aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/igb/e1000_nvm.c
diff options
context:
space:
mode:
authorAuke Kok <auke-jan.h.kok@intel.com>2008-01-24 05:22:38 -0500
committerDavid S. Miller <davem@davemloft.net>2008-01-28 18:10:33 -0500
commit9d5c824399dea881779d78a6c147288bf2dccb6b (patch)
tree8c76b20c3cf1d81a63973e97578cea6a8a82a354 /drivers/net/igb/e1000_nvm.c
parentb491edd5817f1618f4e06d67638739591a714bdb (diff)
igb: PCI-Express 82575 Gigabit Ethernet driver
We are pleased to announce a new Gigabit Ethernet product and its driver to the linux community. This product is the Intel(R) 82575 Gigabit Ethernet adapter family. Physical adapters will be available to the public soon. These adapters come in 2- and 4-port versions (copper PHY) currently. Other variants will be available later. The 82575 chipset supports significantly different features that warrant a new driver. The descriptor format is (just like the ixgbe driver) different. The device can use multiple MSI-X vectors and multiple queues for both send and receive. This allows us to optimize some of the driver code specifically as well compared to the e1000-supported devices. This version of the igb driver no lnger uses fake netdevices and incorporates napi_struct members for each ring to do the multi- queue polling. multi-queue is enabled by default and the driver supports NAPI mode only. All the namespace collisions should be gone in this version too. The register macro's have been condensed to improve readability. Signed-off-by: Auke Kok <auke-jan.h.kok@intel.com> Signed-off-by: Jeff Garzik <jgarzik@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'drivers/net/igb/e1000_nvm.c')
-rw-r--r--drivers/net/igb/e1000_nvm.c605
1 files changed, 605 insertions, 0 deletions
diff --git a/drivers/net/igb/e1000_nvm.c b/drivers/net/igb/e1000_nvm.c
new file mode 100644
index 000000000000..2897106fee92
--- /dev/null
+++ b/drivers/net/igb/e1000_nvm.c
@@ -0,0 +1,605 @@
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/if_ether.h>
29#include <linux/delay.h>
30
31#include "e1000_mac.h"
32#include "e1000_nvm.h"
33
34/**
35 * e1000_raise_eec_clk - Raise EEPROM clock
36 * @hw: pointer to the HW structure
37 * @eecd: pointer to the EEPROM
38 *
39 * Enable/Raise the EEPROM clock bit.
40 **/
41static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
42{
43 *eecd = *eecd | E1000_EECD_SK;
44 wr32(E1000_EECD, *eecd);
45 wrfl();
46 udelay(hw->nvm.delay_usec);
47}
48
49/**
50 * e1000_lower_eec_clk - Lower EEPROM clock
51 * @hw: pointer to the HW structure
52 * @eecd: pointer to the EEPROM
53 *
54 * Clear/Lower the EEPROM clock bit.
55 **/
56static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
57{
58 *eecd = *eecd & ~E1000_EECD_SK;
59 wr32(E1000_EECD, *eecd);
60 wrfl();
61 udelay(hw->nvm.delay_usec);
62}
63
64/**
65 * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
66 * @hw: pointer to the HW structure
67 * @data: data to send to the EEPROM
68 * @count: number of bits to shift out
69 *
70 * We need to shift 'count' bits out to the EEPROM. So, the value in the
71 * "data" parameter will be shifted out to the EEPROM one bit at a time.
72 * In order to do this, "data" must be broken down into bits.
73 **/
74static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
75{
76 struct e1000_nvm_info *nvm = &hw->nvm;
77 u32 eecd = rd32(E1000_EECD);
78 u32 mask;
79
80 mask = 0x01 << (count - 1);
81 if (nvm->type == e1000_nvm_eeprom_microwire)
82 eecd &= ~E1000_EECD_DO;
83 else if (nvm->type == e1000_nvm_eeprom_spi)
84 eecd |= E1000_EECD_DO;
85
86 do {
87 eecd &= ~E1000_EECD_DI;
88
89 if (data & mask)
90 eecd |= E1000_EECD_DI;
91
92 wr32(E1000_EECD, eecd);
93 wrfl();
94
95 udelay(nvm->delay_usec);
96
97 igb_raise_eec_clk(hw, &eecd);
98 igb_lower_eec_clk(hw, &eecd);
99
100 mask >>= 1;
101 } while (mask);
102
103 eecd &= ~E1000_EECD_DI;
104 wr32(E1000_EECD, eecd);
105}
106
107/**
108 * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
109 * @hw: pointer to the HW structure
110 * @count: number of bits to shift in
111 *
112 * In order to read a register from the EEPROM, we need to shift 'count' bits
113 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
114 * the EEPROM (setting the SK bit), and then reading the value of the data out
115 * "DO" bit. During this "shifting in" process the data in "DI" bit should
116 * always be clear.
117 **/
118static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
119{
120 u32 eecd;
121 u32 i;
122 u16 data;
123
124 eecd = rd32(E1000_EECD);
125
126 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
127 data = 0;
128
129 for (i = 0; i < count; i++) {
130 data <<= 1;
131 igb_raise_eec_clk(hw, &eecd);
132
133 eecd = rd32(E1000_EECD);
134
135 eecd &= ~E1000_EECD_DI;
136 if (eecd & E1000_EECD_DO)
137 data |= 1;
138
139 igb_lower_eec_clk(hw, &eecd);
140 }
141
142 return data;
143}
144
145/**
146 * e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion
147 * @hw: pointer to the HW structure
148 * @ee_reg: EEPROM flag for polling
149 *
150 * Polls the EEPROM status bit for either read or write completion based
151 * upon the value of 'ee_reg'.
152 **/
153static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
154{
155 u32 attempts = 100000;
156 u32 i, reg = 0;
157 s32 ret_val = -E1000_ERR_NVM;
158
159 for (i = 0; i < attempts; i++) {
160 if (ee_reg == E1000_NVM_POLL_READ)
161 reg = rd32(E1000_EERD);
162 else
163 reg = rd32(E1000_EEWR);
164
165 if (reg & E1000_NVM_RW_REG_DONE) {
166 ret_val = 0;
167 break;
168 }
169
170 udelay(5);
171 }
172
173 return ret_val;
174}
175
176/**
177 * e1000_acquire_nvm - Generic request for access to EEPROM
178 * @hw: pointer to the HW structure
179 *
180 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
181 * Return successful if access grant bit set, else clear the request for
182 * EEPROM access and return -E1000_ERR_NVM (-1).
183 **/
184s32 igb_acquire_nvm(struct e1000_hw *hw)
185{
186 u32 eecd = rd32(E1000_EECD);
187 s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
188 s32 ret_val = 0;
189
190
191 wr32(E1000_EECD, eecd | E1000_EECD_REQ);
192 eecd = rd32(E1000_EECD);
193
194 while (timeout) {
195 if (eecd & E1000_EECD_GNT)
196 break;
197 udelay(5);
198 eecd = rd32(E1000_EECD);
199 timeout--;
200 }
201
202 if (!timeout) {
203 eecd &= ~E1000_EECD_REQ;
204 wr32(E1000_EECD, eecd);
205 hw_dbg(hw, "Could not acquire NVM grant\n");
206 ret_val = -E1000_ERR_NVM;
207 }
208
209 return ret_val;
210}
211
212/**
213 * e1000_standby_nvm - Return EEPROM to standby state
214 * @hw: pointer to the HW structure
215 *
216 * Return the EEPROM to a standby state.
217 **/
218static void igb_standby_nvm(struct e1000_hw *hw)
219{
220 struct e1000_nvm_info *nvm = &hw->nvm;
221 u32 eecd = rd32(E1000_EECD);
222
223 if (nvm->type == e1000_nvm_eeprom_microwire) {
224 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
225 wr32(E1000_EECD, eecd);
226 wrfl();
227 udelay(nvm->delay_usec);
228
229 igb_raise_eec_clk(hw, &eecd);
230
231 /* Select EEPROM */
232 eecd |= E1000_EECD_CS;
233 wr32(E1000_EECD, eecd);
234 wrfl();
235 udelay(nvm->delay_usec);
236
237 igb_lower_eec_clk(hw, &eecd);
238 } else if (nvm->type == e1000_nvm_eeprom_spi) {
239 /* Toggle CS to flush commands */
240 eecd |= E1000_EECD_CS;
241 wr32(E1000_EECD, eecd);
242 wrfl();
243 udelay(nvm->delay_usec);
244 eecd &= ~E1000_EECD_CS;
245 wr32(E1000_EECD, eecd);
246 wrfl();
247 udelay(nvm->delay_usec);
248 }
249}
250
251/**
252 * e1000_stop_nvm - Terminate EEPROM command
253 * @hw: pointer to the HW structure
254 *
255 * Terminates the current command by inverting the EEPROM's chip select pin.
256 **/
257static void e1000_stop_nvm(struct e1000_hw *hw)
258{
259 u32 eecd;
260
261 eecd = rd32(E1000_EECD);
262 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
263 /* Pull CS high */
264 eecd |= E1000_EECD_CS;
265 igb_lower_eec_clk(hw, &eecd);
266 } else if (hw->nvm.type == e1000_nvm_eeprom_microwire) {
267 /* CS on Microcwire is active-high */
268 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
269 wr32(E1000_EECD, eecd);
270 igb_raise_eec_clk(hw, &eecd);
271 igb_lower_eec_clk(hw, &eecd);
272 }
273}
274
275/**
276 * e1000_release_nvm - Release exclusive access to EEPROM
277 * @hw: pointer to the HW structure
278 *
279 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
280 **/
281void igb_release_nvm(struct e1000_hw *hw)
282{
283 u32 eecd;
284
285 e1000_stop_nvm(hw);
286
287 eecd = rd32(E1000_EECD);
288 eecd &= ~E1000_EECD_REQ;
289 wr32(E1000_EECD, eecd);
290}
291
292/**
293 * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
294 * @hw: pointer to the HW structure
295 *
296 * Setups the EEPROM for reading and writing.
297 **/
298static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw)
299{
300 struct e1000_nvm_info *nvm = &hw->nvm;
301 u32 eecd = rd32(E1000_EECD);
302 s32 ret_val = 0;
303 u16 timeout = 0;
304 u8 spi_stat_reg;
305
306
307 if (nvm->type == e1000_nvm_eeprom_microwire) {
308 /* Clear SK and DI */
309 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
310 wr32(E1000_EECD, eecd);
311 /* Set CS */
312 eecd |= E1000_EECD_CS;
313 wr32(E1000_EECD, eecd);
314 } else if (nvm->type == e1000_nvm_eeprom_spi) {
315 /* Clear SK and CS */
316 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
317 wr32(E1000_EECD, eecd);
318 udelay(1);
319 timeout = NVM_MAX_RETRY_SPI;
320
321 /*
322 * Read "Status Register" repeatedly until the LSB is cleared.
323 * The EEPROM will signal that the command has been completed
324 * by clearing bit 0 of the internal status register. If it's
325 * not cleared within 'timeout', then error out.
326 */
327 while (timeout) {
328 igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
329 hw->nvm.opcode_bits);
330 spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8);
331 if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
332 break;
333
334 udelay(5);
335 igb_standby_nvm(hw);
336 timeout--;
337 }
338
339 if (!timeout) {
340 hw_dbg(hw, "SPI NVM Status error\n");
341 ret_val = -E1000_ERR_NVM;
342 goto out;
343 }
344 }
345
346out:
347 return ret_val;
348}
349
350/**
351 * e1000_read_nvm_eerd - Reads EEPROM using EERD register
352 * @hw: pointer to the HW structure
353 * @offset: offset of word in the EEPROM to read
354 * @words: number of words to read
355 * @data: word read from the EEPROM
356 *
357 * Reads a 16 bit word from the EEPROM using the EERD register.
358 **/
359s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
360{
361 struct e1000_nvm_info *nvm = &hw->nvm;
362 u32 i, eerd = 0;
363 s32 ret_val = 0;
364
365 /*
366 * A check for invalid values: offset too large, too many words,
367 * and not enough words.
368 */
369 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
370 (words == 0)) {
371 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
372 ret_val = -E1000_ERR_NVM;
373 goto out;
374 }
375
376 for (i = 0; i < words; i++) {
377 eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
378 E1000_NVM_RW_REG_START;
379
380 wr32(E1000_EERD, eerd);
381 ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
382 if (ret_val)
383 break;
384
385 data[i] = (rd32(E1000_EERD) >>
386 E1000_NVM_RW_REG_DATA);
387 }
388
389out:
390 return ret_val;
391}
392
393/**
394 * e1000_write_nvm_spi - Write to EEPROM using SPI
395 * @hw: pointer to the HW structure
396 * @offset: offset within the EEPROM to be written to
397 * @words: number of words to write
398 * @data: 16 bit word(s) to be written to the EEPROM
399 *
400 * Writes data to EEPROM at offset using SPI interface.
401 *
402 * If e1000_update_nvm_checksum is not called after this function , the
403 * EEPROM will most likley contain an invalid checksum.
404 **/
405s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
406{
407 struct e1000_nvm_info *nvm = &hw->nvm;
408 s32 ret_val;
409 u16 widx = 0;
410
411 /*
412 * A check for invalid values: offset too large, too many words,
413 * and not enough words.
414 */
415 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
416 (words == 0)) {
417 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
418 ret_val = -E1000_ERR_NVM;
419 goto out;
420 }
421
422 ret_val = hw->nvm.ops.acquire_nvm(hw);
423 if (ret_val)
424 goto out;
425
426 msleep(10);
427
428 while (widx < words) {
429 u8 write_opcode = NVM_WRITE_OPCODE_SPI;
430
431 ret_val = igb_ready_nvm_eeprom(hw);
432 if (ret_val)
433 goto release;
434
435 igb_standby_nvm(hw);
436
437 /* Send the WRITE ENABLE command (8 bit opcode) */
438 igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
439 nvm->opcode_bits);
440
441 igb_standby_nvm(hw);
442
443 /*
444 * Some SPI eeproms use the 8th address bit embedded in the
445 * opcode
446 */
447 if ((nvm->address_bits == 8) && (offset >= 128))
448 write_opcode |= NVM_A8_OPCODE_SPI;
449
450 /* Send the Write command (8-bit opcode + addr) */
451 igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
452 igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
453 nvm->address_bits);
454
455 /* Loop to allow for up to whole page write of eeprom */
456 while (widx < words) {
457 u16 word_out = data[widx];
458 word_out = (word_out >> 8) | (word_out << 8);
459 igb_shift_out_eec_bits(hw, word_out, 16);
460 widx++;
461
462 if ((((offset + widx) * 2) % nvm->page_size) == 0) {
463 igb_standby_nvm(hw);
464 break;
465 }
466 }
467 }
468
469 msleep(10);
470release:
471 hw->nvm.ops.release_nvm(hw);
472
473out:
474 return ret_val;
475}
476
477/**
478 * e1000_read_part_num - Read device part number
479 * @hw: pointer to the HW structure
480 * @part_num: pointer to device part number
481 *
482 * Reads the product board assembly (PBA) number from the EEPROM and stores
483 * the value in part_num.
484 **/
485s32 igb_read_part_num(struct e1000_hw *hw, u32 *part_num)
486{
487 s32 ret_val;
488 u16 nvm_data;
489
490 ret_val = hw->nvm.ops.read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
491 if (ret_val) {
492 hw_dbg(hw, "NVM Read Error\n");
493 goto out;
494 }
495 *part_num = (u32)(nvm_data << 16);
496
497 ret_val = hw->nvm.ops.read_nvm(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
498 if (ret_val) {
499 hw_dbg(hw, "NVM Read Error\n");
500 goto out;
501 }
502 *part_num |= nvm_data;
503
504out:
505 return ret_val;
506}
507
508/**
509 * e1000_read_mac_addr - Read device MAC address
510 * @hw: pointer to the HW structure
511 *
512 * Reads the device MAC address from the EEPROM and stores the value.
513 * Since devices with two ports use the same EEPROM, we increment the
514 * last bit in the MAC address for the second port.
515 **/
516s32 igb_read_mac_addr(struct e1000_hw *hw)
517{
518 s32 ret_val = 0;
519 u16 offset, nvm_data, i;
520
521 for (i = 0; i < ETH_ALEN; i += 2) {
522 offset = i >> 1;
523 ret_val = hw->nvm.ops.read_nvm(hw, offset, 1, &nvm_data);
524 if (ret_val) {
525 hw_dbg(hw, "NVM Read Error\n");
526 goto out;
527 }
528 hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
529 hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
530 }
531
532 /* Flip last bit of mac address if we're on second port */
533 if (hw->bus.func == E1000_FUNC_1)
534 hw->mac.perm_addr[5] ^= 1;
535
536 for (i = 0; i < ETH_ALEN; i++)
537 hw->mac.addr[i] = hw->mac.perm_addr[i];
538
539out:
540 return ret_val;
541}
542
543/**
544 * e1000_validate_nvm_checksum - Validate EEPROM checksum
545 * @hw: pointer to the HW structure
546 *
547 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
548 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
549 **/
550s32 igb_validate_nvm_checksum(struct e1000_hw *hw)
551{
552 s32 ret_val = 0;
553 u16 checksum = 0;
554 u16 i, nvm_data;
555
556 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
557 ret_val = hw->nvm.ops.read_nvm(hw, i, 1, &nvm_data);
558 if (ret_val) {
559 hw_dbg(hw, "NVM Read Error\n");
560 goto out;
561 }
562 checksum += nvm_data;
563 }
564
565 if (checksum != (u16) NVM_SUM) {
566 hw_dbg(hw, "NVM Checksum Invalid\n");
567 ret_val = -E1000_ERR_NVM;
568 goto out;
569 }
570
571out:
572 return ret_val;
573}
574
575/**
576 * e1000_update_nvm_checksum - Update EEPROM checksum
577 * @hw: pointer to the HW structure
578 *
579 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
580 * up to the checksum. Then calculates the EEPROM checksum and writes the
581 * value to the EEPROM.
582 **/
583s32 igb_update_nvm_checksum(struct e1000_hw *hw)
584{
585 s32 ret_val;
586 u16 checksum = 0;
587 u16 i, nvm_data;
588
589 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
590 ret_val = hw->nvm.ops.read_nvm(hw, i, 1, &nvm_data);
591 if (ret_val) {
592 hw_dbg(hw, "NVM Read Error while updating checksum.\n");
593 goto out;
594 }
595 checksum += nvm_data;
596 }
597 checksum = (u16) NVM_SUM - checksum;
598 ret_val = hw->nvm.ops.write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
599 if (ret_val)
600 hw_dbg(hw, "NVM Write Error while updating checksum.\n");
601
602out:
603 return ret_val;
604}
605