diff options
author | Johannes Berg <johannes.berg@intel.com> | 2012-05-15 06:16:34 -0400 |
---|---|---|
committer | Johannes Berg <johannes.berg@intel.com> | 2012-06-06 07:21:14 -0400 |
commit | 1023fdc4858b6b8cb88ff28cafd425b77555be9f (patch) | |
tree | 16571db8e1a8c8be475b50513a3af33c3583bfc4 /drivers/net/wireless/iwlwifi/dvm/calib.c | |
parent | 20041ea622fcb1992df536d253de5120808e64a5 (diff) |
iwlwifi: move DVM code into subdirectory
Since we're working on another mode/driver
inside iwlwifi, move the current one into a
subdirectory to more cleanly separate the
code. While at it, rename all the files.
Reviewed-by: Emmanuel Grumbach <emmanuel.grumbach@intel.com>
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Diffstat (limited to 'drivers/net/wireless/iwlwifi/dvm/calib.c')
-rw-r--r-- | drivers/net/wireless/iwlwifi/dvm/calib.c | 1113 |
1 files changed, 1113 insertions, 0 deletions
diff --git a/drivers/net/wireless/iwlwifi/dvm/calib.c b/drivers/net/wireless/iwlwifi/dvm/calib.c new file mode 100644 index 000000000000..7eb3fa3df7c4 --- /dev/null +++ b/drivers/net/wireless/iwlwifi/dvm/calib.c | |||
@@ -0,0 +1,1113 @@ | |||
1 | /****************************************************************************** | ||
2 | * | ||
3 | * This file is provided under a dual BSD/GPLv2 license. When using or | ||
4 | * redistributing this file, you may do so under either license. | ||
5 | * | ||
6 | * GPL LICENSE SUMMARY | ||
7 | * | ||
8 | * Copyright(c) 2008 - 2012 Intel Corporation. All rights reserved. | ||
9 | * | ||
10 | * This program is free software; you can redistribute it and/or modify | ||
11 | * it under the terms of version 2 of the GNU General Public License as | ||
12 | * published by the Free Software Foundation. | ||
13 | * | ||
14 | * This program is distributed in the hope that it will be useful, but | ||
15 | * WITHOUT ANY WARRANTY; without even the implied warranty of | ||
16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
17 | * General Public License for more details. | ||
18 | * | ||
19 | * You should have received a copy of the GNU General Public License | ||
20 | * along with this program; if not, write to the Free Software | ||
21 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, | ||
22 | * USA | ||
23 | * | ||
24 | * The full GNU General Public License is included in this distribution | ||
25 | * in the file called LICENSE.GPL. | ||
26 | * | ||
27 | * Contact Information: | ||
28 | * Intel Linux Wireless <ilw@linux.intel.com> | ||
29 | * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
30 | * | ||
31 | * BSD LICENSE | ||
32 | * | ||
33 | * Copyright(c) 2005 - 2012 Intel Corporation. All rights reserved. | ||
34 | * All rights reserved. | ||
35 | * | ||
36 | * Redistribution and use in source and binary forms, with or without | ||
37 | * modification, are permitted provided that the following conditions | ||
38 | * are met: | ||
39 | * | ||
40 | * * Redistributions of source code must retain the above copyright | ||
41 | * notice, this list of conditions and the following disclaimer. | ||
42 | * * Redistributions in binary form must reproduce the above copyright | ||
43 | * notice, this list of conditions and the following disclaimer in | ||
44 | * the documentation and/or other materials provided with the | ||
45 | * distribution. | ||
46 | * * Neither the name Intel Corporation nor the names of its | ||
47 | * contributors may be used to endorse or promote products derived | ||
48 | * from this software without specific prior written permission. | ||
49 | * | ||
50 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | ||
51 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | ||
52 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | ||
53 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | ||
54 | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
55 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | ||
56 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | ||
57 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | ||
58 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||
59 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||
60 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
61 | *****************************************************************************/ | ||
62 | |||
63 | #include <linux/slab.h> | ||
64 | #include <net/mac80211.h> | ||
65 | |||
66 | #include "iwl-trans.h" | ||
67 | |||
68 | #include "dev.h" | ||
69 | #include "calib.h" | ||
70 | #include "agn.h" | ||
71 | |||
72 | /***************************************************************************** | ||
73 | * INIT calibrations framework | ||
74 | *****************************************************************************/ | ||
75 | |||
76 | /* Opaque calibration results */ | ||
77 | struct iwl_calib_result { | ||
78 | struct list_head list; | ||
79 | size_t cmd_len; | ||
80 | struct iwl_calib_hdr hdr; | ||
81 | /* data follows */ | ||
82 | }; | ||
83 | |||
84 | struct statistics_general_data { | ||
85 | u32 beacon_silence_rssi_a; | ||
86 | u32 beacon_silence_rssi_b; | ||
87 | u32 beacon_silence_rssi_c; | ||
88 | u32 beacon_energy_a; | ||
89 | u32 beacon_energy_b; | ||
90 | u32 beacon_energy_c; | ||
91 | }; | ||
92 | |||
93 | int iwl_send_calib_results(struct iwl_priv *priv) | ||
94 | { | ||
95 | struct iwl_host_cmd hcmd = { | ||
96 | .id = REPLY_PHY_CALIBRATION_CMD, | ||
97 | .flags = CMD_SYNC, | ||
98 | }; | ||
99 | struct iwl_calib_result *res; | ||
100 | |||
101 | list_for_each_entry(res, &priv->calib_results, list) { | ||
102 | int ret; | ||
103 | |||
104 | hcmd.len[0] = res->cmd_len; | ||
105 | hcmd.data[0] = &res->hdr; | ||
106 | hcmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY; | ||
107 | ret = iwl_dvm_send_cmd(priv, &hcmd); | ||
108 | if (ret) { | ||
109 | IWL_ERR(priv, "Error %d on calib cmd %d\n", | ||
110 | ret, res->hdr.op_code); | ||
111 | return ret; | ||
112 | } | ||
113 | } | ||
114 | |||
115 | return 0; | ||
116 | } | ||
117 | |||
118 | int iwl_calib_set(struct iwl_priv *priv, | ||
119 | const struct iwl_calib_hdr *cmd, int len) | ||
120 | { | ||
121 | struct iwl_calib_result *res, *tmp; | ||
122 | |||
123 | res = kmalloc(sizeof(*res) + len - sizeof(struct iwl_calib_hdr), | ||
124 | GFP_ATOMIC); | ||
125 | if (!res) | ||
126 | return -ENOMEM; | ||
127 | memcpy(&res->hdr, cmd, len); | ||
128 | res->cmd_len = len; | ||
129 | |||
130 | list_for_each_entry(tmp, &priv->calib_results, list) { | ||
131 | if (tmp->hdr.op_code == res->hdr.op_code) { | ||
132 | list_replace(&tmp->list, &res->list); | ||
133 | kfree(tmp); | ||
134 | return 0; | ||
135 | } | ||
136 | } | ||
137 | |||
138 | /* wasn't in list already */ | ||
139 | list_add_tail(&res->list, &priv->calib_results); | ||
140 | |||
141 | return 0; | ||
142 | } | ||
143 | |||
144 | void iwl_calib_free_results(struct iwl_priv *priv) | ||
145 | { | ||
146 | struct iwl_calib_result *res, *tmp; | ||
147 | |||
148 | list_for_each_entry_safe(res, tmp, &priv->calib_results, list) { | ||
149 | list_del(&res->list); | ||
150 | kfree(res); | ||
151 | } | ||
152 | } | ||
153 | |||
154 | /***************************************************************************** | ||
155 | * RUNTIME calibrations framework | ||
156 | *****************************************************************************/ | ||
157 | |||
158 | /* "false alarms" are signals that our DSP tries to lock onto, | ||
159 | * but then determines that they are either noise, or transmissions | ||
160 | * from a distant wireless network (also "noise", really) that get | ||
161 | * "stepped on" by stronger transmissions within our own network. | ||
162 | * This algorithm attempts to set a sensitivity level that is high | ||
163 | * enough to receive all of our own network traffic, but not so | ||
164 | * high that our DSP gets too busy trying to lock onto non-network | ||
165 | * activity/noise. */ | ||
166 | static int iwl_sens_energy_cck(struct iwl_priv *priv, | ||
167 | u32 norm_fa, | ||
168 | u32 rx_enable_time, | ||
169 | struct statistics_general_data *rx_info) | ||
170 | { | ||
171 | u32 max_nrg_cck = 0; | ||
172 | int i = 0; | ||
173 | u8 max_silence_rssi = 0; | ||
174 | u32 silence_ref = 0; | ||
175 | u8 silence_rssi_a = 0; | ||
176 | u8 silence_rssi_b = 0; | ||
177 | u8 silence_rssi_c = 0; | ||
178 | u32 val; | ||
179 | |||
180 | /* "false_alarms" values below are cross-multiplications to assess the | ||
181 | * numbers of false alarms within the measured period of actual Rx | ||
182 | * (Rx is off when we're txing), vs the min/max expected false alarms | ||
183 | * (some should be expected if rx is sensitive enough) in a | ||
184 | * hypothetical listening period of 200 time units (TU), 204.8 msec: | ||
185 | * | ||
186 | * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time | ||
187 | * | ||
188 | * */ | ||
189 | u32 false_alarms = norm_fa * 200 * 1024; | ||
190 | u32 max_false_alarms = MAX_FA_CCK * rx_enable_time; | ||
191 | u32 min_false_alarms = MIN_FA_CCK * rx_enable_time; | ||
192 | struct iwl_sensitivity_data *data = NULL; | ||
193 | const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens; | ||
194 | |||
195 | data = &(priv->sensitivity_data); | ||
196 | |||
197 | data->nrg_auto_corr_silence_diff = 0; | ||
198 | |||
199 | /* Find max silence rssi among all 3 receivers. | ||
200 | * This is background noise, which may include transmissions from other | ||
201 | * networks, measured during silence before our network's beacon */ | ||
202 | silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a & | ||
203 | ALL_BAND_FILTER) >> 8); | ||
204 | silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b & | ||
205 | ALL_BAND_FILTER) >> 8); | ||
206 | silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c & | ||
207 | ALL_BAND_FILTER) >> 8); | ||
208 | |||
209 | val = max(silence_rssi_b, silence_rssi_c); | ||
210 | max_silence_rssi = max(silence_rssi_a, (u8) val); | ||
211 | |||
212 | /* Store silence rssi in 20-beacon history table */ | ||
213 | data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi; | ||
214 | data->nrg_silence_idx++; | ||
215 | if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L) | ||
216 | data->nrg_silence_idx = 0; | ||
217 | |||
218 | /* Find max silence rssi across 20 beacon history */ | ||
219 | for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) { | ||
220 | val = data->nrg_silence_rssi[i]; | ||
221 | silence_ref = max(silence_ref, val); | ||
222 | } | ||
223 | IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n", | ||
224 | silence_rssi_a, silence_rssi_b, silence_rssi_c, | ||
225 | silence_ref); | ||
226 | |||
227 | /* Find max rx energy (min value!) among all 3 receivers, | ||
228 | * measured during beacon frame. | ||
229 | * Save it in 10-beacon history table. */ | ||
230 | i = data->nrg_energy_idx; | ||
231 | val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c); | ||
232 | data->nrg_value[i] = min(rx_info->beacon_energy_a, val); | ||
233 | |||
234 | data->nrg_energy_idx++; | ||
235 | if (data->nrg_energy_idx >= 10) | ||
236 | data->nrg_energy_idx = 0; | ||
237 | |||
238 | /* Find min rx energy (max value) across 10 beacon history. | ||
239 | * This is the minimum signal level that we want to receive well. | ||
240 | * Add backoff (margin so we don't miss slightly lower energy frames). | ||
241 | * This establishes an upper bound (min value) for energy threshold. */ | ||
242 | max_nrg_cck = data->nrg_value[0]; | ||
243 | for (i = 1; i < 10; i++) | ||
244 | max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i])); | ||
245 | max_nrg_cck += 6; | ||
246 | |||
247 | IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n", | ||
248 | rx_info->beacon_energy_a, rx_info->beacon_energy_b, | ||
249 | rx_info->beacon_energy_c, max_nrg_cck - 6); | ||
250 | |||
251 | /* Count number of consecutive beacons with fewer-than-desired | ||
252 | * false alarms. */ | ||
253 | if (false_alarms < min_false_alarms) | ||
254 | data->num_in_cck_no_fa++; | ||
255 | else | ||
256 | data->num_in_cck_no_fa = 0; | ||
257 | IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n", | ||
258 | data->num_in_cck_no_fa); | ||
259 | |||
260 | /* If we got too many false alarms this time, reduce sensitivity */ | ||
261 | if ((false_alarms > max_false_alarms) && | ||
262 | (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) { | ||
263 | IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n", | ||
264 | false_alarms, max_false_alarms); | ||
265 | IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n"); | ||
266 | data->nrg_curr_state = IWL_FA_TOO_MANY; | ||
267 | /* Store for "fewer than desired" on later beacon */ | ||
268 | data->nrg_silence_ref = silence_ref; | ||
269 | |||
270 | /* increase energy threshold (reduce nrg value) | ||
271 | * to decrease sensitivity */ | ||
272 | data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK; | ||
273 | /* Else if we got fewer than desired, increase sensitivity */ | ||
274 | } else if (false_alarms < min_false_alarms) { | ||
275 | data->nrg_curr_state = IWL_FA_TOO_FEW; | ||
276 | |||
277 | /* Compare silence level with silence level for most recent | ||
278 | * healthy number or too many false alarms */ | ||
279 | data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref - | ||
280 | (s32)silence_ref; | ||
281 | |||
282 | IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n", | ||
283 | false_alarms, min_false_alarms, | ||
284 | data->nrg_auto_corr_silence_diff); | ||
285 | |||
286 | /* Increase value to increase sensitivity, but only if: | ||
287 | * 1a) previous beacon did *not* have *too many* false alarms | ||
288 | * 1b) AND there's a significant difference in Rx levels | ||
289 | * from a previous beacon with too many, or healthy # FAs | ||
290 | * OR 2) We've seen a lot of beacons (100) with too few | ||
291 | * false alarms */ | ||
292 | if ((data->nrg_prev_state != IWL_FA_TOO_MANY) && | ||
293 | ((data->nrg_auto_corr_silence_diff > NRG_DIFF) || | ||
294 | (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) { | ||
295 | |||
296 | IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n"); | ||
297 | /* Increase nrg value to increase sensitivity */ | ||
298 | val = data->nrg_th_cck + NRG_STEP_CCK; | ||
299 | data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val); | ||
300 | } else { | ||
301 | IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n"); | ||
302 | } | ||
303 | |||
304 | /* Else we got a healthy number of false alarms, keep status quo */ | ||
305 | } else { | ||
306 | IWL_DEBUG_CALIB(priv, " FA in safe zone\n"); | ||
307 | data->nrg_curr_state = IWL_FA_GOOD_RANGE; | ||
308 | |||
309 | /* Store for use in "fewer than desired" with later beacon */ | ||
310 | data->nrg_silence_ref = silence_ref; | ||
311 | |||
312 | /* If previous beacon had too many false alarms, | ||
313 | * give it some extra margin by reducing sensitivity again | ||
314 | * (but don't go below measured energy of desired Rx) */ | ||
315 | if (IWL_FA_TOO_MANY == data->nrg_prev_state) { | ||
316 | IWL_DEBUG_CALIB(priv, "... increasing margin\n"); | ||
317 | if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN)) | ||
318 | data->nrg_th_cck -= NRG_MARGIN; | ||
319 | else | ||
320 | data->nrg_th_cck = max_nrg_cck; | ||
321 | } | ||
322 | } | ||
323 | |||
324 | /* Make sure the energy threshold does not go above the measured | ||
325 | * energy of the desired Rx signals (reduced by backoff margin), | ||
326 | * or else we might start missing Rx frames. | ||
327 | * Lower value is higher energy, so we use max()! | ||
328 | */ | ||
329 | data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck); | ||
330 | IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck); | ||
331 | |||
332 | data->nrg_prev_state = data->nrg_curr_state; | ||
333 | |||
334 | /* Auto-correlation CCK algorithm */ | ||
335 | if (false_alarms > min_false_alarms) { | ||
336 | |||
337 | /* increase auto_corr values to decrease sensitivity | ||
338 | * so the DSP won't be disturbed by the noise | ||
339 | */ | ||
340 | if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK) | ||
341 | data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1; | ||
342 | else { | ||
343 | val = data->auto_corr_cck + AUTO_CORR_STEP_CCK; | ||
344 | data->auto_corr_cck = | ||
345 | min((u32)ranges->auto_corr_max_cck, val); | ||
346 | } | ||
347 | val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK; | ||
348 | data->auto_corr_cck_mrc = | ||
349 | min((u32)ranges->auto_corr_max_cck_mrc, val); | ||
350 | } else if ((false_alarms < min_false_alarms) && | ||
351 | ((data->nrg_auto_corr_silence_diff > NRG_DIFF) || | ||
352 | (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) { | ||
353 | |||
354 | /* Decrease auto_corr values to increase sensitivity */ | ||
355 | val = data->auto_corr_cck - AUTO_CORR_STEP_CCK; | ||
356 | data->auto_corr_cck = | ||
357 | max((u32)ranges->auto_corr_min_cck, val); | ||
358 | val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK; | ||
359 | data->auto_corr_cck_mrc = | ||
360 | max((u32)ranges->auto_corr_min_cck_mrc, val); | ||
361 | } | ||
362 | |||
363 | return 0; | ||
364 | } | ||
365 | |||
366 | |||
367 | static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv, | ||
368 | u32 norm_fa, | ||
369 | u32 rx_enable_time) | ||
370 | { | ||
371 | u32 val; | ||
372 | u32 false_alarms = norm_fa * 200 * 1024; | ||
373 | u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time; | ||
374 | u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time; | ||
375 | struct iwl_sensitivity_data *data = NULL; | ||
376 | const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens; | ||
377 | |||
378 | data = &(priv->sensitivity_data); | ||
379 | |||
380 | /* If we got too many false alarms this time, reduce sensitivity */ | ||
381 | if (false_alarms > max_false_alarms) { | ||
382 | |||
383 | IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n", | ||
384 | false_alarms, max_false_alarms); | ||
385 | |||
386 | val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM; | ||
387 | data->auto_corr_ofdm = | ||
388 | min((u32)ranges->auto_corr_max_ofdm, val); | ||
389 | |||
390 | val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM; | ||
391 | data->auto_corr_ofdm_mrc = | ||
392 | min((u32)ranges->auto_corr_max_ofdm_mrc, val); | ||
393 | |||
394 | val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM; | ||
395 | data->auto_corr_ofdm_x1 = | ||
396 | min((u32)ranges->auto_corr_max_ofdm_x1, val); | ||
397 | |||
398 | val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM; | ||
399 | data->auto_corr_ofdm_mrc_x1 = | ||
400 | min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val); | ||
401 | } | ||
402 | |||
403 | /* Else if we got fewer than desired, increase sensitivity */ | ||
404 | else if (false_alarms < min_false_alarms) { | ||
405 | |||
406 | IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n", | ||
407 | false_alarms, min_false_alarms); | ||
408 | |||
409 | val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM; | ||
410 | data->auto_corr_ofdm = | ||
411 | max((u32)ranges->auto_corr_min_ofdm, val); | ||
412 | |||
413 | val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM; | ||
414 | data->auto_corr_ofdm_mrc = | ||
415 | max((u32)ranges->auto_corr_min_ofdm_mrc, val); | ||
416 | |||
417 | val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM; | ||
418 | data->auto_corr_ofdm_x1 = | ||
419 | max((u32)ranges->auto_corr_min_ofdm_x1, val); | ||
420 | |||
421 | val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM; | ||
422 | data->auto_corr_ofdm_mrc_x1 = | ||
423 | max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val); | ||
424 | } else { | ||
425 | IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n", | ||
426 | min_false_alarms, false_alarms, max_false_alarms); | ||
427 | } | ||
428 | return 0; | ||
429 | } | ||
430 | |||
431 | static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv, | ||
432 | struct iwl_sensitivity_data *data, | ||
433 | __le16 *tbl) | ||
434 | { | ||
435 | tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] = | ||
436 | cpu_to_le16((u16)data->auto_corr_ofdm); | ||
437 | tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] = | ||
438 | cpu_to_le16((u16)data->auto_corr_ofdm_mrc); | ||
439 | tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] = | ||
440 | cpu_to_le16((u16)data->auto_corr_ofdm_x1); | ||
441 | tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] = | ||
442 | cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1); | ||
443 | |||
444 | tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] = | ||
445 | cpu_to_le16((u16)data->auto_corr_cck); | ||
446 | tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] = | ||
447 | cpu_to_le16((u16)data->auto_corr_cck_mrc); | ||
448 | |||
449 | tbl[HD_MIN_ENERGY_CCK_DET_INDEX] = | ||
450 | cpu_to_le16((u16)data->nrg_th_cck); | ||
451 | tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] = | ||
452 | cpu_to_le16((u16)data->nrg_th_ofdm); | ||
453 | |||
454 | tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] = | ||
455 | cpu_to_le16(data->barker_corr_th_min); | ||
456 | tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] = | ||
457 | cpu_to_le16(data->barker_corr_th_min_mrc); | ||
458 | tbl[HD_OFDM_ENERGY_TH_IN_INDEX] = | ||
459 | cpu_to_le16(data->nrg_th_cca); | ||
460 | |||
461 | IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n", | ||
462 | data->auto_corr_ofdm, data->auto_corr_ofdm_mrc, | ||
463 | data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1, | ||
464 | data->nrg_th_ofdm); | ||
465 | |||
466 | IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n", | ||
467 | data->auto_corr_cck, data->auto_corr_cck_mrc, | ||
468 | data->nrg_th_cck); | ||
469 | } | ||
470 | |||
471 | /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */ | ||
472 | static int iwl_sensitivity_write(struct iwl_priv *priv) | ||
473 | { | ||
474 | struct iwl_sensitivity_cmd cmd; | ||
475 | struct iwl_sensitivity_data *data = NULL; | ||
476 | struct iwl_host_cmd cmd_out = { | ||
477 | .id = SENSITIVITY_CMD, | ||
478 | .len = { sizeof(struct iwl_sensitivity_cmd), }, | ||
479 | .flags = CMD_ASYNC, | ||
480 | .data = { &cmd, }, | ||
481 | }; | ||
482 | |||
483 | data = &(priv->sensitivity_data); | ||
484 | |||
485 | memset(&cmd, 0, sizeof(cmd)); | ||
486 | |||
487 | iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]); | ||
488 | |||
489 | /* Update uCode's "work" table, and copy it to DSP */ | ||
490 | cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE; | ||
491 | |||
492 | /* Don't send command to uCode if nothing has changed */ | ||
493 | if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]), | ||
494 | sizeof(u16)*HD_TABLE_SIZE)) { | ||
495 | IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n"); | ||
496 | return 0; | ||
497 | } | ||
498 | |||
499 | /* Copy table for comparison next time */ | ||
500 | memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]), | ||
501 | sizeof(u16)*HD_TABLE_SIZE); | ||
502 | |||
503 | return iwl_dvm_send_cmd(priv, &cmd_out); | ||
504 | } | ||
505 | |||
506 | /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */ | ||
507 | static int iwl_enhance_sensitivity_write(struct iwl_priv *priv) | ||
508 | { | ||
509 | struct iwl_enhance_sensitivity_cmd cmd; | ||
510 | struct iwl_sensitivity_data *data = NULL; | ||
511 | struct iwl_host_cmd cmd_out = { | ||
512 | .id = SENSITIVITY_CMD, | ||
513 | .len = { sizeof(struct iwl_enhance_sensitivity_cmd), }, | ||
514 | .flags = CMD_ASYNC, | ||
515 | .data = { &cmd, }, | ||
516 | }; | ||
517 | |||
518 | data = &(priv->sensitivity_data); | ||
519 | |||
520 | memset(&cmd, 0, sizeof(cmd)); | ||
521 | |||
522 | iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.enhance_table[0]); | ||
523 | |||
524 | if (priv->cfg->base_params->hd_v2) { | ||
525 | cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] = | ||
526 | HD_INA_NON_SQUARE_DET_OFDM_DATA_V2; | ||
527 | cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] = | ||
528 | HD_INA_NON_SQUARE_DET_CCK_DATA_V2; | ||
529 | cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] = | ||
530 | HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2; | ||
531 | cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] = | ||
532 | HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2; | ||
533 | cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] = | ||
534 | HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2; | ||
535 | cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] = | ||
536 | HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2; | ||
537 | cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] = | ||
538 | HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2; | ||
539 | cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] = | ||
540 | HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2; | ||
541 | cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] = | ||
542 | HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2; | ||
543 | cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] = | ||
544 | HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2; | ||
545 | cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] = | ||
546 | HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2; | ||
547 | } else { | ||
548 | cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] = | ||
549 | HD_INA_NON_SQUARE_DET_OFDM_DATA_V1; | ||
550 | cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] = | ||
551 | HD_INA_NON_SQUARE_DET_CCK_DATA_V1; | ||
552 | cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] = | ||
553 | HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1; | ||
554 | cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] = | ||
555 | HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1; | ||
556 | cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] = | ||
557 | HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1; | ||
558 | cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] = | ||
559 | HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1; | ||
560 | cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] = | ||
561 | HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1; | ||
562 | cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] = | ||
563 | HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1; | ||
564 | cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] = | ||
565 | HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1; | ||
566 | cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] = | ||
567 | HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1; | ||
568 | cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] = | ||
569 | HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1; | ||
570 | } | ||
571 | |||
572 | /* Update uCode's "work" table, and copy it to DSP */ | ||
573 | cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE; | ||
574 | |||
575 | /* Don't send command to uCode if nothing has changed */ | ||
576 | if (!memcmp(&cmd.enhance_table[0], &(priv->sensitivity_tbl[0]), | ||
577 | sizeof(u16)*HD_TABLE_SIZE) && | ||
578 | !memcmp(&cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX], | ||
579 | &(priv->enhance_sensitivity_tbl[0]), | ||
580 | sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES)) { | ||
581 | IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n"); | ||
582 | return 0; | ||
583 | } | ||
584 | |||
585 | /* Copy table for comparison next time */ | ||
586 | memcpy(&(priv->sensitivity_tbl[0]), &(cmd.enhance_table[0]), | ||
587 | sizeof(u16)*HD_TABLE_SIZE); | ||
588 | memcpy(&(priv->enhance_sensitivity_tbl[0]), | ||
589 | &(cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX]), | ||
590 | sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES); | ||
591 | |||
592 | return iwl_dvm_send_cmd(priv, &cmd_out); | ||
593 | } | ||
594 | |||
595 | void iwl_init_sensitivity(struct iwl_priv *priv) | ||
596 | { | ||
597 | int ret = 0; | ||
598 | int i; | ||
599 | struct iwl_sensitivity_data *data = NULL; | ||
600 | const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens; | ||
601 | |||
602 | if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED) | ||
603 | return; | ||
604 | |||
605 | IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n"); | ||
606 | |||
607 | /* Clear driver's sensitivity algo data */ | ||
608 | data = &(priv->sensitivity_data); | ||
609 | |||
610 | if (ranges == NULL) | ||
611 | return; | ||
612 | |||
613 | memset(data, 0, sizeof(struct iwl_sensitivity_data)); | ||
614 | |||
615 | data->num_in_cck_no_fa = 0; | ||
616 | data->nrg_curr_state = IWL_FA_TOO_MANY; | ||
617 | data->nrg_prev_state = IWL_FA_TOO_MANY; | ||
618 | data->nrg_silence_ref = 0; | ||
619 | data->nrg_silence_idx = 0; | ||
620 | data->nrg_energy_idx = 0; | ||
621 | |||
622 | for (i = 0; i < 10; i++) | ||
623 | data->nrg_value[i] = 0; | ||
624 | |||
625 | for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) | ||
626 | data->nrg_silence_rssi[i] = 0; | ||
627 | |||
628 | data->auto_corr_ofdm = ranges->auto_corr_min_ofdm; | ||
629 | data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc; | ||
630 | data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1; | ||
631 | data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1; | ||
632 | data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF; | ||
633 | data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc; | ||
634 | data->nrg_th_cck = ranges->nrg_th_cck; | ||
635 | data->nrg_th_ofdm = ranges->nrg_th_ofdm; | ||
636 | data->barker_corr_th_min = ranges->barker_corr_th_min; | ||
637 | data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc; | ||
638 | data->nrg_th_cca = ranges->nrg_th_cca; | ||
639 | |||
640 | data->last_bad_plcp_cnt_ofdm = 0; | ||
641 | data->last_fa_cnt_ofdm = 0; | ||
642 | data->last_bad_plcp_cnt_cck = 0; | ||
643 | data->last_fa_cnt_cck = 0; | ||
644 | |||
645 | if (priv->fw->enhance_sensitivity_table) | ||
646 | ret |= iwl_enhance_sensitivity_write(priv); | ||
647 | else | ||
648 | ret |= iwl_sensitivity_write(priv); | ||
649 | IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret); | ||
650 | } | ||
651 | |||
652 | void iwl_sensitivity_calibration(struct iwl_priv *priv) | ||
653 | { | ||
654 | u32 rx_enable_time; | ||
655 | u32 fa_cck; | ||
656 | u32 fa_ofdm; | ||
657 | u32 bad_plcp_cck; | ||
658 | u32 bad_plcp_ofdm; | ||
659 | u32 norm_fa_ofdm; | ||
660 | u32 norm_fa_cck; | ||
661 | struct iwl_sensitivity_data *data = NULL; | ||
662 | struct statistics_rx_non_phy *rx_info; | ||
663 | struct statistics_rx_phy *ofdm, *cck; | ||
664 | struct statistics_general_data statis; | ||
665 | |||
666 | if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED) | ||
667 | return; | ||
668 | |||
669 | data = &(priv->sensitivity_data); | ||
670 | |||
671 | if (!iwl_is_any_associated(priv)) { | ||
672 | IWL_DEBUG_CALIB(priv, "<< - not associated\n"); | ||
673 | return; | ||
674 | } | ||
675 | |||
676 | spin_lock_bh(&priv->statistics.lock); | ||
677 | rx_info = &priv->statistics.rx_non_phy; | ||
678 | ofdm = &priv->statistics.rx_ofdm; | ||
679 | cck = &priv->statistics.rx_cck; | ||
680 | if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) { | ||
681 | IWL_DEBUG_CALIB(priv, "<< invalid data.\n"); | ||
682 | spin_unlock_bh(&priv->statistics.lock); | ||
683 | return; | ||
684 | } | ||
685 | |||
686 | /* Extract Statistics: */ | ||
687 | rx_enable_time = le32_to_cpu(rx_info->channel_load); | ||
688 | fa_cck = le32_to_cpu(cck->false_alarm_cnt); | ||
689 | fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt); | ||
690 | bad_plcp_cck = le32_to_cpu(cck->plcp_err); | ||
691 | bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err); | ||
692 | |||
693 | statis.beacon_silence_rssi_a = | ||
694 | le32_to_cpu(rx_info->beacon_silence_rssi_a); | ||
695 | statis.beacon_silence_rssi_b = | ||
696 | le32_to_cpu(rx_info->beacon_silence_rssi_b); | ||
697 | statis.beacon_silence_rssi_c = | ||
698 | le32_to_cpu(rx_info->beacon_silence_rssi_c); | ||
699 | statis.beacon_energy_a = | ||
700 | le32_to_cpu(rx_info->beacon_energy_a); | ||
701 | statis.beacon_energy_b = | ||
702 | le32_to_cpu(rx_info->beacon_energy_b); | ||
703 | statis.beacon_energy_c = | ||
704 | le32_to_cpu(rx_info->beacon_energy_c); | ||
705 | |||
706 | spin_unlock_bh(&priv->statistics.lock); | ||
707 | |||
708 | IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time); | ||
709 | |||
710 | if (!rx_enable_time) { | ||
711 | IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n"); | ||
712 | return; | ||
713 | } | ||
714 | |||
715 | /* These statistics increase monotonically, and do not reset | ||
716 | * at each beacon. Calculate difference from last value, or just | ||
717 | * use the new statistics value if it has reset or wrapped around. */ | ||
718 | if (data->last_bad_plcp_cnt_cck > bad_plcp_cck) | ||
719 | data->last_bad_plcp_cnt_cck = bad_plcp_cck; | ||
720 | else { | ||
721 | bad_plcp_cck -= data->last_bad_plcp_cnt_cck; | ||
722 | data->last_bad_plcp_cnt_cck += bad_plcp_cck; | ||
723 | } | ||
724 | |||
725 | if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm) | ||
726 | data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm; | ||
727 | else { | ||
728 | bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm; | ||
729 | data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm; | ||
730 | } | ||
731 | |||
732 | if (data->last_fa_cnt_ofdm > fa_ofdm) | ||
733 | data->last_fa_cnt_ofdm = fa_ofdm; | ||
734 | else { | ||
735 | fa_ofdm -= data->last_fa_cnt_ofdm; | ||
736 | data->last_fa_cnt_ofdm += fa_ofdm; | ||
737 | } | ||
738 | |||
739 | if (data->last_fa_cnt_cck > fa_cck) | ||
740 | data->last_fa_cnt_cck = fa_cck; | ||
741 | else { | ||
742 | fa_cck -= data->last_fa_cnt_cck; | ||
743 | data->last_fa_cnt_cck += fa_cck; | ||
744 | } | ||
745 | |||
746 | /* Total aborted signal locks */ | ||
747 | norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm; | ||
748 | norm_fa_cck = fa_cck + bad_plcp_cck; | ||
749 | |||
750 | IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck, | ||
751 | bad_plcp_cck, fa_ofdm, bad_plcp_ofdm); | ||
752 | |||
753 | iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time); | ||
754 | iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis); | ||
755 | if (priv->fw->enhance_sensitivity_table) | ||
756 | iwl_enhance_sensitivity_write(priv); | ||
757 | else | ||
758 | iwl_sensitivity_write(priv); | ||
759 | } | ||
760 | |||
761 | static inline u8 find_first_chain(u8 mask) | ||
762 | { | ||
763 | if (mask & ANT_A) | ||
764 | return CHAIN_A; | ||
765 | if (mask & ANT_B) | ||
766 | return CHAIN_B; | ||
767 | return CHAIN_C; | ||
768 | } | ||
769 | |||
770 | /** | ||
771 | * Run disconnected antenna algorithm to find out which antennas are | ||
772 | * disconnected. | ||
773 | */ | ||
774 | static void iwl_find_disconn_antenna(struct iwl_priv *priv, u32* average_sig, | ||
775 | struct iwl_chain_noise_data *data) | ||
776 | { | ||
777 | u32 active_chains = 0; | ||
778 | u32 max_average_sig; | ||
779 | u16 max_average_sig_antenna_i; | ||
780 | u8 num_tx_chains; | ||
781 | u8 first_chain; | ||
782 | u16 i = 0; | ||
783 | |||
784 | average_sig[0] = data->chain_signal_a / IWL_CAL_NUM_BEACONS; | ||
785 | average_sig[1] = data->chain_signal_b / IWL_CAL_NUM_BEACONS; | ||
786 | average_sig[2] = data->chain_signal_c / IWL_CAL_NUM_BEACONS; | ||
787 | |||
788 | if (average_sig[0] >= average_sig[1]) { | ||
789 | max_average_sig = average_sig[0]; | ||
790 | max_average_sig_antenna_i = 0; | ||
791 | active_chains = (1 << max_average_sig_antenna_i); | ||
792 | } else { | ||
793 | max_average_sig = average_sig[1]; | ||
794 | max_average_sig_antenna_i = 1; | ||
795 | active_chains = (1 << max_average_sig_antenna_i); | ||
796 | } | ||
797 | |||
798 | if (average_sig[2] >= max_average_sig) { | ||
799 | max_average_sig = average_sig[2]; | ||
800 | max_average_sig_antenna_i = 2; | ||
801 | active_chains = (1 << max_average_sig_antenna_i); | ||
802 | } | ||
803 | |||
804 | IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n", | ||
805 | average_sig[0], average_sig[1], average_sig[2]); | ||
806 | IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n", | ||
807 | max_average_sig, max_average_sig_antenna_i); | ||
808 | |||
809 | /* Compare signal strengths for all 3 receivers. */ | ||
810 | for (i = 0; i < NUM_RX_CHAINS; i++) { | ||
811 | if (i != max_average_sig_antenna_i) { | ||
812 | s32 rssi_delta = (max_average_sig - average_sig[i]); | ||
813 | |||
814 | /* If signal is very weak, compared with | ||
815 | * strongest, mark it as disconnected. */ | ||
816 | if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS) | ||
817 | data->disconn_array[i] = 1; | ||
818 | else | ||
819 | active_chains |= (1 << i); | ||
820 | IWL_DEBUG_CALIB(priv, "i = %d rssiDelta = %d " | ||
821 | "disconn_array[i] = %d\n", | ||
822 | i, rssi_delta, data->disconn_array[i]); | ||
823 | } | ||
824 | } | ||
825 | |||
826 | /* | ||
827 | * The above algorithm sometimes fails when the ucode | ||
828 | * reports 0 for all chains. It's not clear why that | ||
829 | * happens to start with, but it is then causing trouble | ||
830 | * because this can make us enable more chains than the | ||
831 | * hardware really has. | ||
832 | * | ||
833 | * To be safe, simply mask out any chains that we know | ||
834 | * are not on the device. | ||
835 | */ | ||
836 | active_chains &= priv->hw_params.valid_rx_ant; | ||
837 | |||
838 | num_tx_chains = 0; | ||
839 | for (i = 0; i < NUM_RX_CHAINS; i++) { | ||
840 | /* loops on all the bits of | ||
841 | * priv->hw_setting.valid_tx_ant */ | ||
842 | u8 ant_msk = (1 << i); | ||
843 | if (!(priv->hw_params.valid_tx_ant & ant_msk)) | ||
844 | continue; | ||
845 | |||
846 | num_tx_chains++; | ||
847 | if (data->disconn_array[i] == 0) | ||
848 | /* there is a Tx antenna connected */ | ||
849 | break; | ||
850 | if (num_tx_chains == priv->hw_params.tx_chains_num && | ||
851 | data->disconn_array[i]) { | ||
852 | /* | ||
853 | * If all chains are disconnected | ||
854 | * connect the first valid tx chain | ||
855 | */ | ||
856 | first_chain = | ||
857 | find_first_chain(priv->hw_params.valid_tx_ant); | ||
858 | data->disconn_array[first_chain] = 0; | ||
859 | active_chains |= BIT(first_chain); | ||
860 | IWL_DEBUG_CALIB(priv, | ||
861 | "All Tx chains are disconnected W/A - declare %d as connected\n", | ||
862 | first_chain); | ||
863 | break; | ||
864 | } | ||
865 | } | ||
866 | |||
867 | if (active_chains != priv->hw_params.valid_rx_ant && | ||
868 | active_chains != priv->chain_noise_data.active_chains) | ||
869 | IWL_DEBUG_CALIB(priv, | ||
870 | "Detected that not all antennas are connected! " | ||
871 | "Connected: %#x, valid: %#x.\n", | ||
872 | active_chains, | ||
873 | priv->hw_params.valid_rx_ant); | ||
874 | |||
875 | /* Save for use within RXON, TX, SCAN commands, etc. */ | ||
876 | data->active_chains = active_chains; | ||
877 | IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n", | ||
878 | active_chains); | ||
879 | } | ||
880 | |||
881 | static void iwlagn_gain_computation(struct iwl_priv *priv, | ||
882 | u32 average_noise[NUM_RX_CHAINS], | ||
883 | u8 default_chain) | ||
884 | { | ||
885 | int i; | ||
886 | s32 delta_g; | ||
887 | struct iwl_chain_noise_data *data = &priv->chain_noise_data; | ||
888 | |||
889 | /* | ||
890 | * Find Gain Code for the chains based on "default chain" | ||
891 | */ | ||
892 | for (i = default_chain + 1; i < NUM_RX_CHAINS; i++) { | ||
893 | if ((data->disconn_array[i])) { | ||
894 | data->delta_gain_code[i] = 0; | ||
895 | continue; | ||
896 | } | ||
897 | |||
898 | delta_g = (priv->cfg->base_params->chain_noise_scale * | ||
899 | ((s32)average_noise[default_chain] - | ||
900 | (s32)average_noise[i])) / 1500; | ||
901 | |||
902 | /* bound gain by 2 bits value max, 3rd bit is sign */ | ||
903 | data->delta_gain_code[i] = | ||
904 | min(abs(delta_g), | ||
905 | (long) CHAIN_NOISE_MAX_DELTA_GAIN_CODE); | ||
906 | |||
907 | if (delta_g < 0) | ||
908 | /* | ||
909 | * set negative sign ... | ||
910 | * note to Intel developers: This is uCode API format, | ||
911 | * not the format of any internal device registers. | ||
912 | * Do not change this format for e.g. 6050 or similar | ||
913 | * devices. Change format only if more resolution | ||
914 | * (i.e. more than 2 bits magnitude) is needed. | ||
915 | */ | ||
916 | data->delta_gain_code[i] |= (1 << 2); | ||
917 | } | ||
918 | |||
919 | IWL_DEBUG_CALIB(priv, "Delta gains: ANT_B = %d ANT_C = %d\n", | ||
920 | data->delta_gain_code[1], data->delta_gain_code[2]); | ||
921 | |||
922 | if (!data->radio_write) { | ||
923 | struct iwl_calib_chain_noise_gain_cmd cmd; | ||
924 | |||
925 | memset(&cmd, 0, sizeof(cmd)); | ||
926 | |||
927 | iwl_set_calib_hdr(&cmd.hdr, | ||
928 | priv->phy_calib_chain_noise_gain_cmd); | ||
929 | cmd.delta_gain_1 = data->delta_gain_code[1]; | ||
930 | cmd.delta_gain_2 = data->delta_gain_code[2]; | ||
931 | iwl_dvm_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD, | ||
932 | CMD_ASYNC, sizeof(cmd), &cmd); | ||
933 | |||
934 | data->radio_write = 1; | ||
935 | data->state = IWL_CHAIN_NOISE_CALIBRATED; | ||
936 | } | ||
937 | } | ||
938 | |||
939 | /* | ||
940 | * Accumulate 16 beacons of signal and noise statistics for each of | ||
941 | * 3 receivers/antennas/rx-chains, then figure out: | ||
942 | * 1) Which antennas are connected. | ||
943 | * 2) Differential rx gain settings to balance the 3 receivers. | ||
944 | */ | ||
945 | void iwl_chain_noise_calibration(struct iwl_priv *priv) | ||
946 | { | ||
947 | struct iwl_chain_noise_data *data = NULL; | ||
948 | |||
949 | u32 chain_noise_a; | ||
950 | u32 chain_noise_b; | ||
951 | u32 chain_noise_c; | ||
952 | u32 chain_sig_a; | ||
953 | u32 chain_sig_b; | ||
954 | u32 chain_sig_c; | ||
955 | u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE}; | ||
956 | u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE}; | ||
957 | u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE; | ||
958 | u16 min_average_noise_antenna_i = INITIALIZATION_VALUE; | ||
959 | u16 i = 0; | ||
960 | u16 rxon_chnum = INITIALIZATION_VALUE; | ||
961 | u16 stat_chnum = INITIALIZATION_VALUE; | ||
962 | u8 rxon_band24; | ||
963 | u8 stat_band24; | ||
964 | struct statistics_rx_non_phy *rx_info; | ||
965 | |||
966 | /* | ||
967 | * MULTI-FIXME: | ||
968 | * When we support multiple interfaces on different channels, | ||
969 | * this must be modified/fixed. | ||
970 | */ | ||
971 | struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS]; | ||
972 | |||
973 | if (priv->calib_disabled & IWL_CHAIN_NOISE_CALIB_DISABLED) | ||
974 | return; | ||
975 | |||
976 | data = &(priv->chain_noise_data); | ||
977 | |||
978 | /* | ||
979 | * Accumulate just the first "chain_noise_num_beacons" after | ||
980 | * the first association, then we're done forever. | ||
981 | */ | ||
982 | if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) { | ||
983 | if (data->state == IWL_CHAIN_NOISE_ALIVE) | ||
984 | IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n"); | ||
985 | return; | ||
986 | } | ||
987 | |||
988 | spin_lock_bh(&priv->statistics.lock); | ||
989 | |||
990 | rx_info = &priv->statistics.rx_non_phy; | ||
991 | |||
992 | if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) { | ||
993 | IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n"); | ||
994 | spin_unlock_bh(&priv->statistics.lock); | ||
995 | return; | ||
996 | } | ||
997 | |||
998 | rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK); | ||
999 | rxon_chnum = le16_to_cpu(ctx->staging.channel); | ||
1000 | stat_band24 = | ||
1001 | !!(priv->statistics.flag & STATISTICS_REPLY_FLG_BAND_24G_MSK); | ||
1002 | stat_chnum = le32_to_cpu(priv->statistics.flag) >> 16; | ||
1003 | |||
1004 | /* Make sure we accumulate data for just the associated channel | ||
1005 | * (even if scanning). */ | ||
1006 | if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) { | ||
1007 | IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n", | ||
1008 | rxon_chnum, rxon_band24); | ||
1009 | spin_unlock_bh(&priv->statistics.lock); | ||
1010 | return; | ||
1011 | } | ||
1012 | |||
1013 | /* | ||
1014 | * Accumulate beacon statistics values across | ||
1015 | * "chain_noise_num_beacons" | ||
1016 | */ | ||
1017 | chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) & | ||
1018 | IN_BAND_FILTER; | ||
1019 | chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) & | ||
1020 | IN_BAND_FILTER; | ||
1021 | chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) & | ||
1022 | IN_BAND_FILTER; | ||
1023 | |||
1024 | chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER; | ||
1025 | chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER; | ||
1026 | chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER; | ||
1027 | |||
1028 | spin_unlock_bh(&priv->statistics.lock); | ||
1029 | |||
1030 | data->beacon_count++; | ||
1031 | |||
1032 | data->chain_noise_a = (chain_noise_a + data->chain_noise_a); | ||
1033 | data->chain_noise_b = (chain_noise_b + data->chain_noise_b); | ||
1034 | data->chain_noise_c = (chain_noise_c + data->chain_noise_c); | ||
1035 | |||
1036 | data->chain_signal_a = (chain_sig_a + data->chain_signal_a); | ||
1037 | data->chain_signal_b = (chain_sig_b + data->chain_signal_b); | ||
1038 | data->chain_signal_c = (chain_sig_c + data->chain_signal_c); | ||
1039 | |||
1040 | IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n", | ||
1041 | rxon_chnum, rxon_band24, data->beacon_count); | ||
1042 | IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n", | ||
1043 | chain_sig_a, chain_sig_b, chain_sig_c); | ||
1044 | IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n", | ||
1045 | chain_noise_a, chain_noise_b, chain_noise_c); | ||
1046 | |||
1047 | /* If this is the "chain_noise_num_beacons", determine: | ||
1048 | * 1) Disconnected antennas (using signal strengths) | ||
1049 | * 2) Differential gain (using silence noise) to balance receivers */ | ||
1050 | if (data->beacon_count != IWL_CAL_NUM_BEACONS) | ||
1051 | return; | ||
1052 | |||
1053 | /* Analyze signal for disconnected antenna */ | ||
1054 | if (priv->cfg->bt_params && | ||
1055 | priv->cfg->bt_params->advanced_bt_coexist) { | ||
1056 | /* Disable disconnected antenna algorithm for advanced | ||
1057 | bt coex, assuming valid antennas are connected */ | ||
1058 | data->active_chains = priv->hw_params.valid_rx_ant; | ||
1059 | for (i = 0; i < NUM_RX_CHAINS; i++) | ||
1060 | if (!(data->active_chains & (1<<i))) | ||
1061 | data->disconn_array[i] = 1; | ||
1062 | } else | ||
1063 | iwl_find_disconn_antenna(priv, average_sig, data); | ||
1064 | |||
1065 | /* Analyze noise for rx balance */ | ||
1066 | average_noise[0] = data->chain_noise_a / IWL_CAL_NUM_BEACONS; | ||
1067 | average_noise[1] = data->chain_noise_b / IWL_CAL_NUM_BEACONS; | ||
1068 | average_noise[2] = data->chain_noise_c / IWL_CAL_NUM_BEACONS; | ||
1069 | |||
1070 | for (i = 0; i < NUM_RX_CHAINS; i++) { | ||
1071 | if (!(data->disconn_array[i]) && | ||
1072 | (average_noise[i] <= min_average_noise)) { | ||
1073 | /* This means that chain i is active and has | ||
1074 | * lower noise values so far: */ | ||
1075 | min_average_noise = average_noise[i]; | ||
1076 | min_average_noise_antenna_i = i; | ||
1077 | } | ||
1078 | } | ||
1079 | |||
1080 | IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n", | ||
1081 | average_noise[0], average_noise[1], | ||
1082 | average_noise[2]); | ||
1083 | |||
1084 | IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n", | ||
1085 | min_average_noise, min_average_noise_antenna_i); | ||
1086 | |||
1087 | iwlagn_gain_computation(priv, average_noise, | ||
1088 | find_first_chain(priv->hw_params.valid_rx_ant)); | ||
1089 | |||
1090 | /* Some power changes may have been made during the calibration. | ||
1091 | * Update and commit the RXON | ||
1092 | */ | ||
1093 | iwl_update_chain_flags(priv); | ||
1094 | |||
1095 | data->state = IWL_CHAIN_NOISE_DONE; | ||
1096 | iwl_power_update_mode(priv, false); | ||
1097 | } | ||
1098 | |||
1099 | void iwl_reset_run_time_calib(struct iwl_priv *priv) | ||
1100 | { | ||
1101 | int i; | ||
1102 | memset(&(priv->sensitivity_data), 0, | ||
1103 | sizeof(struct iwl_sensitivity_data)); | ||
1104 | memset(&(priv->chain_noise_data), 0, | ||
1105 | sizeof(struct iwl_chain_noise_data)); | ||
1106 | for (i = 0; i < NUM_RX_CHAINS; i++) | ||
1107 | priv->chain_noise_data.delta_gain_code[i] = | ||
1108 | CHAIN_NOISE_DELTA_GAIN_INIT_VAL; | ||
1109 | |||
1110 | /* Ask for statistics now, the uCode will send notification | ||
1111 | * periodically after association */ | ||
1112 | iwl_send_statistics_request(priv, CMD_ASYNC, true); | ||
1113 | } | ||