diff options
author | Jeff Kirsher <jeffrey.t.kirsher@intel.com> | 2011-04-07 10:42:33 -0400 |
---|---|---|
committer | Jeff Kirsher <jeffrey.t.kirsher@intel.com> | 2011-08-10 23:03:27 -0400 |
commit | dee1ad47f2ee75f5146d83ca757c1b7861c34c3b (patch) | |
tree | 47cbdefe3d0f9b729724e378ad6a96eaddfd5fbc /drivers/net/ethernet/intel/e1000e/netdev.c | |
parent | f7917c009c28c941ba151ee66f04dc7f6a2e1e0b (diff) |
intel: Move the Intel wired LAN drivers
Moves the Intel wired LAN drivers into drivers/net/ethernet/intel/ and
the necessary Kconfig and Makefile changes.
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Diffstat (limited to 'drivers/net/ethernet/intel/e1000e/netdev.c')
-rw-r--r-- | drivers/net/ethernet/intel/e1000e/netdev.c | 6312 |
1 files changed, 6312 insertions, 0 deletions
diff --git a/drivers/net/ethernet/intel/e1000e/netdev.c b/drivers/net/ethernet/intel/e1000e/netdev.c new file mode 100644 index 000000000000..ab4be80f7ab5 --- /dev/null +++ b/drivers/net/ethernet/intel/e1000e/netdev.c | |||
@@ -0,0 +1,6312 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel PRO/1000 Linux driver | ||
4 | Copyright(c) 1999 - 2011 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | Linux NICS <linux.nics@intel.com> | ||
24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
26 | |||
27 | *******************************************************************************/ | ||
28 | |||
29 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | ||
30 | |||
31 | #include <linux/module.h> | ||
32 | #include <linux/types.h> | ||
33 | #include <linux/init.h> | ||
34 | #include <linux/pci.h> | ||
35 | #include <linux/vmalloc.h> | ||
36 | #include <linux/pagemap.h> | ||
37 | #include <linux/delay.h> | ||
38 | #include <linux/netdevice.h> | ||
39 | #include <linux/interrupt.h> | ||
40 | #include <linux/tcp.h> | ||
41 | #include <linux/ipv6.h> | ||
42 | #include <linux/slab.h> | ||
43 | #include <net/checksum.h> | ||
44 | #include <net/ip6_checksum.h> | ||
45 | #include <linux/mii.h> | ||
46 | #include <linux/ethtool.h> | ||
47 | #include <linux/if_vlan.h> | ||
48 | #include <linux/cpu.h> | ||
49 | #include <linux/smp.h> | ||
50 | #include <linux/pm_qos_params.h> | ||
51 | #include <linux/pm_runtime.h> | ||
52 | #include <linux/aer.h> | ||
53 | #include <linux/prefetch.h> | ||
54 | |||
55 | #include "e1000.h" | ||
56 | |||
57 | #define DRV_EXTRAVERSION "-k" | ||
58 | |||
59 | #define DRV_VERSION "1.3.16" DRV_EXTRAVERSION | ||
60 | char e1000e_driver_name[] = "e1000e"; | ||
61 | const char e1000e_driver_version[] = DRV_VERSION; | ||
62 | |||
63 | static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state); | ||
64 | |||
65 | static const struct e1000_info *e1000_info_tbl[] = { | ||
66 | [board_82571] = &e1000_82571_info, | ||
67 | [board_82572] = &e1000_82572_info, | ||
68 | [board_82573] = &e1000_82573_info, | ||
69 | [board_82574] = &e1000_82574_info, | ||
70 | [board_82583] = &e1000_82583_info, | ||
71 | [board_80003es2lan] = &e1000_es2_info, | ||
72 | [board_ich8lan] = &e1000_ich8_info, | ||
73 | [board_ich9lan] = &e1000_ich9_info, | ||
74 | [board_ich10lan] = &e1000_ich10_info, | ||
75 | [board_pchlan] = &e1000_pch_info, | ||
76 | [board_pch2lan] = &e1000_pch2_info, | ||
77 | }; | ||
78 | |||
79 | struct e1000_reg_info { | ||
80 | u32 ofs; | ||
81 | char *name; | ||
82 | }; | ||
83 | |||
84 | #define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */ | ||
85 | #define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */ | ||
86 | #define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */ | ||
87 | #define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */ | ||
88 | #define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */ | ||
89 | |||
90 | #define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */ | ||
91 | #define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */ | ||
92 | #define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */ | ||
93 | #define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */ | ||
94 | #define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */ | ||
95 | |||
96 | static const struct e1000_reg_info e1000_reg_info_tbl[] = { | ||
97 | |||
98 | /* General Registers */ | ||
99 | {E1000_CTRL, "CTRL"}, | ||
100 | {E1000_STATUS, "STATUS"}, | ||
101 | {E1000_CTRL_EXT, "CTRL_EXT"}, | ||
102 | |||
103 | /* Interrupt Registers */ | ||
104 | {E1000_ICR, "ICR"}, | ||
105 | |||
106 | /* Rx Registers */ | ||
107 | {E1000_RCTL, "RCTL"}, | ||
108 | {E1000_RDLEN, "RDLEN"}, | ||
109 | {E1000_RDH, "RDH"}, | ||
110 | {E1000_RDT, "RDT"}, | ||
111 | {E1000_RDTR, "RDTR"}, | ||
112 | {E1000_RXDCTL(0), "RXDCTL"}, | ||
113 | {E1000_ERT, "ERT"}, | ||
114 | {E1000_RDBAL, "RDBAL"}, | ||
115 | {E1000_RDBAH, "RDBAH"}, | ||
116 | {E1000_RDFH, "RDFH"}, | ||
117 | {E1000_RDFT, "RDFT"}, | ||
118 | {E1000_RDFHS, "RDFHS"}, | ||
119 | {E1000_RDFTS, "RDFTS"}, | ||
120 | {E1000_RDFPC, "RDFPC"}, | ||
121 | |||
122 | /* Tx Registers */ | ||
123 | {E1000_TCTL, "TCTL"}, | ||
124 | {E1000_TDBAL, "TDBAL"}, | ||
125 | {E1000_TDBAH, "TDBAH"}, | ||
126 | {E1000_TDLEN, "TDLEN"}, | ||
127 | {E1000_TDH, "TDH"}, | ||
128 | {E1000_TDT, "TDT"}, | ||
129 | {E1000_TIDV, "TIDV"}, | ||
130 | {E1000_TXDCTL(0), "TXDCTL"}, | ||
131 | {E1000_TADV, "TADV"}, | ||
132 | {E1000_TARC(0), "TARC"}, | ||
133 | {E1000_TDFH, "TDFH"}, | ||
134 | {E1000_TDFT, "TDFT"}, | ||
135 | {E1000_TDFHS, "TDFHS"}, | ||
136 | {E1000_TDFTS, "TDFTS"}, | ||
137 | {E1000_TDFPC, "TDFPC"}, | ||
138 | |||
139 | /* List Terminator */ | ||
140 | {} | ||
141 | }; | ||
142 | |||
143 | /* | ||
144 | * e1000_regdump - register printout routine | ||
145 | */ | ||
146 | static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo) | ||
147 | { | ||
148 | int n = 0; | ||
149 | char rname[16]; | ||
150 | u32 regs[8]; | ||
151 | |||
152 | switch (reginfo->ofs) { | ||
153 | case E1000_RXDCTL(0): | ||
154 | for (n = 0; n < 2; n++) | ||
155 | regs[n] = __er32(hw, E1000_RXDCTL(n)); | ||
156 | break; | ||
157 | case E1000_TXDCTL(0): | ||
158 | for (n = 0; n < 2; n++) | ||
159 | regs[n] = __er32(hw, E1000_TXDCTL(n)); | ||
160 | break; | ||
161 | case E1000_TARC(0): | ||
162 | for (n = 0; n < 2; n++) | ||
163 | regs[n] = __er32(hw, E1000_TARC(n)); | ||
164 | break; | ||
165 | default: | ||
166 | printk(KERN_INFO "%-15s %08x\n", | ||
167 | reginfo->name, __er32(hw, reginfo->ofs)); | ||
168 | return; | ||
169 | } | ||
170 | |||
171 | snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]"); | ||
172 | printk(KERN_INFO "%-15s ", rname); | ||
173 | for (n = 0; n < 2; n++) | ||
174 | printk(KERN_CONT "%08x ", regs[n]); | ||
175 | printk(KERN_CONT "\n"); | ||
176 | } | ||
177 | |||
178 | /* | ||
179 | * e1000e_dump - Print registers, Tx-ring and Rx-ring | ||
180 | */ | ||
181 | static void e1000e_dump(struct e1000_adapter *adapter) | ||
182 | { | ||
183 | struct net_device *netdev = adapter->netdev; | ||
184 | struct e1000_hw *hw = &adapter->hw; | ||
185 | struct e1000_reg_info *reginfo; | ||
186 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
187 | struct e1000_tx_desc *tx_desc; | ||
188 | struct my_u0 { | ||
189 | u64 a; | ||
190 | u64 b; | ||
191 | } *u0; | ||
192 | struct e1000_buffer *buffer_info; | ||
193 | struct e1000_ring *rx_ring = adapter->rx_ring; | ||
194 | union e1000_rx_desc_packet_split *rx_desc_ps; | ||
195 | struct e1000_rx_desc *rx_desc; | ||
196 | struct my_u1 { | ||
197 | u64 a; | ||
198 | u64 b; | ||
199 | u64 c; | ||
200 | u64 d; | ||
201 | } *u1; | ||
202 | u32 staterr; | ||
203 | int i = 0; | ||
204 | |||
205 | if (!netif_msg_hw(adapter)) | ||
206 | return; | ||
207 | |||
208 | /* Print netdevice Info */ | ||
209 | if (netdev) { | ||
210 | dev_info(&adapter->pdev->dev, "Net device Info\n"); | ||
211 | printk(KERN_INFO "Device Name state " | ||
212 | "trans_start last_rx\n"); | ||
213 | printk(KERN_INFO "%-15s %016lX %016lX %016lX\n", | ||
214 | netdev->name, netdev->state, netdev->trans_start, | ||
215 | netdev->last_rx); | ||
216 | } | ||
217 | |||
218 | /* Print Registers */ | ||
219 | dev_info(&adapter->pdev->dev, "Register Dump\n"); | ||
220 | printk(KERN_INFO " Register Name Value\n"); | ||
221 | for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl; | ||
222 | reginfo->name; reginfo++) { | ||
223 | e1000_regdump(hw, reginfo); | ||
224 | } | ||
225 | |||
226 | /* Print Tx Ring Summary */ | ||
227 | if (!netdev || !netif_running(netdev)) | ||
228 | goto exit; | ||
229 | |||
230 | dev_info(&adapter->pdev->dev, "Tx Ring Summary\n"); | ||
231 | printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]" | ||
232 | " leng ntw timestamp\n"); | ||
233 | buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean]; | ||
234 | printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n", | ||
235 | 0, tx_ring->next_to_use, tx_ring->next_to_clean, | ||
236 | (unsigned long long)buffer_info->dma, | ||
237 | buffer_info->length, | ||
238 | buffer_info->next_to_watch, | ||
239 | (unsigned long long)buffer_info->time_stamp); | ||
240 | |||
241 | /* Print Tx Ring */ | ||
242 | if (!netif_msg_tx_done(adapter)) | ||
243 | goto rx_ring_summary; | ||
244 | |||
245 | dev_info(&adapter->pdev->dev, "Tx Ring Dump\n"); | ||
246 | |||
247 | /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) | ||
248 | * | ||
249 | * Legacy Transmit Descriptor | ||
250 | * +--------------------------------------------------------------+ | ||
251 | * 0 | Buffer Address [63:0] (Reserved on Write Back) | | ||
252 | * +--------------------------------------------------------------+ | ||
253 | * 8 | Special | CSS | Status | CMD | CSO | Length | | ||
254 | * +--------------------------------------------------------------+ | ||
255 | * 63 48 47 36 35 32 31 24 23 16 15 0 | ||
256 | * | ||
257 | * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload | ||
258 | * 63 48 47 40 39 32 31 16 15 8 7 0 | ||
259 | * +----------------------------------------------------------------+ | ||
260 | * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS | | ||
261 | * +----------------------------------------------------------------+ | ||
262 | * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN | | ||
263 | * +----------------------------------------------------------------+ | ||
264 | * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 | ||
265 | * | ||
266 | * Extended Data Descriptor (DTYP=0x1) | ||
267 | * +----------------------------------------------------------------+ | ||
268 | * 0 | Buffer Address [63:0] | | ||
269 | * +----------------------------------------------------------------+ | ||
270 | * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN | | ||
271 | * +----------------------------------------------------------------+ | ||
272 | * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 | ||
273 | */ | ||
274 | printk(KERN_INFO "Tl[desc] [address 63:0 ] [SpeCssSCmCsLen]" | ||
275 | " [bi->dma ] leng ntw timestamp bi->skb " | ||
276 | "<-- Legacy format\n"); | ||
277 | printk(KERN_INFO "Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen]" | ||
278 | " [bi->dma ] leng ntw timestamp bi->skb " | ||
279 | "<-- Ext Context format\n"); | ||
280 | printk(KERN_INFO "Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen]" | ||
281 | " [bi->dma ] leng ntw timestamp bi->skb " | ||
282 | "<-- Ext Data format\n"); | ||
283 | for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { | ||
284 | tx_desc = E1000_TX_DESC(*tx_ring, i); | ||
285 | buffer_info = &tx_ring->buffer_info[i]; | ||
286 | u0 = (struct my_u0 *)tx_desc; | ||
287 | printk(KERN_INFO "T%c[0x%03X] %016llX %016llX %016llX " | ||
288 | "%04X %3X %016llX %p", | ||
289 | (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' : | ||
290 | ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')), i, | ||
291 | (unsigned long long)le64_to_cpu(u0->a), | ||
292 | (unsigned long long)le64_to_cpu(u0->b), | ||
293 | (unsigned long long)buffer_info->dma, | ||
294 | buffer_info->length, buffer_info->next_to_watch, | ||
295 | (unsigned long long)buffer_info->time_stamp, | ||
296 | buffer_info->skb); | ||
297 | if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) | ||
298 | printk(KERN_CONT " NTC/U\n"); | ||
299 | else if (i == tx_ring->next_to_use) | ||
300 | printk(KERN_CONT " NTU\n"); | ||
301 | else if (i == tx_ring->next_to_clean) | ||
302 | printk(KERN_CONT " NTC\n"); | ||
303 | else | ||
304 | printk(KERN_CONT "\n"); | ||
305 | |||
306 | if (netif_msg_pktdata(adapter) && buffer_info->dma != 0) | ||
307 | print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, | ||
308 | 16, 1, phys_to_virt(buffer_info->dma), | ||
309 | buffer_info->length, true); | ||
310 | } | ||
311 | |||
312 | /* Print Rx Ring Summary */ | ||
313 | rx_ring_summary: | ||
314 | dev_info(&adapter->pdev->dev, "Rx Ring Summary\n"); | ||
315 | printk(KERN_INFO "Queue [NTU] [NTC]\n"); | ||
316 | printk(KERN_INFO " %5d %5X %5X\n", 0, | ||
317 | rx_ring->next_to_use, rx_ring->next_to_clean); | ||
318 | |||
319 | /* Print Rx Ring */ | ||
320 | if (!netif_msg_rx_status(adapter)) | ||
321 | goto exit; | ||
322 | |||
323 | dev_info(&adapter->pdev->dev, "Rx Ring Dump\n"); | ||
324 | switch (adapter->rx_ps_pages) { | ||
325 | case 1: | ||
326 | case 2: | ||
327 | case 3: | ||
328 | /* [Extended] Packet Split Receive Descriptor Format | ||
329 | * | ||
330 | * +-----------------------------------------------------+ | ||
331 | * 0 | Buffer Address 0 [63:0] | | ||
332 | * +-----------------------------------------------------+ | ||
333 | * 8 | Buffer Address 1 [63:0] | | ||
334 | * +-----------------------------------------------------+ | ||
335 | * 16 | Buffer Address 2 [63:0] | | ||
336 | * +-----------------------------------------------------+ | ||
337 | * 24 | Buffer Address 3 [63:0] | | ||
338 | * +-----------------------------------------------------+ | ||
339 | */ | ||
340 | printk(KERN_INFO "R [desc] [buffer 0 63:0 ] " | ||
341 | "[buffer 1 63:0 ] " | ||
342 | "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] " | ||
343 | "[bi->skb] <-- Ext Pkt Split format\n"); | ||
344 | /* [Extended] Receive Descriptor (Write-Back) Format | ||
345 | * | ||
346 | * 63 48 47 32 31 13 12 8 7 4 3 0 | ||
347 | * +------------------------------------------------------+ | ||
348 | * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS | | ||
349 | * | Checksum | Ident | | Queue | | Type | | ||
350 | * +------------------------------------------------------+ | ||
351 | * 8 | VLAN Tag | Length | Extended Error | Extended Status | | ||
352 | * +------------------------------------------------------+ | ||
353 | * 63 48 47 32 31 20 19 0 | ||
354 | */ | ||
355 | printk(KERN_INFO "RWB[desc] [ck ipid mrqhsh] " | ||
356 | "[vl l0 ee es] " | ||
357 | "[ l3 l2 l1 hs] [reserved ] ---------------- " | ||
358 | "[bi->skb] <-- Ext Rx Write-Back format\n"); | ||
359 | for (i = 0; i < rx_ring->count; i++) { | ||
360 | buffer_info = &rx_ring->buffer_info[i]; | ||
361 | rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i); | ||
362 | u1 = (struct my_u1 *)rx_desc_ps; | ||
363 | staterr = | ||
364 | le32_to_cpu(rx_desc_ps->wb.middle.status_error); | ||
365 | if (staterr & E1000_RXD_STAT_DD) { | ||
366 | /* Descriptor Done */ | ||
367 | printk(KERN_INFO "RWB[0x%03X] %016llX " | ||
368 | "%016llX %016llX %016llX " | ||
369 | "---------------- %p", i, | ||
370 | (unsigned long long)le64_to_cpu(u1->a), | ||
371 | (unsigned long long)le64_to_cpu(u1->b), | ||
372 | (unsigned long long)le64_to_cpu(u1->c), | ||
373 | (unsigned long long)le64_to_cpu(u1->d), | ||
374 | buffer_info->skb); | ||
375 | } else { | ||
376 | printk(KERN_INFO "R [0x%03X] %016llX " | ||
377 | "%016llX %016llX %016llX %016llX %p", i, | ||
378 | (unsigned long long)le64_to_cpu(u1->a), | ||
379 | (unsigned long long)le64_to_cpu(u1->b), | ||
380 | (unsigned long long)le64_to_cpu(u1->c), | ||
381 | (unsigned long long)le64_to_cpu(u1->d), | ||
382 | (unsigned long long)buffer_info->dma, | ||
383 | buffer_info->skb); | ||
384 | |||
385 | if (netif_msg_pktdata(adapter)) | ||
386 | print_hex_dump(KERN_INFO, "", | ||
387 | DUMP_PREFIX_ADDRESS, 16, 1, | ||
388 | phys_to_virt(buffer_info->dma), | ||
389 | adapter->rx_ps_bsize0, true); | ||
390 | } | ||
391 | |||
392 | if (i == rx_ring->next_to_use) | ||
393 | printk(KERN_CONT " NTU\n"); | ||
394 | else if (i == rx_ring->next_to_clean) | ||
395 | printk(KERN_CONT " NTC\n"); | ||
396 | else | ||
397 | printk(KERN_CONT "\n"); | ||
398 | } | ||
399 | break; | ||
400 | default: | ||
401 | case 0: | ||
402 | /* Legacy Receive Descriptor Format | ||
403 | * | ||
404 | * +-----------------------------------------------------+ | ||
405 | * | Buffer Address [63:0] | | ||
406 | * +-----------------------------------------------------+ | ||
407 | * | VLAN Tag | Errors | Status 0 | Packet csum | Length | | ||
408 | * +-----------------------------------------------------+ | ||
409 | * 63 48 47 40 39 32 31 16 15 0 | ||
410 | */ | ||
411 | printk(KERN_INFO "Rl[desc] [address 63:0 ] " | ||
412 | "[vl er S cks ln] [bi->dma ] [bi->skb] " | ||
413 | "<-- Legacy format\n"); | ||
414 | for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) { | ||
415 | rx_desc = E1000_RX_DESC(*rx_ring, i); | ||
416 | buffer_info = &rx_ring->buffer_info[i]; | ||
417 | u0 = (struct my_u0 *)rx_desc; | ||
418 | printk(KERN_INFO "Rl[0x%03X] %016llX %016llX " | ||
419 | "%016llX %p", i, | ||
420 | (unsigned long long)le64_to_cpu(u0->a), | ||
421 | (unsigned long long)le64_to_cpu(u0->b), | ||
422 | (unsigned long long)buffer_info->dma, | ||
423 | buffer_info->skb); | ||
424 | if (i == rx_ring->next_to_use) | ||
425 | printk(KERN_CONT " NTU\n"); | ||
426 | else if (i == rx_ring->next_to_clean) | ||
427 | printk(KERN_CONT " NTC\n"); | ||
428 | else | ||
429 | printk(KERN_CONT "\n"); | ||
430 | |||
431 | if (netif_msg_pktdata(adapter)) | ||
432 | print_hex_dump(KERN_INFO, "", | ||
433 | DUMP_PREFIX_ADDRESS, | ||
434 | 16, 1, | ||
435 | phys_to_virt(buffer_info->dma), | ||
436 | adapter->rx_buffer_len, true); | ||
437 | } | ||
438 | } | ||
439 | |||
440 | exit: | ||
441 | return; | ||
442 | } | ||
443 | |||
444 | /** | ||
445 | * e1000_desc_unused - calculate if we have unused descriptors | ||
446 | **/ | ||
447 | static int e1000_desc_unused(struct e1000_ring *ring) | ||
448 | { | ||
449 | if (ring->next_to_clean > ring->next_to_use) | ||
450 | return ring->next_to_clean - ring->next_to_use - 1; | ||
451 | |||
452 | return ring->count + ring->next_to_clean - ring->next_to_use - 1; | ||
453 | } | ||
454 | |||
455 | /** | ||
456 | * e1000_receive_skb - helper function to handle Rx indications | ||
457 | * @adapter: board private structure | ||
458 | * @status: descriptor status field as written by hardware | ||
459 | * @vlan: descriptor vlan field as written by hardware (no le/be conversion) | ||
460 | * @skb: pointer to sk_buff to be indicated to stack | ||
461 | **/ | ||
462 | static void e1000_receive_skb(struct e1000_adapter *adapter, | ||
463 | struct net_device *netdev, struct sk_buff *skb, | ||
464 | u8 status, __le16 vlan) | ||
465 | { | ||
466 | u16 tag = le16_to_cpu(vlan); | ||
467 | skb->protocol = eth_type_trans(skb, netdev); | ||
468 | |||
469 | if (status & E1000_RXD_STAT_VP) | ||
470 | __vlan_hwaccel_put_tag(skb, tag); | ||
471 | |||
472 | napi_gro_receive(&adapter->napi, skb); | ||
473 | } | ||
474 | |||
475 | /** | ||
476 | * e1000_rx_checksum - Receive Checksum Offload | ||
477 | * @adapter: board private structure | ||
478 | * @status_err: receive descriptor status and error fields | ||
479 | * @csum: receive descriptor csum field | ||
480 | * @sk_buff: socket buffer with received data | ||
481 | **/ | ||
482 | static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, | ||
483 | u32 csum, struct sk_buff *skb) | ||
484 | { | ||
485 | u16 status = (u16)status_err; | ||
486 | u8 errors = (u8)(status_err >> 24); | ||
487 | |||
488 | skb_checksum_none_assert(skb); | ||
489 | |||
490 | /* Ignore Checksum bit is set */ | ||
491 | if (status & E1000_RXD_STAT_IXSM) | ||
492 | return; | ||
493 | /* TCP/UDP checksum error bit is set */ | ||
494 | if (errors & E1000_RXD_ERR_TCPE) { | ||
495 | /* let the stack verify checksum errors */ | ||
496 | adapter->hw_csum_err++; | ||
497 | return; | ||
498 | } | ||
499 | |||
500 | /* TCP/UDP Checksum has not been calculated */ | ||
501 | if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) | ||
502 | return; | ||
503 | |||
504 | /* It must be a TCP or UDP packet with a valid checksum */ | ||
505 | if (status & E1000_RXD_STAT_TCPCS) { | ||
506 | /* TCP checksum is good */ | ||
507 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
508 | } else { | ||
509 | /* | ||
510 | * IP fragment with UDP payload | ||
511 | * Hardware complements the payload checksum, so we undo it | ||
512 | * and then put the value in host order for further stack use. | ||
513 | */ | ||
514 | __sum16 sum = (__force __sum16)htons(csum); | ||
515 | skb->csum = csum_unfold(~sum); | ||
516 | skb->ip_summed = CHECKSUM_COMPLETE; | ||
517 | } | ||
518 | adapter->hw_csum_good++; | ||
519 | } | ||
520 | |||
521 | /** | ||
522 | * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended | ||
523 | * @adapter: address of board private structure | ||
524 | **/ | ||
525 | static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, | ||
526 | int cleaned_count, gfp_t gfp) | ||
527 | { | ||
528 | struct net_device *netdev = adapter->netdev; | ||
529 | struct pci_dev *pdev = adapter->pdev; | ||
530 | struct e1000_ring *rx_ring = adapter->rx_ring; | ||
531 | struct e1000_rx_desc *rx_desc; | ||
532 | struct e1000_buffer *buffer_info; | ||
533 | struct sk_buff *skb; | ||
534 | unsigned int i; | ||
535 | unsigned int bufsz = adapter->rx_buffer_len; | ||
536 | |||
537 | i = rx_ring->next_to_use; | ||
538 | buffer_info = &rx_ring->buffer_info[i]; | ||
539 | |||
540 | while (cleaned_count--) { | ||
541 | skb = buffer_info->skb; | ||
542 | if (skb) { | ||
543 | skb_trim(skb, 0); | ||
544 | goto map_skb; | ||
545 | } | ||
546 | |||
547 | skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp); | ||
548 | if (!skb) { | ||
549 | /* Better luck next round */ | ||
550 | adapter->alloc_rx_buff_failed++; | ||
551 | break; | ||
552 | } | ||
553 | |||
554 | buffer_info->skb = skb; | ||
555 | map_skb: | ||
556 | buffer_info->dma = dma_map_single(&pdev->dev, skb->data, | ||
557 | adapter->rx_buffer_len, | ||
558 | DMA_FROM_DEVICE); | ||
559 | if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { | ||
560 | dev_err(&pdev->dev, "Rx DMA map failed\n"); | ||
561 | adapter->rx_dma_failed++; | ||
562 | break; | ||
563 | } | ||
564 | |||
565 | rx_desc = E1000_RX_DESC(*rx_ring, i); | ||
566 | rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | ||
567 | |||
568 | if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) { | ||
569 | /* | ||
570 | * Force memory writes to complete before letting h/w | ||
571 | * know there are new descriptors to fetch. (Only | ||
572 | * applicable for weak-ordered memory model archs, | ||
573 | * such as IA-64). | ||
574 | */ | ||
575 | wmb(); | ||
576 | writel(i, adapter->hw.hw_addr + rx_ring->tail); | ||
577 | } | ||
578 | i++; | ||
579 | if (i == rx_ring->count) | ||
580 | i = 0; | ||
581 | buffer_info = &rx_ring->buffer_info[i]; | ||
582 | } | ||
583 | |||
584 | rx_ring->next_to_use = i; | ||
585 | } | ||
586 | |||
587 | /** | ||
588 | * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split | ||
589 | * @adapter: address of board private structure | ||
590 | **/ | ||
591 | static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, | ||
592 | int cleaned_count, gfp_t gfp) | ||
593 | { | ||
594 | struct net_device *netdev = adapter->netdev; | ||
595 | struct pci_dev *pdev = adapter->pdev; | ||
596 | union e1000_rx_desc_packet_split *rx_desc; | ||
597 | struct e1000_ring *rx_ring = adapter->rx_ring; | ||
598 | struct e1000_buffer *buffer_info; | ||
599 | struct e1000_ps_page *ps_page; | ||
600 | struct sk_buff *skb; | ||
601 | unsigned int i, j; | ||
602 | |||
603 | i = rx_ring->next_to_use; | ||
604 | buffer_info = &rx_ring->buffer_info[i]; | ||
605 | |||
606 | while (cleaned_count--) { | ||
607 | rx_desc = E1000_RX_DESC_PS(*rx_ring, i); | ||
608 | |||
609 | for (j = 0; j < PS_PAGE_BUFFERS; j++) { | ||
610 | ps_page = &buffer_info->ps_pages[j]; | ||
611 | if (j >= adapter->rx_ps_pages) { | ||
612 | /* all unused desc entries get hw null ptr */ | ||
613 | rx_desc->read.buffer_addr[j + 1] = | ||
614 | ~cpu_to_le64(0); | ||
615 | continue; | ||
616 | } | ||
617 | if (!ps_page->page) { | ||
618 | ps_page->page = alloc_page(gfp); | ||
619 | if (!ps_page->page) { | ||
620 | adapter->alloc_rx_buff_failed++; | ||
621 | goto no_buffers; | ||
622 | } | ||
623 | ps_page->dma = dma_map_page(&pdev->dev, | ||
624 | ps_page->page, | ||
625 | 0, PAGE_SIZE, | ||
626 | DMA_FROM_DEVICE); | ||
627 | if (dma_mapping_error(&pdev->dev, | ||
628 | ps_page->dma)) { | ||
629 | dev_err(&adapter->pdev->dev, | ||
630 | "Rx DMA page map failed\n"); | ||
631 | adapter->rx_dma_failed++; | ||
632 | goto no_buffers; | ||
633 | } | ||
634 | } | ||
635 | /* | ||
636 | * Refresh the desc even if buffer_addrs | ||
637 | * didn't change because each write-back | ||
638 | * erases this info. | ||
639 | */ | ||
640 | rx_desc->read.buffer_addr[j + 1] = | ||
641 | cpu_to_le64(ps_page->dma); | ||
642 | } | ||
643 | |||
644 | skb = __netdev_alloc_skb_ip_align(netdev, | ||
645 | adapter->rx_ps_bsize0, | ||
646 | gfp); | ||
647 | |||
648 | if (!skb) { | ||
649 | adapter->alloc_rx_buff_failed++; | ||
650 | break; | ||
651 | } | ||
652 | |||
653 | buffer_info->skb = skb; | ||
654 | buffer_info->dma = dma_map_single(&pdev->dev, skb->data, | ||
655 | adapter->rx_ps_bsize0, | ||
656 | DMA_FROM_DEVICE); | ||
657 | if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { | ||
658 | dev_err(&pdev->dev, "Rx DMA map failed\n"); | ||
659 | adapter->rx_dma_failed++; | ||
660 | /* cleanup skb */ | ||
661 | dev_kfree_skb_any(skb); | ||
662 | buffer_info->skb = NULL; | ||
663 | break; | ||
664 | } | ||
665 | |||
666 | rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); | ||
667 | |||
668 | if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) { | ||
669 | /* | ||
670 | * Force memory writes to complete before letting h/w | ||
671 | * know there are new descriptors to fetch. (Only | ||
672 | * applicable for weak-ordered memory model archs, | ||
673 | * such as IA-64). | ||
674 | */ | ||
675 | wmb(); | ||
676 | writel(i << 1, adapter->hw.hw_addr + rx_ring->tail); | ||
677 | } | ||
678 | |||
679 | i++; | ||
680 | if (i == rx_ring->count) | ||
681 | i = 0; | ||
682 | buffer_info = &rx_ring->buffer_info[i]; | ||
683 | } | ||
684 | |||
685 | no_buffers: | ||
686 | rx_ring->next_to_use = i; | ||
687 | } | ||
688 | |||
689 | /** | ||
690 | * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers | ||
691 | * @adapter: address of board private structure | ||
692 | * @cleaned_count: number of buffers to allocate this pass | ||
693 | **/ | ||
694 | |||
695 | static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, | ||
696 | int cleaned_count, gfp_t gfp) | ||
697 | { | ||
698 | struct net_device *netdev = adapter->netdev; | ||
699 | struct pci_dev *pdev = adapter->pdev; | ||
700 | struct e1000_rx_desc *rx_desc; | ||
701 | struct e1000_ring *rx_ring = adapter->rx_ring; | ||
702 | struct e1000_buffer *buffer_info; | ||
703 | struct sk_buff *skb; | ||
704 | unsigned int i; | ||
705 | unsigned int bufsz = 256 - 16 /* for skb_reserve */; | ||
706 | |||
707 | i = rx_ring->next_to_use; | ||
708 | buffer_info = &rx_ring->buffer_info[i]; | ||
709 | |||
710 | while (cleaned_count--) { | ||
711 | skb = buffer_info->skb; | ||
712 | if (skb) { | ||
713 | skb_trim(skb, 0); | ||
714 | goto check_page; | ||
715 | } | ||
716 | |||
717 | skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp); | ||
718 | if (unlikely(!skb)) { | ||
719 | /* Better luck next round */ | ||
720 | adapter->alloc_rx_buff_failed++; | ||
721 | break; | ||
722 | } | ||
723 | |||
724 | buffer_info->skb = skb; | ||
725 | check_page: | ||
726 | /* allocate a new page if necessary */ | ||
727 | if (!buffer_info->page) { | ||
728 | buffer_info->page = alloc_page(gfp); | ||
729 | if (unlikely(!buffer_info->page)) { | ||
730 | adapter->alloc_rx_buff_failed++; | ||
731 | break; | ||
732 | } | ||
733 | } | ||
734 | |||
735 | if (!buffer_info->dma) | ||
736 | buffer_info->dma = dma_map_page(&pdev->dev, | ||
737 | buffer_info->page, 0, | ||
738 | PAGE_SIZE, | ||
739 | DMA_FROM_DEVICE); | ||
740 | |||
741 | rx_desc = E1000_RX_DESC(*rx_ring, i); | ||
742 | rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | ||
743 | |||
744 | if (unlikely(++i == rx_ring->count)) | ||
745 | i = 0; | ||
746 | buffer_info = &rx_ring->buffer_info[i]; | ||
747 | } | ||
748 | |||
749 | if (likely(rx_ring->next_to_use != i)) { | ||
750 | rx_ring->next_to_use = i; | ||
751 | if (unlikely(i-- == 0)) | ||
752 | i = (rx_ring->count - 1); | ||
753 | |||
754 | /* Force memory writes to complete before letting h/w | ||
755 | * know there are new descriptors to fetch. (Only | ||
756 | * applicable for weak-ordered memory model archs, | ||
757 | * such as IA-64). */ | ||
758 | wmb(); | ||
759 | writel(i, adapter->hw.hw_addr + rx_ring->tail); | ||
760 | } | ||
761 | } | ||
762 | |||
763 | /** | ||
764 | * e1000_clean_rx_irq - Send received data up the network stack; legacy | ||
765 | * @adapter: board private structure | ||
766 | * | ||
767 | * the return value indicates whether actual cleaning was done, there | ||
768 | * is no guarantee that everything was cleaned | ||
769 | **/ | ||
770 | static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, | ||
771 | int *work_done, int work_to_do) | ||
772 | { | ||
773 | struct net_device *netdev = adapter->netdev; | ||
774 | struct pci_dev *pdev = adapter->pdev; | ||
775 | struct e1000_hw *hw = &adapter->hw; | ||
776 | struct e1000_ring *rx_ring = adapter->rx_ring; | ||
777 | struct e1000_rx_desc *rx_desc, *next_rxd; | ||
778 | struct e1000_buffer *buffer_info, *next_buffer; | ||
779 | u32 length; | ||
780 | unsigned int i; | ||
781 | int cleaned_count = 0; | ||
782 | bool cleaned = 0; | ||
783 | unsigned int total_rx_bytes = 0, total_rx_packets = 0; | ||
784 | |||
785 | i = rx_ring->next_to_clean; | ||
786 | rx_desc = E1000_RX_DESC(*rx_ring, i); | ||
787 | buffer_info = &rx_ring->buffer_info[i]; | ||
788 | |||
789 | while (rx_desc->status & E1000_RXD_STAT_DD) { | ||
790 | struct sk_buff *skb; | ||
791 | u8 status; | ||
792 | |||
793 | if (*work_done >= work_to_do) | ||
794 | break; | ||
795 | (*work_done)++; | ||
796 | rmb(); /* read descriptor and rx_buffer_info after status DD */ | ||
797 | |||
798 | status = rx_desc->status; | ||
799 | skb = buffer_info->skb; | ||
800 | buffer_info->skb = NULL; | ||
801 | |||
802 | prefetch(skb->data - NET_IP_ALIGN); | ||
803 | |||
804 | i++; | ||
805 | if (i == rx_ring->count) | ||
806 | i = 0; | ||
807 | next_rxd = E1000_RX_DESC(*rx_ring, i); | ||
808 | prefetch(next_rxd); | ||
809 | |||
810 | next_buffer = &rx_ring->buffer_info[i]; | ||
811 | |||
812 | cleaned = 1; | ||
813 | cleaned_count++; | ||
814 | dma_unmap_single(&pdev->dev, | ||
815 | buffer_info->dma, | ||
816 | adapter->rx_buffer_len, | ||
817 | DMA_FROM_DEVICE); | ||
818 | buffer_info->dma = 0; | ||
819 | |||
820 | length = le16_to_cpu(rx_desc->length); | ||
821 | |||
822 | /* | ||
823 | * !EOP means multiple descriptors were used to store a single | ||
824 | * packet, if that's the case we need to toss it. In fact, we | ||
825 | * need to toss every packet with the EOP bit clear and the | ||
826 | * next frame that _does_ have the EOP bit set, as it is by | ||
827 | * definition only a frame fragment | ||
828 | */ | ||
829 | if (unlikely(!(status & E1000_RXD_STAT_EOP))) | ||
830 | adapter->flags2 |= FLAG2_IS_DISCARDING; | ||
831 | |||
832 | if (adapter->flags2 & FLAG2_IS_DISCARDING) { | ||
833 | /* All receives must fit into a single buffer */ | ||
834 | e_dbg("Receive packet consumed multiple buffers\n"); | ||
835 | /* recycle */ | ||
836 | buffer_info->skb = skb; | ||
837 | if (status & E1000_RXD_STAT_EOP) | ||
838 | adapter->flags2 &= ~FLAG2_IS_DISCARDING; | ||
839 | goto next_desc; | ||
840 | } | ||
841 | |||
842 | if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) { | ||
843 | /* recycle */ | ||
844 | buffer_info->skb = skb; | ||
845 | goto next_desc; | ||
846 | } | ||
847 | |||
848 | /* adjust length to remove Ethernet CRC */ | ||
849 | if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) | ||
850 | length -= 4; | ||
851 | |||
852 | total_rx_bytes += length; | ||
853 | total_rx_packets++; | ||
854 | |||
855 | /* | ||
856 | * code added for copybreak, this should improve | ||
857 | * performance for small packets with large amounts | ||
858 | * of reassembly being done in the stack | ||
859 | */ | ||
860 | if (length < copybreak) { | ||
861 | struct sk_buff *new_skb = | ||
862 | netdev_alloc_skb_ip_align(netdev, length); | ||
863 | if (new_skb) { | ||
864 | skb_copy_to_linear_data_offset(new_skb, | ||
865 | -NET_IP_ALIGN, | ||
866 | (skb->data - | ||
867 | NET_IP_ALIGN), | ||
868 | (length + | ||
869 | NET_IP_ALIGN)); | ||
870 | /* save the skb in buffer_info as good */ | ||
871 | buffer_info->skb = skb; | ||
872 | skb = new_skb; | ||
873 | } | ||
874 | /* else just continue with the old one */ | ||
875 | } | ||
876 | /* end copybreak code */ | ||
877 | skb_put(skb, length); | ||
878 | |||
879 | /* Receive Checksum Offload */ | ||
880 | e1000_rx_checksum(adapter, | ||
881 | (u32)(status) | | ||
882 | ((u32)(rx_desc->errors) << 24), | ||
883 | le16_to_cpu(rx_desc->csum), skb); | ||
884 | |||
885 | e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special); | ||
886 | |||
887 | next_desc: | ||
888 | rx_desc->status = 0; | ||
889 | |||
890 | /* return some buffers to hardware, one at a time is too slow */ | ||
891 | if (cleaned_count >= E1000_RX_BUFFER_WRITE) { | ||
892 | adapter->alloc_rx_buf(adapter, cleaned_count, | ||
893 | GFP_ATOMIC); | ||
894 | cleaned_count = 0; | ||
895 | } | ||
896 | |||
897 | /* use prefetched values */ | ||
898 | rx_desc = next_rxd; | ||
899 | buffer_info = next_buffer; | ||
900 | } | ||
901 | rx_ring->next_to_clean = i; | ||
902 | |||
903 | cleaned_count = e1000_desc_unused(rx_ring); | ||
904 | if (cleaned_count) | ||
905 | adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC); | ||
906 | |||
907 | adapter->total_rx_bytes += total_rx_bytes; | ||
908 | adapter->total_rx_packets += total_rx_packets; | ||
909 | return cleaned; | ||
910 | } | ||
911 | |||
912 | static void e1000_put_txbuf(struct e1000_adapter *adapter, | ||
913 | struct e1000_buffer *buffer_info) | ||
914 | { | ||
915 | if (buffer_info->dma) { | ||
916 | if (buffer_info->mapped_as_page) | ||
917 | dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, | ||
918 | buffer_info->length, DMA_TO_DEVICE); | ||
919 | else | ||
920 | dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, | ||
921 | buffer_info->length, DMA_TO_DEVICE); | ||
922 | buffer_info->dma = 0; | ||
923 | } | ||
924 | if (buffer_info->skb) { | ||
925 | dev_kfree_skb_any(buffer_info->skb); | ||
926 | buffer_info->skb = NULL; | ||
927 | } | ||
928 | buffer_info->time_stamp = 0; | ||
929 | } | ||
930 | |||
931 | static void e1000_print_hw_hang(struct work_struct *work) | ||
932 | { | ||
933 | struct e1000_adapter *adapter = container_of(work, | ||
934 | struct e1000_adapter, | ||
935 | print_hang_task); | ||
936 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
937 | unsigned int i = tx_ring->next_to_clean; | ||
938 | unsigned int eop = tx_ring->buffer_info[i].next_to_watch; | ||
939 | struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop); | ||
940 | struct e1000_hw *hw = &adapter->hw; | ||
941 | u16 phy_status, phy_1000t_status, phy_ext_status; | ||
942 | u16 pci_status; | ||
943 | |||
944 | if (test_bit(__E1000_DOWN, &adapter->state)) | ||
945 | return; | ||
946 | |||
947 | e1e_rphy(hw, PHY_STATUS, &phy_status); | ||
948 | e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status); | ||
949 | e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status); | ||
950 | |||
951 | pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status); | ||
952 | |||
953 | /* detected Hardware unit hang */ | ||
954 | e_err("Detected Hardware Unit Hang:\n" | ||
955 | " TDH <%x>\n" | ||
956 | " TDT <%x>\n" | ||
957 | " next_to_use <%x>\n" | ||
958 | " next_to_clean <%x>\n" | ||
959 | "buffer_info[next_to_clean]:\n" | ||
960 | " time_stamp <%lx>\n" | ||
961 | " next_to_watch <%x>\n" | ||
962 | " jiffies <%lx>\n" | ||
963 | " next_to_watch.status <%x>\n" | ||
964 | "MAC Status <%x>\n" | ||
965 | "PHY Status <%x>\n" | ||
966 | "PHY 1000BASE-T Status <%x>\n" | ||
967 | "PHY Extended Status <%x>\n" | ||
968 | "PCI Status <%x>\n", | ||
969 | readl(adapter->hw.hw_addr + tx_ring->head), | ||
970 | readl(adapter->hw.hw_addr + tx_ring->tail), | ||
971 | tx_ring->next_to_use, | ||
972 | tx_ring->next_to_clean, | ||
973 | tx_ring->buffer_info[eop].time_stamp, | ||
974 | eop, | ||
975 | jiffies, | ||
976 | eop_desc->upper.fields.status, | ||
977 | er32(STATUS), | ||
978 | phy_status, | ||
979 | phy_1000t_status, | ||
980 | phy_ext_status, | ||
981 | pci_status); | ||
982 | } | ||
983 | |||
984 | /** | ||
985 | * e1000_clean_tx_irq - Reclaim resources after transmit completes | ||
986 | * @adapter: board private structure | ||
987 | * | ||
988 | * the return value indicates whether actual cleaning was done, there | ||
989 | * is no guarantee that everything was cleaned | ||
990 | **/ | ||
991 | static bool e1000_clean_tx_irq(struct e1000_adapter *adapter) | ||
992 | { | ||
993 | struct net_device *netdev = adapter->netdev; | ||
994 | struct e1000_hw *hw = &adapter->hw; | ||
995 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
996 | struct e1000_tx_desc *tx_desc, *eop_desc; | ||
997 | struct e1000_buffer *buffer_info; | ||
998 | unsigned int i, eop; | ||
999 | unsigned int count = 0; | ||
1000 | unsigned int total_tx_bytes = 0, total_tx_packets = 0; | ||
1001 | |||
1002 | i = tx_ring->next_to_clean; | ||
1003 | eop = tx_ring->buffer_info[i].next_to_watch; | ||
1004 | eop_desc = E1000_TX_DESC(*tx_ring, eop); | ||
1005 | |||
1006 | while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && | ||
1007 | (count < tx_ring->count)) { | ||
1008 | bool cleaned = false; | ||
1009 | rmb(); /* read buffer_info after eop_desc */ | ||
1010 | for (; !cleaned; count++) { | ||
1011 | tx_desc = E1000_TX_DESC(*tx_ring, i); | ||
1012 | buffer_info = &tx_ring->buffer_info[i]; | ||
1013 | cleaned = (i == eop); | ||
1014 | |||
1015 | if (cleaned) { | ||
1016 | total_tx_packets += buffer_info->segs; | ||
1017 | total_tx_bytes += buffer_info->bytecount; | ||
1018 | } | ||
1019 | |||
1020 | e1000_put_txbuf(adapter, buffer_info); | ||
1021 | tx_desc->upper.data = 0; | ||
1022 | |||
1023 | i++; | ||
1024 | if (i == tx_ring->count) | ||
1025 | i = 0; | ||
1026 | } | ||
1027 | |||
1028 | if (i == tx_ring->next_to_use) | ||
1029 | break; | ||
1030 | eop = tx_ring->buffer_info[i].next_to_watch; | ||
1031 | eop_desc = E1000_TX_DESC(*tx_ring, eop); | ||
1032 | } | ||
1033 | |||
1034 | tx_ring->next_to_clean = i; | ||
1035 | |||
1036 | #define TX_WAKE_THRESHOLD 32 | ||
1037 | if (count && netif_carrier_ok(netdev) && | ||
1038 | e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) { | ||
1039 | /* Make sure that anybody stopping the queue after this | ||
1040 | * sees the new next_to_clean. | ||
1041 | */ | ||
1042 | smp_mb(); | ||
1043 | |||
1044 | if (netif_queue_stopped(netdev) && | ||
1045 | !(test_bit(__E1000_DOWN, &adapter->state))) { | ||
1046 | netif_wake_queue(netdev); | ||
1047 | ++adapter->restart_queue; | ||
1048 | } | ||
1049 | } | ||
1050 | |||
1051 | if (adapter->detect_tx_hung) { | ||
1052 | /* | ||
1053 | * Detect a transmit hang in hardware, this serializes the | ||
1054 | * check with the clearing of time_stamp and movement of i | ||
1055 | */ | ||
1056 | adapter->detect_tx_hung = 0; | ||
1057 | if (tx_ring->buffer_info[i].time_stamp && | ||
1058 | time_after(jiffies, tx_ring->buffer_info[i].time_stamp | ||
1059 | + (adapter->tx_timeout_factor * HZ)) && | ||
1060 | !(er32(STATUS) & E1000_STATUS_TXOFF)) { | ||
1061 | schedule_work(&adapter->print_hang_task); | ||
1062 | netif_stop_queue(netdev); | ||
1063 | } | ||
1064 | } | ||
1065 | adapter->total_tx_bytes += total_tx_bytes; | ||
1066 | adapter->total_tx_packets += total_tx_packets; | ||
1067 | return count < tx_ring->count; | ||
1068 | } | ||
1069 | |||
1070 | /** | ||
1071 | * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split | ||
1072 | * @adapter: board private structure | ||
1073 | * | ||
1074 | * the return value indicates whether actual cleaning was done, there | ||
1075 | * is no guarantee that everything was cleaned | ||
1076 | **/ | ||
1077 | static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, | ||
1078 | int *work_done, int work_to_do) | ||
1079 | { | ||
1080 | struct e1000_hw *hw = &adapter->hw; | ||
1081 | union e1000_rx_desc_packet_split *rx_desc, *next_rxd; | ||
1082 | struct net_device *netdev = adapter->netdev; | ||
1083 | struct pci_dev *pdev = adapter->pdev; | ||
1084 | struct e1000_ring *rx_ring = adapter->rx_ring; | ||
1085 | struct e1000_buffer *buffer_info, *next_buffer; | ||
1086 | struct e1000_ps_page *ps_page; | ||
1087 | struct sk_buff *skb; | ||
1088 | unsigned int i, j; | ||
1089 | u32 length, staterr; | ||
1090 | int cleaned_count = 0; | ||
1091 | bool cleaned = 0; | ||
1092 | unsigned int total_rx_bytes = 0, total_rx_packets = 0; | ||
1093 | |||
1094 | i = rx_ring->next_to_clean; | ||
1095 | rx_desc = E1000_RX_DESC_PS(*rx_ring, i); | ||
1096 | staterr = le32_to_cpu(rx_desc->wb.middle.status_error); | ||
1097 | buffer_info = &rx_ring->buffer_info[i]; | ||
1098 | |||
1099 | while (staterr & E1000_RXD_STAT_DD) { | ||
1100 | if (*work_done >= work_to_do) | ||
1101 | break; | ||
1102 | (*work_done)++; | ||
1103 | skb = buffer_info->skb; | ||
1104 | rmb(); /* read descriptor and rx_buffer_info after status DD */ | ||
1105 | |||
1106 | /* in the packet split case this is header only */ | ||
1107 | prefetch(skb->data - NET_IP_ALIGN); | ||
1108 | |||
1109 | i++; | ||
1110 | if (i == rx_ring->count) | ||
1111 | i = 0; | ||
1112 | next_rxd = E1000_RX_DESC_PS(*rx_ring, i); | ||
1113 | prefetch(next_rxd); | ||
1114 | |||
1115 | next_buffer = &rx_ring->buffer_info[i]; | ||
1116 | |||
1117 | cleaned = 1; | ||
1118 | cleaned_count++; | ||
1119 | dma_unmap_single(&pdev->dev, buffer_info->dma, | ||
1120 | adapter->rx_ps_bsize0, DMA_FROM_DEVICE); | ||
1121 | buffer_info->dma = 0; | ||
1122 | |||
1123 | /* see !EOP comment in other Rx routine */ | ||
1124 | if (!(staterr & E1000_RXD_STAT_EOP)) | ||
1125 | adapter->flags2 |= FLAG2_IS_DISCARDING; | ||
1126 | |||
1127 | if (adapter->flags2 & FLAG2_IS_DISCARDING) { | ||
1128 | e_dbg("Packet Split buffers didn't pick up the full " | ||
1129 | "packet\n"); | ||
1130 | dev_kfree_skb_irq(skb); | ||
1131 | if (staterr & E1000_RXD_STAT_EOP) | ||
1132 | adapter->flags2 &= ~FLAG2_IS_DISCARDING; | ||
1133 | goto next_desc; | ||
1134 | } | ||
1135 | |||
1136 | if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { | ||
1137 | dev_kfree_skb_irq(skb); | ||
1138 | goto next_desc; | ||
1139 | } | ||
1140 | |||
1141 | length = le16_to_cpu(rx_desc->wb.middle.length0); | ||
1142 | |||
1143 | if (!length) { | ||
1144 | e_dbg("Last part of the packet spanning multiple " | ||
1145 | "descriptors\n"); | ||
1146 | dev_kfree_skb_irq(skb); | ||
1147 | goto next_desc; | ||
1148 | } | ||
1149 | |||
1150 | /* Good Receive */ | ||
1151 | skb_put(skb, length); | ||
1152 | |||
1153 | { | ||
1154 | /* | ||
1155 | * this looks ugly, but it seems compiler issues make it | ||
1156 | * more efficient than reusing j | ||
1157 | */ | ||
1158 | int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); | ||
1159 | |||
1160 | /* | ||
1161 | * page alloc/put takes too long and effects small packet | ||
1162 | * throughput, so unsplit small packets and save the alloc/put | ||
1163 | * only valid in softirq (napi) context to call kmap_* | ||
1164 | */ | ||
1165 | if (l1 && (l1 <= copybreak) && | ||
1166 | ((length + l1) <= adapter->rx_ps_bsize0)) { | ||
1167 | u8 *vaddr; | ||
1168 | |||
1169 | ps_page = &buffer_info->ps_pages[0]; | ||
1170 | |||
1171 | /* | ||
1172 | * there is no documentation about how to call | ||
1173 | * kmap_atomic, so we can't hold the mapping | ||
1174 | * very long | ||
1175 | */ | ||
1176 | dma_sync_single_for_cpu(&pdev->dev, ps_page->dma, | ||
1177 | PAGE_SIZE, DMA_FROM_DEVICE); | ||
1178 | vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ); | ||
1179 | memcpy(skb_tail_pointer(skb), vaddr, l1); | ||
1180 | kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ); | ||
1181 | dma_sync_single_for_device(&pdev->dev, ps_page->dma, | ||
1182 | PAGE_SIZE, DMA_FROM_DEVICE); | ||
1183 | |||
1184 | /* remove the CRC */ | ||
1185 | if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) | ||
1186 | l1 -= 4; | ||
1187 | |||
1188 | skb_put(skb, l1); | ||
1189 | goto copydone; | ||
1190 | } /* if */ | ||
1191 | } | ||
1192 | |||
1193 | for (j = 0; j < PS_PAGE_BUFFERS; j++) { | ||
1194 | length = le16_to_cpu(rx_desc->wb.upper.length[j]); | ||
1195 | if (!length) | ||
1196 | break; | ||
1197 | |||
1198 | ps_page = &buffer_info->ps_pages[j]; | ||
1199 | dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE, | ||
1200 | DMA_FROM_DEVICE); | ||
1201 | ps_page->dma = 0; | ||
1202 | skb_fill_page_desc(skb, j, ps_page->page, 0, length); | ||
1203 | ps_page->page = NULL; | ||
1204 | skb->len += length; | ||
1205 | skb->data_len += length; | ||
1206 | skb->truesize += length; | ||
1207 | } | ||
1208 | |||
1209 | /* strip the ethernet crc, problem is we're using pages now so | ||
1210 | * this whole operation can get a little cpu intensive | ||
1211 | */ | ||
1212 | if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) | ||
1213 | pskb_trim(skb, skb->len - 4); | ||
1214 | |||
1215 | copydone: | ||
1216 | total_rx_bytes += skb->len; | ||
1217 | total_rx_packets++; | ||
1218 | |||
1219 | e1000_rx_checksum(adapter, staterr, le16_to_cpu( | ||
1220 | rx_desc->wb.lower.hi_dword.csum_ip.csum), skb); | ||
1221 | |||
1222 | if (rx_desc->wb.upper.header_status & | ||
1223 | cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)) | ||
1224 | adapter->rx_hdr_split++; | ||
1225 | |||
1226 | e1000_receive_skb(adapter, netdev, skb, | ||
1227 | staterr, rx_desc->wb.middle.vlan); | ||
1228 | |||
1229 | next_desc: | ||
1230 | rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF); | ||
1231 | buffer_info->skb = NULL; | ||
1232 | |||
1233 | /* return some buffers to hardware, one at a time is too slow */ | ||
1234 | if (cleaned_count >= E1000_RX_BUFFER_WRITE) { | ||
1235 | adapter->alloc_rx_buf(adapter, cleaned_count, | ||
1236 | GFP_ATOMIC); | ||
1237 | cleaned_count = 0; | ||
1238 | } | ||
1239 | |||
1240 | /* use prefetched values */ | ||
1241 | rx_desc = next_rxd; | ||
1242 | buffer_info = next_buffer; | ||
1243 | |||
1244 | staterr = le32_to_cpu(rx_desc->wb.middle.status_error); | ||
1245 | } | ||
1246 | rx_ring->next_to_clean = i; | ||
1247 | |||
1248 | cleaned_count = e1000_desc_unused(rx_ring); | ||
1249 | if (cleaned_count) | ||
1250 | adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC); | ||
1251 | |||
1252 | adapter->total_rx_bytes += total_rx_bytes; | ||
1253 | adapter->total_rx_packets += total_rx_packets; | ||
1254 | return cleaned; | ||
1255 | } | ||
1256 | |||
1257 | /** | ||
1258 | * e1000_consume_page - helper function | ||
1259 | **/ | ||
1260 | static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, | ||
1261 | u16 length) | ||
1262 | { | ||
1263 | bi->page = NULL; | ||
1264 | skb->len += length; | ||
1265 | skb->data_len += length; | ||
1266 | skb->truesize += length; | ||
1267 | } | ||
1268 | |||
1269 | /** | ||
1270 | * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy | ||
1271 | * @adapter: board private structure | ||
1272 | * | ||
1273 | * the return value indicates whether actual cleaning was done, there | ||
1274 | * is no guarantee that everything was cleaned | ||
1275 | **/ | ||
1276 | |||
1277 | static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, | ||
1278 | int *work_done, int work_to_do) | ||
1279 | { | ||
1280 | struct net_device *netdev = adapter->netdev; | ||
1281 | struct pci_dev *pdev = adapter->pdev; | ||
1282 | struct e1000_ring *rx_ring = adapter->rx_ring; | ||
1283 | struct e1000_rx_desc *rx_desc, *next_rxd; | ||
1284 | struct e1000_buffer *buffer_info, *next_buffer; | ||
1285 | u32 length; | ||
1286 | unsigned int i; | ||
1287 | int cleaned_count = 0; | ||
1288 | bool cleaned = false; | ||
1289 | unsigned int total_rx_bytes=0, total_rx_packets=0; | ||
1290 | |||
1291 | i = rx_ring->next_to_clean; | ||
1292 | rx_desc = E1000_RX_DESC(*rx_ring, i); | ||
1293 | buffer_info = &rx_ring->buffer_info[i]; | ||
1294 | |||
1295 | while (rx_desc->status & E1000_RXD_STAT_DD) { | ||
1296 | struct sk_buff *skb; | ||
1297 | u8 status; | ||
1298 | |||
1299 | if (*work_done >= work_to_do) | ||
1300 | break; | ||
1301 | (*work_done)++; | ||
1302 | rmb(); /* read descriptor and rx_buffer_info after status DD */ | ||
1303 | |||
1304 | status = rx_desc->status; | ||
1305 | skb = buffer_info->skb; | ||
1306 | buffer_info->skb = NULL; | ||
1307 | |||
1308 | ++i; | ||
1309 | if (i == rx_ring->count) | ||
1310 | i = 0; | ||
1311 | next_rxd = E1000_RX_DESC(*rx_ring, i); | ||
1312 | prefetch(next_rxd); | ||
1313 | |||
1314 | next_buffer = &rx_ring->buffer_info[i]; | ||
1315 | |||
1316 | cleaned = true; | ||
1317 | cleaned_count++; | ||
1318 | dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE, | ||
1319 | DMA_FROM_DEVICE); | ||
1320 | buffer_info->dma = 0; | ||
1321 | |||
1322 | length = le16_to_cpu(rx_desc->length); | ||
1323 | |||
1324 | /* errors is only valid for DD + EOP descriptors */ | ||
1325 | if (unlikely((status & E1000_RXD_STAT_EOP) && | ||
1326 | (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { | ||
1327 | /* recycle both page and skb */ | ||
1328 | buffer_info->skb = skb; | ||
1329 | /* an error means any chain goes out the window | ||
1330 | * too */ | ||
1331 | if (rx_ring->rx_skb_top) | ||
1332 | dev_kfree_skb_irq(rx_ring->rx_skb_top); | ||
1333 | rx_ring->rx_skb_top = NULL; | ||
1334 | goto next_desc; | ||
1335 | } | ||
1336 | |||
1337 | #define rxtop (rx_ring->rx_skb_top) | ||
1338 | if (!(status & E1000_RXD_STAT_EOP)) { | ||
1339 | /* this descriptor is only the beginning (or middle) */ | ||
1340 | if (!rxtop) { | ||
1341 | /* this is the beginning of a chain */ | ||
1342 | rxtop = skb; | ||
1343 | skb_fill_page_desc(rxtop, 0, buffer_info->page, | ||
1344 | 0, length); | ||
1345 | } else { | ||
1346 | /* this is the middle of a chain */ | ||
1347 | skb_fill_page_desc(rxtop, | ||
1348 | skb_shinfo(rxtop)->nr_frags, | ||
1349 | buffer_info->page, 0, length); | ||
1350 | /* re-use the skb, only consumed the page */ | ||
1351 | buffer_info->skb = skb; | ||
1352 | } | ||
1353 | e1000_consume_page(buffer_info, rxtop, length); | ||
1354 | goto next_desc; | ||
1355 | } else { | ||
1356 | if (rxtop) { | ||
1357 | /* end of the chain */ | ||
1358 | skb_fill_page_desc(rxtop, | ||
1359 | skb_shinfo(rxtop)->nr_frags, | ||
1360 | buffer_info->page, 0, length); | ||
1361 | /* re-use the current skb, we only consumed the | ||
1362 | * page */ | ||
1363 | buffer_info->skb = skb; | ||
1364 | skb = rxtop; | ||
1365 | rxtop = NULL; | ||
1366 | e1000_consume_page(buffer_info, skb, length); | ||
1367 | } else { | ||
1368 | /* no chain, got EOP, this buf is the packet | ||
1369 | * copybreak to save the put_page/alloc_page */ | ||
1370 | if (length <= copybreak && | ||
1371 | skb_tailroom(skb) >= length) { | ||
1372 | u8 *vaddr; | ||
1373 | vaddr = kmap_atomic(buffer_info->page, | ||
1374 | KM_SKB_DATA_SOFTIRQ); | ||
1375 | memcpy(skb_tail_pointer(skb), vaddr, | ||
1376 | length); | ||
1377 | kunmap_atomic(vaddr, | ||
1378 | KM_SKB_DATA_SOFTIRQ); | ||
1379 | /* re-use the page, so don't erase | ||
1380 | * buffer_info->page */ | ||
1381 | skb_put(skb, length); | ||
1382 | } else { | ||
1383 | skb_fill_page_desc(skb, 0, | ||
1384 | buffer_info->page, 0, | ||
1385 | length); | ||
1386 | e1000_consume_page(buffer_info, skb, | ||
1387 | length); | ||
1388 | } | ||
1389 | } | ||
1390 | } | ||
1391 | |||
1392 | /* Receive Checksum Offload XXX recompute due to CRC strip? */ | ||
1393 | e1000_rx_checksum(adapter, | ||
1394 | (u32)(status) | | ||
1395 | ((u32)(rx_desc->errors) << 24), | ||
1396 | le16_to_cpu(rx_desc->csum), skb); | ||
1397 | |||
1398 | /* probably a little skewed due to removing CRC */ | ||
1399 | total_rx_bytes += skb->len; | ||
1400 | total_rx_packets++; | ||
1401 | |||
1402 | /* eth type trans needs skb->data to point to something */ | ||
1403 | if (!pskb_may_pull(skb, ETH_HLEN)) { | ||
1404 | e_err("pskb_may_pull failed.\n"); | ||
1405 | dev_kfree_skb_irq(skb); | ||
1406 | goto next_desc; | ||
1407 | } | ||
1408 | |||
1409 | e1000_receive_skb(adapter, netdev, skb, status, | ||
1410 | rx_desc->special); | ||
1411 | |||
1412 | next_desc: | ||
1413 | rx_desc->status = 0; | ||
1414 | |||
1415 | /* return some buffers to hardware, one at a time is too slow */ | ||
1416 | if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { | ||
1417 | adapter->alloc_rx_buf(adapter, cleaned_count, | ||
1418 | GFP_ATOMIC); | ||
1419 | cleaned_count = 0; | ||
1420 | } | ||
1421 | |||
1422 | /* use prefetched values */ | ||
1423 | rx_desc = next_rxd; | ||
1424 | buffer_info = next_buffer; | ||
1425 | } | ||
1426 | rx_ring->next_to_clean = i; | ||
1427 | |||
1428 | cleaned_count = e1000_desc_unused(rx_ring); | ||
1429 | if (cleaned_count) | ||
1430 | adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC); | ||
1431 | |||
1432 | adapter->total_rx_bytes += total_rx_bytes; | ||
1433 | adapter->total_rx_packets += total_rx_packets; | ||
1434 | return cleaned; | ||
1435 | } | ||
1436 | |||
1437 | /** | ||
1438 | * e1000_clean_rx_ring - Free Rx Buffers per Queue | ||
1439 | * @adapter: board private structure | ||
1440 | **/ | ||
1441 | static void e1000_clean_rx_ring(struct e1000_adapter *adapter) | ||
1442 | { | ||
1443 | struct e1000_ring *rx_ring = adapter->rx_ring; | ||
1444 | struct e1000_buffer *buffer_info; | ||
1445 | struct e1000_ps_page *ps_page; | ||
1446 | struct pci_dev *pdev = adapter->pdev; | ||
1447 | unsigned int i, j; | ||
1448 | |||
1449 | /* Free all the Rx ring sk_buffs */ | ||
1450 | for (i = 0; i < rx_ring->count; i++) { | ||
1451 | buffer_info = &rx_ring->buffer_info[i]; | ||
1452 | if (buffer_info->dma) { | ||
1453 | if (adapter->clean_rx == e1000_clean_rx_irq) | ||
1454 | dma_unmap_single(&pdev->dev, buffer_info->dma, | ||
1455 | adapter->rx_buffer_len, | ||
1456 | DMA_FROM_DEVICE); | ||
1457 | else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) | ||
1458 | dma_unmap_page(&pdev->dev, buffer_info->dma, | ||
1459 | PAGE_SIZE, | ||
1460 | DMA_FROM_DEVICE); | ||
1461 | else if (adapter->clean_rx == e1000_clean_rx_irq_ps) | ||
1462 | dma_unmap_single(&pdev->dev, buffer_info->dma, | ||
1463 | adapter->rx_ps_bsize0, | ||
1464 | DMA_FROM_DEVICE); | ||
1465 | buffer_info->dma = 0; | ||
1466 | } | ||
1467 | |||
1468 | if (buffer_info->page) { | ||
1469 | put_page(buffer_info->page); | ||
1470 | buffer_info->page = NULL; | ||
1471 | } | ||
1472 | |||
1473 | if (buffer_info->skb) { | ||
1474 | dev_kfree_skb(buffer_info->skb); | ||
1475 | buffer_info->skb = NULL; | ||
1476 | } | ||
1477 | |||
1478 | for (j = 0; j < PS_PAGE_BUFFERS; j++) { | ||
1479 | ps_page = &buffer_info->ps_pages[j]; | ||
1480 | if (!ps_page->page) | ||
1481 | break; | ||
1482 | dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE, | ||
1483 | DMA_FROM_DEVICE); | ||
1484 | ps_page->dma = 0; | ||
1485 | put_page(ps_page->page); | ||
1486 | ps_page->page = NULL; | ||
1487 | } | ||
1488 | } | ||
1489 | |||
1490 | /* there also may be some cached data from a chained receive */ | ||
1491 | if (rx_ring->rx_skb_top) { | ||
1492 | dev_kfree_skb(rx_ring->rx_skb_top); | ||
1493 | rx_ring->rx_skb_top = NULL; | ||
1494 | } | ||
1495 | |||
1496 | /* Zero out the descriptor ring */ | ||
1497 | memset(rx_ring->desc, 0, rx_ring->size); | ||
1498 | |||
1499 | rx_ring->next_to_clean = 0; | ||
1500 | rx_ring->next_to_use = 0; | ||
1501 | adapter->flags2 &= ~FLAG2_IS_DISCARDING; | ||
1502 | |||
1503 | writel(0, adapter->hw.hw_addr + rx_ring->head); | ||
1504 | writel(0, adapter->hw.hw_addr + rx_ring->tail); | ||
1505 | } | ||
1506 | |||
1507 | static void e1000e_downshift_workaround(struct work_struct *work) | ||
1508 | { | ||
1509 | struct e1000_adapter *adapter = container_of(work, | ||
1510 | struct e1000_adapter, downshift_task); | ||
1511 | |||
1512 | if (test_bit(__E1000_DOWN, &adapter->state)) | ||
1513 | return; | ||
1514 | |||
1515 | e1000e_gig_downshift_workaround_ich8lan(&adapter->hw); | ||
1516 | } | ||
1517 | |||
1518 | /** | ||
1519 | * e1000_intr_msi - Interrupt Handler | ||
1520 | * @irq: interrupt number | ||
1521 | * @data: pointer to a network interface device structure | ||
1522 | **/ | ||
1523 | static irqreturn_t e1000_intr_msi(int irq, void *data) | ||
1524 | { | ||
1525 | struct net_device *netdev = data; | ||
1526 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
1527 | struct e1000_hw *hw = &adapter->hw; | ||
1528 | u32 icr = er32(ICR); | ||
1529 | |||
1530 | /* | ||
1531 | * read ICR disables interrupts using IAM | ||
1532 | */ | ||
1533 | |||
1534 | if (icr & E1000_ICR_LSC) { | ||
1535 | hw->mac.get_link_status = 1; | ||
1536 | /* | ||
1537 | * ICH8 workaround-- Call gig speed drop workaround on cable | ||
1538 | * disconnect (LSC) before accessing any PHY registers | ||
1539 | */ | ||
1540 | if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && | ||
1541 | (!(er32(STATUS) & E1000_STATUS_LU))) | ||
1542 | schedule_work(&adapter->downshift_task); | ||
1543 | |||
1544 | /* | ||
1545 | * 80003ES2LAN workaround-- For packet buffer work-around on | ||
1546 | * link down event; disable receives here in the ISR and reset | ||
1547 | * adapter in watchdog | ||
1548 | */ | ||
1549 | if (netif_carrier_ok(netdev) && | ||
1550 | adapter->flags & FLAG_RX_NEEDS_RESTART) { | ||
1551 | /* disable receives */ | ||
1552 | u32 rctl = er32(RCTL); | ||
1553 | ew32(RCTL, rctl & ~E1000_RCTL_EN); | ||
1554 | adapter->flags |= FLAG_RX_RESTART_NOW; | ||
1555 | } | ||
1556 | /* guard against interrupt when we're going down */ | ||
1557 | if (!test_bit(__E1000_DOWN, &adapter->state)) | ||
1558 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | ||
1559 | } | ||
1560 | |||
1561 | if (napi_schedule_prep(&adapter->napi)) { | ||
1562 | adapter->total_tx_bytes = 0; | ||
1563 | adapter->total_tx_packets = 0; | ||
1564 | adapter->total_rx_bytes = 0; | ||
1565 | adapter->total_rx_packets = 0; | ||
1566 | __napi_schedule(&adapter->napi); | ||
1567 | } | ||
1568 | |||
1569 | return IRQ_HANDLED; | ||
1570 | } | ||
1571 | |||
1572 | /** | ||
1573 | * e1000_intr - Interrupt Handler | ||
1574 | * @irq: interrupt number | ||
1575 | * @data: pointer to a network interface device structure | ||
1576 | **/ | ||
1577 | static irqreturn_t e1000_intr(int irq, void *data) | ||
1578 | { | ||
1579 | struct net_device *netdev = data; | ||
1580 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
1581 | struct e1000_hw *hw = &adapter->hw; | ||
1582 | u32 rctl, icr = er32(ICR); | ||
1583 | |||
1584 | if (!icr || test_bit(__E1000_DOWN, &adapter->state)) | ||
1585 | return IRQ_NONE; /* Not our interrupt */ | ||
1586 | |||
1587 | /* | ||
1588 | * IMS will not auto-mask if INT_ASSERTED is not set, and if it is | ||
1589 | * not set, then the adapter didn't send an interrupt | ||
1590 | */ | ||
1591 | if (!(icr & E1000_ICR_INT_ASSERTED)) | ||
1592 | return IRQ_NONE; | ||
1593 | |||
1594 | /* | ||
1595 | * Interrupt Auto-Mask...upon reading ICR, | ||
1596 | * interrupts are masked. No need for the | ||
1597 | * IMC write | ||
1598 | */ | ||
1599 | |||
1600 | if (icr & E1000_ICR_LSC) { | ||
1601 | hw->mac.get_link_status = 1; | ||
1602 | /* | ||
1603 | * ICH8 workaround-- Call gig speed drop workaround on cable | ||
1604 | * disconnect (LSC) before accessing any PHY registers | ||
1605 | */ | ||
1606 | if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && | ||
1607 | (!(er32(STATUS) & E1000_STATUS_LU))) | ||
1608 | schedule_work(&adapter->downshift_task); | ||
1609 | |||
1610 | /* | ||
1611 | * 80003ES2LAN workaround-- | ||
1612 | * For packet buffer work-around on link down event; | ||
1613 | * disable receives here in the ISR and | ||
1614 | * reset adapter in watchdog | ||
1615 | */ | ||
1616 | if (netif_carrier_ok(netdev) && | ||
1617 | (adapter->flags & FLAG_RX_NEEDS_RESTART)) { | ||
1618 | /* disable receives */ | ||
1619 | rctl = er32(RCTL); | ||
1620 | ew32(RCTL, rctl & ~E1000_RCTL_EN); | ||
1621 | adapter->flags |= FLAG_RX_RESTART_NOW; | ||
1622 | } | ||
1623 | /* guard against interrupt when we're going down */ | ||
1624 | if (!test_bit(__E1000_DOWN, &adapter->state)) | ||
1625 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | ||
1626 | } | ||
1627 | |||
1628 | if (napi_schedule_prep(&adapter->napi)) { | ||
1629 | adapter->total_tx_bytes = 0; | ||
1630 | adapter->total_tx_packets = 0; | ||
1631 | adapter->total_rx_bytes = 0; | ||
1632 | adapter->total_rx_packets = 0; | ||
1633 | __napi_schedule(&adapter->napi); | ||
1634 | } | ||
1635 | |||
1636 | return IRQ_HANDLED; | ||
1637 | } | ||
1638 | |||
1639 | static irqreturn_t e1000_msix_other(int irq, void *data) | ||
1640 | { | ||
1641 | struct net_device *netdev = data; | ||
1642 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
1643 | struct e1000_hw *hw = &adapter->hw; | ||
1644 | u32 icr = er32(ICR); | ||
1645 | |||
1646 | if (!(icr & E1000_ICR_INT_ASSERTED)) { | ||
1647 | if (!test_bit(__E1000_DOWN, &adapter->state)) | ||
1648 | ew32(IMS, E1000_IMS_OTHER); | ||
1649 | return IRQ_NONE; | ||
1650 | } | ||
1651 | |||
1652 | if (icr & adapter->eiac_mask) | ||
1653 | ew32(ICS, (icr & adapter->eiac_mask)); | ||
1654 | |||
1655 | if (icr & E1000_ICR_OTHER) { | ||
1656 | if (!(icr & E1000_ICR_LSC)) | ||
1657 | goto no_link_interrupt; | ||
1658 | hw->mac.get_link_status = 1; | ||
1659 | /* guard against interrupt when we're going down */ | ||
1660 | if (!test_bit(__E1000_DOWN, &adapter->state)) | ||
1661 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | ||
1662 | } | ||
1663 | |||
1664 | no_link_interrupt: | ||
1665 | if (!test_bit(__E1000_DOWN, &adapter->state)) | ||
1666 | ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER); | ||
1667 | |||
1668 | return IRQ_HANDLED; | ||
1669 | } | ||
1670 | |||
1671 | |||
1672 | static irqreturn_t e1000_intr_msix_tx(int irq, void *data) | ||
1673 | { | ||
1674 | struct net_device *netdev = data; | ||
1675 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
1676 | struct e1000_hw *hw = &adapter->hw; | ||
1677 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
1678 | |||
1679 | |||
1680 | adapter->total_tx_bytes = 0; | ||
1681 | adapter->total_tx_packets = 0; | ||
1682 | |||
1683 | if (!e1000_clean_tx_irq(adapter)) | ||
1684 | /* Ring was not completely cleaned, so fire another interrupt */ | ||
1685 | ew32(ICS, tx_ring->ims_val); | ||
1686 | |||
1687 | return IRQ_HANDLED; | ||
1688 | } | ||
1689 | |||
1690 | static irqreturn_t e1000_intr_msix_rx(int irq, void *data) | ||
1691 | { | ||
1692 | struct net_device *netdev = data; | ||
1693 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
1694 | |||
1695 | /* Write the ITR value calculated at the end of the | ||
1696 | * previous interrupt. | ||
1697 | */ | ||
1698 | if (adapter->rx_ring->set_itr) { | ||
1699 | writel(1000000000 / (adapter->rx_ring->itr_val * 256), | ||
1700 | adapter->hw.hw_addr + adapter->rx_ring->itr_register); | ||
1701 | adapter->rx_ring->set_itr = 0; | ||
1702 | } | ||
1703 | |||
1704 | if (napi_schedule_prep(&adapter->napi)) { | ||
1705 | adapter->total_rx_bytes = 0; | ||
1706 | adapter->total_rx_packets = 0; | ||
1707 | __napi_schedule(&adapter->napi); | ||
1708 | } | ||
1709 | return IRQ_HANDLED; | ||
1710 | } | ||
1711 | |||
1712 | /** | ||
1713 | * e1000_configure_msix - Configure MSI-X hardware | ||
1714 | * | ||
1715 | * e1000_configure_msix sets up the hardware to properly | ||
1716 | * generate MSI-X interrupts. | ||
1717 | **/ | ||
1718 | static void e1000_configure_msix(struct e1000_adapter *adapter) | ||
1719 | { | ||
1720 | struct e1000_hw *hw = &adapter->hw; | ||
1721 | struct e1000_ring *rx_ring = adapter->rx_ring; | ||
1722 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
1723 | int vector = 0; | ||
1724 | u32 ctrl_ext, ivar = 0; | ||
1725 | |||
1726 | adapter->eiac_mask = 0; | ||
1727 | |||
1728 | /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */ | ||
1729 | if (hw->mac.type == e1000_82574) { | ||
1730 | u32 rfctl = er32(RFCTL); | ||
1731 | rfctl |= E1000_RFCTL_ACK_DIS; | ||
1732 | ew32(RFCTL, rfctl); | ||
1733 | } | ||
1734 | |||
1735 | #define E1000_IVAR_INT_ALLOC_VALID 0x8 | ||
1736 | /* Configure Rx vector */ | ||
1737 | rx_ring->ims_val = E1000_IMS_RXQ0; | ||
1738 | adapter->eiac_mask |= rx_ring->ims_val; | ||
1739 | if (rx_ring->itr_val) | ||
1740 | writel(1000000000 / (rx_ring->itr_val * 256), | ||
1741 | hw->hw_addr + rx_ring->itr_register); | ||
1742 | else | ||
1743 | writel(1, hw->hw_addr + rx_ring->itr_register); | ||
1744 | ivar = E1000_IVAR_INT_ALLOC_VALID | vector; | ||
1745 | |||
1746 | /* Configure Tx vector */ | ||
1747 | tx_ring->ims_val = E1000_IMS_TXQ0; | ||
1748 | vector++; | ||
1749 | if (tx_ring->itr_val) | ||
1750 | writel(1000000000 / (tx_ring->itr_val * 256), | ||
1751 | hw->hw_addr + tx_ring->itr_register); | ||
1752 | else | ||
1753 | writel(1, hw->hw_addr + tx_ring->itr_register); | ||
1754 | adapter->eiac_mask |= tx_ring->ims_val; | ||
1755 | ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8); | ||
1756 | |||
1757 | /* set vector for Other Causes, e.g. link changes */ | ||
1758 | vector++; | ||
1759 | ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16); | ||
1760 | if (rx_ring->itr_val) | ||
1761 | writel(1000000000 / (rx_ring->itr_val * 256), | ||
1762 | hw->hw_addr + E1000_EITR_82574(vector)); | ||
1763 | else | ||
1764 | writel(1, hw->hw_addr + E1000_EITR_82574(vector)); | ||
1765 | |||
1766 | /* Cause Tx interrupts on every write back */ | ||
1767 | ivar |= (1 << 31); | ||
1768 | |||
1769 | ew32(IVAR, ivar); | ||
1770 | |||
1771 | /* enable MSI-X PBA support */ | ||
1772 | ctrl_ext = er32(CTRL_EXT); | ||
1773 | ctrl_ext |= E1000_CTRL_EXT_PBA_CLR; | ||
1774 | |||
1775 | /* Auto-Mask Other interrupts upon ICR read */ | ||
1776 | #define E1000_EIAC_MASK_82574 0x01F00000 | ||
1777 | ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER); | ||
1778 | ctrl_ext |= E1000_CTRL_EXT_EIAME; | ||
1779 | ew32(CTRL_EXT, ctrl_ext); | ||
1780 | e1e_flush(); | ||
1781 | } | ||
1782 | |||
1783 | void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter) | ||
1784 | { | ||
1785 | if (adapter->msix_entries) { | ||
1786 | pci_disable_msix(adapter->pdev); | ||
1787 | kfree(adapter->msix_entries); | ||
1788 | adapter->msix_entries = NULL; | ||
1789 | } else if (adapter->flags & FLAG_MSI_ENABLED) { | ||
1790 | pci_disable_msi(adapter->pdev); | ||
1791 | adapter->flags &= ~FLAG_MSI_ENABLED; | ||
1792 | } | ||
1793 | } | ||
1794 | |||
1795 | /** | ||
1796 | * e1000e_set_interrupt_capability - set MSI or MSI-X if supported | ||
1797 | * | ||
1798 | * Attempt to configure interrupts using the best available | ||
1799 | * capabilities of the hardware and kernel. | ||
1800 | **/ | ||
1801 | void e1000e_set_interrupt_capability(struct e1000_adapter *adapter) | ||
1802 | { | ||
1803 | int err; | ||
1804 | int i; | ||
1805 | |||
1806 | switch (adapter->int_mode) { | ||
1807 | case E1000E_INT_MODE_MSIX: | ||
1808 | if (adapter->flags & FLAG_HAS_MSIX) { | ||
1809 | adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */ | ||
1810 | adapter->msix_entries = kcalloc(adapter->num_vectors, | ||
1811 | sizeof(struct msix_entry), | ||
1812 | GFP_KERNEL); | ||
1813 | if (adapter->msix_entries) { | ||
1814 | for (i = 0; i < adapter->num_vectors; i++) | ||
1815 | adapter->msix_entries[i].entry = i; | ||
1816 | |||
1817 | err = pci_enable_msix(adapter->pdev, | ||
1818 | adapter->msix_entries, | ||
1819 | adapter->num_vectors); | ||
1820 | if (err == 0) | ||
1821 | return; | ||
1822 | } | ||
1823 | /* MSI-X failed, so fall through and try MSI */ | ||
1824 | e_err("Failed to initialize MSI-X interrupts. " | ||
1825 | "Falling back to MSI interrupts.\n"); | ||
1826 | e1000e_reset_interrupt_capability(adapter); | ||
1827 | } | ||
1828 | adapter->int_mode = E1000E_INT_MODE_MSI; | ||
1829 | /* Fall through */ | ||
1830 | case E1000E_INT_MODE_MSI: | ||
1831 | if (!pci_enable_msi(adapter->pdev)) { | ||
1832 | adapter->flags |= FLAG_MSI_ENABLED; | ||
1833 | } else { | ||
1834 | adapter->int_mode = E1000E_INT_MODE_LEGACY; | ||
1835 | e_err("Failed to initialize MSI interrupts. Falling " | ||
1836 | "back to legacy interrupts.\n"); | ||
1837 | } | ||
1838 | /* Fall through */ | ||
1839 | case E1000E_INT_MODE_LEGACY: | ||
1840 | /* Don't do anything; this is the system default */ | ||
1841 | break; | ||
1842 | } | ||
1843 | |||
1844 | /* store the number of vectors being used */ | ||
1845 | adapter->num_vectors = 1; | ||
1846 | } | ||
1847 | |||
1848 | /** | ||
1849 | * e1000_request_msix - Initialize MSI-X interrupts | ||
1850 | * | ||
1851 | * e1000_request_msix allocates MSI-X vectors and requests interrupts from the | ||
1852 | * kernel. | ||
1853 | **/ | ||
1854 | static int e1000_request_msix(struct e1000_adapter *adapter) | ||
1855 | { | ||
1856 | struct net_device *netdev = adapter->netdev; | ||
1857 | int err = 0, vector = 0; | ||
1858 | |||
1859 | if (strlen(netdev->name) < (IFNAMSIZ - 5)) | ||
1860 | snprintf(adapter->rx_ring->name, | ||
1861 | sizeof(adapter->rx_ring->name) - 1, | ||
1862 | "%s-rx-0", netdev->name); | ||
1863 | else | ||
1864 | memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ); | ||
1865 | err = request_irq(adapter->msix_entries[vector].vector, | ||
1866 | e1000_intr_msix_rx, 0, adapter->rx_ring->name, | ||
1867 | netdev); | ||
1868 | if (err) | ||
1869 | goto out; | ||
1870 | adapter->rx_ring->itr_register = E1000_EITR_82574(vector); | ||
1871 | adapter->rx_ring->itr_val = adapter->itr; | ||
1872 | vector++; | ||
1873 | |||
1874 | if (strlen(netdev->name) < (IFNAMSIZ - 5)) | ||
1875 | snprintf(adapter->tx_ring->name, | ||
1876 | sizeof(adapter->tx_ring->name) - 1, | ||
1877 | "%s-tx-0", netdev->name); | ||
1878 | else | ||
1879 | memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ); | ||
1880 | err = request_irq(adapter->msix_entries[vector].vector, | ||
1881 | e1000_intr_msix_tx, 0, adapter->tx_ring->name, | ||
1882 | netdev); | ||
1883 | if (err) | ||
1884 | goto out; | ||
1885 | adapter->tx_ring->itr_register = E1000_EITR_82574(vector); | ||
1886 | adapter->tx_ring->itr_val = adapter->itr; | ||
1887 | vector++; | ||
1888 | |||
1889 | err = request_irq(adapter->msix_entries[vector].vector, | ||
1890 | e1000_msix_other, 0, netdev->name, netdev); | ||
1891 | if (err) | ||
1892 | goto out; | ||
1893 | |||
1894 | e1000_configure_msix(adapter); | ||
1895 | return 0; | ||
1896 | out: | ||
1897 | return err; | ||
1898 | } | ||
1899 | |||
1900 | /** | ||
1901 | * e1000_request_irq - initialize interrupts | ||
1902 | * | ||
1903 | * Attempts to configure interrupts using the best available | ||
1904 | * capabilities of the hardware and kernel. | ||
1905 | **/ | ||
1906 | static int e1000_request_irq(struct e1000_adapter *adapter) | ||
1907 | { | ||
1908 | struct net_device *netdev = adapter->netdev; | ||
1909 | int err; | ||
1910 | |||
1911 | if (adapter->msix_entries) { | ||
1912 | err = e1000_request_msix(adapter); | ||
1913 | if (!err) | ||
1914 | return err; | ||
1915 | /* fall back to MSI */ | ||
1916 | e1000e_reset_interrupt_capability(adapter); | ||
1917 | adapter->int_mode = E1000E_INT_MODE_MSI; | ||
1918 | e1000e_set_interrupt_capability(adapter); | ||
1919 | } | ||
1920 | if (adapter->flags & FLAG_MSI_ENABLED) { | ||
1921 | err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0, | ||
1922 | netdev->name, netdev); | ||
1923 | if (!err) | ||
1924 | return err; | ||
1925 | |||
1926 | /* fall back to legacy interrupt */ | ||
1927 | e1000e_reset_interrupt_capability(adapter); | ||
1928 | adapter->int_mode = E1000E_INT_MODE_LEGACY; | ||
1929 | } | ||
1930 | |||
1931 | err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED, | ||
1932 | netdev->name, netdev); | ||
1933 | if (err) | ||
1934 | e_err("Unable to allocate interrupt, Error: %d\n", err); | ||
1935 | |||
1936 | return err; | ||
1937 | } | ||
1938 | |||
1939 | static void e1000_free_irq(struct e1000_adapter *adapter) | ||
1940 | { | ||
1941 | struct net_device *netdev = adapter->netdev; | ||
1942 | |||
1943 | if (adapter->msix_entries) { | ||
1944 | int vector = 0; | ||
1945 | |||
1946 | free_irq(adapter->msix_entries[vector].vector, netdev); | ||
1947 | vector++; | ||
1948 | |||
1949 | free_irq(adapter->msix_entries[vector].vector, netdev); | ||
1950 | vector++; | ||
1951 | |||
1952 | /* Other Causes interrupt vector */ | ||
1953 | free_irq(adapter->msix_entries[vector].vector, netdev); | ||
1954 | return; | ||
1955 | } | ||
1956 | |||
1957 | free_irq(adapter->pdev->irq, netdev); | ||
1958 | } | ||
1959 | |||
1960 | /** | ||
1961 | * e1000_irq_disable - Mask off interrupt generation on the NIC | ||
1962 | **/ | ||
1963 | static void e1000_irq_disable(struct e1000_adapter *adapter) | ||
1964 | { | ||
1965 | struct e1000_hw *hw = &adapter->hw; | ||
1966 | |||
1967 | ew32(IMC, ~0); | ||
1968 | if (adapter->msix_entries) | ||
1969 | ew32(EIAC_82574, 0); | ||
1970 | e1e_flush(); | ||
1971 | |||
1972 | if (adapter->msix_entries) { | ||
1973 | int i; | ||
1974 | for (i = 0; i < adapter->num_vectors; i++) | ||
1975 | synchronize_irq(adapter->msix_entries[i].vector); | ||
1976 | } else { | ||
1977 | synchronize_irq(adapter->pdev->irq); | ||
1978 | } | ||
1979 | } | ||
1980 | |||
1981 | /** | ||
1982 | * e1000_irq_enable - Enable default interrupt generation settings | ||
1983 | **/ | ||
1984 | static void e1000_irq_enable(struct e1000_adapter *adapter) | ||
1985 | { | ||
1986 | struct e1000_hw *hw = &adapter->hw; | ||
1987 | |||
1988 | if (adapter->msix_entries) { | ||
1989 | ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574); | ||
1990 | ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC); | ||
1991 | } else { | ||
1992 | ew32(IMS, IMS_ENABLE_MASK); | ||
1993 | } | ||
1994 | e1e_flush(); | ||
1995 | } | ||
1996 | |||
1997 | /** | ||
1998 | * e1000e_get_hw_control - get control of the h/w from f/w | ||
1999 | * @adapter: address of board private structure | ||
2000 | * | ||
2001 | * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit. | ||
2002 | * For ASF and Pass Through versions of f/w this means that | ||
2003 | * the driver is loaded. For AMT version (only with 82573) | ||
2004 | * of the f/w this means that the network i/f is open. | ||
2005 | **/ | ||
2006 | void e1000e_get_hw_control(struct e1000_adapter *adapter) | ||
2007 | { | ||
2008 | struct e1000_hw *hw = &adapter->hw; | ||
2009 | u32 ctrl_ext; | ||
2010 | u32 swsm; | ||
2011 | |||
2012 | /* Let firmware know the driver has taken over */ | ||
2013 | if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { | ||
2014 | swsm = er32(SWSM); | ||
2015 | ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); | ||
2016 | } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { | ||
2017 | ctrl_ext = er32(CTRL_EXT); | ||
2018 | ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); | ||
2019 | } | ||
2020 | } | ||
2021 | |||
2022 | /** | ||
2023 | * e1000e_release_hw_control - release control of the h/w to f/w | ||
2024 | * @adapter: address of board private structure | ||
2025 | * | ||
2026 | * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit. | ||
2027 | * For ASF and Pass Through versions of f/w this means that the | ||
2028 | * driver is no longer loaded. For AMT version (only with 82573) i | ||
2029 | * of the f/w this means that the network i/f is closed. | ||
2030 | * | ||
2031 | **/ | ||
2032 | void e1000e_release_hw_control(struct e1000_adapter *adapter) | ||
2033 | { | ||
2034 | struct e1000_hw *hw = &adapter->hw; | ||
2035 | u32 ctrl_ext; | ||
2036 | u32 swsm; | ||
2037 | |||
2038 | /* Let firmware taken over control of h/w */ | ||
2039 | if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { | ||
2040 | swsm = er32(SWSM); | ||
2041 | ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); | ||
2042 | } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { | ||
2043 | ctrl_ext = er32(CTRL_EXT); | ||
2044 | ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); | ||
2045 | } | ||
2046 | } | ||
2047 | |||
2048 | /** | ||
2049 | * @e1000_alloc_ring - allocate memory for a ring structure | ||
2050 | **/ | ||
2051 | static int e1000_alloc_ring_dma(struct e1000_adapter *adapter, | ||
2052 | struct e1000_ring *ring) | ||
2053 | { | ||
2054 | struct pci_dev *pdev = adapter->pdev; | ||
2055 | |||
2056 | ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma, | ||
2057 | GFP_KERNEL); | ||
2058 | if (!ring->desc) | ||
2059 | return -ENOMEM; | ||
2060 | |||
2061 | return 0; | ||
2062 | } | ||
2063 | |||
2064 | /** | ||
2065 | * e1000e_setup_tx_resources - allocate Tx resources (Descriptors) | ||
2066 | * @adapter: board private structure | ||
2067 | * | ||
2068 | * Return 0 on success, negative on failure | ||
2069 | **/ | ||
2070 | int e1000e_setup_tx_resources(struct e1000_adapter *adapter) | ||
2071 | { | ||
2072 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
2073 | int err = -ENOMEM, size; | ||
2074 | |||
2075 | size = sizeof(struct e1000_buffer) * tx_ring->count; | ||
2076 | tx_ring->buffer_info = vzalloc(size); | ||
2077 | if (!tx_ring->buffer_info) | ||
2078 | goto err; | ||
2079 | |||
2080 | /* round up to nearest 4K */ | ||
2081 | tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); | ||
2082 | tx_ring->size = ALIGN(tx_ring->size, 4096); | ||
2083 | |||
2084 | err = e1000_alloc_ring_dma(adapter, tx_ring); | ||
2085 | if (err) | ||
2086 | goto err; | ||
2087 | |||
2088 | tx_ring->next_to_use = 0; | ||
2089 | tx_ring->next_to_clean = 0; | ||
2090 | |||
2091 | return 0; | ||
2092 | err: | ||
2093 | vfree(tx_ring->buffer_info); | ||
2094 | e_err("Unable to allocate memory for the transmit descriptor ring\n"); | ||
2095 | return err; | ||
2096 | } | ||
2097 | |||
2098 | /** | ||
2099 | * e1000e_setup_rx_resources - allocate Rx resources (Descriptors) | ||
2100 | * @adapter: board private structure | ||
2101 | * | ||
2102 | * Returns 0 on success, negative on failure | ||
2103 | **/ | ||
2104 | int e1000e_setup_rx_resources(struct e1000_adapter *adapter) | ||
2105 | { | ||
2106 | struct e1000_ring *rx_ring = adapter->rx_ring; | ||
2107 | struct e1000_buffer *buffer_info; | ||
2108 | int i, size, desc_len, err = -ENOMEM; | ||
2109 | |||
2110 | size = sizeof(struct e1000_buffer) * rx_ring->count; | ||
2111 | rx_ring->buffer_info = vzalloc(size); | ||
2112 | if (!rx_ring->buffer_info) | ||
2113 | goto err; | ||
2114 | |||
2115 | for (i = 0; i < rx_ring->count; i++) { | ||
2116 | buffer_info = &rx_ring->buffer_info[i]; | ||
2117 | buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS, | ||
2118 | sizeof(struct e1000_ps_page), | ||
2119 | GFP_KERNEL); | ||
2120 | if (!buffer_info->ps_pages) | ||
2121 | goto err_pages; | ||
2122 | } | ||
2123 | |||
2124 | desc_len = sizeof(union e1000_rx_desc_packet_split); | ||
2125 | |||
2126 | /* Round up to nearest 4K */ | ||
2127 | rx_ring->size = rx_ring->count * desc_len; | ||
2128 | rx_ring->size = ALIGN(rx_ring->size, 4096); | ||
2129 | |||
2130 | err = e1000_alloc_ring_dma(adapter, rx_ring); | ||
2131 | if (err) | ||
2132 | goto err_pages; | ||
2133 | |||
2134 | rx_ring->next_to_clean = 0; | ||
2135 | rx_ring->next_to_use = 0; | ||
2136 | rx_ring->rx_skb_top = NULL; | ||
2137 | |||
2138 | return 0; | ||
2139 | |||
2140 | err_pages: | ||
2141 | for (i = 0; i < rx_ring->count; i++) { | ||
2142 | buffer_info = &rx_ring->buffer_info[i]; | ||
2143 | kfree(buffer_info->ps_pages); | ||
2144 | } | ||
2145 | err: | ||
2146 | vfree(rx_ring->buffer_info); | ||
2147 | e_err("Unable to allocate memory for the receive descriptor ring\n"); | ||
2148 | return err; | ||
2149 | } | ||
2150 | |||
2151 | /** | ||
2152 | * e1000_clean_tx_ring - Free Tx Buffers | ||
2153 | * @adapter: board private structure | ||
2154 | **/ | ||
2155 | static void e1000_clean_tx_ring(struct e1000_adapter *adapter) | ||
2156 | { | ||
2157 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
2158 | struct e1000_buffer *buffer_info; | ||
2159 | unsigned long size; | ||
2160 | unsigned int i; | ||
2161 | |||
2162 | for (i = 0; i < tx_ring->count; i++) { | ||
2163 | buffer_info = &tx_ring->buffer_info[i]; | ||
2164 | e1000_put_txbuf(adapter, buffer_info); | ||
2165 | } | ||
2166 | |||
2167 | size = sizeof(struct e1000_buffer) * tx_ring->count; | ||
2168 | memset(tx_ring->buffer_info, 0, size); | ||
2169 | |||
2170 | memset(tx_ring->desc, 0, tx_ring->size); | ||
2171 | |||
2172 | tx_ring->next_to_use = 0; | ||
2173 | tx_ring->next_to_clean = 0; | ||
2174 | |||
2175 | writel(0, adapter->hw.hw_addr + tx_ring->head); | ||
2176 | writel(0, adapter->hw.hw_addr + tx_ring->tail); | ||
2177 | } | ||
2178 | |||
2179 | /** | ||
2180 | * e1000e_free_tx_resources - Free Tx Resources per Queue | ||
2181 | * @adapter: board private structure | ||
2182 | * | ||
2183 | * Free all transmit software resources | ||
2184 | **/ | ||
2185 | void e1000e_free_tx_resources(struct e1000_adapter *adapter) | ||
2186 | { | ||
2187 | struct pci_dev *pdev = adapter->pdev; | ||
2188 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
2189 | |||
2190 | e1000_clean_tx_ring(adapter); | ||
2191 | |||
2192 | vfree(tx_ring->buffer_info); | ||
2193 | tx_ring->buffer_info = NULL; | ||
2194 | |||
2195 | dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, | ||
2196 | tx_ring->dma); | ||
2197 | tx_ring->desc = NULL; | ||
2198 | } | ||
2199 | |||
2200 | /** | ||
2201 | * e1000e_free_rx_resources - Free Rx Resources | ||
2202 | * @adapter: board private structure | ||
2203 | * | ||
2204 | * Free all receive software resources | ||
2205 | **/ | ||
2206 | |||
2207 | void e1000e_free_rx_resources(struct e1000_adapter *adapter) | ||
2208 | { | ||
2209 | struct pci_dev *pdev = adapter->pdev; | ||
2210 | struct e1000_ring *rx_ring = adapter->rx_ring; | ||
2211 | int i; | ||
2212 | |||
2213 | e1000_clean_rx_ring(adapter); | ||
2214 | |||
2215 | for (i = 0; i < rx_ring->count; i++) | ||
2216 | kfree(rx_ring->buffer_info[i].ps_pages); | ||
2217 | |||
2218 | vfree(rx_ring->buffer_info); | ||
2219 | rx_ring->buffer_info = NULL; | ||
2220 | |||
2221 | dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, | ||
2222 | rx_ring->dma); | ||
2223 | rx_ring->desc = NULL; | ||
2224 | } | ||
2225 | |||
2226 | /** | ||
2227 | * e1000_update_itr - update the dynamic ITR value based on statistics | ||
2228 | * @adapter: pointer to adapter | ||
2229 | * @itr_setting: current adapter->itr | ||
2230 | * @packets: the number of packets during this measurement interval | ||
2231 | * @bytes: the number of bytes during this measurement interval | ||
2232 | * | ||
2233 | * Stores a new ITR value based on packets and byte | ||
2234 | * counts during the last interrupt. The advantage of per interrupt | ||
2235 | * computation is faster updates and more accurate ITR for the current | ||
2236 | * traffic pattern. Constants in this function were computed | ||
2237 | * based on theoretical maximum wire speed and thresholds were set based | ||
2238 | * on testing data as well as attempting to minimize response time | ||
2239 | * while increasing bulk throughput. This functionality is controlled | ||
2240 | * by the InterruptThrottleRate module parameter. | ||
2241 | **/ | ||
2242 | static unsigned int e1000_update_itr(struct e1000_adapter *adapter, | ||
2243 | u16 itr_setting, int packets, | ||
2244 | int bytes) | ||
2245 | { | ||
2246 | unsigned int retval = itr_setting; | ||
2247 | |||
2248 | if (packets == 0) | ||
2249 | goto update_itr_done; | ||
2250 | |||
2251 | switch (itr_setting) { | ||
2252 | case lowest_latency: | ||
2253 | /* handle TSO and jumbo frames */ | ||
2254 | if (bytes/packets > 8000) | ||
2255 | retval = bulk_latency; | ||
2256 | else if ((packets < 5) && (bytes > 512)) | ||
2257 | retval = low_latency; | ||
2258 | break; | ||
2259 | case low_latency: /* 50 usec aka 20000 ints/s */ | ||
2260 | if (bytes > 10000) { | ||
2261 | /* this if handles the TSO accounting */ | ||
2262 | if (bytes/packets > 8000) | ||
2263 | retval = bulk_latency; | ||
2264 | else if ((packets < 10) || ((bytes/packets) > 1200)) | ||
2265 | retval = bulk_latency; | ||
2266 | else if ((packets > 35)) | ||
2267 | retval = lowest_latency; | ||
2268 | } else if (bytes/packets > 2000) { | ||
2269 | retval = bulk_latency; | ||
2270 | } else if (packets <= 2 && bytes < 512) { | ||
2271 | retval = lowest_latency; | ||
2272 | } | ||
2273 | break; | ||
2274 | case bulk_latency: /* 250 usec aka 4000 ints/s */ | ||
2275 | if (bytes > 25000) { | ||
2276 | if (packets > 35) | ||
2277 | retval = low_latency; | ||
2278 | } else if (bytes < 6000) { | ||
2279 | retval = low_latency; | ||
2280 | } | ||
2281 | break; | ||
2282 | } | ||
2283 | |||
2284 | update_itr_done: | ||
2285 | return retval; | ||
2286 | } | ||
2287 | |||
2288 | static void e1000_set_itr(struct e1000_adapter *adapter) | ||
2289 | { | ||
2290 | struct e1000_hw *hw = &adapter->hw; | ||
2291 | u16 current_itr; | ||
2292 | u32 new_itr = adapter->itr; | ||
2293 | |||
2294 | /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ | ||
2295 | if (adapter->link_speed != SPEED_1000) { | ||
2296 | current_itr = 0; | ||
2297 | new_itr = 4000; | ||
2298 | goto set_itr_now; | ||
2299 | } | ||
2300 | |||
2301 | if (adapter->flags2 & FLAG2_DISABLE_AIM) { | ||
2302 | new_itr = 0; | ||
2303 | goto set_itr_now; | ||
2304 | } | ||
2305 | |||
2306 | adapter->tx_itr = e1000_update_itr(adapter, | ||
2307 | adapter->tx_itr, | ||
2308 | adapter->total_tx_packets, | ||
2309 | adapter->total_tx_bytes); | ||
2310 | /* conservative mode (itr 3) eliminates the lowest_latency setting */ | ||
2311 | if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) | ||
2312 | adapter->tx_itr = low_latency; | ||
2313 | |||
2314 | adapter->rx_itr = e1000_update_itr(adapter, | ||
2315 | adapter->rx_itr, | ||
2316 | adapter->total_rx_packets, | ||
2317 | adapter->total_rx_bytes); | ||
2318 | /* conservative mode (itr 3) eliminates the lowest_latency setting */ | ||
2319 | if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) | ||
2320 | adapter->rx_itr = low_latency; | ||
2321 | |||
2322 | current_itr = max(adapter->rx_itr, adapter->tx_itr); | ||
2323 | |||
2324 | switch (current_itr) { | ||
2325 | /* counts and packets in update_itr are dependent on these numbers */ | ||
2326 | case lowest_latency: | ||
2327 | new_itr = 70000; | ||
2328 | break; | ||
2329 | case low_latency: | ||
2330 | new_itr = 20000; /* aka hwitr = ~200 */ | ||
2331 | break; | ||
2332 | case bulk_latency: | ||
2333 | new_itr = 4000; | ||
2334 | break; | ||
2335 | default: | ||
2336 | break; | ||
2337 | } | ||
2338 | |||
2339 | set_itr_now: | ||
2340 | if (new_itr != adapter->itr) { | ||
2341 | /* | ||
2342 | * this attempts to bias the interrupt rate towards Bulk | ||
2343 | * by adding intermediate steps when interrupt rate is | ||
2344 | * increasing | ||
2345 | */ | ||
2346 | new_itr = new_itr > adapter->itr ? | ||
2347 | min(adapter->itr + (new_itr >> 2), new_itr) : | ||
2348 | new_itr; | ||
2349 | adapter->itr = new_itr; | ||
2350 | adapter->rx_ring->itr_val = new_itr; | ||
2351 | if (adapter->msix_entries) | ||
2352 | adapter->rx_ring->set_itr = 1; | ||
2353 | else | ||
2354 | if (new_itr) | ||
2355 | ew32(ITR, 1000000000 / (new_itr * 256)); | ||
2356 | else | ||
2357 | ew32(ITR, 0); | ||
2358 | } | ||
2359 | } | ||
2360 | |||
2361 | /** | ||
2362 | * e1000_alloc_queues - Allocate memory for all rings | ||
2363 | * @adapter: board private structure to initialize | ||
2364 | **/ | ||
2365 | static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter) | ||
2366 | { | ||
2367 | adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); | ||
2368 | if (!adapter->tx_ring) | ||
2369 | goto err; | ||
2370 | |||
2371 | adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); | ||
2372 | if (!adapter->rx_ring) | ||
2373 | goto err; | ||
2374 | |||
2375 | return 0; | ||
2376 | err: | ||
2377 | e_err("Unable to allocate memory for queues\n"); | ||
2378 | kfree(adapter->rx_ring); | ||
2379 | kfree(adapter->tx_ring); | ||
2380 | return -ENOMEM; | ||
2381 | } | ||
2382 | |||
2383 | /** | ||
2384 | * e1000_clean - NAPI Rx polling callback | ||
2385 | * @napi: struct associated with this polling callback | ||
2386 | * @budget: amount of packets driver is allowed to process this poll | ||
2387 | **/ | ||
2388 | static int e1000_clean(struct napi_struct *napi, int budget) | ||
2389 | { | ||
2390 | struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi); | ||
2391 | struct e1000_hw *hw = &adapter->hw; | ||
2392 | struct net_device *poll_dev = adapter->netdev; | ||
2393 | int tx_cleaned = 1, work_done = 0; | ||
2394 | |||
2395 | adapter = netdev_priv(poll_dev); | ||
2396 | |||
2397 | if (adapter->msix_entries && | ||
2398 | !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val)) | ||
2399 | goto clean_rx; | ||
2400 | |||
2401 | tx_cleaned = e1000_clean_tx_irq(adapter); | ||
2402 | |||
2403 | clean_rx: | ||
2404 | adapter->clean_rx(adapter, &work_done, budget); | ||
2405 | |||
2406 | if (!tx_cleaned) | ||
2407 | work_done = budget; | ||
2408 | |||
2409 | /* If budget not fully consumed, exit the polling mode */ | ||
2410 | if (work_done < budget) { | ||
2411 | if (adapter->itr_setting & 3) | ||
2412 | e1000_set_itr(adapter); | ||
2413 | napi_complete(napi); | ||
2414 | if (!test_bit(__E1000_DOWN, &adapter->state)) { | ||
2415 | if (adapter->msix_entries) | ||
2416 | ew32(IMS, adapter->rx_ring->ims_val); | ||
2417 | else | ||
2418 | e1000_irq_enable(adapter); | ||
2419 | } | ||
2420 | } | ||
2421 | |||
2422 | return work_done; | ||
2423 | } | ||
2424 | |||
2425 | static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid) | ||
2426 | { | ||
2427 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
2428 | struct e1000_hw *hw = &adapter->hw; | ||
2429 | u32 vfta, index; | ||
2430 | |||
2431 | /* don't update vlan cookie if already programmed */ | ||
2432 | if ((adapter->hw.mng_cookie.status & | ||
2433 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && | ||
2434 | (vid == adapter->mng_vlan_id)) | ||
2435 | return; | ||
2436 | |||
2437 | /* add VID to filter table */ | ||
2438 | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { | ||
2439 | index = (vid >> 5) & 0x7F; | ||
2440 | vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); | ||
2441 | vfta |= (1 << (vid & 0x1F)); | ||
2442 | hw->mac.ops.write_vfta(hw, index, vfta); | ||
2443 | } | ||
2444 | |||
2445 | set_bit(vid, adapter->active_vlans); | ||
2446 | } | ||
2447 | |||
2448 | static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) | ||
2449 | { | ||
2450 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
2451 | struct e1000_hw *hw = &adapter->hw; | ||
2452 | u32 vfta, index; | ||
2453 | |||
2454 | if ((adapter->hw.mng_cookie.status & | ||
2455 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && | ||
2456 | (vid == adapter->mng_vlan_id)) { | ||
2457 | /* release control to f/w */ | ||
2458 | e1000e_release_hw_control(adapter); | ||
2459 | return; | ||
2460 | } | ||
2461 | |||
2462 | /* remove VID from filter table */ | ||
2463 | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { | ||
2464 | index = (vid >> 5) & 0x7F; | ||
2465 | vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); | ||
2466 | vfta &= ~(1 << (vid & 0x1F)); | ||
2467 | hw->mac.ops.write_vfta(hw, index, vfta); | ||
2468 | } | ||
2469 | |||
2470 | clear_bit(vid, adapter->active_vlans); | ||
2471 | } | ||
2472 | |||
2473 | /** | ||
2474 | * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering | ||
2475 | * @adapter: board private structure to initialize | ||
2476 | **/ | ||
2477 | static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter) | ||
2478 | { | ||
2479 | struct net_device *netdev = adapter->netdev; | ||
2480 | struct e1000_hw *hw = &adapter->hw; | ||
2481 | u32 rctl; | ||
2482 | |||
2483 | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { | ||
2484 | /* disable VLAN receive filtering */ | ||
2485 | rctl = er32(RCTL); | ||
2486 | rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN); | ||
2487 | ew32(RCTL, rctl); | ||
2488 | |||
2489 | if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) { | ||
2490 | e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); | ||
2491 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | ||
2492 | } | ||
2493 | } | ||
2494 | } | ||
2495 | |||
2496 | /** | ||
2497 | * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering | ||
2498 | * @adapter: board private structure to initialize | ||
2499 | **/ | ||
2500 | static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter) | ||
2501 | { | ||
2502 | struct e1000_hw *hw = &adapter->hw; | ||
2503 | u32 rctl; | ||
2504 | |||
2505 | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { | ||
2506 | /* enable VLAN receive filtering */ | ||
2507 | rctl = er32(RCTL); | ||
2508 | rctl |= E1000_RCTL_VFE; | ||
2509 | rctl &= ~E1000_RCTL_CFIEN; | ||
2510 | ew32(RCTL, rctl); | ||
2511 | } | ||
2512 | } | ||
2513 | |||
2514 | /** | ||
2515 | * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping | ||
2516 | * @adapter: board private structure to initialize | ||
2517 | **/ | ||
2518 | static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter) | ||
2519 | { | ||
2520 | struct e1000_hw *hw = &adapter->hw; | ||
2521 | u32 ctrl; | ||
2522 | |||
2523 | /* disable VLAN tag insert/strip */ | ||
2524 | ctrl = er32(CTRL); | ||
2525 | ctrl &= ~E1000_CTRL_VME; | ||
2526 | ew32(CTRL, ctrl); | ||
2527 | } | ||
2528 | |||
2529 | /** | ||
2530 | * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping | ||
2531 | * @adapter: board private structure to initialize | ||
2532 | **/ | ||
2533 | static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter) | ||
2534 | { | ||
2535 | struct e1000_hw *hw = &adapter->hw; | ||
2536 | u32 ctrl; | ||
2537 | |||
2538 | /* enable VLAN tag insert/strip */ | ||
2539 | ctrl = er32(CTRL); | ||
2540 | ctrl |= E1000_CTRL_VME; | ||
2541 | ew32(CTRL, ctrl); | ||
2542 | } | ||
2543 | |||
2544 | static void e1000_update_mng_vlan(struct e1000_adapter *adapter) | ||
2545 | { | ||
2546 | struct net_device *netdev = adapter->netdev; | ||
2547 | u16 vid = adapter->hw.mng_cookie.vlan_id; | ||
2548 | u16 old_vid = adapter->mng_vlan_id; | ||
2549 | |||
2550 | if (adapter->hw.mng_cookie.status & | ||
2551 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { | ||
2552 | e1000_vlan_rx_add_vid(netdev, vid); | ||
2553 | adapter->mng_vlan_id = vid; | ||
2554 | } | ||
2555 | |||
2556 | if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid)) | ||
2557 | e1000_vlan_rx_kill_vid(netdev, old_vid); | ||
2558 | } | ||
2559 | |||
2560 | static void e1000_restore_vlan(struct e1000_adapter *adapter) | ||
2561 | { | ||
2562 | u16 vid; | ||
2563 | |||
2564 | e1000_vlan_rx_add_vid(adapter->netdev, 0); | ||
2565 | |||
2566 | for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) | ||
2567 | e1000_vlan_rx_add_vid(adapter->netdev, vid); | ||
2568 | } | ||
2569 | |||
2570 | static void e1000_init_manageability_pt(struct e1000_adapter *adapter) | ||
2571 | { | ||
2572 | struct e1000_hw *hw = &adapter->hw; | ||
2573 | u32 manc, manc2h, mdef, i, j; | ||
2574 | |||
2575 | if (!(adapter->flags & FLAG_MNG_PT_ENABLED)) | ||
2576 | return; | ||
2577 | |||
2578 | manc = er32(MANC); | ||
2579 | |||
2580 | /* | ||
2581 | * enable receiving management packets to the host. this will probably | ||
2582 | * generate destination unreachable messages from the host OS, but | ||
2583 | * the packets will be handled on SMBUS | ||
2584 | */ | ||
2585 | manc |= E1000_MANC_EN_MNG2HOST; | ||
2586 | manc2h = er32(MANC2H); | ||
2587 | |||
2588 | switch (hw->mac.type) { | ||
2589 | default: | ||
2590 | manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664); | ||
2591 | break; | ||
2592 | case e1000_82574: | ||
2593 | case e1000_82583: | ||
2594 | /* | ||
2595 | * Check if IPMI pass-through decision filter already exists; | ||
2596 | * if so, enable it. | ||
2597 | */ | ||
2598 | for (i = 0, j = 0; i < 8; i++) { | ||
2599 | mdef = er32(MDEF(i)); | ||
2600 | |||
2601 | /* Ignore filters with anything other than IPMI ports */ | ||
2602 | if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664)) | ||
2603 | continue; | ||
2604 | |||
2605 | /* Enable this decision filter in MANC2H */ | ||
2606 | if (mdef) | ||
2607 | manc2h |= (1 << i); | ||
2608 | |||
2609 | j |= mdef; | ||
2610 | } | ||
2611 | |||
2612 | if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664)) | ||
2613 | break; | ||
2614 | |||
2615 | /* Create new decision filter in an empty filter */ | ||
2616 | for (i = 0, j = 0; i < 8; i++) | ||
2617 | if (er32(MDEF(i)) == 0) { | ||
2618 | ew32(MDEF(i), (E1000_MDEF_PORT_623 | | ||
2619 | E1000_MDEF_PORT_664)); | ||
2620 | manc2h |= (1 << 1); | ||
2621 | j++; | ||
2622 | break; | ||
2623 | } | ||
2624 | |||
2625 | if (!j) | ||
2626 | e_warn("Unable to create IPMI pass-through filter\n"); | ||
2627 | break; | ||
2628 | } | ||
2629 | |||
2630 | ew32(MANC2H, manc2h); | ||
2631 | ew32(MANC, manc); | ||
2632 | } | ||
2633 | |||
2634 | /** | ||
2635 | * e1000_configure_tx - Configure Transmit Unit after Reset | ||
2636 | * @adapter: board private structure | ||
2637 | * | ||
2638 | * Configure the Tx unit of the MAC after a reset. | ||
2639 | **/ | ||
2640 | static void e1000_configure_tx(struct e1000_adapter *adapter) | ||
2641 | { | ||
2642 | struct e1000_hw *hw = &adapter->hw; | ||
2643 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
2644 | u64 tdba; | ||
2645 | u32 tdlen, tctl, tipg, tarc; | ||
2646 | u32 ipgr1, ipgr2; | ||
2647 | |||
2648 | /* Setup the HW Tx Head and Tail descriptor pointers */ | ||
2649 | tdba = tx_ring->dma; | ||
2650 | tdlen = tx_ring->count * sizeof(struct e1000_tx_desc); | ||
2651 | ew32(TDBAL, (tdba & DMA_BIT_MASK(32))); | ||
2652 | ew32(TDBAH, (tdba >> 32)); | ||
2653 | ew32(TDLEN, tdlen); | ||
2654 | ew32(TDH, 0); | ||
2655 | ew32(TDT, 0); | ||
2656 | tx_ring->head = E1000_TDH; | ||
2657 | tx_ring->tail = E1000_TDT; | ||
2658 | |||
2659 | /* Set the default values for the Tx Inter Packet Gap timer */ | ||
2660 | tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */ | ||
2661 | ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */ | ||
2662 | ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */ | ||
2663 | |||
2664 | if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN) | ||
2665 | ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */ | ||
2666 | |||
2667 | tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; | ||
2668 | tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; | ||
2669 | ew32(TIPG, tipg); | ||
2670 | |||
2671 | /* Set the Tx Interrupt Delay register */ | ||
2672 | ew32(TIDV, adapter->tx_int_delay); | ||
2673 | /* Tx irq moderation */ | ||
2674 | ew32(TADV, adapter->tx_abs_int_delay); | ||
2675 | |||
2676 | if (adapter->flags2 & FLAG2_DMA_BURST) { | ||
2677 | u32 txdctl = er32(TXDCTL(0)); | ||
2678 | txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH | | ||
2679 | E1000_TXDCTL_WTHRESH); | ||
2680 | /* | ||
2681 | * set up some performance related parameters to encourage the | ||
2682 | * hardware to use the bus more efficiently in bursts, depends | ||
2683 | * on the tx_int_delay to be enabled, | ||
2684 | * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time | ||
2685 | * hthresh = 1 ==> prefetch when one or more available | ||
2686 | * pthresh = 0x1f ==> prefetch if internal cache 31 or less | ||
2687 | * BEWARE: this seems to work but should be considered first if | ||
2688 | * there are Tx hangs or other Tx related bugs | ||
2689 | */ | ||
2690 | txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE; | ||
2691 | ew32(TXDCTL(0), txdctl); | ||
2692 | /* erratum work around: set txdctl the same for both queues */ | ||
2693 | ew32(TXDCTL(1), txdctl); | ||
2694 | } | ||
2695 | |||
2696 | /* Program the Transmit Control Register */ | ||
2697 | tctl = er32(TCTL); | ||
2698 | tctl &= ~E1000_TCTL_CT; | ||
2699 | tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | | ||
2700 | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); | ||
2701 | |||
2702 | if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) { | ||
2703 | tarc = er32(TARC(0)); | ||
2704 | /* | ||
2705 | * set the speed mode bit, we'll clear it if we're not at | ||
2706 | * gigabit link later | ||
2707 | */ | ||
2708 | #define SPEED_MODE_BIT (1 << 21) | ||
2709 | tarc |= SPEED_MODE_BIT; | ||
2710 | ew32(TARC(0), tarc); | ||
2711 | } | ||
2712 | |||
2713 | /* errata: program both queues to unweighted RR */ | ||
2714 | if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) { | ||
2715 | tarc = er32(TARC(0)); | ||
2716 | tarc |= 1; | ||
2717 | ew32(TARC(0), tarc); | ||
2718 | tarc = er32(TARC(1)); | ||
2719 | tarc |= 1; | ||
2720 | ew32(TARC(1), tarc); | ||
2721 | } | ||
2722 | |||
2723 | /* Setup Transmit Descriptor Settings for eop descriptor */ | ||
2724 | adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; | ||
2725 | |||
2726 | /* only set IDE if we are delaying interrupts using the timers */ | ||
2727 | if (adapter->tx_int_delay) | ||
2728 | adapter->txd_cmd |= E1000_TXD_CMD_IDE; | ||
2729 | |||
2730 | /* enable Report Status bit */ | ||
2731 | adapter->txd_cmd |= E1000_TXD_CMD_RS; | ||
2732 | |||
2733 | ew32(TCTL, tctl); | ||
2734 | |||
2735 | e1000e_config_collision_dist(hw); | ||
2736 | } | ||
2737 | |||
2738 | /** | ||
2739 | * e1000_setup_rctl - configure the receive control registers | ||
2740 | * @adapter: Board private structure | ||
2741 | **/ | ||
2742 | #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ | ||
2743 | (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) | ||
2744 | static void e1000_setup_rctl(struct e1000_adapter *adapter) | ||
2745 | { | ||
2746 | struct e1000_hw *hw = &adapter->hw; | ||
2747 | u32 rctl, rfctl; | ||
2748 | u32 pages = 0; | ||
2749 | |||
2750 | /* Workaround Si errata on 82579 - configure jumbo frame flow */ | ||
2751 | if (hw->mac.type == e1000_pch2lan) { | ||
2752 | s32 ret_val; | ||
2753 | |||
2754 | if (adapter->netdev->mtu > ETH_DATA_LEN) | ||
2755 | ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true); | ||
2756 | else | ||
2757 | ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false); | ||
2758 | |||
2759 | if (ret_val) | ||
2760 | e_dbg("failed to enable jumbo frame workaround mode\n"); | ||
2761 | } | ||
2762 | |||
2763 | /* Program MC offset vector base */ | ||
2764 | rctl = er32(RCTL); | ||
2765 | rctl &= ~(3 << E1000_RCTL_MO_SHIFT); | ||
2766 | rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | | ||
2767 | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | | ||
2768 | (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); | ||
2769 | |||
2770 | /* Do not Store bad packets */ | ||
2771 | rctl &= ~E1000_RCTL_SBP; | ||
2772 | |||
2773 | /* Enable Long Packet receive */ | ||
2774 | if (adapter->netdev->mtu <= ETH_DATA_LEN) | ||
2775 | rctl &= ~E1000_RCTL_LPE; | ||
2776 | else | ||
2777 | rctl |= E1000_RCTL_LPE; | ||
2778 | |||
2779 | /* Some systems expect that the CRC is included in SMBUS traffic. The | ||
2780 | * hardware strips the CRC before sending to both SMBUS (BMC) and to | ||
2781 | * host memory when this is enabled | ||
2782 | */ | ||
2783 | if (adapter->flags2 & FLAG2_CRC_STRIPPING) | ||
2784 | rctl |= E1000_RCTL_SECRC; | ||
2785 | |||
2786 | /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */ | ||
2787 | if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) { | ||
2788 | u16 phy_data; | ||
2789 | |||
2790 | e1e_rphy(hw, PHY_REG(770, 26), &phy_data); | ||
2791 | phy_data &= 0xfff8; | ||
2792 | phy_data |= (1 << 2); | ||
2793 | e1e_wphy(hw, PHY_REG(770, 26), phy_data); | ||
2794 | |||
2795 | e1e_rphy(hw, 22, &phy_data); | ||
2796 | phy_data &= 0x0fff; | ||
2797 | phy_data |= (1 << 14); | ||
2798 | e1e_wphy(hw, 0x10, 0x2823); | ||
2799 | e1e_wphy(hw, 0x11, 0x0003); | ||
2800 | e1e_wphy(hw, 22, phy_data); | ||
2801 | } | ||
2802 | |||
2803 | /* Setup buffer sizes */ | ||
2804 | rctl &= ~E1000_RCTL_SZ_4096; | ||
2805 | rctl |= E1000_RCTL_BSEX; | ||
2806 | switch (adapter->rx_buffer_len) { | ||
2807 | case 2048: | ||
2808 | default: | ||
2809 | rctl |= E1000_RCTL_SZ_2048; | ||
2810 | rctl &= ~E1000_RCTL_BSEX; | ||
2811 | break; | ||
2812 | case 4096: | ||
2813 | rctl |= E1000_RCTL_SZ_4096; | ||
2814 | break; | ||
2815 | case 8192: | ||
2816 | rctl |= E1000_RCTL_SZ_8192; | ||
2817 | break; | ||
2818 | case 16384: | ||
2819 | rctl |= E1000_RCTL_SZ_16384; | ||
2820 | break; | ||
2821 | } | ||
2822 | |||
2823 | /* | ||
2824 | * 82571 and greater support packet-split where the protocol | ||
2825 | * header is placed in skb->data and the packet data is | ||
2826 | * placed in pages hanging off of skb_shinfo(skb)->nr_frags. | ||
2827 | * In the case of a non-split, skb->data is linearly filled, | ||
2828 | * followed by the page buffers. Therefore, skb->data is | ||
2829 | * sized to hold the largest protocol header. | ||
2830 | * | ||
2831 | * allocations using alloc_page take too long for regular MTU | ||
2832 | * so only enable packet split for jumbo frames | ||
2833 | * | ||
2834 | * Using pages when the page size is greater than 16k wastes | ||
2835 | * a lot of memory, since we allocate 3 pages at all times | ||
2836 | * per packet. | ||
2837 | */ | ||
2838 | pages = PAGE_USE_COUNT(adapter->netdev->mtu); | ||
2839 | if (!(adapter->flags & FLAG_HAS_ERT) && (pages <= 3) && | ||
2840 | (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE)) | ||
2841 | adapter->rx_ps_pages = pages; | ||
2842 | else | ||
2843 | adapter->rx_ps_pages = 0; | ||
2844 | |||
2845 | if (adapter->rx_ps_pages) { | ||
2846 | u32 psrctl = 0; | ||
2847 | |||
2848 | /* Configure extra packet-split registers */ | ||
2849 | rfctl = er32(RFCTL); | ||
2850 | rfctl |= E1000_RFCTL_EXTEN; | ||
2851 | /* | ||
2852 | * disable packet split support for IPv6 extension headers, | ||
2853 | * because some malformed IPv6 headers can hang the Rx | ||
2854 | */ | ||
2855 | rfctl |= (E1000_RFCTL_IPV6_EX_DIS | | ||
2856 | E1000_RFCTL_NEW_IPV6_EXT_DIS); | ||
2857 | |||
2858 | ew32(RFCTL, rfctl); | ||
2859 | |||
2860 | /* Enable Packet split descriptors */ | ||
2861 | rctl |= E1000_RCTL_DTYP_PS; | ||
2862 | |||
2863 | psrctl |= adapter->rx_ps_bsize0 >> | ||
2864 | E1000_PSRCTL_BSIZE0_SHIFT; | ||
2865 | |||
2866 | switch (adapter->rx_ps_pages) { | ||
2867 | case 3: | ||
2868 | psrctl |= PAGE_SIZE << | ||
2869 | E1000_PSRCTL_BSIZE3_SHIFT; | ||
2870 | case 2: | ||
2871 | psrctl |= PAGE_SIZE << | ||
2872 | E1000_PSRCTL_BSIZE2_SHIFT; | ||
2873 | case 1: | ||
2874 | psrctl |= PAGE_SIZE >> | ||
2875 | E1000_PSRCTL_BSIZE1_SHIFT; | ||
2876 | break; | ||
2877 | } | ||
2878 | |||
2879 | ew32(PSRCTL, psrctl); | ||
2880 | } | ||
2881 | |||
2882 | ew32(RCTL, rctl); | ||
2883 | /* just started the receive unit, no need to restart */ | ||
2884 | adapter->flags &= ~FLAG_RX_RESTART_NOW; | ||
2885 | } | ||
2886 | |||
2887 | /** | ||
2888 | * e1000_configure_rx - Configure Receive Unit after Reset | ||
2889 | * @adapter: board private structure | ||
2890 | * | ||
2891 | * Configure the Rx unit of the MAC after a reset. | ||
2892 | **/ | ||
2893 | static void e1000_configure_rx(struct e1000_adapter *adapter) | ||
2894 | { | ||
2895 | struct e1000_hw *hw = &adapter->hw; | ||
2896 | struct e1000_ring *rx_ring = adapter->rx_ring; | ||
2897 | u64 rdba; | ||
2898 | u32 rdlen, rctl, rxcsum, ctrl_ext; | ||
2899 | |||
2900 | if (adapter->rx_ps_pages) { | ||
2901 | /* this is a 32 byte descriptor */ | ||
2902 | rdlen = rx_ring->count * | ||
2903 | sizeof(union e1000_rx_desc_packet_split); | ||
2904 | adapter->clean_rx = e1000_clean_rx_irq_ps; | ||
2905 | adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; | ||
2906 | } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) { | ||
2907 | rdlen = rx_ring->count * sizeof(struct e1000_rx_desc); | ||
2908 | adapter->clean_rx = e1000_clean_jumbo_rx_irq; | ||
2909 | adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; | ||
2910 | } else { | ||
2911 | rdlen = rx_ring->count * sizeof(struct e1000_rx_desc); | ||
2912 | adapter->clean_rx = e1000_clean_rx_irq; | ||
2913 | adapter->alloc_rx_buf = e1000_alloc_rx_buffers; | ||
2914 | } | ||
2915 | |||
2916 | /* disable receives while setting up the descriptors */ | ||
2917 | rctl = er32(RCTL); | ||
2918 | ew32(RCTL, rctl & ~E1000_RCTL_EN); | ||
2919 | e1e_flush(); | ||
2920 | usleep_range(10000, 20000); | ||
2921 | |||
2922 | if (adapter->flags2 & FLAG2_DMA_BURST) { | ||
2923 | /* | ||
2924 | * set the writeback threshold (only takes effect if the RDTR | ||
2925 | * is set). set GRAN=1 and write back up to 0x4 worth, and | ||
2926 | * enable prefetching of 0x20 Rx descriptors | ||
2927 | * granularity = 01 | ||
2928 | * wthresh = 04, | ||
2929 | * hthresh = 04, | ||
2930 | * pthresh = 0x20 | ||
2931 | */ | ||
2932 | ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE); | ||
2933 | ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE); | ||
2934 | |||
2935 | /* | ||
2936 | * override the delay timers for enabling bursting, only if | ||
2937 | * the value was not set by the user via module options | ||
2938 | */ | ||
2939 | if (adapter->rx_int_delay == DEFAULT_RDTR) | ||
2940 | adapter->rx_int_delay = BURST_RDTR; | ||
2941 | if (adapter->rx_abs_int_delay == DEFAULT_RADV) | ||
2942 | adapter->rx_abs_int_delay = BURST_RADV; | ||
2943 | } | ||
2944 | |||
2945 | /* set the Receive Delay Timer Register */ | ||
2946 | ew32(RDTR, adapter->rx_int_delay); | ||
2947 | |||
2948 | /* irq moderation */ | ||
2949 | ew32(RADV, adapter->rx_abs_int_delay); | ||
2950 | if ((adapter->itr_setting != 0) && (adapter->itr != 0)) | ||
2951 | ew32(ITR, 1000000000 / (adapter->itr * 256)); | ||
2952 | |||
2953 | ctrl_ext = er32(CTRL_EXT); | ||
2954 | /* Auto-Mask interrupts upon ICR access */ | ||
2955 | ctrl_ext |= E1000_CTRL_EXT_IAME; | ||
2956 | ew32(IAM, 0xffffffff); | ||
2957 | ew32(CTRL_EXT, ctrl_ext); | ||
2958 | e1e_flush(); | ||
2959 | |||
2960 | /* | ||
2961 | * Setup the HW Rx Head and Tail Descriptor Pointers and | ||
2962 | * the Base and Length of the Rx Descriptor Ring | ||
2963 | */ | ||
2964 | rdba = rx_ring->dma; | ||
2965 | ew32(RDBAL, (rdba & DMA_BIT_MASK(32))); | ||
2966 | ew32(RDBAH, (rdba >> 32)); | ||
2967 | ew32(RDLEN, rdlen); | ||
2968 | ew32(RDH, 0); | ||
2969 | ew32(RDT, 0); | ||
2970 | rx_ring->head = E1000_RDH; | ||
2971 | rx_ring->tail = E1000_RDT; | ||
2972 | |||
2973 | /* Enable Receive Checksum Offload for TCP and UDP */ | ||
2974 | rxcsum = er32(RXCSUM); | ||
2975 | if (adapter->flags & FLAG_RX_CSUM_ENABLED) { | ||
2976 | rxcsum |= E1000_RXCSUM_TUOFL; | ||
2977 | |||
2978 | /* | ||
2979 | * IPv4 payload checksum for UDP fragments must be | ||
2980 | * used in conjunction with packet-split. | ||
2981 | */ | ||
2982 | if (adapter->rx_ps_pages) | ||
2983 | rxcsum |= E1000_RXCSUM_IPPCSE; | ||
2984 | } else { | ||
2985 | rxcsum &= ~E1000_RXCSUM_TUOFL; | ||
2986 | /* no need to clear IPPCSE as it defaults to 0 */ | ||
2987 | } | ||
2988 | ew32(RXCSUM, rxcsum); | ||
2989 | |||
2990 | /* | ||
2991 | * Enable early receives on supported devices, only takes effect when | ||
2992 | * packet size is equal or larger than the specified value (in 8 byte | ||
2993 | * units), e.g. using jumbo frames when setting to E1000_ERT_2048 | ||
2994 | */ | ||
2995 | if ((adapter->flags & FLAG_HAS_ERT) || | ||
2996 | (adapter->hw.mac.type == e1000_pch2lan)) { | ||
2997 | if (adapter->netdev->mtu > ETH_DATA_LEN) { | ||
2998 | u32 rxdctl = er32(RXDCTL(0)); | ||
2999 | ew32(RXDCTL(0), rxdctl | 0x3); | ||
3000 | if (adapter->flags & FLAG_HAS_ERT) | ||
3001 | ew32(ERT, E1000_ERT_2048 | (1 << 13)); | ||
3002 | /* | ||
3003 | * With jumbo frames and early-receive enabled, | ||
3004 | * excessive C-state transition latencies result in | ||
3005 | * dropped transactions. | ||
3006 | */ | ||
3007 | pm_qos_update_request(&adapter->netdev->pm_qos_req, 55); | ||
3008 | } else { | ||
3009 | pm_qos_update_request(&adapter->netdev->pm_qos_req, | ||
3010 | PM_QOS_DEFAULT_VALUE); | ||
3011 | } | ||
3012 | } | ||
3013 | |||
3014 | /* Enable Receives */ | ||
3015 | ew32(RCTL, rctl); | ||
3016 | } | ||
3017 | |||
3018 | /** | ||
3019 | * e1000_update_mc_addr_list - Update Multicast addresses | ||
3020 | * @hw: pointer to the HW structure | ||
3021 | * @mc_addr_list: array of multicast addresses to program | ||
3022 | * @mc_addr_count: number of multicast addresses to program | ||
3023 | * | ||
3024 | * Updates the Multicast Table Array. | ||
3025 | * The caller must have a packed mc_addr_list of multicast addresses. | ||
3026 | **/ | ||
3027 | static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, | ||
3028 | u32 mc_addr_count) | ||
3029 | { | ||
3030 | hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count); | ||
3031 | } | ||
3032 | |||
3033 | /** | ||
3034 | * e1000_set_multi - Multicast and Promiscuous mode set | ||
3035 | * @netdev: network interface device structure | ||
3036 | * | ||
3037 | * The set_multi entry point is called whenever the multicast address | ||
3038 | * list or the network interface flags are updated. This routine is | ||
3039 | * responsible for configuring the hardware for proper multicast, | ||
3040 | * promiscuous mode, and all-multi behavior. | ||
3041 | **/ | ||
3042 | static void e1000_set_multi(struct net_device *netdev) | ||
3043 | { | ||
3044 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
3045 | struct e1000_hw *hw = &adapter->hw; | ||
3046 | struct netdev_hw_addr *ha; | ||
3047 | u8 *mta_list; | ||
3048 | u32 rctl; | ||
3049 | |||
3050 | /* Check for Promiscuous and All Multicast modes */ | ||
3051 | |||
3052 | rctl = er32(RCTL); | ||
3053 | |||
3054 | if (netdev->flags & IFF_PROMISC) { | ||
3055 | rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); | ||
3056 | rctl &= ~E1000_RCTL_VFE; | ||
3057 | /* Do not hardware filter VLANs in promisc mode */ | ||
3058 | e1000e_vlan_filter_disable(adapter); | ||
3059 | } else { | ||
3060 | if (netdev->flags & IFF_ALLMULTI) { | ||
3061 | rctl |= E1000_RCTL_MPE; | ||
3062 | rctl &= ~E1000_RCTL_UPE; | ||
3063 | } else { | ||
3064 | rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); | ||
3065 | } | ||
3066 | e1000e_vlan_filter_enable(adapter); | ||
3067 | } | ||
3068 | |||
3069 | ew32(RCTL, rctl); | ||
3070 | |||
3071 | if (!netdev_mc_empty(netdev)) { | ||
3072 | int i = 0; | ||
3073 | |||
3074 | mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC); | ||
3075 | if (!mta_list) | ||
3076 | return; | ||
3077 | |||
3078 | /* prepare a packed array of only addresses. */ | ||
3079 | netdev_for_each_mc_addr(ha, netdev) | ||
3080 | memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); | ||
3081 | |||
3082 | e1000_update_mc_addr_list(hw, mta_list, i); | ||
3083 | kfree(mta_list); | ||
3084 | } else { | ||
3085 | /* | ||
3086 | * if we're called from probe, we might not have | ||
3087 | * anything to do here, so clear out the list | ||
3088 | */ | ||
3089 | e1000_update_mc_addr_list(hw, NULL, 0); | ||
3090 | } | ||
3091 | |||
3092 | if (netdev->features & NETIF_F_HW_VLAN_RX) | ||
3093 | e1000e_vlan_strip_enable(adapter); | ||
3094 | else | ||
3095 | e1000e_vlan_strip_disable(adapter); | ||
3096 | } | ||
3097 | |||
3098 | /** | ||
3099 | * e1000_configure - configure the hardware for Rx and Tx | ||
3100 | * @adapter: private board structure | ||
3101 | **/ | ||
3102 | static void e1000_configure(struct e1000_adapter *adapter) | ||
3103 | { | ||
3104 | e1000_set_multi(adapter->netdev); | ||
3105 | |||
3106 | e1000_restore_vlan(adapter); | ||
3107 | e1000_init_manageability_pt(adapter); | ||
3108 | |||
3109 | e1000_configure_tx(adapter); | ||
3110 | e1000_setup_rctl(adapter); | ||
3111 | e1000_configure_rx(adapter); | ||
3112 | adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring), | ||
3113 | GFP_KERNEL); | ||
3114 | } | ||
3115 | |||
3116 | /** | ||
3117 | * e1000e_power_up_phy - restore link in case the phy was powered down | ||
3118 | * @adapter: address of board private structure | ||
3119 | * | ||
3120 | * The phy may be powered down to save power and turn off link when the | ||
3121 | * driver is unloaded and wake on lan is not enabled (among others) | ||
3122 | * *** this routine MUST be followed by a call to e1000e_reset *** | ||
3123 | **/ | ||
3124 | void e1000e_power_up_phy(struct e1000_adapter *adapter) | ||
3125 | { | ||
3126 | if (adapter->hw.phy.ops.power_up) | ||
3127 | adapter->hw.phy.ops.power_up(&adapter->hw); | ||
3128 | |||
3129 | adapter->hw.mac.ops.setup_link(&adapter->hw); | ||
3130 | } | ||
3131 | |||
3132 | /** | ||
3133 | * e1000_power_down_phy - Power down the PHY | ||
3134 | * | ||
3135 | * Power down the PHY so no link is implied when interface is down. | ||
3136 | * The PHY cannot be powered down if management or WoL is active. | ||
3137 | */ | ||
3138 | static void e1000_power_down_phy(struct e1000_adapter *adapter) | ||
3139 | { | ||
3140 | /* WoL is enabled */ | ||
3141 | if (adapter->wol) | ||
3142 | return; | ||
3143 | |||
3144 | if (adapter->hw.phy.ops.power_down) | ||
3145 | adapter->hw.phy.ops.power_down(&adapter->hw); | ||
3146 | } | ||
3147 | |||
3148 | /** | ||
3149 | * e1000e_reset - bring the hardware into a known good state | ||
3150 | * | ||
3151 | * This function boots the hardware and enables some settings that | ||
3152 | * require a configuration cycle of the hardware - those cannot be | ||
3153 | * set/changed during runtime. After reset the device needs to be | ||
3154 | * properly configured for Rx, Tx etc. | ||
3155 | */ | ||
3156 | void e1000e_reset(struct e1000_adapter *adapter) | ||
3157 | { | ||
3158 | struct e1000_mac_info *mac = &adapter->hw.mac; | ||
3159 | struct e1000_fc_info *fc = &adapter->hw.fc; | ||
3160 | struct e1000_hw *hw = &adapter->hw; | ||
3161 | u32 tx_space, min_tx_space, min_rx_space; | ||
3162 | u32 pba = adapter->pba; | ||
3163 | u16 hwm; | ||
3164 | |||
3165 | /* reset Packet Buffer Allocation to default */ | ||
3166 | ew32(PBA, pba); | ||
3167 | |||
3168 | if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { | ||
3169 | /* | ||
3170 | * To maintain wire speed transmits, the Tx FIFO should be | ||
3171 | * large enough to accommodate two full transmit packets, | ||
3172 | * rounded up to the next 1KB and expressed in KB. Likewise, | ||
3173 | * the Rx FIFO should be large enough to accommodate at least | ||
3174 | * one full receive packet and is similarly rounded up and | ||
3175 | * expressed in KB. | ||
3176 | */ | ||
3177 | pba = er32(PBA); | ||
3178 | /* upper 16 bits has Tx packet buffer allocation size in KB */ | ||
3179 | tx_space = pba >> 16; | ||
3180 | /* lower 16 bits has Rx packet buffer allocation size in KB */ | ||
3181 | pba &= 0xffff; | ||
3182 | /* | ||
3183 | * the Tx fifo also stores 16 bytes of information about the Tx | ||
3184 | * but don't include ethernet FCS because hardware appends it | ||
3185 | */ | ||
3186 | min_tx_space = (adapter->max_frame_size + | ||
3187 | sizeof(struct e1000_tx_desc) - | ||
3188 | ETH_FCS_LEN) * 2; | ||
3189 | min_tx_space = ALIGN(min_tx_space, 1024); | ||
3190 | min_tx_space >>= 10; | ||
3191 | /* software strips receive CRC, so leave room for it */ | ||
3192 | min_rx_space = adapter->max_frame_size; | ||
3193 | min_rx_space = ALIGN(min_rx_space, 1024); | ||
3194 | min_rx_space >>= 10; | ||
3195 | |||
3196 | /* | ||
3197 | * If current Tx allocation is less than the min Tx FIFO size, | ||
3198 | * and the min Tx FIFO size is less than the current Rx FIFO | ||
3199 | * allocation, take space away from current Rx allocation | ||
3200 | */ | ||
3201 | if ((tx_space < min_tx_space) && | ||
3202 | ((min_tx_space - tx_space) < pba)) { | ||
3203 | pba -= min_tx_space - tx_space; | ||
3204 | |||
3205 | /* | ||
3206 | * if short on Rx space, Rx wins and must trump Tx | ||
3207 | * adjustment or use Early Receive if available | ||
3208 | */ | ||
3209 | if ((pba < min_rx_space) && | ||
3210 | (!(adapter->flags & FLAG_HAS_ERT))) | ||
3211 | /* ERT enabled in e1000_configure_rx */ | ||
3212 | pba = min_rx_space; | ||
3213 | } | ||
3214 | |||
3215 | ew32(PBA, pba); | ||
3216 | } | ||
3217 | |||
3218 | /* | ||
3219 | * flow control settings | ||
3220 | * | ||
3221 | * The high water mark must be low enough to fit one full frame | ||
3222 | * (or the size used for early receive) above it in the Rx FIFO. | ||
3223 | * Set it to the lower of: | ||
3224 | * - 90% of the Rx FIFO size, and | ||
3225 | * - the full Rx FIFO size minus the early receive size (for parts | ||
3226 | * with ERT support assuming ERT set to E1000_ERT_2048), or | ||
3227 | * - the full Rx FIFO size minus one full frame | ||
3228 | */ | ||
3229 | if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME) | ||
3230 | fc->pause_time = 0xFFFF; | ||
3231 | else | ||
3232 | fc->pause_time = E1000_FC_PAUSE_TIME; | ||
3233 | fc->send_xon = 1; | ||
3234 | fc->current_mode = fc->requested_mode; | ||
3235 | |||
3236 | switch (hw->mac.type) { | ||
3237 | default: | ||
3238 | if ((adapter->flags & FLAG_HAS_ERT) && | ||
3239 | (adapter->netdev->mtu > ETH_DATA_LEN)) | ||
3240 | hwm = min(((pba << 10) * 9 / 10), | ||
3241 | ((pba << 10) - (E1000_ERT_2048 << 3))); | ||
3242 | else | ||
3243 | hwm = min(((pba << 10) * 9 / 10), | ||
3244 | ((pba << 10) - adapter->max_frame_size)); | ||
3245 | |||
3246 | fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */ | ||
3247 | fc->low_water = fc->high_water - 8; | ||
3248 | break; | ||
3249 | case e1000_pchlan: | ||
3250 | /* | ||
3251 | * Workaround PCH LOM adapter hangs with certain network | ||
3252 | * loads. If hangs persist, try disabling Tx flow control. | ||
3253 | */ | ||
3254 | if (adapter->netdev->mtu > ETH_DATA_LEN) { | ||
3255 | fc->high_water = 0x3500; | ||
3256 | fc->low_water = 0x1500; | ||
3257 | } else { | ||
3258 | fc->high_water = 0x5000; | ||
3259 | fc->low_water = 0x3000; | ||
3260 | } | ||
3261 | fc->refresh_time = 0x1000; | ||
3262 | break; | ||
3263 | case e1000_pch2lan: | ||
3264 | fc->high_water = 0x05C20; | ||
3265 | fc->low_water = 0x05048; | ||
3266 | fc->pause_time = 0x0650; | ||
3267 | fc->refresh_time = 0x0400; | ||
3268 | if (adapter->netdev->mtu > ETH_DATA_LEN) { | ||
3269 | pba = 14; | ||
3270 | ew32(PBA, pba); | ||
3271 | } | ||
3272 | break; | ||
3273 | } | ||
3274 | |||
3275 | /* | ||
3276 | * Disable Adaptive Interrupt Moderation if 2 full packets cannot | ||
3277 | * fit in receive buffer and early-receive not supported. | ||
3278 | */ | ||
3279 | if (adapter->itr_setting & 0x3) { | ||
3280 | if (((adapter->max_frame_size * 2) > (pba << 10)) && | ||
3281 | !(adapter->flags & FLAG_HAS_ERT)) { | ||
3282 | if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) { | ||
3283 | dev_info(&adapter->pdev->dev, | ||
3284 | "Interrupt Throttle Rate turned off\n"); | ||
3285 | adapter->flags2 |= FLAG2_DISABLE_AIM; | ||
3286 | ew32(ITR, 0); | ||
3287 | } | ||
3288 | } else if (adapter->flags2 & FLAG2_DISABLE_AIM) { | ||
3289 | dev_info(&adapter->pdev->dev, | ||
3290 | "Interrupt Throttle Rate turned on\n"); | ||
3291 | adapter->flags2 &= ~FLAG2_DISABLE_AIM; | ||
3292 | adapter->itr = 20000; | ||
3293 | ew32(ITR, 1000000000 / (adapter->itr * 256)); | ||
3294 | } | ||
3295 | } | ||
3296 | |||
3297 | /* Allow time for pending master requests to run */ | ||
3298 | mac->ops.reset_hw(hw); | ||
3299 | |||
3300 | /* | ||
3301 | * For parts with AMT enabled, let the firmware know | ||
3302 | * that the network interface is in control | ||
3303 | */ | ||
3304 | if (adapter->flags & FLAG_HAS_AMT) | ||
3305 | e1000e_get_hw_control(adapter); | ||
3306 | |||
3307 | ew32(WUC, 0); | ||
3308 | |||
3309 | if (mac->ops.init_hw(hw)) | ||
3310 | e_err("Hardware Error\n"); | ||
3311 | |||
3312 | e1000_update_mng_vlan(adapter); | ||
3313 | |||
3314 | /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ | ||
3315 | ew32(VET, ETH_P_8021Q); | ||
3316 | |||
3317 | e1000e_reset_adaptive(hw); | ||
3318 | |||
3319 | if (!netif_running(adapter->netdev) && | ||
3320 | !test_bit(__E1000_TESTING, &adapter->state)) { | ||
3321 | e1000_power_down_phy(adapter); | ||
3322 | return; | ||
3323 | } | ||
3324 | |||
3325 | e1000_get_phy_info(hw); | ||
3326 | |||
3327 | if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) && | ||
3328 | !(adapter->flags & FLAG_SMART_POWER_DOWN)) { | ||
3329 | u16 phy_data = 0; | ||
3330 | /* | ||
3331 | * speed up time to link by disabling smart power down, ignore | ||
3332 | * the return value of this function because there is nothing | ||
3333 | * different we would do if it failed | ||
3334 | */ | ||
3335 | e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); | ||
3336 | phy_data &= ~IGP02E1000_PM_SPD; | ||
3337 | e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); | ||
3338 | } | ||
3339 | } | ||
3340 | |||
3341 | int e1000e_up(struct e1000_adapter *adapter) | ||
3342 | { | ||
3343 | struct e1000_hw *hw = &adapter->hw; | ||
3344 | |||
3345 | /* hardware has been reset, we need to reload some things */ | ||
3346 | e1000_configure(adapter); | ||
3347 | |||
3348 | clear_bit(__E1000_DOWN, &adapter->state); | ||
3349 | |||
3350 | napi_enable(&adapter->napi); | ||
3351 | if (adapter->msix_entries) | ||
3352 | e1000_configure_msix(adapter); | ||
3353 | e1000_irq_enable(adapter); | ||
3354 | |||
3355 | netif_start_queue(adapter->netdev); | ||
3356 | |||
3357 | /* fire a link change interrupt to start the watchdog */ | ||
3358 | if (adapter->msix_entries) | ||
3359 | ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER); | ||
3360 | else | ||
3361 | ew32(ICS, E1000_ICS_LSC); | ||
3362 | |||
3363 | return 0; | ||
3364 | } | ||
3365 | |||
3366 | static void e1000e_flush_descriptors(struct e1000_adapter *adapter) | ||
3367 | { | ||
3368 | struct e1000_hw *hw = &adapter->hw; | ||
3369 | |||
3370 | if (!(adapter->flags2 & FLAG2_DMA_BURST)) | ||
3371 | return; | ||
3372 | |||
3373 | /* flush pending descriptor writebacks to memory */ | ||
3374 | ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); | ||
3375 | ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD); | ||
3376 | |||
3377 | /* execute the writes immediately */ | ||
3378 | e1e_flush(); | ||
3379 | } | ||
3380 | |||
3381 | static void e1000e_update_stats(struct e1000_adapter *adapter); | ||
3382 | |||
3383 | void e1000e_down(struct e1000_adapter *adapter) | ||
3384 | { | ||
3385 | struct net_device *netdev = adapter->netdev; | ||
3386 | struct e1000_hw *hw = &adapter->hw; | ||
3387 | u32 tctl, rctl; | ||
3388 | |||
3389 | /* | ||
3390 | * signal that we're down so the interrupt handler does not | ||
3391 | * reschedule our watchdog timer | ||
3392 | */ | ||
3393 | set_bit(__E1000_DOWN, &adapter->state); | ||
3394 | |||
3395 | /* disable receives in the hardware */ | ||
3396 | rctl = er32(RCTL); | ||
3397 | ew32(RCTL, rctl & ~E1000_RCTL_EN); | ||
3398 | /* flush and sleep below */ | ||
3399 | |||
3400 | netif_stop_queue(netdev); | ||
3401 | |||
3402 | /* disable transmits in the hardware */ | ||
3403 | tctl = er32(TCTL); | ||
3404 | tctl &= ~E1000_TCTL_EN; | ||
3405 | ew32(TCTL, tctl); | ||
3406 | /* flush both disables and wait for them to finish */ | ||
3407 | e1e_flush(); | ||
3408 | usleep_range(10000, 20000); | ||
3409 | |||
3410 | napi_disable(&adapter->napi); | ||
3411 | e1000_irq_disable(adapter); | ||
3412 | |||
3413 | del_timer_sync(&adapter->watchdog_timer); | ||
3414 | del_timer_sync(&adapter->phy_info_timer); | ||
3415 | |||
3416 | netif_carrier_off(netdev); | ||
3417 | |||
3418 | spin_lock(&adapter->stats64_lock); | ||
3419 | e1000e_update_stats(adapter); | ||
3420 | spin_unlock(&adapter->stats64_lock); | ||
3421 | |||
3422 | e1000e_flush_descriptors(adapter); | ||
3423 | e1000_clean_tx_ring(adapter); | ||
3424 | e1000_clean_rx_ring(adapter); | ||
3425 | |||
3426 | adapter->link_speed = 0; | ||
3427 | adapter->link_duplex = 0; | ||
3428 | |||
3429 | if (!pci_channel_offline(adapter->pdev)) | ||
3430 | e1000e_reset(adapter); | ||
3431 | |||
3432 | /* | ||
3433 | * TODO: for power management, we could drop the link and | ||
3434 | * pci_disable_device here. | ||
3435 | */ | ||
3436 | } | ||
3437 | |||
3438 | void e1000e_reinit_locked(struct e1000_adapter *adapter) | ||
3439 | { | ||
3440 | might_sleep(); | ||
3441 | while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) | ||
3442 | usleep_range(1000, 2000); | ||
3443 | e1000e_down(adapter); | ||
3444 | e1000e_up(adapter); | ||
3445 | clear_bit(__E1000_RESETTING, &adapter->state); | ||
3446 | } | ||
3447 | |||
3448 | /** | ||
3449 | * e1000_sw_init - Initialize general software structures (struct e1000_adapter) | ||
3450 | * @adapter: board private structure to initialize | ||
3451 | * | ||
3452 | * e1000_sw_init initializes the Adapter private data structure. | ||
3453 | * Fields are initialized based on PCI device information and | ||
3454 | * OS network device settings (MTU size). | ||
3455 | **/ | ||
3456 | static int __devinit e1000_sw_init(struct e1000_adapter *adapter) | ||
3457 | { | ||
3458 | struct net_device *netdev = adapter->netdev; | ||
3459 | |||
3460 | adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN; | ||
3461 | adapter->rx_ps_bsize0 = 128; | ||
3462 | adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; | ||
3463 | adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; | ||
3464 | |||
3465 | spin_lock_init(&adapter->stats64_lock); | ||
3466 | |||
3467 | e1000e_set_interrupt_capability(adapter); | ||
3468 | |||
3469 | if (e1000_alloc_queues(adapter)) | ||
3470 | return -ENOMEM; | ||
3471 | |||
3472 | /* Explicitly disable IRQ since the NIC can be in any state. */ | ||
3473 | e1000_irq_disable(adapter); | ||
3474 | |||
3475 | set_bit(__E1000_DOWN, &adapter->state); | ||
3476 | return 0; | ||
3477 | } | ||
3478 | |||
3479 | /** | ||
3480 | * e1000_intr_msi_test - Interrupt Handler | ||
3481 | * @irq: interrupt number | ||
3482 | * @data: pointer to a network interface device structure | ||
3483 | **/ | ||
3484 | static irqreturn_t e1000_intr_msi_test(int irq, void *data) | ||
3485 | { | ||
3486 | struct net_device *netdev = data; | ||
3487 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
3488 | struct e1000_hw *hw = &adapter->hw; | ||
3489 | u32 icr = er32(ICR); | ||
3490 | |||
3491 | e_dbg("icr is %08X\n", icr); | ||
3492 | if (icr & E1000_ICR_RXSEQ) { | ||
3493 | adapter->flags &= ~FLAG_MSI_TEST_FAILED; | ||
3494 | wmb(); | ||
3495 | } | ||
3496 | |||
3497 | return IRQ_HANDLED; | ||
3498 | } | ||
3499 | |||
3500 | /** | ||
3501 | * e1000_test_msi_interrupt - Returns 0 for successful test | ||
3502 | * @adapter: board private struct | ||
3503 | * | ||
3504 | * code flow taken from tg3.c | ||
3505 | **/ | ||
3506 | static int e1000_test_msi_interrupt(struct e1000_adapter *adapter) | ||
3507 | { | ||
3508 | struct net_device *netdev = adapter->netdev; | ||
3509 | struct e1000_hw *hw = &adapter->hw; | ||
3510 | int err; | ||
3511 | |||
3512 | /* poll_enable hasn't been called yet, so don't need disable */ | ||
3513 | /* clear any pending events */ | ||
3514 | er32(ICR); | ||
3515 | |||
3516 | /* free the real vector and request a test handler */ | ||
3517 | e1000_free_irq(adapter); | ||
3518 | e1000e_reset_interrupt_capability(adapter); | ||
3519 | |||
3520 | /* Assume that the test fails, if it succeeds then the test | ||
3521 | * MSI irq handler will unset this flag */ | ||
3522 | adapter->flags |= FLAG_MSI_TEST_FAILED; | ||
3523 | |||
3524 | err = pci_enable_msi(adapter->pdev); | ||
3525 | if (err) | ||
3526 | goto msi_test_failed; | ||
3527 | |||
3528 | err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0, | ||
3529 | netdev->name, netdev); | ||
3530 | if (err) { | ||
3531 | pci_disable_msi(adapter->pdev); | ||
3532 | goto msi_test_failed; | ||
3533 | } | ||
3534 | |||
3535 | wmb(); | ||
3536 | |||
3537 | e1000_irq_enable(adapter); | ||
3538 | |||
3539 | /* fire an unusual interrupt on the test handler */ | ||
3540 | ew32(ICS, E1000_ICS_RXSEQ); | ||
3541 | e1e_flush(); | ||
3542 | msleep(50); | ||
3543 | |||
3544 | e1000_irq_disable(adapter); | ||
3545 | |||
3546 | rmb(); | ||
3547 | |||
3548 | if (adapter->flags & FLAG_MSI_TEST_FAILED) { | ||
3549 | adapter->int_mode = E1000E_INT_MODE_LEGACY; | ||
3550 | e_info("MSI interrupt test failed, using legacy interrupt.\n"); | ||
3551 | } else | ||
3552 | e_dbg("MSI interrupt test succeeded!\n"); | ||
3553 | |||
3554 | free_irq(adapter->pdev->irq, netdev); | ||
3555 | pci_disable_msi(adapter->pdev); | ||
3556 | |||
3557 | msi_test_failed: | ||
3558 | e1000e_set_interrupt_capability(adapter); | ||
3559 | return e1000_request_irq(adapter); | ||
3560 | } | ||
3561 | |||
3562 | /** | ||
3563 | * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored | ||
3564 | * @adapter: board private struct | ||
3565 | * | ||
3566 | * code flow taken from tg3.c, called with e1000 interrupts disabled. | ||
3567 | **/ | ||
3568 | static int e1000_test_msi(struct e1000_adapter *adapter) | ||
3569 | { | ||
3570 | int err; | ||
3571 | u16 pci_cmd; | ||
3572 | |||
3573 | if (!(adapter->flags & FLAG_MSI_ENABLED)) | ||
3574 | return 0; | ||
3575 | |||
3576 | /* disable SERR in case the MSI write causes a master abort */ | ||
3577 | pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); | ||
3578 | if (pci_cmd & PCI_COMMAND_SERR) | ||
3579 | pci_write_config_word(adapter->pdev, PCI_COMMAND, | ||
3580 | pci_cmd & ~PCI_COMMAND_SERR); | ||
3581 | |||
3582 | err = e1000_test_msi_interrupt(adapter); | ||
3583 | |||
3584 | /* re-enable SERR */ | ||
3585 | if (pci_cmd & PCI_COMMAND_SERR) { | ||
3586 | pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); | ||
3587 | pci_cmd |= PCI_COMMAND_SERR; | ||
3588 | pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd); | ||
3589 | } | ||
3590 | |||
3591 | return err; | ||
3592 | } | ||
3593 | |||
3594 | /** | ||
3595 | * e1000_open - Called when a network interface is made active | ||
3596 | * @netdev: network interface device structure | ||
3597 | * | ||
3598 | * Returns 0 on success, negative value on failure | ||
3599 | * | ||
3600 | * The open entry point is called when a network interface is made | ||
3601 | * active by the system (IFF_UP). At this point all resources needed | ||
3602 | * for transmit and receive operations are allocated, the interrupt | ||
3603 | * handler is registered with the OS, the watchdog timer is started, | ||
3604 | * and the stack is notified that the interface is ready. | ||
3605 | **/ | ||
3606 | static int e1000_open(struct net_device *netdev) | ||
3607 | { | ||
3608 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
3609 | struct e1000_hw *hw = &adapter->hw; | ||
3610 | struct pci_dev *pdev = adapter->pdev; | ||
3611 | int err; | ||
3612 | |||
3613 | /* disallow open during test */ | ||
3614 | if (test_bit(__E1000_TESTING, &adapter->state)) | ||
3615 | return -EBUSY; | ||
3616 | |||
3617 | pm_runtime_get_sync(&pdev->dev); | ||
3618 | |||
3619 | netif_carrier_off(netdev); | ||
3620 | |||
3621 | /* allocate transmit descriptors */ | ||
3622 | err = e1000e_setup_tx_resources(adapter); | ||
3623 | if (err) | ||
3624 | goto err_setup_tx; | ||
3625 | |||
3626 | /* allocate receive descriptors */ | ||
3627 | err = e1000e_setup_rx_resources(adapter); | ||
3628 | if (err) | ||
3629 | goto err_setup_rx; | ||
3630 | |||
3631 | /* | ||
3632 | * If AMT is enabled, let the firmware know that the network | ||
3633 | * interface is now open and reset the part to a known state. | ||
3634 | */ | ||
3635 | if (adapter->flags & FLAG_HAS_AMT) { | ||
3636 | e1000e_get_hw_control(adapter); | ||
3637 | e1000e_reset(adapter); | ||
3638 | } | ||
3639 | |||
3640 | e1000e_power_up_phy(adapter); | ||
3641 | |||
3642 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | ||
3643 | if ((adapter->hw.mng_cookie.status & | ||
3644 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN)) | ||
3645 | e1000_update_mng_vlan(adapter); | ||
3646 | |||
3647 | /* DMA latency requirement to workaround early-receive/jumbo issue */ | ||
3648 | if ((adapter->flags & FLAG_HAS_ERT) || | ||
3649 | (adapter->hw.mac.type == e1000_pch2lan)) | ||
3650 | pm_qos_add_request(&adapter->netdev->pm_qos_req, | ||
3651 | PM_QOS_CPU_DMA_LATENCY, | ||
3652 | PM_QOS_DEFAULT_VALUE); | ||
3653 | |||
3654 | /* | ||
3655 | * before we allocate an interrupt, we must be ready to handle it. | ||
3656 | * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt | ||
3657 | * as soon as we call pci_request_irq, so we have to setup our | ||
3658 | * clean_rx handler before we do so. | ||
3659 | */ | ||
3660 | e1000_configure(adapter); | ||
3661 | |||
3662 | err = e1000_request_irq(adapter); | ||
3663 | if (err) | ||
3664 | goto err_req_irq; | ||
3665 | |||
3666 | /* | ||
3667 | * Work around PCIe errata with MSI interrupts causing some chipsets to | ||
3668 | * ignore e1000e MSI messages, which means we need to test our MSI | ||
3669 | * interrupt now | ||
3670 | */ | ||
3671 | if (adapter->int_mode != E1000E_INT_MODE_LEGACY) { | ||
3672 | err = e1000_test_msi(adapter); | ||
3673 | if (err) { | ||
3674 | e_err("Interrupt allocation failed\n"); | ||
3675 | goto err_req_irq; | ||
3676 | } | ||
3677 | } | ||
3678 | |||
3679 | /* From here on the code is the same as e1000e_up() */ | ||
3680 | clear_bit(__E1000_DOWN, &adapter->state); | ||
3681 | |||
3682 | napi_enable(&adapter->napi); | ||
3683 | |||
3684 | e1000_irq_enable(adapter); | ||
3685 | |||
3686 | netif_start_queue(netdev); | ||
3687 | |||
3688 | adapter->idle_check = true; | ||
3689 | pm_runtime_put(&pdev->dev); | ||
3690 | |||
3691 | /* fire a link status change interrupt to start the watchdog */ | ||
3692 | if (adapter->msix_entries) | ||
3693 | ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER); | ||
3694 | else | ||
3695 | ew32(ICS, E1000_ICS_LSC); | ||
3696 | |||
3697 | return 0; | ||
3698 | |||
3699 | err_req_irq: | ||
3700 | e1000e_release_hw_control(adapter); | ||
3701 | e1000_power_down_phy(adapter); | ||
3702 | e1000e_free_rx_resources(adapter); | ||
3703 | err_setup_rx: | ||
3704 | e1000e_free_tx_resources(adapter); | ||
3705 | err_setup_tx: | ||
3706 | e1000e_reset(adapter); | ||
3707 | pm_runtime_put_sync(&pdev->dev); | ||
3708 | |||
3709 | return err; | ||
3710 | } | ||
3711 | |||
3712 | /** | ||
3713 | * e1000_close - Disables a network interface | ||
3714 | * @netdev: network interface device structure | ||
3715 | * | ||
3716 | * Returns 0, this is not allowed to fail | ||
3717 | * | ||
3718 | * The close entry point is called when an interface is de-activated | ||
3719 | * by the OS. The hardware is still under the drivers control, but | ||
3720 | * needs to be disabled. A global MAC reset is issued to stop the | ||
3721 | * hardware, and all transmit and receive resources are freed. | ||
3722 | **/ | ||
3723 | static int e1000_close(struct net_device *netdev) | ||
3724 | { | ||
3725 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
3726 | struct pci_dev *pdev = adapter->pdev; | ||
3727 | |||
3728 | WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); | ||
3729 | |||
3730 | pm_runtime_get_sync(&pdev->dev); | ||
3731 | |||
3732 | if (!test_bit(__E1000_DOWN, &adapter->state)) { | ||
3733 | e1000e_down(adapter); | ||
3734 | e1000_free_irq(adapter); | ||
3735 | } | ||
3736 | e1000_power_down_phy(adapter); | ||
3737 | |||
3738 | e1000e_free_tx_resources(adapter); | ||
3739 | e1000e_free_rx_resources(adapter); | ||
3740 | |||
3741 | /* | ||
3742 | * kill manageability vlan ID if supported, but not if a vlan with | ||
3743 | * the same ID is registered on the host OS (let 8021q kill it) | ||
3744 | */ | ||
3745 | if (adapter->hw.mng_cookie.status & | ||
3746 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) | ||
3747 | e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); | ||
3748 | |||
3749 | /* | ||
3750 | * If AMT is enabled, let the firmware know that the network | ||
3751 | * interface is now closed | ||
3752 | */ | ||
3753 | if ((adapter->flags & FLAG_HAS_AMT) && | ||
3754 | !test_bit(__E1000_TESTING, &adapter->state)) | ||
3755 | e1000e_release_hw_control(adapter); | ||
3756 | |||
3757 | if ((adapter->flags & FLAG_HAS_ERT) || | ||
3758 | (adapter->hw.mac.type == e1000_pch2lan)) | ||
3759 | pm_qos_remove_request(&adapter->netdev->pm_qos_req); | ||
3760 | |||
3761 | pm_runtime_put_sync(&pdev->dev); | ||
3762 | |||
3763 | return 0; | ||
3764 | } | ||
3765 | /** | ||
3766 | * e1000_set_mac - Change the Ethernet Address of the NIC | ||
3767 | * @netdev: network interface device structure | ||
3768 | * @p: pointer to an address structure | ||
3769 | * | ||
3770 | * Returns 0 on success, negative on failure | ||
3771 | **/ | ||
3772 | static int e1000_set_mac(struct net_device *netdev, void *p) | ||
3773 | { | ||
3774 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
3775 | struct sockaddr *addr = p; | ||
3776 | |||
3777 | if (!is_valid_ether_addr(addr->sa_data)) | ||
3778 | return -EADDRNOTAVAIL; | ||
3779 | |||
3780 | memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); | ||
3781 | memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len); | ||
3782 | |||
3783 | e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); | ||
3784 | |||
3785 | if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) { | ||
3786 | /* activate the work around */ | ||
3787 | e1000e_set_laa_state_82571(&adapter->hw, 1); | ||
3788 | |||
3789 | /* | ||
3790 | * Hold a copy of the LAA in RAR[14] This is done so that | ||
3791 | * between the time RAR[0] gets clobbered and the time it | ||
3792 | * gets fixed (in e1000_watchdog), the actual LAA is in one | ||
3793 | * of the RARs and no incoming packets directed to this port | ||
3794 | * are dropped. Eventually the LAA will be in RAR[0] and | ||
3795 | * RAR[14] | ||
3796 | */ | ||
3797 | e1000e_rar_set(&adapter->hw, | ||
3798 | adapter->hw.mac.addr, | ||
3799 | adapter->hw.mac.rar_entry_count - 1); | ||
3800 | } | ||
3801 | |||
3802 | return 0; | ||
3803 | } | ||
3804 | |||
3805 | /** | ||
3806 | * e1000e_update_phy_task - work thread to update phy | ||
3807 | * @work: pointer to our work struct | ||
3808 | * | ||
3809 | * this worker thread exists because we must acquire a | ||
3810 | * semaphore to read the phy, which we could msleep while | ||
3811 | * waiting for it, and we can't msleep in a timer. | ||
3812 | **/ | ||
3813 | static void e1000e_update_phy_task(struct work_struct *work) | ||
3814 | { | ||
3815 | struct e1000_adapter *adapter = container_of(work, | ||
3816 | struct e1000_adapter, update_phy_task); | ||
3817 | |||
3818 | if (test_bit(__E1000_DOWN, &adapter->state)) | ||
3819 | return; | ||
3820 | |||
3821 | e1000_get_phy_info(&adapter->hw); | ||
3822 | } | ||
3823 | |||
3824 | /* | ||
3825 | * Need to wait a few seconds after link up to get diagnostic information from | ||
3826 | * the phy | ||
3827 | */ | ||
3828 | static void e1000_update_phy_info(unsigned long data) | ||
3829 | { | ||
3830 | struct e1000_adapter *adapter = (struct e1000_adapter *) data; | ||
3831 | |||
3832 | if (test_bit(__E1000_DOWN, &adapter->state)) | ||
3833 | return; | ||
3834 | |||
3835 | schedule_work(&adapter->update_phy_task); | ||
3836 | } | ||
3837 | |||
3838 | /** | ||
3839 | * e1000e_update_phy_stats - Update the PHY statistics counters | ||
3840 | * @adapter: board private structure | ||
3841 | * | ||
3842 | * Read/clear the upper 16-bit PHY registers and read/accumulate lower | ||
3843 | **/ | ||
3844 | static void e1000e_update_phy_stats(struct e1000_adapter *adapter) | ||
3845 | { | ||
3846 | struct e1000_hw *hw = &adapter->hw; | ||
3847 | s32 ret_val; | ||
3848 | u16 phy_data; | ||
3849 | |||
3850 | ret_val = hw->phy.ops.acquire(hw); | ||
3851 | if (ret_val) | ||
3852 | return; | ||
3853 | |||
3854 | /* | ||
3855 | * A page set is expensive so check if already on desired page. | ||
3856 | * If not, set to the page with the PHY status registers. | ||
3857 | */ | ||
3858 | hw->phy.addr = 1; | ||
3859 | ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, | ||
3860 | &phy_data); | ||
3861 | if (ret_val) | ||
3862 | goto release; | ||
3863 | if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) { | ||
3864 | ret_val = hw->phy.ops.set_page(hw, | ||
3865 | HV_STATS_PAGE << IGP_PAGE_SHIFT); | ||
3866 | if (ret_val) | ||
3867 | goto release; | ||
3868 | } | ||
3869 | |||
3870 | /* Single Collision Count */ | ||
3871 | hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); | ||
3872 | ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); | ||
3873 | if (!ret_val) | ||
3874 | adapter->stats.scc += phy_data; | ||
3875 | |||
3876 | /* Excessive Collision Count */ | ||
3877 | hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); | ||
3878 | ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); | ||
3879 | if (!ret_val) | ||
3880 | adapter->stats.ecol += phy_data; | ||
3881 | |||
3882 | /* Multiple Collision Count */ | ||
3883 | hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); | ||
3884 | ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); | ||
3885 | if (!ret_val) | ||
3886 | adapter->stats.mcc += phy_data; | ||
3887 | |||
3888 | /* Late Collision Count */ | ||
3889 | hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); | ||
3890 | ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); | ||
3891 | if (!ret_val) | ||
3892 | adapter->stats.latecol += phy_data; | ||
3893 | |||
3894 | /* Collision Count - also used for adaptive IFS */ | ||
3895 | hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); | ||
3896 | ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); | ||
3897 | if (!ret_val) | ||
3898 | hw->mac.collision_delta = phy_data; | ||
3899 | |||
3900 | /* Defer Count */ | ||
3901 | hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); | ||
3902 | ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); | ||
3903 | if (!ret_val) | ||
3904 | adapter->stats.dc += phy_data; | ||
3905 | |||
3906 | /* Transmit with no CRS */ | ||
3907 | hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); | ||
3908 | ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); | ||
3909 | if (!ret_val) | ||
3910 | adapter->stats.tncrs += phy_data; | ||
3911 | |||
3912 | release: | ||
3913 | hw->phy.ops.release(hw); | ||
3914 | } | ||
3915 | |||
3916 | /** | ||
3917 | * e1000e_update_stats - Update the board statistics counters | ||
3918 | * @adapter: board private structure | ||
3919 | **/ | ||
3920 | static void e1000e_update_stats(struct e1000_adapter *adapter) | ||
3921 | { | ||
3922 | struct net_device *netdev = adapter->netdev; | ||
3923 | struct e1000_hw *hw = &adapter->hw; | ||
3924 | struct pci_dev *pdev = adapter->pdev; | ||
3925 | |||
3926 | /* | ||
3927 | * Prevent stats update while adapter is being reset, or if the pci | ||
3928 | * connection is down. | ||
3929 | */ | ||
3930 | if (adapter->link_speed == 0) | ||
3931 | return; | ||
3932 | if (pci_channel_offline(pdev)) | ||
3933 | return; | ||
3934 | |||
3935 | adapter->stats.crcerrs += er32(CRCERRS); | ||
3936 | adapter->stats.gprc += er32(GPRC); | ||
3937 | adapter->stats.gorc += er32(GORCL); | ||
3938 | er32(GORCH); /* Clear gorc */ | ||
3939 | adapter->stats.bprc += er32(BPRC); | ||
3940 | adapter->stats.mprc += er32(MPRC); | ||
3941 | adapter->stats.roc += er32(ROC); | ||
3942 | |||
3943 | adapter->stats.mpc += er32(MPC); | ||
3944 | |||
3945 | /* Half-duplex statistics */ | ||
3946 | if (adapter->link_duplex == HALF_DUPLEX) { | ||
3947 | if (adapter->flags2 & FLAG2_HAS_PHY_STATS) { | ||
3948 | e1000e_update_phy_stats(adapter); | ||
3949 | } else { | ||
3950 | adapter->stats.scc += er32(SCC); | ||
3951 | adapter->stats.ecol += er32(ECOL); | ||
3952 | adapter->stats.mcc += er32(MCC); | ||
3953 | adapter->stats.latecol += er32(LATECOL); | ||
3954 | adapter->stats.dc += er32(DC); | ||
3955 | |||
3956 | hw->mac.collision_delta = er32(COLC); | ||
3957 | |||
3958 | if ((hw->mac.type != e1000_82574) && | ||
3959 | (hw->mac.type != e1000_82583)) | ||
3960 | adapter->stats.tncrs += er32(TNCRS); | ||
3961 | } | ||
3962 | adapter->stats.colc += hw->mac.collision_delta; | ||
3963 | } | ||
3964 | |||
3965 | adapter->stats.xonrxc += er32(XONRXC); | ||
3966 | adapter->stats.xontxc += er32(XONTXC); | ||
3967 | adapter->stats.xoffrxc += er32(XOFFRXC); | ||
3968 | adapter->stats.xofftxc += er32(XOFFTXC); | ||
3969 | adapter->stats.gptc += er32(GPTC); | ||
3970 | adapter->stats.gotc += er32(GOTCL); | ||
3971 | er32(GOTCH); /* Clear gotc */ | ||
3972 | adapter->stats.rnbc += er32(RNBC); | ||
3973 | adapter->stats.ruc += er32(RUC); | ||
3974 | |||
3975 | adapter->stats.mptc += er32(MPTC); | ||
3976 | adapter->stats.bptc += er32(BPTC); | ||
3977 | |||
3978 | /* used for adaptive IFS */ | ||
3979 | |||
3980 | hw->mac.tx_packet_delta = er32(TPT); | ||
3981 | adapter->stats.tpt += hw->mac.tx_packet_delta; | ||
3982 | |||
3983 | adapter->stats.algnerrc += er32(ALGNERRC); | ||
3984 | adapter->stats.rxerrc += er32(RXERRC); | ||
3985 | adapter->stats.cexterr += er32(CEXTERR); | ||
3986 | adapter->stats.tsctc += er32(TSCTC); | ||
3987 | adapter->stats.tsctfc += er32(TSCTFC); | ||
3988 | |||
3989 | /* Fill out the OS statistics structure */ | ||
3990 | netdev->stats.multicast = adapter->stats.mprc; | ||
3991 | netdev->stats.collisions = adapter->stats.colc; | ||
3992 | |||
3993 | /* Rx Errors */ | ||
3994 | |||
3995 | /* | ||
3996 | * RLEC on some newer hardware can be incorrect so build | ||
3997 | * our own version based on RUC and ROC | ||
3998 | */ | ||
3999 | netdev->stats.rx_errors = adapter->stats.rxerrc + | ||
4000 | adapter->stats.crcerrs + adapter->stats.algnerrc + | ||
4001 | adapter->stats.ruc + adapter->stats.roc + | ||
4002 | adapter->stats.cexterr; | ||
4003 | netdev->stats.rx_length_errors = adapter->stats.ruc + | ||
4004 | adapter->stats.roc; | ||
4005 | netdev->stats.rx_crc_errors = adapter->stats.crcerrs; | ||
4006 | netdev->stats.rx_frame_errors = adapter->stats.algnerrc; | ||
4007 | netdev->stats.rx_missed_errors = adapter->stats.mpc; | ||
4008 | |||
4009 | /* Tx Errors */ | ||
4010 | netdev->stats.tx_errors = adapter->stats.ecol + | ||
4011 | adapter->stats.latecol; | ||
4012 | netdev->stats.tx_aborted_errors = adapter->stats.ecol; | ||
4013 | netdev->stats.tx_window_errors = adapter->stats.latecol; | ||
4014 | netdev->stats.tx_carrier_errors = adapter->stats.tncrs; | ||
4015 | |||
4016 | /* Tx Dropped needs to be maintained elsewhere */ | ||
4017 | |||
4018 | /* Management Stats */ | ||
4019 | adapter->stats.mgptc += er32(MGTPTC); | ||
4020 | adapter->stats.mgprc += er32(MGTPRC); | ||
4021 | adapter->stats.mgpdc += er32(MGTPDC); | ||
4022 | } | ||
4023 | |||
4024 | /** | ||
4025 | * e1000_phy_read_status - Update the PHY register status snapshot | ||
4026 | * @adapter: board private structure | ||
4027 | **/ | ||
4028 | static void e1000_phy_read_status(struct e1000_adapter *adapter) | ||
4029 | { | ||
4030 | struct e1000_hw *hw = &adapter->hw; | ||
4031 | struct e1000_phy_regs *phy = &adapter->phy_regs; | ||
4032 | |||
4033 | if ((er32(STATUS) & E1000_STATUS_LU) && | ||
4034 | (adapter->hw.phy.media_type == e1000_media_type_copper)) { | ||
4035 | int ret_val; | ||
4036 | |||
4037 | ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr); | ||
4038 | ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr); | ||
4039 | ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise); | ||
4040 | ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa); | ||
4041 | ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion); | ||
4042 | ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000); | ||
4043 | ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000); | ||
4044 | ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus); | ||
4045 | if (ret_val) | ||
4046 | e_warn("Error reading PHY register\n"); | ||
4047 | } else { | ||
4048 | /* | ||
4049 | * Do not read PHY registers if link is not up | ||
4050 | * Set values to typical power-on defaults | ||
4051 | */ | ||
4052 | phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX); | ||
4053 | phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL | | ||
4054 | BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE | | ||
4055 | BMSR_ERCAP); | ||
4056 | phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP | | ||
4057 | ADVERTISE_ALL | ADVERTISE_CSMA); | ||
4058 | phy->lpa = 0; | ||
4059 | phy->expansion = EXPANSION_ENABLENPAGE; | ||
4060 | phy->ctrl1000 = ADVERTISE_1000FULL; | ||
4061 | phy->stat1000 = 0; | ||
4062 | phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF); | ||
4063 | } | ||
4064 | } | ||
4065 | |||
4066 | static void e1000_print_link_info(struct e1000_adapter *adapter) | ||
4067 | { | ||
4068 | struct e1000_hw *hw = &adapter->hw; | ||
4069 | u32 ctrl = er32(CTRL); | ||
4070 | |||
4071 | /* Link status message must follow this format for user tools */ | ||
4072 | printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, " | ||
4073 | "Flow Control: %s\n", | ||
4074 | adapter->netdev->name, | ||
4075 | adapter->link_speed, | ||
4076 | (adapter->link_duplex == FULL_DUPLEX) ? | ||
4077 | "Full Duplex" : "Half Duplex", | ||
4078 | ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ? | ||
4079 | "Rx/Tx" : | ||
4080 | ((ctrl & E1000_CTRL_RFCE) ? "Rx" : | ||
4081 | ((ctrl & E1000_CTRL_TFCE) ? "Tx" : "None"))); | ||
4082 | } | ||
4083 | |||
4084 | static bool e1000e_has_link(struct e1000_adapter *adapter) | ||
4085 | { | ||
4086 | struct e1000_hw *hw = &adapter->hw; | ||
4087 | bool link_active = 0; | ||
4088 | s32 ret_val = 0; | ||
4089 | |||
4090 | /* | ||
4091 | * get_link_status is set on LSC (link status) interrupt or | ||
4092 | * Rx sequence error interrupt. get_link_status will stay | ||
4093 | * false until the check_for_link establishes link | ||
4094 | * for copper adapters ONLY | ||
4095 | */ | ||
4096 | switch (hw->phy.media_type) { | ||
4097 | case e1000_media_type_copper: | ||
4098 | if (hw->mac.get_link_status) { | ||
4099 | ret_val = hw->mac.ops.check_for_link(hw); | ||
4100 | link_active = !hw->mac.get_link_status; | ||
4101 | } else { | ||
4102 | link_active = 1; | ||
4103 | } | ||
4104 | break; | ||
4105 | case e1000_media_type_fiber: | ||
4106 | ret_val = hw->mac.ops.check_for_link(hw); | ||
4107 | link_active = !!(er32(STATUS) & E1000_STATUS_LU); | ||
4108 | break; | ||
4109 | case e1000_media_type_internal_serdes: | ||
4110 | ret_val = hw->mac.ops.check_for_link(hw); | ||
4111 | link_active = adapter->hw.mac.serdes_has_link; | ||
4112 | break; | ||
4113 | default: | ||
4114 | case e1000_media_type_unknown: | ||
4115 | break; | ||
4116 | } | ||
4117 | |||
4118 | if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) && | ||
4119 | (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { | ||
4120 | /* See e1000_kmrn_lock_loss_workaround_ich8lan() */ | ||
4121 | e_info("Gigabit has been disabled, downgrading speed\n"); | ||
4122 | } | ||
4123 | |||
4124 | return link_active; | ||
4125 | } | ||
4126 | |||
4127 | static void e1000e_enable_receives(struct e1000_adapter *adapter) | ||
4128 | { | ||
4129 | /* make sure the receive unit is started */ | ||
4130 | if ((adapter->flags & FLAG_RX_NEEDS_RESTART) && | ||
4131 | (adapter->flags & FLAG_RX_RESTART_NOW)) { | ||
4132 | struct e1000_hw *hw = &adapter->hw; | ||
4133 | u32 rctl = er32(RCTL); | ||
4134 | ew32(RCTL, rctl | E1000_RCTL_EN); | ||
4135 | adapter->flags &= ~FLAG_RX_RESTART_NOW; | ||
4136 | } | ||
4137 | } | ||
4138 | |||
4139 | static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter) | ||
4140 | { | ||
4141 | struct e1000_hw *hw = &adapter->hw; | ||
4142 | |||
4143 | /* | ||
4144 | * With 82574 controllers, PHY needs to be checked periodically | ||
4145 | * for hung state and reset, if two calls return true | ||
4146 | */ | ||
4147 | if (e1000_check_phy_82574(hw)) | ||
4148 | adapter->phy_hang_count++; | ||
4149 | else | ||
4150 | adapter->phy_hang_count = 0; | ||
4151 | |||
4152 | if (adapter->phy_hang_count > 1) { | ||
4153 | adapter->phy_hang_count = 0; | ||
4154 | schedule_work(&adapter->reset_task); | ||
4155 | } | ||
4156 | } | ||
4157 | |||
4158 | /** | ||
4159 | * e1000_watchdog - Timer Call-back | ||
4160 | * @data: pointer to adapter cast into an unsigned long | ||
4161 | **/ | ||
4162 | static void e1000_watchdog(unsigned long data) | ||
4163 | { | ||
4164 | struct e1000_adapter *adapter = (struct e1000_adapter *) data; | ||
4165 | |||
4166 | /* Do the rest outside of interrupt context */ | ||
4167 | schedule_work(&adapter->watchdog_task); | ||
4168 | |||
4169 | /* TODO: make this use queue_delayed_work() */ | ||
4170 | } | ||
4171 | |||
4172 | static void e1000_watchdog_task(struct work_struct *work) | ||
4173 | { | ||
4174 | struct e1000_adapter *adapter = container_of(work, | ||
4175 | struct e1000_adapter, watchdog_task); | ||
4176 | struct net_device *netdev = adapter->netdev; | ||
4177 | struct e1000_mac_info *mac = &adapter->hw.mac; | ||
4178 | struct e1000_phy_info *phy = &adapter->hw.phy; | ||
4179 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
4180 | struct e1000_hw *hw = &adapter->hw; | ||
4181 | u32 link, tctl; | ||
4182 | |||
4183 | if (test_bit(__E1000_DOWN, &adapter->state)) | ||
4184 | return; | ||
4185 | |||
4186 | link = e1000e_has_link(adapter); | ||
4187 | if ((netif_carrier_ok(netdev)) && link) { | ||
4188 | /* Cancel scheduled suspend requests. */ | ||
4189 | pm_runtime_resume(netdev->dev.parent); | ||
4190 | |||
4191 | e1000e_enable_receives(adapter); | ||
4192 | goto link_up; | ||
4193 | } | ||
4194 | |||
4195 | if ((e1000e_enable_tx_pkt_filtering(hw)) && | ||
4196 | (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)) | ||
4197 | e1000_update_mng_vlan(adapter); | ||
4198 | |||
4199 | if (link) { | ||
4200 | if (!netif_carrier_ok(netdev)) { | ||
4201 | bool txb2b = 1; | ||
4202 | |||
4203 | /* Cancel scheduled suspend requests. */ | ||
4204 | pm_runtime_resume(netdev->dev.parent); | ||
4205 | |||
4206 | /* update snapshot of PHY registers on LSC */ | ||
4207 | e1000_phy_read_status(adapter); | ||
4208 | mac->ops.get_link_up_info(&adapter->hw, | ||
4209 | &adapter->link_speed, | ||
4210 | &adapter->link_duplex); | ||
4211 | e1000_print_link_info(adapter); | ||
4212 | /* | ||
4213 | * On supported PHYs, check for duplex mismatch only | ||
4214 | * if link has autonegotiated at 10/100 half | ||
4215 | */ | ||
4216 | if ((hw->phy.type == e1000_phy_igp_3 || | ||
4217 | hw->phy.type == e1000_phy_bm) && | ||
4218 | (hw->mac.autoneg == true) && | ||
4219 | (adapter->link_speed == SPEED_10 || | ||
4220 | adapter->link_speed == SPEED_100) && | ||
4221 | (adapter->link_duplex == HALF_DUPLEX)) { | ||
4222 | u16 autoneg_exp; | ||
4223 | |||
4224 | e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp); | ||
4225 | |||
4226 | if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS)) | ||
4227 | e_info("Autonegotiated half duplex but" | ||
4228 | " link partner cannot autoneg. " | ||
4229 | " Try forcing full duplex if " | ||
4230 | "link gets many collisions.\n"); | ||
4231 | } | ||
4232 | |||
4233 | /* adjust timeout factor according to speed/duplex */ | ||
4234 | adapter->tx_timeout_factor = 1; | ||
4235 | switch (adapter->link_speed) { | ||
4236 | case SPEED_10: | ||
4237 | txb2b = 0; | ||
4238 | adapter->tx_timeout_factor = 16; | ||
4239 | break; | ||
4240 | case SPEED_100: | ||
4241 | txb2b = 0; | ||
4242 | adapter->tx_timeout_factor = 10; | ||
4243 | break; | ||
4244 | } | ||
4245 | |||
4246 | /* | ||
4247 | * workaround: re-program speed mode bit after | ||
4248 | * link-up event | ||
4249 | */ | ||
4250 | if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) && | ||
4251 | !txb2b) { | ||
4252 | u32 tarc0; | ||
4253 | tarc0 = er32(TARC(0)); | ||
4254 | tarc0 &= ~SPEED_MODE_BIT; | ||
4255 | ew32(TARC(0), tarc0); | ||
4256 | } | ||
4257 | |||
4258 | /* | ||
4259 | * disable TSO for pcie and 10/100 speeds, to avoid | ||
4260 | * some hardware issues | ||
4261 | */ | ||
4262 | if (!(adapter->flags & FLAG_TSO_FORCE)) { | ||
4263 | switch (adapter->link_speed) { | ||
4264 | case SPEED_10: | ||
4265 | case SPEED_100: | ||
4266 | e_info("10/100 speed: disabling TSO\n"); | ||
4267 | netdev->features &= ~NETIF_F_TSO; | ||
4268 | netdev->features &= ~NETIF_F_TSO6; | ||
4269 | break; | ||
4270 | case SPEED_1000: | ||
4271 | netdev->features |= NETIF_F_TSO; | ||
4272 | netdev->features |= NETIF_F_TSO6; | ||
4273 | break; | ||
4274 | default: | ||
4275 | /* oops */ | ||
4276 | break; | ||
4277 | } | ||
4278 | } | ||
4279 | |||
4280 | /* | ||
4281 | * enable transmits in the hardware, need to do this | ||
4282 | * after setting TARC(0) | ||
4283 | */ | ||
4284 | tctl = er32(TCTL); | ||
4285 | tctl |= E1000_TCTL_EN; | ||
4286 | ew32(TCTL, tctl); | ||
4287 | |||
4288 | /* | ||
4289 | * Perform any post-link-up configuration before | ||
4290 | * reporting link up. | ||
4291 | */ | ||
4292 | if (phy->ops.cfg_on_link_up) | ||
4293 | phy->ops.cfg_on_link_up(hw); | ||
4294 | |||
4295 | netif_carrier_on(netdev); | ||
4296 | |||
4297 | if (!test_bit(__E1000_DOWN, &adapter->state)) | ||
4298 | mod_timer(&adapter->phy_info_timer, | ||
4299 | round_jiffies(jiffies + 2 * HZ)); | ||
4300 | } | ||
4301 | } else { | ||
4302 | if (netif_carrier_ok(netdev)) { | ||
4303 | adapter->link_speed = 0; | ||
4304 | adapter->link_duplex = 0; | ||
4305 | /* Link status message must follow this format */ | ||
4306 | printk(KERN_INFO "e1000e: %s NIC Link is Down\n", | ||
4307 | adapter->netdev->name); | ||
4308 | netif_carrier_off(netdev); | ||
4309 | if (!test_bit(__E1000_DOWN, &adapter->state)) | ||
4310 | mod_timer(&adapter->phy_info_timer, | ||
4311 | round_jiffies(jiffies + 2 * HZ)); | ||
4312 | |||
4313 | if (adapter->flags & FLAG_RX_NEEDS_RESTART) | ||
4314 | schedule_work(&adapter->reset_task); | ||
4315 | else | ||
4316 | pm_schedule_suspend(netdev->dev.parent, | ||
4317 | LINK_TIMEOUT); | ||
4318 | } | ||
4319 | } | ||
4320 | |||
4321 | link_up: | ||
4322 | spin_lock(&adapter->stats64_lock); | ||
4323 | e1000e_update_stats(adapter); | ||
4324 | |||
4325 | mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; | ||
4326 | adapter->tpt_old = adapter->stats.tpt; | ||
4327 | mac->collision_delta = adapter->stats.colc - adapter->colc_old; | ||
4328 | adapter->colc_old = adapter->stats.colc; | ||
4329 | |||
4330 | adapter->gorc = adapter->stats.gorc - adapter->gorc_old; | ||
4331 | adapter->gorc_old = adapter->stats.gorc; | ||
4332 | adapter->gotc = adapter->stats.gotc - adapter->gotc_old; | ||
4333 | adapter->gotc_old = adapter->stats.gotc; | ||
4334 | spin_unlock(&adapter->stats64_lock); | ||
4335 | |||
4336 | e1000e_update_adaptive(&adapter->hw); | ||
4337 | |||
4338 | if (!netif_carrier_ok(netdev) && | ||
4339 | (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) { | ||
4340 | /* | ||
4341 | * We've lost link, so the controller stops DMA, | ||
4342 | * but we've got queued Tx work that's never going | ||
4343 | * to get done, so reset controller to flush Tx. | ||
4344 | * (Do the reset outside of interrupt context). | ||
4345 | */ | ||
4346 | schedule_work(&adapter->reset_task); | ||
4347 | /* return immediately since reset is imminent */ | ||
4348 | return; | ||
4349 | } | ||
4350 | |||
4351 | /* Simple mode for Interrupt Throttle Rate (ITR) */ | ||
4352 | if (adapter->itr_setting == 4) { | ||
4353 | /* | ||
4354 | * Symmetric Tx/Rx gets a reduced ITR=2000; | ||
4355 | * Total asymmetrical Tx or Rx gets ITR=8000; | ||
4356 | * everyone else is between 2000-8000. | ||
4357 | */ | ||
4358 | u32 goc = (adapter->gotc + adapter->gorc) / 10000; | ||
4359 | u32 dif = (adapter->gotc > adapter->gorc ? | ||
4360 | adapter->gotc - adapter->gorc : | ||
4361 | adapter->gorc - adapter->gotc) / 10000; | ||
4362 | u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; | ||
4363 | |||
4364 | ew32(ITR, 1000000000 / (itr * 256)); | ||
4365 | } | ||
4366 | |||
4367 | /* Cause software interrupt to ensure Rx ring is cleaned */ | ||
4368 | if (adapter->msix_entries) | ||
4369 | ew32(ICS, adapter->rx_ring->ims_val); | ||
4370 | else | ||
4371 | ew32(ICS, E1000_ICS_RXDMT0); | ||
4372 | |||
4373 | /* flush pending descriptors to memory before detecting Tx hang */ | ||
4374 | e1000e_flush_descriptors(adapter); | ||
4375 | |||
4376 | /* Force detection of hung controller every watchdog period */ | ||
4377 | adapter->detect_tx_hung = 1; | ||
4378 | |||
4379 | /* | ||
4380 | * With 82571 controllers, LAA may be overwritten due to controller | ||
4381 | * reset from the other port. Set the appropriate LAA in RAR[0] | ||
4382 | */ | ||
4383 | if (e1000e_get_laa_state_82571(hw)) | ||
4384 | e1000e_rar_set(hw, adapter->hw.mac.addr, 0); | ||
4385 | |||
4386 | if (adapter->flags2 & FLAG2_CHECK_PHY_HANG) | ||
4387 | e1000e_check_82574_phy_workaround(adapter); | ||
4388 | |||
4389 | /* Reset the timer */ | ||
4390 | if (!test_bit(__E1000_DOWN, &adapter->state)) | ||
4391 | mod_timer(&adapter->watchdog_timer, | ||
4392 | round_jiffies(jiffies + 2 * HZ)); | ||
4393 | } | ||
4394 | |||
4395 | #define E1000_TX_FLAGS_CSUM 0x00000001 | ||
4396 | #define E1000_TX_FLAGS_VLAN 0x00000002 | ||
4397 | #define E1000_TX_FLAGS_TSO 0x00000004 | ||
4398 | #define E1000_TX_FLAGS_IPV4 0x00000008 | ||
4399 | #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 | ||
4400 | #define E1000_TX_FLAGS_VLAN_SHIFT 16 | ||
4401 | |||
4402 | static int e1000_tso(struct e1000_adapter *adapter, | ||
4403 | struct sk_buff *skb) | ||
4404 | { | ||
4405 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
4406 | struct e1000_context_desc *context_desc; | ||
4407 | struct e1000_buffer *buffer_info; | ||
4408 | unsigned int i; | ||
4409 | u32 cmd_length = 0; | ||
4410 | u16 ipcse = 0, tucse, mss; | ||
4411 | u8 ipcss, ipcso, tucss, tucso, hdr_len; | ||
4412 | |||
4413 | if (!skb_is_gso(skb)) | ||
4414 | return 0; | ||
4415 | |||
4416 | if (skb_header_cloned(skb)) { | ||
4417 | int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); | ||
4418 | |||
4419 | if (err) | ||
4420 | return err; | ||
4421 | } | ||
4422 | |||
4423 | hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); | ||
4424 | mss = skb_shinfo(skb)->gso_size; | ||
4425 | if (skb->protocol == htons(ETH_P_IP)) { | ||
4426 | struct iphdr *iph = ip_hdr(skb); | ||
4427 | iph->tot_len = 0; | ||
4428 | iph->check = 0; | ||
4429 | tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, | ||
4430 | 0, IPPROTO_TCP, 0); | ||
4431 | cmd_length = E1000_TXD_CMD_IP; | ||
4432 | ipcse = skb_transport_offset(skb) - 1; | ||
4433 | } else if (skb_is_gso_v6(skb)) { | ||
4434 | ipv6_hdr(skb)->payload_len = 0; | ||
4435 | tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, | ||
4436 | &ipv6_hdr(skb)->daddr, | ||
4437 | 0, IPPROTO_TCP, 0); | ||
4438 | ipcse = 0; | ||
4439 | } | ||
4440 | ipcss = skb_network_offset(skb); | ||
4441 | ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; | ||
4442 | tucss = skb_transport_offset(skb); | ||
4443 | tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; | ||
4444 | tucse = 0; | ||
4445 | |||
4446 | cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | | ||
4447 | E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); | ||
4448 | |||
4449 | i = tx_ring->next_to_use; | ||
4450 | context_desc = E1000_CONTEXT_DESC(*tx_ring, i); | ||
4451 | buffer_info = &tx_ring->buffer_info[i]; | ||
4452 | |||
4453 | context_desc->lower_setup.ip_fields.ipcss = ipcss; | ||
4454 | context_desc->lower_setup.ip_fields.ipcso = ipcso; | ||
4455 | context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); | ||
4456 | context_desc->upper_setup.tcp_fields.tucss = tucss; | ||
4457 | context_desc->upper_setup.tcp_fields.tucso = tucso; | ||
4458 | context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); | ||
4459 | context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); | ||
4460 | context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; | ||
4461 | context_desc->cmd_and_length = cpu_to_le32(cmd_length); | ||
4462 | |||
4463 | buffer_info->time_stamp = jiffies; | ||
4464 | buffer_info->next_to_watch = i; | ||
4465 | |||
4466 | i++; | ||
4467 | if (i == tx_ring->count) | ||
4468 | i = 0; | ||
4469 | tx_ring->next_to_use = i; | ||
4470 | |||
4471 | return 1; | ||
4472 | } | ||
4473 | |||
4474 | static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb) | ||
4475 | { | ||
4476 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
4477 | struct e1000_context_desc *context_desc; | ||
4478 | struct e1000_buffer *buffer_info; | ||
4479 | unsigned int i; | ||
4480 | u8 css; | ||
4481 | u32 cmd_len = E1000_TXD_CMD_DEXT; | ||
4482 | __be16 protocol; | ||
4483 | |||
4484 | if (skb->ip_summed != CHECKSUM_PARTIAL) | ||
4485 | return 0; | ||
4486 | |||
4487 | if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) | ||
4488 | protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto; | ||
4489 | else | ||
4490 | protocol = skb->protocol; | ||
4491 | |||
4492 | switch (protocol) { | ||
4493 | case cpu_to_be16(ETH_P_IP): | ||
4494 | if (ip_hdr(skb)->protocol == IPPROTO_TCP) | ||
4495 | cmd_len |= E1000_TXD_CMD_TCP; | ||
4496 | break; | ||
4497 | case cpu_to_be16(ETH_P_IPV6): | ||
4498 | /* XXX not handling all IPV6 headers */ | ||
4499 | if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) | ||
4500 | cmd_len |= E1000_TXD_CMD_TCP; | ||
4501 | break; | ||
4502 | default: | ||
4503 | if (unlikely(net_ratelimit())) | ||
4504 | e_warn("checksum_partial proto=%x!\n", | ||
4505 | be16_to_cpu(protocol)); | ||
4506 | break; | ||
4507 | } | ||
4508 | |||
4509 | css = skb_checksum_start_offset(skb); | ||
4510 | |||
4511 | i = tx_ring->next_to_use; | ||
4512 | buffer_info = &tx_ring->buffer_info[i]; | ||
4513 | context_desc = E1000_CONTEXT_DESC(*tx_ring, i); | ||
4514 | |||
4515 | context_desc->lower_setup.ip_config = 0; | ||
4516 | context_desc->upper_setup.tcp_fields.tucss = css; | ||
4517 | context_desc->upper_setup.tcp_fields.tucso = | ||
4518 | css + skb->csum_offset; | ||
4519 | context_desc->upper_setup.tcp_fields.tucse = 0; | ||
4520 | context_desc->tcp_seg_setup.data = 0; | ||
4521 | context_desc->cmd_and_length = cpu_to_le32(cmd_len); | ||
4522 | |||
4523 | buffer_info->time_stamp = jiffies; | ||
4524 | buffer_info->next_to_watch = i; | ||
4525 | |||
4526 | i++; | ||
4527 | if (i == tx_ring->count) | ||
4528 | i = 0; | ||
4529 | tx_ring->next_to_use = i; | ||
4530 | |||
4531 | return 1; | ||
4532 | } | ||
4533 | |||
4534 | #define E1000_MAX_PER_TXD 8192 | ||
4535 | #define E1000_MAX_TXD_PWR 12 | ||
4536 | |||
4537 | static int e1000_tx_map(struct e1000_adapter *adapter, | ||
4538 | struct sk_buff *skb, unsigned int first, | ||
4539 | unsigned int max_per_txd, unsigned int nr_frags, | ||
4540 | unsigned int mss) | ||
4541 | { | ||
4542 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
4543 | struct pci_dev *pdev = adapter->pdev; | ||
4544 | struct e1000_buffer *buffer_info; | ||
4545 | unsigned int len = skb_headlen(skb); | ||
4546 | unsigned int offset = 0, size, count = 0, i; | ||
4547 | unsigned int f, bytecount, segs; | ||
4548 | |||
4549 | i = tx_ring->next_to_use; | ||
4550 | |||
4551 | while (len) { | ||
4552 | buffer_info = &tx_ring->buffer_info[i]; | ||
4553 | size = min(len, max_per_txd); | ||
4554 | |||
4555 | buffer_info->length = size; | ||
4556 | buffer_info->time_stamp = jiffies; | ||
4557 | buffer_info->next_to_watch = i; | ||
4558 | buffer_info->dma = dma_map_single(&pdev->dev, | ||
4559 | skb->data + offset, | ||
4560 | size, DMA_TO_DEVICE); | ||
4561 | buffer_info->mapped_as_page = false; | ||
4562 | if (dma_mapping_error(&pdev->dev, buffer_info->dma)) | ||
4563 | goto dma_error; | ||
4564 | |||
4565 | len -= size; | ||
4566 | offset += size; | ||
4567 | count++; | ||
4568 | |||
4569 | if (len) { | ||
4570 | i++; | ||
4571 | if (i == tx_ring->count) | ||
4572 | i = 0; | ||
4573 | } | ||
4574 | } | ||
4575 | |||
4576 | for (f = 0; f < nr_frags; f++) { | ||
4577 | struct skb_frag_struct *frag; | ||
4578 | |||
4579 | frag = &skb_shinfo(skb)->frags[f]; | ||
4580 | len = frag->size; | ||
4581 | offset = frag->page_offset; | ||
4582 | |||
4583 | while (len) { | ||
4584 | i++; | ||
4585 | if (i == tx_ring->count) | ||
4586 | i = 0; | ||
4587 | |||
4588 | buffer_info = &tx_ring->buffer_info[i]; | ||
4589 | size = min(len, max_per_txd); | ||
4590 | |||
4591 | buffer_info->length = size; | ||
4592 | buffer_info->time_stamp = jiffies; | ||
4593 | buffer_info->next_to_watch = i; | ||
4594 | buffer_info->dma = dma_map_page(&pdev->dev, frag->page, | ||
4595 | offset, size, | ||
4596 | DMA_TO_DEVICE); | ||
4597 | buffer_info->mapped_as_page = true; | ||
4598 | if (dma_mapping_error(&pdev->dev, buffer_info->dma)) | ||
4599 | goto dma_error; | ||
4600 | |||
4601 | len -= size; | ||
4602 | offset += size; | ||
4603 | count++; | ||
4604 | } | ||
4605 | } | ||
4606 | |||
4607 | segs = skb_shinfo(skb)->gso_segs ? : 1; | ||
4608 | /* multiply data chunks by size of headers */ | ||
4609 | bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; | ||
4610 | |||
4611 | tx_ring->buffer_info[i].skb = skb; | ||
4612 | tx_ring->buffer_info[i].segs = segs; | ||
4613 | tx_ring->buffer_info[i].bytecount = bytecount; | ||
4614 | tx_ring->buffer_info[first].next_to_watch = i; | ||
4615 | |||
4616 | return count; | ||
4617 | |||
4618 | dma_error: | ||
4619 | dev_err(&pdev->dev, "Tx DMA map failed\n"); | ||
4620 | buffer_info->dma = 0; | ||
4621 | if (count) | ||
4622 | count--; | ||
4623 | |||
4624 | while (count--) { | ||
4625 | if (i == 0) | ||
4626 | i += tx_ring->count; | ||
4627 | i--; | ||
4628 | buffer_info = &tx_ring->buffer_info[i]; | ||
4629 | e1000_put_txbuf(adapter, buffer_info); | ||
4630 | } | ||
4631 | |||
4632 | return 0; | ||
4633 | } | ||
4634 | |||
4635 | static void e1000_tx_queue(struct e1000_adapter *adapter, | ||
4636 | int tx_flags, int count) | ||
4637 | { | ||
4638 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
4639 | struct e1000_tx_desc *tx_desc = NULL; | ||
4640 | struct e1000_buffer *buffer_info; | ||
4641 | u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; | ||
4642 | unsigned int i; | ||
4643 | |||
4644 | if (tx_flags & E1000_TX_FLAGS_TSO) { | ||
4645 | txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | | ||
4646 | E1000_TXD_CMD_TSE; | ||
4647 | txd_upper |= E1000_TXD_POPTS_TXSM << 8; | ||
4648 | |||
4649 | if (tx_flags & E1000_TX_FLAGS_IPV4) | ||
4650 | txd_upper |= E1000_TXD_POPTS_IXSM << 8; | ||
4651 | } | ||
4652 | |||
4653 | if (tx_flags & E1000_TX_FLAGS_CSUM) { | ||
4654 | txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; | ||
4655 | txd_upper |= E1000_TXD_POPTS_TXSM << 8; | ||
4656 | } | ||
4657 | |||
4658 | if (tx_flags & E1000_TX_FLAGS_VLAN) { | ||
4659 | txd_lower |= E1000_TXD_CMD_VLE; | ||
4660 | txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); | ||
4661 | } | ||
4662 | |||
4663 | i = tx_ring->next_to_use; | ||
4664 | |||
4665 | do { | ||
4666 | buffer_info = &tx_ring->buffer_info[i]; | ||
4667 | tx_desc = E1000_TX_DESC(*tx_ring, i); | ||
4668 | tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | ||
4669 | tx_desc->lower.data = | ||
4670 | cpu_to_le32(txd_lower | buffer_info->length); | ||
4671 | tx_desc->upper.data = cpu_to_le32(txd_upper); | ||
4672 | |||
4673 | i++; | ||
4674 | if (i == tx_ring->count) | ||
4675 | i = 0; | ||
4676 | } while (--count > 0); | ||
4677 | |||
4678 | tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); | ||
4679 | |||
4680 | /* | ||
4681 | * Force memory writes to complete before letting h/w | ||
4682 | * know there are new descriptors to fetch. (Only | ||
4683 | * applicable for weak-ordered memory model archs, | ||
4684 | * such as IA-64). | ||
4685 | */ | ||
4686 | wmb(); | ||
4687 | |||
4688 | tx_ring->next_to_use = i; | ||
4689 | writel(i, adapter->hw.hw_addr + tx_ring->tail); | ||
4690 | /* | ||
4691 | * we need this if more than one processor can write to our tail | ||
4692 | * at a time, it synchronizes IO on IA64/Altix systems | ||
4693 | */ | ||
4694 | mmiowb(); | ||
4695 | } | ||
4696 | |||
4697 | #define MINIMUM_DHCP_PACKET_SIZE 282 | ||
4698 | static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, | ||
4699 | struct sk_buff *skb) | ||
4700 | { | ||
4701 | struct e1000_hw *hw = &adapter->hw; | ||
4702 | u16 length, offset; | ||
4703 | |||
4704 | if (vlan_tx_tag_present(skb)) { | ||
4705 | if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) && | ||
4706 | (adapter->hw.mng_cookie.status & | ||
4707 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN))) | ||
4708 | return 0; | ||
4709 | } | ||
4710 | |||
4711 | if (skb->len <= MINIMUM_DHCP_PACKET_SIZE) | ||
4712 | return 0; | ||
4713 | |||
4714 | if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP)) | ||
4715 | return 0; | ||
4716 | |||
4717 | { | ||
4718 | const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14); | ||
4719 | struct udphdr *udp; | ||
4720 | |||
4721 | if (ip->protocol != IPPROTO_UDP) | ||
4722 | return 0; | ||
4723 | |||
4724 | udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2)); | ||
4725 | if (ntohs(udp->dest) != 67) | ||
4726 | return 0; | ||
4727 | |||
4728 | offset = (u8 *)udp + 8 - skb->data; | ||
4729 | length = skb->len - offset; | ||
4730 | return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length); | ||
4731 | } | ||
4732 | |||
4733 | return 0; | ||
4734 | } | ||
4735 | |||
4736 | static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) | ||
4737 | { | ||
4738 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
4739 | |||
4740 | netif_stop_queue(netdev); | ||
4741 | /* | ||
4742 | * Herbert's original patch had: | ||
4743 | * smp_mb__after_netif_stop_queue(); | ||
4744 | * but since that doesn't exist yet, just open code it. | ||
4745 | */ | ||
4746 | smp_mb(); | ||
4747 | |||
4748 | /* | ||
4749 | * We need to check again in a case another CPU has just | ||
4750 | * made room available. | ||
4751 | */ | ||
4752 | if (e1000_desc_unused(adapter->tx_ring) < size) | ||
4753 | return -EBUSY; | ||
4754 | |||
4755 | /* A reprieve! */ | ||
4756 | netif_start_queue(netdev); | ||
4757 | ++adapter->restart_queue; | ||
4758 | return 0; | ||
4759 | } | ||
4760 | |||
4761 | static int e1000_maybe_stop_tx(struct net_device *netdev, int size) | ||
4762 | { | ||
4763 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
4764 | |||
4765 | if (e1000_desc_unused(adapter->tx_ring) >= size) | ||
4766 | return 0; | ||
4767 | return __e1000_maybe_stop_tx(netdev, size); | ||
4768 | } | ||
4769 | |||
4770 | #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) | ||
4771 | static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, | ||
4772 | struct net_device *netdev) | ||
4773 | { | ||
4774 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
4775 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
4776 | unsigned int first; | ||
4777 | unsigned int max_per_txd = E1000_MAX_PER_TXD; | ||
4778 | unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; | ||
4779 | unsigned int tx_flags = 0; | ||
4780 | unsigned int len = skb_headlen(skb); | ||
4781 | unsigned int nr_frags; | ||
4782 | unsigned int mss; | ||
4783 | int count = 0; | ||
4784 | int tso; | ||
4785 | unsigned int f; | ||
4786 | |||
4787 | if (test_bit(__E1000_DOWN, &adapter->state)) { | ||
4788 | dev_kfree_skb_any(skb); | ||
4789 | return NETDEV_TX_OK; | ||
4790 | } | ||
4791 | |||
4792 | if (skb->len <= 0) { | ||
4793 | dev_kfree_skb_any(skb); | ||
4794 | return NETDEV_TX_OK; | ||
4795 | } | ||
4796 | |||
4797 | mss = skb_shinfo(skb)->gso_size; | ||
4798 | /* | ||
4799 | * The controller does a simple calculation to | ||
4800 | * make sure there is enough room in the FIFO before | ||
4801 | * initiating the DMA for each buffer. The calc is: | ||
4802 | * 4 = ceil(buffer len/mss). To make sure we don't | ||
4803 | * overrun the FIFO, adjust the max buffer len if mss | ||
4804 | * drops. | ||
4805 | */ | ||
4806 | if (mss) { | ||
4807 | u8 hdr_len; | ||
4808 | max_per_txd = min(mss << 2, max_per_txd); | ||
4809 | max_txd_pwr = fls(max_per_txd) - 1; | ||
4810 | |||
4811 | /* | ||
4812 | * TSO Workaround for 82571/2/3 Controllers -- if skb->data | ||
4813 | * points to just header, pull a few bytes of payload from | ||
4814 | * frags into skb->data | ||
4815 | */ | ||
4816 | hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); | ||
4817 | /* | ||
4818 | * we do this workaround for ES2LAN, but it is un-necessary, | ||
4819 | * avoiding it could save a lot of cycles | ||
4820 | */ | ||
4821 | if (skb->data_len && (hdr_len == len)) { | ||
4822 | unsigned int pull_size; | ||
4823 | |||
4824 | pull_size = min((unsigned int)4, skb->data_len); | ||
4825 | if (!__pskb_pull_tail(skb, pull_size)) { | ||
4826 | e_err("__pskb_pull_tail failed.\n"); | ||
4827 | dev_kfree_skb_any(skb); | ||
4828 | return NETDEV_TX_OK; | ||
4829 | } | ||
4830 | len = skb_headlen(skb); | ||
4831 | } | ||
4832 | } | ||
4833 | |||
4834 | /* reserve a descriptor for the offload context */ | ||
4835 | if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) | ||
4836 | count++; | ||
4837 | count++; | ||
4838 | |||
4839 | count += TXD_USE_COUNT(len, max_txd_pwr); | ||
4840 | |||
4841 | nr_frags = skb_shinfo(skb)->nr_frags; | ||
4842 | for (f = 0; f < nr_frags; f++) | ||
4843 | count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, | ||
4844 | max_txd_pwr); | ||
4845 | |||
4846 | if (adapter->hw.mac.tx_pkt_filtering) | ||
4847 | e1000_transfer_dhcp_info(adapter, skb); | ||
4848 | |||
4849 | /* | ||
4850 | * need: count + 2 desc gap to keep tail from touching | ||
4851 | * head, otherwise try next time | ||
4852 | */ | ||
4853 | if (e1000_maybe_stop_tx(netdev, count + 2)) | ||
4854 | return NETDEV_TX_BUSY; | ||
4855 | |||
4856 | if (vlan_tx_tag_present(skb)) { | ||
4857 | tx_flags |= E1000_TX_FLAGS_VLAN; | ||
4858 | tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); | ||
4859 | } | ||
4860 | |||
4861 | first = tx_ring->next_to_use; | ||
4862 | |||
4863 | tso = e1000_tso(adapter, skb); | ||
4864 | if (tso < 0) { | ||
4865 | dev_kfree_skb_any(skb); | ||
4866 | return NETDEV_TX_OK; | ||
4867 | } | ||
4868 | |||
4869 | if (tso) | ||
4870 | tx_flags |= E1000_TX_FLAGS_TSO; | ||
4871 | else if (e1000_tx_csum(adapter, skb)) | ||
4872 | tx_flags |= E1000_TX_FLAGS_CSUM; | ||
4873 | |||
4874 | /* | ||
4875 | * Old method was to assume IPv4 packet by default if TSO was enabled. | ||
4876 | * 82571 hardware supports TSO capabilities for IPv6 as well... | ||
4877 | * no longer assume, we must. | ||
4878 | */ | ||
4879 | if (skb->protocol == htons(ETH_P_IP)) | ||
4880 | tx_flags |= E1000_TX_FLAGS_IPV4; | ||
4881 | |||
4882 | /* if count is 0 then mapping error has occurred */ | ||
4883 | count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss); | ||
4884 | if (count) { | ||
4885 | e1000_tx_queue(adapter, tx_flags, count); | ||
4886 | /* Make sure there is space in the ring for the next send. */ | ||
4887 | e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2); | ||
4888 | |||
4889 | } else { | ||
4890 | dev_kfree_skb_any(skb); | ||
4891 | tx_ring->buffer_info[first].time_stamp = 0; | ||
4892 | tx_ring->next_to_use = first; | ||
4893 | } | ||
4894 | |||
4895 | return NETDEV_TX_OK; | ||
4896 | } | ||
4897 | |||
4898 | /** | ||
4899 | * e1000_tx_timeout - Respond to a Tx Hang | ||
4900 | * @netdev: network interface device structure | ||
4901 | **/ | ||
4902 | static void e1000_tx_timeout(struct net_device *netdev) | ||
4903 | { | ||
4904 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
4905 | |||
4906 | /* Do the reset outside of interrupt context */ | ||
4907 | adapter->tx_timeout_count++; | ||
4908 | schedule_work(&adapter->reset_task); | ||
4909 | } | ||
4910 | |||
4911 | static void e1000_reset_task(struct work_struct *work) | ||
4912 | { | ||
4913 | struct e1000_adapter *adapter; | ||
4914 | adapter = container_of(work, struct e1000_adapter, reset_task); | ||
4915 | |||
4916 | /* don't run the task if already down */ | ||
4917 | if (test_bit(__E1000_DOWN, &adapter->state)) | ||
4918 | return; | ||
4919 | |||
4920 | if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) && | ||
4921 | (adapter->flags & FLAG_RX_RESTART_NOW))) { | ||
4922 | e1000e_dump(adapter); | ||
4923 | e_err("Reset adapter\n"); | ||
4924 | } | ||
4925 | e1000e_reinit_locked(adapter); | ||
4926 | } | ||
4927 | |||
4928 | /** | ||
4929 | * e1000_get_stats64 - Get System Network Statistics | ||
4930 | * @netdev: network interface device structure | ||
4931 | * @stats: rtnl_link_stats64 pointer | ||
4932 | * | ||
4933 | * Returns the address of the device statistics structure. | ||
4934 | **/ | ||
4935 | struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev, | ||
4936 | struct rtnl_link_stats64 *stats) | ||
4937 | { | ||
4938 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
4939 | |||
4940 | memset(stats, 0, sizeof(struct rtnl_link_stats64)); | ||
4941 | spin_lock(&adapter->stats64_lock); | ||
4942 | e1000e_update_stats(adapter); | ||
4943 | /* Fill out the OS statistics structure */ | ||
4944 | stats->rx_bytes = adapter->stats.gorc; | ||
4945 | stats->rx_packets = adapter->stats.gprc; | ||
4946 | stats->tx_bytes = adapter->stats.gotc; | ||
4947 | stats->tx_packets = adapter->stats.gptc; | ||
4948 | stats->multicast = adapter->stats.mprc; | ||
4949 | stats->collisions = adapter->stats.colc; | ||
4950 | |||
4951 | /* Rx Errors */ | ||
4952 | |||
4953 | /* | ||
4954 | * RLEC on some newer hardware can be incorrect so build | ||
4955 | * our own version based on RUC and ROC | ||
4956 | */ | ||
4957 | stats->rx_errors = adapter->stats.rxerrc + | ||
4958 | adapter->stats.crcerrs + adapter->stats.algnerrc + | ||
4959 | adapter->stats.ruc + adapter->stats.roc + | ||
4960 | adapter->stats.cexterr; | ||
4961 | stats->rx_length_errors = adapter->stats.ruc + | ||
4962 | adapter->stats.roc; | ||
4963 | stats->rx_crc_errors = adapter->stats.crcerrs; | ||
4964 | stats->rx_frame_errors = adapter->stats.algnerrc; | ||
4965 | stats->rx_missed_errors = adapter->stats.mpc; | ||
4966 | |||
4967 | /* Tx Errors */ | ||
4968 | stats->tx_errors = adapter->stats.ecol + | ||
4969 | adapter->stats.latecol; | ||
4970 | stats->tx_aborted_errors = adapter->stats.ecol; | ||
4971 | stats->tx_window_errors = adapter->stats.latecol; | ||
4972 | stats->tx_carrier_errors = adapter->stats.tncrs; | ||
4973 | |||
4974 | /* Tx Dropped needs to be maintained elsewhere */ | ||
4975 | |||
4976 | spin_unlock(&adapter->stats64_lock); | ||
4977 | return stats; | ||
4978 | } | ||
4979 | |||
4980 | /** | ||
4981 | * e1000_change_mtu - Change the Maximum Transfer Unit | ||
4982 | * @netdev: network interface device structure | ||
4983 | * @new_mtu: new value for maximum frame size | ||
4984 | * | ||
4985 | * Returns 0 on success, negative on failure | ||
4986 | **/ | ||
4987 | static int e1000_change_mtu(struct net_device *netdev, int new_mtu) | ||
4988 | { | ||
4989 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
4990 | int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; | ||
4991 | |||
4992 | /* Jumbo frame support */ | ||
4993 | if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) && | ||
4994 | !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) { | ||
4995 | e_err("Jumbo Frames not supported.\n"); | ||
4996 | return -EINVAL; | ||
4997 | } | ||
4998 | |||
4999 | /* Supported frame sizes */ | ||
5000 | if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) || | ||
5001 | (max_frame > adapter->max_hw_frame_size)) { | ||
5002 | e_err("Unsupported MTU setting\n"); | ||
5003 | return -EINVAL; | ||
5004 | } | ||
5005 | |||
5006 | /* Jumbo frame workaround on 82579 requires CRC be stripped */ | ||
5007 | if ((adapter->hw.mac.type == e1000_pch2lan) && | ||
5008 | !(adapter->flags2 & FLAG2_CRC_STRIPPING) && | ||
5009 | (new_mtu > ETH_DATA_LEN)) { | ||
5010 | e_err("Jumbo Frames not supported on 82579 when CRC " | ||
5011 | "stripping is disabled.\n"); | ||
5012 | return -EINVAL; | ||
5013 | } | ||
5014 | |||
5015 | /* 82573 Errata 17 */ | ||
5016 | if (((adapter->hw.mac.type == e1000_82573) || | ||
5017 | (adapter->hw.mac.type == e1000_82574)) && | ||
5018 | (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) { | ||
5019 | adapter->flags2 |= FLAG2_DISABLE_ASPM_L1; | ||
5020 | e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1); | ||
5021 | } | ||
5022 | |||
5023 | while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) | ||
5024 | usleep_range(1000, 2000); | ||
5025 | /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */ | ||
5026 | adapter->max_frame_size = max_frame; | ||
5027 | e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu); | ||
5028 | netdev->mtu = new_mtu; | ||
5029 | if (netif_running(netdev)) | ||
5030 | e1000e_down(adapter); | ||
5031 | |||
5032 | /* | ||
5033 | * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN | ||
5034 | * means we reserve 2 more, this pushes us to allocate from the next | ||
5035 | * larger slab size. | ||
5036 | * i.e. RXBUFFER_2048 --> size-4096 slab | ||
5037 | * However with the new *_jumbo_rx* routines, jumbo receives will use | ||
5038 | * fragmented skbs | ||
5039 | */ | ||
5040 | |||
5041 | if (max_frame <= 2048) | ||
5042 | adapter->rx_buffer_len = 2048; | ||
5043 | else | ||
5044 | adapter->rx_buffer_len = 4096; | ||
5045 | |||
5046 | /* adjust allocation if LPE protects us, and we aren't using SBP */ | ||
5047 | if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || | ||
5048 | (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN)) | ||
5049 | adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN | ||
5050 | + ETH_FCS_LEN; | ||
5051 | |||
5052 | if (netif_running(netdev)) | ||
5053 | e1000e_up(adapter); | ||
5054 | else | ||
5055 | e1000e_reset(adapter); | ||
5056 | |||
5057 | clear_bit(__E1000_RESETTING, &adapter->state); | ||
5058 | |||
5059 | return 0; | ||
5060 | } | ||
5061 | |||
5062 | static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, | ||
5063 | int cmd) | ||
5064 | { | ||
5065 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
5066 | struct mii_ioctl_data *data = if_mii(ifr); | ||
5067 | |||
5068 | if (adapter->hw.phy.media_type != e1000_media_type_copper) | ||
5069 | return -EOPNOTSUPP; | ||
5070 | |||
5071 | switch (cmd) { | ||
5072 | case SIOCGMIIPHY: | ||
5073 | data->phy_id = adapter->hw.phy.addr; | ||
5074 | break; | ||
5075 | case SIOCGMIIREG: | ||
5076 | e1000_phy_read_status(adapter); | ||
5077 | |||
5078 | switch (data->reg_num & 0x1F) { | ||
5079 | case MII_BMCR: | ||
5080 | data->val_out = adapter->phy_regs.bmcr; | ||
5081 | break; | ||
5082 | case MII_BMSR: | ||
5083 | data->val_out = adapter->phy_regs.bmsr; | ||
5084 | break; | ||
5085 | case MII_PHYSID1: | ||
5086 | data->val_out = (adapter->hw.phy.id >> 16); | ||
5087 | break; | ||
5088 | case MII_PHYSID2: | ||
5089 | data->val_out = (adapter->hw.phy.id & 0xFFFF); | ||
5090 | break; | ||
5091 | case MII_ADVERTISE: | ||
5092 | data->val_out = adapter->phy_regs.advertise; | ||
5093 | break; | ||
5094 | case MII_LPA: | ||
5095 | data->val_out = adapter->phy_regs.lpa; | ||
5096 | break; | ||
5097 | case MII_EXPANSION: | ||
5098 | data->val_out = adapter->phy_regs.expansion; | ||
5099 | break; | ||
5100 | case MII_CTRL1000: | ||
5101 | data->val_out = adapter->phy_regs.ctrl1000; | ||
5102 | break; | ||
5103 | case MII_STAT1000: | ||
5104 | data->val_out = adapter->phy_regs.stat1000; | ||
5105 | break; | ||
5106 | case MII_ESTATUS: | ||
5107 | data->val_out = adapter->phy_regs.estatus; | ||
5108 | break; | ||
5109 | default: | ||
5110 | return -EIO; | ||
5111 | } | ||
5112 | break; | ||
5113 | case SIOCSMIIREG: | ||
5114 | default: | ||
5115 | return -EOPNOTSUPP; | ||
5116 | } | ||
5117 | return 0; | ||
5118 | } | ||
5119 | |||
5120 | static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | ||
5121 | { | ||
5122 | switch (cmd) { | ||
5123 | case SIOCGMIIPHY: | ||
5124 | case SIOCGMIIREG: | ||
5125 | case SIOCSMIIREG: | ||
5126 | return e1000_mii_ioctl(netdev, ifr, cmd); | ||
5127 | default: | ||
5128 | return -EOPNOTSUPP; | ||
5129 | } | ||
5130 | } | ||
5131 | |||
5132 | static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc) | ||
5133 | { | ||
5134 | struct e1000_hw *hw = &adapter->hw; | ||
5135 | u32 i, mac_reg; | ||
5136 | u16 phy_reg, wuc_enable; | ||
5137 | int retval = 0; | ||
5138 | |||
5139 | /* copy MAC RARs to PHY RARs */ | ||
5140 | e1000_copy_rx_addrs_to_phy_ich8lan(hw); | ||
5141 | |||
5142 | retval = hw->phy.ops.acquire(hw); | ||
5143 | if (retval) { | ||
5144 | e_err("Could not acquire PHY\n"); | ||
5145 | return retval; | ||
5146 | } | ||
5147 | |||
5148 | /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */ | ||
5149 | retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable); | ||
5150 | if (retval) | ||
5151 | goto out; | ||
5152 | |||
5153 | /* copy MAC MTA to PHY MTA - only needed for pchlan */ | ||
5154 | for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) { | ||
5155 | mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i); | ||
5156 | hw->phy.ops.write_reg_page(hw, BM_MTA(i), | ||
5157 | (u16)(mac_reg & 0xFFFF)); | ||
5158 | hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1, | ||
5159 | (u16)((mac_reg >> 16) & 0xFFFF)); | ||
5160 | } | ||
5161 | |||
5162 | /* configure PHY Rx Control register */ | ||
5163 | hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg); | ||
5164 | mac_reg = er32(RCTL); | ||
5165 | if (mac_reg & E1000_RCTL_UPE) | ||
5166 | phy_reg |= BM_RCTL_UPE; | ||
5167 | if (mac_reg & E1000_RCTL_MPE) | ||
5168 | phy_reg |= BM_RCTL_MPE; | ||
5169 | phy_reg &= ~(BM_RCTL_MO_MASK); | ||
5170 | if (mac_reg & E1000_RCTL_MO_3) | ||
5171 | phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT) | ||
5172 | << BM_RCTL_MO_SHIFT); | ||
5173 | if (mac_reg & E1000_RCTL_BAM) | ||
5174 | phy_reg |= BM_RCTL_BAM; | ||
5175 | if (mac_reg & E1000_RCTL_PMCF) | ||
5176 | phy_reg |= BM_RCTL_PMCF; | ||
5177 | mac_reg = er32(CTRL); | ||
5178 | if (mac_reg & E1000_CTRL_RFCE) | ||
5179 | phy_reg |= BM_RCTL_RFCE; | ||
5180 | hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg); | ||
5181 | |||
5182 | /* enable PHY wakeup in MAC register */ | ||
5183 | ew32(WUFC, wufc); | ||
5184 | ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN); | ||
5185 | |||
5186 | /* configure and enable PHY wakeup in PHY registers */ | ||
5187 | hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc); | ||
5188 | hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN); | ||
5189 | |||
5190 | /* activate PHY wakeup */ | ||
5191 | wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT; | ||
5192 | retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable); | ||
5193 | if (retval) | ||
5194 | e_err("Could not set PHY Host Wakeup bit\n"); | ||
5195 | out: | ||
5196 | hw->phy.ops.release(hw); | ||
5197 | |||
5198 | return retval; | ||
5199 | } | ||
5200 | |||
5201 | static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake, | ||
5202 | bool runtime) | ||
5203 | { | ||
5204 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
5205 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
5206 | struct e1000_hw *hw = &adapter->hw; | ||
5207 | u32 ctrl, ctrl_ext, rctl, status; | ||
5208 | /* Runtime suspend should only enable wakeup for link changes */ | ||
5209 | u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol; | ||
5210 | int retval = 0; | ||
5211 | |||
5212 | netif_device_detach(netdev); | ||
5213 | |||
5214 | if (netif_running(netdev)) { | ||
5215 | WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); | ||
5216 | e1000e_down(adapter); | ||
5217 | e1000_free_irq(adapter); | ||
5218 | } | ||
5219 | e1000e_reset_interrupt_capability(adapter); | ||
5220 | |||
5221 | retval = pci_save_state(pdev); | ||
5222 | if (retval) | ||
5223 | return retval; | ||
5224 | |||
5225 | status = er32(STATUS); | ||
5226 | if (status & E1000_STATUS_LU) | ||
5227 | wufc &= ~E1000_WUFC_LNKC; | ||
5228 | |||
5229 | if (wufc) { | ||
5230 | e1000_setup_rctl(adapter); | ||
5231 | e1000_set_multi(netdev); | ||
5232 | |||
5233 | /* turn on all-multi mode if wake on multicast is enabled */ | ||
5234 | if (wufc & E1000_WUFC_MC) { | ||
5235 | rctl = er32(RCTL); | ||
5236 | rctl |= E1000_RCTL_MPE; | ||
5237 | ew32(RCTL, rctl); | ||
5238 | } | ||
5239 | |||
5240 | ctrl = er32(CTRL); | ||
5241 | /* advertise wake from D3Cold */ | ||
5242 | #define E1000_CTRL_ADVD3WUC 0x00100000 | ||
5243 | /* phy power management enable */ | ||
5244 | #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 | ||
5245 | ctrl |= E1000_CTRL_ADVD3WUC; | ||
5246 | if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)) | ||
5247 | ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT; | ||
5248 | ew32(CTRL, ctrl); | ||
5249 | |||
5250 | if (adapter->hw.phy.media_type == e1000_media_type_fiber || | ||
5251 | adapter->hw.phy.media_type == | ||
5252 | e1000_media_type_internal_serdes) { | ||
5253 | /* keep the laser running in D3 */ | ||
5254 | ctrl_ext = er32(CTRL_EXT); | ||
5255 | ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA; | ||
5256 | ew32(CTRL_EXT, ctrl_ext); | ||
5257 | } | ||
5258 | |||
5259 | if (adapter->flags & FLAG_IS_ICH) | ||
5260 | e1000_suspend_workarounds_ich8lan(&adapter->hw); | ||
5261 | |||
5262 | /* Allow time for pending master requests to run */ | ||
5263 | e1000e_disable_pcie_master(&adapter->hw); | ||
5264 | |||
5265 | if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { | ||
5266 | /* enable wakeup by the PHY */ | ||
5267 | retval = e1000_init_phy_wakeup(adapter, wufc); | ||
5268 | if (retval) | ||
5269 | return retval; | ||
5270 | } else { | ||
5271 | /* enable wakeup by the MAC */ | ||
5272 | ew32(WUFC, wufc); | ||
5273 | ew32(WUC, E1000_WUC_PME_EN); | ||
5274 | } | ||
5275 | } else { | ||
5276 | ew32(WUC, 0); | ||
5277 | ew32(WUFC, 0); | ||
5278 | } | ||
5279 | |||
5280 | *enable_wake = !!wufc; | ||
5281 | |||
5282 | /* make sure adapter isn't asleep if manageability is enabled */ | ||
5283 | if ((adapter->flags & FLAG_MNG_PT_ENABLED) || | ||
5284 | (hw->mac.ops.check_mng_mode(hw))) | ||
5285 | *enable_wake = true; | ||
5286 | |||
5287 | if (adapter->hw.phy.type == e1000_phy_igp_3) | ||
5288 | e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); | ||
5289 | |||
5290 | /* | ||
5291 | * Release control of h/w to f/w. If f/w is AMT enabled, this | ||
5292 | * would have already happened in close and is redundant. | ||
5293 | */ | ||
5294 | e1000e_release_hw_control(adapter); | ||
5295 | |||
5296 | pci_disable_device(pdev); | ||
5297 | |||
5298 | return 0; | ||
5299 | } | ||
5300 | |||
5301 | static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake) | ||
5302 | { | ||
5303 | if (sleep && wake) { | ||
5304 | pci_prepare_to_sleep(pdev); | ||
5305 | return; | ||
5306 | } | ||
5307 | |||
5308 | pci_wake_from_d3(pdev, wake); | ||
5309 | pci_set_power_state(pdev, PCI_D3hot); | ||
5310 | } | ||
5311 | |||
5312 | static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep, | ||
5313 | bool wake) | ||
5314 | { | ||
5315 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
5316 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
5317 | |||
5318 | /* | ||
5319 | * The pci-e switch on some quad port adapters will report a | ||
5320 | * correctable error when the MAC transitions from D0 to D3. To | ||
5321 | * prevent this we need to mask off the correctable errors on the | ||
5322 | * downstream port of the pci-e switch. | ||
5323 | */ | ||
5324 | if (adapter->flags & FLAG_IS_QUAD_PORT) { | ||
5325 | struct pci_dev *us_dev = pdev->bus->self; | ||
5326 | int pos = pci_pcie_cap(us_dev); | ||
5327 | u16 devctl; | ||
5328 | |||
5329 | pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl); | ||
5330 | pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, | ||
5331 | (devctl & ~PCI_EXP_DEVCTL_CERE)); | ||
5332 | |||
5333 | e1000_power_off(pdev, sleep, wake); | ||
5334 | |||
5335 | pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl); | ||
5336 | } else { | ||
5337 | e1000_power_off(pdev, sleep, wake); | ||
5338 | } | ||
5339 | } | ||
5340 | |||
5341 | #ifdef CONFIG_PCIEASPM | ||
5342 | static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state) | ||
5343 | { | ||
5344 | pci_disable_link_state_locked(pdev, state); | ||
5345 | } | ||
5346 | #else | ||
5347 | static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state) | ||
5348 | { | ||
5349 | int pos; | ||
5350 | u16 reg16; | ||
5351 | |||
5352 | /* | ||
5353 | * Both device and parent should have the same ASPM setting. | ||
5354 | * Disable ASPM in downstream component first and then upstream. | ||
5355 | */ | ||
5356 | pos = pci_pcie_cap(pdev); | ||
5357 | pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, ®16); | ||
5358 | reg16 &= ~state; | ||
5359 | pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16); | ||
5360 | |||
5361 | if (!pdev->bus->self) | ||
5362 | return; | ||
5363 | |||
5364 | pos = pci_pcie_cap(pdev->bus->self); | ||
5365 | pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, ®16); | ||
5366 | reg16 &= ~state; | ||
5367 | pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16); | ||
5368 | } | ||
5369 | #endif | ||
5370 | static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state) | ||
5371 | { | ||
5372 | dev_info(&pdev->dev, "Disabling ASPM %s %s\n", | ||
5373 | (state & PCIE_LINK_STATE_L0S) ? "L0s" : "", | ||
5374 | (state & PCIE_LINK_STATE_L1) ? "L1" : ""); | ||
5375 | |||
5376 | __e1000e_disable_aspm(pdev, state); | ||
5377 | } | ||
5378 | |||
5379 | #ifdef CONFIG_PM | ||
5380 | static bool e1000e_pm_ready(struct e1000_adapter *adapter) | ||
5381 | { | ||
5382 | return !!adapter->tx_ring->buffer_info; | ||
5383 | } | ||
5384 | |||
5385 | static int __e1000_resume(struct pci_dev *pdev) | ||
5386 | { | ||
5387 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
5388 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
5389 | struct e1000_hw *hw = &adapter->hw; | ||
5390 | u16 aspm_disable_flag = 0; | ||
5391 | u32 err; | ||
5392 | |||
5393 | if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S) | ||
5394 | aspm_disable_flag = PCIE_LINK_STATE_L0S; | ||
5395 | if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1) | ||
5396 | aspm_disable_flag |= PCIE_LINK_STATE_L1; | ||
5397 | if (aspm_disable_flag) | ||
5398 | e1000e_disable_aspm(pdev, aspm_disable_flag); | ||
5399 | |||
5400 | pci_set_power_state(pdev, PCI_D0); | ||
5401 | pci_restore_state(pdev); | ||
5402 | pci_save_state(pdev); | ||
5403 | |||
5404 | e1000e_set_interrupt_capability(adapter); | ||
5405 | if (netif_running(netdev)) { | ||
5406 | err = e1000_request_irq(adapter); | ||
5407 | if (err) | ||
5408 | return err; | ||
5409 | } | ||
5410 | |||
5411 | if (hw->mac.type == e1000_pch2lan) | ||
5412 | e1000_resume_workarounds_pchlan(&adapter->hw); | ||
5413 | |||
5414 | e1000e_power_up_phy(adapter); | ||
5415 | |||
5416 | /* report the system wakeup cause from S3/S4 */ | ||
5417 | if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { | ||
5418 | u16 phy_data; | ||
5419 | |||
5420 | e1e_rphy(&adapter->hw, BM_WUS, &phy_data); | ||
5421 | if (phy_data) { | ||
5422 | e_info("PHY Wakeup cause - %s\n", | ||
5423 | phy_data & E1000_WUS_EX ? "Unicast Packet" : | ||
5424 | phy_data & E1000_WUS_MC ? "Multicast Packet" : | ||
5425 | phy_data & E1000_WUS_BC ? "Broadcast Packet" : | ||
5426 | phy_data & E1000_WUS_MAG ? "Magic Packet" : | ||
5427 | phy_data & E1000_WUS_LNKC ? "Link Status " | ||
5428 | " Change" : "other"); | ||
5429 | } | ||
5430 | e1e_wphy(&adapter->hw, BM_WUS, ~0); | ||
5431 | } else { | ||
5432 | u32 wus = er32(WUS); | ||
5433 | if (wus) { | ||
5434 | e_info("MAC Wakeup cause - %s\n", | ||
5435 | wus & E1000_WUS_EX ? "Unicast Packet" : | ||
5436 | wus & E1000_WUS_MC ? "Multicast Packet" : | ||
5437 | wus & E1000_WUS_BC ? "Broadcast Packet" : | ||
5438 | wus & E1000_WUS_MAG ? "Magic Packet" : | ||
5439 | wus & E1000_WUS_LNKC ? "Link Status Change" : | ||
5440 | "other"); | ||
5441 | } | ||
5442 | ew32(WUS, ~0); | ||
5443 | } | ||
5444 | |||
5445 | e1000e_reset(adapter); | ||
5446 | |||
5447 | e1000_init_manageability_pt(adapter); | ||
5448 | |||
5449 | if (netif_running(netdev)) | ||
5450 | e1000e_up(adapter); | ||
5451 | |||
5452 | netif_device_attach(netdev); | ||
5453 | |||
5454 | /* | ||
5455 | * If the controller has AMT, do not set DRV_LOAD until the interface | ||
5456 | * is up. For all other cases, let the f/w know that the h/w is now | ||
5457 | * under the control of the driver. | ||
5458 | */ | ||
5459 | if (!(adapter->flags & FLAG_HAS_AMT)) | ||
5460 | e1000e_get_hw_control(adapter); | ||
5461 | |||
5462 | return 0; | ||
5463 | } | ||
5464 | |||
5465 | #ifdef CONFIG_PM_SLEEP | ||
5466 | static int e1000_suspend(struct device *dev) | ||
5467 | { | ||
5468 | struct pci_dev *pdev = to_pci_dev(dev); | ||
5469 | int retval; | ||
5470 | bool wake; | ||
5471 | |||
5472 | retval = __e1000_shutdown(pdev, &wake, false); | ||
5473 | if (!retval) | ||
5474 | e1000_complete_shutdown(pdev, true, wake); | ||
5475 | |||
5476 | return retval; | ||
5477 | } | ||
5478 | |||
5479 | static int e1000_resume(struct device *dev) | ||
5480 | { | ||
5481 | struct pci_dev *pdev = to_pci_dev(dev); | ||
5482 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
5483 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
5484 | |||
5485 | if (e1000e_pm_ready(adapter)) | ||
5486 | adapter->idle_check = true; | ||
5487 | |||
5488 | return __e1000_resume(pdev); | ||
5489 | } | ||
5490 | #endif /* CONFIG_PM_SLEEP */ | ||
5491 | |||
5492 | #ifdef CONFIG_PM_RUNTIME | ||
5493 | static int e1000_runtime_suspend(struct device *dev) | ||
5494 | { | ||
5495 | struct pci_dev *pdev = to_pci_dev(dev); | ||
5496 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
5497 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
5498 | |||
5499 | if (e1000e_pm_ready(adapter)) { | ||
5500 | bool wake; | ||
5501 | |||
5502 | __e1000_shutdown(pdev, &wake, true); | ||
5503 | } | ||
5504 | |||
5505 | return 0; | ||
5506 | } | ||
5507 | |||
5508 | static int e1000_idle(struct device *dev) | ||
5509 | { | ||
5510 | struct pci_dev *pdev = to_pci_dev(dev); | ||
5511 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
5512 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
5513 | |||
5514 | if (!e1000e_pm_ready(adapter)) | ||
5515 | return 0; | ||
5516 | |||
5517 | if (adapter->idle_check) { | ||
5518 | adapter->idle_check = false; | ||
5519 | if (!e1000e_has_link(adapter)) | ||
5520 | pm_schedule_suspend(dev, MSEC_PER_SEC); | ||
5521 | } | ||
5522 | |||
5523 | return -EBUSY; | ||
5524 | } | ||
5525 | |||
5526 | static int e1000_runtime_resume(struct device *dev) | ||
5527 | { | ||
5528 | struct pci_dev *pdev = to_pci_dev(dev); | ||
5529 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
5530 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
5531 | |||
5532 | if (!e1000e_pm_ready(adapter)) | ||
5533 | return 0; | ||
5534 | |||
5535 | adapter->idle_check = !dev->power.runtime_auto; | ||
5536 | return __e1000_resume(pdev); | ||
5537 | } | ||
5538 | #endif /* CONFIG_PM_RUNTIME */ | ||
5539 | #endif /* CONFIG_PM */ | ||
5540 | |||
5541 | static void e1000_shutdown(struct pci_dev *pdev) | ||
5542 | { | ||
5543 | bool wake = false; | ||
5544 | |||
5545 | __e1000_shutdown(pdev, &wake, false); | ||
5546 | |||
5547 | if (system_state == SYSTEM_POWER_OFF) | ||
5548 | e1000_complete_shutdown(pdev, false, wake); | ||
5549 | } | ||
5550 | |||
5551 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
5552 | |||
5553 | static irqreturn_t e1000_intr_msix(int irq, void *data) | ||
5554 | { | ||
5555 | struct net_device *netdev = data; | ||
5556 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
5557 | |||
5558 | if (adapter->msix_entries) { | ||
5559 | int vector, msix_irq; | ||
5560 | |||
5561 | vector = 0; | ||
5562 | msix_irq = adapter->msix_entries[vector].vector; | ||
5563 | disable_irq(msix_irq); | ||
5564 | e1000_intr_msix_rx(msix_irq, netdev); | ||
5565 | enable_irq(msix_irq); | ||
5566 | |||
5567 | vector++; | ||
5568 | msix_irq = adapter->msix_entries[vector].vector; | ||
5569 | disable_irq(msix_irq); | ||
5570 | e1000_intr_msix_tx(msix_irq, netdev); | ||
5571 | enable_irq(msix_irq); | ||
5572 | |||
5573 | vector++; | ||
5574 | msix_irq = adapter->msix_entries[vector].vector; | ||
5575 | disable_irq(msix_irq); | ||
5576 | e1000_msix_other(msix_irq, netdev); | ||
5577 | enable_irq(msix_irq); | ||
5578 | } | ||
5579 | |||
5580 | return IRQ_HANDLED; | ||
5581 | } | ||
5582 | |||
5583 | /* | ||
5584 | * Polling 'interrupt' - used by things like netconsole to send skbs | ||
5585 | * without having to re-enable interrupts. It's not called while | ||
5586 | * the interrupt routine is executing. | ||
5587 | */ | ||
5588 | static void e1000_netpoll(struct net_device *netdev) | ||
5589 | { | ||
5590 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
5591 | |||
5592 | switch (adapter->int_mode) { | ||
5593 | case E1000E_INT_MODE_MSIX: | ||
5594 | e1000_intr_msix(adapter->pdev->irq, netdev); | ||
5595 | break; | ||
5596 | case E1000E_INT_MODE_MSI: | ||
5597 | disable_irq(adapter->pdev->irq); | ||
5598 | e1000_intr_msi(adapter->pdev->irq, netdev); | ||
5599 | enable_irq(adapter->pdev->irq); | ||
5600 | break; | ||
5601 | default: /* E1000E_INT_MODE_LEGACY */ | ||
5602 | disable_irq(adapter->pdev->irq); | ||
5603 | e1000_intr(adapter->pdev->irq, netdev); | ||
5604 | enable_irq(adapter->pdev->irq); | ||
5605 | break; | ||
5606 | } | ||
5607 | } | ||
5608 | #endif | ||
5609 | |||
5610 | /** | ||
5611 | * e1000_io_error_detected - called when PCI error is detected | ||
5612 | * @pdev: Pointer to PCI device | ||
5613 | * @state: The current pci connection state | ||
5614 | * | ||
5615 | * This function is called after a PCI bus error affecting | ||
5616 | * this device has been detected. | ||
5617 | */ | ||
5618 | static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, | ||
5619 | pci_channel_state_t state) | ||
5620 | { | ||
5621 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
5622 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
5623 | |||
5624 | netif_device_detach(netdev); | ||
5625 | |||
5626 | if (state == pci_channel_io_perm_failure) | ||
5627 | return PCI_ERS_RESULT_DISCONNECT; | ||
5628 | |||
5629 | if (netif_running(netdev)) | ||
5630 | e1000e_down(adapter); | ||
5631 | pci_disable_device(pdev); | ||
5632 | |||
5633 | /* Request a slot slot reset. */ | ||
5634 | return PCI_ERS_RESULT_NEED_RESET; | ||
5635 | } | ||
5636 | |||
5637 | /** | ||
5638 | * e1000_io_slot_reset - called after the pci bus has been reset. | ||
5639 | * @pdev: Pointer to PCI device | ||
5640 | * | ||
5641 | * Restart the card from scratch, as if from a cold-boot. Implementation | ||
5642 | * resembles the first-half of the e1000_resume routine. | ||
5643 | */ | ||
5644 | static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) | ||
5645 | { | ||
5646 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
5647 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
5648 | struct e1000_hw *hw = &adapter->hw; | ||
5649 | u16 aspm_disable_flag = 0; | ||
5650 | int err; | ||
5651 | pci_ers_result_t result; | ||
5652 | |||
5653 | if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S) | ||
5654 | aspm_disable_flag = PCIE_LINK_STATE_L0S; | ||
5655 | if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1) | ||
5656 | aspm_disable_flag |= PCIE_LINK_STATE_L1; | ||
5657 | if (aspm_disable_flag) | ||
5658 | e1000e_disable_aspm(pdev, aspm_disable_flag); | ||
5659 | |||
5660 | err = pci_enable_device_mem(pdev); | ||
5661 | if (err) { | ||
5662 | dev_err(&pdev->dev, | ||
5663 | "Cannot re-enable PCI device after reset.\n"); | ||
5664 | result = PCI_ERS_RESULT_DISCONNECT; | ||
5665 | } else { | ||
5666 | pci_set_master(pdev); | ||
5667 | pdev->state_saved = true; | ||
5668 | pci_restore_state(pdev); | ||
5669 | |||
5670 | pci_enable_wake(pdev, PCI_D3hot, 0); | ||
5671 | pci_enable_wake(pdev, PCI_D3cold, 0); | ||
5672 | |||
5673 | e1000e_reset(adapter); | ||
5674 | ew32(WUS, ~0); | ||
5675 | result = PCI_ERS_RESULT_RECOVERED; | ||
5676 | } | ||
5677 | |||
5678 | pci_cleanup_aer_uncorrect_error_status(pdev); | ||
5679 | |||
5680 | return result; | ||
5681 | } | ||
5682 | |||
5683 | /** | ||
5684 | * e1000_io_resume - called when traffic can start flowing again. | ||
5685 | * @pdev: Pointer to PCI device | ||
5686 | * | ||
5687 | * This callback is called when the error recovery driver tells us that | ||
5688 | * its OK to resume normal operation. Implementation resembles the | ||
5689 | * second-half of the e1000_resume routine. | ||
5690 | */ | ||
5691 | static void e1000_io_resume(struct pci_dev *pdev) | ||
5692 | { | ||
5693 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
5694 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
5695 | |||
5696 | e1000_init_manageability_pt(adapter); | ||
5697 | |||
5698 | if (netif_running(netdev)) { | ||
5699 | if (e1000e_up(adapter)) { | ||
5700 | dev_err(&pdev->dev, | ||
5701 | "can't bring device back up after reset\n"); | ||
5702 | return; | ||
5703 | } | ||
5704 | } | ||
5705 | |||
5706 | netif_device_attach(netdev); | ||
5707 | |||
5708 | /* | ||
5709 | * If the controller has AMT, do not set DRV_LOAD until the interface | ||
5710 | * is up. For all other cases, let the f/w know that the h/w is now | ||
5711 | * under the control of the driver. | ||
5712 | */ | ||
5713 | if (!(adapter->flags & FLAG_HAS_AMT)) | ||
5714 | e1000e_get_hw_control(adapter); | ||
5715 | |||
5716 | } | ||
5717 | |||
5718 | static void e1000_print_device_info(struct e1000_adapter *adapter) | ||
5719 | { | ||
5720 | struct e1000_hw *hw = &adapter->hw; | ||
5721 | struct net_device *netdev = adapter->netdev; | ||
5722 | u32 ret_val; | ||
5723 | u8 pba_str[E1000_PBANUM_LENGTH]; | ||
5724 | |||
5725 | /* print bus type/speed/width info */ | ||
5726 | e_info("(PCI Express:2.5GT/s:%s) %pM\n", | ||
5727 | /* bus width */ | ||
5728 | ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : | ||
5729 | "Width x1"), | ||
5730 | /* MAC address */ | ||
5731 | netdev->dev_addr); | ||
5732 | e_info("Intel(R) PRO/%s Network Connection\n", | ||
5733 | (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000"); | ||
5734 | ret_val = e1000_read_pba_string_generic(hw, pba_str, | ||
5735 | E1000_PBANUM_LENGTH); | ||
5736 | if (ret_val) | ||
5737 | strncpy((char *)pba_str, "Unknown", sizeof(pba_str) - 1); | ||
5738 | e_info("MAC: %d, PHY: %d, PBA No: %s\n", | ||
5739 | hw->mac.type, hw->phy.type, pba_str); | ||
5740 | } | ||
5741 | |||
5742 | static void e1000_eeprom_checks(struct e1000_adapter *adapter) | ||
5743 | { | ||
5744 | struct e1000_hw *hw = &adapter->hw; | ||
5745 | int ret_val; | ||
5746 | u16 buf = 0; | ||
5747 | |||
5748 | if (hw->mac.type != e1000_82573) | ||
5749 | return; | ||
5750 | |||
5751 | ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf); | ||
5752 | if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) { | ||
5753 | /* Deep Smart Power Down (DSPD) */ | ||
5754 | dev_warn(&adapter->pdev->dev, | ||
5755 | "Warning: detected DSPD enabled in EEPROM\n"); | ||
5756 | } | ||
5757 | } | ||
5758 | |||
5759 | static const struct net_device_ops e1000e_netdev_ops = { | ||
5760 | .ndo_open = e1000_open, | ||
5761 | .ndo_stop = e1000_close, | ||
5762 | .ndo_start_xmit = e1000_xmit_frame, | ||
5763 | .ndo_get_stats64 = e1000e_get_stats64, | ||
5764 | .ndo_set_multicast_list = e1000_set_multi, | ||
5765 | .ndo_set_mac_address = e1000_set_mac, | ||
5766 | .ndo_change_mtu = e1000_change_mtu, | ||
5767 | .ndo_do_ioctl = e1000_ioctl, | ||
5768 | .ndo_tx_timeout = e1000_tx_timeout, | ||
5769 | .ndo_validate_addr = eth_validate_addr, | ||
5770 | |||
5771 | .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, | ||
5772 | .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, | ||
5773 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
5774 | .ndo_poll_controller = e1000_netpoll, | ||
5775 | #endif | ||
5776 | }; | ||
5777 | |||
5778 | /** | ||
5779 | * e1000_probe - Device Initialization Routine | ||
5780 | * @pdev: PCI device information struct | ||
5781 | * @ent: entry in e1000_pci_tbl | ||
5782 | * | ||
5783 | * Returns 0 on success, negative on failure | ||
5784 | * | ||
5785 | * e1000_probe initializes an adapter identified by a pci_dev structure. | ||
5786 | * The OS initialization, configuring of the adapter private structure, | ||
5787 | * and a hardware reset occur. | ||
5788 | **/ | ||
5789 | static int __devinit e1000_probe(struct pci_dev *pdev, | ||
5790 | const struct pci_device_id *ent) | ||
5791 | { | ||
5792 | struct net_device *netdev; | ||
5793 | struct e1000_adapter *adapter; | ||
5794 | struct e1000_hw *hw; | ||
5795 | const struct e1000_info *ei = e1000_info_tbl[ent->driver_data]; | ||
5796 | resource_size_t mmio_start, mmio_len; | ||
5797 | resource_size_t flash_start, flash_len; | ||
5798 | |||
5799 | static int cards_found; | ||
5800 | u16 aspm_disable_flag = 0; | ||
5801 | int i, err, pci_using_dac; | ||
5802 | u16 eeprom_data = 0; | ||
5803 | u16 eeprom_apme_mask = E1000_EEPROM_APME; | ||
5804 | |||
5805 | if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S) | ||
5806 | aspm_disable_flag = PCIE_LINK_STATE_L0S; | ||
5807 | if (ei->flags2 & FLAG2_DISABLE_ASPM_L1) | ||
5808 | aspm_disable_flag |= PCIE_LINK_STATE_L1; | ||
5809 | if (aspm_disable_flag) | ||
5810 | e1000e_disable_aspm(pdev, aspm_disable_flag); | ||
5811 | |||
5812 | err = pci_enable_device_mem(pdev); | ||
5813 | if (err) | ||
5814 | return err; | ||
5815 | |||
5816 | pci_using_dac = 0; | ||
5817 | err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); | ||
5818 | if (!err) { | ||
5819 | err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); | ||
5820 | if (!err) | ||
5821 | pci_using_dac = 1; | ||
5822 | } else { | ||
5823 | err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); | ||
5824 | if (err) { | ||
5825 | err = dma_set_coherent_mask(&pdev->dev, | ||
5826 | DMA_BIT_MASK(32)); | ||
5827 | if (err) { | ||
5828 | dev_err(&pdev->dev, "No usable DMA " | ||
5829 | "configuration, aborting\n"); | ||
5830 | goto err_dma; | ||
5831 | } | ||
5832 | } | ||
5833 | } | ||
5834 | |||
5835 | err = pci_request_selected_regions_exclusive(pdev, | ||
5836 | pci_select_bars(pdev, IORESOURCE_MEM), | ||
5837 | e1000e_driver_name); | ||
5838 | if (err) | ||
5839 | goto err_pci_reg; | ||
5840 | |||
5841 | /* AER (Advanced Error Reporting) hooks */ | ||
5842 | pci_enable_pcie_error_reporting(pdev); | ||
5843 | |||
5844 | pci_set_master(pdev); | ||
5845 | /* PCI config space info */ | ||
5846 | err = pci_save_state(pdev); | ||
5847 | if (err) | ||
5848 | goto err_alloc_etherdev; | ||
5849 | |||
5850 | err = -ENOMEM; | ||
5851 | netdev = alloc_etherdev(sizeof(struct e1000_adapter)); | ||
5852 | if (!netdev) | ||
5853 | goto err_alloc_etherdev; | ||
5854 | |||
5855 | SET_NETDEV_DEV(netdev, &pdev->dev); | ||
5856 | |||
5857 | netdev->irq = pdev->irq; | ||
5858 | |||
5859 | pci_set_drvdata(pdev, netdev); | ||
5860 | adapter = netdev_priv(netdev); | ||
5861 | hw = &adapter->hw; | ||
5862 | adapter->netdev = netdev; | ||
5863 | adapter->pdev = pdev; | ||
5864 | adapter->ei = ei; | ||
5865 | adapter->pba = ei->pba; | ||
5866 | adapter->flags = ei->flags; | ||
5867 | adapter->flags2 = ei->flags2; | ||
5868 | adapter->hw.adapter = adapter; | ||
5869 | adapter->hw.mac.type = ei->mac; | ||
5870 | adapter->max_hw_frame_size = ei->max_hw_frame_size; | ||
5871 | adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1; | ||
5872 | |||
5873 | mmio_start = pci_resource_start(pdev, 0); | ||
5874 | mmio_len = pci_resource_len(pdev, 0); | ||
5875 | |||
5876 | err = -EIO; | ||
5877 | adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); | ||
5878 | if (!adapter->hw.hw_addr) | ||
5879 | goto err_ioremap; | ||
5880 | |||
5881 | if ((adapter->flags & FLAG_HAS_FLASH) && | ||
5882 | (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { | ||
5883 | flash_start = pci_resource_start(pdev, 1); | ||
5884 | flash_len = pci_resource_len(pdev, 1); | ||
5885 | adapter->hw.flash_address = ioremap(flash_start, flash_len); | ||
5886 | if (!adapter->hw.flash_address) | ||
5887 | goto err_flashmap; | ||
5888 | } | ||
5889 | |||
5890 | /* construct the net_device struct */ | ||
5891 | netdev->netdev_ops = &e1000e_netdev_ops; | ||
5892 | e1000e_set_ethtool_ops(netdev); | ||
5893 | netdev->watchdog_timeo = 5 * HZ; | ||
5894 | netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); | ||
5895 | strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); | ||
5896 | |||
5897 | netdev->mem_start = mmio_start; | ||
5898 | netdev->mem_end = mmio_start + mmio_len; | ||
5899 | |||
5900 | adapter->bd_number = cards_found++; | ||
5901 | |||
5902 | e1000e_check_options(adapter); | ||
5903 | |||
5904 | /* setup adapter struct */ | ||
5905 | err = e1000_sw_init(adapter); | ||
5906 | if (err) | ||
5907 | goto err_sw_init; | ||
5908 | |||
5909 | memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); | ||
5910 | memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); | ||
5911 | memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); | ||
5912 | |||
5913 | err = ei->get_variants(adapter); | ||
5914 | if (err) | ||
5915 | goto err_hw_init; | ||
5916 | |||
5917 | if ((adapter->flags & FLAG_IS_ICH) && | ||
5918 | (adapter->flags & FLAG_READ_ONLY_NVM)) | ||
5919 | e1000e_write_protect_nvm_ich8lan(&adapter->hw); | ||
5920 | |||
5921 | hw->mac.ops.get_bus_info(&adapter->hw); | ||
5922 | |||
5923 | adapter->hw.phy.autoneg_wait_to_complete = 0; | ||
5924 | |||
5925 | /* Copper options */ | ||
5926 | if (adapter->hw.phy.media_type == e1000_media_type_copper) { | ||
5927 | adapter->hw.phy.mdix = AUTO_ALL_MODES; | ||
5928 | adapter->hw.phy.disable_polarity_correction = 0; | ||
5929 | adapter->hw.phy.ms_type = e1000_ms_hw_default; | ||
5930 | } | ||
5931 | |||
5932 | if (e1000_check_reset_block(&adapter->hw)) | ||
5933 | e_info("PHY reset is blocked due to SOL/IDER session.\n"); | ||
5934 | |||
5935 | netdev->features = NETIF_F_SG | | ||
5936 | NETIF_F_HW_CSUM | | ||
5937 | NETIF_F_HW_VLAN_TX | | ||
5938 | NETIF_F_HW_VLAN_RX; | ||
5939 | |||
5940 | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) | ||
5941 | netdev->features |= NETIF_F_HW_VLAN_FILTER; | ||
5942 | |||
5943 | netdev->features |= NETIF_F_TSO; | ||
5944 | netdev->features |= NETIF_F_TSO6; | ||
5945 | |||
5946 | netdev->vlan_features |= NETIF_F_TSO; | ||
5947 | netdev->vlan_features |= NETIF_F_TSO6; | ||
5948 | netdev->vlan_features |= NETIF_F_HW_CSUM; | ||
5949 | netdev->vlan_features |= NETIF_F_SG; | ||
5950 | |||
5951 | if (pci_using_dac) { | ||
5952 | netdev->features |= NETIF_F_HIGHDMA; | ||
5953 | netdev->vlan_features |= NETIF_F_HIGHDMA; | ||
5954 | } | ||
5955 | |||
5956 | if (e1000e_enable_mng_pass_thru(&adapter->hw)) | ||
5957 | adapter->flags |= FLAG_MNG_PT_ENABLED; | ||
5958 | |||
5959 | /* | ||
5960 | * before reading the NVM, reset the controller to | ||
5961 | * put the device in a known good starting state | ||
5962 | */ | ||
5963 | adapter->hw.mac.ops.reset_hw(&adapter->hw); | ||
5964 | |||
5965 | /* | ||
5966 | * systems with ASPM and others may see the checksum fail on the first | ||
5967 | * attempt. Let's give it a few tries | ||
5968 | */ | ||
5969 | for (i = 0;; i++) { | ||
5970 | if (e1000_validate_nvm_checksum(&adapter->hw) >= 0) | ||
5971 | break; | ||
5972 | if (i == 2) { | ||
5973 | e_err("The NVM Checksum Is Not Valid\n"); | ||
5974 | err = -EIO; | ||
5975 | goto err_eeprom; | ||
5976 | } | ||
5977 | } | ||
5978 | |||
5979 | e1000_eeprom_checks(adapter); | ||
5980 | |||
5981 | /* copy the MAC address */ | ||
5982 | if (e1000e_read_mac_addr(&adapter->hw)) | ||
5983 | e_err("NVM Read Error while reading MAC address\n"); | ||
5984 | |||
5985 | memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len); | ||
5986 | memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len); | ||
5987 | |||
5988 | if (!is_valid_ether_addr(netdev->perm_addr)) { | ||
5989 | e_err("Invalid MAC Address: %pM\n", netdev->perm_addr); | ||
5990 | err = -EIO; | ||
5991 | goto err_eeprom; | ||
5992 | } | ||
5993 | |||
5994 | init_timer(&adapter->watchdog_timer); | ||
5995 | adapter->watchdog_timer.function = e1000_watchdog; | ||
5996 | adapter->watchdog_timer.data = (unsigned long) adapter; | ||
5997 | |||
5998 | init_timer(&adapter->phy_info_timer); | ||
5999 | adapter->phy_info_timer.function = e1000_update_phy_info; | ||
6000 | adapter->phy_info_timer.data = (unsigned long) adapter; | ||
6001 | |||
6002 | INIT_WORK(&adapter->reset_task, e1000_reset_task); | ||
6003 | INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task); | ||
6004 | INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround); | ||
6005 | INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task); | ||
6006 | INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang); | ||
6007 | |||
6008 | /* Initialize link parameters. User can change them with ethtool */ | ||
6009 | adapter->hw.mac.autoneg = 1; | ||
6010 | adapter->fc_autoneg = 1; | ||
6011 | adapter->hw.fc.requested_mode = e1000_fc_default; | ||
6012 | adapter->hw.fc.current_mode = e1000_fc_default; | ||
6013 | adapter->hw.phy.autoneg_advertised = 0x2f; | ||
6014 | |||
6015 | /* ring size defaults */ | ||
6016 | adapter->rx_ring->count = 256; | ||
6017 | adapter->tx_ring->count = 256; | ||
6018 | |||
6019 | /* | ||
6020 | * Initial Wake on LAN setting - If APM wake is enabled in | ||
6021 | * the EEPROM, enable the ACPI Magic Packet filter | ||
6022 | */ | ||
6023 | if (adapter->flags & FLAG_APME_IN_WUC) { | ||
6024 | /* APME bit in EEPROM is mapped to WUC.APME */ | ||
6025 | eeprom_data = er32(WUC); | ||
6026 | eeprom_apme_mask = E1000_WUC_APME; | ||
6027 | if ((hw->mac.type > e1000_ich10lan) && | ||
6028 | (eeprom_data & E1000_WUC_PHY_WAKE)) | ||
6029 | adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP; | ||
6030 | } else if (adapter->flags & FLAG_APME_IN_CTRL3) { | ||
6031 | if (adapter->flags & FLAG_APME_CHECK_PORT_B && | ||
6032 | (adapter->hw.bus.func == 1)) | ||
6033 | e1000_read_nvm(&adapter->hw, | ||
6034 | NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); | ||
6035 | else | ||
6036 | e1000_read_nvm(&adapter->hw, | ||
6037 | NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); | ||
6038 | } | ||
6039 | |||
6040 | /* fetch WoL from EEPROM */ | ||
6041 | if (eeprom_data & eeprom_apme_mask) | ||
6042 | adapter->eeprom_wol |= E1000_WUFC_MAG; | ||
6043 | |||
6044 | /* | ||
6045 | * now that we have the eeprom settings, apply the special cases | ||
6046 | * where the eeprom may be wrong or the board simply won't support | ||
6047 | * wake on lan on a particular port | ||
6048 | */ | ||
6049 | if (!(adapter->flags & FLAG_HAS_WOL)) | ||
6050 | adapter->eeprom_wol = 0; | ||
6051 | |||
6052 | /* initialize the wol settings based on the eeprom settings */ | ||
6053 | adapter->wol = adapter->eeprom_wol; | ||
6054 | device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); | ||
6055 | |||
6056 | /* save off EEPROM version number */ | ||
6057 | e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers); | ||
6058 | |||
6059 | /* reset the hardware with the new settings */ | ||
6060 | e1000e_reset(adapter); | ||
6061 | |||
6062 | /* | ||
6063 | * If the controller has AMT, do not set DRV_LOAD until the interface | ||
6064 | * is up. For all other cases, let the f/w know that the h/w is now | ||
6065 | * under the control of the driver. | ||
6066 | */ | ||
6067 | if (!(adapter->flags & FLAG_HAS_AMT)) | ||
6068 | e1000e_get_hw_control(adapter); | ||
6069 | |||
6070 | strncpy(netdev->name, "eth%d", sizeof(netdev->name) - 1); | ||
6071 | err = register_netdev(netdev); | ||
6072 | if (err) | ||
6073 | goto err_register; | ||
6074 | |||
6075 | /* carrier off reporting is important to ethtool even BEFORE open */ | ||
6076 | netif_carrier_off(netdev); | ||
6077 | |||
6078 | e1000_print_device_info(adapter); | ||
6079 | |||
6080 | if (pci_dev_run_wake(pdev)) | ||
6081 | pm_runtime_put_noidle(&pdev->dev); | ||
6082 | |||
6083 | return 0; | ||
6084 | |||
6085 | err_register: | ||
6086 | if (!(adapter->flags & FLAG_HAS_AMT)) | ||
6087 | e1000e_release_hw_control(adapter); | ||
6088 | err_eeprom: | ||
6089 | if (!e1000_check_reset_block(&adapter->hw)) | ||
6090 | e1000_phy_hw_reset(&adapter->hw); | ||
6091 | err_hw_init: | ||
6092 | kfree(adapter->tx_ring); | ||
6093 | kfree(adapter->rx_ring); | ||
6094 | err_sw_init: | ||
6095 | if (adapter->hw.flash_address) | ||
6096 | iounmap(adapter->hw.flash_address); | ||
6097 | e1000e_reset_interrupt_capability(adapter); | ||
6098 | err_flashmap: | ||
6099 | iounmap(adapter->hw.hw_addr); | ||
6100 | err_ioremap: | ||
6101 | free_netdev(netdev); | ||
6102 | err_alloc_etherdev: | ||
6103 | pci_release_selected_regions(pdev, | ||
6104 | pci_select_bars(pdev, IORESOURCE_MEM)); | ||
6105 | err_pci_reg: | ||
6106 | err_dma: | ||
6107 | pci_disable_device(pdev); | ||
6108 | return err; | ||
6109 | } | ||
6110 | |||
6111 | /** | ||
6112 | * e1000_remove - Device Removal Routine | ||
6113 | * @pdev: PCI device information struct | ||
6114 | * | ||
6115 | * e1000_remove is called by the PCI subsystem to alert the driver | ||
6116 | * that it should release a PCI device. The could be caused by a | ||
6117 | * Hot-Plug event, or because the driver is going to be removed from | ||
6118 | * memory. | ||
6119 | **/ | ||
6120 | static void __devexit e1000_remove(struct pci_dev *pdev) | ||
6121 | { | ||
6122 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
6123 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
6124 | bool down = test_bit(__E1000_DOWN, &adapter->state); | ||
6125 | |||
6126 | /* | ||
6127 | * The timers may be rescheduled, so explicitly disable them | ||
6128 | * from being rescheduled. | ||
6129 | */ | ||
6130 | if (!down) | ||
6131 | set_bit(__E1000_DOWN, &adapter->state); | ||
6132 | del_timer_sync(&adapter->watchdog_timer); | ||
6133 | del_timer_sync(&adapter->phy_info_timer); | ||
6134 | |||
6135 | cancel_work_sync(&adapter->reset_task); | ||
6136 | cancel_work_sync(&adapter->watchdog_task); | ||
6137 | cancel_work_sync(&adapter->downshift_task); | ||
6138 | cancel_work_sync(&adapter->update_phy_task); | ||
6139 | cancel_work_sync(&adapter->print_hang_task); | ||
6140 | |||
6141 | if (!(netdev->flags & IFF_UP)) | ||
6142 | e1000_power_down_phy(adapter); | ||
6143 | |||
6144 | /* Don't lie to e1000_close() down the road. */ | ||
6145 | if (!down) | ||
6146 | clear_bit(__E1000_DOWN, &adapter->state); | ||
6147 | unregister_netdev(netdev); | ||
6148 | |||
6149 | if (pci_dev_run_wake(pdev)) | ||
6150 | pm_runtime_get_noresume(&pdev->dev); | ||
6151 | |||
6152 | /* | ||
6153 | * Release control of h/w to f/w. If f/w is AMT enabled, this | ||
6154 | * would have already happened in close and is redundant. | ||
6155 | */ | ||
6156 | e1000e_release_hw_control(adapter); | ||
6157 | |||
6158 | e1000e_reset_interrupt_capability(adapter); | ||
6159 | kfree(adapter->tx_ring); | ||
6160 | kfree(adapter->rx_ring); | ||
6161 | |||
6162 | iounmap(adapter->hw.hw_addr); | ||
6163 | if (adapter->hw.flash_address) | ||
6164 | iounmap(adapter->hw.flash_address); | ||
6165 | pci_release_selected_regions(pdev, | ||
6166 | pci_select_bars(pdev, IORESOURCE_MEM)); | ||
6167 | |||
6168 | free_netdev(netdev); | ||
6169 | |||
6170 | /* AER disable */ | ||
6171 | pci_disable_pcie_error_reporting(pdev); | ||
6172 | |||
6173 | pci_disable_device(pdev); | ||
6174 | } | ||
6175 | |||
6176 | /* PCI Error Recovery (ERS) */ | ||
6177 | static struct pci_error_handlers e1000_err_handler = { | ||
6178 | .error_detected = e1000_io_error_detected, | ||
6179 | .slot_reset = e1000_io_slot_reset, | ||
6180 | .resume = e1000_io_resume, | ||
6181 | }; | ||
6182 | |||
6183 | static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = { | ||
6184 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 }, | ||
6185 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 }, | ||
6186 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 }, | ||
6187 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 }, | ||
6188 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 }, | ||
6189 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 }, | ||
6190 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 }, | ||
6191 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 }, | ||
6192 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 }, | ||
6193 | |||
6194 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 }, | ||
6195 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 }, | ||
6196 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 }, | ||
6197 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 }, | ||
6198 | |||
6199 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 }, | ||
6200 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 }, | ||
6201 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 }, | ||
6202 | |||
6203 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 }, | ||
6204 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 }, | ||
6205 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 }, | ||
6206 | |||
6207 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), | ||
6208 | board_80003es2lan }, | ||
6209 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), | ||
6210 | board_80003es2lan }, | ||
6211 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), | ||
6212 | board_80003es2lan }, | ||
6213 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), | ||
6214 | board_80003es2lan }, | ||
6215 | |||
6216 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan }, | ||
6217 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan }, | ||
6218 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan }, | ||
6219 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan }, | ||
6220 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan }, | ||
6221 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan }, | ||
6222 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan }, | ||
6223 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan }, | ||
6224 | |||
6225 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan }, | ||
6226 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan }, | ||
6227 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan }, | ||
6228 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan }, | ||
6229 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan }, | ||
6230 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan }, | ||
6231 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan }, | ||
6232 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan }, | ||
6233 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan }, | ||
6234 | |||
6235 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan }, | ||
6236 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan }, | ||
6237 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan }, | ||
6238 | |||
6239 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan }, | ||
6240 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan }, | ||
6241 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan }, | ||
6242 | |||
6243 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan }, | ||
6244 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan }, | ||
6245 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan }, | ||
6246 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan }, | ||
6247 | |||
6248 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan }, | ||
6249 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan }, | ||
6250 | |||
6251 | { } /* terminate list */ | ||
6252 | }; | ||
6253 | MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); | ||
6254 | |||
6255 | #ifdef CONFIG_PM | ||
6256 | static const struct dev_pm_ops e1000_pm_ops = { | ||
6257 | SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume) | ||
6258 | SET_RUNTIME_PM_OPS(e1000_runtime_suspend, | ||
6259 | e1000_runtime_resume, e1000_idle) | ||
6260 | }; | ||
6261 | #endif | ||
6262 | |||
6263 | /* PCI Device API Driver */ | ||
6264 | static struct pci_driver e1000_driver = { | ||
6265 | .name = e1000e_driver_name, | ||
6266 | .id_table = e1000_pci_tbl, | ||
6267 | .probe = e1000_probe, | ||
6268 | .remove = __devexit_p(e1000_remove), | ||
6269 | #ifdef CONFIG_PM | ||
6270 | .driver.pm = &e1000_pm_ops, | ||
6271 | #endif | ||
6272 | .shutdown = e1000_shutdown, | ||
6273 | .err_handler = &e1000_err_handler | ||
6274 | }; | ||
6275 | |||
6276 | /** | ||
6277 | * e1000_init_module - Driver Registration Routine | ||
6278 | * | ||
6279 | * e1000_init_module is the first routine called when the driver is | ||
6280 | * loaded. All it does is register with the PCI subsystem. | ||
6281 | **/ | ||
6282 | static int __init e1000_init_module(void) | ||
6283 | { | ||
6284 | int ret; | ||
6285 | pr_info("Intel(R) PRO/1000 Network Driver - %s\n", | ||
6286 | e1000e_driver_version); | ||
6287 | pr_info("Copyright(c) 1999 - 2011 Intel Corporation.\n"); | ||
6288 | ret = pci_register_driver(&e1000_driver); | ||
6289 | |||
6290 | return ret; | ||
6291 | } | ||
6292 | module_init(e1000_init_module); | ||
6293 | |||
6294 | /** | ||
6295 | * e1000_exit_module - Driver Exit Cleanup Routine | ||
6296 | * | ||
6297 | * e1000_exit_module is called just before the driver is removed | ||
6298 | * from memory. | ||
6299 | **/ | ||
6300 | static void __exit e1000_exit_module(void) | ||
6301 | { | ||
6302 | pci_unregister_driver(&e1000_driver); | ||
6303 | } | ||
6304 | module_exit(e1000_exit_module); | ||
6305 | |||
6306 | |||
6307 | MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); | ||
6308 | MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); | ||
6309 | MODULE_LICENSE("GPL"); | ||
6310 | MODULE_VERSION(DRV_VERSION); | ||
6311 | |||
6312 | /* e1000_main.c */ | ||