diff options
author | Jeff Kirsher <jeffrey.t.kirsher@intel.com> | 2011-04-07 10:42:33 -0400 |
---|---|---|
committer | Jeff Kirsher <jeffrey.t.kirsher@intel.com> | 2011-08-10 23:03:27 -0400 |
commit | dee1ad47f2ee75f5146d83ca757c1b7861c34c3b (patch) | |
tree | 47cbdefe3d0f9b729724e378ad6a96eaddfd5fbc /drivers/net/igb/e1000_phy.c | |
parent | f7917c009c28c941ba151ee66f04dc7f6a2e1e0b (diff) |
intel: Move the Intel wired LAN drivers
Moves the Intel wired LAN drivers into drivers/net/ethernet/intel/ and
the necessary Kconfig and Makefile changes.
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Diffstat (limited to 'drivers/net/igb/e1000_phy.c')
-rw-r--r-- | drivers/net/igb/e1000_phy.c | 2341 |
1 files changed, 0 insertions, 2341 deletions
diff --git a/drivers/net/igb/e1000_phy.c b/drivers/net/igb/e1000_phy.c deleted file mode 100644 index e662554c62d6..000000000000 --- a/drivers/net/igb/e1000_phy.c +++ /dev/null | |||
@@ -1,2341 +0,0 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) Gigabit Ethernet Linux driver | ||
4 | Copyright(c) 2007-2011 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | #include <linux/if_ether.h> | ||
29 | #include <linux/delay.h> | ||
30 | |||
31 | #include "e1000_mac.h" | ||
32 | #include "e1000_phy.h" | ||
33 | |||
34 | static s32 igb_phy_setup_autoneg(struct e1000_hw *hw); | ||
35 | static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw, | ||
36 | u16 *phy_ctrl); | ||
37 | static s32 igb_wait_autoneg(struct e1000_hw *hw); | ||
38 | |||
39 | /* Cable length tables */ | ||
40 | static const u16 e1000_m88_cable_length_table[] = | ||
41 | { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED }; | ||
42 | #define M88E1000_CABLE_LENGTH_TABLE_SIZE \ | ||
43 | (sizeof(e1000_m88_cable_length_table) / \ | ||
44 | sizeof(e1000_m88_cable_length_table[0])) | ||
45 | |||
46 | static const u16 e1000_igp_2_cable_length_table[] = | ||
47 | { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, | ||
48 | 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, | ||
49 | 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, | ||
50 | 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, | ||
51 | 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, | ||
52 | 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, | ||
53 | 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124, | ||
54 | 104, 109, 114, 118, 121, 124}; | ||
55 | #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \ | ||
56 | (sizeof(e1000_igp_2_cable_length_table) / \ | ||
57 | sizeof(e1000_igp_2_cable_length_table[0])) | ||
58 | |||
59 | /** | ||
60 | * igb_check_reset_block - Check if PHY reset is blocked | ||
61 | * @hw: pointer to the HW structure | ||
62 | * | ||
63 | * Read the PHY management control register and check whether a PHY reset | ||
64 | * is blocked. If a reset is not blocked return 0, otherwise | ||
65 | * return E1000_BLK_PHY_RESET (12). | ||
66 | **/ | ||
67 | s32 igb_check_reset_block(struct e1000_hw *hw) | ||
68 | { | ||
69 | u32 manc; | ||
70 | |||
71 | manc = rd32(E1000_MANC); | ||
72 | |||
73 | return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? | ||
74 | E1000_BLK_PHY_RESET : 0; | ||
75 | } | ||
76 | |||
77 | /** | ||
78 | * igb_get_phy_id - Retrieve the PHY ID and revision | ||
79 | * @hw: pointer to the HW structure | ||
80 | * | ||
81 | * Reads the PHY registers and stores the PHY ID and possibly the PHY | ||
82 | * revision in the hardware structure. | ||
83 | **/ | ||
84 | s32 igb_get_phy_id(struct e1000_hw *hw) | ||
85 | { | ||
86 | struct e1000_phy_info *phy = &hw->phy; | ||
87 | s32 ret_val = 0; | ||
88 | u16 phy_id; | ||
89 | |||
90 | ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id); | ||
91 | if (ret_val) | ||
92 | goto out; | ||
93 | |||
94 | phy->id = (u32)(phy_id << 16); | ||
95 | udelay(20); | ||
96 | ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id); | ||
97 | if (ret_val) | ||
98 | goto out; | ||
99 | |||
100 | phy->id |= (u32)(phy_id & PHY_REVISION_MASK); | ||
101 | phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); | ||
102 | |||
103 | out: | ||
104 | return ret_val; | ||
105 | } | ||
106 | |||
107 | /** | ||
108 | * igb_phy_reset_dsp - Reset PHY DSP | ||
109 | * @hw: pointer to the HW structure | ||
110 | * | ||
111 | * Reset the digital signal processor. | ||
112 | **/ | ||
113 | static s32 igb_phy_reset_dsp(struct e1000_hw *hw) | ||
114 | { | ||
115 | s32 ret_val = 0; | ||
116 | |||
117 | if (!(hw->phy.ops.write_reg)) | ||
118 | goto out; | ||
119 | |||
120 | ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); | ||
121 | if (ret_val) | ||
122 | goto out; | ||
123 | |||
124 | ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0); | ||
125 | |||
126 | out: | ||
127 | return ret_val; | ||
128 | } | ||
129 | |||
130 | /** | ||
131 | * igb_read_phy_reg_mdic - Read MDI control register | ||
132 | * @hw: pointer to the HW structure | ||
133 | * @offset: register offset to be read | ||
134 | * @data: pointer to the read data | ||
135 | * | ||
136 | * Reads the MDI control regsiter in the PHY at offset and stores the | ||
137 | * information read to data. | ||
138 | **/ | ||
139 | s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) | ||
140 | { | ||
141 | struct e1000_phy_info *phy = &hw->phy; | ||
142 | u32 i, mdic = 0; | ||
143 | s32 ret_val = 0; | ||
144 | |||
145 | if (offset > MAX_PHY_REG_ADDRESS) { | ||
146 | hw_dbg("PHY Address %d is out of range\n", offset); | ||
147 | ret_val = -E1000_ERR_PARAM; | ||
148 | goto out; | ||
149 | } | ||
150 | |||
151 | /* | ||
152 | * Set up Op-code, Phy Address, and register offset in the MDI | ||
153 | * Control register. The MAC will take care of interfacing with the | ||
154 | * PHY to retrieve the desired data. | ||
155 | */ | ||
156 | mdic = ((offset << E1000_MDIC_REG_SHIFT) | | ||
157 | (phy->addr << E1000_MDIC_PHY_SHIFT) | | ||
158 | (E1000_MDIC_OP_READ)); | ||
159 | |||
160 | wr32(E1000_MDIC, mdic); | ||
161 | |||
162 | /* | ||
163 | * Poll the ready bit to see if the MDI read completed | ||
164 | * Increasing the time out as testing showed failures with | ||
165 | * the lower time out | ||
166 | */ | ||
167 | for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { | ||
168 | udelay(50); | ||
169 | mdic = rd32(E1000_MDIC); | ||
170 | if (mdic & E1000_MDIC_READY) | ||
171 | break; | ||
172 | } | ||
173 | if (!(mdic & E1000_MDIC_READY)) { | ||
174 | hw_dbg("MDI Read did not complete\n"); | ||
175 | ret_val = -E1000_ERR_PHY; | ||
176 | goto out; | ||
177 | } | ||
178 | if (mdic & E1000_MDIC_ERROR) { | ||
179 | hw_dbg("MDI Error\n"); | ||
180 | ret_val = -E1000_ERR_PHY; | ||
181 | goto out; | ||
182 | } | ||
183 | *data = (u16) mdic; | ||
184 | |||
185 | out: | ||
186 | return ret_val; | ||
187 | } | ||
188 | |||
189 | /** | ||
190 | * igb_write_phy_reg_mdic - Write MDI control register | ||
191 | * @hw: pointer to the HW structure | ||
192 | * @offset: register offset to write to | ||
193 | * @data: data to write to register at offset | ||
194 | * | ||
195 | * Writes data to MDI control register in the PHY at offset. | ||
196 | **/ | ||
197 | s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) | ||
198 | { | ||
199 | struct e1000_phy_info *phy = &hw->phy; | ||
200 | u32 i, mdic = 0; | ||
201 | s32 ret_val = 0; | ||
202 | |||
203 | if (offset > MAX_PHY_REG_ADDRESS) { | ||
204 | hw_dbg("PHY Address %d is out of range\n", offset); | ||
205 | ret_val = -E1000_ERR_PARAM; | ||
206 | goto out; | ||
207 | } | ||
208 | |||
209 | /* | ||
210 | * Set up Op-code, Phy Address, and register offset in the MDI | ||
211 | * Control register. The MAC will take care of interfacing with the | ||
212 | * PHY to retrieve the desired data. | ||
213 | */ | ||
214 | mdic = (((u32)data) | | ||
215 | (offset << E1000_MDIC_REG_SHIFT) | | ||
216 | (phy->addr << E1000_MDIC_PHY_SHIFT) | | ||
217 | (E1000_MDIC_OP_WRITE)); | ||
218 | |||
219 | wr32(E1000_MDIC, mdic); | ||
220 | |||
221 | /* | ||
222 | * Poll the ready bit to see if the MDI read completed | ||
223 | * Increasing the time out as testing showed failures with | ||
224 | * the lower time out | ||
225 | */ | ||
226 | for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { | ||
227 | udelay(50); | ||
228 | mdic = rd32(E1000_MDIC); | ||
229 | if (mdic & E1000_MDIC_READY) | ||
230 | break; | ||
231 | } | ||
232 | if (!(mdic & E1000_MDIC_READY)) { | ||
233 | hw_dbg("MDI Write did not complete\n"); | ||
234 | ret_val = -E1000_ERR_PHY; | ||
235 | goto out; | ||
236 | } | ||
237 | if (mdic & E1000_MDIC_ERROR) { | ||
238 | hw_dbg("MDI Error\n"); | ||
239 | ret_val = -E1000_ERR_PHY; | ||
240 | goto out; | ||
241 | } | ||
242 | |||
243 | out: | ||
244 | return ret_val; | ||
245 | } | ||
246 | |||
247 | /** | ||
248 | * igb_read_phy_reg_i2c - Read PHY register using i2c | ||
249 | * @hw: pointer to the HW structure | ||
250 | * @offset: register offset to be read | ||
251 | * @data: pointer to the read data | ||
252 | * | ||
253 | * Reads the PHY register at offset using the i2c interface and stores the | ||
254 | * retrieved information in data. | ||
255 | **/ | ||
256 | s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data) | ||
257 | { | ||
258 | struct e1000_phy_info *phy = &hw->phy; | ||
259 | u32 i, i2ccmd = 0; | ||
260 | |||
261 | |||
262 | /* | ||
263 | * Set up Op-code, Phy Address, and register address in the I2CCMD | ||
264 | * register. The MAC will take care of interfacing with the | ||
265 | * PHY to retrieve the desired data. | ||
266 | */ | ||
267 | i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | | ||
268 | (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | | ||
269 | (E1000_I2CCMD_OPCODE_READ)); | ||
270 | |||
271 | wr32(E1000_I2CCMD, i2ccmd); | ||
272 | |||
273 | /* Poll the ready bit to see if the I2C read completed */ | ||
274 | for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { | ||
275 | udelay(50); | ||
276 | i2ccmd = rd32(E1000_I2CCMD); | ||
277 | if (i2ccmd & E1000_I2CCMD_READY) | ||
278 | break; | ||
279 | } | ||
280 | if (!(i2ccmd & E1000_I2CCMD_READY)) { | ||
281 | hw_dbg("I2CCMD Read did not complete\n"); | ||
282 | return -E1000_ERR_PHY; | ||
283 | } | ||
284 | if (i2ccmd & E1000_I2CCMD_ERROR) { | ||
285 | hw_dbg("I2CCMD Error bit set\n"); | ||
286 | return -E1000_ERR_PHY; | ||
287 | } | ||
288 | |||
289 | /* Need to byte-swap the 16-bit value. */ | ||
290 | *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00); | ||
291 | |||
292 | return 0; | ||
293 | } | ||
294 | |||
295 | /** | ||
296 | * igb_write_phy_reg_i2c - Write PHY register using i2c | ||
297 | * @hw: pointer to the HW structure | ||
298 | * @offset: register offset to write to | ||
299 | * @data: data to write at register offset | ||
300 | * | ||
301 | * Writes the data to PHY register at the offset using the i2c interface. | ||
302 | **/ | ||
303 | s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data) | ||
304 | { | ||
305 | struct e1000_phy_info *phy = &hw->phy; | ||
306 | u32 i, i2ccmd = 0; | ||
307 | u16 phy_data_swapped; | ||
308 | |||
309 | |||
310 | /* Swap the data bytes for the I2C interface */ | ||
311 | phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00); | ||
312 | |||
313 | /* | ||
314 | * Set up Op-code, Phy Address, and register address in the I2CCMD | ||
315 | * register. The MAC will take care of interfacing with the | ||
316 | * PHY to retrieve the desired data. | ||
317 | */ | ||
318 | i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | | ||
319 | (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | | ||
320 | E1000_I2CCMD_OPCODE_WRITE | | ||
321 | phy_data_swapped); | ||
322 | |||
323 | wr32(E1000_I2CCMD, i2ccmd); | ||
324 | |||
325 | /* Poll the ready bit to see if the I2C read completed */ | ||
326 | for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { | ||
327 | udelay(50); | ||
328 | i2ccmd = rd32(E1000_I2CCMD); | ||
329 | if (i2ccmd & E1000_I2CCMD_READY) | ||
330 | break; | ||
331 | } | ||
332 | if (!(i2ccmd & E1000_I2CCMD_READY)) { | ||
333 | hw_dbg("I2CCMD Write did not complete\n"); | ||
334 | return -E1000_ERR_PHY; | ||
335 | } | ||
336 | if (i2ccmd & E1000_I2CCMD_ERROR) { | ||
337 | hw_dbg("I2CCMD Error bit set\n"); | ||
338 | return -E1000_ERR_PHY; | ||
339 | } | ||
340 | |||
341 | return 0; | ||
342 | } | ||
343 | |||
344 | /** | ||
345 | * igb_read_phy_reg_igp - Read igp PHY register | ||
346 | * @hw: pointer to the HW structure | ||
347 | * @offset: register offset to be read | ||
348 | * @data: pointer to the read data | ||
349 | * | ||
350 | * Acquires semaphore, if necessary, then reads the PHY register at offset | ||
351 | * and storing the retrieved information in data. Release any acquired | ||
352 | * semaphores before exiting. | ||
353 | **/ | ||
354 | s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) | ||
355 | { | ||
356 | s32 ret_val = 0; | ||
357 | |||
358 | if (!(hw->phy.ops.acquire)) | ||
359 | goto out; | ||
360 | |||
361 | ret_val = hw->phy.ops.acquire(hw); | ||
362 | if (ret_val) | ||
363 | goto out; | ||
364 | |||
365 | if (offset > MAX_PHY_MULTI_PAGE_REG) { | ||
366 | ret_val = igb_write_phy_reg_mdic(hw, | ||
367 | IGP01E1000_PHY_PAGE_SELECT, | ||
368 | (u16)offset); | ||
369 | if (ret_val) { | ||
370 | hw->phy.ops.release(hw); | ||
371 | goto out; | ||
372 | } | ||
373 | } | ||
374 | |||
375 | ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, | ||
376 | data); | ||
377 | |||
378 | hw->phy.ops.release(hw); | ||
379 | |||
380 | out: | ||
381 | return ret_val; | ||
382 | } | ||
383 | |||
384 | /** | ||
385 | * igb_write_phy_reg_igp - Write igp PHY register | ||
386 | * @hw: pointer to the HW structure | ||
387 | * @offset: register offset to write to | ||
388 | * @data: data to write at register offset | ||
389 | * | ||
390 | * Acquires semaphore, if necessary, then writes the data to PHY register | ||
391 | * at the offset. Release any acquired semaphores before exiting. | ||
392 | **/ | ||
393 | s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) | ||
394 | { | ||
395 | s32 ret_val = 0; | ||
396 | |||
397 | if (!(hw->phy.ops.acquire)) | ||
398 | goto out; | ||
399 | |||
400 | ret_val = hw->phy.ops.acquire(hw); | ||
401 | if (ret_val) | ||
402 | goto out; | ||
403 | |||
404 | if (offset > MAX_PHY_MULTI_PAGE_REG) { | ||
405 | ret_val = igb_write_phy_reg_mdic(hw, | ||
406 | IGP01E1000_PHY_PAGE_SELECT, | ||
407 | (u16)offset); | ||
408 | if (ret_val) { | ||
409 | hw->phy.ops.release(hw); | ||
410 | goto out; | ||
411 | } | ||
412 | } | ||
413 | |||
414 | ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, | ||
415 | data); | ||
416 | |||
417 | hw->phy.ops.release(hw); | ||
418 | |||
419 | out: | ||
420 | return ret_val; | ||
421 | } | ||
422 | |||
423 | /** | ||
424 | * igb_copper_link_setup_82580 - Setup 82580 PHY for copper link | ||
425 | * @hw: pointer to the HW structure | ||
426 | * | ||
427 | * Sets up Carrier-sense on Transmit and downshift values. | ||
428 | **/ | ||
429 | s32 igb_copper_link_setup_82580(struct e1000_hw *hw) | ||
430 | { | ||
431 | struct e1000_phy_info *phy = &hw->phy; | ||
432 | s32 ret_val; | ||
433 | u16 phy_data; | ||
434 | |||
435 | |||
436 | if (phy->reset_disable) { | ||
437 | ret_val = 0; | ||
438 | goto out; | ||
439 | } | ||
440 | |||
441 | if (phy->type == e1000_phy_82580) { | ||
442 | ret_val = hw->phy.ops.reset(hw); | ||
443 | if (ret_val) { | ||
444 | hw_dbg("Error resetting the PHY.\n"); | ||
445 | goto out; | ||
446 | } | ||
447 | } | ||
448 | |||
449 | /* Enable CRS on TX. This must be set for half-duplex operation. */ | ||
450 | ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data); | ||
451 | if (ret_val) | ||
452 | goto out; | ||
453 | |||
454 | phy_data |= I82580_CFG_ASSERT_CRS_ON_TX; | ||
455 | |||
456 | /* Enable downshift */ | ||
457 | phy_data |= I82580_CFG_ENABLE_DOWNSHIFT; | ||
458 | |||
459 | ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data); | ||
460 | |||
461 | out: | ||
462 | return ret_val; | ||
463 | } | ||
464 | |||
465 | /** | ||
466 | * igb_copper_link_setup_m88 - Setup m88 PHY's for copper link | ||
467 | * @hw: pointer to the HW structure | ||
468 | * | ||
469 | * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock | ||
470 | * and downshift values are set also. | ||
471 | **/ | ||
472 | s32 igb_copper_link_setup_m88(struct e1000_hw *hw) | ||
473 | { | ||
474 | struct e1000_phy_info *phy = &hw->phy; | ||
475 | s32 ret_val; | ||
476 | u16 phy_data; | ||
477 | |||
478 | if (phy->reset_disable) { | ||
479 | ret_val = 0; | ||
480 | goto out; | ||
481 | } | ||
482 | |||
483 | /* Enable CRS on TX. This must be set for half-duplex operation. */ | ||
484 | ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
485 | if (ret_val) | ||
486 | goto out; | ||
487 | |||
488 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | ||
489 | |||
490 | /* | ||
491 | * Options: | ||
492 | * MDI/MDI-X = 0 (default) | ||
493 | * 0 - Auto for all speeds | ||
494 | * 1 - MDI mode | ||
495 | * 2 - MDI-X mode | ||
496 | * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) | ||
497 | */ | ||
498 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | ||
499 | |||
500 | switch (phy->mdix) { | ||
501 | case 1: | ||
502 | phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; | ||
503 | break; | ||
504 | case 2: | ||
505 | phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; | ||
506 | break; | ||
507 | case 3: | ||
508 | phy_data |= M88E1000_PSCR_AUTO_X_1000T; | ||
509 | break; | ||
510 | case 0: | ||
511 | default: | ||
512 | phy_data |= M88E1000_PSCR_AUTO_X_MODE; | ||
513 | break; | ||
514 | } | ||
515 | |||
516 | /* | ||
517 | * Options: | ||
518 | * disable_polarity_correction = 0 (default) | ||
519 | * Automatic Correction for Reversed Cable Polarity | ||
520 | * 0 - Disabled | ||
521 | * 1 - Enabled | ||
522 | */ | ||
523 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; | ||
524 | if (phy->disable_polarity_correction == 1) | ||
525 | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; | ||
526 | |||
527 | ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | ||
528 | if (ret_val) | ||
529 | goto out; | ||
530 | |||
531 | if (phy->revision < E1000_REVISION_4) { | ||
532 | /* | ||
533 | * Force TX_CLK in the Extended PHY Specific Control Register | ||
534 | * to 25MHz clock. | ||
535 | */ | ||
536 | ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, | ||
537 | &phy_data); | ||
538 | if (ret_val) | ||
539 | goto out; | ||
540 | |||
541 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | ||
542 | |||
543 | if ((phy->revision == E1000_REVISION_2) && | ||
544 | (phy->id == M88E1111_I_PHY_ID)) { | ||
545 | /* 82573L PHY - set the downshift counter to 5x. */ | ||
546 | phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; | ||
547 | phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; | ||
548 | } else { | ||
549 | /* Configure Master and Slave downshift values */ | ||
550 | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | | ||
551 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); | ||
552 | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | | ||
553 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); | ||
554 | } | ||
555 | ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, | ||
556 | phy_data); | ||
557 | if (ret_val) | ||
558 | goto out; | ||
559 | } | ||
560 | |||
561 | /* Commit the changes. */ | ||
562 | ret_val = igb_phy_sw_reset(hw); | ||
563 | if (ret_val) { | ||
564 | hw_dbg("Error committing the PHY changes\n"); | ||
565 | goto out; | ||
566 | } | ||
567 | |||
568 | out: | ||
569 | return ret_val; | ||
570 | } | ||
571 | |||
572 | /** | ||
573 | * igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link | ||
574 | * @hw: pointer to the HW structure | ||
575 | * | ||
576 | * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's. | ||
577 | * Also enables and sets the downshift parameters. | ||
578 | **/ | ||
579 | s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw) | ||
580 | { | ||
581 | struct e1000_phy_info *phy = &hw->phy; | ||
582 | s32 ret_val; | ||
583 | u16 phy_data; | ||
584 | |||
585 | if (phy->reset_disable) { | ||
586 | ret_val = 0; | ||
587 | goto out; | ||
588 | } | ||
589 | |||
590 | /* Enable CRS on Tx. This must be set for half-duplex operation. */ | ||
591 | ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
592 | if (ret_val) | ||
593 | goto out; | ||
594 | |||
595 | /* | ||
596 | * Options: | ||
597 | * MDI/MDI-X = 0 (default) | ||
598 | * 0 - Auto for all speeds | ||
599 | * 1 - MDI mode | ||
600 | * 2 - MDI-X mode | ||
601 | * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) | ||
602 | */ | ||
603 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | ||
604 | |||
605 | switch (phy->mdix) { | ||
606 | case 1: | ||
607 | phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; | ||
608 | break; | ||
609 | case 2: | ||
610 | phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; | ||
611 | break; | ||
612 | case 3: | ||
613 | /* M88E1112 does not support this mode) */ | ||
614 | if (phy->id != M88E1112_E_PHY_ID) { | ||
615 | phy_data |= M88E1000_PSCR_AUTO_X_1000T; | ||
616 | break; | ||
617 | } | ||
618 | case 0: | ||
619 | default: | ||
620 | phy_data |= M88E1000_PSCR_AUTO_X_MODE; | ||
621 | break; | ||
622 | } | ||
623 | |||
624 | /* | ||
625 | * Options: | ||
626 | * disable_polarity_correction = 0 (default) | ||
627 | * Automatic Correction for Reversed Cable Polarity | ||
628 | * 0 - Disabled | ||
629 | * 1 - Enabled | ||
630 | */ | ||
631 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; | ||
632 | if (phy->disable_polarity_correction == 1) | ||
633 | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; | ||
634 | |||
635 | /* Enable downshift and setting it to X6 */ | ||
636 | phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK; | ||
637 | phy_data |= I347AT4_PSCR_DOWNSHIFT_6X; | ||
638 | phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE; | ||
639 | |||
640 | ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | ||
641 | if (ret_val) | ||
642 | goto out; | ||
643 | |||
644 | /* Commit the changes. */ | ||
645 | ret_val = igb_phy_sw_reset(hw); | ||
646 | if (ret_val) { | ||
647 | hw_dbg("Error committing the PHY changes\n"); | ||
648 | goto out; | ||
649 | } | ||
650 | |||
651 | out: | ||
652 | return ret_val; | ||
653 | } | ||
654 | |||
655 | /** | ||
656 | * igb_copper_link_setup_igp - Setup igp PHY's for copper link | ||
657 | * @hw: pointer to the HW structure | ||
658 | * | ||
659 | * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for | ||
660 | * igp PHY's. | ||
661 | **/ | ||
662 | s32 igb_copper_link_setup_igp(struct e1000_hw *hw) | ||
663 | { | ||
664 | struct e1000_phy_info *phy = &hw->phy; | ||
665 | s32 ret_val; | ||
666 | u16 data; | ||
667 | |||
668 | if (phy->reset_disable) { | ||
669 | ret_val = 0; | ||
670 | goto out; | ||
671 | } | ||
672 | |||
673 | ret_val = phy->ops.reset(hw); | ||
674 | if (ret_val) { | ||
675 | hw_dbg("Error resetting the PHY.\n"); | ||
676 | goto out; | ||
677 | } | ||
678 | |||
679 | /* | ||
680 | * Wait 100ms for MAC to configure PHY from NVM settings, to avoid | ||
681 | * timeout issues when LFS is enabled. | ||
682 | */ | ||
683 | msleep(100); | ||
684 | |||
685 | /* | ||
686 | * The NVM settings will configure LPLU in D3 for | ||
687 | * non-IGP1 PHYs. | ||
688 | */ | ||
689 | if (phy->type == e1000_phy_igp) { | ||
690 | /* disable lplu d3 during driver init */ | ||
691 | if (phy->ops.set_d3_lplu_state) | ||
692 | ret_val = phy->ops.set_d3_lplu_state(hw, false); | ||
693 | if (ret_val) { | ||
694 | hw_dbg("Error Disabling LPLU D3\n"); | ||
695 | goto out; | ||
696 | } | ||
697 | } | ||
698 | |||
699 | /* disable lplu d0 during driver init */ | ||
700 | ret_val = phy->ops.set_d0_lplu_state(hw, false); | ||
701 | if (ret_val) { | ||
702 | hw_dbg("Error Disabling LPLU D0\n"); | ||
703 | goto out; | ||
704 | } | ||
705 | /* Configure mdi-mdix settings */ | ||
706 | ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data); | ||
707 | if (ret_val) | ||
708 | goto out; | ||
709 | |||
710 | data &= ~IGP01E1000_PSCR_AUTO_MDIX; | ||
711 | |||
712 | switch (phy->mdix) { | ||
713 | case 1: | ||
714 | data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | ||
715 | break; | ||
716 | case 2: | ||
717 | data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; | ||
718 | break; | ||
719 | case 0: | ||
720 | default: | ||
721 | data |= IGP01E1000_PSCR_AUTO_MDIX; | ||
722 | break; | ||
723 | } | ||
724 | ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data); | ||
725 | if (ret_val) | ||
726 | goto out; | ||
727 | |||
728 | /* set auto-master slave resolution settings */ | ||
729 | if (hw->mac.autoneg) { | ||
730 | /* | ||
731 | * when autonegotiation advertisement is only 1000Mbps then we | ||
732 | * should disable SmartSpeed and enable Auto MasterSlave | ||
733 | * resolution as hardware default. | ||
734 | */ | ||
735 | if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { | ||
736 | /* Disable SmartSpeed */ | ||
737 | ret_val = phy->ops.read_reg(hw, | ||
738 | IGP01E1000_PHY_PORT_CONFIG, | ||
739 | &data); | ||
740 | if (ret_val) | ||
741 | goto out; | ||
742 | |||
743 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
744 | ret_val = phy->ops.write_reg(hw, | ||
745 | IGP01E1000_PHY_PORT_CONFIG, | ||
746 | data); | ||
747 | if (ret_val) | ||
748 | goto out; | ||
749 | |||
750 | /* Set auto Master/Slave resolution process */ | ||
751 | ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data); | ||
752 | if (ret_val) | ||
753 | goto out; | ||
754 | |||
755 | data &= ~CR_1000T_MS_ENABLE; | ||
756 | ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data); | ||
757 | if (ret_val) | ||
758 | goto out; | ||
759 | } | ||
760 | |||
761 | ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data); | ||
762 | if (ret_val) | ||
763 | goto out; | ||
764 | |||
765 | /* load defaults for future use */ | ||
766 | phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ? | ||
767 | ((data & CR_1000T_MS_VALUE) ? | ||
768 | e1000_ms_force_master : | ||
769 | e1000_ms_force_slave) : | ||
770 | e1000_ms_auto; | ||
771 | |||
772 | switch (phy->ms_type) { | ||
773 | case e1000_ms_force_master: | ||
774 | data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); | ||
775 | break; | ||
776 | case e1000_ms_force_slave: | ||
777 | data |= CR_1000T_MS_ENABLE; | ||
778 | data &= ~(CR_1000T_MS_VALUE); | ||
779 | break; | ||
780 | case e1000_ms_auto: | ||
781 | data &= ~CR_1000T_MS_ENABLE; | ||
782 | default: | ||
783 | break; | ||
784 | } | ||
785 | ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data); | ||
786 | if (ret_val) | ||
787 | goto out; | ||
788 | } | ||
789 | |||
790 | out: | ||
791 | return ret_val; | ||
792 | } | ||
793 | |||
794 | /** | ||
795 | * igb_copper_link_autoneg - Setup/Enable autoneg for copper link | ||
796 | * @hw: pointer to the HW structure | ||
797 | * | ||
798 | * Performs initial bounds checking on autoneg advertisement parameter, then | ||
799 | * configure to advertise the full capability. Setup the PHY to autoneg | ||
800 | * and restart the negotiation process between the link partner. If | ||
801 | * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. | ||
802 | **/ | ||
803 | static s32 igb_copper_link_autoneg(struct e1000_hw *hw) | ||
804 | { | ||
805 | struct e1000_phy_info *phy = &hw->phy; | ||
806 | s32 ret_val; | ||
807 | u16 phy_ctrl; | ||
808 | |||
809 | /* | ||
810 | * Perform some bounds checking on the autoneg advertisement | ||
811 | * parameter. | ||
812 | */ | ||
813 | phy->autoneg_advertised &= phy->autoneg_mask; | ||
814 | |||
815 | /* | ||
816 | * If autoneg_advertised is zero, we assume it was not defaulted | ||
817 | * by the calling code so we set to advertise full capability. | ||
818 | */ | ||
819 | if (phy->autoneg_advertised == 0) | ||
820 | phy->autoneg_advertised = phy->autoneg_mask; | ||
821 | |||
822 | hw_dbg("Reconfiguring auto-neg advertisement params\n"); | ||
823 | ret_val = igb_phy_setup_autoneg(hw); | ||
824 | if (ret_val) { | ||
825 | hw_dbg("Error Setting up Auto-Negotiation\n"); | ||
826 | goto out; | ||
827 | } | ||
828 | hw_dbg("Restarting Auto-Neg\n"); | ||
829 | |||
830 | /* | ||
831 | * Restart auto-negotiation by setting the Auto Neg Enable bit and | ||
832 | * the Auto Neg Restart bit in the PHY control register. | ||
833 | */ | ||
834 | ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); | ||
835 | if (ret_val) | ||
836 | goto out; | ||
837 | |||
838 | phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); | ||
839 | ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl); | ||
840 | if (ret_val) | ||
841 | goto out; | ||
842 | |||
843 | /* | ||
844 | * Does the user want to wait for Auto-Neg to complete here, or | ||
845 | * check at a later time (for example, callback routine). | ||
846 | */ | ||
847 | if (phy->autoneg_wait_to_complete) { | ||
848 | ret_val = igb_wait_autoneg(hw); | ||
849 | if (ret_val) { | ||
850 | hw_dbg("Error while waiting for " | ||
851 | "autoneg to complete\n"); | ||
852 | goto out; | ||
853 | } | ||
854 | } | ||
855 | |||
856 | hw->mac.get_link_status = true; | ||
857 | |||
858 | out: | ||
859 | return ret_val; | ||
860 | } | ||
861 | |||
862 | /** | ||
863 | * igb_phy_setup_autoneg - Configure PHY for auto-negotiation | ||
864 | * @hw: pointer to the HW structure | ||
865 | * | ||
866 | * Reads the MII auto-neg advertisement register and/or the 1000T control | ||
867 | * register and if the PHY is already setup for auto-negotiation, then | ||
868 | * return successful. Otherwise, setup advertisement and flow control to | ||
869 | * the appropriate values for the wanted auto-negotiation. | ||
870 | **/ | ||
871 | static s32 igb_phy_setup_autoneg(struct e1000_hw *hw) | ||
872 | { | ||
873 | struct e1000_phy_info *phy = &hw->phy; | ||
874 | s32 ret_val; | ||
875 | u16 mii_autoneg_adv_reg; | ||
876 | u16 mii_1000t_ctrl_reg = 0; | ||
877 | |||
878 | phy->autoneg_advertised &= phy->autoneg_mask; | ||
879 | |||
880 | /* Read the MII Auto-Neg Advertisement Register (Address 4). */ | ||
881 | ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); | ||
882 | if (ret_val) | ||
883 | goto out; | ||
884 | |||
885 | if (phy->autoneg_mask & ADVERTISE_1000_FULL) { | ||
886 | /* Read the MII 1000Base-T Control Register (Address 9). */ | ||
887 | ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, | ||
888 | &mii_1000t_ctrl_reg); | ||
889 | if (ret_val) | ||
890 | goto out; | ||
891 | } | ||
892 | |||
893 | /* | ||
894 | * Need to parse both autoneg_advertised and fc and set up | ||
895 | * the appropriate PHY registers. First we will parse for | ||
896 | * autoneg_advertised software override. Since we can advertise | ||
897 | * a plethora of combinations, we need to check each bit | ||
898 | * individually. | ||
899 | */ | ||
900 | |||
901 | /* | ||
902 | * First we clear all the 10/100 mb speed bits in the Auto-Neg | ||
903 | * Advertisement Register (Address 4) and the 1000 mb speed bits in | ||
904 | * the 1000Base-T Control Register (Address 9). | ||
905 | */ | ||
906 | mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | | ||
907 | NWAY_AR_100TX_HD_CAPS | | ||
908 | NWAY_AR_10T_FD_CAPS | | ||
909 | NWAY_AR_10T_HD_CAPS); | ||
910 | mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); | ||
911 | |||
912 | hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised); | ||
913 | |||
914 | /* Do we want to advertise 10 Mb Half Duplex? */ | ||
915 | if (phy->autoneg_advertised & ADVERTISE_10_HALF) { | ||
916 | hw_dbg("Advertise 10mb Half duplex\n"); | ||
917 | mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; | ||
918 | } | ||
919 | |||
920 | /* Do we want to advertise 10 Mb Full Duplex? */ | ||
921 | if (phy->autoneg_advertised & ADVERTISE_10_FULL) { | ||
922 | hw_dbg("Advertise 10mb Full duplex\n"); | ||
923 | mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; | ||
924 | } | ||
925 | |||
926 | /* Do we want to advertise 100 Mb Half Duplex? */ | ||
927 | if (phy->autoneg_advertised & ADVERTISE_100_HALF) { | ||
928 | hw_dbg("Advertise 100mb Half duplex\n"); | ||
929 | mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; | ||
930 | } | ||
931 | |||
932 | /* Do we want to advertise 100 Mb Full Duplex? */ | ||
933 | if (phy->autoneg_advertised & ADVERTISE_100_FULL) { | ||
934 | hw_dbg("Advertise 100mb Full duplex\n"); | ||
935 | mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; | ||
936 | } | ||
937 | |||
938 | /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ | ||
939 | if (phy->autoneg_advertised & ADVERTISE_1000_HALF) | ||
940 | hw_dbg("Advertise 1000mb Half duplex request denied!\n"); | ||
941 | |||
942 | /* Do we want to advertise 1000 Mb Full Duplex? */ | ||
943 | if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { | ||
944 | hw_dbg("Advertise 1000mb Full duplex\n"); | ||
945 | mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; | ||
946 | } | ||
947 | |||
948 | /* | ||
949 | * Check for a software override of the flow control settings, and | ||
950 | * setup the PHY advertisement registers accordingly. If | ||
951 | * auto-negotiation is enabled, then software will have to set the | ||
952 | * "PAUSE" bits to the correct value in the Auto-Negotiation | ||
953 | * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- | ||
954 | * negotiation. | ||
955 | * | ||
956 | * The possible values of the "fc" parameter are: | ||
957 | * 0: Flow control is completely disabled | ||
958 | * 1: Rx flow control is enabled (we can receive pause frames | ||
959 | * but not send pause frames). | ||
960 | * 2: Tx flow control is enabled (we can send pause frames | ||
961 | * but we do not support receiving pause frames). | ||
962 | * 3: Both Rx and TX flow control (symmetric) are enabled. | ||
963 | * other: No software override. The flow control configuration | ||
964 | * in the EEPROM is used. | ||
965 | */ | ||
966 | switch (hw->fc.current_mode) { | ||
967 | case e1000_fc_none: | ||
968 | /* | ||
969 | * Flow control (RX & TX) is completely disabled by a | ||
970 | * software over-ride. | ||
971 | */ | ||
972 | mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | ||
973 | break; | ||
974 | case e1000_fc_rx_pause: | ||
975 | /* | ||
976 | * RX Flow control is enabled, and TX Flow control is | ||
977 | * disabled, by a software over-ride. | ||
978 | * | ||
979 | * Since there really isn't a way to advertise that we are | ||
980 | * capable of RX Pause ONLY, we will advertise that we | ||
981 | * support both symmetric and asymmetric RX PAUSE. Later | ||
982 | * (in e1000_config_fc_after_link_up) we will disable the | ||
983 | * hw's ability to send PAUSE frames. | ||
984 | */ | ||
985 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | ||
986 | break; | ||
987 | case e1000_fc_tx_pause: | ||
988 | /* | ||
989 | * TX Flow control is enabled, and RX Flow control is | ||
990 | * disabled, by a software over-ride. | ||
991 | */ | ||
992 | mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; | ||
993 | mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; | ||
994 | break; | ||
995 | case e1000_fc_full: | ||
996 | /* | ||
997 | * Flow control (both RX and TX) is enabled by a software | ||
998 | * over-ride. | ||
999 | */ | ||
1000 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | ||
1001 | break; | ||
1002 | default: | ||
1003 | hw_dbg("Flow control param set incorrectly\n"); | ||
1004 | ret_val = -E1000_ERR_CONFIG; | ||
1005 | goto out; | ||
1006 | } | ||
1007 | |||
1008 | ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); | ||
1009 | if (ret_val) | ||
1010 | goto out; | ||
1011 | |||
1012 | hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); | ||
1013 | |||
1014 | if (phy->autoneg_mask & ADVERTISE_1000_FULL) { | ||
1015 | ret_val = phy->ops.write_reg(hw, | ||
1016 | PHY_1000T_CTRL, | ||
1017 | mii_1000t_ctrl_reg); | ||
1018 | if (ret_val) | ||
1019 | goto out; | ||
1020 | } | ||
1021 | |||
1022 | out: | ||
1023 | return ret_val; | ||
1024 | } | ||
1025 | |||
1026 | /** | ||
1027 | * igb_setup_copper_link - Configure copper link settings | ||
1028 | * @hw: pointer to the HW structure | ||
1029 | * | ||
1030 | * Calls the appropriate function to configure the link for auto-neg or forced | ||
1031 | * speed and duplex. Then we check for link, once link is established calls | ||
1032 | * to configure collision distance and flow control are called. If link is | ||
1033 | * not established, we return -E1000_ERR_PHY (-2). | ||
1034 | **/ | ||
1035 | s32 igb_setup_copper_link(struct e1000_hw *hw) | ||
1036 | { | ||
1037 | s32 ret_val; | ||
1038 | bool link; | ||
1039 | |||
1040 | |||
1041 | if (hw->mac.autoneg) { | ||
1042 | /* | ||
1043 | * Setup autoneg and flow control advertisement and perform | ||
1044 | * autonegotiation. | ||
1045 | */ | ||
1046 | ret_val = igb_copper_link_autoneg(hw); | ||
1047 | if (ret_val) | ||
1048 | goto out; | ||
1049 | } else { | ||
1050 | /* | ||
1051 | * PHY will be set to 10H, 10F, 100H or 100F | ||
1052 | * depending on user settings. | ||
1053 | */ | ||
1054 | hw_dbg("Forcing Speed and Duplex\n"); | ||
1055 | ret_val = hw->phy.ops.force_speed_duplex(hw); | ||
1056 | if (ret_val) { | ||
1057 | hw_dbg("Error Forcing Speed and Duplex\n"); | ||
1058 | goto out; | ||
1059 | } | ||
1060 | } | ||
1061 | |||
1062 | /* | ||
1063 | * Check link status. Wait up to 100 microseconds for link to become | ||
1064 | * valid. | ||
1065 | */ | ||
1066 | ret_val = igb_phy_has_link(hw, | ||
1067 | COPPER_LINK_UP_LIMIT, | ||
1068 | 10, | ||
1069 | &link); | ||
1070 | if (ret_val) | ||
1071 | goto out; | ||
1072 | |||
1073 | if (link) { | ||
1074 | hw_dbg("Valid link established!!!\n"); | ||
1075 | igb_config_collision_dist(hw); | ||
1076 | ret_val = igb_config_fc_after_link_up(hw); | ||
1077 | } else { | ||
1078 | hw_dbg("Unable to establish link!!!\n"); | ||
1079 | } | ||
1080 | |||
1081 | out: | ||
1082 | return ret_val; | ||
1083 | } | ||
1084 | |||
1085 | /** | ||
1086 | * igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY | ||
1087 | * @hw: pointer to the HW structure | ||
1088 | * | ||
1089 | * Calls the PHY setup function to force speed and duplex. Clears the | ||
1090 | * auto-crossover to force MDI manually. Waits for link and returns | ||
1091 | * successful if link up is successful, else -E1000_ERR_PHY (-2). | ||
1092 | **/ | ||
1093 | s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw) | ||
1094 | { | ||
1095 | struct e1000_phy_info *phy = &hw->phy; | ||
1096 | s32 ret_val; | ||
1097 | u16 phy_data; | ||
1098 | bool link; | ||
1099 | |||
1100 | ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); | ||
1101 | if (ret_val) | ||
1102 | goto out; | ||
1103 | |||
1104 | igb_phy_force_speed_duplex_setup(hw, &phy_data); | ||
1105 | |||
1106 | ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); | ||
1107 | if (ret_val) | ||
1108 | goto out; | ||
1109 | |||
1110 | /* | ||
1111 | * Clear Auto-Crossover to force MDI manually. IGP requires MDI | ||
1112 | * forced whenever speed and duplex are forced. | ||
1113 | */ | ||
1114 | ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); | ||
1115 | if (ret_val) | ||
1116 | goto out; | ||
1117 | |||
1118 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; | ||
1119 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | ||
1120 | |||
1121 | ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); | ||
1122 | if (ret_val) | ||
1123 | goto out; | ||
1124 | |||
1125 | hw_dbg("IGP PSCR: %X\n", phy_data); | ||
1126 | |||
1127 | udelay(1); | ||
1128 | |||
1129 | if (phy->autoneg_wait_to_complete) { | ||
1130 | hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n"); | ||
1131 | |||
1132 | ret_val = igb_phy_has_link(hw, | ||
1133 | PHY_FORCE_LIMIT, | ||
1134 | 100000, | ||
1135 | &link); | ||
1136 | if (ret_val) | ||
1137 | goto out; | ||
1138 | |||
1139 | if (!link) | ||
1140 | hw_dbg("Link taking longer than expected.\n"); | ||
1141 | |||
1142 | /* Try once more */ | ||
1143 | ret_val = igb_phy_has_link(hw, | ||
1144 | PHY_FORCE_LIMIT, | ||
1145 | 100000, | ||
1146 | &link); | ||
1147 | if (ret_val) | ||
1148 | goto out; | ||
1149 | } | ||
1150 | |||
1151 | out: | ||
1152 | return ret_val; | ||
1153 | } | ||
1154 | |||
1155 | /** | ||
1156 | * igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY | ||
1157 | * @hw: pointer to the HW structure | ||
1158 | * | ||
1159 | * Calls the PHY setup function to force speed and duplex. Clears the | ||
1160 | * auto-crossover to force MDI manually. Resets the PHY to commit the | ||
1161 | * changes. If time expires while waiting for link up, we reset the DSP. | ||
1162 | * After reset, TX_CLK and CRS on TX must be set. Return successful upon | ||
1163 | * successful completion, else return corresponding error code. | ||
1164 | **/ | ||
1165 | s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw) | ||
1166 | { | ||
1167 | struct e1000_phy_info *phy = &hw->phy; | ||
1168 | s32 ret_val; | ||
1169 | u16 phy_data; | ||
1170 | bool link; | ||
1171 | |||
1172 | /* | ||
1173 | * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI | ||
1174 | * forced whenever speed and duplex are forced. | ||
1175 | */ | ||
1176 | ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
1177 | if (ret_val) | ||
1178 | goto out; | ||
1179 | |||
1180 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | ||
1181 | ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | ||
1182 | if (ret_val) | ||
1183 | goto out; | ||
1184 | |||
1185 | hw_dbg("M88E1000 PSCR: %X\n", phy_data); | ||
1186 | |||
1187 | ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); | ||
1188 | if (ret_val) | ||
1189 | goto out; | ||
1190 | |||
1191 | igb_phy_force_speed_duplex_setup(hw, &phy_data); | ||
1192 | |||
1193 | ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); | ||
1194 | if (ret_val) | ||
1195 | goto out; | ||
1196 | |||
1197 | /* Reset the phy to commit changes. */ | ||
1198 | ret_val = igb_phy_sw_reset(hw); | ||
1199 | if (ret_val) | ||
1200 | goto out; | ||
1201 | |||
1202 | if (phy->autoneg_wait_to_complete) { | ||
1203 | hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n"); | ||
1204 | |||
1205 | ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link); | ||
1206 | if (ret_val) | ||
1207 | goto out; | ||
1208 | |||
1209 | if (!link) { | ||
1210 | if (hw->phy.type != e1000_phy_m88 || | ||
1211 | hw->phy.id == I347AT4_E_PHY_ID || | ||
1212 | hw->phy.id == M88E1112_E_PHY_ID) { | ||
1213 | hw_dbg("Link taking longer than expected.\n"); | ||
1214 | } else { | ||
1215 | |||
1216 | /* | ||
1217 | * We didn't get link. | ||
1218 | * Reset the DSP and cross our fingers. | ||
1219 | */ | ||
1220 | ret_val = phy->ops.write_reg(hw, | ||
1221 | M88E1000_PHY_PAGE_SELECT, | ||
1222 | 0x001d); | ||
1223 | if (ret_val) | ||
1224 | goto out; | ||
1225 | ret_val = igb_phy_reset_dsp(hw); | ||
1226 | if (ret_val) | ||
1227 | goto out; | ||
1228 | } | ||
1229 | } | ||
1230 | |||
1231 | /* Try once more */ | ||
1232 | ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, | ||
1233 | 100000, &link); | ||
1234 | if (ret_val) | ||
1235 | goto out; | ||
1236 | } | ||
1237 | |||
1238 | if (hw->phy.type != e1000_phy_m88 || | ||
1239 | hw->phy.id == I347AT4_E_PHY_ID || | ||
1240 | hw->phy.id == M88E1112_E_PHY_ID) | ||
1241 | goto out; | ||
1242 | |||
1243 | ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); | ||
1244 | if (ret_val) | ||
1245 | goto out; | ||
1246 | |||
1247 | /* | ||
1248 | * Resetting the phy means we need to re-force TX_CLK in the | ||
1249 | * Extended PHY Specific Control Register to 25MHz clock from | ||
1250 | * the reset value of 2.5MHz. | ||
1251 | */ | ||
1252 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | ||
1253 | ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); | ||
1254 | if (ret_val) | ||
1255 | goto out; | ||
1256 | |||
1257 | /* | ||
1258 | * In addition, we must re-enable CRS on Tx for both half and full | ||
1259 | * duplex. | ||
1260 | */ | ||
1261 | ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
1262 | if (ret_val) | ||
1263 | goto out; | ||
1264 | |||
1265 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | ||
1266 | ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | ||
1267 | |||
1268 | out: | ||
1269 | return ret_val; | ||
1270 | } | ||
1271 | |||
1272 | /** | ||
1273 | * igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex | ||
1274 | * @hw: pointer to the HW structure | ||
1275 | * @phy_ctrl: pointer to current value of PHY_CONTROL | ||
1276 | * | ||
1277 | * Forces speed and duplex on the PHY by doing the following: disable flow | ||
1278 | * control, force speed/duplex on the MAC, disable auto speed detection, | ||
1279 | * disable auto-negotiation, configure duplex, configure speed, configure | ||
1280 | * the collision distance, write configuration to CTRL register. The | ||
1281 | * caller must write to the PHY_CONTROL register for these settings to | ||
1282 | * take affect. | ||
1283 | **/ | ||
1284 | static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw, | ||
1285 | u16 *phy_ctrl) | ||
1286 | { | ||
1287 | struct e1000_mac_info *mac = &hw->mac; | ||
1288 | u32 ctrl; | ||
1289 | |||
1290 | /* Turn off flow control when forcing speed/duplex */ | ||
1291 | hw->fc.current_mode = e1000_fc_none; | ||
1292 | |||
1293 | /* Force speed/duplex on the mac */ | ||
1294 | ctrl = rd32(E1000_CTRL); | ||
1295 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | ||
1296 | ctrl &= ~E1000_CTRL_SPD_SEL; | ||
1297 | |||
1298 | /* Disable Auto Speed Detection */ | ||
1299 | ctrl &= ~E1000_CTRL_ASDE; | ||
1300 | |||
1301 | /* Disable autoneg on the phy */ | ||
1302 | *phy_ctrl &= ~MII_CR_AUTO_NEG_EN; | ||
1303 | |||
1304 | /* Forcing Full or Half Duplex? */ | ||
1305 | if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { | ||
1306 | ctrl &= ~E1000_CTRL_FD; | ||
1307 | *phy_ctrl &= ~MII_CR_FULL_DUPLEX; | ||
1308 | hw_dbg("Half Duplex\n"); | ||
1309 | } else { | ||
1310 | ctrl |= E1000_CTRL_FD; | ||
1311 | *phy_ctrl |= MII_CR_FULL_DUPLEX; | ||
1312 | hw_dbg("Full Duplex\n"); | ||
1313 | } | ||
1314 | |||
1315 | /* Forcing 10mb or 100mb? */ | ||
1316 | if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { | ||
1317 | ctrl |= E1000_CTRL_SPD_100; | ||
1318 | *phy_ctrl |= MII_CR_SPEED_100; | ||
1319 | *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); | ||
1320 | hw_dbg("Forcing 100mb\n"); | ||
1321 | } else { | ||
1322 | ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); | ||
1323 | *phy_ctrl |= MII_CR_SPEED_10; | ||
1324 | *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); | ||
1325 | hw_dbg("Forcing 10mb\n"); | ||
1326 | } | ||
1327 | |||
1328 | igb_config_collision_dist(hw); | ||
1329 | |||
1330 | wr32(E1000_CTRL, ctrl); | ||
1331 | } | ||
1332 | |||
1333 | /** | ||
1334 | * igb_set_d3_lplu_state - Sets low power link up state for D3 | ||
1335 | * @hw: pointer to the HW structure | ||
1336 | * @active: boolean used to enable/disable lplu | ||
1337 | * | ||
1338 | * Success returns 0, Failure returns 1 | ||
1339 | * | ||
1340 | * The low power link up (lplu) state is set to the power management level D3 | ||
1341 | * and SmartSpeed is disabled when active is true, else clear lplu for D3 | ||
1342 | * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU | ||
1343 | * is used during Dx states where the power conservation is most important. | ||
1344 | * During driver activity, SmartSpeed should be enabled so performance is | ||
1345 | * maintained. | ||
1346 | **/ | ||
1347 | s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active) | ||
1348 | { | ||
1349 | struct e1000_phy_info *phy = &hw->phy; | ||
1350 | s32 ret_val = 0; | ||
1351 | u16 data; | ||
1352 | |||
1353 | if (!(hw->phy.ops.read_reg)) | ||
1354 | goto out; | ||
1355 | |||
1356 | ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); | ||
1357 | if (ret_val) | ||
1358 | goto out; | ||
1359 | |||
1360 | if (!active) { | ||
1361 | data &= ~IGP02E1000_PM_D3_LPLU; | ||
1362 | ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, | ||
1363 | data); | ||
1364 | if (ret_val) | ||
1365 | goto out; | ||
1366 | /* | ||
1367 | * LPLU and SmartSpeed are mutually exclusive. LPLU is used | ||
1368 | * during Dx states where the power conservation is most | ||
1369 | * important. During driver activity we should enable | ||
1370 | * SmartSpeed, so performance is maintained. | ||
1371 | */ | ||
1372 | if (phy->smart_speed == e1000_smart_speed_on) { | ||
1373 | ret_val = phy->ops.read_reg(hw, | ||
1374 | IGP01E1000_PHY_PORT_CONFIG, | ||
1375 | &data); | ||
1376 | if (ret_val) | ||
1377 | goto out; | ||
1378 | |||
1379 | data |= IGP01E1000_PSCFR_SMART_SPEED; | ||
1380 | ret_val = phy->ops.write_reg(hw, | ||
1381 | IGP01E1000_PHY_PORT_CONFIG, | ||
1382 | data); | ||
1383 | if (ret_val) | ||
1384 | goto out; | ||
1385 | } else if (phy->smart_speed == e1000_smart_speed_off) { | ||
1386 | ret_val = phy->ops.read_reg(hw, | ||
1387 | IGP01E1000_PHY_PORT_CONFIG, | ||
1388 | &data); | ||
1389 | if (ret_val) | ||
1390 | goto out; | ||
1391 | |||
1392 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
1393 | ret_val = phy->ops.write_reg(hw, | ||
1394 | IGP01E1000_PHY_PORT_CONFIG, | ||
1395 | data); | ||
1396 | if (ret_val) | ||
1397 | goto out; | ||
1398 | } | ||
1399 | } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || | ||
1400 | (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || | ||
1401 | (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { | ||
1402 | data |= IGP02E1000_PM_D3_LPLU; | ||
1403 | ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, | ||
1404 | data); | ||
1405 | if (ret_val) | ||
1406 | goto out; | ||
1407 | |||
1408 | /* When LPLU is enabled, we should disable SmartSpeed */ | ||
1409 | ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
1410 | &data); | ||
1411 | if (ret_val) | ||
1412 | goto out; | ||
1413 | |||
1414 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
1415 | ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
1416 | data); | ||
1417 | } | ||
1418 | |||
1419 | out: | ||
1420 | return ret_val; | ||
1421 | } | ||
1422 | |||
1423 | /** | ||
1424 | * igb_check_downshift - Checks whether a downshift in speed occurred | ||
1425 | * @hw: pointer to the HW structure | ||
1426 | * | ||
1427 | * Success returns 0, Failure returns 1 | ||
1428 | * | ||
1429 | * A downshift is detected by querying the PHY link health. | ||
1430 | **/ | ||
1431 | s32 igb_check_downshift(struct e1000_hw *hw) | ||
1432 | { | ||
1433 | struct e1000_phy_info *phy = &hw->phy; | ||
1434 | s32 ret_val; | ||
1435 | u16 phy_data, offset, mask; | ||
1436 | |||
1437 | switch (phy->type) { | ||
1438 | case e1000_phy_m88: | ||
1439 | case e1000_phy_gg82563: | ||
1440 | offset = M88E1000_PHY_SPEC_STATUS; | ||
1441 | mask = M88E1000_PSSR_DOWNSHIFT; | ||
1442 | break; | ||
1443 | case e1000_phy_igp_2: | ||
1444 | case e1000_phy_igp: | ||
1445 | case e1000_phy_igp_3: | ||
1446 | offset = IGP01E1000_PHY_LINK_HEALTH; | ||
1447 | mask = IGP01E1000_PLHR_SS_DOWNGRADE; | ||
1448 | break; | ||
1449 | default: | ||
1450 | /* speed downshift not supported */ | ||
1451 | phy->speed_downgraded = false; | ||
1452 | ret_val = 0; | ||
1453 | goto out; | ||
1454 | } | ||
1455 | |||
1456 | ret_val = phy->ops.read_reg(hw, offset, &phy_data); | ||
1457 | |||
1458 | if (!ret_val) | ||
1459 | phy->speed_downgraded = (phy_data & mask) ? true : false; | ||
1460 | |||
1461 | out: | ||
1462 | return ret_val; | ||
1463 | } | ||
1464 | |||
1465 | /** | ||
1466 | * igb_check_polarity_m88 - Checks the polarity. | ||
1467 | * @hw: pointer to the HW structure | ||
1468 | * | ||
1469 | * Success returns 0, Failure returns -E1000_ERR_PHY (-2) | ||
1470 | * | ||
1471 | * Polarity is determined based on the PHY specific status register. | ||
1472 | **/ | ||
1473 | static s32 igb_check_polarity_m88(struct e1000_hw *hw) | ||
1474 | { | ||
1475 | struct e1000_phy_info *phy = &hw->phy; | ||
1476 | s32 ret_val; | ||
1477 | u16 data; | ||
1478 | |||
1479 | ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data); | ||
1480 | |||
1481 | if (!ret_val) | ||
1482 | phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY) | ||
1483 | ? e1000_rev_polarity_reversed | ||
1484 | : e1000_rev_polarity_normal; | ||
1485 | |||
1486 | return ret_val; | ||
1487 | } | ||
1488 | |||
1489 | /** | ||
1490 | * igb_check_polarity_igp - Checks the polarity. | ||
1491 | * @hw: pointer to the HW structure | ||
1492 | * | ||
1493 | * Success returns 0, Failure returns -E1000_ERR_PHY (-2) | ||
1494 | * | ||
1495 | * Polarity is determined based on the PHY port status register, and the | ||
1496 | * current speed (since there is no polarity at 100Mbps). | ||
1497 | **/ | ||
1498 | static s32 igb_check_polarity_igp(struct e1000_hw *hw) | ||
1499 | { | ||
1500 | struct e1000_phy_info *phy = &hw->phy; | ||
1501 | s32 ret_val; | ||
1502 | u16 data, offset, mask; | ||
1503 | |||
1504 | /* | ||
1505 | * Polarity is determined based on the speed of | ||
1506 | * our connection. | ||
1507 | */ | ||
1508 | ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); | ||
1509 | if (ret_val) | ||
1510 | goto out; | ||
1511 | |||
1512 | if ((data & IGP01E1000_PSSR_SPEED_MASK) == | ||
1513 | IGP01E1000_PSSR_SPEED_1000MBPS) { | ||
1514 | offset = IGP01E1000_PHY_PCS_INIT_REG; | ||
1515 | mask = IGP01E1000_PHY_POLARITY_MASK; | ||
1516 | } else { | ||
1517 | /* | ||
1518 | * This really only applies to 10Mbps since | ||
1519 | * there is no polarity for 100Mbps (always 0). | ||
1520 | */ | ||
1521 | offset = IGP01E1000_PHY_PORT_STATUS; | ||
1522 | mask = IGP01E1000_PSSR_POLARITY_REVERSED; | ||
1523 | } | ||
1524 | |||
1525 | ret_val = phy->ops.read_reg(hw, offset, &data); | ||
1526 | |||
1527 | if (!ret_val) | ||
1528 | phy->cable_polarity = (data & mask) | ||
1529 | ? e1000_rev_polarity_reversed | ||
1530 | : e1000_rev_polarity_normal; | ||
1531 | |||
1532 | out: | ||
1533 | return ret_val; | ||
1534 | } | ||
1535 | |||
1536 | /** | ||
1537 | * igb_wait_autoneg - Wait for auto-neg compeletion | ||
1538 | * @hw: pointer to the HW structure | ||
1539 | * | ||
1540 | * Waits for auto-negotiation to complete or for the auto-negotiation time | ||
1541 | * limit to expire, which ever happens first. | ||
1542 | **/ | ||
1543 | static s32 igb_wait_autoneg(struct e1000_hw *hw) | ||
1544 | { | ||
1545 | s32 ret_val = 0; | ||
1546 | u16 i, phy_status; | ||
1547 | |||
1548 | /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ | ||
1549 | for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { | ||
1550 | ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); | ||
1551 | if (ret_val) | ||
1552 | break; | ||
1553 | ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); | ||
1554 | if (ret_val) | ||
1555 | break; | ||
1556 | if (phy_status & MII_SR_AUTONEG_COMPLETE) | ||
1557 | break; | ||
1558 | msleep(100); | ||
1559 | } | ||
1560 | |||
1561 | /* | ||
1562 | * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation | ||
1563 | * has completed. | ||
1564 | */ | ||
1565 | return ret_val; | ||
1566 | } | ||
1567 | |||
1568 | /** | ||
1569 | * igb_phy_has_link - Polls PHY for link | ||
1570 | * @hw: pointer to the HW structure | ||
1571 | * @iterations: number of times to poll for link | ||
1572 | * @usec_interval: delay between polling attempts | ||
1573 | * @success: pointer to whether polling was successful or not | ||
1574 | * | ||
1575 | * Polls the PHY status register for link, 'iterations' number of times. | ||
1576 | **/ | ||
1577 | s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations, | ||
1578 | u32 usec_interval, bool *success) | ||
1579 | { | ||
1580 | s32 ret_val = 0; | ||
1581 | u16 i, phy_status; | ||
1582 | |||
1583 | for (i = 0; i < iterations; i++) { | ||
1584 | /* | ||
1585 | * Some PHYs require the PHY_STATUS register to be read | ||
1586 | * twice due to the link bit being sticky. No harm doing | ||
1587 | * it across the board. | ||
1588 | */ | ||
1589 | ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); | ||
1590 | if (ret_val) { | ||
1591 | /* | ||
1592 | * If the first read fails, another entity may have | ||
1593 | * ownership of the resources, wait and try again to | ||
1594 | * see if they have relinquished the resources yet. | ||
1595 | */ | ||
1596 | udelay(usec_interval); | ||
1597 | } | ||
1598 | ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); | ||
1599 | if (ret_val) | ||
1600 | break; | ||
1601 | if (phy_status & MII_SR_LINK_STATUS) | ||
1602 | break; | ||
1603 | if (usec_interval >= 1000) | ||
1604 | mdelay(usec_interval/1000); | ||
1605 | else | ||
1606 | udelay(usec_interval); | ||
1607 | } | ||
1608 | |||
1609 | *success = (i < iterations) ? true : false; | ||
1610 | |||
1611 | return ret_val; | ||
1612 | } | ||
1613 | |||
1614 | /** | ||
1615 | * igb_get_cable_length_m88 - Determine cable length for m88 PHY | ||
1616 | * @hw: pointer to the HW structure | ||
1617 | * | ||
1618 | * Reads the PHY specific status register to retrieve the cable length | ||
1619 | * information. The cable length is determined by averaging the minimum and | ||
1620 | * maximum values to get the "average" cable length. The m88 PHY has four | ||
1621 | * possible cable length values, which are: | ||
1622 | * Register Value Cable Length | ||
1623 | * 0 < 50 meters | ||
1624 | * 1 50 - 80 meters | ||
1625 | * 2 80 - 110 meters | ||
1626 | * 3 110 - 140 meters | ||
1627 | * 4 > 140 meters | ||
1628 | **/ | ||
1629 | s32 igb_get_cable_length_m88(struct e1000_hw *hw) | ||
1630 | { | ||
1631 | struct e1000_phy_info *phy = &hw->phy; | ||
1632 | s32 ret_val; | ||
1633 | u16 phy_data, index; | ||
1634 | |||
1635 | ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); | ||
1636 | if (ret_val) | ||
1637 | goto out; | ||
1638 | |||
1639 | index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> | ||
1640 | M88E1000_PSSR_CABLE_LENGTH_SHIFT; | ||
1641 | if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) { | ||
1642 | ret_val = -E1000_ERR_PHY; | ||
1643 | goto out; | ||
1644 | } | ||
1645 | |||
1646 | phy->min_cable_length = e1000_m88_cable_length_table[index]; | ||
1647 | phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; | ||
1648 | |||
1649 | phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; | ||
1650 | |||
1651 | out: | ||
1652 | return ret_val; | ||
1653 | } | ||
1654 | |||
1655 | s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw) | ||
1656 | { | ||
1657 | struct e1000_phy_info *phy = &hw->phy; | ||
1658 | s32 ret_val; | ||
1659 | u16 phy_data, phy_data2, index, default_page, is_cm; | ||
1660 | |||
1661 | switch (hw->phy.id) { | ||
1662 | case I347AT4_E_PHY_ID: | ||
1663 | /* Remember the original page select and set it to 7 */ | ||
1664 | ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT, | ||
1665 | &default_page); | ||
1666 | if (ret_val) | ||
1667 | goto out; | ||
1668 | |||
1669 | ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07); | ||
1670 | if (ret_val) | ||
1671 | goto out; | ||
1672 | |||
1673 | /* Get cable length from PHY Cable Diagnostics Control Reg */ | ||
1674 | ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr), | ||
1675 | &phy_data); | ||
1676 | if (ret_val) | ||
1677 | goto out; | ||
1678 | |||
1679 | /* Check if the unit of cable length is meters or cm */ | ||
1680 | ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2); | ||
1681 | if (ret_val) | ||
1682 | goto out; | ||
1683 | |||
1684 | is_cm = !(phy_data & I347AT4_PCDC_CABLE_LENGTH_UNIT); | ||
1685 | |||
1686 | /* Populate the phy structure with cable length in meters */ | ||
1687 | phy->min_cable_length = phy_data / (is_cm ? 100 : 1); | ||
1688 | phy->max_cable_length = phy_data / (is_cm ? 100 : 1); | ||
1689 | phy->cable_length = phy_data / (is_cm ? 100 : 1); | ||
1690 | |||
1691 | /* Reset the page selec to its original value */ | ||
1692 | ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, | ||
1693 | default_page); | ||
1694 | if (ret_val) | ||
1695 | goto out; | ||
1696 | break; | ||
1697 | case M88E1112_E_PHY_ID: | ||
1698 | /* Remember the original page select and set it to 5 */ | ||
1699 | ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT, | ||
1700 | &default_page); | ||
1701 | if (ret_val) | ||
1702 | goto out; | ||
1703 | |||
1704 | ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05); | ||
1705 | if (ret_val) | ||
1706 | goto out; | ||
1707 | |||
1708 | ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE, | ||
1709 | &phy_data); | ||
1710 | if (ret_val) | ||
1711 | goto out; | ||
1712 | |||
1713 | index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> | ||
1714 | M88E1000_PSSR_CABLE_LENGTH_SHIFT; | ||
1715 | if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) { | ||
1716 | ret_val = -E1000_ERR_PHY; | ||
1717 | goto out; | ||
1718 | } | ||
1719 | |||
1720 | phy->min_cable_length = e1000_m88_cable_length_table[index]; | ||
1721 | phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; | ||
1722 | |||
1723 | phy->cable_length = (phy->min_cable_length + | ||
1724 | phy->max_cable_length) / 2; | ||
1725 | |||
1726 | /* Reset the page select to its original value */ | ||
1727 | ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, | ||
1728 | default_page); | ||
1729 | if (ret_val) | ||
1730 | goto out; | ||
1731 | |||
1732 | break; | ||
1733 | default: | ||
1734 | ret_val = -E1000_ERR_PHY; | ||
1735 | goto out; | ||
1736 | } | ||
1737 | |||
1738 | out: | ||
1739 | return ret_val; | ||
1740 | } | ||
1741 | |||
1742 | /** | ||
1743 | * igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY | ||
1744 | * @hw: pointer to the HW structure | ||
1745 | * | ||
1746 | * The automatic gain control (agc) normalizes the amplitude of the | ||
1747 | * received signal, adjusting for the attenuation produced by the | ||
1748 | * cable. By reading the AGC registers, which represent the | ||
1749 | * combination of coarse and fine gain value, the value can be put | ||
1750 | * into a lookup table to obtain the approximate cable length | ||
1751 | * for each channel. | ||
1752 | **/ | ||
1753 | s32 igb_get_cable_length_igp_2(struct e1000_hw *hw) | ||
1754 | { | ||
1755 | struct e1000_phy_info *phy = &hw->phy; | ||
1756 | s32 ret_val = 0; | ||
1757 | u16 phy_data, i, agc_value = 0; | ||
1758 | u16 cur_agc_index, max_agc_index = 0; | ||
1759 | u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1; | ||
1760 | static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = { | ||
1761 | IGP02E1000_PHY_AGC_A, | ||
1762 | IGP02E1000_PHY_AGC_B, | ||
1763 | IGP02E1000_PHY_AGC_C, | ||
1764 | IGP02E1000_PHY_AGC_D | ||
1765 | }; | ||
1766 | |||
1767 | /* Read the AGC registers for all channels */ | ||
1768 | for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { | ||
1769 | ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data); | ||
1770 | if (ret_val) | ||
1771 | goto out; | ||
1772 | |||
1773 | /* | ||
1774 | * Getting bits 15:9, which represent the combination of | ||
1775 | * coarse and fine gain values. The result is a number | ||
1776 | * that can be put into the lookup table to obtain the | ||
1777 | * approximate cable length. | ||
1778 | */ | ||
1779 | cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & | ||
1780 | IGP02E1000_AGC_LENGTH_MASK; | ||
1781 | |||
1782 | /* Array index bound check. */ | ||
1783 | if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) || | ||
1784 | (cur_agc_index == 0)) { | ||
1785 | ret_val = -E1000_ERR_PHY; | ||
1786 | goto out; | ||
1787 | } | ||
1788 | |||
1789 | /* Remove min & max AGC values from calculation. */ | ||
1790 | if (e1000_igp_2_cable_length_table[min_agc_index] > | ||
1791 | e1000_igp_2_cable_length_table[cur_agc_index]) | ||
1792 | min_agc_index = cur_agc_index; | ||
1793 | if (e1000_igp_2_cable_length_table[max_agc_index] < | ||
1794 | e1000_igp_2_cable_length_table[cur_agc_index]) | ||
1795 | max_agc_index = cur_agc_index; | ||
1796 | |||
1797 | agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; | ||
1798 | } | ||
1799 | |||
1800 | agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + | ||
1801 | e1000_igp_2_cable_length_table[max_agc_index]); | ||
1802 | agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); | ||
1803 | |||
1804 | /* Calculate cable length with the error range of +/- 10 meters. */ | ||
1805 | phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ? | ||
1806 | (agc_value - IGP02E1000_AGC_RANGE) : 0; | ||
1807 | phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; | ||
1808 | |||
1809 | phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; | ||
1810 | |||
1811 | out: | ||
1812 | return ret_val; | ||
1813 | } | ||
1814 | |||
1815 | /** | ||
1816 | * igb_get_phy_info_m88 - Retrieve PHY information | ||
1817 | * @hw: pointer to the HW structure | ||
1818 | * | ||
1819 | * Valid for only copper links. Read the PHY status register (sticky read) | ||
1820 | * to verify that link is up. Read the PHY special control register to | ||
1821 | * determine the polarity and 10base-T extended distance. Read the PHY | ||
1822 | * special status register to determine MDI/MDIx and current speed. If | ||
1823 | * speed is 1000, then determine cable length, local and remote receiver. | ||
1824 | **/ | ||
1825 | s32 igb_get_phy_info_m88(struct e1000_hw *hw) | ||
1826 | { | ||
1827 | struct e1000_phy_info *phy = &hw->phy; | ||
1828 | s32 ret_val; | ||
1829 | u16 phy_data; | ||
1830 | bool link; | ||
1831 | |||
1832 | if (phy->media_type != e1000_media_type_copper) { | ||
1833 | hw_dbg("Phy info is only valid for copper media\n"); | ||
1834 | ret_val = -E1000_ERR_CONFIG; | ||
1835 | goto out; | ||
1836 | } | ||
1837 | |||
1838 | ret_val = igb_phy_has_link(hw, 1, 0, &link); | ||
1839 | if (ret_val) | ||
1840 | goto out; | ||
1841 | |||
1842 | if (!link) { | ||
1843 | hw_dbg("Phy info is only valid if link is up\n"); | ||
1844 | ret_val = -E1000_ERR_CONFIG; | ||
1845 | goto out; | ||
1846 | } | ||
1847 | |||
1848 | ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
1849 | if (ret_val) | ||
1850 | goto out; | ||
1851 | |||
1852 | phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) | ||
1853 | ? true : false; | ||
1854 | |||
1855 | ret_val = igb_check_polarity_m88(hw); | ||
1856 | if (ret_val) | ||
1857 | goto out; | ||
1858 | |||
1859 | ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); | ||
1860 | if (ret_val) | ||
1861 | goto out; | ||
1862 | |||
1863 | phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false; | ||
1864 | |||
1865 | if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { | ||
1866 | ret_val = phy->ops.get_cable_length(hw); | ||
1867 | if (ret_val) | ||
1868 | goto out; | ||
1869 | |||
1870 | ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data); | ||
1871 | if (ret_val) | ||
1872 | goto out; | ||
1873 | |||
1874 | phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) | ||
1875 | ? e1000_1000t_rx_status_ok | ||
1876 | : e1000_1000t_rx_status_not_ok; | ||
1877 | |||
1878 | phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) | ||
1879 | ? e1000_1000t_rx_status_ok | ||
1880 | : e1000_1000t_rx_status_not_ok; | ||
1881 | } else { | ||
1882 | /* Set values to "undefined" */ | ||
1883 | phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; | ||
1884 | phy->local_rx = e1000_1000t_rx_status_undefined; | ||
1885 | phy->remote_rx = e1000_1000t_rx_status_undefined; | ||
1886 | } | ||
1887 | |||
1888 | out: | ||
1889 | return ret_val; | ||
1890 | } | ||
1891 | |||
1892 | /** | ||
1893 | * igb_get_phy_info_igp - Retrieve igp PHY information | ||
1894 | * @hw: pointer to the HW structure | ||
1895 | * | ||
1896 | * Read PHY status to determine if link is up. If link is up, then | ||
1897 | * set/determine 10base-T extended distance and polarity correction. Read | ||
1898 | * PHY port status to determine MDI/MDIx and speed. Based on the speed, | ||
1899 | * determine on the cable length, local and remote receiver. | ||
1900 | **/ | ||
1901 | s32 igb_get_phy_info_igp(struct e1000_hw *hw) | ||
1902 | { | ||
1903 | struct e1000_phy_info *phy = &hw->phy; | ||
1904 | s32 ret_val; | ||
1905 | u16 data; | ||
1906 | bool link; | ||
1907 | |||
1908 | ret_val = igb_phy_has_link(hw, 1, 0, &link); | ||
1909 | if (ret_val) | ||
1910 | goto out; | ||
1911 | |||
1912 | if (!link) { | ||
1913 | hw_dbg("Phy info is only valid if link is up\n"); | ||
1914 | ret_val = -E1000_ERR_CONFIG; | ||
1915 | goto out; | ||
1916 | } | ||
1917 | |||
1918 | phy->polarity_correction = true; | ||
1919 | |||
1920 | ret_val = igb_check_polarity_igp(hw); | ||
1921 | if (ret_val) | ||
1922 | goto out; | ||
1923 | |||
1924 | ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); | ||
1925 | if (ret_val) | ||
1926 | goto out; | ||
1927 | |||
1928 | phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false; | ||
1929 | |||
1930 | if ((data & IGP01E1000_PSSR_SPEED_MASK) == | ||
1931 | IGP01E1000_PSSR_SPEED_1000MBPS) { | ||
1932 | ret_val = phy->ops.get_cable_length(hw); | ||
1933 | if (ret_val) | ||
1934 | goto out; | ||
1935 | |||
1936 | ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); | ||
1937 | if (ret_val) | ||
1938 | goto out; | ||
1939 | |||
1940 | phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) | ||
1941 | ? e1000_1000t_rx_status_ok | ||
1942 | : e1000_1000t_rx_status_not_ok; | ||
1943 | |||
1944 | phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) | ||
1945 | ? e1000_1000t_rx_status_ok | ||
1946 | : e1000_1000t_rx_status_not_ok; | ||
1947 | } else { | ||
1948 | phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; | ||
1949 | phy->local_rx = e1000_1000t_rx_status_undefined; | ||
1950 | phy->remote_rx = e1000_1000t_rx_status_undefined; | ||
1951 | } | ||
1952 | |||
1953 | out: | ||
1954 | return ret_val; | ||
1955 | } | ||
1956 | |||
1957 | /** | ||
1958 | * igb_phy_sw_reset - PHY software reset | ||
1959 | * @hw: pointer to the HW structure | ||
1960 | * | ||
1961 | * Does a software reset of the PHY by reading the PHY control register and | ||
1962 | * setting/write the control register reset bit to the PHY. | ||
1963 | **/ | ||
1964 | s32 igb_phy_sw_reset(struct e1000_hw *hw) | ||
1965 | { | ||
1966 | s32 ret_val = 0; | ||
1967 | u16 phy_ctrl; | ||
1968 | |||
1969 | if (!(hw->phy.ops.read_reg)) | ||
1970 | goto out; | ||
1971 | |||
1972 | ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); | ||
1973 | if (ret_val) | ||
1974 | goto out; | ||
1975 | |||
1976 | phy_ctrl |= MII_CR_RESET; | ||
1977 | ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl); | ||
1978 | if (ret_val) | ||
1979 | goto out; | ||
1980 | |||
1981 | udelay(1); | ||
1982 | |||
1983 | out: | ||
1984 | return ret_val; | ||
1985 | } | ||
1986 | |||
1987 | /** | ||
1988 | * igb_phy_hw_reset - PHY hardware reset | ||
1989 | * @hw: pointer to the HW structure | ||
1990 | * | ||
1991 | * Verify the reset block is not blocking us from resetting. Acquire | ||
1992 | * semaphore (if necessary) and read/set/write the device control reset | ||
1993 | * bit in the PHY. Wait the appropriate delay time for the device to | ||
1994 | * reset and relase the semaphore (if necessary). | ||
1995 | **/ | ||
1996 | s32 igb_phy_hw_reset(struct e1000_hw *hw) | ||
1997 | { | ||
1998 | struct e1000_phy_info *phy = &hw->phy; | ||
1999 | s32 ret_val; | ||
2000 | u32 ctrl; | ||
2001 | |||
2002 | ret_val = igb_check_reset_block(hw); | ||
2003 | if (ret_val) { | ||
2004 | ret_val = 0; | ||
2005 | goto out; | ||
2006 | } | ||
2007 | |||
2008 | ret_val = phy->ops.acquire(hw); | ||
2009 | if (ret_val) | ||
2010 | goto out; | ||
2011 | |||
2012 | ctrl = rd32(E1000_CTRL); | ||
2013 | wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST); | ||
2014 | wrfl(); | ||
2015 | |||
2016 | udelay(phy->reset_delay_us); | ||
2017 | |||
2018 | wr32(E1000_CTRL, ctrl); | ||
2019 | wrfl(); | ||
2020 | |||
2021 | udelay(150); | ||
2022 | |||
2023 | phy->ops.release(hw); | ||
2024 | |||
2025 | ret_val = phy->ops.get_cfg_done(hw); | ||
2026 | |||
2027 | out: | ||
2028 | return ret_val; | ||
2029 | } | ||
2030 | |||
2031 | /** | ||
2032 | * igb_phy_init_script_igp3 - Inits the IGP3 PHY | ||
2033 | * @hw: pointer to the HW structure | ||
2034 | * | ||
2035 | * Initializes a Intel Gigabit PHY3 when an EEPROM is not present. | ||
2036 | **/ | ||
2037 | s32 igb_phy_init_script_igp3(struct e1000_hw *hw) | ||
2038 | { | ||
2039 | hw_dbg("Running IGP 3 PHY init script\n"); | ||
2040 | |||
2041 | /* PHY init IGP 3 */ | ||
2042 | /* Enable rise/fall, 10-mode work in class-A */ | ||
2043 | hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018); | ||
2044 | /* Remove all caps from Replica path filter */ | ||
2045 | hw->phy.ops.write_reg(hw, 0x2F52, 0x0000); | ||
2046 | /* Bias trimming for ADC, AFE and Driver (Default) */ | ||
2047 | hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24); | ||
2048 | /* Increase Hybrid poly bias */ | ||
2049 | hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0); | ||
2050 | /* Add 4% to TX amplitude in Giga mode */ | ||
2051 | hw->phy.ops.write_reg(hw, 0x2010, 0x10B0); | ||
2052 | /* Disable trimming (TTT) */ | ||
2053 | hw->phy.ops.write_reg(hw, 0x2011, 0x0000); | ||
2054 | /* Poly DC correction to 94.6% + 2% for all channels */ | ||
2055 | hw->phy.ops.write_reg(hw, 0x20DD, 0x249A); | ||
2056 | /* ABS DC correction to 95.9% */ | ||
2057 | hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3); | ||
2058 | /* BG temp curve trim */ | ||
2059 | hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE); | ||
2060 | /* Increasing ADC OPAMP stage 1 currents to max */ | ||
2061 | hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4); | ||
2062 | /* Force 1000 ( required for enabling PHY regs configuration) */ | ||
2063 | hw->phy.ops.write_reg(hw, 0x0000, 0x0140); | ||
2064 | /* Set upd_freq to 6 */ | ||
2065 | hw->phy.ops.write_reg(hw, 0x1F30, 0x1606); | ||
2066 | /* Disable NPDFE */ | ||
2067 | hw->phy.ops.write_reg(hw, 0x1F31, 0xB814); | ||
2068 | /* Disable adaptive fixed FFE (Default) */ | ||
2069 | hw->phy.ops.write_reg(hw, 0x1F35, 0x002A); | ||
2070 | /* Enable FFE hysteresis */ | ||
2071 | hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067); | ||
2072 | /* Fixed FFE for short cable lengths */ | ||
2073 | hw->phy.ops.write_reg(hw, 0x1F54, 0x0065); | ||
2074 | /* Fixed FFE for medium cable lengths */ | ||
2075 | hw->phy.ops.write_reg(hw, 0x1F55, 0x002A); | ||
2076 | /* Fixed FFE for long cable lengths */ | ||
2077 | hw->phy.ops.write_reg(hw, 0x1F56, 0x002A); | ||
2078 | /* Enable Adaptive Clip Threshold */ | ||
2079 | hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0); | ||
2080 | /* AHT reset limit to 1 */ | ||
2081 | hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF); | ||
2082 | /* Set AHT master delay to 127 msec */ | ||
2083 | hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC); | ||
2084 | /* Set scan bits for AHT */ | ||
2085 | hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF); | ||
2086 | /* Set AHT Preset bits */ | ||
2087 | hw->phy.ops.write_reg(hw, 0x1F79, 0x0210); | ||
2088 | /* Change integ_factor of channel A to 3 */ | ||
2089 | hw->phy.ops.write_reg(hw, 0x1895, 0x0003); | ||
2090 | /* Change prop_factor of channels BCD to 8 */ | ||
2091 | hw->phy.ops.write_reg(hw, 0x1796, 0x0008); | ||
2092 | /* Change cg_icount + enable integbp for channels BCD */ | ||
2093 | hw->phy.ops.write_reg(hw, 0x1798, 0xD008); | ||
2094 | /* | ||
2095 | * Change cg_icount + enable integbp + change prop_factor_master | ||
2096 | * to 8 for channel A | ||
2097 | */ | ||
2098 | hw->phy.ops.write_reg(hw, 0x1898, 0xD918); | ||
2099 | /* Disable AHT in Slave mode on channel A */ | ||
2100 | hw->phy.ops.write_reg(hw, 0x187A, 0x0800); | ||
2101 | /* | ||
2102 | * Enable LPLU and disable AN to 1000 in non-D0a states, | ||
2103 | * Enable SPD+B2B | ||
2104 | */ | ||
2105 | hw->phy.ops.write_reg(hw, 0x0019, 0x008D); | ||
2106 | /* Enable restart AN on an1000_dis change */ | ||
2107 | hw->phy.ops.write_reg(hw, 0x001B, 0x2080); | ||
2108 | /* Enable wh_fifo read clock in 10/100 modes */ | ||
2109 | hw->phy.ops.write_reg(hw, 0x0014, 0x0045); | ||
2110 | /* Restart AN, Speed selection is 1000 */ | ||
2111 | hw->phy.ops.write_reg(hw, 0x0000, 0x1340); | ||
2112 | |||
2113 | return 0; | ||
2114 | } | ||
2115 | |||
2116 | /** | ||
2117 | * igb_power_up_phy_copper - Restore copper link in case of PHY power down | ||
2118 | * @hw: pointer to the HW structure | ||
2119 | * | ||
2120 | * In the case of a PHY power down to save power, or to turn off link during a | ||
2121 | * driver unload, restore the link to previous settings. | ||
2122 | **/ | ||
2123 | void igb_power_up_phy_copper(struct e1000_hw *hw) | ||
2124 | { | ||
2125 | u16 mii_reg = 0; | ||
2126 | |||
2127 | /* The PHY will retain its settings across a power down/up cycle */ | ||
2128 | hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); | ||
2129 | mii_reg &= ~MII_CR_POWER_DOWN; | ||
2130 | hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); | ||
2131 | } | ||
2132 | |||
2133 | /** | ||
2134 | * igb_power_down_phy_copper - Power down copper PHY | ||
2135 | * @hw: pointer to the HW structure | ||
2136 | * | ||
2137 | * Power down PHY to save power when interface is down and wake on lan | ||
2138 | * is not enabled. | ||
2139 | **/ | ||
2140 | void igb_power_down_phy_copper(struct e1000_hw *hw) | ||
2141 | { | ||
2142 | u16 mii_reg = 0; | ||
2143 | |||
2144 | /* The PHY will retain its settings across a power down/up cycle */ | ||
2145 | hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); | ||
2146 | mii_reg |= MII_CR_POWER_DOWN; | ||
2147 | hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); | ||
2148 | msleep(1); | ||
2149 | } | ||
2150 | |||
2151 | /** | ||
2152 | * igb_check_polarity_82580 - Checks the polarity. | ||
2153 | * @hw: pointer to the HW structure | ||
2154 | * | ||
2155 | * Success returns 0, Failure returns -E1000_ERR_PHY (-2) | ||
2156 | * | ||
2157 | * Polarity is determined based on the PHY specific status register. | ||
2158 | **/ | ||
2159 | static s32 igb_check_polarity_82580(struct e1000_hw *hw) | ||
2160 | { | ||
2161 | struct e1000_phy_info *phy = &hw->phy; | ||
2162 | s32 ret_val; | ||
2163 | u16 data; | ||
2164 | |||
2165 | |||
2166 | ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data); | ||
2167 | |||
2168 | if (!ret_val) | ||
2169 | phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY) | ||
2170 | ? e1000_rev_polarity_reversed | ||
2171 | : e1000_rev_polarity_normal; | ||
2172 | |||
2173 | return ret_val; | ||
2174 | } | ||
2175 | |||
2176 | /** | ||
2177 | * igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY | ||
2178 | * @hw: pointer to the HW structure | ||
2179 | * | ||
2180 | * Calls the PHY setup function to force speed and duplex. Clears the | ||
2181 | * auto-crossover to force MDI manually. Waits for link and returns | ||
2182 | * successful if link up is successful, else -E1000_ERR_PHY (-2). | ||
2183 | **/ | ||
2184 | s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw) | ||
2185 | { | ||
2186 | struct e1000_phy_info *phy = &hw->phy; | ||
2187 | s32 ret_val; | ||
2188 | u16 phy_data; | ||
2189 | bool link; | ||
2190 | |||
2191 | |||
2192 | ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); | ||
2193 | if (ret_val) | ||
2194 | goto out; | ||
2195 | |||
2196 | igb_phy_force_speed_duplex_setup(hw, &phy_data); | ||
2197 | |||
2198 | ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); | ||
2199 | if (ret_val) | ||
2200 | goto out; | ||
2201 | |||
2202 | /* | ||
2203 | * Clear Auto-Crossover to force MDI manually. 82580 requires MDI | ||
2204 | * forced whenever speed and duplex are forced. | ||
2205 | */ | ||
2206 | ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data); | ||
2207 | if (ret_val) | ||
2208 | goto out; | ||
2209 | |||
2210 | phy_data &= ~I82580_PHY_CTRL2_AUTO_MDIX; | ||
2211 | phy_data &= ~I82580_PHY_CTRL2_FORCE_MDI_MDIX; | ||
2212 | |||
2213 | ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data); | ||
2214 | if (ret_val) | ||
2215 | goto out; | ||
2216 | |||
2217 | hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data); | ||
2218 | |||
2219 | udelay(1); | ||
2220 | |||
2221 | if (phy->autoneg_wait_to_complete) { | ||
2222 | hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n"); | ||
2223 | |||
2224 | ret_val = igb_phy_has_link(hw, | ||
2225 | PHY_FORCE_LIMIT, | ||
2226 | 100000, | ||
2227 | &link); | ||
2228 | if (ret_val) | ||
2229 | goto out; | ||
2230 | |||
2231 | if (!link) | ||
2232 | hw_dbg("Link taking longer than expected.\n"); | ||
2233 | |||
2234 | /* Try once more */ | ||
2235 | ret_val = igb_phy_has_link(hw, | ||
2236 | PHY_FORCE_LIMIT, | ||
2237 | 100000, | ||
2238 | &link); | ||
2239 | if (ret_val) | ||
2240 | goto out; | ||
2241 | } | ||
2242 | |||
2243 | out: | ||
2244 | return ret_val; | ||
2245 | } | ||
2246 | |||
2247 | /** | ||
2248 | * igb_get_phy_info_82580 - Retrieve I82580 PHY information | ||
2249 | * @hw: pointer to the HW structure | ||
2250 | * | ||
2251 | * Read PHY status to determine if link is up. If link is up, then | ||
2252 | * set/determine 10base-T extended distance and polarity correction. Read | ||
2253 | * PHY port status to determine MDI/MDIx and speed. Based on the speed, | ||
2254 | * determine on the cable length, local and remote receiver. | ||
2255 | **/ | ||
2256 | s32 igb_get_phy_info_82580(struct e1000_hw *hw) | ||
2257 | { | ||
2258 | struct e1000_phy_info *phy = &hw->phy; | ||
2259 | s32 ret_val; | ||
2260 | u16 data; | ||
2261 | bool link; | ||
2262 | |||
2263 | |||
2264 | ret_val = igb_phy_has_link(hw, 1, 0, &link); | ||
2265 | if (ret_val) | ||
2266 | goto out; | ||
2267 | |||
2268 | if (!link) { | ||
2269 | hw_dbg("Phy info is only valid if link is up\n"); | ||
2270 | ret_val = -E1000_ERR_CONFIG; | ||
2271 | goto out; | ||
2272 | } | ||
2273 | |||
2274 | phy->polarity_correction = true; | ||
2275 | |||
2276 | ret_val = igb_check_polarity_82580(hw); | ||
2277 | if (ret_val) | ||
2278 | goto out; | ||
2279 | |||
2280 | ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data); | ||
2281 | if (ret_val) | ||
2282 | goto out; | ||
2283 | |||
2284 | phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false; | ||
2285 | |||
2286 | if ((data & I82580_PHY_STATUS2_SPEED_MASK) == | ||
2287 | I82580_PHY_STATUS2_SPEED_1000MBPS) { | ||
2288 | ret_val = hw->phy.ops.get_cable_length(hw); | ||
2289 | if (ret_val) | ||
2290 | goto out; | ||
2291 | |||
2292 | ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); | ||
2293 | if (ret_val) | ||
2294 | goto out; | ||
2295 | |||
2296 | phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) | ||
2297 | ? e1000_1000t_rx_status_ok | ||
2298 | : e1000_1000t_rx_status_not_ok; | ||
2299 | |||
2300 | phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) | ||
2301 | ? e1000_1000t_rx_status_ok | ||
2302 | : e1000_1000t_rx_status_not_ok; | ||
2303 | } else { | ||
2304 | phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; | ||
2305 | phy->local_rx = e1000_1000t_rx_status_undefined; | ||
2306 | phy->remote_rx = e1000_1000t_rx_status_undefined; | ||
2307 | } | ||
2308 | |||
2309 | out: | ||
2310 | return ret_val; | ||
2311 | } | ||
2312 | |||
2313 | /** | ||
2314 | * igb_get_cable_length_82580 - Determine cable length for 82580 PHY | ||
2315 | * @hw: pointer to the HW structure | ||
2316 | * | ||
2317 | * Reads the diagnostic status register and verifies result is valid before | ||
2318 | * placing it in the phy_cable_length field. | ||
2319 | **/ | ||
2320 | s32 igb_get_cable_length_82580(struct e1000_hw *hw) | ||
2321 | { | ||
2322 | struct e1000_phy_info *phy = &hw->phy; | ||
2323 | s32 ret_val; | ||
2324 | u16 phy_data, length; | ||
2325 | |||
2326 | |||
2327 | ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data); | ||
2328 | if (ret_val) | ||
2329 | goto out; | ||
2330 | |||
2331 | length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >> | ||
2332 | I82580_DSTATUS_CABLE_LENGTH_SHIFT; | ||
2333 | |||
2334 | if (length == E1000_CABLE_LENGTH_UNDEFINED) | ||
2335 | ret_val = -E1000_ERR_PHY; | ||
2336 | |||
2337 | phy->cable_length = length; | ||
2338 | |||
2339 | out: | ||
2340 | return ret_val; | ||
2341 | } | ||