if (ret)
145 goto err_free; 145 goto err_free;
146 146
147 /* Bring device out of sleep and reset it's units */ 147 /* Bring device out of sleep and reset its units */
148 ret = ath5k_hw_nic_wakeup(ah, 0, true); 148 ret = ath5k_hw_nic_wakeup(ah, 0, true);
149 if (ret) 149 if (ret)
150 goto err_free; 150 goto err_free;
@@ -158,7 +158,7 @@ int ath5k_hw_attach(struct ath5k_softc *sc)
158 CHANNEL_5GHZ); 158 CHANNEL_5GHZ);
159 ah->ah_phy = AR5K_PHY(0); 159 ah->ah_phy = AR5K_PHY(0);
160 160
161 /* Try to identify radio chip based on it's srev */ 161 /* Try to identify radio chip based on its srev */
162 switch (ah->ah_radio_5ghz_revision & 0xf0) { 162 switch (ah->ah_radio_5ghz_revision & 0xf0) {
163 case AR5K_SREV_RAD_5111: 163 case AR5K_SREV_RAD_5111:
164 ah->ah_radio = AR5K_RF5111; 164 ah->ah_radio = AR5K_RF5111;
diff --git a/drivers/net/wireless/ath/ath5k/base.c b/drivers/net/wireless/ath/ath5k/base.c
index 91241b4525ad..c3b614d2ef34 100644
--- a/drivers/net/wireless/ath/ath5k/base.c
+++ b/drivers/net/wireless/ath/ath5k/base.c
@@ -612,7 +612,7 @@ ath5k_pci_probe(struct pci_dev *pdev,
612 goto err_free; 612 goto err_free;
613 } 613 }
614 614
615 /*If we passed the test malloc a ath5k_hw struct*/ 615 /* If we passed the test, malloc an ath5k_hw struct */
616 sc->ah = kzalloc(sizeof(struct ath5k_hw), GFP_KERNEL); 616 sc->ah = kzalloc(sizeof(struct ath5k_hw), GFP_KERNEL);
617 if (!sc->ah) { 617 if (!sc->ah) {
618 ret = -ENOMEM; 618 ret = -ENOMEM;
@@ -786,8 +786,8 @@ ath5k_attach(struct pci_dev *pdev, struct ieee80211_hw *hw)
786 /* 786 /*
787 * Check if the MAC has multi-rate retry support. 787 * Check if the MAC has multi-rate retry support.
788 * We do this by trying to setup a fake extended 788 * We do this by trying to setup a fake extended
789 * descriptor. MAC's that don't have support will 789 * descriptor. MACs that don't have support will
790 * return false w/o doing anything. MAC's that do 790 * return false w/o doing anything. MACs that do
791 * support it will return true w/o doing anything. 791 * support it will return true w/o doing anything.
792 */ 792 */
793 ret = ath5k_hw_setup_mrr_tx_desc(ah, NULL, 0, 0, 0, 0, 0, 0); 793 ret = ath5k_hw_setup_mrr_tx_desc(ah, NULL, 0, 0, 0, 0, 0, 0);
@@ -827,7 +827,7 @@ ath5k_attach(struct pci_dev *pdev, struct ieee80211_hw *hw)
827 /* 827 /*
828 * Allocate hardware transmit queues: one queue for 828 * Allocate hardware transmit queues: one queue for
829 * beacon frames and one data queue for each QoS 829 * beacon frames and one data queue for each QoS
830 * priority. Note that hw functions handle reseting 830 * priority. Note that hw functions handle resetting
831 * these queues at the needed time. 831 * these queues at the needed time.
832 */ 832 */
833 ret = ath5k_beaconq_setup(ah); 833 ret = ath5k_beaconq_setup(ah);
@@ -909,7 +909,7 @@ ath5k_detach(struct pci_dev *pdev, struct ieee80211_hw *hw)
909 /* 909 /*
910 * NB: the order of these is important: 910 * NB: the order of these is important:
911 * o call the 802.11 layer before detaching ath5k_hw to 911 * o call the 802.11 layer before detaching ath5k_hw to
912 * insure callbacks into the driver to delete global 912 * ensure callbacks into the driver to delete global
913 * key cache entries can be handled 913 * key cache entries can be handled
914 * o reclaim the tx queue data structures after calling 914 * o reclaim the tx queue data structures after calling
915 * the 802.11 layer as we'll get called back to reclaim 915 * the 802.11 layer as we'll get called back to reclaim
@@ -1514,7 +1514,7 @@ ath5k_txq_setup(struct ath5k_softc *sc,
1514 /* 1514 /*
1515 * Enable interrupts only for EOL and DESC conditions. 1515 * Enable interrupts only for EOL and DESC conditions.
1516 * We mark tx descriptors to receive a DESC interrupt 1516 * We mark tx descriptors to receive a DESC interrupt
1517 * when a tx queue gets deep; otherwise waiting for the 1517 * when a tx queue gets deep; otherwise we wait for the
1518 * EOL to reap descriptors. Note that this is done to 1518 * EOL to reap descriptors. Note that this is done to
1519 * reduce interrupt load and this only defers reaping 1519 * reduce interrupt load and this only defers reaping
1520 * descriptors, never transmitting frames. Aside from 1520 * descriptors, never transmitting frames. Aside from
@@ -1859,7 +1859,7 @@ ath5k_update_beacon_rssi(struct ath5k_softc *sc, struct sk_buff *skb, int rssi)
1859} 1859}
1860 1860
1861/* 1861/*
1862 * Compute padding position. skb must contains an IEEE 802.11 frame 1862 * Compute padding position. skb must contain an IEEE 802.11 frame
1863 */ 1863 */
1864static int ath5k_common_padpos(struct sk_buff *skb) 1864static int ath5k_common_padpos(struct sk_buff *skb)
1865{ 1865{
@@ -1878,10 +1878,9 @@ static int ath5k_common_padpos(struct sk_buff *skb)
1878} 1878}
1879 1879
1880/* 1880/*
1881 * This function expects a 802.11 frame and returns the number of 1881 * This function expects an 802.11 frame and returns the number of
1882 * bytes added, or -1 if we don't have enought header room. 1882 * bytes added, or -1 if we don't have enough header room.
1883 */ 1883 */
1884
1885static int ath5k_add_padding(struct sk_buff *skb) 1884static int ath5k_add_padding(struct sk_buff *skb)
1886{ 1885{
1887 int padpos = ath5k_common_padpos(skb); 1886 int padpos = ath5k_common_padpos(skb);
@@ -1901,10 +1900,18 @@ static int ath5k_add_padding(struct sk_buff *skb)
1901} 1900}
1902 1901
1903/* 1902/*
1904 * This function expects a 802.11 frame and returns the number of 1903 * The MAC header is padded to have 32-bit boundary if the
1905 * bytes removed 1904 * packet payload is non-zero. The general calculation for
1905 * padsize would take into account odd header lengths:
1906 * padsize = 4 - (hdrlen & 3); however, since only
1907 * even-length headers are used, padding can only be 0 or 2
1908 * bytes and we can optimize this a bit. We must not try to
1909 * remove padding from short control frames that do not have a
1910 * payload.
1911 *
1912 * This function expects an 802.11 frame and returns the number of
1913 * bytes removed.
1906 */ 1914 */
1907
1908static int ath5k_remove_padding(struct sk_buff *skb) 1915static int ath5k_remove_padding(struct sk_buff *skb)
1909{ 1916{
1910 int padpos = ath5k_common_padpos(skb); 1917 int padpos = ath5k_common_padpos(skb);
@@ -1925,14 +1932,6 @@ ath5k_receive_frame(struct ath5k_softc *sc, struct sk_buff *skb,
1925{ 1932{
1926 struct ieee80211_rx_status *rxs; 1933 struct ieee80211_rx_status *rxs;
1927 1934
1928 /* The MAC header is padded to have 32-bit boundary if the
1929 * packet payload is non-zero. The general calculation for
1930 * padsize would take into account odd header lengths:
1931 * padsize = (4 - hdrlen % 4) % 4; However, since only
1932 * even-length headers are used, padding can only be 0 or 2
1933 * bytes and we can optimize this a bit. In addition, we must
1934 * not try to remove padding from short control frames that do
1935 * not have payload. */
1936 ath5k_remove_padding(skb); 1935 ath5k_remove_padding(skb);
1937 1936
1938 rxs = IEEE80211_SKB_RXCB(skb); 1937 rxs = IEEE80211_SKB_RXCB(skb);
@@ -2281,10 +2280,11 @@ ath5k_beacon_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
2281 * default antenna which is supposed to be an omni. 2280 * default antenna which is supposed to be an omni.
2282 * 2281 *
2283 * Note2: On sectored scenarios it's possible to have 2282 * Note2: On sectored scenarios it's possible to have
2284 * multiple antennas (1omni -the default- and 14 sectors) 2283 * multiple antennas (1 omni -- the default -- and 14
2285 * so if we choose to actually support this mode we need 2284 * sectors), so if we choose to actually support this
2286 * to allow user to set how many antennas we have and tweak 2285 * mode, we need to allow the user to set how many antennas
2287 * the code below to send beacons on all of them. 2286 * we have and tweak the code below to send beacons
2287 * on all of them.
2288 */ 2288 */
2289 if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP) 2289 if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
2290 antenna = sc->bsent & 4 ? 2 : 1; 2290 antenna = sc->bsent & 4 ? 2 : 1;
@@ -2333,7 +2333,7 @@ ath5k_beacon_send(struct ath5k_softc *sc)
2333 } 2333 }
2334 /* 2334 /*
2335 * Check if the previous beacon has gone out. If 2335 * Check if the previous beacon has gone out. If
2336 * not don't don't try to post another, skip this 2336 * not, don't don't try to post another: skip this
2337 * period and wait for the next. Missed beacons 2337 * period and wait for the next. Missed beacons
2338 * indicate a problem and should not occur. If we 2338 * indicate a problem and should not occur. If we
2339 * miss too many consecutive beacons reset the device. 2339 * miss too many consecutive beacons reset the device.
@@ -2905,8 +2905,8 @@ static int ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
2905 ATH5K_DBG(sc, ATH5K_DEBUG_XMIT, "tx in monitor (scan?)\n"); 2905 ATH5K_DBG(sc, ATH5K_DEBUG_XMIT, "tx in monitor (scan?)\n");
2906 2906
2907 /* 2907 /*
2908 * the hardware expects the header padded to 4 byte boundaries 2908 * The hardware expects the header padded to 4 byte boundaries.
2909 * if this is not the case we add the padding after the header 2909 * If this is not the case, we add the padding after the header.
2910 */ 2910 */
2911 padsize = ath5k_add_padding(skb); 2911 padsize = ath5k_add_padding(skb);
2912 if (padsize < 0) { 2912 if (padsize < 0) {
@@ -3274,7 +3274,7 @@ static void ath5k_configure_filter(struct ieee80211_hw *hw,
3274 3274
3275 /* Set multicast bits */ 3275 /* Set multicast bits */
3276 ath5k_hw_set_mcast_filter(ah, mfilt[0], mfilt[1]); 3276 ath5k_hw_set_mcast_filter(ah, mfilt[0], mfilt[1]);
3277 /* Set the cached hw filter flags, this will alter actually 3277 /* Set the cached hw filter flags, this will later actually
3278 * be set in HW */ 3278 * be set in HW */
3279 sc->filter_flags = rfilt; 3279 sc->filter_flags = rfilt;
3280 3280
diff --git a/drivers/net/wireless/ath/ath5k/dma.c b/drivers/net/wireless/ath/ath5k/dma.c
index 484f31870ba8..58bb6c5dda7b 100644
--- a/drivers/net/wireless/ath/ath5k/dma.c
+++ b/drivers/net/wireless/ath/ath5k/dma.c
@@ -377,11 +377,11 @@ int ath5k_hw_set_txdp(struct ath5k_hw *ah, unsigned int queue, u32 phys_addr)
377 * 377 *
378 * This function increases/decreases the tx trigger level for the tx fifo 378 * This function increases/decreases the tx trigger level for the tx fifo
379 * buffer (aka FIFO threshold) that is used to indicate when PCU flushes 379 * buffer (aka FIFO threshold) that is used to indicate when PCU flushes
380 * the buffer and transmits it's data. Lowering this results sending small 380 * the buffer and transmits its data. Lowering this results sending small
381 * frames more quickly but can lead to tx underruns, raising it a lot can 381 * frames more quickly but can lead to tx underruns, raising it a lot can
382 * result other problems (i think bmiss is related). Right now we start with 382 * result other problems (i think bmiss is related). Right now we start with
383 * the lowest possible (64Bytes) and if we get tx underrun we increase it using 383 * the lowest possible (64Bytes) and if we get tx underrun we increase it using
384 * the increase flag. Returns -EIO if we have have reached maximum/minimum. 384 * the increase flag. Returns -EIO if we have reached maximum/minimum.
385 * 385 *
386 * XXX: Link this with tx DMA size ? 386 * XXX: Link this with tx DMA size ?
387 * XXX: Use it to save interrupts ? 387 * XXX: Use it to save interrupts ?
diff --git a/drivers/net/wireless/ath/ath5k/eeprom.c b/drivers/net/wireless/ath/ath5k/eeprom.c
index ae316fec4a6a..39722dd73e43 100644
--- a/drivers/net/wireless/ath/ath5k/eeprom.c
+++ b/drivers/net/wireless/ath/ath5k/eeprom.c
@@ -661,7 +661,7 @@ ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
661 * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC 661 * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
662 * steps that match with the power values we read from eeprom. On 662 * steps that match with the power values we read from eeprom. On
663 * older eeprom versions (< 3.2) these steps are equaly spaced at 663 * older eeprom versions (< 3.2) these steps are equaly spaced at
664 * 10% of the pcdac curve -until the curve reaches it's maximum- 664 * 10% of the pcdac curve -until the curve reaches its maximum-
665 * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2) 665 * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
666 * these 11 steps are spaced in a different way. This function returns 666 * these 11 steps are spaced in a different way. This function returns
667 * the pcdac steps based on eeprom version and curve min/max so that we 667 * the pcdac steps based on eeprom version and curve min/max so that we
@@ -1113,7 +1113,7 @@ ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
1113 */ 1113 */
1114 1114
1115/* For RF2413 power calibration data doesn't start on a fixed location and 1115/* For RF2413 power calibration data doesn't start on a fixed location and
1116 * if a mode is not supported, it's section is missing -not zeroed-. 1116 * if a mode is not supported, its section is missing -not zeroed-.
1117 * So we need to calculate the starting offset for each section by using 1117 * So we need to calculate the starting offset for each section by using
1118 * these two functions */ 1118 * these two functions */
1119 1119
diff --git a/drivers/net/wireless/ath/ath5k/phy.c b/drivers/net/wireless/ath/ath5k/phy.c
index 6284c389ba18..c7c446592374 100644
--- a/drivers/net/wireless/ath/ath5k/phy.c
+++ b/drivers/net/wireless/ath/ath5k/phy.c
@@ -115,7 +115,7 @@ static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
115\**********************/ 115\**********************/
116 116
117/* 117/*
118 * This code is used to optimize rf gain on different environments 118 * This code is used to optimize RF gain on different environments
119 * (temperature mostly) based on feedback from a power detector. 119 * (temperature mostly) based on feedback from a power detector.
120 * 120 *
121 * It's only used on RF5111 and RF5112, later RF chips seem to have 121 * It's only used on RF5111 and RF5112, later RF chips seem to have
@@ -302,7 +302,7 @@ static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
302} 302}
303 303
304/* Perform gain_F adjustment by choosing the right set 304/* Perform gain_F adjustment by choosing the right set
305 * of parameters from rf gain optimization ladder */ 305 * of parameters from RF gain optimization ladder */
306static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah) 306static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
307{ 307{
308 const struct ath5k_gain_opt *go; 308 const struct ath5k_gain_opt *go;
@@ -367,7 +367,7 @@ done:
367 return ret; 367 return ret;
368} 368}
369 369
370/* Main callback for thermal rf gain calibration engine 370/* Main callback for thermal RF gain calibration engine
371 * Check for a new gain reading and schedule an adjustment 371 * Check for a new gain reading and schedule an adjustment
372 * if needed. 372 * if needed.
373 * 373 *
@@ -433,7 +433,7 @@ done:
433 return ah->ah_gain.g_state; 433 return ah->ah_gain.g_state;
434} 434}
435 435
436/* Write initial rf gain table to set the RF sensitivity 436/* Write initial RF gain table to set the RF sensitivity
437 * this one works on all RF chips and has nothing to do 437 * this one works on all RF chips and has nothing to do
438 * with gain_F calibration */ 438 * with gain_F calibration */
439int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq) 439int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
@@ -496,7 +496,7 @@ int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
496 496
497 497
498/* 498/*
499 * Setup RF registers by writing rf buffer on hw 499 * Setup RF registers by writing RF buffer on hw
500 */ 500 */
501int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel, 501int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
502 unsigned int mode) 502 unsigned int mode)
@@ -571,7 +571,7 @@ int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
571 return -EINVAL; 571 return -EINVAL;
572 } 572 }
573 573
574 /* If it's the first time we set rf buffer, allocate 574 /* If it's the first time we set RF buffer, allocate
575 * ah->ah_rf_banks based on ah->ah_rf_banks_size 575 * ah->ah_rf_banks based on ah->ah_rf_banks_size
576 * we set above */ 576 * we set above */
577 if (ah->ah_rf_banks == NULL) { 577 if (ah->ah_rf_banks == NULL) {
@@ -3035,9 +3035,6 @@ ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3035 /* Limit max power if we have a CTL available */ 3035 /* Limit max power if we have a CTL available */
3036 ath5k_get_max_ctl_power(ah, channel); 3036 ath5k_get_max_ctl_power(ah, channel);
3037 3037
3038 /* FIXME: Tx power limit for this regdomain
3039 * XXX: Mac80211/CRDA will do that anyway ? */
3040
3041 /* FIXME: Antenna reduction stuff */ 3038 /* FIXME: Antenna reduction stuff */
3042 3039
3043 /* FIXME: Limit power on turbo modes */ 3040 /* FIXME: Limit power on turbo modes */
diff --git a/drivers/net/wireless/ath/ath5k/reg.h b/drivers/net/wireless/ath/ath5k/reg.h
index 55b4ac6d236f..05ef587ad2b4 100644
--- a/drivers/net/wireless/ath/ath5k/reg.h
+++ b/drivers/net/wireless/ath/ath5k/reg.h
@@ -1911,7 +1911,7 @@
1911#define AR5K_PHY_TURBO 0x9804 /* Register Address */ 1911#define AR5K_PHY_TURBO 0x9804 /* Register Address */
1912#define AR5K_PHY_TURBO_MODE 0x00000001 /* Enable turbo mode */ 1912#define AR5K_PHY_TURBO_MODE 0x00000001 /* Enable turbo mode */
1913#define AR5K_PHY_TURBO_SHORT 0x00000002 /* Set short symbols to turbo mode */ 1913#define AR5K_PHY_TURBO_SHORT 0x00000002 /* Set short symbols to turbo mode */
1914#define AR5K_PHY_TURBO_MIMO 0x00000004 /* Set turbo for mimo mimo */ 1914#define AR5K_PHY_TURBO_MIMO 0x00000004 /* Set turbo for mimo */
1915 1915
1916/* 1916/*
1917 * PHY agility command register 1917 * PHY agility command register
diff --git a/drivers/net/wireless/ath/ath5k/reset.c b/drivers/net/wireless/ath/ath5k/reset.c
index f5434eb7f980..4154959125b6 100644
--- a/drivers/net/wireless/ath/ath5k/reset.c
+++ b/drivers/net/wireless/ath/ath5k/reset.c
@@ -959,7 +959,7 @@ int ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode,
959 AR5K_QUEUE_DCU_SEQNUM(0)); 959 AR5K_QUEUE_DCU_SEQNUM(0));
960 } 960 }
961 961
962 /* TSF accelerates on AR5211 durring reset 962 /* TSF accelerates on AR5211 during reset
963 * As a workaround save it here and restore 963 * As a workaround save it here and restore
964 * it later so that it's back in time after 964 * it later so that it's back in time after
965 * reset. This way it'll get re-synced on the 965 * reset. This way it'll get re-synced on the
@@ -1080,7 +1080,7 @@ int ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode,
1080 return ret; 1080 return ret;
1081 1081
1082 /* Spur info is available only from EEPROM versions 1082 /* Spur info is available only from EEPROM versions
1083 * bigger than 5.3 but but the EEPOM routines will use 1083 * greater than 5.3, but the EEPROM routines will use
1084 * static values for older versions */ 1084 * static values for older versions */
1085 if (ah->ah_mac_srev >= AR5K_SREV_AR5424) 1085 if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
1086 ath5k_hw_set_spur_mitigation_filter(ah, 1086 ath5k_hw_set_spur_mitigation_filter(ah,
@@ -1173,11 +1173,11 @@ int ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode,
1173 /* Set RSSI/BRSSI thresholds 1173 /* Set RSSI/BRSSI thresholds
1174 * 1174 *
1175 * Note: If we decide to set this value 1175 * Note: If we decide to set this value
1176 * dynamicaly, have in mind that when AR5K_RSSI_THR 1176 * dynamically, keep in mind that when AR5K_RSSI_THR
1177 * register is read it might return 0x40 if we haven't 1177 * register is read, it might return 0x40 if we haven't
1178 * wrote anything to it plus BMISS RSSI threshold is zeroed. 1178 * written anything to it. Also, BMISS RSSI threshold is zeroed.
1179 * So doing a save/restore procedure here isn't the right 1179 * So doing a save/restore procedure here isn't the right
1180 * choice. Instead store it on ath5k_hw */ 1180 * choice. Instead, store it in ath5k_hw */
1181 ath5k_hw_reg_write(ah, (AR5K_TUNE_RSSI_THRES | 1181 ath5k_hw_reg_write(ah, (AR5K_TUNE_RSSI_THRES |
1182 AR5K_TUNE_BMISS_THRES << 1182 AR5K_TUNE_BMISS_THRES <<
1183 AR5K_RSSI_THR_BMISS_S), 1183 AR5K_RSSI_THR_BMISS_S),
@@ -1235,7 +1235,7 @@ int ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode,
1235 1235
1236 /* 1236 /*
1237 * Perform ADC test to see if baseband is ready 1237 * Perform ADC test to see if baseband is ready
1238 * Set tx hold and check adc test register 1238 * Set TX hold and check ADC test register
1239 */ 1239 */
1240 phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1); 1240 phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
1241 ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1); 1241 ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
@@ -1254,15 +1254,15 @@ int ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode,
1254 * 1254 *
1255 * This method is used to calibrate some static offsets 1255 * This method is used to calibrate some static offsets
1256 * used together with on-the fly I/Q calibration (the 1256 * used together with on-the fly I/Q calibration (the
1257 * one performed via ath5k_hw_phy_calibrate), that doesn't 1257 * one performed via ath5k_hw_phy_calibrate), which doesn't
1258 * interrupt rx path. 1258 * interrupt rx path.
1259 * 1259 *
1260 * While rx path is re-routed to the power detector we also 1260 * While rx path is re-routed to the power detector we also
1261 * start a noise floor calibration, to measure the 1261 * start a noise floor calibration to measure the
1262 * card's noise floor (the noise we measure when we are not 1262 * card's noise floor (the noise we measure when we are not
1263 * transmiting or receiving anything). 1263 * transmitting or receiving anything).
1264 * 1264 *
1265 * If we are in a noisy environment AGC calibration may time 1265 * If we are in a noisy environment, AGC calibration may time
1266 * out and/or noise floor calibration might timeout. 1266 * out and/or noise floor calibration might timeout.
1267 */ 1267 */
1268 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, 1268 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
diff --git a/drivers/net/wireless/ath/ath5k/rfbuffer.h b/drivers/net/wireless/ath/ath5k/rfbuffer.h
index e50baff66175..3ac4cff4239d 100644
--- a/drivers/net/wireless/ath/ath5k/rfbuffer.h
+++ b/drivers/net/wireless/ath/ath5k/rfbuffer.h
@@ -25,10 +25,10 @@
25 * 25 *
26 * We don't write on those registers directly but 26 * We don't write on those registers directly but
27 * we send a data packet on the chip, using a special register, 27 * we send a data packet on the chip, using a special register,
28 * that holds all the settings we need. After we 've sent the 28 * that holds all the settings we need. After we've sent the
29 * data packet, we write on another special register to notify hw 29 * data packet, we write on another special register to notify hw
30 * to apply the settings. This is done so that control registers 30 * to apply the settings. This is done so that control registers
31 * can be dynamicaly programmed during operation and the settings 31 * can be dynamically programmed during operation and the settings
32 * are applied faster on the hw. 32 * are applied faster on the hw.
33 * 33 *
34 * We call each data packet an "RF Bank" and all the data we write 34 * We call each data packet an "RF Bank" and all the data we write