diff options
author | Divy Le Ray <divy@chelsio.com> | 2007-01-18 22:04:14 -0500 |
---|---|---|
committer | Jeff Garzik <jeff@garzik.org> | 2007-02-05 16:58:46 -0500 |
commit | 4d22de3e6cc4a09c369b504cd8bcde3385a974cd (patch) | |
tree | af13a2ee582105d961c79fc4e55fce0b5e043310 /drivers/net/cxgb3 | |
parent | 0bf94faf64afaba6e7b49fd11541b59d2ba06d0e (diff) |
Add support for the latest 1G/10G Chelsio adapter, T3.
This driver is required by the Chelsio T3 RDMA driver posted by
Steve Wise.
Signed-off-by: Divy Le Ray <divy@chelsio.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
Diffstat (limited to 'drivers/net/cxgb3')
-rw-r--r-- | drivers/net/cxgb3/Makefile | 8 | ||||
-rw-r--r-- | drivers/net/cxgb3/adapter.h | 255 | ||||
-rw-r--r-- | drivers/net/cxgb3/ael1002.c | 231 | ||||
-rw-r--r-- | drivers/net/cxgb3/common.h | 709 | ||||
-rw-r--r-- | drivers/net/cxgb3/cxgb3_ctl_defs.h | 142 | ||||
-rw-r--r-- | drivers/net/cxgb3/cxgb3_defs.h | 99 | ||||
-rw-r--r-- | drivers/net/cxgb3/cxgb3_ioctl.h | 165 | ||||
-rw-r--r-- | drivers/net/cxgb3/cxgb3_main.c | 2474 | ||||
-rw-r--r-- | drivers/net/cxgb3/cxgb3_offload.c | 1222 | ||||
-rw-r--r-- | drivers/net/cxgb3/cxgb3_offload.h | 193 | ||||
-rw-r--r-- | drivers/net/cxgb3/firmware_exports.h | 144 | ||||
-rw-r--r-- | drivers/net/cxgb3/l2t.c | 450 | ||||
-rw-r--r-- | drivers/net/cxgb3/l2t.h | 143 | ||||
-rw-r--r-- | drivers/net/cxgb3/mc5.c | 453 | ||||
-rw-r--r-- | drivers/net/cxgb3/regs.h | 2195 | ||||
-rw-r--r-- | drivers/net/cxgb3/sge.c | 2702 | ||||
-rw-r--r-- | drivers/net/cxgb3/sge_defs.h | 251 | ||||
-rw-r--r-- | drivers/net/cxgb3/t3_cpl.h | 1426 | ||||
-rw-r--r-- | drivers/net/cxgb3/t3_hw.c | 3354 | ||||
-rw-r--r-- | drivers/net/cxgb3/t3cdev.h | 72 | ||||
-rw-r--r-- | drivers/net/cxgb3/version.h | 24 | ||||
-rw-r--r-- | drivers/net/cxgb3/vsc8211.c | 208 | ||||
-rw-r--r-- | drivers/net/cxgb3/xgmac.c | 389 |
23 files changed, 17309 insertions, 0 deletions
diff --git a/drivers/net/cxgb3/Makefile b/drivers/net/cxgb3/Makefile new file mode 100644 index 000000000000..343467985321 --- /dev/null +++ b/drivers/net/cxgb3/Makefile | |||
@@ -0,0 +1,8 @@ | |||
1 | # | ||
2 | # Chelsio T3 driver | ||
3 | # | ||
4 | |||
5 | obj-$(CONFIG_CHELSIO_T3) += cxgb3.o | ||
6 | |||
7 | cxgb3-objs := cxgb3_main.o ael1002.o vsc8211.o t3_hw.o mc5.o \ | ||
8 | xgmac.o sge.o l2t.o cxgb3_offload.o | ||
diff --git a/drivers/net/cxgb3/adapter.h b/drivers/net/cxgb3/adapter.h new file mode 100644 index 000000000000..16643f6d00a9 --- /dev/null +++ b/drivers/net/cxgb3/adapter.h | |||
@@ -0,0 +1,255 @@ | |||
1 | /* | ||
2 | * This file is part of the Chelsio T3 Ethernet driver for Linux. | ||
3 | * | ||
4 | * Copyright (C) 2003-2006 Chelsio Communications. All rights reserved. | ||
5 | * | ||
6 | * This program is distributed in the hope that it will be useful, but WITHOUT | ||
7 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
8 | * FITNESS FOR A PARTICULAR PURPOSE. See the LICENSE file included in this | ||
9 | * release for licensing terms and conditions. | ||
10 | */ | ||
11 | |||
12 | /* This file should not be included directly. Include common.h instead. */ | ||
13 | |||
14 | #ifndef __T3_ADAPTER_H__ | ||
15 | #define __T3_ADAPTER_H__ | ||
16 | |||
17 | #include <linux/pci.h> | ||
18 | #include <linux/spinlock.h> | ||
19 | #include <linux/interrupt.h> | ||
20 | #include <linux/timer.h> | ||
21 | #include <linux/cache.h> | ||
22 | #include "t3cdev.h" | ||
23 | #include <asm/semaphore.h> | ||
24 | #include <asm/bitops.h> | ||
25 | #include <asm/io.h> | ||
26 | |||
27 | typedef irqreturn_t(*intr_handler_t) (int, void *); | ||
28 | |||
29 | struct vlan_group; | ||
30 | |||
31 | struct port_info { | ||
32 | struct vlan_group *vlan_grp; | ||
33 | const struct port_type_info *port_type; | ||
34 | u8 port_id; | ||
35 | u8 rx_csum_offload; | ||
36 | u8 nqsets; | ||
37 | u8 first_qset; | ||
38 | struct cphy phy; | ||
39 | struct cmac mac; | ||
40 | struct link_config link_config; | ||
41 | struct net_device_stats netstats; | ||
42 | int activity; | ||
43 | }; | ||
44 | |||
45 | enum { /* adapter flags */ | ||
46 | FULL_INIT_DONE = (1 << 0), | ||
47 | USING_MSI = (1 << 1), | ||
48 | USING_MSIX = (1 << 2), | ||
49 | }; | ||
50 | |||
51 | struct rx_desc; | ||
52 | struct rx_sw_desc; | ||
53 | |||
54 | struct sge_fl { /* SGE per free-buffer list state */ | ||
55 | unsigned int buf_size; /* size of each Rx buffer */ | ||
56 | unsigned int credits; /* # of available Rx buffers */ | ||
57 | unsigned int size; /* capacity of free list */ | ||
58 | unsigned int cidx; /* consumer index */ | ||
59 | unsigned int pidx; /* producer index */ | ||
60 | unsigned int gen; /* free list generation */ | ||
61 | struct rx_desc *desc; /* address of HW Rx descriptor ring */ | ||
62 | struct rx_sw_desc *sdesc; /* address of SW Rx descriptor ring */ | ||
63 | dma_addr_t phys_addr; /* physical address of HW ring start */ | ||
64 | unsigned int cntxt_id; /* SGE context id for the free list */ | ||
65 | unsigned long empty; /* # of times queue ran out of buffers */ | ||
66 | }; | ||
67 | |||
68 | /* | ||
69 | * Bundle size for grouping offload RX packets for delivery to the stack. | ||
70 | * Don't make this too big as we do prefetch on each packet in a bundle. | ||
71 | */ | ||
72 | # define RX_BUNDLE_SIZE 8 | ||
73 | |||
74 | struct rsp_desc; | ||
75 | |||
76 | struct sge_rspq { /* state for an SGE response queue */ | ||
77 | unsigned int credits; /* # of pending response credits */ | ||
78 | unsigned int size; /* capacity of response queue */ | ||
79 | unsigned int cidx; /* consumer index */ | ||
80 | unsigned int gen; /* current generation bit */ | ||
81 | unsigned int polling; /* is the queue serviced through NAPI? */ | ||
82 | unsigned int holdoff_tmr; /* interrupt holdoff timer in 100ns */ | ||
83 | unsigned int next_holdoff; /* holdoff time for next interrupt */ | ||
84 | struct rsp_desc *desc; /* address of HW response ring */ | ||
85 | dma_addr_t phys_addr; /* physical address of the ring */ | ||
86 | unsigned int cntxt_id; /* SGE context id for the response q */ | ||
87 | spinlock_t lock; /* guards response processing */ | ||
88 | struct sk_buff *rx_head; /* offload packet receive queue head */ | ||
89 | struct sk_buff *rx_tail; /* offload packet receive queue tail */ | ||
90 | |||
91 | unsigned long offload_pkts; | ||
92 | unsigned long offload_bundles; | ||
93 | unsigned long eth_pkts; /* # of ethernet packets */ | ||
94 | unsigned long pure_rsps; /* # of pure (non-data) responses */ | ||
95 | unsigned long imm_data; /* responses with immediate data */ | ||
96 | unsigned long rx_drops; /* # of packets dropped due to no mem */ | ||
97 | unsigned long async_notif; /* # of asynchronous notification events */ | ||
98 | unsigned long empty; /* # of times queue ran out of credits */ | ||
99 | unsigned long nomem; /* # of responses deferred due to no mem */ | ||
100 | unsigned long unhandled_irqs; /* # of spurious intrs */ | ||
101 | }; | ||
102 | |||
103 | struct tx_desc; | ||
104 | struct tx_sw_desc; | ||
105 | |||
106 | struct sge_txq { /* state for an SGE Tx queue */ | ||
107 | unsigned long flags; /* HW DMA fetch status */ | ||
108 | unsigned int in_use; /* # of in-use Tx descriptors */ | ||
109 | unsigned int size; /* # of descriptors */ | ||
110 | unsigned int processed; /* total # of descs HW has processed */ | ||
111 | unsigned int cleaned; /* total # of descs SW has reclaimed */ | ||
112 | unsigned int stop_thres; /* SW TX queue suspend threshold */ | ||
113 | unsigned int cidx; /* consumer index */ | ||
114 | unsigned int pidx; /* producer index */ | ||
115 | unsigned int gen; /* current value of generation bit */ | ||
116 | unsigned int unacked; /* Tx descriptors used since last COMPL */ | ||
117 | struct tx_desc *desc; /* address of HW Tx descriptor ring */ | ||
118 | struct tx_sw_desc *sdesc; /* address of SW Tx descriptor ring */ | ||
119 | spinlock_t lock; /* guards enqueueing of new packets */ | ||
120 | unsigned int token; /* WR token */ | ||
121 | dma_addr_t phys_addr; /* physical address of the ring */ | ||
122 | struct sk_buff_head sendq; /* List of backpressured offload packets */ | ||
123 | struct tasklet_struct qresume_tsk; /* restarts the queue */ | ||
124 | unsigned int cntxt_id; /* SGE context id for the Tx q */ | ||
125 | unsigned long stops; /* # of times q has been stopped */ | ||
126 | unsigned long restarts; /* # of queue restarts */ | ||
127 | }; | ||
128 | |||
129 | enum { /* per port SGE statistics */ | ||
130 | SGE_PSTAT_TSO, /* # of TSO requests */ | ||
131 | SGE_PSTAT_RX_CSUM_GOOD, /* # of successful RX csum offloads */ | ||
132 | SGE_PSTAT_TX_CSUM, /* # of TX checksum offloads */ | ||
133 | SGE_PSTAT_VLANEX, /* # of VLAN tag extractions */ | ||
134 | SGE_PSTAT_VLANINS, /* # of VLAN tag insertions */ | ||
135 | |||
136 | SGE_PSTAT_MAX /* must be last */ | ||
137 | }; | ||
138 | |||
139 | struct sge_qset { /* an SGE queue set */ | ||
140 | struct sge_rspq rspq; | ||
141 | struct sge_fl fl[SGE_RXQ_PER_SET]; | ||
142 | struct sge_txq txq[SGE_TXQ_PER_SET]; | ||
143 | struct net_device *netdev; /* associated net device */ | ||
144 | unsigned long txq_stopped; /* which Tx queues are stopped */ | ||
145 | struct timer_list tx_reclaim_timer; /* reclaims TX buffers */ | ||
146 | unsigned long port_stats[SGE_PSTAT_MAX]; | ||
147 | } ____cacheline_aligned; | ||
148 | |||
149 | struct sge { | ||
150 | struct sge_qset qs[SGE_QSETS]; | ||
151 | spinlock_t reg_lock; /* guards non-atomic SGE registers (eg context) */ | ||
152 | }; | ||
153 | |||
154 | struct adapter { | ||
155 | struct t3cdev tdev; | ||
156 | struct list_head adapter_list; | ||
157 | void __iomem *regs; | ||
158 | struct pci_dev *pdev; | ||
159 | unsigned long registered_device_map; | ||
160 | unsigned long open_device_map; | ||
161 | unsigned long flags; | ||
162 | |||
163 | const char *name; | ||
164 | int msg_enable; | ||
165 | unsigned int mmio_len; | ||
166 | |||
167 | struct adapter_params params; | ||
168 | unsigned int slow_intr_mask; | ||
169 | unsigned long irq_stats[IRQ_NUM_STATS]; | ||
170 | |||
171 | struct { | ||
172 | unsigned short vec; | ||
173 | char desc[22]; | ||
174 | } msix_info[SGE_QSETS + 1]; | ||
175 | |||
176 | /* T3 modules */ | ||
177 | struct sge sge; | ||
178 | struct mc7 pmrx; | ||
179 | struct mc7 pmtx; | ||
180 | struct mc7 cm; | ||
181 | struct mc5 mc5; | ||
182 | |||
183 | struct net_device *port[MAX_NPORTS]; | ||
184 | unsigned int check_task_cnt; | ||
185 | struct delayed_work adap_check_task; | ||
186 | struct work_struct ext_intr_handler_task; | ||
187 | |||
188 | /* | ||
189 | * Dummy netdevices are needed when using multiple receive queues with | ||
190 | * NAPI as each netdevice can service only one queue. | ||
191 | */ | ||
192 | struct net_device *dummy_netdev[SGE_QSETS - 1]; | ||
193 | |||
194 | struct dentry *debugfs_root; | ||
195 | |||
196 | struct mutex mdio_lock; | ||
197 | spinlock_t stats_lock; | ||
198 | spinlock_t work_lock; | ||
199 | }; | ||
200 | |||
201 | static inline u32 t3_read_reg(struct adapter *adapter, u32 reg_addr) | ||
202 | { | ||
203 | u32 val = readl(adapter->regs + reg_addr); | ||
204 | |||
205 | CH_DBG(adapter, MMIO, "read register 0x%x value 0x%x\n", reg_addr, val); | ||
206 | return val; | ||
207 | } | ||
208 | |||
209 | static inline void t3_write_reg(struct adapter *adapter, u32 reg_addr, u32 val) | ||
210 | { | ||
211 | CH_DBG(adapter, MMIO, "setting register 0x%x to 0x%x\n", reg_addr, val); | ||
212 | writel(val, adapter->regs + reg_addr); | ||
213 | } | ||
214 | |||
215 | static inline struct port_info *adap2pinfo(struct adapter *adap, int idx) | ||
216 | { | ||
217 | return netdev_priv(adap->port[idx]); | ||
218 | } | ||
219 | |||
220 | /* | ||
221 | * We use the spare atalk_ptr to map a net device to its SGE queue set. | ||
222 | * This is a macro so it can be used as l-value. | ||
223 | */ | ||
224 | #define dev2qset(netdev) ((netdev)->atalk_ptr) | ||
225 | |||
226 | #define OFFLOAD_DEVMAP_BIT 15 | ||
227 | |||
228 | #define tdev2adap(d) container_of(d, struct adapter, tdev) | ||
229 | |||
230 | static inline int offload_running(struct adapter *adapter) | ||
231 | { | ||
232 | return test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map); | ||
233 | } | ||
234 | |||
235 | int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb); | ||
236 | |||
237 | void t3_os_ext_intr_handler(struct adapter *adapter); | ||
238 | void t3_os_link_changed(struct adapter *adapter, int port_id, int link_status, | ||
239 | int speed, int duplex, int fc); | ||
240 | |||
241 | void t3_sge_start(struct adapter *adap); | ||
242 | void t3_sge_stop(struct adapter *adap); | ||
243 | void t3_free_sge_resources(struct adapter *adap); | ||
244 | void t3_sge_err_intr_handler(struct adapter *adapter); | ||
245 | intr_handler_t t3_intr_handler(struct adapter *adap, int polling); | ||
246 | int t3_eth_xmit(struct sk_buff *skb, struct net_device *dev); | ||
247 | void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p); | ||
248 | int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports, | ||
249 | int irq_vec_idx, const struct qset_params *p, | ||
250 | int ntxq, struct net_device *netdev); | ||
251 | int t3_get_desc(const struct sge_qset *qs, unsigned int qnum, unsigned int idx, | ||
252 | unsigned char *data); | ||
253 | irqreturn_t t3_sge_intr_msix(int irq, void *cookie); | ||
254 | |||
255 | #endif /* __T3_ADAPTER_H__ */ | ||
diff --git a/drivers/net/cxgb3/ael1002.c b/drivers/net/cxgb3/ael1002.c new file mode 100644 index 000000000000..93a90d825d85 --- /dev/null +++ b/drivers/net/cxgb3/ael1002.c | |||
@@ -0,0 +1,231 @@ | |||
1 | /* | ||
2 | * This file is part of the Chelsio T3 Ethernet driver. | ||
3 | * | ||
4 | * Copyright (C) 2005-2006 Chelsio Communications. All rights reserved. | ||
5 | * | ||
6 | * This program is distributed in the hope that it will be useful, but WITHOUT | ||
7 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
8 | * FITNESS FOR A PARTICULAR PURPOSE. See the LICENSE file included in this | ||
9 | * release for licensing terms and conditions. | ||
10 | */ | ||
11 | |||
12 | #include "common.h" | ||
13 | #include "regs.h" | ||
14 | |||
15 | enum { | ||
16 | AEL100X_TX_DISABLE = 9, | ||
17 | AEL100X_TX_CONFIG1 = 0xc002, | ||
18 | AEL1002_PWR_DOWN_HI = 0xc011, | ||
19 | AEL1002_PWR_DOWN_LO = 0xc012, | ||
20 | AEL1002_XFI_EQL = 0xc015, | ||
21 | AEL1002_LB_EN = 0xc017, | ||
22 | |||
23 | LASI_CTRL = 0x9002, | ||
24 | LASI_STAT = 0x9005 | ||
25 | }; | ||
26 | |||
27 | static void ael100x_txon(struct cphy *phy) | ||
28 | { | ||
29 | int tx_on_gpio = phy->addr == 0 ? F_GPIO7_OUT_VAL : F_GPIO2_OUT_VAL; | ||
30 | |||
31 | msleep(100); | ||
32 | t3_set_reg_field(phy->adapter, A_T3DBG_GPIO_EN, 0, tx_on_gpio); | ||
33 | msleep(30); | ||
34 | } | ||
35 | |||
36 | static int ael1002_power_down(struct cphy *phy, int enable) | ||
37 | { | ||
38 | int err; | ||
39 | |||
40 | err = mdio_write(phy, MDIO_DEV_PMA_PMD, AEL100X_TX_DISABLE, !!enable); | ||
41 | if (!err) | ||
42 | err = t3_mdio_change_bits(phy, MDIO_DEV_PMA_PMD, MII_BMCR, | ||
43 | BMCR_PDOWN, enable ? BMCR_PDOWN : 0); | ||
44 | return err; | ||
45 | } | ||
46 | |||
47 | static int ael1002_reset(struct cphy *phy, int wait) | ||
48 | { | ||
49 | int err; | ||
50 | |||
51 | if ((err = ael1002_power_down(phy, 0)) || | ||
52 | (err = mdio_write(phy, MDIO_DEV_PMA_PMD, AEL100X_TX_CONFIG1, 1)) || | ||
53 | (err = mdio_write(phy, MDIO_DEV_PMA_PMD, AEL1002_PWR_DOWN_HI, 0)) || | ||
54 | (err = mdio_write(phy, MDIO_DEV_PMA_PMD, AEL1002_PWR_DOWN_LO, 0)) || | ||
55 | (err = mdio_write(phy, MDIO_DEV_PMA_PMD, AEL1002_XFI_EQL, 0x18)) || | ||
56 | (err = t3_mdio_change_bits(phy, MDIO_DEV_PMA_PMD, AEL1002_LB_EN, | ||
57 | 0, 1 << 5))) | ||
58 | return err; | ||
59 | return 0; | ||
60 | } | ||
61 | |||
62 | static int ael1002_intr_noop(struct cphy *phy) | ||
63 | { | ||
64 | return 0; | ||
65 | } | ||
66 | |||
67 | static int ael100x_get_link_status(struct cphy *phy, int *link_ok, | ||
68 | int *speed, int *duplex, int *fc) | ||
69 | { | ||
70 | if (link_ok) { | ||
71 | unsigned int status; | ||
72 | int err = mdio_read(phy, MDIO_DEV_PMA_PMD, MII_BMSR, &status); | ||
73 | |||
74 | /* | ||
75 | * BMSR_LSTATUS is latch-low, so if it is 0 we need to read it | ||
76 | * once more to get the current link state. | ||
77 | */ | ||
78 | if (!err && !(status & BMSR_LSTATUS)) | ||
79 | err = mdio_read(phy, MDIO_DEV_PMA_PMD, MII_BMSR, | ||
80 | &status); | ||
81 | if (err) | ||
82 | return err; | ||
83 | *link_ok = !!(status & BMSR_LSTATUS); | ||
84 | } | ||
85 | if (speed) | ||
86 | *speed = SPEED_10000; | ||
87 | if (duplex) | ||
88 | *duplex = DUPLEX_FULL; | ||
89 | return 0; | ||
90 | } | ||
91 | |||
92 | static struct cphy_ops ael1002_ops = { | ||
93 | .reset = ael1002_reset, | ||
94 | .intr_enable = ael1002_intr_noop, | ||
95 | .intr_disable = ael1002_intr_noop, | ||
96 | .intr_clear = ael1002_intr_noop, | ||
97 | .intr_handler = ael1002_intr_noop, | ||
98 | .get_link_status = ael100x_get_link_status, | ||
99 | .power_down = ael1002_power_down, | ||
100 | }; | ||
101 | |||
102 | void t3_ael1002_phy_prep(struct cphy *phy, struct adapter *adapter, | ||
103 | int phy_addr, const struct mdio_ops *mdio_ops) | ||
104 | { | ||
105 | cphy_init(phy, adapter, phy_addr, &ael1002_ops, mdio_ops); | ||
106 | ael100x_txon(phy); | ||
107 | } | ||
108 | |||
109 | static int ael1006_reset(struct cphy *phy, int wait) | ||
110 | { | ||
111 | return t3_phy_reset(phy, MDIO_DEV_PMA_PMD, wait); | ||
112 | } | ||
113 | |||
114 | static int ael1006_intr_enable(struct cphy *phy) | ||
115 | { | ||
116 | return mdio_write(phy, MDIO_DEV_PMA_PMD, LASI_CTRL, 1); | ||
117 | } | ||
118 | |||
119 | static int ael1006_intr_disable(struct cphy *phy) | ||
120 | { | ||
121 | return mdio_write(phy, MDIO_DEV_PMA_PMD, LASI_CTRL, 0); | ||
122 | } | ||
123 | |||
124 | static int ael1006_intr_clear(struct cphy *phy) | ||
125 | { | ||
126 | u32 val; | ||
127 | |||
128 | return mdio_read(phy, MDIO_DEV_PMA_PMD, LASI_STAT, &val); | ||
129 | } | ||
130 | |||
131 | static int ael1006_intr_handler(struct cphy *phy) | ||
132 | { | ||
133 | unsigned int status; | ||
134 | int err = mdio_read(phy, MDIO_DEV_PMA_PMD, LASI_STAT, &status); | ||
135 | |||
136 | if (err) | ||
137 | return err; | ||
138 | return (status & 1) ? cphy_cause_link_change : 0; | ||
139 | } | ||
140 | |||
141 | static int ael1006_power_down(struct cphy *phy, int enable) | ||
142 | { | ||
143 | return t3_mdio_change_bits(phy, MDIO_DEV_PMA_PMD, MII_BMCR, | ||
144 | BMCR_PDOWN, enable ? BMCR_PDOWN : 0); | ||
145 | } | ||
146 | |||
147 | static struct cphy_ops ael1006_ops = { | ||
148 | .reset = ael1006_reset, | ||
149 | .intr_enable = ael1006_intr_enable, | ||
150 | .intr_disable = ael1006_intr_disable, | ||
151 | .intr_clear = ael1006_intr_clear, | ||
152 | .intr_handler = ael1006_intr_handler, | ||
153 | .get_link_status = ael100x_get_link_status, | ||
154 | .power_down = ael1006_power_down, | ||
155 | }; | ||
156 | |||
157 | void t3_ael1006_phy_prep(struct cphy *phy, struct adapter *adapter, | ||
158 | int phy_addr, const struct mdio_ops *mdio_ops) | ||
159 | { | ||
160 | cphy_init(phy, adapter, phy_addr, &ael1006_ops, mdio_ops); | ||
161 | ael100x_txon(phy); | ||
162 | } | ||
163 | |||
164 | static struct cphy_ops qt2045_ops = { | ||
165 | .reset = ael1006_reset, | ||
166 | .intr_enable = ael1006_intr_enable, | ||
167 | .intr_disable = ael1006_intr_disable, | ||
168 | .intr_clear = ael1006_intr_clear, | ||
169 | .intr_handler = ael1006_intr_handler, | ||
170 | .get_link_status = ael100x_get_link_status, | ||
171 | .power_down = ael1006_power_down, | ||
172 | }; | ||
173 | |||
174 | void t3_qt2045_phy_prep(struct cphy *phy, struct adapter *adapter, | ||
175 | int phy_addr, const struct mdio_ops *mdio_ops) | ||
176 | { | ||
177 | unsigned int stat; | ||
178 | |||
179 | cphy_init(phy, adapter, phy_addr, &qt2045_ops, mdio_ops); | ||
180 | |||
181 | /* | ||
182 | * Some cards where the PHY is supposed to be at address 0 actually | ||
183 | * have it at 1. | ||
184 | */ | ||
185 | if (!phy_addr && !mdio_read(phy, MDIO_DEV_PMA_PMD, MII_BMSR, &stat) && | ||
186 | stat == 0xffff) | ||
187 | phy->addr = 1; | ||
188 | } | ||
189 | |||
190 | static int xaui_direct_reset(struct cphy *phy, int wait) | ||
191 | { | ||
192 | return 0; | ||
193 | } | ||
194 | |||
195 | static int xaui_direct_get_link_status(struct cphy *phy, int *link_ok, | ||
196 | int *speed, int *duplex, int *fc) | ||
197 | { | ||
198 | if (link_ok) { | ||
199 | unsigned int status; | ||
200 | |||
201 | status = t3_read_reg(phy->adapter, | ||
202 | XGM_REG(A_XGM_SERDES_STAT0, phy->addr)); | ||
203 | *link_ok = !(status & F_LOWSIG0); | ||
204 | } | ||
205 | if (speed) | ||
206 | *speed = SPEED_10000; | ||
207 | if (duplex) | ||
208 | *duplex = DUPLEX_FULL; | ||
209 | return 0; | ||
210 | } | ||
211 | |||
212 | static int xaui_direct_power_down(struct cphy *phy, int enable) | ||
213 | { | ||
214 | return 0; | ||
215 | } | ||
216 | |||
217 | static struct cphy_ops xaui_direct_ops = { | ||
218 | .reset = xaui_direct_reset, | ||
219 | .intr_enable = ael1002_intr_noop, | ||
220 | .intr_disable = ael1002_intr_noop, | ||
221 | .intr_clear = ael1002_intr_noop, | ||
222 | .intr_handler = ael1002_intr_noop, | ||
223 | .get_link_status = xaui_direct_get_link_status, | ||
224 | .power_down = xaui_direct_power_down, | ||
225 | }; | ||
226 | |||
227 | void t3_xaui_direct_phy_prep(struct cphy *phy, struct adapter *adapter, | ||
228 | int phy_addr, const struct mdio_ops *mdio_ops) | ||
229 | { | ||
230 | cphy_init(phy, adapter, 1, &xaui_direct_ops, mdio_ops); | ||
231 | } | ||
diff --git a/drivers/net/cxgb3/common.h b/drivers/net/cxgb3/common.h new file mode 100644 index 000000000000..60a979b62a65 --- /dev/null +++ b/drivers/net/cxgb3/common.h | |||
@@ -0,0 +1,709 @@ | |||
1 | /* | ||
2 | * This file is part of the Chelsio T3 Ethernet driver. | ||
3 | * | ||
4 | * Copyright (C) 2005-2006 Chelsio Communications. All rights reserved. | ||
5 | * | ||
6 | * This program is distributed in the hope that it will be useful, but WITHOUT | ||
7 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
8 | * FITNESS FOR A PARTICULAR PURPOSE. See the LICENSE file included in this | ||
9 | * release for licensing terms and conditions. | ||
10 | */ | ||
11 | |||
12 | #ifndef __CHELSIO_COMMON_H | ||
13 | #define __CHELSIO_COMMON_H | ||
14 | |||
15 | #include <linux/kernel.h> | ||
16 | #include <linux/types.h> | ||
17 | #include <linux/ctype.h> | ||
18 | #include <linux/delay.h> | ||
19 | #include <linux/init.h> | ||
20 | #include <linux/netdevice.h> | ||
21 | #include <linux/ethtool.h> | ||
22 | #include <linux/mii.h> | ||
23 | #include "version.h" | ||
24 | |||
25 | #define CH_ERR(adap, fmt, ...) dev_err(&adap->pdev->dev, fmt, ## __VA_ARGS__) | ||
26 | #define CH_WARN(adap, fmt, ...) dev_warn(&adap->pdev->dev, fmt, ## __VA_ARGS__) | ||
27 | #define CH_ALERT(adap, fmt, ...) \ | ||
28 | dev_printk(KERN_ALERT, &adap->pdev->dev, fmt, ## __VA_ARGS__) | ||
29 | |||
30 | /* | ||
31 | * More powerful macro that selectively prints messages based on msg_enable. | ||
32 | * For info and debugging messages. | ||
33 | */ | ||
34 | #define CH_MSG(adapter, level, category, fmt, ...) do { \ | ||
35 | if ((adapter)->msg_enable & NETIF_MSG_##category) \ | ||
36 | dev_printk(KERN_##level, &adapter->pdev->dev, fmt, \ | ||
37 | ## __VA_ARGS__); \ | ||
38 | } while (0) | ||
39 | |||
40 | #ifdef DEBUG | ||
41 | # define CH_DBG(adapter, category, fmt, ...) \ | ||
42 | CH_MSG(adapter, DEBUG, category, fmt, ## __VA_ARGS__) | ||
43 | #else | ||
44 | # define CH_DBG(adapter, category, fmt, ...) | ||
45 | #endif | ||
46 | |||
47 | /* Additional NETIF_MSG_* categories */ | ||
48 | #define NETIF_MSG_MMIO 0x8000000 | ||
49 | |||
50 | struct t3_rx_mode { | ||
51 | struct net_device *dev; | ||
52 | struct dev_mc_list *mclist; | ||
53 | unsigned int idx; | ||
54 | }; | ||
55 | |||
56 | static inline void init_rx_mode(struct t3_rx_mode *p, struct net_device *dev, | ||
57 | struct dev_mc_list *mclist) | ||
58 | { | ||
59 | p->dev = dev; | ||
60 | p->mclist = mclist; | ||
61 | p->idx = 0; | ||
62 | } | ||
63 | |||
64 | static inline u8 *t3_get_next_mcaddr(struct t3_rx_mode *rm) | ||
65 | { | ||
66 | u8 *addr = NULL; | ||
67 | |||
68 | if (rm->mclist && rm->idx < rm->dev->mc_count) { | ||
69 | addr = rm->mclist->dmi_addr; | ||
70 | rm->mclist = rm->mclist->next; | ||
71 | rm->idx++; | ||
72 | } | ||
73 | return addr; | ||
74 | } | ||
75 | |||
76 | enum { | ||
77 | MAX_NPORTS = 2, /* max # of ports */ | ||
78 | MAX_FRAME_SIZE = 10240, /* max MAC frame size, including header + FCS */ | ||
79 | EEPROMSIZE = 8192, /* Serial EEPROM size */ | ||
80 | RSS_TABLE_SIZE = 64, /* size of RSS lookup and mapping tables */ | ||
81 | TCB_SIZE = 128, /* TCB size */ | ||
82 | NMTUS = 16, /* size of MTU table */ | ||
83 | NCCTRL_WIN = 32, /* # of congestion control windows */ | ||
84 | }; | ||
85 | |||
86 | #define MAX_RX_COALESCING_LEN 16224U | ||
87 | |||
88 | enum { | ||
89 | PAUSE_RX = 1 << 0, | ||
90 | PAUSE_TX = 1 << 1, | ||
91 | PAUSE_AUTONEG = 1 << 2 | ||
92 | }; | ||
93 | |||
94 | enum { | ||
95 | SUPPORTED_OFFLOAD = 1 << 24, | ||
96 | SUPPORTED_IRQ = 1 << 25 | ||
97 | }; | ||
98 | |||
99 | enum { /* adapter interrupt-maintained statistics */ | ||
100 | STAT_ULP_CH0_PBL_OOB, | ||
101 | STAT_ULP_CH1_PBL_OOB, | ||
102 | STAT_PCI_CORR_ECC, | ||
103 | |||
104 | IRQ_NUM_STATS /* keep last */ | ||
105 | }; | ||
106 | |||
107 | enum { | ||
108 | SGE_QSETS = 8, /* # of SGE Tx/Rx/RspQ sets */ | ||
109 | SGE_RXQ_PER_SET = 2, /* # of Rx queues per set */ | ||
110 | SGE_TXQ_PER_SET = 3 /* # of Tx queues per set */ | ||
111 | }; | ||
112 | |||
113 | enum sge_context_type { /* SGE egress context types */ | ||
114 | SGE_CNTXT_RDMA = 0, | ||
115 | SGE_CNTXT_ETH = 2, | ||
116 | SGE_CNTXT_OFLD = 4, | ||
117 | SGE_CNTXT_CTRL = 5 | ||
118 | }; | ||
119 | |||
120 | enum { | ||
121 | AN_PKT_SIZE = 32, /* async notification packet size */ | ||
122 | IMMED_PKT_SIZE = 48 /* packet size for immediate data */ | ||
123 | }; | ||
124 | |||
125 | struct sg_ent { /* SGE scatter/gather entry */ | ||
126 | u32 len[2]; | ||
127 | u64 addr[2]; | ||
128 | }; | ||
129 | |||
130 | #ifndef SGE_NUM_GENBITS | ||
131 | /* Must be 1 or 2 */ | ||
132 | # define SGE_NUM_GENBITS 2 | ||
133 | #endif | ||
134 | |||
135 | #define TX_DESC_FLITS 16U | ||
136 | #define WR_FLITS (TX_DESC_FLITS + 1 - SGE_NUM_GENBITS) | ||
137 | |||
138 | struct cphy; | ||
139 | struct adapter; | ||
140 | |||
141 | struct mdio_ops { | ||
142 | int (*read)(struct adapter *adapter, int phy_addr, int mmd_addr, | ||
143 | int reg_addr, unsigned int *val); | ||
144 | int (*write)(struct adapter *adapter, int phy_addr, int mmd_addr, | ||
145 | int reg_addr, unsigned int val); | ||
146 | }; | ||
147 | |||
148 | struct adapter_info { | ||
149 | unsigned char nports; /* # of ports */ | ||
150 | unsigned char phy_base_addr; /* MDIO PHY base address */ | ||
151 | unsigned char mdien; | ||
152 | unsigned char mdiinv; | ||
153 | unsigned int gpio_out; /* GPIO output settings */ | ||
154 | unsigned int gpio_intr; /* GPIO IRQ enable mask */ | ||
155 | unsigned long caps; /* adapter capabilities */ | ||
156 | const struct mdio_ops *mdio_ops; /* MDIO operations */ | ||
157 | const char *desc; /* product description */ | ||
158 | }; | ||
159 | |||
160 | struct port_type_info { | ||
161 | void (*phy_prep)(struct cphy *phy, struct adapter *adapter, | ||
162 | int phy_addr, const struct mdio_ops *ops); | ||
163 | unsigned int caps; | ||
164 | const char *desc; | ||
165 | }; | ||
166 | |||
167 | struct mc5_stats { | ||
168 | unsigned long parity_err; | ||
169 | unsigned long active_rgn_full; | ||
170 | unsigned long nfa_srch_err; | ||
171 | unsigned long unknown_cmd; | ||
172 | unsigned long reqq_parity_err; | ||
173 | unsigned long dispq_parity_err; | ||
174 | unsigned long del_act_empty; | ||
175 | }; | ||
176 | |||
177 | struct mc7_stats { | ||
178 | unsigned long corr_err; | ||
179 | unsigned long uncorr_err; | ||
180 | unsigned long parity_err; | ||
181 | unsigned long addr_err; | ||
182 | }; | ||
183 | |||
184 | struct mac_stats { | ||
185 | u64 tx_octets; /* total # of octets in good frames */ | ||
186 | u64 tx_octets_bad; /* total # of octets in error frames */ | ||
187 | u64 tx_frames; /* all good frames */ | ||
188 | u64 tx_mcast_frames; /* good multicast frames */ | ||
189 | u64 tx_bcast_frames; /* good broadcast frames */ | ||
190 | u64 tx_pause; /* # of transmitted pause frames */ | ||
191 | u64 tx_deferred; /* frames with deferred transmissions */ | ||
192 | u64 tx_late_collisions; /* # of late collisions */ | ||
193 | u64 tx_total_collisions; /* # of total collisions */ | ||
194 | u64 tx_excess_collisions; /* frame errors from excessive collissions */ | ||
195 | u64 tx_underrun; /* # of Tx FIFO underruns */ | ||
196 | u64 tx_len_errs; /* # of Tx length errors */ | ||
197 | u64 tx_mac_internal_errs; /* # of internal MAC errors on Tx */ | ||
198 | u64 tx_excess_deferral; /* # of frames with excessive deferral */ | ||
199 | u64 tx_fcs_errs; /* # of frames with bad FCS */ | ||
200 | |||
201 | u64 tx_frames_64; /* # of Tx frames in a particular range */ | ||
202 | u64 tx_frames_65_127; | ||
203 | u64 tx_frames_128_255; | ||
204 | u64 tx_frames_256_511; | ||
205 | u64 tx_frames_512_1023; | ||
206 | u64 tx_frames_1024_1518; | ||
207 | u64 tx_frames_1519_max; | ||
208 | |||
209 | u64 rx_octets; /* total # of octets in good frames */ | ||
210 | u64 rx_octets_bad; /* total # of octets in error frames */ | ||
211 | u64 rx_frames; /* all good frames */ | ||
212 | u64 rx_mcast_frames; /* good multicast frames */ | ||
213 | u64 rx_bcast_frames; /* good broadcast frames */ | ||
214 | u64 rx_pause; /* # of received pause frames */ | ||
215 | u64 rx_fcs_errs; /* # of received frames with bad FCS */ | ||
216 | u64 rx_align_errs; /* alignment errors */ | ||
217 | u64 rx_symbol_errs; /* symbol errors */ | ||
218 | u64 rx_data_errs; /* data errors */ | ||
219 | u64 rx_sequence_errs; /* sequence errors */ | ||
220 | u64 rx_runt; /* # of runt frames */ | ||
221 | u64 rx_jabber; /* # of jabber frames */ | ||
222 | u64 rx_short; /* # of short frames */ | ||
223 | u64 rx_too_long; /* # of oversized frames */ | ||
224 | u64 rx_mac_internal_errs; /* # of internal MAC errors on Rx */ | ||
225 | |||
226 | u64 rx_frames_64; /* # of Rx frames in a particular range */ | ||
227 | u64 rx_frames_65_127; | ||
228 | u64 rx_frames_128_255; | ||
229 | u64 rx_frames_256_511; | ||
230 | u64 rx_frames_512_1023; | ||
231 | u64 rx_frames_1024_1518; | ||
232 | u64 rx_frames_1519_max; | ||
233 | |||
234 | u64 rx_cong_drops; /* # of Rx drops due to SGE congestion */ | ||
235 | |||
236 | unsigned long tx_fifo_parity_err; | ||
237 | unsigned long rx_fifo_parity_err; | ||
238 | unsigned long tx_fifo_urun; | ||
239 | unsigned long rx_fifo_ovfl; | ||
240 | unsigned long serdes_signal_loss; | ||
241 | unsigned long xaui_pcs_ctc_err; | ||
242 | unsigned long xaui_pcs_align_change; | ||
243 | }; | ||
244 | |||
245 | struct tp_mib_stats { | ||
246 | u32 ipInReceive_hi; | ||
247 | u32 ipInReceive_lo; | ||
248 | u32 ipInHdrErrors_hi; | ||
249 | u32 ipInHdrErrors_lo; | ||
250 | u32 ipInAddrErrors_hi; | ||
251 | u32 ipInAddrErrors_lo; | ||
252 | u32 ipInUnknownProtos_hi; | ||
253 | u32 ipInUnknownProtos_lo; | ||
254 | u32 ipInDiscards_hi; | ||
255 | u32 ipInDiscards_lo; | ||
256 | u32 ipInDelivers_hi; | ||
257 | u32 ipInDelivers_lo; | ||
258 | u32 ipOutRequests_hi; | ||
259 | u32 ipOutRequests_lo; | ||
260 | u32 ipOutDiscards_hi; | ||
261 | u32 ipOutDiscards_lo; | ||
262 | u32 ipOutNoRoutes_hi; | ||
263 | u32 ipOutNoRoutes_lo; | ||
264 | u32 ipReasmTimeout; | ||
265 | u32 ipReasmReqds; | ||
266 | u32 ipReasmOKs; | ||
267 | u32 ipReasmFails; | ||
268 | |||
269 | u32 reserved[8]; | ||
270 | |||
271 | u32 tcpActiveOpens; | ||
272 | u32 tcpPassiveOpens; | ||
273 | u32 tcpAttemptFails; | ||
274 | u32 tcpEstabResets; | ||
275 | u32 tcpOutRsts; | ||
276 | u32 tcpCurrEstab; | ||
277 | u32 tcpInSegs_hi; | ||
278 | u32 tcpInSegs_lo; | ||
279 | u32 tcpOutSegs_hi; | ||
280 | u32 tcpOutSegs_lo; | ||
281 | u32 tcpRetransSeg_hi; | ||
282 | u32 tcpRetransSeg_lo; | ||
283 | u32 tcpInErrs_hi; | ||
284 | u32 tcpInErrs_lo; | ||
285 | u32 tcpRtoMin; | ||
286 | u32 tcpRtoMax; | ||
287 | }; | ||
288 | |||
289 | struct tp_params { | ||
290 | unsigned int nchan; /* # of channels */ | ||
291 | unsigned int pmrx_size; /* total PMRX capacity */ | ||
292 | unsigned int pmtx_size; /* total PMTX capacity */ | ||
293 | unsigned int cm_size; /* total CM capacity */ | ||
294 | unsigned int chan_rx_size; /* per channel Rx size */ | ||
295 | unsigned int chan_tx_size; /* per channel Tx size */ | ||
296 | unsigned int rx_pg_size; /* Rx page size */ | ||
297 | unsigned int tx_pg_size; /* Tx page size */ | ||
298 | unsigned int rx_num_pgs; /* # of Rx pages */ | ||
299 | unsigned int tx_num_pgs; /* # of Tx pages */ | ||
300 | unsigned int ntimer_qs; /* # of timer queues */ | ||
301 | }; | ||
302 | |||
303 | struct qset_params { /* SGE queue set parameters */ | ||
304 | unsigned int polling; /* polling/interrupt service for rspq */ | ||
305 | unsigned int coalesce_usecs; /* irq coalescing timer */ | ||
306 | unsigned int rspq_size; /* # of entries in response queue */ | ||
307 | unsigned int fl_size; /* # of entries in regular free list */ | ||
308 | unsigned int jumbo_size; /* # of entries in jumbo free list */ | ||
309 | unsigned int txq_size[SGE_TXQ_PER_SET]; /* Tx queue sizes */ | ||
310 | unsigned int cong_thres; /* FL congestion threshold */ | ||
311 | }; | ||
312 | |||
313 | struct sge_params { | ||
314 | unsigned int max_pkt_size; /* max offload pkt size */ | ||
315 | struct qset_params qset[SGE_QSETS]; | ||
316 | }; | ||
317 | |||
318 | struct mc5_params { | ||
319 | unsigned int mode; /* selects MC5 width */ | ||
320 | unsigned int nservers; /* size of server region */ | ||
321 | unsigned int nfilters; /* size of filter region */ | ||
322 | unsigned int nroutes; /* size of routing region */ | ||
323 | }; | ||
324 | |||
325 | /* Default MC5 region sizes */ | ||
326 | enum { | ||
327 | DEFAULT_NSERVERS = 512, | ||
328 | DEFAULT_NFILTERS = 128 | ||
329 | }; | ||
330 | |||
331 | /* MC5 modes, these must be non-0 */ | ||
332 | enum { | ||
333 | MC5_MODE_144_BIT = 1, | ||
334 | MC5_MODE_72_BIT = 2 | ||
335 | }; | ||
336 | |||
337 | struct vpd_params { | ||
338 | unsigned int cclk; | ||
339 | unsigned int mclk; | ||
340 | unsigned int uclk; | ||
341 | unsigned int mdc; | ||
342 | unsigned int mem_timing; | ||
343 | u8 eth_base[6]; | ||
344 | u8 port_type[MAX_NPORTS]; | ||
345 | unsigned short xauicfg[2]; | ||
346 | }; | ||
347 | |||
348 | struct pci_params { | ||
349 | unsigned int vpd_cap_addr; | ||
350 | unsigned int pcie_cap_addr; | ||
351 | unsigned short speed; | ||
352 | unsigned char width; | ||
353 | unsigned char variant; | ||
354 | }; | ||
355 | |||
356 | enum { | ||
357 | PCI_VARIANT_PCI, | ||
358 | PCI_VARIANT_PCIX_MODE1_PARITY, | ||
359 | PCI_VARIANT_PCIX_MODE1_ECC, | ||
360 | PCI_VARIANT_PCIX_266_MODE2, | ||
361 | PCI_VARIANT_PCIE | ||
362 | }; | ||
363 | |||
364 | struct adapter_params { | ||
365 | struct sge_params sge; | ||
366 | struct mc5_params mc5; | ||
367 | struct tp_params tp; | ||
368 | struct vpd_params vpd; | ||
369 | struct pci_params pci; | ||
370 | |||
371 | const struct adapter_info *info; | ||
372 | |||
373 | unsigned short mtus[NMTUS]; | ||
374 | unsigned short a_wnd[NCCTRL_WIN]; | ||
375 | unsigned short b_wnd[NCCTRL_WIN]; | ||
376 | |||
377 | unsigned int nports; /* # of ethernet ports */ | ||
378 | unsigned int stats_update_period; /* MAC stats accumulation period */ | ||
379 | unsigned int linkpoll_period; /* link poll period in 0.1s */ | ||
380 | unsigned int rev; /* chip revision */ | ||
381 | }; | ||
382 | |||
383 | struct trace_params { | ||
384 | u32 sip; | ||
385 | u32 sip_mask; | ||
386 | u32 dip; | ||
387 | u32 dip_mask; | ||
388 | u16 sport; | ||
389 | u16 sport_mask; | ||
390 | u16 dport; | ||
391 | u16 dport_mask; | ||
392 | u32 vlan:12; | ||
393 | u32 vlan_mask:12; | ||
394 | u32 intf:4; | ||
395 | u32 intf_mask:4; | ||
396 | u8 proto; | ||
397 | u8 proto_mask; | ||
398 | }; | ||
399 | |||
400 | struct link_config { | ||
401 | unsigned int supported; /* link capabilities */ | ||
402 | unsigned int advertising; /* advertised capabilities */ | ||
403 | unsigned short requested_speed; /* speed user has requested */ | ||
404 | unsigned short speed; /* actual link speed */ | ||
405 | unsigned char requested_duplex; /* duplex user has requested */ | ||
406 | unsigned char duplex; /* actual link duplex */ | ||
407 | unsigned char requested_fc; /* flow control user has requested */ | ||
408 | unsigned char fc; /* actual link flow control */ | ||
409 | unsigned char autoneg; /* autonegotiating? */ | ||
410 | unsigned int link_ok; /* link up? */ | ||
411 | }; | ||
412 | |||
413 | #define SPEED_INVALID 0xffff | ||
414 | #define DUPLEX_INVALID 0xff | ||
415 | |||
416 | struct mc5 { | ||
417 | struct adapter *adapter; | ||
418 | unsigned int tcam_size; | ||
419 | unsigned char part_type; | ||
420 | unsigned char parity_enabled; | ||
421 | unsigned char mode; | ||
422 | struct mc5_stats stats; | ||
423 | }; | ||
424 | |||
425 | static inline unsigned int t3_mc5_size(const struct mc5 *p) | ||
426 | { | ||
427 | return p->tcam_size; | ||
428 | } | ||
429 | |||
430 | struct mc7 { | ||
431 | struct adapter *adapter; /* backpointer to adapter */ | ||
432 | unsigned int size; /* memory size in bytes */ | ||
433 | unsigned int width; /* MC7 interface width */ | ||
434 | unsigned int offset; /* register address offset for MC7 instance */ | ||
435 | const char *name; /* name of MC7 instance */ | ||
436 | struct mc7_stats stats; /* MC7 statistics */ | ||
437 | }; | ||
438 | |||
439 | static inline unsigned int t3_mc7_size(const struct mc7 *p) | ||
440 | { | ||
441 | return p->size; | ||
442 | } | ||
443 | |||
444 | struct cmac { | ||
445 | struct adapter *adapter; | ||
446 | unsigned int offset; | ||
447 | unsigned int nucast; /* # of address filters for unicast MACs */ | ||
448 | struct mac_stats stats; | ||
449 | }; | ||
450 | |||
451 | enum { | ||
452 | MAC_DIRECTION_RX = 1, | ||
453 | MAC_DIRECTION_TX = 2, | ||
454 | MAC_RXFIFO_SIZE = 32768 | ||
455 | }; | ||
456 | |||
457 | /* IEEE 802.3ae specified MDIO devices */ | ||
458 | enum { | ||
459 | MDIO_DEV_PMA_PMD = 1, | ||
460 | MDIO_DEV_WIS = 2, | ||
461 | MDIO_DEV_PCS = 3, | ||
462 | MDIO_DEV_XGXS = 4 | ||
463 | }; | ||
464 | |||
465 | /* PHY loopback direction */ | ||
466 | enum { | ||
467 | PHY_LOOPBACK_TX = 1, | ||
468 | PHY_LOOPBACK_RX = 2 | ||
469 | }; | ||
470 | |||
471 | /* PHY interrupt types */ | ||
472 | enum { | ||
473 | cphy_cause_link_change = 1, | ||
474 | cphy_cause_fifo_error = 2 | ||
475 | }; | ||
476 | |||
477 | /* PHY operations */ | ||
478 | struct cphy_ops { | ||
479 | void (*destroy)(struct cphy *phy); | ||
480 | int (*reset)(struct cphy *phy, int wait); | ||
481 | |||
482 | int (*intr_enable)(struct cphy *phy); | ||
483 | int (*intr_disable)(struct cphy *phy); | ||
484 | int (*intr_clear)(struct cphy *phy); | ||
485 | int (*intr_handler)(struct cphy *phy); | ||
486 | |||
487 | int (*autoneg_enable)(struct cphy *phy); | ||
488 | int (*autoneg_restart)(struct cphy *phy); | ||
489 | |||
490 | int (*advertise)(struct cphy *phy, unsigned int advertise_map); | ||
491 | int (*set_loopback)(struct cphy *phy, int mmd, int dir, int enable); | ||
492 | int (*set_speed_duplex)(struct cphy *phy, int speed, int duplex); | ||
493 | int (*get_link_status)(struct cphy *phy, int *link_ok, int *speed, | ||
494 | int *duplex, int *fc); | ||
495 | int (*power_down)(struct cphy *phy, int enable); | ||
496 | }; | ||
497 | |||
498 | /* A PHY instance */ | ||
499 | struct cphy { | ||
500 | int addr; /* PHY address */ | ||
501 | struct adapter *adapter; /* associated adapter */ | ||
502 | unsigned long fifo_errors; /* FIFO over/under-flows */ | ||
503 | const struct cphy_ops *ops; /* PHY operations */ | ||
504 | int (*mdio_read)(struct adapter *adapter, int phy_addr, int mmd_addr, | ||
505 | int reg_addr, unsigned int *val); | ||
506 | int (*mdio_write)(struct adapter *adapter, int phy_addr, int mmd_addr, | ||
507 | int reg_addr, unsigned int val); | ||
508 | }; | ||
509 | |||
510 | /* Convenience MDIO read/write wrappers */ | ||
511 | static inline int mdio_read(struct cphy *phy, int mmd, int reg, | ||
512 | unsigned int *valp) | ||
513 | { | ||
514 | return phy->mdio_read(phy->adapter, phy->addr, mmd, reg, valp); | ||
515 | } | ||
516 | |||
517 | static inline int mdio_write(struct cphy *phy, int mmd, int reg, | ||
518 | unsigned int val) | ||
519 | { | ||
520 | return phy->mdio_write(phy->adapter, phy->addr, mmd, reg, val); | ||
521 | } | ||
522 | |||
523 | /* Convenience initializer */ | ||
524 | static inline void cphy_init(struct cphy *phy, struct adapter *adapter, | ||
525 | int phy_addr, struct cphy_ops *phy_ops, | ||
526 | const struct mdio_ops *mdio_ops) | ||
527 | { | ||
528 | phy->adapter = adapter; | ||
529 | phy->addr = phy_addr; | ||
530 | phy->ops = phy_ops; | ||
531 | if (mdio_ops) { | ||
532 | phy->mdio_read = mdio_ops->read; | ||
533 | phy->mdio_write = mdio_ops->write; | ||
534 | } | ||
535 | } | ||
536 | |||
537 | /* Accumulate MAC statistics every 180 seconds. For 1G we multiply by 10. */ | ||
538 | #define MAC_STATS_ACCUM_SECS 180 | ||
539 | |||
540 | #define XGM_REG(reg_addr, idx) \ | ||
541 | ((reg_addr) + (idx) * (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR)) | ||
542 | |||
543 | struct addr_val_pair { | ||
544 | unsigned int reg_addr; | ||
545 | unsigned int val; | ||
546 | }; | ||
547 | |||
548 | #include "adapter.h" | ||
549 | |||
550 | #ifndef PCI_VENDOR_ID_CHELSIO | ||
551 | # define PCI_VENDOR_ID_CHELSIO 0x1425 | ||
552 | #endif | ||
553 | |||
554 | #define for_each_port(adapter, iter) \ | ||
555 | for (iter = 0; iter < (adapter)->params.nports; ++iter) | ||
556 | |||
557 | #define adapter_info(adap) ((adap)->params.info) | ||
558 | |||
559 | static inline int uses_xaui(const struct adapter *adap) | ||
560 | { | ||
561 | return adapter_info(adap)->caps & SUPPORTED_AUI; | ||
562 | } | ||
563 | |||
564 | static inline int is_10G(const struct adapter *adap) | ||
565 | { | ||
566 | return adapter_info(adap)->caps & SUPPORTED_10000baseT_Full; | ||
567 | } | ||
568 | |||
569 | static inline int is_offload(const struct adapter *adap) | ||
570 | { | ||
571 | return adapter_info(adap)->caps & SUPPORTED_OFFLOAD; | ||
572 | } | ||
573 | |||
574 | static inline unsigned int core_ticks_per_usec(const struct adapter *adap) | ||
575 | { | ||
576 | return adap->params.vpd.cclk / 1000; | ||
577 | } | ||
578 | |||
579 | static inline unsigned int is_pcie(const struct adapter *adap) | ||
580 | { | ||
581 | return adap->params.pci.variant == PCI_VARIANT_PCIE; | ||
582 | } | ||
583 | |||
584 | void t3_set_reg_field(struct adapter *adap, unsigned int addr, u32 mask, | ||
585 | u32 val); | ||
586 | void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p, | ||
587 | int n, unsigned int offset); | ||
588 | int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, | ||
589 | int polarity, int attempts, int delay, u32 *valp); | ||
590 | static inline int t3_wait_op_done(struct adapter *adapter, int reg, u32 mask, | ||
591 | int polarity, int attempts, int delay) | ||
592 | { | ||
593 | return t3_wait_op_done_val(adapter, reg, mask, polarity, attempts, | ||
594 | delay, NULL); | ||
595 | } | ||
596 | int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear, | ||
597 | unsigned int set); | ||
598 | int t3_phy_reset(struct cphy *phy, int mmd, int wait); | ||
599 | int t3_phy_advertise(struct cphy *phy, unsigned int advert); | ||
600 | int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex); | ||
601 | |||
602 | void t3_intr_enable(struct adapter *adapter); | ||
603 | void t3_intr_disable(struct adapter *adapter); | ||
604 | void t3_intr_clear(struct adapter *adapter); | ||
605 | void t3_port_intr_enable(struct adapter *adapter, int idx); | ||
606 | void t3_port_intr_disable(struct adapter *adapter, int idx); | ||
607 | void t3_port_intr_clear(struct adapter *adapter, int idx); | ||
608 | int t3_slow_intr_handler(struct adapter *adapter); | ||
609 | int t3_phy_intr_handler(struct adapter *adapter); | ||
610 | |||
611 | void t3_link_changed(struct adapter *adapter, int port_id); | ||
612 | int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc); | ||
613 | const struct adapter_info *t3_get_adapter_info(unsigned int board_id); | ||
614 | int t3_seeprom_read(struct adapter *adapter, u32 addr, u32 *data); | ||
615 | int t3_seeprom_write(struct adapter *adapter, u32 addr, u32 data); | ||
616 | int t3_seeprom_wp(struct adapter *adapter, int enable); | ||
617 | int t3_read_flash(struct adapter *adapter, unsigned int addr, | ||
618 | unsigned int nwords, u32 *data, int byte_oriented); | ||
619 | int t3_load_fw(struct adapter *adapter, const u8 * fw_data, unsigned int size); | ||
620 | int t3_get_fw_version(struct adapter *adapter, u32 *vers); | ||
621 | int t3_check_fw_version(struct adapter *adapter); | ||
622 | int t3_init_hw(struct adapter *adapter, u32 fw_params); | ||
623 | void mac_prep(struct cmac *mac, struct adapter *adapter, int index); | ||
624 | void early_hw_init(struct adapter *adapter, const struct adapter_info *ai); | ||
625 | int t3_prep_adapter(struct adapter *adapter, const struct adapter_info *ai, | ||
626 | int reset); | ||
627 | void t3_led_ready(struct adapter *adapter); | ||
628 | void t3_fatal_err(struct adapter *adapter); | ||
629 | void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on); | ||
630 | void t3_config_rss(struct adapter *adapter, unsigned int rss_config, | ||
631 | const u8 * cpus, const u16 *rspq); | ||
632 | int t3_read_rss(struct adapter *adapter, u8 * lkup, u16 *map); | ||
633 | int t3_mps_set_active_ports(struct adapter *adap, unsigned int port_mask); | ||
634 | int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr, | ||
635 | unsigned int n, unsigned int *valp); | ||
636 | int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n, | ||
637 | u64 *buf); | ||
638 | |||
639 | int t3_mac_reset(struct cmac *mac); | ||
640 | void t3b_pcs_reset(struct cmac *mac); | ||
641 | int t3_mac_enable(struct cmac *mac, int which); | ||
642 | int t3_mac_disable(struct cmac *mac, int which); | ||
643 | int t3_mac_set_mtu(struct cmac *mac, unsigned int mtu); | ||
644 | int t3_mac_set_rx_mode(struct cmac *mac, struct t3_rx_mode *rm); | ||
645 | int t3_mac_set_address(struct cmac *mac, unsigned int idx, u8 addr[6]); | ||
646 | int t3_mac_set_num_ucast(struct cmac *mac, int n); | ||
647 | const struct mac_stats *t3_mac_update_stats(struct cmac *mac); | ||
648 | int t3_mac_set_speed_duplex_fc(struct cmac *mac, int speed, int duplex, int fc); | ||
649 | |||
650 | void t3_mc5_prep(struct adapter *adapter, struct mc5 *mc5, int mode); | ||
651 | int t3_mc5_init(struct mc5 *mc5, unsigned int nservers, unsigned int nfilters, | ||
652 | unsigned int nroutes); | ||
653 | void t3_mc5_intr_handler(struct mc5 *mc5); | ||
654 | int t3_read_mc5_range(const struct mc5 *mc5, unsigned int start, unsigned int n, | ||
655 | u32 *buf); | ||
656 | |||
657 | int t3_tp_set_coalescing_size(struct adapter *adap, unsigned int size, int psh); | ||
658 | void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size); | ||
659 | void t3_tp_set_offload_mode(struct adapter *adap, int enable); | ||
660 | void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps); | ||
661 | void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS], | ||
662 | unsigned short alpha[NCCTRL_WIN], | ||
663 | unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap); | ||
664 | void t3_read_hw_mtus(struct adapter *adap, unsigned short mtus[NMTUS]); | ||
665 | void t3_get_cong_cntl_tab(struct adapter *adap, | ||
666 | unsigned short incr[NMTUS][NCCTRL_WIN]); | ||
667 | void t3_config_trace_filter(struct adapter *adapter, | ||
668 | const struct trace_params *tp, int filter_index, | ||
669 | int invert, int enable); | ||
670 | int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched); | ||
671 | |||
672 | void t3_sge_prep(struct adapter *adap, struct sge_params *p); | ||
673 | void t3_sge_init(struct adapter *adap, struct sge_params *p); | ||
674 | int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable, | ||
675 | enum sge_context_type type, int respq, u64 base_addr, | ||
676 | unsigned int size, unsigned int token, int gen, | ||
677 | unsigned int cidx); | ||
678 | int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id, | ||
679 | int gts_enable, u64 base_addr, unsigned int size, | ||
680 | unsigned int esize, unsigned int cong_thres, int gen, | ||
681 | unsigned int cidx); | ||
682 | int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id, | ||
683 | int irq_vec_idx, u64 base_addr, unsigned int size, | ||
684 | unsigned int fl_thres, int gen, unsigned int cidx); | ||
685 | int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr, | ||
686 | unsigned int size, int rspq, int ovfl_mode, | ||
687 | unsigned int credits, unsigned int credit_thres); | ||
688 | int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable); | ||
689 | int t3_sge_disable_fl(struct adapter *adapter, unsigned int id); | ||
690 | int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id); | ||
691 | int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id); | ||
692 | int t3_sge_read_ecntxt(struct adapter *adapter, unsigned int id, u32 data[4]); | ||
693 | int t3_sge_read_fl(struct adapter *adapter, unsigned int id, u32 data[4]); | ||
694 | int t3_sge_read_cq(struct adapter *adapter, unsigned int id, u32 data[4]); | ||
695 | int t3_sge_read_rspq(struct adapter *adapter, unsigned int id, u32 data[4]); | ||
696 | int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op, | ||
697 | unsigned int credits); | ||
698 | |||
699 | void t3_vsc8211_phy_prep(struct cphy *phy, struct adapter *adapter, | ||
700 | int phy_addr, const struct mdio_ops *mdio_ops); | ||
701 | void t3_ael1002_phy_prep(struct cphy *phy, struct adapter *adapter, | ||
702 | int phy_addr, const struct mdio_ops *mdio_ops); | ||
703 | void t3_ael1006_phy_prep(struct cphy *phy, struct adapter *adapter, | ||
704 | int phy_addr, const struct mdio_ops *mdio_ops); | ||
705 | void t3_qt2045_phy_prep(struct cphy *phy, struct adapter *adapter, int phy_addr, | ||
706 | const struct mdio_ops *mdio_ops); | ||
707 | void t3_xaui_direct_phy_prep(struct cphy *phy, struct adapter *adapter, | ||
708 | int phy_addr, const struct mdio_ops *mdio_ops); | ||
709 | #endif /* __CHELSIO_COMMON_H */ | ||
diff --git a/drivers/net/cxgb3/cxgb3_ctl_defs.h b/drivers/net/cxgb3/cxgb3_ctl_defs.h new file mode 100644 index 000000000000..0fdc36529eb6 --- /dev/null +++ b/drivers/net/cxgb3/cxgb3_ctl_defs.h | |||
@@ -0,0 +1,142 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2003-2006 Chelsio Communications. All rights reserved. | ||
3 | * | ||
4 | * This program is distributed in the hope that it will be useful, but WITHOUT | ||
5 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
6 | * FITNESS FOR A PARTICULAR PURPOSE. See the LICENSE file included in this | ||
7 | * release for licensing terms and conditions. | ||
8 | */ | ||
9 | |||
10 | #ifndef _CXGB3_OFFLOAD_CTL_DEFS_H | ||
11 | #define _CXGB3_OFFLOAD_CTL_DEFS_H | ||
12 | |||
13 | enum { | ||
14 | GET_MAX_OUTSTANDING_WR, | ||
15 | GET_TX_MAX_CHUNK, | ||
16 | GET_TID_RANGE, | ||
17 | GET_STID_RANGE, | ||
18 | GET_RTBL_RANGE, | ||
19 | GET_L2T_CAPACITY, | ||
20 | GET_MTUS, | ||
21 | GET_WR_LEN, | ||
22 | GET_IFF_FROM_MAC, | ||
23 | GET_DDP_PARAMS, | ||
24 | GET_PORTS, | ||
25 | |||
26 | ULP_ISCSI_GET_PARAMS, | ||
27 | ULP_ISCSI_SET_PARAMS, | ||
28 | |||
29 | RDMA_GET_PARAMS, | ||
30 | RDMA_CQ_OP, | ||
31 | RDMA_CQ_SETUP, | ||
32 | RDMA_CQ_DISABLE, | ||
33 | RDMA_CTRL_QP_SETUP, | ||
34 | RDMA_GET_MEM, | ||
35 | }; | ||
36 | |||
37 | /* | ||
38 | * Structure used to describe a TID range. Valid TIDs are [base, base+num). | ||
39 | */ | ||
40 | struct tid_range { | ||
41 | unsigned int base; /* first TID */ | ||
42 | unsigned int num; /* number of TIDs in range */ | ||
43 | }; | ||
44 | |||
45 | /* | ||
46 | * Structure used to request the size and contents of the MTU table. | ||
47 | */ | ||
48 | struct mtutab { | ||
49 | unsigned int size; /* # of entries in the MTU table */ | ||
50 | const unsigned short *mtus; /* the MTU table values */ | ||
51 | }; | ||
52 | |||
53 | struct net_device; | ||
54 | |||
55 | /* | ||
56 | * Structure used to request the adapter net_device owning a given MAC address. | ||
57 | */ | ||
58 | struct iff_mac { | ||
59 | struct net_device *dev; /* the net_device */ | ||
60 | const unsigned char *mac_addr; /* MAC address to lookup */ | ||
61 | u16 vlan_tag; | ||
62 | }; | ||
63 | |||
64 | struct pci_dev; | ||
65 | |||
66 | /* | ||
67 | * Structure used to request the TCP DDP parameters. | ||
68 | */ | ||
69 | struct ddp_params { | ||
70 | unsigned int llimit; /* TDDP region start address */ | ||
71 | unsigned int ulimit; /* TDDP region end address */ | ||
72 | unsigned int tag_mask; /* TDDP tag mask */ | ||
73 | struct pci_dev *pdev; | ||
74 | }; | ||
75 | |||
76 | struct adap_ports { | ||
77 | unsigned int nports; /* number of ports on this adapter */ | ||
78 | struct net_device *lldevs[2]; | ||
79 | }; | ||
80 | |||
81 | /* | ||
82 | * Structure used to return information to the iscsi layer. | ||
83 | */ | ||
84 | struct ulp_iscsi_info { | ||
85 | unsigned int offset; | ||
86 | unsigned int llimit; | ||
87 | unsigned int ulimit; | ||
88 | unsigned int tagmask; | ||
89 | unsigned int pgsz3; | ||
90 | unsigned int pgsz2; | ||
91 | unsigned int pgsz1; | ||
92 | unsigned int pgsz0; | ||
93 | unsigned int max_rxsz; | ||
94 | unsigned int max_txsz; | ||
95 | struct pci_dev *pdev; | ||
96 | }; | ||
97 | |||
98 | /* | ||
99 | * Structure used to return information to the RDMA layer. | ||
100 | */ | ||
101 | struct rdma_info { | ||
102 | unsigned int tpt_base; /* TPT base address */ | ||
103 | unsigned int tpt_top; /* TPT last entry address */ | ||
104 | unsigned int pbl_base; /* PBL base address */ | ||
105 | unsigned int pbl_top; /* PBL last entry address */ | ||
106 | unsigned int rqt_base; /* RQT base address */ | ||
107 | unsigned int rqt_top; /* RQT last entry address */ | ||
108 | unsigned int udbell_len; /* user doorbell region length */ | ||
109 | unsigned long udbell_physbase; /* user doorbell physical start addr */ | ||
110 | void __iomem *kdb_addr; /* kernel doorbell register address */ | ||
111 | struct pci_dev *pdev; /* associated PCI device */ | ||
112 | }; | ||
113 | |||
114 | /* | ||
115 | * Structure used to request an operation on an RDMA completion queue. | ||
116 | */ | ||
117 | struct rdma_cq_op { | ||
118 | unsigned int id; | ||
119 | unsigned int op; | ||
120 | unsigned int credits; | ||
121 | }; | ||
122 | |||
123 | /* | ||
124 | * Structure used to setup RDMA completion queues. | ||
125 | */ | ||
126 | struct rdma_cq_setup { | ||
127 | unsigned int id; | ||
128 | unsigned long long base_addr; | ||
129 | unsigned int size; | ||
130 | unsigned int credits; | ||
131 | unsigned int credit_thres; | ||
132 | unsigned int ovfl_mode; | ||
133 | }; | ||
134 | |||
135 | /* | ||
136 | * Structure used to setup the RDMA control egress context. | ||
137 | */ | ||
138 | struct rdma_ctrlqp_setup { | ||
139 | unsigned long long base_addr; | ||
140 | unsigned int size; | ||
141 | }; | ||
142 | #endif /* _CXGB3_OFFLOAD_CTL_DEFS_H */ | ||
diff --git a/drivers/net/cxgb3/cxgb3_defs.h b/drivers/net/cxgb3/cxgb3_defs.h new file mode 100644 index 000000000000..82344c2bbc13 --- /dev/null +++ b/drivers/net/cxgb3/cxgb3_defs.h | |||
@@ -0,0 +1,99 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2006 Chelsio, Inc. All rights reserved. | ||
3 | * Copyright (c) 2006 Open Grid Computing, Inc. All rights reserved. | ||
4 | * | ||
5 | * This software is available to you under a choice of one of two | ||
6 | * licenses. You may choose to be licensed under the terms of the GNU | ||
7 | * General Public License (GPL) Version 2, available from the file | ||
8 | * COPYING in the main directory of this source tree, or the | ||
9 | * OpenIB.org BSD license below: | ||
10 | * | ||
11 | * Redistribution and use in source and binary forms, with or | ||
12 | * without modification, are permitted provided that the following | ||
13 | * conditions are met: | ||
14 | * | ||
15 | * - Redistributions of source code must retain the above | ||
16 | * copyright notice, this list of conditions and the following | ||
17 | * disclaimer. | ||
18 | * | ||
19 | * - Redistributions in binary form must reproduce the above | ||
20 | * copyright notice, this list of conditions and the following | ||
21 | * disclaimer in the documentation and/or other materials | ||
22 | * provided with the distribution. | ||
23 | * | ||
24 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||
25 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
26 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
27 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | ||
28 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | ||
29 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | ||
30 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
31 | * SOFTWARE. | ||
32 | */ | ||
33 | #ifndef _CHELSIO_DEFS_H | ||
34 | #define _CHELSIO_DEFS_H | ||
35 | |||
36 | #include <linux/skbuff.h> | ||
37 | #include <net/tcp.h> | ||
38 | |||
39 | #include "t3cdev.h" | ||
40 | |||
41 | #include "cxgb3_offload.h" | ||
42 | |||
43 | #define VALIDATE_TID 1 | ||
44 | |||
45 | void *cxgb_alloc_mem(unsigned long size); | ||
46 | void cxgb_free_mem(void *addr); | ||
47 | void cxgb_neigh_update(struct neighbour *neigh); | ||
48 | void cxgb_redirect(struct dst_entry *old, struct dst_entry *new); | ||
49 | |||
50 | /* | ||
51 | * Map an ATID or STID to their entries in the corresponding TID tables. | ||
52 | */ | ||
53 | static inline union active_open_entry *atid2entry(const struct tid_info *t, | ||
54 | unsigned int atid) | ||
55 | { | ||
56 | return &t->atid_tab[atid - t->atid_base]; | ||
57 | } | ||
58 | |||
59 | static inline union listen_entry *stid2entry(const struct tid_info *t, | ||
60 | unsigned int stid) | ||
61 | { | ||
62 | return &t->stid_tab[stid - t->stid_base]; | ||
63 | } | ||
64 | |||
65 | /* | ||
66 | * Find the connection corresponding to a TID. | ||
67 | */ | ||
68 | static inline struct t3c_tid_entry *lookup_tid(const struct tid_info *t, | ||
69 | unsigned int tid) | ||
70 | { | ||
71 | return tid < t->ntids ? &(t->tid_tab[tid]) : NULL; | ||
72 | } | ||
73 | |||
74 | /* | ||
75 | * Find the connection corresponding to a server TID. | ||
76 | */ | ||
77 | static inline struct t3c_tid_entry *lookup_stid(const struct tid_info *t, | ||
78 | unsigned int tid) | ||
79 | { | ||
80 | if (tid < t->stid_base || tid >= t->stid_base + t->nstids) | ||
81 | return NULL; | ||
82 | return &(stid2entry(t, tid)->t3c_tid); | ||
83 | } | ||
84 | |||
85 | /* | ||
86 | * Find the connection corresponding to an active-open TID. | ||
87 | */ | ||
88 | static inline struct t3c_tid_entry *lookup_atid(const struct tid_info *t, | ||
89 | unsigned int tid) | ||
90 | { | ||
91 | if (tid < t->atid_base || tid >= t->atid_base + t->natids) | ||
92 | return NULL; | ||
93 | return &(atid2entry(t, tid)->t3c_tid); | ||
94 | } | ||
95 | |||
96 | int process_rx(struct t3cdev *dev, struct sk_buff **skbs, int n); | ||
97 | int attach_t3cdev(struct t3cdev *dev); | ||
98 | void detach_t3cdev(struct t3cdev *dev); | ||
99 | #endif | ||
diff --git a/drivers/net/cxgb3/cxgb3_ioctl.h b/drivers/net/cxgb3/cxgb3_ioctl.h new file mode 100644 index 000000000000..1ee77b28cdf2 --- /dev/null +++ b/drivers/net/cxgb3/cxgb3_ioctl.h | |||
@@ -0,0 +1,165 @@ | |||
1 | /* | ||
2 | * This file is part of the Chelsio T3 Ethernet driver for Linux. | ||
3 | * | ||
4 | * Copyright (C) 2003-2006 Chelsio Communications. All rights reserved. | ||
5 | * | ||
6 | * This program is distributed in the hope that it will be useful, but WITHOUT | ||
7 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
8 | * FITNESS FOR A PARTICULAR PURPOSE. See the LICENSE file included in this | ||
9 | * release for licensing terms and conditions. | ||
10 | */ | ||
11 | |||
12 | #ifndef __CHIOCTL_H__ | ||
13 | #define __CHIOCTL_H__ | ||
14 | |||
15 | /* | ||
16 | * Ioctl commands specific to this driver. | ||
17 | */ | ||
18 | enum { | ||
19 | CHELSIO_SETREG = 1024, | ||
20 | CHELSIO_GETREG, | ||
21 | CHELSIO_SETTPI, | ||
22 | CHELSIO_GETTPI, | ||
23 | CHELSIO_GETMTUTAB, | ||
24 | CHELSIO_SETMTUTAB, | ||
25 | CHELSIO_GETMTU, | ||
26 | CHELSIO_SET_PM, | ||
27 | CHELSIO_GET_PM, | ||
28 | CHELSIO_GET_TCAM, | ||
29 | CHELSIO_SET_TCAM, | ||
30 | CHELSIO_GET_TCB, | ||
31 | CHELSIO_GET_MEM, | ||
32 | CHELSIO_LOAD_FW, | ||
33 | CHELSIO_GET_PROTO, | ||
34 | CHELSIO_SET_PROTO, | ||
35 | CHELSIO_SET_TRACE_FILTER, | ||
36 | CHELSIO_SET_QSET_PARAMS, | ||
37 | CHELSIO_GET_QSET_PARAMS, | ||
38 | CHELSIO_SET_QSET_NUM, | ||
39 | CHELSIO_GET_QSET_NUM, | ||
40 | CHELSIO_SET_PKTSCHED, | ||
41 | }; | ||
42 | |||
43 | struct ch_reg { | ||
44 | uint32_t cmd; | ||
45 | uint32_t addr; | ||
46 | uint32_t val; | ||
47 | }; | ||
48 | |||
49 | struct ch_cntxt { | ||
50 | uint32_t cmd; | ||
51 | uint32_t cntxt_type; | ||
52 | uint32_t cntxt_id; | ||
53 | uint32_t data[4]; | ||
54 | }; | ||
55 | |||
56 | /* context types */ | ||
57 | enum { CNTXT_TYPE_EGRESS, CNTXT_TYPE_FL, CNTXT_TYPE_RSP, CNTXT_TYPE_CQ }; | ||
58 | |||
59 | struct ch_desc { | ||
60 | uint32_t cmd; | ||
61 | uint32_t queue_num; | ||
62 | uint32_t idx; | ||
63 | uint32_t size; | ||
64 | uint8_t data[128]; | ||
65 | }; | ||
66 | |||
67 | struct ch_mem_range { | ||
68 | uint32_t cmd; | ||
69 | uint32_t mem_id; | ||
70 | uint32_t addr; | ||
71 | uint32_t len; | ||
72 | uint32_t version; | ||
73 | uint8_t buf[0]; | ||
74 | }; | ||
75 | |||
76 | struct ch_qset_params { | ||
77 | uint32_t cmd; | ||
78 | uint32_t qset_idx; | ||
79 | int32_t txq_size[3]; | ||
80 | int32_t rspq_size; | ||
81 | int32_t fl_size[2]; | ||
82 | int32_t intr_lat; | ||
83 | int32_t polling; | ||
84 | int32_t cong_thres; | ||
85 | }; | ||
86 | |||
87 | struct ch_pktsched_params { | ||
88 | uint32_t cmd; | ||
89 | uint8_t sched; | ||
90 | uint8_t idx; | ||
91 | uint8_t min; | ||
92 | uint8_t max; | ||
93 | uint8_t binding; | ||
94 | }; | ||
95 | |||
96 | #ifndef TCB_SIZE | ||
97 | # define TCB_SIZE 128 | ||
98 | #endif | ||
99 | |||
100 | /* TCB size in 32-bit words */ | ||
101 | #define TCB_WORDS (TCB_SIZE / 4) | ||
102 | |||
103 | enum { MEM_CM, MEM_PMRX, MEM_PMTX }; /* ch_mem_range.mem_id values */ | ||
104 | |||
105 | struct ch_mtus { | ||
106 | uint32_t cmd; | ||
107 | uint32_t nmtus; | ||
108 | uint16_t mtus[NMTUS]; | ||
109 | }; | ||
110 | |||
111 | struct ch_pm { | ||
112 | uint32_t cmd; | ||
113 | uint32_t tx_pg_sz; | ||
114 | uint32_t tx_num_pg; | ||
115 | uint32_t rx_pg_sz; | ||
116 | uint32_t rx_num_pg; | ||
117 | uint32_t pm_total; | ||
118 | }; | ||
119 | |||
120 | struct ch_tcam { | ||
121 | uint32_t cmd; | ||
122 | uint32_t tcam_size; | ||
123 | uint32_t nservers; | ||
124 | uint32_t nroutes; | ||
125 | uint32_t nfilters; | ||
126 | }; | ||
127 | |||
128 | struct ch_tcb { | ||
129 | uint32_t cmd; | ||
130 | uint32_t tcb_index; | ||
131 | uint32_t tcb_data[TCB_WORDS]; | ||
132 | }; | ||
133 | |||
134 | struct ch_tcam_word { | ||
135 | uint32_t cmd; | ||
136 | uint32_t addr; | ||
137 | uint32_t buf[3]; | ||
138 | }; | ||
139 | |||
140 | struct ch_trace { | ||
141 | uint32_t cmd; | ||
142 | uint32_t sip; | ||
143 | uint32_t sip_mask; | ||
144 | uint32_t dip; | ||
145 | uint32_t dip_mask; | ||
146 | uint16_t sport; | ||
147 | uint16_t sport_mask; | ||
148 | uint16_t dport; | ||
149 | uint16_t dport_mask; | ||
150 | uint32_t vlan:12; | ||
151 | uint32_t vlan_mask:12; | ||
152 | uint32_t intf:4; | ||
153 | uint32_t intf_mask:4; | ||
154 | uint8_t proto; | ||
155 | uint8_t proto_mask; | ||
156 | uint8_t invert_match:1; | ||
157 | uint8_t config_tx:1; | ||
158 | uint8_t config_rx:1; | ||
159 | uint8_t trace_tx:1; | ||
160 | uint8_t trace_rx:1; | ||
161 | }; | ||
162 | |||
163 | #define SIOCCHIOCTL SIOCDEVPRIVATE | ||
164 | |||
165 | #endif | ||
diff --git a/drivers/net/cxgb3/cxgb3_main.c b/drivers/net/cxgb3/cxgb3_main.c new file mode 100644 index 000000000000..54c49acd86b4 --- /dev/null +++ b/drivers/net/cxgb3/cxgb3_main.c | |||
@@ -0,0 +1,2474 @@ | |||
1 | /* | ||
2 | * This file is part of the Chelsio T3 Ethernet driver for Linux. | ||
3 | * | ||
4 | * Copyright (C) 2003-2006 Chelsio Communications. All rights reserved. | ||
5 | * | ||
6 | * This program is distributed in the hope that it will be useful, but WITHOUT | ||
7 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
8 | * FITNESS FOR A PARTICULAR PURPOSE. See the LICENSE file included in this | ||
9 | * release for licensing terms and conditions. | ||
10 | */ | ||
11 | |||
12 | #include <linux/module.h> | ||
13 | #include <linux/moduleparam.h> | ||
14 | #include <linux/init.h> | ||
15 | #include <linux/pci.h> | ||
16 | #include <linux/dma-mapping.h> | ||
17 | #include <linux/netdevice.h> | ||
18 | #include <linux/etherdevice.h> | ||
19 | #include <linux/if_vlan.h> | ||
20 | #include <linux/mii.h> | ||
21 | #include <linux/sockios.h> | ||
22 | #include <linux/workqueue.h> | ||
23 | #include <linux/proc_fs.h> | ||
24 | #include <linux/rtnetlink.h> | ||
25 | #include <asm/uaccess.h> | ||
26 | |||
27 | #include "common.h" | ||
28 | #include "cxgb3_ioctl.h" | ||
29 | #include "regs.h" | ||
30 | #include "cxgb3_offload.h" | ||
31 | #include "version.h" | ||
32 | |||
33 | #include "cxgb3_ctl_defs.h" | ||
34 | #include "t3_cpl.h" | ||
35 | #include "firmware_exports.h" | ||
36 | |||
37 | enum { | ||
38 | MAX_TXQ_ENTRIES = 16384, | ||
39 | MAX_CTRL_TXQ_ENTRIES = 1024, | ||
40 | MAX_RSPQ_ENTRIES = 16384, | ||
41 | MAX_RX_BUFFERS = 16384, | ||
42 | MAX_RX_JUMBO_BUFFERS = 16384, | ||
43 | MIN_TXQ_ENTRIES = 4, | ||
44 | MIN_CTRL_TXQ_ENTRIES = 4, | ||
45 | MIN_RSPQ_ENTRIES = 32, | ||
46 | MIN_FL_ENTRIES = 32 | ||
47 | }; | ||
48 | |||
49 | #define PORT_MASK ((1 << MAX_NPORTS) - 1) | ||
50 | |||
51 | #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ | ||
52 | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ | ||
53 | NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) | ||
54 | |||
55 | #define EEPROM_MAGIC 0x38E2F10C | ||
56 | |||
57 | #define to_net_dev(class) container_of(class, struct net_device, class_dev) | ||
58 | |||
59 | #define CH_DEVICE(devid, ssid, idx) \ | ||
60 | { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, ssid, 0, 0, idx } | ||
61 | |||
62 | static const struct pci_device_id cxgb3_pci_tbl[] = { | ||
63 | CH_DEVICE(0x20, 1, 0), /* PE9000 */ | ||
64 | CH_DEVICE(0x21, 1, 1), /* T302E */ | ||
65 | CH_DEVICE(0x22, 1, 2), /* T310E */ | ||
66 | CH_DEVICE(0x23, 1, 3), /* T320X */ | ||
67 | CH_DEVICE(0x24, 1, 1), /* T302X */ | ||
68 | CH_DEVICE(0x25, 1, 3), /* T320E */ | ||
69 | CH_DEVICE(0x26, 1, 2), /* T310X */ | ||
70 | CH_DEVICE(0x30, 1, 2), /* T3B10 */ | ||
71 | CH_DEVICE(0x31, 1, 3), /* T3B20 */ | ||
72 | CH_DEVICE(0x32, 1, 1), /* T3B02 */ | ||
73 | {0,} | ||
74 | }; | ||
75 | |||
76 | MODULE_DESCRIPTION(DRV_DESC); | ||
77 | MODULE_AUTHOR("Chelsio Communications"); | ||
78 | MODULE_LICENSE("GPL"); | ||
79 | MODULE_VERSION(DRV_VERSION); | ||
80 | MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl); | ||
81 | |||
82 | static int dflt_msg_enable = DFLT_MSG_ENABLE; | ||
83 | |||
84 | module_param(dflt_msg_enable, int, 0644); | ||
85 | MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap"); | ||
86 | |||
87 | /* | ||
88 | * The driver uses the best interrupt scheme available on a platform in the | ||
89 | * order MSI-X, MSI, legacy pin interrupts. This parameter determines which | ||
90 | * of these schemes the driver may consider as follows: | ||
91 | * | ||
92 | * msi = 2: choose from among all three options | ||
93 | * msi = 1: only consider MSI and pin interrupts | ||
94 | * msi = 0: force pin interrupts | ||
95 | */ | ||
96 | static int msi = 2; | ||
97 | |||
98 | module_param(msi, int, 0644); | ||
99 | MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X"); | ||
100 | |||
101 | /* | ||
102 | * The driver enables offload as a default. | ||
103 | * To disable it, use ofld_disable = 1. | ||
104 | */ | ||
105 | |||
106 | static int ofld_disable = 0; | ||
107 | |||
108 | module_param(ofld_disable, int, 0644); | ||
109 | MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not"); | ||
110 | |||
111 | /* | ||
112 | * We have work elements that we need to cancel when an interface is taken | ||
113 | * down. Normally the work elements would be executed by keventd but that | ||
114 | * can deadlock because of linkwatch. If our close method takes the rtnl | ||
115 | * lock and linkwatch is ahead of our work elements in keventd, linkwatch | ||
116 | * will block keventd as it needs the rtnl lock, and we'll deadlock waiting | ||
117 | * for our work to complete. Get our own work queue to solve this. | ||
118 | */ | ||
119 | static struct workqueue_struct *cxgb3_wq; | ||
120 | |||
121 | /** | ||
122 | * link_report - show link status and link speed/duplex | ||
123 | * @p: the port whose settings are to be reported | ||
124 | * | ||
125 | * Shows the link status, speed, and duplex of a port. | ||
126 | */ | ||
127 | static void link_report(struct net_device *dev) | ||
128 | { | ||
129 | if (!netif_carrier_ok(dev)) | ||
130 | printk(KERN_INFO "%s: link down\n", dev->name); | ||
131 | else { | ||
132 | const char *s = "10Mbps"; | ||
133 | const struct port_info *p = netdev_priv(dev); | ||
134 | |||
135 | switch (p->link_config.speed) { | ||
136 | case SPEED_10000: | ||
137 | s = "10Gbps"; | ||
138 | break; | ||
139 | case SPEED_1000: | ||
140 | s = "1000Mbps"; | ||
141 | break; | ||
142 | case SPEED_100: | ||
143 | s = "100Mbps"; | ||
144 | break; | ||
145 | } | ||
146 | |||
147 | printk(KERN_INFO "%s: link up, %s, %s-duplex\n", dev->name, s, | ||
148 | p->link_config.duplex == DUPLEX_FULL ? "full" : "half"); | ||
149 | } | ||
150 | } | ||
151 | |||
152 | /** | ||
153 | * t3_os_link_changed - handle link status changes | ||
154 | * @adapter: the adapter associated with the link change | ||
155 | * @port_id: the port index whose limk status has changed | ||
156 | * @link_stat: the new status of the link | ||
157 | * @speed: the new speed setting | ||
158 | * @duplex: the new duplex setting | ||
159 | * @pause: the new flow-control setting | ||
160 | * | ||
161 | * This is the OS-dependent handler for link status changes. The OS | ||
162 | * neutral handler takes care of most of the processing for these events, | ||
163 | * then calls this handler for any OS-specific processing. | ||
164 | */ | ||
165 | void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat, | ||
166 | int speed, int duplex, int pause) | ||
167 | { | ||
168 | struct net_device *dev = adapter->port[port_id]; | ||
169 | |||
170 | /* Skip changes from disabled ports. */ | ||
171 | if (!netif_running(dev)) | ||
172 | return; | ||
173 | |||
174 | if (link_stat != netif_carrier_ok(dev)) { | ||
175 | if (link_stat) | ||
176 | netif_carrier_on(dev); | ||
177 | else | ||
178 | netif_carrier_off(dev); | ||
179 | link_report(dev); | ||
180 | } | ||
181 | } | ||
182 | |||
183 | static void cxgb_set_rxmode(struct net_device *dev) | ||
184 | { | ||
185 | struct t3_rx_mode rm; | ||
186 | struct port_info *pi = netdev_priv(dev); | ||
187 | |||
188 | init_rx_mode(&rm, dev, dev->mc_list); | ||
189 | t3_mac_set_rx_mode(&pi->mac, &rm); | ||
190 | } | ||
191 | |||
192 | /** | ||
193 | * link_start - enable a port | ||
194 | * @dev: the device to enable | ||
195 | * | ||
196 | * Performs the MAC and PHY actions needed to enable a port. | ||
197 | */ | ||
198 | static void link_start(struct net_device *dev) | ||
199 | { | ||
200 | struct t3_rx_mode rm; | ||
201 | struct port_info *pi = netdev_priv(dev); | ||
202 | struct cmac *mac = &pi->mac; | ||
203 | |||
204 | init_rx_mode(&rm, dev, dev->mc_list); | ||
205 | t3_mac_reset(mac); | ||
206 | t3_mac_set_mtu(mac, dev->mtu); | ||
207 | t3_mac_set_address(mac, 0, dev->dev_addr); | ||
208 | t3_mac_set_rx_mode(mac, &rm); | ||
209 | t3_link_start(&pi->phy, mac, &pi->link_config); | ||
210 | t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX); | ||
211 | } | ||
212 | |||
213 | static inline void cxgb_disable_msi(struct adapter *adapter) | ||
214 | { | ||
215 | if (adapter->flags & USING_MSIX) { | ||
216 | pci_disable_msix(adapter->pdev); | ||
217 | adapter->flags &= ~USING_MSIX; | ||
218 | } else if (adapter->flags & USING_MSI) { | ||
219 | pci_disable_msi(adapter->pdev); | ||
220 | adapter->flags &= ~USING_MSI; | ||
221 | } | ||
222 | } | ||
223 | |||
224 | /* | ||
225 | * Interrupt handler for asynchronous events used with MSI-X. | ||
226 | */ | ||
227 | static irqreturn_t t3_async_intr_handler(int irq, void *cookie) | ||
228 | { | ||
229 | t3_slow_intr_handler(cookie); | ||
230 | return IRQ_HANDLED; | ||
231 | } | ||
232 | |||
233 | /* | ||
234 | * Name the MSI-X interrupts. | ||
235 | */ | ||
236 | static void name_msix_vecs(struct adapter *adap) | ||
237 | { | ||
238 | int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1; | ||
239 | |||
240 | snprintf(adap->msix_info[0].desc, n, "%s", adap->name); | ||
241 | adap->msix_info[0].desc[n] = 0; | ||
242 | |||
243 | for_each_port(adap, j) { | ||
244 | struct net_device *d = adap->port[j]; | ||
245 | const struct port_info *pi = netdev_priv(d); | ||
246 | |||
247 | for (i = 0; i < pi->nqsets; i++, msi_idx++) { | ||
248 | snprintf(adap->msix_info[msi_idx].desc, n, | ||
249 | "%s (queue %d)", d->name, i); | ||
250 | adap->msix_info[msi_idx].desc[n] = 0; | ||
251 | } | ||
252 | } | ||
253 | } | ||
254 | |||
255 | static int request_msix_data_irqs(struct adapter *adap) | ||
256 | { | ||
257 | int i, j, err, qidx = 0; | ||
258 | |||
259 | for_each_port(adap, i) { | ||
260 | int nqsets = adap2pinfo(adap, i)->nqsets; | ||
261 | |||
262 | for (j = 0; j < nqsets; ++j) { | ||
263 | err = request_irq(adap->msix_info[qidx + 1].vec, | ||
264 | t3_intr_handler(adap, | ||
265 | adap->sge.qs[qidx]. | ||
266 | rspq.polling), 0, | ||
267 | adap->msix_info[qidx + 1].desc, | ||
268 | &adap->sge.qs[qidx]); | ||
269 | if (err) { | ||
270 | while (--qidx >= 0) | ||
271 | free_irq(adap->msix_info[qidx + 1].vec, | ||
272 | &adap->sge.qs[qidx]); | ||
273 | return err; | ||
274 | } | ||
275 | qidx++; | ||
276 | } | ||
277 | } | ||
278 | return 0; | ||
279 | } | ||
280 | |||
281 | /** | ||
282 | * setup_rss - configure RSS | ||
283 | * @adap: the adapter | ||
284 | * | ||
285 | * Sets up RSS to distribute packets to multiple receive queues. We | ||
286 | * configure the RSS CPU lookup table to distribute to the number of HW | ||
287 | * receive queues, and the response queue lookup table to narrow that | ||
288 | * down to the response queues actually configured for each port. | ||
289 | * We always configure the RSS mapping for two ports since the mapping | ||
290 | * table has plenty of entries. | ||
291 | */ | ||
292 | static void setup_rss(struct adapter *adap) | ||
293 | { | ||
294 | int i; | ||
295 | unsigned int nq0 = adap2pinfo(adap, 0)->nqsets; | ||
296 | unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1; | ||
297 | u8 cpus[SGE_QSETS + 1]; | ||
298 | u16 rspq_map[RSS_TABLE_SIZE]; | ||
299 | |||
300 | for (i = 0; i < SGE_QSETS; ++i) | ||
301 | cpus[i] = i; | ||
302 | cpus[SGE_QSETS] = 0xff; /* terminator */ | ||
303 | |||
304 | for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) { | ||
305 | rspq_map[i] = i % nq0; | ||
306 | rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0; | ||
307 | } | ||
308 | |||
309 | t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN | | ||
310 | F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN | | ||
311 | V_RRCPLCPUSIZE(6), cpus, rspq_map); | ||
312 | } | ||
313 | |||
314 | /* | ||
315 | * If we have multiple receive queues per port serviced by NAPI we need one | ||
316 | * netdevice per queue as NAPI operates on netdevices. We already have one | ||
317 | * netdevice, namely the one associated with the interface, so we use dummy | ||
318 | * ones for any additional queues. Note that these netdevices exist purely | ||
319 | * so that NAPI has something to work with, they do not represent network | ||
320 | * ports and are not registered. | ||
321 | */ | ||
322 | static int init_dummy_netdevs(struct adapter *adap) | ||
323 | { | ||
324 | int i, j, dummy_idx = 0; | ||
325 | struct net_device *nd; | ||
326 | |||
327 | for_each_port(adap, i) { | ||
328 | struct net_device *dev = adap->port[i]; | ||
329 | const struct port_info *pi = netdev_priv(dev); | ||
330 | |||
331 | for (j = 0; j < pi->nqsets - 1; j++) { | ||
332 | if (!adap->dummy_netdev[dummy_idx]) { | ||
333 | nd = alloc_netdev(0, "", ether_setup); | ||
334 | if (!nd) | ||
335 | goto free_all; | ||
336 | |||
337 | nd->priv = adap; | ||
338 | nd->weight = 64; | ||
339 | set_bit(__LINK_STATE_START, &nd->state); | ||
340 | adap->dummy_netdev[dummy_idx] = nd; | ||
341 | } | ||
342 | strcpy(adap->dummy_netdev[dummy_idx]->name, dev->name); | ||
343 | dummy_idx++; | ||
344 | } | ||
345 | } | ||
346 | return 0; | ||
347 | |||
348 | free_all: | ||
349 | while (--dummy_idx >= 0) { | ||
350 | free_netdev(adap->dummy_netdev[dummy_idx]); | ||
351 | adap->dummy_netdev[dummy_idx] = NULL; | ||
352 | } | ||
353 | return -ENOMEM; | ||
354 | } | ||
355 | |||
356 | /* | ||
357 | * Wait until all NAPI handlers are descheduled. This includes the handlers of | ||
358 | * both netdevices representing interfaces and the dummy ones for the extra | ||
359 | * queues. | ||
360 | */ | ||
361 | static void quiesce_rx(struct adapter *adap) | ||
362 | { | ||
363 | int i; | ||
364 | struct net_device *dev; | ||
365 | |||
366 | for_each_port(adap, i) { | ||
367 | dev = adap->port[i]; | ||
368 | while (test_bit(__LINK_STATE_RX_SCHED, &dev->state)) | ||
369 | msleep(1); | ||
370 | } | ||
371 | |||
372 | for (i = 0; i < ARRAY_SIZE(adap->dummy_netdev); i++) { | ||
373 | dev = adap->dummy_netdev[i]; | ||
374 | if (dev) | ||
375 | while (test_bit(__LINK_STATE_RX_SCHED, &dev->state)) | ||
376 | msleep(1); | ||
377 | } | ||
378 | } | ||
379 | |||
380 | /** | ||
381 | * setup_sge_qsets - configure SGE Tx/Rx/response queues | ||
382 | * @adap: the adapter | ||
383 | * | ||
384 | * Determines how many sets of SGE queues to use and initializes them. | ||
385 | * We support multiple queue sets per port if we have MSI-X, otherwise | ||
386 | * just one queue set per port. | ||
387 | */ | ||
388 | static int setup_sge_qsets(struct adapter *adap) | ||
389 | { | ||
390 | int i, j, err, irq_idx = 0, qset_idx = 0, dummy_dev_idx = 0; | ||
391 | unsigned int ntxq = is_offload(adap) ? SGE_TXQ_PER_SET : 1; | ||
392 | |||
393 | if (adap->params.rev > 0 && !(adap->flags & USING_MSI)) | ||
394 | irq_idx = -1; | ||
395 | |||
396 | for_each_port(adap, i) { | ||
397 | struct net_device *dev = adap->port[i]; | ||
398 | const struct port_info *pi = netdev_priv(dev); | ||
399 | |||
400 | for (j = 0; j < pi->nqsets; ++j, ++qset_idx) { | ||
401 | err = t3_sge_alloc_qset(adap, qset_idx, 1, | ||
402 | (adap->flags & USING_MSIX) ? qset_idx + 1 : | ||
403 | irq_idx, | ||
404 | &adap->params.sge.qset[qset_idx], ntxq, | ||
405 | j == 0 ? dev : | ||
406 | adap-> dummy_netdev[dummy_dev_idx++]); | ||
407 | if (err) { | ||
408 | t3_free_sge_resources(adap); | ||
409 | return err; | ||
410 | } | ||
411 | } | ||
412 | } | ||
413 | |||
414 | return 0; | ||
415 | } | ||
416 | |||
417 | static ssize_t attr_show(struct class_device *cd, char *buf, | ||
418 | ssize_t(*format) (struct adapter *, char *)) | ||
419 | { | ||
420 | ssize_t len; | ||
421 | struct adapter *adap = to_net_dev(cd)->priv; | ||
422 | |||
423 | /* Synchronize with ioctls that may shut down the device */ | ||
424 | rtnl_lock(); | ||
425 | len = (*format) (adap, buf); | ||
426 | rtnl_unlock(); | ||
427 | return len; | ||
428 | } | ||
429 | |||
430 | static ssize_t attr_store(struct class_device *cd, const char *buf, size_t len, | ||
431 | ssize_t(*set) (struct adapter *, unsigned int), | ||
432 | unsigned int min_val, unsigned int max_val) | ||
433 | { | ||
434 | char *endp; | ||
435 | ssize_t ret; | ||
436 | unsigned int val; | ||
437 | struct adapter *adap = to_net_dev(cd)->priv; | ||
438 | |||
439 | if (!capable(CAP_NET_ADMIN)) | ||
440 | return -EPERM; | ||
441 | |||
442 | val = simple_strtoul(buf, &endp, 0); | ||
443 | if (endp == buf || val < min_val || val > max_val) | ||
444 | return -EINVAL; | ||
445 | |||
446 | rtnl_lock(); | ||
447 | ret = (*set) (adap, val); | ||
448 | if (!ret) | ||
449 | ret = len; | ||
450 | rtnl_unlock(); | ||
451 | return ret; | ||
452 | } | ||
453 | |||
454 | #define CXGB3_SHOW(name, val_expr) \ | ||
455 | static ssize_t format_##name(struct adapter *adap, char *buf) \ | ||
456 | { \ | ||
457 | return sprintf(buf, "%u\n", val_expr); \ | ||
458 | } \ | ||
459 | static ssize_t show_##name(struct class_device *cd, char *buf) \ | ||
460 | { \ | ||
461 | return attr_show(cd, buf, format_##name); \ | ||
462 | } | ||
463 | |||
464 | static ssize_t set_nfilters(struct adapter *adap, unsigned int val) | ||
465 | { | ||
466 | if (adap->flags & FULL_INIT_DONE) | ||
467 | return -EBUSY; | ||
468 | if (val && adap->params.rev == 0) | ||
469 | return -EINVAL; | ||
470 | if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers) | ||
471 | return -EINVAL; | ||
472 | adap->params.mc5.nfilters = val; | ||
473 | return 0; | ||
474 | } | ||
475 | |||
476 | static ssize_t store_nfilters(struct class_device *cd, const char *buf, | ||
477 | size_t len) | ||
478 | { | ||
479 | return attr_store(cd, buf, len, set_nfilters, 0, ~0); | ||
480 | } | ||
481 | |||
482 | static ssize_t set_nservers(struct adapter *adap, unsigned int val) | ||
483 | { | ||
484 | if (adap->flags & FULL_INIT_DONE) | ||
485 | return -EBUSY; | ||
486 | if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters) | ||
487 | return -EINVAL; | ||
488 | adap->params.mc5.nservers = val; | ||
489 | return 0; | ||
490 | } | ||
491 | |||
492 | static ssize_t store_nservers(struct class_device *cd, const char *buf, | ||
493 | size_t len) | ||
494 | { | ||
495 | return attr_store(cd, buf, len, set_nservers, 0, ~0); | ||
496 | } | ||
497 | |||
498 | #define CXGB3_ATTR_R(name, val_expr) \ | ||
499 | CXGB3_SHOW(name, val_expr) \ | ||
500 | static CLASS_DEVICE_ATTR(name, S_IRUGO, show_##name, NULL) | ||
501 | |||
502 | #define CXGB3_ATTR_RW(name, val_expr, store_method) \ | ||
503 | CXGB3_SHOW(name, val_expr) \ | ||
504 | static CLASS_DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_method) | ||
505 | |||
506 | CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5)); | ||
507 | CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters); | ||
508 | CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers); | ||
509 | |||
510 | static struct attribute *cxgb3_attrs[] = { | ||
511 | &class_device_attr_cam_size.attr, | ||
512 | &class_device_attr_nfilters.attr, | ||
513 | &class_device_attr_nservers.attr, | ||
514 | NULL | ||
515 | }; | ||
516 | |||
517 | static struct attribute_group cxgb3_attr_group = {.attrs = cxgb3_attrs }; | ||
518 | |||
519 | static ssize_t tm_attr_show(struct class_device *cd, char *buf, int sched) | ||
520 | { | ||
521 | ssize_t len; | ||
522 | unsigned int v, addr, bpt, cpt; | ||
523 | struct adapter *adap = to_net_dev(cd)->priv; | ||
524 | |||
525 | addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2; | ||
526 | rtnl_lock(); | ||
527 | t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr); | ||
528 | v = t3_read_reg(adap, A_TP_TM_PIO_DATA); | ||
529 | if (sched & 1) | ||
530 | v >>= 16; | ||
531 | bpt = (v >> 8) & 0xff; | ||
532 | cpt = v & 0xff; | ||
533 | if (!cpt) | ||
534 | len = sprintf(buf, "disabled\n"); | ||
535 | else { | ||
536 | v = (adap->params.vpd.cclk * 1000) / cpt; | ||
537 | len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125); | ||
538 | } | ||
539 | rtnl_unlock(); | ||
540 | return len; | ||
541 | } | ||
542 | |||
543 | static ssize_t tm_attr_store(struct class_device *cd, const char *buf, | ||
544 | size_t len, int sched) | ||
545 | { | ||
546 | char *endp; | ||
547 | ssize_t ret; | ||
548 | unsigned int val; | ||
549 | struct adapter *adap = to_net_dev(cd)->priv; | ||
550 | |||
551 | if (!capable(CAP_NET_ADMIN)) | ||
552 | return -EPERM; | ||
553 | |||
554 | val = simple_strtoul(buf, &endp, 0); | ||
555 | if (endp == buf || val > 10000000) | ||
556 | return -EINVAL; | ||
557 | |||
558 | rtnl_lock(); | ||
559 | ret = t3_config_sched(adap, val, sched); | ||
560 | if (!ret) | ||
561 | ret = len; | ||
562 | rtnl_unlock(); | ||
563 | return ret; | ||
564 | } | ||
565 | |||
566 | #define TM_ATTR(name, sched) \ | ||
567 | static ssize_t show_##name(struct class_device *cd, char *buf) \ | ||
568 | { \ | ||
569 | return tm_attr_show(cd, buf, sched); \ | ||
570 | } \ | ||
571 | static ssize_t store_##name(struct class_device *cd, const char *buf, size_t len) \ | ||
572 | { \ | ||
573 | return tm_attr_store(cd, buf, len, sched); \ | ||
574 | } \ | ||
575 | static CLASS_DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_##name) | ||
576 | |||
577 | TM_ATTR(sched0, 0); | ||
578 | TM_ATTR(sched1, 1); | ||
579 | TM_ATTR(sched2, 2); | ||
580 | TM_ATTR(sched3, 3); | ||
581 | TM_ATTR(sched4, 4); | ||
582 | TM_ATTR(sched5, 5); | ||
583 | TM_ATTR(sched6, 6); | ||
584 | TM_ATTR(sched7, 7); | ||
585 | |||
586 | static struct attribute *offload_attrs[] = { | ||
587 | &class_device_attr_sched0.attr, | ||
588 | &class_device_attr_sched1.attr, | ||
589 | &class_device_attr_sched2.attr, | ||
590 | &class_device_attr_sched3.attr, | ||
591 | &class_device_attr_sched4.attr, | ||
592 | &class_device_attr_sched5.attr, | ||
593 | &class_device_attr_sched6.attr, | ||
594 | &class_device_attr_sched7.attr, | ||
595 | NULL | ||
596 | }; | ||
597 | |||
598 | static struct attribute_group offload_attr_group = {.attrs = offload_attrs }; | ||
599 | |||
600 | /* | ||
601 | * Sends an sk_buff to an offload queue driver | ||
602 | * after dealing with any active network taps. | ||
603 | */ | ||
604 | static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb) | ||
605 | { | ||
606 | int ret; | ||
607 | |||
608 | local_bh_disable(); | ||
609 | ret = t3_offload_tx(tdev, skb); | ||
610 | local_bh_enable(); | ||
611 | return ret; | ||
612 | } | ||
613 | |||
614 | static int write_smt_entry(struct adapter *adapter, int idx) | ||
615 | { | ||
616 | struct cpl_smt_write_req *req; | ||
617 | struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL); | ||
618 | |||
619 | if (!skb) | ||
620 | return -ENOMEM; | ||
621 | |||
622 | req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req)); | ||
623 | req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); | ||
624 | OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx)); | ||
625 | req->mtu_idx = NMTUS - 1; /* should be 0 but there's a T3 bug */ | ||
626 | req->iff = idx; | ||
627 | memset(req->src_mac1, 0, sizeof(req->src_mac1)); | ||
628 | memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN); | ||
629 | skb->priority = 1; | ||
630 | offload_tx(&adapter->tdev, skb); | ||
631 | return 0; | ||
632 | } | ||
633 | |||
634 | static int init_smt(struct adapter *adapter) | ||
635 | { | ||
636 | int i; | ||
637 | |||
638 | for_each_port(adapter, i) | ||
639 | write_smt_entry(adapter, i); | ||
640 | return 0; | ||
641 | } | ||
642 | |||
643 | static void init_port_mtus(struct adapter *adapter) | ||
644 | { | ||
645 | unsigned int mtus = adapter->port[0]->mtu; | ||
646 | |||
647 | if (adapter->port[1]) | ||
648 | mtus |= adapter->port[1]->mtu << 16; | ||
649 | t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus); | ||
650 | } | ||
651 | |||
652 | /** | ||
653 | * cxgb_up - enable the adapter | ||
654 | * @adapter: adapter being enabled | ||
655 | * | ||
656 | * Called when the first port is enabled, this function performs the | ||
657 | * actions necessary to make an adapter operational, such as completing | ||
658 | * the initialization of HW modules, and enabling interrupts. | ||
659 | * | ||
660 | * Must be called with the rtnl lock held. | ||
661 | */ | ||
662 | static int cxgb_up(struct adapter *adap) | ||
663 | { | ||
664 | int err = 0; | ||
665 | |||
666 | if (!(adap->flags & FULL_INIT_DONE)) { | ||
667 | err = t3_check_fw_version(adap); | ||
668 | if (err) { | ||
669 | dev_err(&adap->pdev->dev, | ||
670 | "adapter FW is not compatible with driver\n"); | ||
671 | goto out; | ||
672 | } | ||
673 | |||
674 | err = init_dummy_netdevs(adap); | ||
675 | if (err) | ||
676 | goto out; | ||
677 | |||
678 | err = t3_init_hw(adap, 0); | ||
679 | if (err) | ||
680 | goto out; | ||
681 | |||
682 | err = setup_sge_qsets(adap); | ||
683 | if (err) | ||
684 | goto out; | ||
685 | |||
686 | setup_rss(adap); | ||
687 | adap->flags |= FULL_INIT_DONE; | ||
688 | } | ||
689 | |||
690 | t3_intr_clear(adap); | ||
691 | |||
692 | if (adap->flags & USING_MSIX) { | ||
693 | name_msix_vecs(adap); | ||
694 | err = request_irq(adap->msix_info[0].vec, | ||
695 | t3_async_intr_handler, 0, | ||
696 | adap->msix_info[0].desc, adap); | ||
697 | if (err) | ||
698 | goto irq_err; | ||
699 | |||
700 | if (request_msix_data_irqs(adap)) { | ||
701 | free_irq(adap->msix_info[0].vec, adap); | ||
702 | goto irq_err; | ||
703 | } | ||
704 | } else if ((err = request_irq(adap->pdev->irq, | ||
705 | t3_intr_handler(adap, | ||
706 | adap->sge.qs[0].rspq. | ||
707 | polling), | ||
708 | (adap->flags & USING_MSI) ? 0 : SA_SHIRQ, | ||
709 | adap->name, adap))) | ||
710 | goto irq_err; | ||
711 | |||
712 | t3_sge_start(adap); | ||
713 | t3_intr_enable(adap); | ||
714 | out: | ||
715 | return err; | ||
716 | irq_err: | ||
717 | CH_ERR(adap, "request_irq failed, err %d\n", err); | ||
718 | goto out; | ||
719 | } | ||
720 | |||
721 | /* | ||
722 | * Release resources when all the ports and offloading have been stopped. | ||
723 | */ | ||
724 | static void cxgb_down(struct adapter *adapter) | ||
725 | { | ||
726 | t3_sge_stop(adapter); | ||
727 | spin_lock_irq(&adapter->work_lock); /* sync with PHY intr task */ | ||
728 | t3_intr_disable(adapter); | ||
729 | spin_unlock_irq(&adapter->work_lock); | ||
730 | |||
731 | if (adapter->flags & USING_MSIX) { | ||
732 | int i, n = 0; | ||
733 | |||
734 | free_irq(adapter->msix_info[0].vec, adapter); | ||
735 | for_each_port(adapter, i) | ||
736 | n += adap2pinfo(adapter, i)->nqsets; | ||
737 | |||
738 | for (i = 0; i < n; ++i) | ||
739 | free_irq(adapter->msix_info[i + 1].vec, | ||
740 | &adapter->sge.qs[i]); | ||
741 | } else | ||
742 | free_irq(adapter->pdev->irq, adapter); | ||
743 | |||
744 | flush_workqueue(cxgb3_wq); /* wait for external IRQ handler */ | ||
745 | quiesce_rx(adapter); | ||
746 | } | ||
747 | |||
748 | static void schedule_chk_task(struct adapter *adap) | ||
749 | { | ||
750 | unsigned int timeo; | ||
751 | |||
752 | timeo = adap->params.linkpoll_period ? | ||
753 | (HZ * adap->params.linkpoll_period) / 10 : | ||
754 | adap->params.stats_update_period * HZ; | ||
755 | if (timeo) | ||
756 | queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo); | ||
757 | } | ||
758 | |||
759 | static int offload_open(struct net_device *dev) | ||
760 | { | ||
761 | struct adapter *adapter = dev->priv; | ||
762 | struct t3cdev *tdev = T3CDEV(dev); | ||
763 | int adap_up = adapter->open_device_map & PORT_MASK; | ||
764 | int err = 0; | ||
765 | |||
766 | if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) | ||
767 | return 0; | ||
768 | |||
769 | if (!adap_up && (err = cxgb_up(adapter)) < 0) | ||
770 | return err; | ||
771 | |||
772 | t3_tp_set_offload_mode(adapter, 1); | ||
773 | tdev->lldev = adapter->port[0]; | ||
774 | err = cxgb3_offload_activate(adapter); | ||
775 | if (err) | ||
776 | goto out; | ||
777 | |||
778 | init_port_mtus(adapter); | ||
779 | t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd, | ||
780 | adapter->params.b_wnd, | ||
781 | adapter->params.rev == 0 ? | ||
782 | adapter->port[0]->mtu : 0xffff); | ||
783 | init_smt(adapter); | ||
784 | |||
785 | /* Never mind if the next step fails */ | ||
786 | sysfs_create_group(&tdev->lldev->class_dev.kobj, &offload_attr_group); | ||
787 | |||
788 | /* Call back all registered clients */ | ||
789 | cxgb3_add_clients(tdev); | ||
790 | |||
791 | out: | ||
792 | /* restore them in case the offload module has changed them */ | ||
793 | if (err) { | ||
794 | t3_tp_set_offload_mode(adapter, 0); | ||
795 | clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map); | ||
796 | cxgb3_set_dummy_ops(tdev); | ||
797 | } | ||
798 | return err; | ||
799 | } | ||
800 | |||
801 | static int offload_close(struct t3cdev *tdev) | ||
802 | { | ||
803 | struct adapter *adapter = tdev2adap(tdev); | ||
804 | |||
805 | if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) | ||
806 | return 0; | ||
807 | |||
808 | /* Call back all registered clients */ | ||
809 | cxgb3_remove_clients(tdev); | ||
810 | |||
811 | sysfs_remove_group(&tdev->lldev->class_dev.kobj, &offload_attr_group); | ||
812 | |||
813 | tdev->lldev = NULL; | ||
814 | cxgb3_set_dummy_ops(tdev); | ||
815 | t3_tp_set_offload_mode(adapter, 0); | ||
816 | clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map); | ||
817 | |||
818 | if (!adapter->open_device_map) | ||
819 | cxgb_down(adapter); | ||
820 | |||
821 | cxgb3_offload_deactivate(adapter); | ||
822 | return 0; | ||
823 | } | ||
824 | |||
825 | static int cxgb_open(struct net_device *dev) | ||
826 | { | ||
827 | int err; | ||
828 | struct adapter *adapter = dev->priv; | ||
829 | struct port_info *pi = netdev_priv(dev); | ||
830 | int other_ports = adapter->open_device_map & PORT_MASK; | ||
831 | |||
832 | if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0) | ||
833 | return err; | ||
834 | |||
835 | set_bit(pi->port_id, &adapter->open_device_map); | ||
836 | if (!ofld_disable) { | ||
837 | err = offload_open(dev); | ||
838 | if (err) | ||
839 | printk(KERN_WARNING | ||
840 | "Could not initialize offload capabilities\n"); | ||
841 | } | ||
842 | |||
843 | link_start(dev); | ||
844 | t3_port_intr_enable(adapter, pi->port_id); | ||
845 | netif_start_queue(dev); | ||
846 | if (!other_ports) | ||
847 | schedule_chk_task(adapter); | ||
848 | |||
849 | return 0; | ||
850 | } | ||
851 | |||
852 | static int cxgb_close(struct net_device *dev) | ||
853 | { | ||
854 | struct adapter *adapter = dev->priv; | ||
855 | struct port_info *p = netdev_priv(dev); | ||
856 | |||
857 | t3_port_intr_disable(adapter, p->port_id); | ||
858 | netif_stop_queue(dev); | ||
859 | p->phy.ops->power_down(&p->phy, 1); | ||
860 | netif_carrier_off(dev); | ||
861 | t3_mac_disable(&p->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX); | ||
862 | |||
863 | spin_lock(&adapter->work_lock); /* sync with update task */ | ||
864 | clear_bit(p->port_id, &adapter->open_device_map); | ||
865 | spin_unlock(&adapter->work_lock); | ||
866 | |||
867 | if (!(adapter->open_device_map & PORT_MASK)) | ||
868 | cancel_rearming_delayed_workqueue(cxgb3_wq, | ||
869 | &adapter->adap_check_task); | ||
870 | |||
871 | if (!adapter->open_device_map) | ||
872 | cxgb_down(adapter); | ||
873 | |||
874 | return 0; | ||
875 | } | ||
876 | |||
877 | static struct net_device_stats *cxgb_get_stats(struct net_device *dev) | ||
878 | { | ||
879 | struct adapter *adapter = dev->priv; | ||
880 | struct port_info *p = netdev_priv(dev); | ||
881 | struct net_device_stats *ns = &p->netstats; | ||
882 | const struct mac_stats *pstats; | ||
883 | |||
884 | spin_lock(&adapter->stats_lock); | ||
885 | pstats = t3_mac_update_stats(&p->mac); | ||
886 | spin_unlock(&adapter->stats_lock); | ||
887 | |||
888 | ns->tx_bytes = pstats->tx_octets; | ||
889 | ns->tx_packets = pstats->tx_frames; | ||
890 | ns->rx_bytes = pstats->rx_octets; | ||
891 | ns->rx_packets = pstats->rx_frames; | ||
892 | ns->multicast = pstats->rx_mcast_frames; | ||
893 | |||
894 | ns->tx_errors = pstats->tx_underrun; | ||
895 | ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs + | ||
896 | pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short + | ||
897 | pstats->rx_fifo_ovfl; | ||
898 | |||
899 | /* detailed rx_errors */ | ||
900 | ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long; | ||
901 | ns->rx_over_errors = 0; | ||
902 | ns->rx_crc_errors = pstats->rx_fcs_errs; | ||
903 | ns->rx_frame_errors = pstats->rx_symbol_errs; | ||
904 | ns->rx_fifo_errors = pstats->rx_fifo_ovfl; | ||
905 | ns->rx_missed_errors = pstats->rx_cong_drops; | ||
906 | |||
907 | /* detailed tx_errors */ | ||
908 | ns->tx_aborted_errors = 0; | ||
909 | ns->tx_carrier_errors = 0; | ||
910 | ns->tx_fifo_errors = pstats->tx_underrun; | ||
911 | ns->tx_heartbeat_errors = 0; | ||
912 | ns->tx_window_errors = 0; | ||
913 | return ns; | ||
914 | } | ||
915 | |||
916 | static u32 get_msglevel(struct net_device *dev) | ||
917 | { | ||
918 | struct adapter *adapter = dev->priv; | ||
919 | |||
920 | return adapter->msg_enable; | ||
921 | } | ||
922 | |||
923 | static void set_msglevel(struct net_device *dev, u32 val) | ||
924 | { | ||
925 | struct adapter *adapter = dev->priv; | ||
926 | |||
927 | adapter->msg_enable = val; | ||
928 | } | ||
929 | |||
930 | static char stats_strings[][ETH_GSTRING_LEN] = { | ||
931 | "TxOctetsOK ", | ||
932 | "TxFramesOK ", | ||
933 | "TxMulticastFramesOK", | ||
934 | "TxBroadcastFramesOK", | ||
935 | "TxPauseFrames ", | ||
936 | "TxUnderrun ", | ||
937 | "TxExtUnderrun ", | ||
938 | |||
939 | "TxFrames64 ", | ||
940 | "TxFrames65To127 ", | ||
941 | "TxFrames128To255 ", | ||
942 | "TxFrames256To511 ", | ||
943 | "TxFrames512To1023 ", | ||
944 | "TxFrames1024To1518 ", | ||
945 | "TxFrames1519ToMax ", | ||
946 | |||
947 | "RxOctetsOK ", | ||
948 | "RxFramesOK ", | ||
949 | "RxMulticastFramesOK", | ||
950 | "RxBroadcastFramesOK", | ||
951 | "RxPauseFrames ", | ||
952 | "RxFCSErrors ", | ||
953 | "RxSymbolErrors ", | ||
954 | "RxShortErrors ", | ||
955 | "RxJabberErrors ", | ||
956 | "RxLengthErrors ", | ||
957 | "RxFIFOoverflow ", | ||
958 | |||
959 | "RxFrames64 ", | ||
960 | "RxFrames65To127 ", | ||
961 | "RxFrames128To255 ", | ||
962 | "RxFrames256To511 ", | ||
963 | "RxFrames512To1023 ", | ||
964 | "RxFrames1024To1518 ", | ||
965 | "RxFrames1519ToMax ", | ||
966 | |||
967 | "PhyFIFOErrors ", | ||
968 | "TSO ", | ||
969 | "VLANextractions ", | ||
970 | "VLANinsertions ", | ||
971 | "TxCsumOffload ", | ||
972 | "RxCsumGood ", | ||
973 | "RxDrops " | ||
974 | }; | ||
975 | |||
976 | static int get_stats_count(struct net_device *dev) | ||
977 | { | ||
978 | return ARRAY_SIZE(stats_strings); | ||
979 | } | ||
980 | |||
981 | #define T3_REGMAP_SIZE (3 * 1024) | ||
982 | |||
983 | static int get_regs_len(struct net_device *dev) | ||
984 | { | ||
985 | return T3_REGMAP_SIZE; | ||
986 | } | ||
987 | |||
988 | static int get_eeprom_len(struct net_device *dev) | ||
989 | { | ||
990 | return EEPROMSIZE; | ||
991 | } | ||
992 | |||
993 | static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) | ||
994 | { | ||
995 | u32 fw_vers = 0; | ||
996 | struct adapter *adapter = dev->priv; | ||
997 | |||
998 | t3_get_fw_version(adapter, &fw_vers); | ||
999 | |||
1000 | strcpy(info->driver, DRV_NAME); | ||
1001 | strcpy(info->version, DRV_VERSION); | ||
1002 | strcpy(info->bus_info, pci_name(adapter->pdev)); | ||
1003 | if (!fw_vers) | ||
1004 | strcpy(info->fw_version, "N/A"); | ||
1005 | else | ||
1006 | snprintf(info->fw_version, sizeof(info->fw_version), | ||
1007 | "%s %u.%u", (fw_vers >> 24) ? "T" : "N", | ||
1008 | (fw_vers >> 12) & 0xfff, fw_vers & 0xfff); | ||
1009 | } | ||
1010 | |||
1011 | static void get_strings(struct net_device *dev, u32 stringset, u8 * data) | ||
1012 | { | ||
1013 | if (stringset == ETH_SS_STATS) | ||
1014 | memcpy(data, stats_strings, sizeof(stats_strings)); | ||
1015 | } | ||
1016 | |||
1017 | static unsigned long collect_sge_port_stats(struct adapter *adapter, | ||
1018 | struct port_info *p, int idx) | ||
1019 | { | ||
1020 | int i; | ||
1021 | unsigned long tot = 0; | ||
1022 | |||
1023 | for (i = 0; i < p->nqsets; ++i) | ||
1024 | tot += adapter->sge.qs[i + p->first_qset].port_stats[idx]; | ||
1025 | return tot; | ||
1026 | } | ||
1027 | |||
1028 | static void get_stats(struct net_device *dev, struct ethtool_stats *stats, | ||
1029 | u64 *data) | ||
1030 | { | ||
1031 | struct adapter *adapter = dev->priv; | ||
1032 | struct port_info *pi = netdev_priv(dev); | ||
1033 | const struct mac_stats *s; | ||
1034 | |||
1035 | spin_lock(&adapter->stats_lock); | ||
1036 | s = t3_mac_update_stats(&pi->mac); | ||
1037 | spin_unlock(&adapter->stats_lock); | ||
1038 | |||
1039 | *data++ = s->tx_octets; | ||
1040 | *data++ = s->tx_frames; | ||
1041 | *data++ = s->tx_mcast_frames; | ||
1042 | *data++ = s->tx_bcast_frames; | ||
1043 | *data++ = s->tx_pause; | ||
1044 | *data++ = s->tx_underrun; | ||
1045 | *data++ = s->tx_fifo_urun; | ||
1046 | |||
1047 | *data++ = s->tx_frames_64; | ||
1048 | *data++ = s->tx_frames_65_127; | ||
1049 | *data++ = s->tx_frames_128_255; | ||
1050 | *data++ = s->tx_frames_256_511; | ||
1051 | *data++ = s->tx_frames_512_1023; | ||
1052 | *data++ = s->tx_frames_1024_1518; | ||
1053 | *data++ = s->tx_frames_1519_max; | ||
1054 | |||
1055 | *data++ = s->rx_octets; | ||
1056 | *data++ = s->rx_frames; | ||
1057 | *data++ = s->rx_mcast_frames; | ||
1058 | *data++ = s->rx_bcast_frames; | ||
1059 | *data++ = s->rx_pause; | ||
1060 | *data++ = s->rx_fcs_errs; | ||
1061 | *data++ = s->rx_symbol_errs; | ||
1062 | *data++ = s->rx_short; | ||
1063 | *data++ = s->rx_jabber; | ||
1064 | *data++ = s->rx_too_long; | ||
1065 | *data++ = s->rx_fifo_ovfl; | ||
1066 | |||
1067 | *data++ = s->rx_frames_64; | ||
1068 | *data++ = s->rx_frames_65_127; | ||
1069 | *data++ = s->rx_frames_128_255; | ||
1070 | *data++ = s->rx_frames_256_511; | ||
1071 | *data++ = s->rx_frames_512_1023; | ||
1072 | *data++ = s->rx_frames_1024_1518; | ||
1073 | *data++ = s->rx_frames_1519_max; | ||
1074 | |||
1075 | *data++ = pi->phy.fifo_errors; | ||
1076 | |||
1077 | *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO); | ||
1078 | *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX); | ||
1079 | *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS); | ||
1080 | *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM); | ||
1081 | *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD); | ||
1082 | *data++ = s->rx_cong_drops; | ||
1083 | } | ||
1084 | |||
1085 | static inline void reg_block_dump(struct adapter *ap, void *buf, | ||
1086 | unsigned int start, unsigned int end) | ||
1087 | { | ||
1088 | u32 *p = buf + start; | ||
1089 | |||
1090 | for (; start <= end; start += sizeof(u32)) | ||
1091 | *p++ = t3_read_reg(ap, start); | ||
1092 | } | ||
1093 | |||
1094 | static void get_regs(struct net_device *dev, struct ethtool_regs *regs, | ||
1095 | void *buf) | ||
1096 | { | ||
1097 | struct adapter *ap = dev->priv; | ||
1098 | |||
1099 | /* | ||
1100 | * Version scheme: | ||
1101 | * bits 0..9: chip version | ||
1102 | * bits 10..15: chip revision | ||
1103 | * bit 31: set for PCIe cards | ||
1104 | */ | ||
1105 | regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31); | ||
1106 | |||
1107 | /* | ||
1108 | * We skip the MAC statistics registers because they are clear-on-read. | ||
1109 | * Also reading multi-register stats would need to synchronize with the | ||
1110 | * periodic mac stats accumulation. Hard to justify the complexity. | ||
1111 | */ | ||
1112 | memset(buf, 0, T3_REGMAP_SIZE); | ||
1113 | reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN); | ||
1114 | reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT); | ||
1115 | reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE); | ||
1116 | reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA); | ||
1117 | reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3); | ||
1118 | reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0, | ||
1119 | XGM_REG(A_XGM_SERDES_STAT3, 1)); | ||
1120 | reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1), | ||
1121 | XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1)); | ||
1122 | } | ||
1123 | |||
1124 | static int restart_autoneg(struct net_device *dev) | ||
1125 | { | ||
1126 | struct port_info *p = netdev_priv(dev); | ||
1127 | |||
1128 | if (!netif_running(dev)) | ||
1129 | return -EAGAIN; | ||
1130 | if (p->link_config.autoneg != AUTONEG_ENABLE) | ||
1131 | return -EINVAL; | ||
1132 | p->phy.ops->autoneg_restart(&p->phy); | ||
1133 | return 0; | ||
1134 | } | ||
1135 | |||
1136 | static int cxgb3_phys_id(struct net_device *dev, u32 data) | ||
1137 | { | ||
1138 | int i; | ||
1139 | struct adapter *adapter = dev->priv; | ||
1140 | |||
1141 | if (data == 0) | ||
1142 | data = 2; | ||
1143 | |||
1144 | for (i = 0; i < data * 2; i++) { | ||
1145 | t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, | ||
1146 | (i & 1) ? F_GPIO0_OUT_VAL : 0); | ||
1147 | if (msleep_interruptible(500)) | ||
1148 | break; | ||
1149 | } | ||
1150 | t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, | ||
1151 | F_GPIO0_OUT_VAL); | ||
1152 | return 0; | ||
1153 | } | ||
1154 | |||
1155 | static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd) | ||
1156 | { | ||
1157 | struct port_info *p = netdev_priv(dev); | ||
1158 | |||
1159 | cmd->supported = p->link_config.supported; | ||
1160 | cmd->advertising = p->link_config.advertising; | ||
1161 | |||
1162 | if (netif_carrier_ok(dev)) { | ||
1163 | cmd->speed = p->link_config.speed; | ||
1164 | cmd->duplex = p->link_config.duplex; | ||
1165 | } else { | ||
1166 | cmd->speed = -1; | ||
1167 | cmd->duplex = -1; | ||
1168 | } | ||
1169 | |||
1170 | cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE; | ||
1171 | cmd->phy_address = p->phy.addr; | ||
1172 | cmd->transceiver = XCVR_EXTERNAL; | ||
1173 | cmd->autoneg = p->link_config.autoneg; | ||
1174 | cmd->maxtxpkt = 0; | ||
1175 | cmd->maxrxpkt = 0; | ||
1176 | return 0; | ||
1177 | } | ||
1178 | |||
1179 | static int speed_duplex_to_caps(int speed, int duplex) | ||
1180 | { | ||
1181 | int cap = 0; | ||
1182 | |||
1183 | switch (speed) { | ||
1184 | case SPEED_10: | ||
1185 | if (duplex == DUPLEX_FULL) | ||
1186 | cap = SUPPORTED_10baseT_Full; | ||
1187 | else | ||
1188 | cap = SUPPORTED_10baseT_Half; | ||
1189 | break; | ||
1190 | case SPEED_100: | ||
1191 | if (duplex == DUPLEX_FULL) | ||
1192 | cap = SUPPORTED_100baseT_Full; | ||
1193 | else | ||
1194 | cap = SUPPORTED_100baseT_Half; | ||
1195 | break; | ||
1196 | case SPEED_1000: | ||
1197 | if (duplex == DUPLEX_FULL) | ||
1198 | cap = SUPPORTED_1000baseT_Full; | ||
1199 | else | ||
1200 | cap = SUPPORTED_1000baseT_Half; | ||
1201 | break; | ||
1202 | case SPEED_10000: | ||
1203 | if (duplex == DUPLEX_FULL) | ||
1204 | cap = SUPPORTED_10000baseT_Full; | ||
1205 | } | ||
1206 | return cap; | ||
1207 | } | ||
1208 | |||
1209 | #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \ | ||
1210 | ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \ | ||
1211 | ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \ | ||
1212 | ADVERTISED_10000baseT_Full) | ||
1213 | |||
1214 | static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd) | ||
1215 | { | ||
1216 | struct port_info *p = netdev_priv(dev); | ||
1217 | struct link_config *lc = &p->link_config; | ||
1218 | |||
1219 | if (!(lc->supported & SUPPORTED_Autoneg)) | ||
1220 | return -EOPNOTSUPP; /* can't change speed/duplex */ | ||
1221 | |||
1222 | if (cmd->autoneg == AUTONEG_DISABLE) { | ||
1223 | int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex); | ||
1224 | |||
1225 | if (!(lc->supported & cap) || cmd->speed == SPEED_1000) | ||
1226 | return -EINVAL; | ||
1227 | lc->requested_speed = cmd->speed; | ||
1228 | lc->requested_duplex = cmd->duplex; | ||
1229 | lc->advertising = 0; | ||
1230 | } else { | ||
1231 | cmd->advertising &= ADVERTISED_MASK; | ||
1232 | cmd->advertising &= lc->supported; | ||
1233 | if (!cmd->advertising) | ||
1234 | return -EINVAL; | ||
1235 | lc->requested_speed = SPEED_INVALID; | ||
1236 | lc->requested_duplex = DUPLEX_INVALID; | ||
1237 | lc->advertising = cmd->advertising | ADVERTISED_Autoneg; | ||
1238 | } | ||
1239 | lc->autoneg = cmd->autoneg; | ||
1240 | if (netif_running(dev)) | ||
1241 | t3_link_start(&p->phy, &p->mac, lc); | ||
1242 | return 0; | ||
1243 | } | ||
1244 | |||
1245 | static void get_pauseparam(struct net_device *dev, | ||
1246 | struct ethtool_pauseparam *epause) | ||
1247 | { | ||
1248 | struct port_info *p = netdev_priv(dev); | ||
1249 | |||
1250 | epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0; | ||
1251 | epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0; | ||
1252 | epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0; | ||
1253 | } | ||
1254 | |||
1255 | static int set_pauseparam(struct net_device *dev, | ||
1256 | struct ethtool_pauseparam *epause) | ||
1257 | { | ||
1258 | struct port_info *p = netdev_priv(dev); | ||
1259 | struct link_config *lc = &p->link_config; | ||
1260 | |||
1261 | if (epause->autoneg == AUTONEG_DISABLE) | ||
1262 | lc->requested_fc = 0; | ||
1263 | else if (lc->supported & SUPPORTED_Autoneg) | ||
1264 | lc->requested_fc = PAUSE_AUTONEG; | ||
1265 | else | ||
1266 | return -EINVAL; | ||
1267 | |||
1268 | if (epause->rx_pause) | ||
1269 | lc->requested_fc |= PAUSE_RX; | ||
1270 | if (epause->tx_pause) | ||
1271 | lc->requested_fc |= PAUSE_TX; | ||
1272 | if (lc->autoneg == AUTONEG_ENABLE) { | ||
1273 | if (netif_running(dev)) | ||
1274 | t3_link_start(&p->phy, &p->mac, lc); | ||
1275 | } else { | ||
1276 | lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); | ||
1277 | if (netif_running(dev)) | ||
1278 | t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc); | ||
1279 | } | ||
1280 | return 0; | ||
1281 | } | ||
1282 | |||
1283 | static u32 get_rx_csum(struct net_device *dev) | ||
1284 | { | ||
1285 | struct port_info *p = netdev_priv(dev); | ||
1286 | |||
1287 | return p->rx_csum_offload; | ||
1288 | } | ||
1289 | |||
1290 | static int set_rx_csum(struct net_device *dev, u32 data) | ||
1291 | { | ||
1292 | struct port_info *p = netdev_priv(dev); | ||
1293 | |||
1294 | p->rx_csum_offload = data; | ||
1295 | return 0; | ||
1296 | } | ||
1297 | |||
1298 | static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e) | ||
1299 | { | ||
1300 | struct adapter *adapter = dev->priv; | ||
1301 | |||
1302 | e->rx_max_pending = MAX_RX_BUFFERS; | ||
1303 | e->rx_mini_max_pending = 0; | ||
1304 | e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS; | ||
1305 | e->tx_max_pending = MAX_TXQ_ENTRIES; | ||
1306 | |||
1307 | e->rx_pending = adapter->params.sge.qset[0].fl_size; | ||
1308 | e->rx_mini_pending = adapter->params.sge.qset[0].rspq_size; | ||
1309 | e->rx_jumbo_pending = adapter->params.sge.qset[0].jumbo_size; | ||
1310 | e->tx_pending = adapter->params.sge.qset[0].txq_size[0]; | ||
1311 | } | ||
1312 | |||
1313 | static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e) | ||
1314 | { | ||
1315 | int i; | ||
1316 | struct adapter *adapter = dev->priv; | ||
1317 | |||
1318 | if (e->rx_pending > MAX_RX_BUFFERS || | ||
1319 | e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS || | ||
1320 | e->tx_pending > MAX_TXQ_ENTRIES || | ||
1321 | e->rx_mini_pending > MAX_RSPQ_ENTRIES || | ||
1322 | e->rx_mini_pending < MIN_RSPQ_ENTRIES || | ||
1323 | e->rx_pending < MIN_FL_ENTRIES || | ||
1324 | e->rx_jumbo_pending < MIN_FL_ENTRIES || | ||
1325 | e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES) | ||
1326 | return -EINVAL; | ||
1327 | |||
1328 | if (adapter->flags & FULL_INIT_DONE) | ||
1329 | return -EBUSY; | ||
1330 | |||
1331 | for (i = 0; i < SGE_QSETS; ++i) { | ||
1332 | struct qset_params *q = &adapter->params.sge.qset[i]; | ||
1333 | |||
1334 | q->rspq_size = e->rx_mini_pending; | ||
1335 | q->fl_size = e->rx_pending; | ||
1336 | q->jumbo_size = e->rx_jumbo_pending; | ||
1337 | q->txq_size[0] = e->tx_pending; | ||
1338 | q->txq_size[1] = e->tx_pending; | ||
1339 | q->txq_size[2] = e->tx_pending; | ||
1340 | } | ||
1341 | return 0; | ||
1342 | } | ||
1343 | |||
1344 | static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c) | ||
1345 | { | ||
1346 | struct adapter *adapter = dev->priv; | ||
1347 | struct qset_params *qsp = &adapter->params.sge.qset[0]; | ||
1348 | struct sge_qset *qs = &adapter->sge.qs[0]; | ||
1349 | |||
1350 | if (c->rx_coalesce_usecs * 10 > M_NEWTIMER) | ||
1351 | return -EINVAL; | ||
1352 | |||
1353 | qsp->coalesce_usecs = c->rx_coalesce_usecs; | ||
1354 | t3_update_qset_coalesce(qs, qsp); | ||
1355 | return 0; | ||
1356 | } | ||
1357 | |||
1358 | static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c) | ||
1359 | { | ||
1360 | struct adapter *adapter = dev->priv; | ||
1361 | struct qset_params *q = adapter->params.sge.qset; | ||
1362 | |||
1363 | c->rx_coalesce_usecs = q->coalesce_usecs; | ||
1364 | return 0; | ||
1365 | } | ||
1366 | |||
1367 | static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e, | ||
1368 | u8 * data) | ||
1369 | { | ||
1370 | int i, err = 0; | ||
1371 | struct adapter *adapter = dev->priv; | ||
1372 | |||
1373 | u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL); | ||
1374 | if (!buf) | ||
1375 | return -ENOMEM; | ||
1376 | |||
1377 | e->magic = EEPROM_MAGIC; | ||
1378 | for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4) | ||
1379 | err = t3_seeprom_read(adapter, i, (u32 *) & buf[i]); | ||
1380 | |||
1381 | if (!err) | ||
1382 | memcpy(data, buf + e->offset, e->len); | ||
1383 | kfree(buf); | ||
1384 | return err; | ||
1385 | } | ||
1386 | |||
1387 | static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, | ||
1388 | u8 * data) | ||
1389 | { | ||
1390 | u8 *buf; | ||
1391 | int err = 0; | ||
1392 | u32 aligned_offset, aligned_len, *p; | ||
1393 | struct adapter *adapter = dev->priv; | ||
1394 | |||
1395 | if (eeprom->magic != EEPROM_MAGIC) | ||
1396 | return -EINVAL; | ||
1397 | |||
1398 | aligned_offset = eeprom->offset & ~3; | ||
1399 | aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3; | ||
1400 | |||
1401 | if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) { | ||
1402 | buf = kmalloc(aligned_len, GFP_KERNEL); | ||
1403 | if (!buf) | ||
1404 | return -ENOMEM; | ||
1405 | err = t3_seeprom_read(adapter, aligned_offset, (u32 *) buf); | ||
1406 | if (!err && aligned_len > 4) | ||
1407 | err = t3_seeprom_read(adapter, | ||
1408 | aligned_offset + aligned_len - 4, | ||
1409 | (u32 *) & buf[aligned_len - 4]); | ||
1410 | if (err) | ||
1411 | goto out; | ||
1412 | memcpy(buf + (eeprom->offset & 3), data, eeprom->len); | ||
1413 | } else | ||
1414 | buf = data; | ||
1415 | |||
1416 | err = t3_seeprom_wp(adapter, 0); | ||
1417 | if (err) | ||
1418 | goto out; | ||
1419 | |||
1420 | for (p = (u32 *) buf; !err && aligned_len; aligned_len -= 4, p++) { | ||
1421 | err = t3_seeprom_write(adapter, aligned_offset, *p); | ||
1422 | aligned_offset += 4; | ||
1423 | } | ||
1424 | |||
1425 | if (!err) | ||
1426 | err = t3_seeprom_wp(adapter, 1); | ||
1427 | out: | ||
1428 | if (buf != data) | ||
1429 | kfree(buf); | ||
1430 | return err; | ||
1431 | } | ||
1432 | |||
1433 | static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) | ||
1434 | { | ||
1435 | wol->supported = 0; | ||
1436 | wol->wolopts = 0; | ||
1437 | memset(&wol->sopass, 0, sizeof(wol->sopass)); | ||
1438 | } | ||
1439 | |||
1440 | static const struct ethtool_ops cxgb_ethtool_ops = { | ||
1441 | .get_settings = get_settings, | ||
1442 | .set_settings = set_settings, | ||
1443 | .get_drvinfo = get_drvinfo, | ||
1444 | .get_msglevel = get_msglevel, | ||
1445 | .set_msglevel = set_msglevel, | ||
1446 | .get_ringparam = get_sge_param, | ||
1447 | .set_ringparam = set_sge_param, | ||
1448 | .get_coalesce = get_coalesce, | ||
1449 | .set_coalesce = set_coalesce, | ||
1450 | .get_eeprom_len = get_eeprom_len, | ||
1451 | .get_eeprom = get_eeprom, | ||
1452 | .set_eeprom = set_eeprom, | ||
1453 | .get_pauseparam = get_pauseparam, | ||
1454 | .set_pauseparam = set_pauseparam, | ||
1455 | .get_rx_csum = get_rx_csum, | ||
1456 | .set_rx_csum = set_rx_csum, | ||
1457 | .get_tx_csum = ethtool_op_get_tx_csum, | ||
1458 | .set_tx_csum = ethtool_op_set_tx_csum, | ||
1459 | .get_sg = ethtool_op_get_sg, | ||
1460 | .set_sg = ethtool_op_set_sg, | ||
1461 | .get_link = ethtool_op_get_link, | ||
1462 | .get_strings = get_strings, | ||
1463 | .phys_id = cxgb3_phys_id, | ||
1464 | .nway_reset = restart_autoneg, | ||
1465 | .get_stats_count = get_stats_count, | ||
1466 | .get_ethtool_stats = get_stats, | ||
1467 | .get_regs_len = get_regs_len, | ||
1468 | .get_regs = get_regs, | ||
1469 | .get_wol = get_wol, | ||
1470 | .get_tso = ethtool_op_get_tso, | ||
1471 | .set_tso = ethtool_op_set_tso, | ||
1472 | .get_perm_addr = ethtool_op_get_perm_addr | ||
1473 | }; | ||
1474 | |||
1475 | static int in_range(int val, int lo, int hi) | ||
1476 | { | ||
1477 | return val < 0 || (val <= hi && val >= lo); | ||
1478 | } | ||
1479 | |||
1480 | static int cxgb_extension_ioctl(struct net_device *dev, void __user *useraddr) | ||
1481 | { | ||
1482 | int ret; | ||
1483 | u32 cmd; | ||
1484 | struct adapter *adapter = dev->priv; | ||
1485 | |||
1486 | if (copy_from_user(&cmd, useraddr, sizeof(cmd))) | ||
1487 | return -EFAULT; | ||
1488 | |||
1489 | switch (cmd) { | ||
1490 | case CHELSIO_SETREG:{ | ||
1491 | struct ch_reg edata; | ||
1492 | |||
1493 | if (!capable(CAP_NET_ADMIN)) | ||
1494 | return -EPERM; | ||
1495 | if (copy_from_user(&edata, useraddr, sizeof(edata))) | ||
1496 | return -EFAULT; | ||
1497 | if ((edata.addr & 3) != 0 | ||
1498 | || edata.addr >= adapter->mmio_len) | ||
1499 | return -EINVAL; | ||
1500 | writel(edata.val, adapter->regs + edata.addr); | ||
1501 | break; | ||
1502 | } | ||
1503 | case CHELSIO_GETREG:{ | ||
1504 | struct ch_reg edata; | ||
1505 | |||
1506 | if (copy_from_user(&edata, useraddr, sizeof(edata))) | ||
1507 | return -EFAULT; | ||
1508 | if ((edata.addr & 3) != 0 | ||
1509 | || edata.addr >= adapter->mmio_len) | ||
1510 | return -EINVAL; | ||
1511 | edata.val = readl(adapter->regs + edata.addr); | ||
1512 | if (copy_to_user(useraddr, &edata, sizeof(edata))) | ||
1513 | return -EFAULT; | ||
1514 | break; | ||
1515 | } | ||
1516 | case CHELSIO_SET_QSET_PARAMS:{ | ||
1517 | int i; | ||
1518 | struct qset_params *q; | ||
1519 | struct ch_qset_params t; | ||
1520 | |||
1521 | if (!capable(CAP_NET_ADMIN)) | ||
1522 | return -EPERM; | ||
1523 | if (copy_from_user(&t, useraddr, sizeof(t))) | ||
1524 | return -EFAULT; | ||
1525 | if (t.qset_idx >= SGE_QSETS) | ||
1526 | return -EINVAL; | ||
1527 | if (!in_range(t.intr_lat, 0, M_NEWTIMER) || | ||
1528 | !in_range(t.cong_thres, 0, 255) || | ||
1529 | !in_range(t.txq_size[0], MIN_TXQ_ENTRIES, | ||
1530 | MAX_TXQ_ENTRIES) || | ||
1531 | !in_range(t.txq_size[1], MIN_TXQ_ENTRIES, | ||
1532 | MAX_TXQ_ENTRIES) || | ||
1533 | !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES, | ||
1534 | MAX_CTRL_TXQ_ENTRIES) || | ||
1535 | !in_range(t.fl_size[0], MIN_FL_ENTRIES, | ||
1536 | MAX_RX_BUFFERS) | ||
1537 | || !in_range(t.fl_size[1], MIN_FL_ENTRIES, | ||
1538 | MAX_RX_JUMBO_BUFFERS) | ||
1539 | || !in_range(t.rspq_size, MIN_RSPQ_ENTRIES, | ||
1540 | MAX_RSPQ_ENTRIES)) | ||
1541 | return -EINVAL; | ||
1542 | if ((adapter->flags & FULL_INIT_DONE) && | ||
1543 | (t.rspq_size >= 0 || t.fl_size[0] >= 0 || | ||
1544 | t.fl_size[1] >= 0 || t.txq_size[0] >= 0 || | ||
1545 | t.txq_size[1] >= 0 || t.txq_size[2] >= 0 || | ||
1546 | t.polling >= 0 || t.cong_thres >= 0)) | ||
1547 | return -EBUSY; | ||
1548 | |||
1549 | q = &adapter->params.sge.qset[t.qset_idx]; | ||
1550 | |||
1551 | if (t.rspq_size >= 0) | ||
1552 | q->rspq_size = t.rspq_size; | ||
1553 | if (t.fl_size[0] >= 0) | ||
1554 | q->fl_size = t.fl_size[0]; | ||
1555 | if (t.fl_size[1] >= 0) | ||
1556 | q->jumbo_size = t.fl_size[1]; | ||
1557 | if (t.txq_size[0] >= 0) | ||
1558 | q->txq_size[0] = t.txq_size[0]; | ||
1559 | if (t.txq_size[1] >= 0) | ||
1560 | q->txq_size[1] = t.txq_size[1]; | ||
1561 | if (t.txq_size[2] >= 0) | ||
1562 | q->txq_size[2] = t.txq_size[2]; | ||
1563 | if (t.cong_thres >= 0) | ||
1564 | q->cong_thres = t.cong_thres; | ||
1565 | if (t.intr_lat >= 0) { | ||
1566 | struct sge_qset *qs = | ||
1567 | &adapter->sge.qs[t.qset_idx]; | ||
1568 | |||
1569 | q->coalesce_usecs = t.intr_lat; | ||
1570 | t3_update_qset_coalesce(qs, q); | ||
1571 | } | ||
1572 | if (t.polling >= 0) { | ||
1573 | if (adapter->flags & USING_MSIX) | ||
1574 | q->polling = t.polling; | ||
1575 | else { | ||
1576 | /* No polling with INTx for T3A */ | ||
1577 | if (adapter->params.rev == 0 && | ||
1578 | !(adapter->flags & USING_MSI)) | ||
1579 | t.polling = 0; | ||
1580 | |||
1581 | for (i = 0; i < SGE_QSETS; i++) { | ||
1582 | q = &adapter->params.sge. | ||
1583 | qset[i]; | ||
1584 | q->polling = t.polling; | ||
1585 | } | ||
1586 | } | ||
1587 | } | ||
1588 | break; | ||
1589 | } | ||
1590 | case CHELSIO_GET_QSET_PARAMS:{ | ||
1591 | struct qset_params *q; | ||
1592 | struct ch_qset_params t; | ||
1593 | |||
1594 | if (copy_from_user(&t, useraddr, sizeof(t))) | ||
1595 | return -EFAULT; | ||
1596 | if (t.qset_idx >= SGE_QSETS) | ||
1597 | return -EINVAL; | ||
1598 | |||
1599 | q = &adapter->params.sge.qset[t.qset_idx]; | ||
1600 | t.rspq_size = q->rspq_size; | ||
1601 | t.txq_size[0] = q->txq_size[0]; | ||
1602 | t.txq_size[1] = q->txq_size[1]; | ||
1603 | t.txq_size[2] = q->txq_size[2]; | ||
1604 | t.fl_size[0] = q->fl_size; | ||
1605 | t.fl_size[1] = q->jumbo_size; | ||
1606 | t.polling = q->polling; | ||
1607 | t.intr_lat = q->coalesce_usecs; | ||
1608 | t.cong_thres = q->cong_thres; | ||
1609 | |||
1610 | if (copy_to_user(useraddr, &t, sizeof(t))) | ||
1611 | return -EFAULT; | ||
1612 | break; | ||
1613 | } | ||
1614 | case CHELSIO_SET_QSET_NUM:{ | ||
1615 | struct ch_reg edata; | ||
1616 | struct port_info *pi = netdev_priv(dev); | ||
1617 | unsigned int i, first_qset = 0, other_qsets = 0; | ||
1618 | |||
1619 | if (!capable(CAP_NET_ADMIN)) | ||
1620 | return -EPERM; | ||
1621 | if (adapter->flags & FULL_INIT_DONE) | ||
1622 | return -EBUSY; | ||
1623 | if (copy_from_user(&edata, useraddr, sizeof(edata))) | ||
1624 | return -EFAULT; | ||
1625 | if (edata.val < 1 || | ||
1626 | (edata.val > 1 && !(adapter->flags & USING_MSIX))) | ||
1627 | return -EINVAL; | ||
1628 | |||
1629 | for_each_port(adapter, i) | ||
1630 | if (adapter->port[i] && adapter->port[i] != dev) | ||
1631 | other_qsets += adap2pinfo(adapter, i)->nqsets; | ||
1632 | |||
1633 | if (edata.val + other_qsets > SGE_QSETS) | ||
1634 | return -EINVAL; | ||
1635 | |||
1636 | pi->nqsets = edata.val; | ||
1637 | |||
1638 | for_each_port(adapter, i) | ||
1639 | if (adapter->port[i]) { | ||
1640 | pi = adap2pinfo(adapter, i); | ||
1641 | pi->first_qset = first_qset; | ||
1642 | first_qset += pi->nqsets; | ||
1643 | } | ||
1644 | break; | ||
1645 | } | ||
1646 | case CHELSIO_GET_QSET_NUM:{ | ||
1647 | struct ch_reg edata; | ||
1648 | struct port_info *pi = netdev_priv(dev); | ||
1649 | |||
1650 | edata.cmd = CHELSIO_GET_QSET_NUM; | ||
1651 | edata.val = pi->nqsets; | ||
1652 | if (copy_to_user(useraddr, &edata, sizeof(edata))) | ||
1653 | return -EFAULT; | ||
1654 | break; | ||
1655 | } | ||
1656 | case CHELSIO_LOAD_FW:{ | ||
1657 | u8 *fw_data; | ||
1658 | struct ch_mem_range t; | ||
1659 | |||
1660 | if (!capable(CAP_NET_ADMIN)) | ||
1661 | return -EPERM; | ||
1662 | if (copy_from_user(&t, useraddr, sizeof(t))) | ||
1663 | return -EFAULT; | ||
1664 | |||
1665 | fw_data = kmalloc(t.len, GFP_KERNEL); | ||
1666 | if (!fw_data) | ||
1667 | return -ENOMEM; | ||
1668 | |||
1669 | if (copy_from_user | ||
1670 | (fw_data, useraddr + sizeof(t), t.len)) { | ||
1671 | kfree(fw_data); | ||
1672 | return -EFAULT; | ||
1673 | } | ||
1674 | |||
1675 | ret = t3_load_fw(adapter, fw_data, t.len); | ||
1676 | kfree(fw_data); | ||
1677 | if (ret) | ||
1678 | return ret; | ||
1679 | break; | ||
1680 | } | ||
1681 | case CHELSIO_SETMTUTAB:{ | ||
1682 | struct ch_mtus m; | ||
1683 | int i; | ||
1684 | |||
1685 | if (!is_offload(adapter)) | ||
1686 | return -EOPNOTSUPP; | ||
1687 | if (!capable(CAP_NET_ADMIN)) | ||
1688 | return -EPERM; | ||
1689 | if (offload_running(adapter)) | ||
1690 | return -EBUSY; | ||
1691 | if (copy_from_user(&m, useraddr, sizeof(m))) | ||
1692 | return -EFAULT; | ||
1693 | if (m.nmtus != NMTUS) | ||
1694 | return -EINVAL; | ||
1695 | if (m.mtus[0] < 81) /* accommodate SACK */ | ||
1696 | return -EINVAL; | ||
1697 | |||
1698 | /* MTUs must be in ascending order */ | ||
1699 | for (i = 1; i < NMTUS; ++i) | ||
1700 | if (m.mtus[i] < m.mtus[i - 1]) | ||
1701 | return -EINVAL; | ||
1702 | |||
1703 | memcpy(adapter->params.mtus, m.mtus, | ||
1704 | sizeof(adapter->params.mtus)); | ||
1705 | break; | ||
1706 | } | ||
1707 | case CHELSIO_GET_PM:{ | ||
1708 | struct tp_params *p = &adapter->params.tp; | ||
1709 | struct ch_pm m = {.cmd = CHELSIO_GET_PM }; | ||
1710 | |||
1711 | if (!is_offload(adapter)) | ||
1712 | return -EOPNOTSUPP; | ||
1713 | m.tx_pg_sz = p->tx_pg_size; | ||
1714 | m.tx_num_pg = p->tx_num_pgs; | ||
1715 | m.rx_pg_sz = p->rx_pg_size; | ||
1716 | m.rx_num_pg = p->rx_num_pgs; | ||
1717 | m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan; | ||
1718 | if (copy_to_user(useraddr, &m, sizeof(m))) | ||
1719 | return -EFAULT; | ||
1720 | break; | ||
1721 | } | ||
1722 | case CHELSIO_SET_PM:{ | ||
1723 | struct ch_pm m; | ||
1724 | struct tp_params *p = &adapter->params.tp; | ||
1725 | |||
1726 | if (!is_offload(adapter)) | ||
1727 | return -EOPNOTSUPP; | ||
1728 | if (!capable(CAP_NET_ADMIN)) | ||
1729 | return -EPERM; | ||
1730 | if (adapter->flags & FULL_INIT_DONE) | ||
1731 | return -EBUSY; | ||
1732 | if (copy_from_user(&m, useraddr, sizeof(m))) | ||
1733 | return -EFAULT; | ||
1734 | if (!m.rx_pg_sz || (m.rx_pg_sz & (m.rx_pg_sz - 1)) || | ||
1735 | !m.tx_pg_sz || (m.tx_pg_sz & (m.tx_pg_sz - 1))) | ||
1736 | return -EINVAL; /* not power of 2 */ | ||
1737 | if (!(m.rx_pg_sz & 0x14000)) | ||
1738 | return -EINVAL; /* not 16KB or 64KB */ | ||
1739 | if (!(m.tx_pg_sz & 0x1554000)) | ||
1740 | return -EINVAL; | ||
1741 | if (m.tx_num_pg == -1) | ||
1742 | m.tx_num_pg = p->tx_num_pgs; | ||
1743 | if (m.rx_num_pg == -1) | ||
1744 | m.rx_num_pg = p->rx_num_pgs; | ||
1745 | if (m.tx_num_pg % 24 || m.rx_num_pg % 24) | ||
1746 | return -EINVAL; | ||
1747 | if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size || | ||
1748 | m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size) | ||
1749 | return -EINVAL; | ||
1750 | p->rx_pg_size = m.rx_pg_sz; | ||
1751 | p->tx_pg_size = m.tx_pg_sz; | ||
1752 | p->rx_num_pgs = m.rx_num_pg; | ||
1753 | p->tx_num_pgs = m.tx_num_pg; | ||
1754 | break; | ||
1755 | } | ||
1756 | case CHELSIO_GET_MEM:{ | ||
1757 | struct ch_mem_range t; | ||
1758 | struct mc7 *mem; | ||
1759 | u64 buf[32]; | ||
1760 | |||
1761 | if (!is_offload(adapter)) | ||
1762 | return -EOPNOTSUPP; | ||
1763 | if (!(adapter->flags & FULL_INIT_DONE)) | ||
1764 | return -EIO; /* need the memory controllers */ | ||
1765 | if (copy_from_user(&t, useraddr, sizeof(t))) | ||
1766 | return -EFAULT; | ||
1767 | if ((t.addr & 7) || (t.len & 7)) | ||
1768 | return -EINVAL; | ||
1769 | if (t.mem_id == MEM_CM) | ||
1770 | mem = &adapter->cm; | ||
1771 | else if (t.mem_id == MEM_PMRX) | ||
1772 | mem = &adapter->pmrx; | ||
1773 | else if (t.mem_id == MEM_PMTX) | ||
1774 | mem = &adapter->pmtx; | ||
1775 | else | ||
1776 | return -EINVAL; | ||
1777 | |||
1778 | /* | ||
1779 | * Version scheme: | ||
1780 | * bits 0..9: chip version | ||
1781 | * bits 10..15: chip revision | ||
1782 | */ | ||
1783 | t.version = 3 | (adapter->params.rev << 10); | ||
1784 | if (copy_to_user(useraddr, &t, sizeof(t))) | ||
1785 | return -EFAULT; | ||
1786 | |||
1787 | /* | ||
1788 | * Read 256 bytes at a time as len can be large and we don't | ||
1789 | * want to use huge intermediate buffers. | ||
1790 | */ | ||
1791 | useraddr += sizeof(t); /* advance to start of buffer */ | ||
1792 | while (t.len) { | ||
1793 | unsigned int chunk = | ||
1794 | min_t(unsigned int, t.len, sizeof(buf)); | ||
1795 | |||
1796 | ret = | ||
1797 | t3_mc7_bd_read(mem, t.addr / 8, chunk / 8, | ||
1798 | buf); | ||
1799 | if (ret) | ||
1800 | return ret; | ||
1801 | if (copy_to_user(useraddr, buf, chunk)) | ||
1802 | return -EFAULT; | ||
1803 | useraddr += chunk; | ||
1804 | t.addr += chunk; | ||
1805 | t.len -= chunk; | ||
1806 | } | ||
1807 | break; | ||
1808 | } | ||
1809 | case CHELSIO_SET_TRACE_FILTER:{ | ||
1810 | struct ch_trace t; | ||
1811 | const struct trace_params *tp; | ||
1812 | |||
1813 | if (!capable(CAP_NET_ADMIN)) | ||
1814 | return -EPERM; | ||
1815 | if (!offload_running(adapter)) | ||
1816 | return -EAGAIN; | ||
1817 | if (copy_from_user(&t, useraddr, sizeof(t))) | ||
1818 | return -EFAULT; | ||
1819 | |||
1820 | tp = (const struct trace_params *)&t.sip; | ||
1821 | if (t.config_tx) | ||
1822 | t3_config_trace_filter(adapter, tp, 0, | ||
1823 | t.invert_match, | ||
1824 | t.trace_tx); | ||
1825 | if (t.config_rx) | ||
1826 | t3_config_trace_filter(adapter, tp, 1, | ||
1827 | t.invert_match, | ||
1828 | t.trace_rx); | ||
1829 | break; | ||
1830 | } | ||
1831 | case CHELSIO_SET_PKTSCHED:{ | ||
1832 | struct sk_buff *skb; | ||
1833 | struct ch_pktsched_params p; | ||
1834 | struct mngt_pktsched_wr *req; | ||
1835 | |||
1836 | if (!(adapter->flags & FULL_INIT_DONE)) | ||
1837 | return -EIO; /* uP must be up and running */ | ||
1838 | if (copy_from_user(&p, useraddr, sizeof(p))) | ||
1839 | return -EFAULT; | ||
1840 | skb = alloc_skb(sizeof(*req), GFP_KERNEL); | ||
1841 | if (!skb) | ||
1842 | return -ENOMEM; | ||
1843 | req = | ||
1844 | (struct mngt_pktsched_wr *)skb_put(skb, | ||
1845 | sizeof(*req)); | ||
1846 | req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT)); | ||
1847 | req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET; | ||
1848 | req->sched = p.sched; | ||
1849 | req->idx = p.idx; | ||
1850 | req->min = p.min; | ||
1851 | req->max = p.max; | ||
1852 | req->binding = p.binding; | ||
1853 | printk(KERN_INFO | ||
1854 | "pktsched: sched %u idx %u min %u max %u binding %u\n", | ||
1855 | req->sched, req->idx, req->min, req->max, | ||
1856 | req->binding); | ||
1857 | skb->priority = 1; | ||
1858 | offload_tx(&adapter->tdev, skb); | ||
1859 | break; | ||
1860 | } | ||
1861 | default: | ||
1862 | return -EOPNOTSUPP; | ||
1863 | } | ||
1864 | return 0; | ||
1865 | } | ||
1866 | |||
1867 | static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) | ||
1868 | { | ||
1869 | int ret, mmd; | ||
1870 | struct adapter *adapter = dev->priv; | ||
1871 | struct port_info *pi = netdev_priv(dev); | ||
1872 | struct mii_ioctl_data *data = if_mii(req); | ||
1873 | |||
1874 | switch (cmd) { | ||
1875 | case SIOCGMIIPHY: | ||
1876 | data->phy_id = pi->phy.addr; | ||
1877 | /* FALLTHRU */ | ||
1878 | case SIOCGMIIREG:{ | ||
1879 | u32 val; | ||
1880 | struct cphy *phy = &pi->phy; | ||
1881 | |||
1882 | if (!phy->mdio_read) | ||
1883 | return -EOPNOTSUPP; | ||
1884 | if (is_10G(adapter)) { | ||
1885 | mmd = data->phy_id >> 8; | ||
1886 | if (!mmd) | ||
1887 | mmd = MDIO_DEV_PCS; | ||
1888 | else if (mmd > MDIO_DEV_XGXS) | ||
1889 | return -EINVAL; | ||
1890 | |||
1891 | ret = | ||
1892 | phy->mdio_read(adapter, data->phy_id & 0x1f, | ||
1893 | mmd, data->reg_num, &val); | ||
1894 | } else | ||
1895 | ret = | ||
1896 | phy->mdio_read(adapter, data->phy_id & 0x1f, | ||
1897 | 0, data->reg_num & 0x1f, | ||
1898 | &val); | ||
1899 | if (!ret) | ||
1900 | data->val_out = val; | ||
1901 | break; | ||
1902 | } | ||
1903 | case SIOCSMIIREG:{ | ||
1904 | struct cphy *phy = &pi->phy; | ||
1905 | |||
1906 | if (!capable(CAP_NET_ADMIN)) | ||
1907 | return -EPERM; | ||
1908 | if (!phy->mdio_write) | ||
1909 | return -EOPNOTSUPP; | ||
1910 | if (is_10G(adapter)) { | ||
1911 | mmd = data->phy_id >> 8; | ||
1912 | if (!mmd) | ||
1913 | mmd = MDIO_DEV_PCS; | ||
1914 | else if (mmd > MDIO_DEV_XGXS) | ||
1915 | return -EINVAL; | ||
1916 | |||
1917 | ret = | ||
1918 | phy->mdio_write(adapter, | ||
1919 | data->phy_id & 0x1f, mmd, | ||
1920 | data->reg_num, | ||
1921 | data->val_in); | ||
1922 | } else | ||
1923 | ret = | ||
1924 | phy->mdio_write(adapter, | ||
1925 | data->phy_id & 0x1f, 0, | ||
1926 | data->reg_num & 0x1f, | ||
1927 | data->val_in); | ||
1928 | break; | ||
1929 | } | ||
1930 | case SIOCCHIOCTL: | ||
1931 | return cxgb_extension_ioctl(dev, req->ifr_data); | ||
1932 | default: | ||
1933 | return -EOPNOTSUPP; | ||
1934 | } | ||
1935 | return ret; | ||
1936 | } | ||
1937 | |||
1938 | static int cxgb_change_mtu(struct net_device *dev, int new_mtu) | ||
1939 | { | ||
1940 | int ret; | ||
1941 | struct adapter *adapter = dev->priv; | ||
1942 | struct port_info *pi = netdev_priv(dev); | ||
1943 | |||
1944 | if (new_mtu < 81) /* accommodate SACK */ | ||
1945 | return -EINVAL; | ||
1946 | if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu))) | ||
1947 | return ret; | ||
1948 | dev->mtu = new_mtu; | ||
1949 | init_port_mtus(adapter); | ||
1950 | if (adapter->params.rev == 0 && offload_running(adapter)) | ||
1951 | t3_load_mtus(adapter, adapter->params.mtus, | ||
1952 | adapter->params.a_wnd, adapter->params.b_wnd, | ||
1953 | adapter->port[0]->mtu); | ||
1954 | return 0; | ||
1955 | } | ||
1956 | |||
1957 | static int cxgb_set_mac_addr(struct net_device *dev, void *p) | ||
1958 | { | ||
1959 | struct adapter *adapter = dev->priv; | ||
1960 | struct port_info *pi = netdev_priv(dev); | ||
1961 | struct sockaddr *addr = p; | ||
1962 | |||
1963 | if (!is_valid_ether_addr(addr->sa_data)) | ||
1964 | return -EINVAL; | ||
1965 | |||
1966 | memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); | ||
1967 | t3_mac_set_address(&pi->mac, 0, dev->dev_addr); | ||
1968 | if (offload_running(adapter)) | ||
1969 | write_smt_entry(adapter, pi->port_id); | ||
1970 | return 0; | ||
1971 | } | ||
1972 | |||
1973 | /** | ||
1974 | * t3_synchronize_rx - wait for current Rx processing on a port to complete | ||
1975 | * @adap: the adapter | ||
1976 | * @p: the port | ||
1977 | * | ||
1978 | * Ensures that current Rx processing on any of the queues associated with | ||
1979 | * the given port completes before returning. We do this by acquiring and | ||
1980 | * releasing the locks of the response queues associated with the port. | ||
1981 | */ | ||
1982 | static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p) | ||
1983 | { | ||
1984 | int i; | ||
1985 | |||
1986 | for (i = 0; i < p->nqsets; i++) { | ||
1987 | struct sge_rspq *q = &adap->sge.qs[i + p->first_qset].rspq; | ||
1988 | |||
1989 | spin_lock_irq(&q->lock); | ||
1990 | spin_unlock_irq(&q->lock); | ||
1991 | } | ||
1992 | } | ||
1993 | |||
1994 | static void vlan_rx_register(struct net_device *dev, struct vlan_group *grp) | ||
1995 | { | ||
1996 | struct adapter *adapter = dev->priv; | ||
1997 | struct port_info *pi = netdev_priv(dev); | ||
1998 | |||
1999 | pi->vlan_grp = grp; | ||
2000 | if (adapter->params.rev > 0) | ||
2001 | t3_set_vlan_accel(adapter, 1 << pi->port_id, grp != NULL); | ||
2002 | else { | ||
2003 | /* single control for all ports */ | ||
2004 | unsigned int i, have_vlans = 0; | ||
2005 | for_each_port(adapter, i) | ||
2006 | have_vlans |= adap2pinfo(adapter, i)->vlan_grp != NULL; | ||
2007 | |||
2008 | t3_set_vlan_accel(adapter, 1, have_vlans); | ||
2009 | } | ||
2010 | t3_synchronize_rx(adapter, pi); | ||
2011 | } | ||
2012 | |||
2013 | static void vlan_rx_kill_vid(struct net_device *dev, unsigned short vid) | ||
2014 | { | ||
2015 | /* nothing */ | ||
2016 | } | ||
2017 | |||
2018 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
2019 | static void cxgb_netpoll(struct net_device *dev) | ||
2020 | { | ||
2021 | struct adapter *adapter = dev->priv; | ||
2022 | struct sge_qset *qs = dev2qset(dev); | ||
2023 | |||
2024 | t3_intr_handler(adapter, qs->rspq.polling) (adapter->pdev->irq, | ||
2025 | adapter); | ||
2026 | } | ||
2027 | #endif | ||
2028 | |||
2029 | /* | ||
2030 | * Periodic accumulation of MAC statistics. | ||
2031 | */ | ||
2032 | static void mac_stats_update(struct adapter *adapter) | ||
2033 | { | ||
2034 | int i; | ||
2035 | |||
2036 | for_each_port(adapter, i) { | ||
2037 | struct net_device *dev = adapter->port[i]; | ||
2038 | struct port_info *p = netdev_priv(dev); | ||
2039 | |||
2040 | if (netif_running(dev)) { | ||
2041 | spin_lock(&adapter->stats_lock); | ||
2042 | t3_mac_update_stats(&p->mac); | ||
2043 | spin_unlock(&adapter->stats_lock); | ||
2044 | } | ||
2045 | } | ||
2046 | } | ||
2047 | |||
2048 | static void check_link_status(struct adapter *adapter) | ||
2049 | { | ||
2050 | int i; | ||
2051 | |||
2052 | for_each_port(adapter, i) { | ||
2053 | struct net_device *dev = adapter->port[i]; | ||
2054 | struct port_info *p = netdev_priv(dev); | ||
2055 | |||
2056 | if (!(p->port_type->caps & SUPPORTED_IRQ) && netif_running(dev)) | ||
2057 | t3_link_changed(adapter, i); | ||
2058 | } | ||
2059 | } | ||
2060 | |||
2061 | static void t3_adap_check_task(struct work_struct *work) | ||
2062 | { | ||
2063 | struct adapter *adapter = container_of(work, struct adapter, | ||
2064 | adap_check_task.work); | ||
2065 | const struct adapter_params *p = &adapter->params; | ||
2066 | |||
2067 | adapter->check_task_cnt++; | ||
2068 | |||
2069 | /* Check link status for PHYs without interrupts */ | ||
2070 | if (p->linkpoll_period) | ||
2071 | check_link_status(adapter); | ||
2072 | |||
2073 | /* Accumulate MAC stats if needed */ | ||
2074 | if (!p->linkpoll_period || | ||
2075 | (adapter->check_task_cnt * p->linkpoll_period) / 10 >= | ||
2076 | p->stats_update_period) { | ||
2077 | mac_stats_update(adapter); | ||
2078 | adapter->check_task_cnt = 0; | ||
2079 | } | ||
2080 | |||
2081 | /* Schedule the next check update if any port is active. */ | ||
2082 | spin_lock(&adapter->work_lock); | ||
2083 | if (adapter->open_device_map & PORT_MASK) | ||
2084 | schedule_chk_task(adapter); | ||
2085 | spin_unlock(&adapter->work_lock); | ||
2086 | } | ||
2087 | |||
2088 | /* | ||
2089 | * Processes external (PHY) interrupts in process context. | ||
2090 | */ | ||
2091 | static void ext_intr_task(struct work_struct *work) | ||
2092 | { | ||
2093 | struct adapter *adapter = container_of(work, struct adapter, | ||
2094 | ext_intr_handler_task); | ||
2095 | |||
2096 | t3_phy_intr_handler(adapter); | ||
2097 | |||
2098 | /* Now reenable external interrupts */ | ||
2099 | spin_lock_irq(&adapter->work_lock); | ||
2100 | if (adapter->slow_intr_mask) { | ||
2101 | adapter->slow_intr_mask |= F_T3DBG; | ||
2102 | t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG); | ||
2103 | t3_write_reg(adapter, A_PL_INT_ENABLE0, | ||
2104 | adapter->slow_intr_mask); | ||
2105 | } | ||
2106 | spin_unlock_irq(&adapter->work_lock); | ||
2107 | } | ||
2108 | |||
2109 | /* | ||
2110 | * Interrupt-context handler for external (PHY) interrupts. | ||
2111 | */ | ||
2112 | void t3_os_ext_intr_handler(struct adapter *adapter) | ||
2113 | { | ||
2114 | /* | ||
2115 | * Schedule a task to handle external interrupts as they may be slow | ||
2116 | * and we use a mutex to protect MDIO registers. We disable PHY | ||
2117 | * interrupts in the meantime and let the task reenable them when | ||
2118 | * it's done. | ||
2119 | */ | ||
2120 | spin_lock(&adapter->work_lock); | ||
2121 | if (adapter->slow_intr_mask) { | ||
2122 | adapter->slow_intr_mask &= ~F_T3DBG; | ||
2123 | t3_write_reg(adapter, A_PL_INT_ENABLE0, | ||
2124 | adapter->slow_intr_mask); | ||
2125 | queue_work(cxgb3_wq, &adapter->ext_intr_handler_task); | ||
2126 | } | ||
2127 | spin_unlock(&adapter->work_lock); | ||
2128 | } | ||
2129 | |||
2130 | void t3_fatal_err(struct adapter *adapter) | ||
2131 | { | ||
2132 | unsigned int fw_status[4]; | ||
2133 | |||
2134 | if (adapter->flags & FULL_INIT_DONE) { | ||
2135 | t3_sge_stop(adapter); | ||
2136 | t3_intr_disable(adapter); | ||
2137 | } | ||
2138 | CH_ALERT(adapter, "encountered fatal error, operation suspended\n"); | ||
2139 | if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status)) | ||
2140 | CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n", | ||
2141 | fw_status[0], fw_status[1], | ||
2142 | fw_status[2], fw_status[3]); | ||
2143 | |||
2144 | } | ||
2145 | |||
2146 | static int __devinit cxgb_enable_msix(struct adapter *adap) | ||
2147 | { | ||
2148 | struct msix_entry entries[SGE_QSETS + 1]; | ||
2149 | int i, err; | ||
2150 | |||
2151 | for (i = 0; i < ARRAY_SIZE(entries); ++i) | ||
2152 | entries[i].entry = i; | ||
2153 | |||
2154 | err = pci_enable_msix(adap->pdev, entries, ARRAY_SIZE(entries)); | ||
2155 | if (!err) { | ||
2156 | for (i = 0; i < ARRAY_SIZE(entries); ++i) | ||
2157 | adap->msix_info[i].vec = entries[i].vector; | ||
2158 | } else if (err > 0) | ||
2159 | dev_info(&adap->pdev->dev, | ||
2160 | "only %d MSI-X vectors left, not using MSI-X\n", err); | ||
2161 | return err; | ||
2162 | } | ||
2163 | |||
2164 | static void __devinit print_port_info(struct adapter *adap, | ||
2165 | const struct adapter_info *ai) | ||
2166 | { | ||
2167 | static const char *pci_variant[] = { | ||
2168 | "PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express" | ||
2169 | }; | ||
2170 | |||
2171 | int i; | ||
2172 | char buf[80]; | ||
2173 | |||
2174 | if (is_pcie(adap)) | ||
2175 | snprintf(buf, sizeof(buf), "%s x%d", | ||
2176 | pci_variant[adap->params.pci.variant], | ||
2177 | adap->params.pci.width); | ||
2178 | else | ||
2179 | snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit", | ||
2180 | pci_variant[adap->params.pci.variant], | ||
2181 | adap->params.pci.speed, adap->params.pci.width); | ||
2182 | |||
2183 | for_each_port(adap, i) { | ||
2184 | struct net_device *dev = adap->port[i]; | ||
2185 | const struct port_info *pi = netdev_priv(dev); | ||
2186 | |||
2187 | if (!test_bit(i, &adap->registered_device_map)) | ||
2188 | continue; | ||
2189 | printk(KERN_INFO "%s: %s %s RNIC (rev %d) %s%s\n", | ||
2190 | dev->name, ai->desc, pi->port_type->desc, | ||
2191 | adap->params.rev, buf, | ||
2192 | (adap->flags & USING_MSIX) ? " MSI-X" : | ||
2193 | (adap->flags & USING_MSI) ? " MSI" : ""); | ||
2194 | if (adap->name == dev->name && adap->params.vpd.mclk) | ||
2195 | printk(KERN_INFO "%s: %uMB CM, %uMB PMTX, %uMB PMRX\n", | ||
2196 | adap->name, t3_mc7_size(&adap->cm) >> 20, | ||
2197 | t3_mc7_size(&adap->pmtx) >> 20, | ||
2198 | t3_mc7_size(&adap->pmrx) >> 20); | ||
2199 | } | ||
2200 | } | ||
2201 | |||
2202 | static int __devinit init_one(struct pci_dev *pdev, | ||
2203 | const struct pci_device_id *ent) | ||
2204 | { | ||
2205 | static int version_printed; | ||
2206 | |||
2207 | int i, err, pci_using_dac = 0; | ||
2208 | unsigned long mmio_start, mmio_len; | ||
2209 | const struct adapter_info *ai; | ||
2210 | struct adapter *adapter = NULL; | ||
2211 | struct port_info *pi; | ||
2212 | |||
2213 | if (!version_printed) { | ||
2214 | printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); | ||
2215 | ++version_printed; | ||
2216 | } | ||
2217 | |||
2218 | if (!cxgb3_wq) { | ||
2219 | cxgb3_wq = create_singlethread_workqueue(DRV_NAME); | ||
2220 | if (!cxgb3_wq) { | ||
2221 | printk(KERN_ERR DRV_NAME | ||
2222 | ": cannot initialize work queue\n"); | ||
2223 | return -ENOMEM; | ||
2224 | } | ||
2225 | } | ||
2226 | |||
2227 | err = pci_request_regions(pdev, DRV_NAME); | ||
2228 | if (err) { | ||
2229 | /* Just info, some other driver may have claimed the device. */ | ||
2230 | dev_info(&pdev->dev, "cannot obtain PCI resources\n"); | ||
2231 | return err; | ||
2232 | } | ||
2233 | |||
2234 | err = pci_enable_device(pdev); | ||
2235 | if (err) { | ||
2236 | dev_err(&pdev->dev, "cannot enable PCI device\n"); | ||
2237 | goto out_release_regions; | ||
2238 | } | ||
2239 | |||
2240 | if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) { | ||
2241 | pci_using_dac = 1; | ||
2242 | err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK); | ||
2243 | if (err) { | ||
2244 | dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " | ||
2245 | "coherent allocations\n"); | ||
2246 | goto out_disable_device; | ||
2247 | } | ||
2248 | } else if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) != 0) { | ||
2249 | dev_err(&pdev->dev, "no usable DMA configuration\n"); | ||
2250 | goto out_disable_device; | ||
2251 | } | ||
2252 | |||
2253 | pci_set_master(pdev); | ||
2254 | |||
2255 | mmio_start = pci_resource_start(pdev, 0); | ||
2256 | mmio_len = pci_resource_len(pdev, 0); | ||
2257 | ai = t3_get_adapter_info(ent->driver_data); | ||
2258 | |||
2259 | adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); | ||
2260 | if (!adapter) { | ||
2261 | err = -ENOMEM; | ||
2262 | goto out_disable_device; | ||
2263 | } | ||
2264 | |||
2265 | adapter->regs = ioremap_nocache(mmio_start, mmio_len); | ||
2266 | if (!adapter->regs) { | ||
2267 | dev_err(&pdev->dev, "cannot map device registers\n"); | ||
2268 | err = -ENOMEM; | ||
2269 | goto out_free_adapter; | ||
2270 | } | ||
2271 | |||
2272 | adapter->pdev = pdev; | ||
2273 | adapter->name = pci_name(pdev); | ||
2274 | adapter->msg_enable = dflt_msg_enable; | ||
2275 | adapter->mmio_len = mmio_len; | ||
2276 | |||
2277 | mutex_init(&adapter->mdio_lock); | ||
2278 | spin_lock_init(&adapter->work_lock); | ||
2279 | spin_lock_init(&adapter->stats_lock); | ||
2280 | |||
2281 | INIT_LIST_HEAD(&adapter->adapter_list); | ||
2282 | INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task); | ||
2283 | INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task); | ||
2284 | |||
2285 | for (i = 0; i < ai->nports; ++i) { | ||
2286 | struct net_device *netdev; | ||
2287 | |||
2288 | netdev = alloc_etherdev(sizeof(struct port_info)); | ||
2289 | if (!netdev) { | ||
2290 | err = -ENOMEM; | ||
2291 | goto out_free_dev; | ||
2292 | } | ||
2293 | |||
2294 | SET_MODULE_OWNER(netdev); | ||
2295 | SET_NETDEV_DEV(netdev, &pdev->dev); | ||
2296 | |||
2297 | adapter->port[i] = netdev; | ||
2298 | pi = netdev_priv(netdev); | ||
2299 | pi->rx_csum_offload = 1; | ||
2300 | pi->nqsets = 1; | ||
2301 | pi->first_qset = i; | ||
2302 | pi->activity = 0; | ||
2303 | pi->port_id = i; | ||
2304 | netif_carrier_off(netdev); | ||
2305 | netdev->irq = pdev->irq; | ||
2306 | netdev->mem_start = mmio_start; | ||
2307 | netdev->mem_end = mmio_start + mmio_len - 1; | ||
2308 | netdev->priv = adapter; | ||
2309 | netdev->features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO; | ||
2310 | netdev->features |= NETIF_F_LLTX; | ||
2311 | if (pci_using_dac) | ||
2312 | netdev->features |= NETIF_F_HIGHDMA; | ||
2313 | |||
2314 | netdev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; | ||
2315 | netdev->vlan_rx_register = vlan_rx_register; | ||
2316 | netdev->vlan_rx_kill_vid = vlan_rx_kill_vid; | ||
2317 | |||
2318 | netdev->open = cxgb_open; | ||
2319 | netdev->stop = cxgb_close; | ||
2320 | netdev->hard_start_xmit = t3_eth_xmit; | ||
2321 | netdev->get_stats = cxgb_get_stats; | ||
2322 | netdev->set_multicast_list = cxgb_set_rxmode; | ||
2323 | netdev->do_ioctl = cxgb_ioctl; | ||
2324 | netdev->change_mtu = cxgb_change_mtu; | ||
2325 | netdev->set_mac_address = cxgb_set_mac_addr; | ||
2326 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
2327 | netdev->poll_controller = cxgb_netpoll; | ||
2328 | #endif | ||
2329 | netdev->weight = 64; | ||
2330 | |||
2331 | SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops); | ||
2332 | } | ||
2333 | |||
2334 | pci_set_drvdata(pdev, adapter->port[0]); | ||
2335 | if (t3_prep_adapter(adapter, ai, 1) < 0) { | ||
2336 | err = -ENODEV; | ||
2337 | goto out_free_dev; | ||
2338 | } | ||
2339 | |||
2340 | /* | ||
2341 | * The card is now ready to go. If any errors occur during device | ||
2342 | * registration we do not fail the whole card but rather proceed only | ||
2343 | * with the ports we manage to register successfully. However we must | ||
2344 | * register at least one net device. | ||
2345 | */ | ||
2346 | for_each_port(adapter, i) { | ||
2347 | err = register_netdev(adapter->port[i]); | ||
2348 | if (err) | ||
2349 | dev_warn(&pdev->dev, | ||
2350 | "cannot register net device %s, skipping\n", | ||
2351 | adapter->port[i]->name); | ||
2352 | else { | ||
2353 | /* | ||
2354 | * Change the name we use for messages to the name of | ||
2355 | * the first successfully registered interface. | ||
2356 | */ | ||
2357 | if (!adapter->registered_device_map) | ||
2358 | adapter->name = adapter->port[i]->name; | ||
2359 | |||
2360 | __set_bit(i, &adapter->registered_device_map); | ||
2361 | } | ||
2362 | } | ||
2363 | if (!adapter->registered_device_map) { | ||
2364 | dev_err(&pdev->dev, "could not register any net devices\n"); | ||
2365 | goto out_free_dev; | ||
2366 | } | ||
2367 | |||
2368 | /* Driver's ready. Reflect it on LEDs */ | ||
2369 | t3_led_ready(adapter); | ||
2370 | |||
2371 | if (is_offload(adapter)) { | ||
2372 | __set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map); | ||
2373 | cxgb3_adapter_ofld(adapter); | ||
2374 | } | ||
2375 | |||
2376 | /* See what interrupts we'll be using */ | ||
2377 | if (msi > 1 && cxgb_enable_msix(adapter) == 0) | ||
2378 | adapter->flags |= USING_MSIX; | ||
2379 | else if (msi > 0 && pci_enable_msi(pdev) == 0) | ||
2380 | adapter->flags |= USING_MSI; | ||
2381 | |||
2382 | err = sysfs_create_group(&adapter->port[0]->class_dev.kobj, | ||
2383 | &cxgb3_attr_group); | ||
2384 | |||
2385 | print_port_info(adapter, ai); | ||
2386 | return 0; | ||
2387 | |||
2388 | out_free_dev: | ||
2389 | iounmap(adapter->regs); | ||
2390 | for (i = ai->nports - 1; i >= 0; --i) | ||
2391 | if (adapter->port[i]) | ||
2392 | free_netdev(adapter->port[i]); | ||
2393 | |||
2394 | out_free_adapter: | ||
2395 | kfree(adapter); | ||
2396 | |||
2397 | out_disable_device: | ||
2398 | pci_disable_device(pdev); | ||
2399 | out_release_regions: | ||
2400 | pci_release_regions(pdev); | ||
2401 | pci_set_drvdata(pdev, NULL); | ||
2402 | return err; | ||
2403 | } | ||
2404 | |||
2405 | static void __devexit remove_one(struct pci_dev *pdev) | ||
2406 | { | ||
2407 | struct net_device *dev = pci_get_drvdata(pdev); | ||
2408 | |||
2409 | if (dev) { | ||
2410 | int i; | ||
2411 | struct adapter *adapter = dev->priv; | ||
2412 | |||
2413 | t3_sge_stop(adapter); | ||
2414 | sysfs_remove_group(&adapter->port[0]->class_dev.kobj, | ||
2415 | &cxgb3_attr_group); | ||
2416 | |||
2417 | for_each_port(adapter, i) | ||
2418 | if (test_bit(i, &adapter->registered_device_map)) | ||
2419 | unregister_netdev(adapter->port[i]); | ||
2420 | |||
2421 | if (is_offload(adapter)) { | ||
2422 | cxgb3_adapter_unofld(adapter); | ||
2423 | if (test_bit(OFFLOAD_DEVMAP_BIT, | ||
2424 | &adapter->open_device_map)) | ||
2425 | offload_close(&adapter->tdev); | ||
2426 | } | ||
2427 | |||
2428 | t3_free_sge_resources(adapter); | ||
2429 | cxgb_disable_msi(adapter); | ||
2430 | |||
2431 | for (i = 0; i < ARRAY_SIZE(adapter->dummy_netdev); i++) | ||
2432 | if (adapter->dummy_netdev[i]) { | ||
2433 | free_netdev(adapter->dummy_netdev[i]); | ||
2434 | adapter->dummy_netdev[i] = NULL; | ||
2435 | } | ||
2436 | |||
2437 | for_each_port(adapter, i) | ||
2438 | if (adapter->port[i]) | ||
2439 | free_netdev(adapter->port[i]); | ||
2440 | |||
2441 | iounmap(adapter->regs); | ||
2442 | kfree(adapter); | ||
2443 | pci_release_regions(pdev); | ||
2444 | pci_disable_device(pdev); | ||
2445 | pci_set_drvdata(pdev, NULL); | ||
2446 | } | ||
2447 | } | ||
2448 | |||
2449 | static struct pci_driver driver = { | ||
2450 | .name = DRV_NAME, | ||
2451 | .id_table = cxgb3_pci_tbl, | ||
2452 | .probe = init_one, | ||
2453 | .remove = __devexit_p(remove_one), | ||
2454 | }; | ||
2455 | |||
2456 | static int __init cxgb3_init_module(void) | ||
2457 | { | ||
2458 | int ret; | ||
2459 | |||
2460 | cxgb3_offload_init(); | ||
2461 | |||
2462 | ret = pci_register_driver(&driver); | ||
2463 | return ret; | ||
2464 | } | ||
2465 | |||
2466 | static void __exit cxgb3_cleanup_module(void) | ||
2467 | { | ||
2468 | pci_unregister_driver(&driver); | ||
2469 | if (cxgb3_wq) | ||
2470 | destroy_workqueue(cxgb3_wq); | ||
2471 | } | ||
2472 | |||
2473 | module_init(cxgb3_init_module); | ||
2474 | module_exit(cxgb3_cleanup_module); | ||
diff --git a/drivers/net/cxgb3/cxgb3_offload.c b/drivers/net/cxgb3/cxgb3_offload.c new file mode 100644 index 000000000000..3abd4d25c3b8 --- /dev/null +++ b/drivers/net/cxgb3/cxgb3_offload.c | |||
@@ -0,0 +1,1222 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2006 Chelsio, Inc. All rights reserved. | ||
3 | * Copyright (c) 2006 Open Grid Computing, Inc. All rights reserved. | ||
4 | * | ||
5 | * This software is available to you under a choice of one of two | ||
6 | * licenses. You may choose to be licensed under the terms of the GNU | ||
7 | * General Public License (GPL) Version 2, available from the file | ||
8 | * COPYING in the main directory of this source tree, or the | ||
9 | * OpenIB.org BSD license below: | ||
10 | * | ||
11 | * Redistribution and use in source and binary forms, with or | ||
12 | * without modification, are permitted provided that the following | ||
13 | * conditions are met: | ||
14 | * | ||
15 | * - Redistributions of source code must retain the above | ||
16 | * copyright notice, this list of conditions and the following | ||
17 | * disclaimer. | ||
18 | * | ||
19 | * - Redistributions in binary form must reproduce the above | ||
20 | * copyright notice, this list of conditions and the following | ||
21 | * disclaimer in the documentation and/or other materials | ||
22 | * provided with the distribution. | ||
23 | * | ||
24 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||
25 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
26 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
27 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | ||
28 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | ||
29 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | ||
30 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
31 | * SOFTWARE. | ||
32 | */ | ||
33 | |||
34 | #include <linux/list.h> | ||
35 | #include <net/neighbour.h> | ||
36 | #include <linux/notifier.h> | ||
37 | #include <asm/atomic.h> | ||
38 | #include <linux/proc_fs.h> | ||
39 | #include <linux/if_vlan.h> | ||
40 | #include <net/netevent.h> | ||
41 | #include <linux/highmem.h> | ||
42 | #include <linux/vmalloc.h> | ||
43 | |||
44 | #include "common.h" | ||
45 | #include "regs.h" | ||
46 | #include "cxgb3_ioctl.h" | ||
47 | #include "cxgb3_ctl_defs.h" | ||
48 | #include "cxgb3_defs.h" | ||
49 | #include "l2t.h" | ||
50 | #include "firmware_exports.h" | ||
51 | #include "cxgb3_offload.h" | ||
52 | |||
53 | static LIST_HEAD(client_list); | ||
54 | static LIST_HEAD(ofld_dev_list); | ||
55 | static DEFINE_MUTEX(cxgb3_db_lock); | ||
56 | |||
57 | static DEFINE_RWLOCK(adapter_list_lock); | ||
58 | static LIST_HEAD(adapter_list); | ||
59 | |||
60 | static const unsigned int MAX_ATIDS = 64 * 1024; | ||
61 | static const unsigned int ATID_BASE = 0x100000; | ||
62 | |||
63 | static inline int offload_activated(struct t3cdev *tdev) | ||
64 | { | ||
65 | const struct adapter *adapter = tdev2adap(tdev); | ||
66 | |||
67 | return (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)); | ||
68 | } | ||
69 | |||
70 | /** | ||
71 | * cxgb3_register_client - register an offload client | ||
72 | * @client: the client | ||
73 | * | ||
74 | * Add the client to the client list, | ||
75 | * and call backs the client for each activated offload device | ||
76 | */ | ||
77 | void cxgb3_register_client(struct cxgb3_client *client) | ||
78 | { | ||
79 | struct t3cdev *tdev; | ||
80 | |||
81 | mutex_lock(&cxgb3_db_lock); | ||
82 | list_add_tail(&client->client_list, &client_list); | ||
83 | |||
84 | if (client->add) { | ||
85 | list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) { | ||
86 | if (offload_activated(tdev)) | ||
87 | client->add(tdev); | ||
88 | } | ||
89 | } | ||
90 | mutex_unlock(&cxgb3_db_lock); | ||
91 | } | ||
92 | |||
93 | EXPORT_SYMBOL(cxgb3_register_client); | ||
94 | |||
95 | /** | ||
96 | * cxgb3_unregister_client - unregister an offload client | ||
97 | * @client: the client | ||
98 | * | ||
99 | * Remove the client to the client list, | ||
100 | * and call backs the client for each activated offload device. | ||
101 | */ | ||
102 | void cxgb3_unregister_client(struct cxgb3_client *client) | ||
103 | { | ||
104 | struct t3cdev *tdev; | ||
105 | |||
106 | mutex_lock(&cxgb3_db_lock); | ||
107 | list_del(&client->client_list); | ||
108 | |||
109 | if (client->remove) { | ||
110 | list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) { | ||
111 | if (offload_activated(tdev)) | ||
112 | client->remove(tdev); | ||
113 | } | ||
114 | } | ||
115 | mutex_unlock(&cxgb3_db_lock); | ||
116 | } | ||
117 | |||
118 | EXPORT_SYMBOL(cxgb3_unregister_client); | ||
119 | |||
120 | /** | ||
121 | * cxgb3_add_clients - activate registered clients for an offload device | ||
122 | * @tdev: the offload device | ||
123 | * | ||
124 | * Call backs all registered clients once a offload device is activated | ||
125 | */ | ||
126 | void cxgb3_add_clients(struct t3cdev *tdev) | ||
127 | { | ||
128 | struct cxgb3_client *client; | ||
129 | |||
130 | mutex_lock(&cxgb3_db_lock); | ||
131 | list_for_each_entry(client, &client_list, client_list) { | ||
132 | if (client->add) | ||
133 | client->add(tdev); | ||
134 | } | ||
135 | mutex_unlock(&cxgb3_db_lock); | ||
136 | } | ||
137 | |||
138 | /** | ||
139 | * cxgb3_remove_clients - deactivates registered clients | ||
140 | * for an offload device | ||
141 | * @tdev: the offload device | ||
142 | * | ||
143 | * Call backs all registered clients once a offload device is deactivated | ||
144 | */ | ||
145 | void cxgb3_remove_clients(struct t3cdev *tdev) | ||
146 | { | ||
147 | struct cxgb3_client *client; | ||
148 | |||
149 | mutex_lock(&cxgb3_db_lock); | ||
150 | list_for_each_entry(client, &client_list, client_list) { | ||
151 | if (client->remove) | ||
152 | client->remove(tdev); | ||
153 | } | ||
154 | mutex_unlock(&cxgb3_db_lock); | ||
155 | } | ||
156 | |||
157 | static struct net_device *get_iff_from_mac(struct adapter *adapter, | ||
158 | const unsigned char *mac, | ||
159 | unsigned int vlan) | ||
160 | { | ||
161 | int i; | ||
162 | |||
163 | for_each_port(adapter, i) { | ||
164 | const struct vlan_group *grp; | ||
165 | struct net_device *dev = adapter->port[i]; | ||
166 | const struct port_info *p = netdev_priv(dev); | ||
167 | |||
168 | if (!memcmp(dev->dev_addr, mac, ETH_ALEN)) { | ||
169 | if (vlan && vlan != VLAN_VID_MASK) { | ||
170 | grp = p->vlan_grp; | ||
171 | dev = grp ? grp->vlan_devices[vlan] : NULL; | ||
172 | } else | ||
173 | while (dev->master) | ||
174 | dev = dev->master; | ||
175 | return dev; | ||
176 | } | ||
177 | } | ||
178 | return NULL; | ||
179 | } | ||
180 | |||
181 | static int cxgb_ulp_iscsi_ctl(struct adapter *adapter, unsigned int req, | ||
182 | void *data) | ||
183 | { | ||
184 | int ret = 0; | ||
185 | struct ulp_iscsi_info *uiip = data; | ||
186 | |||
187 | switch (req) { | ||
188 | case ULP_ISCSI_GET_PARAMS: | ||
189 | uiip->pdev = adapter->pdev; | ||
190 | uiip->llimit = t3_read_reg(adapter, A_ULPRX_ISCSI_LLIMIT); | ||
191 | uiip->ulimit = t3_read_reg(adapter, A_ULPRX_ISCSI_ULIMIT); | ||
192 | uiip->tagmask = t3_read_reg(adapter, A_ULPRX_ISCSI_TAGMASK); | ||
193 | /* | ||
194 | * On tx, the iscsi pdu has to be <= tx page size and has to | ||
195 | * fit into the Tx PM FIFO. | ||
196 | */ | ||
197 | uiip->max_txsz = min(adapter->params.tp.tx_pg_size, | ||
198 | t3_read_reg(adapter, A_PM1_TX_CFG) >> 17); | ||
199 | /* on rx, the iscsi pdu has to be < rx page size and the | ||
200 | whole pdu + cpl headers has to fit into one sge buffer */ | ||
201 | uiip->max_rxsz = min_t(unsigned int, | ||
202 | adapter->params.tp.rx_pg_size, | ||
203 | (adapter->sge.qs[0].fl[1].buf_size - | ||
204 | sizeof(struct cpl_rx_data) * 2 - | ||
205 | sizeof(struct cpl_rx_data_ddp))); | ||
206 | break; | ||
207 | case ULP_ISCSI_SET_PARAMS: | ||
208 | t3_write_reg(adapter, A_ULPRX_ISCSI_TAGMASK, uiip->tagmask); | ||
209 | break; | ||
210 | default: | ||
211 | ret = -EOPNOTSUPP; | ||
212 | } | ||
213 | return ret; | ||
214 | } | ||
215 | |||
216 | /* Response queue used for RDMA events. */ | ||
217 | #define ASYNC_NOTIF_RSPQ 0 | ||
218 | |||
219 | static int cxgb_rdma_ctl(struct adapter *adapter, unsigned int req, void *data) | ||
220 | { | ||
221 | int ret = 0; | ||
222 | |||
223 | switch (req) { | ||
224 | case RDMA_GET_PARAMS:{ | ||
225 | struct rdma_info *req = data; | ||
226 | struct pci_dev *pdev = adapter->pdev; | ||
227 | |||
228 | req->udbell_physbase = pci_resource_start(pdev, 2); | ||
229 | req->udbell_len = pci_resource_len(pdev, 2); | ||
230 | req->tpt_base = | ||
231 | t3_read_reg(adapter, A_ULPTX_TPT_LLIMIT); | ||
232 | req->tpt_top = t3_read_reg(adapter, A_ULPTX_TPT_ULIMIT); | ||
233 | req->pbl_base = | ||
234 | t3_read_reg(adapter, A_ULPTX_PBL_LLIMIT); | ||
235 | req->pbl_top = t3_read_reg(adapter, A_ULPTX_PBL_ULIMIT); | ||
236 | req->rqt_base = t3_read_reg(adapter, A_ULPRX_RQ_LLIMIT); | ||
237 | req->rqt_top = t3_read_reg(adapter, A_ULPRX_RQ_ULIMIT); | ||
238 | req->kdb_addr = adapter->regs + A_SG_KDOORBELL; | ||
239 | req->pdev = pdev; | ||
240 | break; | ||
241 | } | ||
242 | case RDMA_CQ_OP:{ | ||
243 | unsigned long flags; | ||
244 | struct rdma_cq_op *req = data; | ||
245 | |||
246 | /* may be called in any context */ | ||
247 | spin_lock_irqsave(&adapter->sge.reg_lock, flags); | ||
248 | ret = t3_sge_cqcntxt_op(adapter, req->id, req->op, | ||
249 | req->credits); | ||
250 | spin_unlock_irqrestore(&adapter->sge.reg_lock, flags); | ||
251 | break; | ||
252 | } | ||
253 | case RDMA_GET_MEM:{ | ||
254 | struct ch_mem_range *t = data; | ||
255 | struct mc7 *mem; | ||
256 | |||
257 | if ((t->addr & 7) || (t->len & 7)) | ||
258 | return -EINVAL; | ||
259 | if (t->mem_id == MEM_CM) | ||
260 | mem = &adapter->cm; | ||
261 | else if (t->mem_id == MEM_PMRX) | ||
262 | mem = &adapter->pmrx; | ||
263 | else if (t->mem_id == MEM_PMTX) | ||
264 | mem = &adapter->pmtx; | ||
265 | else | ||
266 | return -EINVAL; | ||
267 | |||
268 | ret = | ||
269 | t3_mc7_bd_read(mem, t->addr / 8, t->len / 8, | ||
270 | (u64 *) t->buf); | ||
271 | if (ret) | ||
272 | return ret; | ||
273 | break; | ||
274 | } | ||
275 | case RDMA_CQ_SETUP:{ | ||
276 | struct rdma_cq_setup *req = data; | ||
277 | |||
278 | spin_lock_irq(&adapter->sge.reg_lock); | ||
279 | ret = | ||
280 | t3_sge_init_cqcntxt(adapter, req->id, | ||
281 | req->base_addr, req->size, | ||
282 | ASYNC_NOTIF_RSPQ, | ||
283 | req->ovfl_mode, req->credits, | ||
284 | req->credit_thres); | ||
285 | spin_unlock_irq(&adapter->sge.reg_lock); | ||
286 | break; | ||
287 | } | ||
288 | case RDMA_CQ_DISABLE: | ||
289 | spin_lock_irq(&adapter->sge.reg_lock); | ||
290 | ret = t3_sge_disable_cqcntxt(adapter, *(unsigned int *)data); | ||
291 | spin_unlock_irq(&adapter->sge.reg_lock); | ||
292 | break; | ||
293 | case RDMA_CTRL_QP_SETUP:{ | ||
294 | struct rdma_ctrlqp_setup *req = data; | ||
295 | |||
296 | spin_lock_irq(&adapter->sge.reg_lock); | ||
297 | ret = t3_sge_init_ecntxt(adapter, FW_RI_SGEEC_START, 0, | ||
298 | SGE_CNTXT_RDMA, | ||
299 | ASYNC_NOTIF_RSPQ, | ||
300 | req->base_addr, req->size, | ||
301 | FW_RI_TID_START, 1, 0); | ||
302 | spin_unlock_irq(&adapter->sge.reg_lock); | ||
303 | break; | ||
304 | } | ||
305 | default: | ||
306 | ret = -EOPNOTSUPP; | ||
307 | } | ||
308 | return ret; | ||
309 | } | ||
310 | |||
311 | static int cxgb_offload_ctl(struct t3cdev *tdev, unsigned int req, void *data) | ||
312 | { | ||
313 | struct adapter *adapter = tdev2adap(tdev); | ||
314 | struct tid_range *tid; | ||
315 | struct mtutab *mtup; | ||
316 | struct iff_mac *iffmacp; | ||
317 | struct ddp_params *ddpp; | ||
318 | struct adap_ports *ports; | ||
319 | int i; | ||
320 | |||
321 | switch (req) { | ||
322 | case GET_MAX_OUTSTANDING_WR: | ||
323 | *(unsigned int *)data = FW_WR_NUM; | ||
324 | break; | ||
325 | case GET_WR_LEN: | ||
326 | *(unsigned int *)data = WR_FLITS; | ||
327 | break; | ||
328 | case GET_TX_MAX_CHUNK: | ||
329 | *(unsigned int *)data = 1 << 20; /* 1MB */ | ||
330 | break; | ||
331 | case GET_TID_RANGE: | ||
332 | tid = data; | ||
333 | tid->num = t3_mc5_size(&adapter->mc5) - | ||
334 | adapter->params.mc5.nroutes - | ||
335 | adapter->params.mc5.nfilters - adapter->params.mc5.nservers; | ||
336 | tid->base = 0; | ||
337 | break; | ||
338 | case GET_STID_RANGE: | ||
339 | tid = data; | ||
340 | tid->num = adapter->params.mc5.nservers; | ||
341 | tid->base = t3_mc5_size(&adapter->mc5) - tid->num - | ||
342 | adapter->params.mc5.nfilters - adapter->params.mc5.nroutes; | ||
343 | break; | ||
344 | case GET_L2T_CAPACITY: | ||
345 | *(unsigned int *)data = 2048; | ||
346 | break; | ||
347 | case GET_MTUS: | ||
348 | mtup = data; | ||
349 | mtup->size = NMTUS; | ||
350 | mtup->mtus = adapter->params.mtus; | ||
351 | break; | ||
352 | case GET_IFF_FROM_MAC: | ||
353 | iffmacp = data; | ||
354 | iffmacp->dev = get_iff_from_mac(adapter, iffmacp->mac_addr, | ||
355 | iffmacp->vlan_tag & | ||
356 | VLAN_VID_MASK); | ||
357 | break; | ||
358 | case GET_DDP_PARAMS: | ||
359 | ddpp = data; | ||
360 | ddpp->llimit = t3_read_reg(adapter, A_ULPRX_TDDP_LLIMIT); | ||
361 | ddpp->ulimit = t3_read_reg(adapter, A_ULPRX_TDDP_ULIMIT); | ||
362 | ddpp->tag_mask = t3_read_reg(adapter, A_ULPRX_TDDP_TAGMASK); | ||
363 | break; | ||
364 | case GET_PORTS: | ||
365 | ports = data; | ||
366 | ports->nports = adapter->params.nports; | ||
367 | for_each_port(adapter, i) | ||
368 | ports->lldevs[i] = adapter->port[i]; | ||
369 | break; | ||
370 | case ULP_ISCSI_GET_PARAMS: | ||
371 | case ULP_ISCSI_SET_PARAMS: | ||
372 | if (!offload_running(adapter)) | ||
373 | return -EAGAIN; | ||
374 | return cxgb_ulp_iscsi_ctl(adapter, req, data); | ||
375 | case RDMA_GET_PARAMS: | ||
376 | case RDMA_CQ_OP: | ||
377 | case RDMA_CQ_SETUP: | ||
378 | case RDMA_CQ_DISABLE: | ||
379 | case RDMA_CTRL_QP_SETUP: | ||
380 | case RDMA_GET_MEM: | ||
381 | if (!offload_running(adapter)) | ||
382 | return -EAGAIN; | ||
383 | return cxgb_rdma_ctl(adapter, req, data); | ||
384 | default: | ||
385 | return -EOPNOTSUPP; | ||
386 | } | ||
387 | return 0; | ||
388 | } | ||
389 | |||
390 | /* | ||
391 | * Dummy handler for Rx offload packets in case we get an offload packet before | ||
392 | * proper processing is setup. This complains and drops the packet as it isn't | ||
393 | * normal to get offload packets at this stage. | ||
394 | */ | ||
395 | static int rx_offload_blackhole(struct t3cdev *dev, struct sk_buff **skbs, | ||
396 | int n) | ||
397 | { | ||
398 | CH_ERR(tdev2adap(dev), "%d unexpected offload packets, first data %u\n", | ||
399 | n, ntohl(*(u32 *)skbs[0]->data)); | ||
400 | while (n--) | ||
401 | dev_kfree_skb_any(skbs[n]); | ||
402 | return 0; | ||
403 | } | ||
404 | |||
405 | static void dummy_neigh_update(struct t3cdev *dev, struct neighbour *neigh) | ||
406 | { | ||
407 | } | ||
408 | |||
409 | void cxgb3_set_dummy_ops(struct t3cdev *dev) | ||
410 | { | ||
411 | dev->recv = rx_offload_blackhole; | ||
412 | dev->neigh_update = dummy_neigh_update; | ||
413 | } | ||
414 | |||
415 | /* | ||
416 | * Free an active-open TID. | ||
417 | */ | ||
418 | void *cxgb3_free_atid(struct t3cdev *tdev, int atid) | ||
419 | { | ||
420 | struct tid_info *t = &(T3C_DATA(tdev))->tid_maps; | ||
421 | union active_open_entry *p = atid2entry(t, atid); | ||
422 | void *ctx = p->t3c_tid.ctx; | ||
423 | |||
424 | spin_lock_bh(&t->atid_lock); | ||
425 | p->next = t->afree; | ||
426 | t->afree = p; | ||
427 | t->atids_in_use--; | ||
428 | spin_unlock_bh(&t->atid_lock); | ||
429 | |||
430 | return ctx; | ||
431 | } | ||
432 | |||
433 | EXPORT_SYMBOL(cxgb3_free_atid); | ||
434 | |||
435 | /* | ||
436 | * Free a server TID and return it to the free pool. | ||
437 | */ | ||
438 | void cxgb3_free_stid(struct t3cdev *tdev, int stid) | ||
439 | { | ||
440 | struct tid_info *t = &(T3C_DATA(tdev))->tid_maps; | ||
441 | union listen_entry *p = stid2entry(t, stid); | ||
442 | |||
443 | spin_lock_bh(&t->stid_lock); | ||
444 | p->next = t->sfree; | ||
445 | t->sfree = p; | ||
446 | t->stids_in_use--; | ||
447 | spin_unlock_bh(&t->stid_lock); | ||
448 | } | ||
449 | |||
450 | EXPORT_SYMBOL(cxgb3_free_stid); | ||
451 | |||
452 | void cxgb3_insert_tid(struct t3cdev *tdev, struct cxgb3_client *client, | ||
453 | void *ctx, unsigned int tid) | ||
454 | { | ||
455 | struct tid_info *t = &(T3C_DATA(tdev))->tid_maps; | ||
456 | |||
457 | t->tid_tab[tid].client = client; | ||
458 | t->tid_tab[tid].ctx = ctx; | ||
459 | atomic_inc(&t->tids_in_use); | ||
460 | } | ||
461 | |||
462 | EXPORT_SYMBOL(cxgb3_insert_tid); | ||
463 | |||
464 | /* | ||
465 | * Populate a TID_RELEASE WR. The skb must be already propely sized. | ||
466 | */ | ||
467 | static inline void mk_tid_release(struct sk_buff *skb, unsigned int tid) | ||
468 | { | ||
469 | struct cpl_tid_release *req; | ||
470 | |||
471 | skb->priority = CPL_PRIORITY_SETUP; | ||
472 | req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req)); | ||
473 | req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); | ||
474 | OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); | ||
475 | } | ||
476 | |||
477 | static void t3_process_tid_release_list(struct work_struct *work) | ||
478 | { | ||
479 | struct t3c_data *td = container_of(work, struct t3c_data, | ||
480 | tid_release_task); | ||
481 | struct sk_buff *skb; | ||
482 | struct t3cdev *tdev = td->dev; | ||
483 | |||
484 | |||
485 | spin_lock_bh(&td->tid_release_lock); | ||
486 | while (td->tid_release_list) { | ||
487 | struct t3c_tid_entry *p = td->tid_release_list; | ||
488 | |||
489 | td->tid_release_list = (struct t3c_tid_entry *)p->ctx; | ||
490 | spin_unlock_bh(&td->tid_release_lock); | ||
491 | |||
492 | skb = alloc_skb(sizeof(struct cpl_tid_release), | ||
493 | GFP_KERNEL | __GFP_NOFAIL); | ||
494 | mk_tid_release(skb, p - td->tid_maps.tid_tab); | ||
495 | cxgb3_ofld_send(tdev, skb); | ||
496 | p->ctx = NULL; | ||
497 | spin_lock_bh(&td->tid_release_lock); | ||
498 | } | ||
499 | spin_unlock_bh(&td->tid_release_lock); | ||
500 | } | ||
501 | |||
502 | /* use ctx as a next pointer in the tid release list */ | ||
503 | void cxgb3_queue_tid_release(struct t3cdev *tdev, unsigned int tid) | ||
504 | { | ||
505 | struct t3c_data *td = T3C_DATA(tdev); | ||
506 | struct t3c_tid_entry *p = &td->tid_maps.tid_tab[tid]; | ||
507 | |||
508 | spin_lock_bh(&td->tid_release_lock); | ||
509 | p->ctx = (void *)td->tid_release_list; | ||
510 | td->tid_release_list = p; | ||
511 | if (!p->ctx) | ||
512 | schedule_work(&td->tid_release_task); | ||
513 | spin_unlock_bh(&td->tid_release_lock); | ||
514 | } | ||
515 | |||
516 | EXPORT_SYMBOL(cxgb3_queue_tid_release); | ||
517 | |||
518 | /* | ||
519 | * Remove a tid from the TID table. A client may defer processing its last | ||
520 | * CPL message if it is locked at the time it arrives, and while the message | ||
521 | * sits in the client's backlog the TID may be reused for another connection. | ||
522 | * To handle this we atomically switch the TID association if it still points | ||
523 | * to the original client context. | ||
524 | */ | ||
525 | void cxgb3_remove_tid(struct t3cdev *tdev, void *ctx, unsigned int tid) | ||
526 | { | ||
527 | struct tid_info *t = &(T3C_DATA(tdev))->tid_maps; | ||
528 | |||
529 | BUG_ON(tid >= t->ntids); | ||
530 | if (tdev->type == T3A) | ||
531 | (void)cmpxchg(&t->tid_tab[tid].ctx, ctx, NULL); | ||
532 | else { | ||
533 | struct sk_buff *skb; | ||
534 | |||
535 | skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); | ||
536 | if (likely(skb)) { | ||
537 | mk_tid_release(skb, tid); | ||
538 | cxgb3_ofld_send(tdev, skb); | ||
539 | t->tid_tab[tid].ctx = NULL; | ||
540 | } else | ||
541 | cxgb3_queue_tid_release(tdev, tid); | ||
542 | } | ||
543 | atomic_dec(&t->tids_in_use); | ||
544 | } | ||
545 | |||
546 | EXPORT_SYMBOL(cxgb3_remove_tid); | ||
547 | |||
548 | int cxgb3_alloc_atid(struct t3cdev *tdev, struct cxgb3_client *client, | ||
549 | void *ctx) | ||
550 | { | ||
551 | int atid = -1; | ||
552 | struct tid_info *t = &(T3C_DATA(tdev))->tid_maps; | ||
553 | |||
554 | spin_lock_bh(&t->atid_lock); | ||
555 | if (t->afree) { | ||
556 | union active_open_entry *p = t->afree; | ||
557 | |||
558 | atid = (p - t->atid_tab) + t->atid_base; | ||
559 | t->afree = p->next; | ||
560 | p->t3c_tid.ctx = ctx; | ||
561 | p->t3c_tid.client = client; | ||
562 | t->atids_in_use++; | ||
563 | } | ||
564 | spin_unlock_bh(&t->atid_lock); | ||
565 | return atid; | ||
566 | } | ||
567 | |||
568 | EXPORT_SYMBOL(cxgb3_alloc_atid); | ||
569 | |||
570 | int cxgb3_alloc_stid(struct t3cdev *tdev, struct cxgb3_client *client, | ||
571 | void *ctx) | ||
572 | { | ||
573 | int stid = -1; | ||
574 | struct tid_info *t = &(T3C_DATA(tdev))->tid_maps; | ||
575 | |||
576 | spin_lock_bh(&t->stid_lock); | ||
577 | if (t->sfree) { | ||
578 | union listen_entry *p = t->sfree; | ||
579 | |||
580 | stid = (p - t->stid_tab) + t->stid_base; | ||
581 | t->sfree = p->next; | ||
582 | p->t3c_tid.ctx = ctx; | ||
583 | p->t3c_tid.client = client; | ||
584 | t->stids_in_use++; | ||
585 | } | ||
586 | spin_unlock_bh(&t->stid_lock); | ||
587 | return stid; | ||
588 | } | ||
589 | |||
590 | EXPORT_SYMBOL(cxgb3_alloc_stid); | ||
591 | |||
592 | static int do_smt_write_rpl(struct t3cdev *dev, struct sk_buff *skb) | ||
593 | { | ||
594 | struct cpl_smt_write_rpl *rpl = cplhdr(skb); | ||
595 | |||
596 | if (rpl->status != CPL_ERR_NONE) | ||
597 | printk(KERN_ERR | ||
598 | "Unexpected SMT_WRITE_RPL status %u for entry %u\n", | ||
599 | rpl->status, GET_TID(rpl)); | ||
600 | |||
601 | return CPL_RET_BUF_DONE; | ||
602 | } | ||
603 | |||
604 | static int do_l2t_write_rpl(struct t3cdev *dev, struct sk_buff *skb) | ||
605 | { | ||
606 | struct cpl_l2t_write_rpl *rpl = cplhdr(skb); | ||
607 | |||
608 | if (rpl->status != CPL_ERR_NONE) | ||
609 | printk(KERN_ERR | ||
610 | "Unexpected L2T_WRITE_RPL status %u for entry %u\n", | ||
611 | rpl->status, GET_TID(rpl)); | ||
612 | |||
613 | return CPL_RET_BUF_DONE; | ||
614 | } | ||
615 | |||
616 | static int do_act_open_rpl(struct t3cdev *dev, struct sk_buff *skb) | ||
617 | { | ||
618 | struct cpl_act_open_rpl *rpl = cplhdr(skb); | ||
619 | unsigned int atid = G_TID(ntohl(rpl->atid)); | ||
620 | struct t3c_tid_entry *t3c_tid; | ||
621 | |||
622 | t3c_tid = lookup_atid(&(T3C_DATA(dev))->tid_maps, atid); | ||
623 | if (t3c_tid->ctx && t3c_tid->client && t3c_tid->client->handlers && | ||
624 | t3c_tid->client->handlers[CPL_ACT_OPEN_RPL]) { | ||
625 | return t3c_tid->client->handlers[CPL_ACT_OPEN_RPL] (dev, skb, | ||
626 | t3c_tid-> | ||
627 | ctx); | ||
628 | } else { | ||
629 | printk(KERN_ERR "%s: received clientless CPL command 0x%x\n", | ||
630 | dev->name, CPL_ACT_OPEN_RPL); | ||
631 | return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG; | ||
632 | } | ||
633 | } | ||
634 | |||
635 | static int do_stid_rpl(struct t3cdev *dev, struct sk_buff *skb) | ||
636 | { | ||
637 | union opcode_tid *p = cplhdr(skb); | ||
638 | unsigned int stid = G_TID(ntohl(p->opcode_tid)); | ||
639 | struct t3c_tid_entry *t3c_tid; | ||
640 | |||
641 | t3c_tid = lookup_stid(&(T3C_DATA(dev))->tid_maps, stid); | ||
642 | if (t3c_tid->ctx && t3c_tid->client->handlers && | ||
643 | t3c_tid->client->handlers[p->opcode]) { | ||
644 | return t3c_tid->client->handlers[p->opcode] (dev, skb, | ||
645 | t3c_tid->ctx); | ||
646 | } else { | ||
647 | printk(KERN_ERR "%s: received clientless CPL command 0x%x\n", | ||
648 | dev->name, p->opcode); | ||
649 | return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG; | ||
650 | } | ||
651 | } | ||
652 | |||
653 | static int do_hwtid_rpl(struct t3cdev *dev, struct sk_buff *skb) | ||
654 | { | ||
655 | union opcode_tid *p = cplhdr(skb); | ||
656 | unsigned int hwtid = G_TID(ntohl(p->opcode_tid)); | ||
657 | struct t3c_tid_entry *t3c_tid; | ||
658 | |||
659 | t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid); | ||
660 | if (t3c_tid->ctx && t3c_tid->client->handlers && | ||
661 | t3c_tid->client->handlers[p->opcode]) { | ||
662 | return t3c_tid->client->handlers[p->opcode] | ||
663 | (dev, skb, t3c_tid->ctx); | ||
664 | } else { | ||
665 | printk(KERN_ERR "%s: received clientless CPL command 0x%x\n", | ||
666 | dev->name, p->opcode); | ||
667 | return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG; | ||
668 | } | ||
669 | } | ||
670 | |||
671 | static int do_cr(struct t3cdev *dev, struct sk_buff *skb) | ||
672 | { | ||
673 | struct cpl_pass_accept_req *req = cplhdr(skb); | ||
674 | unsigned int stid = G_PASS_OPEN_TID(ntohl(req->tos_tid)); | ||
675 | struct t3c_tid_entry *t3c_tid; | ||
676 | |||
677 | t3c_tid = lookup_stid(&(T3C_DATA(dev))->tid_maps, stid); | ||
678 | if (t3c_tid->ctx && t3c_tid->client->handlers && | ||
679 | t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]) { | ||
680 | return t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ] | ||
681 | (dev, skb, t3c_tid->ctx); | ||
682 | } else { | ||
683 | printk(KERN_ERR "%s: received clientless CPL command 0x%x\n", | ||
684 | dev->name, CPL_PASS_ACCEPT_REQ); | ||
685 | return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG; | ||
686 | } | ||
687 | } | ||
688 | |||
689 | static int do_abort_req_rss(struct t3cdev *dev, struct sk_buff *skb) | ||
690 | { | ||
691 | union opcode_tid *p = cplhdr(skb); | ||
692 | unsigned int hwtid = G_TID(ntohl(p->opcode_tid)); | ||
693 | struct t3c_tid_entry *t3c_tid; | ||
694 | |||
695 | t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid); | ||
696 | if (t3c_tid->ctx && t3c_tid->client->handlers && | ||
697 | t3c_tid->client->handlers[p->opcode]) { | ||
698 | return t3c_tid->client->handlers[p->opcode] | ||
699 | (dev, skb, t3c_tid->ctx); | ||
700 | } else { | ||
701 | struct cpl_abort_req_rss *req = cplhdr(skb); | ||
702 | struct cpl_abort_rpl *rpl; | ||
703 | |||
704 | struct sk_buff *skb = | ||
705 | alloc_skb(sizeof(struct cpl_abort_rpl), GFP_ATOMIC); | ||
706 | if (!skb) { | ||
707 | printk("do_abort_req_rss: couldn't get skb!\n"); | ||
708 | goto out; | ||
709 | } | ||
710 | skb->priority = CPL_PRIORITY_DATA; | ||
711 | __skb_put(skb, sizeof(struct cpl_abort_rpl)); | ||
712 | rpl = cplhdr(skb); | ||
713 | rpl->wr.wr_hi = | ||
714 | htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL)); | ||
715 | rpl->wr.wr_lo = htonl(V_WR_TID(GET_TID(req))); | ||
716 | OPCODE_TID(rpl) = | ||
717 | htonl(MK_OPCODE_TID(CPL_ABORT_RPL, GET_TID(req))); | ||
718 | rpl->cmd = req->status; | ||
719 | cxgb3_ofld_send(dev, skb); | ||
720 | out: | ||
721 | return CPL_RET_BUF_DONE; | ||
722 | } | ||
723 | } | ||
724 | |||
725 | static int do_act_establish(struct t3cdev *dev, struct sk_buff *skb) | ||
726 | { | ||
727 | struct cpl_act_establish *req = cplhdr(skb); | ||
728 | unsigned int atid = G_PASS_OPEN_TID(ntohl(req->tos_tid)); | ||
729 | struct t3c_tid_entry *t3c_tid; | ||
730 | |||
731 | t3c_tid = lookup_atid(&(T3C_DATA(dev))->tid_maps, atid); | ||
732 | if (t3c_tid->ctx && t3c_tid->client->handlers && | ||
733 | t3c_tid->client->handlers[CPL_ACT_ESTABLISH]) { | ||
734 | return t3c_tid->client->handlers[CPL_ACT_ESTABLISH] | ||
735 | (dev, skb, t3c_tid->ctx); | ||
736 | } else { | ||
737 | printk(KERN_ERR "%s: received clientless CPL command 0x%x\n", | ||
738 | dev->name, CPL_PASS_ACCEPT_REQ); | ||
739 | return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG; | ||
740 | } | ||
741 | } | ||
742 | |||
743 | static int do_set_tcb_rpl(struct t3cdev *dev, struct sk_buff *skb) | ||
744 | { | ||
745 | struct cpl_set_tcb_rpl *rpl = cplhdr(skb); | ||
746 | |||
747 | if (rpl->status != CPL_ERR_NONE) | ||
748 | printk(KERN_ERR | ||
749 | "Unexpected SET_TCB_RPL status %u for tid %u\n", | ||
750 | rpl->status, GET_TID(rpl)); | ||
751 | return CPL_RET_BUF_DONE; | ||
752 | } | ||
753 | |||
754 | static int do_trace(struct t3cdev *dev, struct sk_buff *skb) | ||
755 | { | ||
756 | struct cpl_trace_pkt *p = cplhdr(skb); | ||
757 | |||
758 | skb->protocol = 0xffff; | ||
759 | skb->dev = dev->lldev; | ||
760 | skb_pull(skb, sizeof(*p)); | ||
761 | skb->mac.raw = skb->data; | ||
762 | netif_receive_skb(skb); | ||
763 | return 0; | ||
764 | } | ||
765 | |||
766 | static int do_term(struct t3cdev *dev, struct sk_buff *skb) | ||
767 | { | ||
768 | unsigned int hwtid = ntohl(skb->priority) >> 8 & 0xfffff; | ||
769 | unsigned int opcode = G_OPCODE(ntohl(skb->csum)); | ||
770 | struct t3c_tid_entry *t3c_tid; | ||
771 | |||
772 | t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid); | ||
773 | if (t3c_tid->ctx && t3c_tid->client->handlers && | ||
774 | t3c_tid->client->handlers[opcode]) { | ||
775 | return t3c_tid->client->handlers[opcode] (dev, skb, | ||
776 | t3c_tid->ctx); | ||
777 | } else { | ||
778 | printk(KERN_ERR "%s: received clientless CPL command 0x%x\n", | ||
779 | dev->name, opcode); | ||
780 | return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG; | ||
781 | } | ||
782 | } | ||
783 | |||
784 | static int nb_callback(struct notifier_block *self, unsigned long event, | ||
785 | void *ctx) | ||
786 | { | ||
787 | switch (event) { | ||
788 | case (NETEVENT_NEIGH_UPDATE):{ | ||
789 | cxgb_neigh_update((struct neighbour *)ctx); | ||
790 | break; | ||
791 | } | ||
792 | case (NETEVENT_PMTU_UPDATE): | ||
793 | break; | ||
794 | case (NETEVENT_REDIRECT):{ | ||
795 | struct netevent_redirect *nr = ctx; | ||
796 | cxgb_redirect(nr->old, nr->new); | ||
797 | cxgb_neigh_update(nr->new->neighbour); | ||
798 | break; | ||
799 | } | ||
800 | default: | ||
801 | break; | ||
802 | } | ||
803 | return 0; | ||
804 | } | ||
805 | |||
806 | static struct notifier_block nb = { | ||
807 | .notifier_call = nb_callback | ||
808 | }; | ||
809 | |||
810 | /* | ||
811 | * Process a received packet with an unknown/unexpected CPL opcode. | ||
812 | */ | ||
813 | static int do_bad_cpl(struct t3cdev *dev, struct sk_buff *skb) | ||
814 | { | ||
815 | printk(KERN_ERR "%s: received bad CPL command 0x%x\n", dev->name, | ||
816 | *skb->data); | ||
817 | return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG; | ||
818 | } | ||
819 | |||
820 | /* | ||
821 | * Handlers for each CPL opcode | ||
822 | */ | ||
823 | static cpl_handler_func cpl_handlers[NUM_CPL_CMDS]; | ||
824 | |||
825 | /* | ||
826 | * Add a new handler to the CPL dispatch table. A NULL handler may be supplied | ||
827 | * to unregister an existing handler. | ||
828 | */ | ||
829 | void t3_register_cpl_handler(unsigned int opcode, cpl_handler_func h) | ||
830 | { | ||
831 | if (opcode < NUM_CPL_CMDS) | ||
832 | cpl_handlers[opcode] = h ? h : do_bad_cpl; | ||
833 | else | ||
834 | printk(KERN_ERR "T3C: handler registration for " | ||
835 | "opcode %x failed\n", opcode); | ||
836 | } | ||
837 | |||
838 | EXPORT_SYMBOL(t3_register_cpl_handler); | ||
839 | |||
840 | /* | ||
841 | * T3CDEV's receive method. | ||
842 | */ | ||
843 | int process_rx(struct t3cdev *dev, struct sk_buff **skbs, int n) | ||
844 | { | ||
845 | while (n--) { | ||
846 | struct sk_buff *skb = *skbs++; | ||
847 | unsigned int opcode = G_OPCODE(ntohl(skb->csum)); | ||
848 | int ret = cpl_handlers[opcode] (dev, skb); | ||
849 | |||
850 | #if VALIDATE_TID | ||
851 | if (ret & CPL_RET_UNKNOWN_TID) { | ||
852 | union opcode_tid *p = cplhdr(skb); | ||
853 | |||
854 | printk(KERN_ERR "%s: CPL message (opcode %u) had " | ||
855 | "unknown TID %u\n", dev->name, opcode, | ||
856 | G_TID(ntohl(p->opcode_tid))); | ||
857 | } | ||
858 | #endif | ||
859 | if (ret & CPL_RET_BUF_DONE) | ||
860 | kfree_skb(skb); | ||
861 | } | ||
862 | return 0; | ||
863 | } | ||
864 | |||
865 | /* | ||
866 | * Sends an sk_buff to a T3C driver after dealing with any active network taps. | ||
867 | */ | ||
868 | int cxgb3_ofld_send(struct t3cdev *dev, struct sk_buff *skb) | ||
869 | { | ||
870 | int r; | ||
871 | |||
872 | local_bh_disable(); | ||
873 | r = dev->send(dev, skb); | ||
874 | local_bh_enable(); | ||
875 | return r; | ||
876 | } | ||
877 | |||
878 | EXPORT_SYMBOL(cxgb3_ofld_send); | ||
879 | |||
880 | static int is_offloading(struct net_device *dev) | ||
881 | { | ||
882 | struct adapter *adapter; | ||
883 | int i; | ||
884 | |||
885 | read_lock_bh(&adapter_list_lock); | ||
886 | list_for_each_entry(adapter, &adapter_list, adapter_list) { | ||
887 | for_each_port(adapter, i) { | ||
888 | if (dev == adapter->port[i]) { | ||
889 | read_unlock_bh(&adapter_list_lock); | ||
890 | return 1; | ||
891 | } | ||
892 | } | ||
893 | } | ||
894 | read_unlock_bh(&adapter_list_lock); | ||
895 | return 0; | ||
896 | } | ||
897 | |||
898 | void cxgb_neigh_update(struct neighbour *neigh) | ||
899 | { | ||
900 | struct net_device *dev = neigh->dev; | ||
901 | |||
902 | if (dev && (is_offloading(dev))) { | ||
903 | struct t3cdev *tdev = T3CDEV(dev); | ||
904 | |||
905 | BUG_ON(!tdev); | ||
906 | t3_l2t_update(tdev, neigh); | ||
907 | } | ||
908 | } | ||
909 | |||
910 | static void set_l2t_ix(struct t3cdev *tdev, u32 tid, struct l2t_entry *e) | ||
911 | { | ||
912 | struct sk_buff *skb; | ||
913 | struct cpl_set_tcb_field *req; | ||
914 | |||
915 | skb = alloc_skb(sizeof(*req), GFP_ATOMIC); | ||
916 | if (!skb) { | ||
917 | printk(KERN_ERR "%s: cannot allocate skb!\n", __FUNCTION__); | ||
918 | return; | ||
919 | } | ||
920 | skb->priority = CPL_PRIORITY_CONTROL; | ||
921 | req = (struct cpl_set_tcb_field *)skb_put(skb, sizeof(*req)); | ||
922 | req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); | ||
923 | OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, tid)); | ||
924 | req->reply = 0; | ||
925 | req->cpu_idx = 0; | ||
926 | req->word = htons(W_TCB_L2T_IX); | ||
927 | req->mask = cpu_to_be64(V_TCB_L2T_IX(M_TCB_L2T_IX)); | ||
928 | req->val = cpu_to_be64(V_TCB_L2T_IX(e->idx)); | ||
929 | tdev->send(tdev, skb); | ||
930 | } | ||
931 | |||
932 | void cxgb_redirect(struct dst_entry *old, struct dst_entry *new) | ||
933 | { | ||
934 | struct net_device *olddev, *newdev; | ||
935 | struct tid_info *ti; | ||
936 | struct t3cdev *tdev; | ||
937 | u32 tid; | ||
938 | int update_tcb; | ||
939 | struct l2t_entry *e; | ||
940 | struct t3c_tid_entry *te; | ||
941 | |||
942 | olddev = old->neighbour->dev; | ||
943 | newdev = new->neighbour->dev; | ||
944 | if (!is_offloading(olddev)) | ||
945 | return; | ||
946 | if (!is_offloading(newdev)) { | ||
947 | printk(KERN_WARNING "%s: Redirect to non-offload" | ||
948 | "device ignored.\n", __FUNCTION__); | ||
949 | return; | ||
950 | } | ||
951 | tdev = T3CDEV(olddev); | ||
952 | BUG_ON(!tdev); | ||
953 | if (tdev != T3CDEV(newdev)) { | ||
954 | printk(KERN_WARNING "%s: Redirect to different " | ||
955 | "offload device ignored.\n", __FUNCTION__); | ||
956 | return; | ||
957 | } | ||
958 | |||
959 | /* Add new L2T entry */ | ||
960 | e = t3_l2t_get(tdev, new->neighbour, newdev); | ||
961 | if (!e) { | ||
962 | printk(KERN_ERR "%s: couldn't allocate new l2t entry!\n", | ||
963 | __FUNCTION__); | ||
964 | return; | ||
965 | } | ||
966 | |||
967 | /* Walk tid table and notify clients of dst change. */ | ||
968 | ti = &(T3C_DATA(tdev))->tid_maps; | ||
969 | for (tid = 0; tid < ti->ntids; tid++) { | ||
970 | te = lookup_tid(ti, tid); | ||
971 | BUG_ON(!te); | ||
972 | if (te->ctx && te->client && te->client->redirect) { | ||
973 | update_tcb = te->client->redirect(te->ctx, old, new, e); | ||
974 | if (update_tcb) { | ||
975 | l2t_hold(L2DATA(tdev), e); | ||
976 | set_l2t_ix(tdev, tid, e); | ||
977 | } | ||
978 | } | ||
979 | } | ||
980 | l2t_release(L2DATA(tdev), e); | ||
981 | } | ||
982 | |||
983 | /* | ||
984 | * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc. | ||
985 | * The allocated memory is cleared. | ||
986 | */ | ||
987 | void *cxgb_alloc_mem(unsigned long size) | ||
988 | { | ||
989 | void *p = kmalloc(size, GFP_KERNEL); | ||
990 | |||
991 | if (!p) | ||
992 | p = vmalloc(size); | ||
993 | if (p) | ||
994 | memset(p, 0, size); | ||
995 | return p; | ||
996 | } | ||
997 | |||
998 | /* | ||
999 | * Free memory allocated through t3_alloc_mem(). | ||
1000 | */ | ||
1001 | void cxgb_free_mem(void *addr) | ||
1002 | { | ||
1003 | unsigned long p = (unsigned long)addr; | ||
1004 | |||
1005 | if (p >= VMALLOC_START && p < VMALLOC_END) | ||
1006 | vfree(addr); | ||
1007 | else | ||
1008 | kfree(addr); | ||
1009 | } | ||
1010 | |||
1011 | /* | ||
1012 | * Allocate and initialize the TID tables. Returns 0 on success. | ||
1013 | */ | ||
1014 | static int init_tid_tabs(struct tid_info *t, unsigned int ntids, | ||
1015 | unsigned int natids, unsigned int nstids, | ||
1016 | unsigned int atid_base, unsigned int stid_base) | ||
1017 | { | ||
1018 | unsigned long size = ntids * sizeof(*t->tid_tab) + | ||
1019 | natids * sizeof(*t->atid_tab) + nstids * sizeof(*t->stid_tab); | ||
1020 | |||
1021 | t->tid_tab = cxgb_alloc_mem(size); | ||
1022 | if (!t->tid_tab) | ||
1023 | return -ENOMEM; | ||
1024 | |||
1025 | t->stid_tab = (union listen_entry *)&t->tid_tab[ntids]; | ||
1026 | t->atid_tab = (union active_open_entry *)&t->stid_tab[nstids]; | ||
1027 | t->ntids = ntids; | ||
1028 | t->nstids = nstids; | ||
1029 | t->stid_base = stid_base; | ||
1030 | t->sfree = NULL; | ||
1031 | t->natids = natids; | ||
1032 | t->atid_base = atid_base; | ||
1033 | t->afree = NULL; | ||
1034 | t->stids_in_use = t->atids_in_use = 0; | ||
1035 | atomic_set(&t->tids_in_use, 0); | ||
1036 | spin_lock_init(&t->stid_lock); | ||
1037 | spin_lock_init(&t->atid_lock); | ||
1038 | |||
1039 | /* | ||
1040 | * Setup the free lists for stid_tab and atid_tab. | ||
1041 | */ | ||
1042 | if (nstids) { | ||
1043 | while (--nstids) | ||
1044 | t->stid_tab[nstids - 1].next = &t->stid_tab[nstids]; | ||
1045 | t->sfree = t->stid_tab; | ||
1046 | } | ||
1047 | if (natids) { | ||
1048 | while (--natids) | ||
1049 | t->atid_tab[natids - 1].next = &t->atid_tab[natids]; | ||
1050 | t->afree = t->atid_tab; | ||
1051 | } | ||
1052 | return 0; | ||
1053 | } | ||
1054 | |||
1055 | static void free_tid_maps(struct tid_info *t) | ||
1056 | { | ||
1057 | cxgb_free_mem(t->tid_tab); | ||
1058 | } | ||
1059 | |||
1060 | static inline void add_adapter(struct adapter *adap) | ||
1061 | { | ||
1062 | write_lock_bh(&adapter_list_lock); | ||
1063 | list_add_tail(&adap->adapter_list, &adapter_list); | ||
1064 | write_unlock_bh(&adapter_list_lock); | ||
1065 | } | ||
1066 | |||
1067 | static inline void remove_adapter(struct adapter *adap) | ||
1068 | { | ||
1069 | write_lock_bh(&adapter_list_lock); | ||
1070 | list_del(&adap->adapter_list); | ||
1071 | write_unlock_bh(&adapter_list_lock); | ||
1072 | } | ||
1073 | |||
1074 | int cxgb3_offload_activate(struct adapter *adapter) | ||
1075 | { | ||
1076 | struct t3cdev *dev = &adapter->tdev; | ||
1077 | int natids, err; | ||
1078 | struct t3c_data *t; | ||
1079 | struct tid_range stid_range, tid_range; | ||
1080 | struct mtutab mtutab; | ||
1081 | unsigned int l2t_capacity; | ||
1082 | |||
1083 | t = kcalloc(1, sizeof(*t), GFP_KERNEL); | ||
1084 | if (!t) | ||
1085 | return -ENOMEM; | ||
1086 | |||
1087 | err = -EOPNOTSUPP; | ||
1088 | if (dev->ctl(dev, GET_TX_MAX_CHUNK, &t->tx_max_chunk) < 0 || | ||
1089 | dev->ctl(dev, GET_MAX_OUTSTANDING_WR, &t->max_wrs) < 0 || | ||
1090 | dev->ctl(dev, GET_L2T_CAPACITY, &l2t_capacity) < 0 || | ||
1091 | dev->ctl(dev, GET_MTUS, &mtutab) < 0 || | ||
1092 | dev->ctl(dev, GET_TID_RANGE, &tid_range) < 0 || | ||
1093 | dev->ctl(dev, GET_STID_RANGE, &stid_range) < 0) | ||
1094 | goto out_free; | ||
1095 | |||
1096 | err = -ENOMEM; | ||
1097 | L2DATA(dev) = t3_init_l2t(l2t_capacity); | ||
1098 | if (!L2DATA(dev)) | ||
1099 | goto out_free; | ||
1100 | |||
1101 | natids = min(tid_range.num / 2, MAX_ATIDS); | ||
1102 | err = init_tid_tabs(&t->tid_maps, tid_range.num, natids, | ||
1103 | stid_range.num, ATID_BASE, stid_range.base); | ||
1104 | if (err) | ||
1105 | goto out_free_l2t; | ||
1106 | |||
1107 | t->mtus = mtutab.mtus; | ||
1108 | t->nmtus = mtutab.size; | ||
1109 | |||
1110 | INIT_WORK(&t->tid_release_task, t3_process_tid_release_list); | ||
1111 | spin_lock_init(&t->tid_release_lock); | ||
1112 | INIT_LIST_HEAD(&t->list_node); | ||
1113 | t->dev = dev; | ||
1114 | |||
1115 | T3C_DATA(dev) = t; | ||
1116 | dev->recv = process_rx; | ||
1117 | dev->neigh_update = t3_l2t_update; | ||
1118 | |||
1119 | /* Register netevent handler once */ | ||
1120 | if (list_empty(&adapter_list)) | ||
1121 | register_netevent_notifier(&nb); | ||
1122 | |||
1123 | add_adapter(adapter); | ||
1124 | return 0; | ||
1125 | |||
1126 | out_free_l2t: | ||
1127 | t3_free_l2t(L2DATA(dev)); | ||
1128 | L2DATA(dev) = NULL; | ||
1129 | out_free: | ||
1130 | kfree(t); | ||
1131 | return err; | ||
1132 | } | ||
1133 | |||
1134 | void cxgb3_offload_deactivate(struct adapter *adapter) | ||
1135 | { | ||
1136 | struct t3cdev *tdev = &adapter->tdev; | ||
1137 | struct t3c_data *t = T3C_DATA(tdev); | ||
1138 | |||
1139 | remove_adapter(adapter); | ||
1140 | if (list_empty(&adapter_list)) | ||
1141 | unregister_netevent_notifier(&nb); | ||
1142 | |||
1143 | free_tid_maps(&t->tid_maps); | ||
1144 | T3C_DATA(tdev) = NULL; | ||
1145 | t3_free_l2t(L2DATA(tdev)); | ||
1146 | L2DATA(tdev) = NULL; | ||
1147 | kfree(t); | ||
1148 | } | ||
1149 | |||
1150 | static inline void register_tdev(struct t3cdev *tdev) | ||
1151 | { | ||
1152 | static int unit; | ||
1153 | |||
1154 | mutex_lock(&cxgb3_db_lock); | ||
1155 | snprintf(tdev->name, sizeof(tdev->name), "ofld_dev%d", unit++); | ||
1156 | list_add_tail(&tdev->ofld_dev_list, &ofld_dev_list); | ||
1157 | mutex_unlock(&cxgb3_db_lock); | ||
1158 | } | ||
1159 | |||
1160 | static inline void unregister_tdev(struct t3cdev *tdev) | ||
1161 | { | ||
1162 | mutex_lock(&cxgb3_db_lock); | ||
1163 | list_del(&tdev->ofld_dev_list); | ||
1164 | mutex_unlock(&cxgb3_db_lock); | ||
1165 | } | ||
1166 | |||
1167 | void __devinit cxgb3_adapter_ofld(struct adapter *adapter) | ||
1168 | { | ||
1169 | struct t3cdev *tdev = &adapter->tdev; | ||
1170 | |||
1171 | INIT_LIST_HEAD(&tdev->ofld_dev_list); | ||
1172 | |||
1173 | cxgb3_set_dummy_ops(tdev); | ||
1174 | tdev->send = t3_offload_tx; | ||
1175 | tdev->ctl = cxgb_offload_ctl; | ||
1176 | tdev->type = adapter->params.rev == 0 ? T3A : T3B; | ||
1177 | |||
1178 | register_tdev(tdev); | ||
1179 | } | ||
1180 | |||
1181 | void __devexit cxgb3_adapter_unofld(struct adapter *adapter) | ||
1182 | { | ||
1183 | struct t3cdev *tdev = &adapter->tdev; | ||
1184 | |||
1185 | tdev->recv = NULL; | ||
1186 | tdev->neigh_update = NULL; | ||
1187 | |||
1188 | unregister_tdev(tdev); | ||
1189 | } | ||
1190 | |||
1191 | void __init cxgb3_offload_init(void) | ||
1192 | { | ||
1193 | int i; | ||
1194 | |||
1195 | for (i = 0; i < NUM_CPL_CMDS; ++i) | ||
1196 | cpl_handlers[i] = do_bad_cpl; | ||
1197 | |||
1198 | t3_register_cpl_handler(CPL_SMT_WRITE_RPL, do_smt_write_rpl); | ||
1199 | t3_register_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl); | ||
1200 | t3_register_cpl_handler(CPL_PASS_OPEN_RPL, do_stid_rpl); | ||
1201 | t3_register_cpl_handler(CPL_CLOSE_LISTSRV_RPL, do_stid_rpl); | ||
1202 | t3_register_cpl_handler(CPL_PASS_ACCEPT_REQ, do_cr); | ||
1203 | t3_register_cpl_handler(CPL_PASS_ESTABLISH, do_hwtid_rpl); | ||
1204 | t3_register_cpl_handler(CPL_ABORT_RPL_RSS, do_hwtid_rpl); | ||
1205 | t3_register_cpl_handler(CPL_ABORT_RPL, do_hwtid_rpl); | ||
1206 | t3_register_cpl_handler(CPL_RX_URG_NOTIFY, do_hwtid_rpl); | ||
1207 | t3_register_cpl_handler(CPL_RX_DATA, do_hwtid_rpl); | ||
1208 | t3_register_cpl_handler(CPL_TX_DATA_ACK, do_hwtid_rpl); | ||
1209 | t3_register_cpl_handler(CPL_TX_DMA_ACK, do_hwtid_rpl); | ||
1210 | t3_register_cpl_handler(CPL_ACT_OPEN_RPL, do_act_open_rpl); | ||
1211 | t3_register_cpl_handler(CPL_PEER_CLOSE, do_hwtid_rpl); | ||
1212 | t3_register_cpl_handler(CPL_CLOSE_CON_RPL, do_hwtid_rpl); | ||
1213 | t3_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req_rss); | ||
1214 | t3_register_cpl_handler(CPL_ACT_ESTABLISH, do_act_establish); | ||
1215 | t3_register_cpl_handler(CPL_SET_TCB_RPL, do_set_tcb_rpl); | ||
1216 | t3_register_cpl_handler(CPL_RDMA_TERMINATE, do_term); | ||
1217 | t3_register_cpl_handler(CPL_RDMA_EC_STATUS, do_hwtid_rpl); | ||
1218 | t3_register_cpl_handler(CPL_TRACE_PKT, do_trace); | ||
1219 | t3_register_cpl_handler(CPL_RX_DATA_DDP, do_hwtid_rpl); | ||
1220 | t3_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_hwtid_rpl); | ||
1221 | t3_register_cpl_handler(CPL_ISCSI_HDR, do_hwtid_rpl); | ||
1222 | } | ||
diff --git a/drivers/net/cxgb3/cxgb3_offload.h b/drivers/net/cxgb3/cxgb3_offload.h new file mode 100644 index 000000000000..7b7798384ae8 --- /dev/null +++ b/drivers/net/cxgb3/cxgb3_offload.h | |||
@@ -0,0 +1,193 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2006 Chelsio, Inc. All rights reserved. | ||
3 | * Copyright (c) 2006 Open Grid Computing, Inc. All rights reserved. | ||
4 | * | ||
5 | * This software is available to you under a choice of one of two | ||
6 | * licenses. You may choose to be licensed under the terms of the GNU | ||
7 | * General Public License (GPL) Version 2, available from the file | ||
8 | * COPYING in the main directory of this source tree, or the | ||
9 | * OpenIB.org BSD license below: | ||
10 | * | ||
11 | * Redistribution and use in source and binary forms, with or | ||
12 | * without modification, are permitted provided that the following | ||
13 | * conditions are met: | ||
14 | * | ||
15 | * - Redistributions of source code must retain the above | ||
16 | * copyright notice, this list of conditions and the following | ||
17 | * disclaimer. | ||
18 | * | ||
19 | * - Redistributions in binary form must reproduce the above | ||
20 | * copyright notice, this list of conditions and the following | ||
21 | * disclaimer in the documentation and/or other materials | ||
22 | * provided with the distribution. | ||
23 | * | ||
24 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||
25 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
26 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
27 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | ||
28 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | ||
29 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | ||
30 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
31 | * SOFTWARE. | ||
32 | */ | ||
33 | #ifndef _CXGB3_OFFLOAD_H | ||
34 | #define _CXGB3_OFFLOAD_H | ||
35 | |||
36 | #include <linux/list.h> | ||
37 | #include <linux/skbuff.h> | ||
38 | |||
39 | #include "l2t.h" | ||
40 | |||
41 | #include "t3cdev.h" | ||
42 | #include "t3_cpl.h" | ||
43 | |||
44 | struct adapter; | ||
45 | |||
46 | void cxgb3_offload_init(void); | ||
47 | |||
48 | void cxgb3_adapter_ofld(struct adapter *adapter); | ||
49 | void cxgb3_adapter_unofld(struct adapter *adapter); | ||
50 | int cxgb3_offload_activate(struct adapter *adapter); | ||
51 | void cxgb3_offload_deactivate(struct adapter *adapter); | ||
52 | |||
53 | void cxgb3_set_dummy_ops(struct t3cdev *dev); | ||
54 | |||
55 | /* | ||
56 | * Client registration. Users of T3 driver must register themselves. | ||
57 | * The T3 driver will call the add function of every client for each T3 | ||
58 | * adapter activated, passing up the t3cdev ptr. Each client fills out an | ||
59 | * array of callback functions to process CPL messages. | ||
60 | */ | ||
61 | |||
62 | void cxgb3_register_client(struct cxgb3_client *client); | ||
63 | void cxgb3_unregister_client(struct cxgb3_client *client); | ||
64 | void cxgb3_add_clients(struct t3cdev *tdev); | ||
65 | void cxgb3_remove_clients(struct t3cdev *tdev); | ||
66 | |||
67 | typedef int (*cxgb3_cpl_handler_func)(struct t3cdev *dev, | ||
68 | struct sk_buff *skb, void *ctx); | ||
69 | |||
70 | struct cxgb3_client { | ||
71 | char *name; | ||
72 | void (*add) (struct t3cdev *); | ||
73 | void (*remove) (struct t3cdev *); | ||
74 | cxgb3_cpl_handler_func *handlers; | ||
75 | int (*redirect)(void *ctx, struct dst_entry *old, | ||
76 | struct dst_entry *new, struct l2t_entry *l2t); | ||
77 | struct list_head client_list; | ||
78 | }; | ||
79 | |||
80 | /* | ||
81 | * TID allocation services. | ||
82 | */ | ||
83 | int cxgb3_alloc_atid(struct t3cdev *dev, struct cxgb3_client *client, | ||
84 | void *ctx); | ||
85 | int cxgb3_alloc_stid(struct t3cdev *dev, struct cxgb3_client *client, | ||
86 | void *ctx); | ||
87 | void *cxgb3_free_atid(struct t3cdev *dev, int atid); | ||
88 | void cxgb3_free_stid(struct t3cdev *dev, int stid); | ||
89 | void cxgb3_insert_tid(struct t3cdev *dev, struct cxgb3_client *client, | ||
90 | void *ctx, unsigned int tid); | ||
91 | void cxgb3_queue_tid_release(struct t3cdev *dev, unsigned int tid); | ||
92 | void cxgb3_remove_tid(struct t3cdev *dev, void *ctx, unsigned int tid); | ||
93 | |||
94 | struct t3c_tid_entry { | ||
95 | struct cxgb3_client *client; | ||
96 | void *ctx; | ||
97 | }; | ||
98 | |||
99 | /* CPL message priority levels */ | ||
100 | enum { | ||
101 | CPL_PRIORITY_DATA = 0, /* data messages */ | ||
102 | CPL_PRIORITY_SETUP = 1, /* connection setup messages */ | ||
103 | CPL_PRIORITY_TEARDOWN = 0, /* connection teardown messages */ | ||
104 | CPL_PRIORITY_LISTEN = 1, /* listen start/stop messages */ | ||
105 | CPL_PRIORITY_ACK = 1, /* RX ACK messages */ | ||
106 | CPL_PRIORITY_CONTROL = 1 /* offload control messages */ | ||
107 | }; | ||
108 | |||
109 | /* Flags for return value of CPL message handlers */ | ||
110 | enum { | ||
111 | CPL_RET_BUF_DONE = 1, /* buffer processing done, buffer may be freed */ | ||
112 | CPL_RET_BAD_MSG = 2, /* bad CPL message (e.g., unknown opcode) */ | ||
113 | CPL_RET_UNKNOWN_TID = 4 /* unexpected unknown TID */ | ||
114 | }; | ||
115 | |||
116 | typedef int (*cpl_handler_func)(struct t3cdev *dev, struct sk_buff *skb); | ||
117 | |||
118 | /* | ||
119 | * Returns a pointer to the first byte of the CPL header in an sk_buff that | ||
120 | * contains a CPL message. | ||
121 | */ | ||
122 | static inline void *cplhdr(struct sk_buff *skb) | ||
123 | { | ||
124 | return skb->data; | ||
125 | } | ||
126 | |||
127 | void t3_register_cpl_handler(unsigned int opcode, cpl_handler_func h); | ||
128 | |||
129 | union listen_entry { | ||
130 | struct t3c_tid_entry t3c_tid; | ||
131 | union listen_entry *next; | ||
132 | }; | ||
133 | |||
134 | union active_open_entry { | ||
135 | struct t3c_tid_entry t3c_tid; | ||
136 | union active_open_entry *next; | ||
137 | }; | ||
138 | |||
139 | /* | ||
140 | * Holds the size, base address, free list start, etc of the TID, server TID, | ||
141 | * and active-open TID tables for a offload device. | ||
142 | * The tables themselves are allocated dynamically. | ||
143 | */ | ||
144 | struct tid_info { | ||
145 | struct t3c_tid_entry *tid_tab; | ||
146 | unsigned int ntids; | ||
147 | atomic_t tids_in_use; | ||
148 | |||
149 | union listen_entry *stid_tab; | ||
150 | unsigned int nstids; | ||
151 | unsigned int stid_base; | ||
152 | |||
153 | union active_open_entry *atid_tab; | ||
154 | unsigned int natids; | ||
155 | unsigned int atid_base; | ||
156 | |||
157 | /* | ||
158 | * The following members are accessed R/W so we put them in their own | ||
159 | * cache lines. | ||
160 | * | ||
161 | * XXX We could combine the atid fields above with the lock here since | ||
162 | * atids are use once (unlike other tids). OTOH the above fields are | ||
163 | * usually in cache due to tid_tab. | ||
164 | */ | ||
165 | spinlock_t atid_lock ____cacheline_aligned_in_smp; | ||
166 | union active_open_entry *afree; | ||
167 | unsigned int atids_in_use; | ||
168 | |||
169 | spinlock_t stid_lock ____cacheline_aligned; | ||
170 | union listen_entry *sfree; | ||
171 | unsigned int stids_in_use; | ||
172 | }; | ||
173 | |||
174 | struct t3c_data { | ||
175 | struct list_head list_node; | ||
176 | struct t3cdev *dev; | ||
177 | unsigned int tx_max_chunk; /* max payload for TX_DATA */ | ||
178 | unsigned int max_wrs; /* max in-flight WRs per connection */ | ||
179 | unsigned int nmtus; | ||
180 | const unsigned short *mtus; | ||
181 | struct tid_info tid_maps; | ||
182 | |||
183 | struct t3c_tid_entry *tid_release_list; | ||
184 | spinlock_t tid_release_lock; | ||
185 | struct work_struct tid_release_task; | ||
186 | }; | ||
187 | |||
188 | /* | ||
189 | * t3cdev -> t3c_data accessor | ||
190 | */ | ||
191 | #define T3C_DATA(dev) (*(struct t3c_data **)&(dev)->l4opt) | ||
192 | |||
193 | #endif | ||
diff --git a/drivers/net/cxgb3/firmware_exports.h b/drivers/net/cxgb3/firmware_exports.h new file mode 100644 index 000000000000..3565f481801b --- /dev/null +++ b/drivers/net/cxgb3/firmware_exports.h | |||
@@ -0,0 +1,144 @@ | |||
1 | /* | ||
2 | * ---------------------------------------------------------------------------- | ||
3 | * >>>>>>>>>>>>>>>>>>>>>>>>>>>>> COPYRIGHT NOTICE <<<<<<<<<<<<<<<<<<<<<<<<<<<<< | ||
4 | * ---------------------------------------------------------------------------- | ||
5 | * Copyright 2004 (C) Chelsio Communications, Inc. (Chelsio) | ||
6 | * | ||
7 | * Chelsio Communications, Inc. owns the sole copyright to this software. | ||
8 | * You may not make a copy, you may not derive works herefrom, and you may | ||
9 | * not distribute this work to others. Other restrictions of rights may apply | ||
10 | * as well. This is unpublished, confidential information. All rights reserved. | ||
11 | * This software contains confidential information and trade secrets of Chelsio | ||
12 | * Communications, Inc. Use, disclosure, or reproduction is prohibited without | ||
13 | * the prior express written permission of Chelsio Communications, Inc. | ||
14 | * ---------------------------------------------------------------------------- | ||
15 | * >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Warranty <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< | ||
16 | * ---------------------------------------------------------------------------- | ||
17 | * CHELSIO MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE USE OF THIS | ||
18 | * SOFTWARE, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE | ||
19 | * IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. | ||
20 | * ---------------------------------------------------------------------------- | ||
21 | * | ||
22 | * This is the firmware_exports.h header file, firmware interface defines. | ||
23 | * | ||
24 | * Written January 2005 by felix marti (felix@chelsio.com) | ||
25 | */ | ||
26 | #ifndef _FIRMWARE_EXPORTS_H_ | ||
27 | #define _FIRMWARE_EXPORTS_H_ | ||
28 | |||
29 | /* WR OPCODES supported by the firmware. | ||
30 | */ | ||
31 | #define FW_WROPCODE_FORWARD 0x01 | ||
32 | #define FW_WROPCODE_BYPASS 0x05 | ||
33 | |||
34 | #define FW_WROPCODE_TUNNEL_TX_PKT 0x03 | ||
35 | |||
36 | #define FW_WROPOCDE_ULPTX_DATA_SGL 0x00 | ||
37 | #define FW_WROPCODE_ULPTX_MEM_READ 0x02 | ||
38 | #define FW_WROPCODE_ULPTX_PKT 0x04 | ||
39 | #define FW_WROPCODE_ULPTX_INVALIDATE 0x06 | ||
40 | |||
41 | #define FW_WROPCODE_TUNNEL_RX_PKT 0x07 | ||
42 | |||
43 | #define FW_WROPCODE_OFLD_GETTCB_RPL 0x08 | ||
44 | #define FW_WROPCODE_OFLD_CLOSE_CON 0x09 | ||
45 | #define FW_WROPCODE_OFLD_TP_ABORT_CON_REQ 0x0A | ||
46 | #define FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL 0x0F | ||
47 | #define FW_WROPCODE_OFLD_HOST_ABORT_CON_REQ 0x0B | ||
48 | #define FW_WROPCODE_OFLD_TP_ABORT_CON_RPL 0x0C | ||
49 | #define FW_WROPCODE_OFLD_TX_DATA 0x0D | ||
50 | #define FW_WROPCODE_OFLD_TX_DATA_ACK 0x0E | ||
51 | |||
52 | #define FW_WROPCODE_RI_RDMA_INIT 0x10 | ||
53 | #define FW_WROPCODE_RI_RDMA_WRITE 0x11 | ||
54 | #define FW_WROPCODE_RI_RDMA_READ_REQ 0x12 | ||
55 | #define FW_WROPCODE_RI_RDMA_READ_RESP 0x13 | ||
56 | #define FW_WROPCODE_RI_SEND 0x14 | ||
57 | #define FW_WROPCODE_RI_TERMINATE 0x15 | ||
58 | #define FW_WROPCODE_RI_RDMA_READ 0x16 | ||
59 | #define FW_WROPCODE_RI_RECEIVE 0x17 | ||
60 | #define FW_WROPCODE_RI_BIND_MW 0x18 | ||
61 | #define FW_WROPCODE_RI_FASTREGISTER_MR 0x19 | ||
62 | #define FW_WROPCODE_RI_LOCAL_INV 0x1A | ||
63 | #define FW_WROPCODE_RI_MODIFY_QP 0x1B | ||
64 | #define FW_WROPCODE_RI_BYPASS 0x1C | ||
65 | |||
66 | #define FW_WROPOCDE_RSVD 0x1E | ||
67 | |||
68 | #define FW_WROPCODE_SGE_EGRESSCONTEXT_RR 0x1F | ||
69 | |||
70 | #define FW_WROPCODE_MNGT 0x1D | ||
71 | #define FW_MNGTOPCODE_PKTSCHED_SET 0x00 | ||
72 | |||
73 | /* Maximum size of a WR sent from the host, limited by the SGE. | ||
74 | * | ||
75 | * Note: WR coming from ULP or TP are only limited by CIM. | ||
76 | */ | ||
77 | #define FW_WR_SIZE 128 | ||
78 | |||
79 | /* Maximum number of outstanding WRs sent from the host. Value must be | ||
80 | * programmed in the CTRL/TUNNEL/QP SGE Egress Context and used by | ||
81 | * offload modules to limit the number of WRs per connection. | ||
82 | */ | ||
83 | #define FW_T3_WR_NUM 16 | ||
84 | #define FW_N3_WR_NUM 7 | ||
85 | |||
86 | #ifndef N3 | ||
87 | # define FW_WR_NUM FW_T3_WR_NUM | ||
88 | #else | ||
89 | # define FW_WR_NUM FW_N3_WR_NUM | ||
90 | #endif | ||
91 | |||
92 | /* FW_TUNNEL_NUM corresponds to the number of supported TUNNEL Queues. These | ||
93 | * queues must start at SGE Egress Context FW_TUNNEL_SGEEC_START and must | ||
94 | * start at 'TID' (or 'uP Token') FW_TUNNEL_TID_START. | ||
95 | * | ||
96 | * Ingress Traffic (e.g. DMA completion credit) for TUNNEL Queue[i] is sent | ||
97 | * to RESP Queue[i]. | ||
98 | */ | ||
99 | #define FW_TUNNEL_NUM 8 | ||
100 | #define FW_TUNNEL_SGEEC_START 8 | ||
101 | #define FW_TUNNEL_TID_START 65544 | ||
102 | |||
103 | /* FW_CTRL_NUM corresponds to the number of supported CTRL Queues. These queues | ||
104 | * must start at SGE Egress Context FW_CTRL_SGEEC_START and must start at 'TID' | ||
105 | * (or 'uP Token') FW_CTRL_TID_START. | ||
106 | * | ||
107 | * Ingress Traffic for CTRL Queue[i] is sent to RESP Queue[i]. | ||
108 | */ | ||
109 | #define FW_CTRL_NUM 8 | ||
110 | #define FW_CTRL_SGEEC_START 65528 | ||
111 | #define FW_CTRL_TID_START 65536 | ||
112 | |||
113 | /* FW_OFLD_NUM corresponds to the number of supported OFFLOAD Queues. These | ||
114 | * queues must start at SGE Egress Context FW_OFLD_SGEEC_START. | ||
115 | * | ||
116 | * Note: the 'uP Token' in the SGE Egress Context fields is irrelevant for | ||
117 | * OFFLOAD Queues, as the host is responsible for providing the correct TID in | ||
118 | * every WR. | ||
119 | * | ||
120 | * Ingress Trafffic for OFFLOAD Queue[i] is sent to RESP Queue[i]. | ||
121 | */ | ||
122 | #define FW_OFLD_NUM 8 | ||
123 | #define FW_OFLD_SGEEC_START 0 | ||
124 | |||
125 | /* | ||
126 | * | ||
127 | */ | ||
128 | #define FW_RI_NUM 1 | ||
129 | #define FW_RI_SGEEC_START 65527 | ||
130 | #define FW_RI_TID_START 65552 | ||
131 | |||
132 | /* | ||
133 | * The RX_PKT_TID | ||
134 | */ | ||
135 | #define FW_RX_PKT_NUM 1 | ||
136 | #define FW_RX_PKT_TID_START 65553 | ||
137 | |||
138 | /* FW_WRC_NUM corresponds to the number of Work Request Context that supported | ||
139 | * by the firmware. | ||
140 | */ | ||
141 | #define FW_WRC_NUM \ | ||
142 | (65536 + FW_TUNNEL_NUM + FW_CTRL_NUM + FW_RI_NUM + FW_RX_PKT_NUM) | ||
143 | |||
144 | #endif /* _FIRMWARE_EXPORTS_H_ */ | ||
diff --git a/drivers/net/cxgb3/l2t.c b/drivers/net/cxgb3/l2t.c new file mode 100644 index 000000000000..9997138a4fdc --- /dev/null +++ b/drivers/net/cxgb3/l2t.c | |||
@@ -0,0 +1,450 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2006 Chelsio, Inc. All rights reserved. | ||
3 | * Copyright (c) 2006 Open Grid Computing, Inc. All rights reserved. | ||
4 | * | ||
5 | * This software is available to you under a choice of one of two | ||
6 | * licenses. You may choose to be licensed under the terms of the GNU | ||
7 | * General Public License (GPL) Version 2, available from the file | ||
8 | * COPYING in the main directory of this source tree, or the | ||
9 | * OpenIB.org BSD license below: | ||
10 | * | ||
11 | * Redistribution and use in source and binary forms, with or | ||
12 | * without modification, are permitted provided that the following | ||
13 | * conditions are met: | ||
14 | * | ||
15 | * - Redistributions of source code must retain the above | ||
16 | * copyright notice, this list of conditions and the following | ||
17 | * disclaimer. | ||
18 | * | ||
19 | * - Redistributions in binary form must reproduce the above | ||
20 | * copyright notice, this list of conditions and the following | ||
21 | * disclaimer in the documentation and/or other materials | ||
22 | * provided with the distribution. | ||
23 | * | ||
24 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||
25 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
26 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
27 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | ||
28 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | ||
29 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | ||
30 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
31 | * SOFTWARE. | ||
32 | */ | ||
33 | #include <linux/skbuff.h> | ||
34 | #include <linux/netdevice.h> | ||
35 | #include <linux/if.h> | ||
36 | #include <linux/if_vlan.h> | ||
37 | #include <linux/jhash.h> | ||
38 | #include <net/neighbour.h> | ||
39 | #include "common.h" | ||
40 | #include "t3cdev.h" | ||
41 | #include "cxgb3_defs.h" | ||
42 | #include "l2t.h" | ||
43 | #include "t3_cpl.h" | ||
44 | #include "firmware_exports.h" | ||
45 | |||
46 | #define VLAN_NONE 0xfff | ||
47 | |||
48 | /* | ||
49 | * Module locking notes: There is a RW lock protecting the L2 table as a | ||
50 | * whole plus a spinlock per L2T entry. Entry lookups and allocations happen | ||
51 | * under the protection of the table lock, individual entry changes happen | ||
52 | * while holding that entry's spinlock. The table lock nests outside the | ||
53 | * entry locks. Allocations of new entries take the table lock as writers so | ||
54 | * no other lookups can happen while allocating new entries. Entry updates | ||
55 | * take the table lock as readers so multiple entries can be updated in | ||
56 | * parallel. An L2T entry can be dropped by decrementing its reference count | ||
57 | * and therefore can happen in parallel with entry allocation but no entry | ||
58 | * can change state or increment its ref count during allocation as both of | ||
59 | * these perform lookups. | ||
60 | */ | ||
61 | |||
62 | static inline unsigned int vlan_prio(const struct l2t_entry *e) | ||
63 | { | ||
64 | return e->vlan >> 13; | ||
65 | } | ||
66 | |||
67 | static inline unsigned int arp_hash(u32 key, int ifindex, | ||
68 | const struct l2t_data *d) | ||
69 | { | ||
70 | return jhash_2words(key, ifindex, 0) & (d->nentries - 1); | ||
71 | } | ||
72 | |||
73 | static inline void neigh_replace(struct l2t_entry *e, struct neighbour *n) | ||
74 | { | ||
75 | neigh_hold(n); | ||
76 | if (e->neigh) | ||
77 | neigh_release(e->neigh); | ||
78 | e->neigh = n; | ||
79 | } | ||
80 | |||
81 | /* | ||
82 | * Set up an L2T entry and send any packets waiting in the arp queue. The | ||
83 | * supplied skb is used for the CPL_L2T_WRITE_REQ. Must be called with the | ||
84 | * entry locked. | ||
85 | */ | ||
86 | static int setup_l2e_send_pending(struct t3cdev *dev, struct sk_buff *skb, | ||
87 | struct l2t_entry *e) | ||
88 | { | ||
89 | struct cpl_l2t_write_req *req; | ||
90 | |||
91 | if (!skb) { | ||
92 | skb = alloc_skb(sizeof(*req), GFP_ATOMIC); | ||
93 | if (!skb) | ||
94 | return -ENOMEM; | ||
95 | } | ||
96 | |||
97 | req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req)); | ||
98 | req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); | ||
99 | OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, e->idx)); | ||
100 | req->params = htonl(V_L2T_W_IDX(e->idx) | V_L2T_W_IFF(e->smt_idx) | | ||
101 | V_L2T_W_VLAN(e->vlan & VLAN_VID_MASK) | | ||
102 | V_L2T_W_PRIO(vlan_prio(e))); | ||
103 | memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac)); | ||
104 | memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac)); | ||
105 | skb->priority = CPL_PRIORITY_CONTROL; | ||
106 | cxgb3_ofld_send(dev, skb); | ||
107 | while (e->arpq_head) { | ||
108 | skb = e->arpq_head; | ||
109 | e->arpq_head = skb->next; | ||
110 | skb->next = NULL; | ||
111 | cxgb3_ofld_send(dev, skb); | ||
112 | } | ||
113 | e->arpq_tail = NULL; | ||
114 | e->state = L2T_STATE_VALID; | ||
115 | |||
116 | return 0; | ||
117 | } | ||
118 | |||
119 | /* | ||
120 | * Add a packet to the an L2T entry's queue of packets awaiting resolution. | ||
121 | * Must be called with the entry's lock held. | ||
122 | */ | ||
123 | static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb) | ||
124 | { | ||
125 | skb->next = NULL; | ||
126 | if (e->arpq_head) | ||
127 | e->arpq_tail->next = skb; | ||
128 | else | ||
129 | e->arpq_head = skb; | ||
130 | e->arpq_tail = skb; | ||
131 | } | ||
132 | |||
133 | int t3_l2t_send_slow(struct t3cdev *dev, struct sk_buff *skb, | ||
134 | struct l2t_entry *e) | ||
135 | { | ||
136 | again: | ||
137 | switch (e->state) { | ||
138 | case L2T_STATE_STALE: /* entry is stale, kick off revalidation */ | ||
139 | neigh_event_send(e->neigh, NULL); | ||
140 | spin_lock_bh(&e->lock); | ||
141 | if (e->state == L2T_STATE_STALE) | ||
142 | e->state = L2T_STATE_VALID; | ||
143 | spin_unlock_bh(&e->lock); | ||
144 | case L2T_STATE_VALID: /* fast-path, send the packet on */ | ||
145 | return cxgb3_ofld_send(dev, skb); | ||
146 | case L2T_STATE_RESOLVING: | ||
147 | spin_lock_bh(&e->lock); | ||
148 | if (e->state != L2T_STATE_RESOLVING) { | ||
149 | /* ARP already completed */ | ||
150 | spin_unlock_bh(&e->lock); | ||
151 | goto again; | ||
152 | } | ||
153 | arpq_enqueue(e, skb); | ||
154 | spin_unlock_bh(&e->lock); | ||
155 | |||
156 | /* | ||
157 | * Only the first packet added to the arpq should kick off | ||
158 | * resolution. However, because the alloc_skb below can fail, | ||
159 | * we allow each packet added to the arpq to retry resolution | ||
160 | * as a way of recovering from transient memory exhaustion. | ||
161 | * A better way would be to use a work request to retry L2T | ||
162 | * entries when there's no memory. | ||
163 | */ | ||
164 | if (!neigh_event_send(e->neigh, NULL)) { | ||
165 | skb = alloc_skb(sizeof(struct cpl_l2t_write_req), | ||
166 | GFP_ATOMIC); | ||
167 | if (!skb) | ||
168 | break; | ||
169 | |||
170 | spin_lock_bh(&e->lock); | ||
171 | if (e->arpq_head) | ||
172 | setup_l2e_send_pending(dev, skb, e); | ||
173 | else /* we lost the race */ | ||
174 | __kfree_skb(skb); | ||
175 | spin_unlock_bh(&e->lock); | ||
176 | } | ||
177 | } | ||
178 | return 0; | ||
179 | } | ||
180 | |||
181 | EXPORT_SYMBOL(t3_l2t_send_slow); | ||
182 | |||
183 | void t3_l2t_send_event(struct t3cdev *dev, struct l2t_entry *e) | ||
184 | { | ||
185 | again: | ||
186 | switch (e->state) { | ||
187 | case L2T_STATE_STALE: /* entry is stale, kick off revalidation */ | ||
188 | neigh_event_send(e->neigh, NULL); | ||
189 | spin_lock_bh(&e->lock); | ||
190 | if (e->state == L2T_STATE_STALE) { | ||
191 | e->state = L2T_STATE_VALID; | ||
192 | } | ||
193 | spin_unlock_bh(&e->lock); | ||
194 | return; | ||
195 | case L2T_STATE_VALID: /* fast-path, send the packet on */ | ||
196 | return; | ||
197 | case L2T_STATE_RESOLVING: | ||
198 | spin_lock_bh(&e->lock); | ||
199 | if (e->state != L2T_STATE_RESOLVING) { | ||
200 | /* ARP already completed */ | ||
201 | spin_unlock_bh(&e->lock); | ||
202 | goto again; | ||
203 | } | ||
204 | spin_unlock_bh(&e->lock); | ||
205 | |||
206 | /* | ||
207 | * Only the first packet added to the arpq should kick off | ||
208 | * resolution. However, because the alloc_skb below can fail, | ||
209 | * we allow each packet added to the arpq to retry resolution | ||
210 | * as a way of recovering from transient memory exhaustion. | ||
211 | * A better way would be to use a work request to retry L2T | ||
212 | * entries when there's no memory. | ||
213 | */ | ||
214 | neigh_event_send(e->neigh, NULL); | ||
215 | } | ||
216 | return; | ||
217 | } | ||
218 | |||
219 | EXPORT_SYMBOL(t3_l2t_send_event); | ||
220 | |||
221 | /* | ||
222 | * Allocate a free L2T entry. Must be called with l2t_data.lock held. | ||
223 | */ | ||
224 | static struct l2t_entry *alloc_l2e(struct l2t_data *d) | ||
225 | { | ||
226 | struct l2t_entry *end, *e, **p; | ||
227 | |||
228 | if (!atomic_read(&d->nfree)) | ||
229 | return NULL; | ||
230 | |||
231 | /* there's definitely a free entry */ | ||
232 | for (e = d->rover, end = &d->l2tab[d->nentries]; e != end; ++e) | ||
233 | if (atomic_read(&e->refcnt) == 0) | ||
234 | goto found; | ||
235 | |||
236 | for (e = &d->l2tab[1]; atomic_read(&e->refcnt); ++e) ; | ||
237 | found: | ||
238 | d->rover = e + 1; | ||
239 | atomic_dec(&d->nfree); | ||
240 | |||
241 | /* | ||
242 | * The entry we found may be an inactive entry that is | ||
243 | * presently in the hash table. We need to remove it. | ||
244 | */ | ||
245 | if (e->state != L2T_STATE_UNUSED) { | ||
246 | int hash = arp_hash(e->addr, e->ifindex, d); | ||
247 | |||
248 | for (p = &d->l2tab[hash].first; *p; p = &(*p)->next) | ||
249 | if (*p == e) { | ||
250 | *p = e->next; | ||
251 | break; | ||
252 | } | ||
253 | e->state = L2T_STATE_UNUSED; | ||
254 | } | ||
255 | return e; | ||
256 | } | ||
257 | |||
258 | /* | ||
259 | * Called when an L2T entry has no more users. The entry is left in the hash | ||
260 | * table since it is likely to be reused but we also bump nfree to indicate | ||
261 | * that the entry can be reallocated for a different neighbor. We also drop | ||
262 | * the existing neighbor reference in case the neighbor is going away and is | ||
263 | * waiting on our reference. | ||
264 | * | ||
265 | * Because entries can be reallocated to other neighbors once their ref count | ||
266 | * drops to 0 we need to take the entry's lock to avoid races with a new | ||
267 | * incarnation. | ||
268 | */ | ||
269 | void t3_l2e_free(struct l2t_data *d, struct l2t_entry *e) | ||
270 | { | ||
271 | spin_lock_bh(&e->lock); | ||
272 | if (atomic_read(&e->refcnt) == 0) { /* hasn't been recycled */ | ||
273 | if (e->neigh) { | ||
274 | neigh_release(e->neigh); | ||
275 | e->neigh = NULL; | ||
276 | } | ||
277 | } | ||
278 | spin_unlock_bh(&e->lock); | ||
279 | atomic_inc(&d->nfree); | ||
280 | } | ||
281 | |||
282 | EXPORT_SYMBOL(t3_l2e_free); | ||
283 | |||
284 | /* | ||
285 | * Update an L2T entry that was previously used for the same next hop as neigh. | ||
286 | * Must be called with softirqs disabled. | ||
287 | */ | ||
288 | static inline void reuse_entry(struct l2t_entry *e, struct neighbour *neigh) | ||
289 | { | ||
290 | unsigned int nud_state; | ||
291 | |||
292 | spin_lock(&e->lock); /* avoid race with t3_l2t_free */ | ||
293 | |||
294 | if (neigh != e->neigh) | ||
295 | neigh_replace(e, neigh); | ||
296 | nud_state = neigh->nud_state; | ||
297 | if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) || | ||
298 | !(nud_state & NUD_VALID)) | ||
299 | e->state = L2T_STATE_RESOLVING; | ||
300 | else if (nud_state & NUD_CONNECTED) | ||
301 | e->state = L2T_STATE_VALID; | ||
302 | else | ||
303 | e->state = L2T_STATE_STALE; | ||
304 | spin_unlock(&e->lock); | ||
305 | } | ||
306 | |||
307 | struct l2t_entry *t3_l2t_get(struct t3cdev *cdev, struct neighbour *neigh, | ||
308 | struct net_device *dev) | ||
309 | { | ||
310 | struct l2t_entry *e; | ||
311 | struct l2t_data *d = L2DATA(cdev); | ||
312 | u32 addr = *(u32 *) neigh->primary_key; | ||
313 | int ifidx = neigh->dev->ifindex; | ||
314 | int hash = arp_hash(addr, ifidx, d); | ||
315 | struct port_info *p = netdev_priv(dev); | ||
316 | int smt_idx = p->port_id; | ||
317 | |||
318 | write_lock_bh(&d->lock); | ||
319 | for (e = d->l2tab[hash].first; e; e = e->next) | ||
320 | if (e->addr == addr && e->ifindex == ifidx && | ||
321 | e->smt_idx == smt_idx) { | ||
322 | l2t_hold(d, e); | ||
323 | if (atomic_read(&e->refcnt) == 1) | ||
324 | reuse_entry(e, neigh); | ||
325 | goto done; | ||
326 | } | ||
327 | |||
328 | /* Need to allocate a new entry */ | ||
329 | e = alloc_l2e(d); | ||
330 | if (e) { | ||
331 | spin_lock(&e->lock); /* avoid race with t3_l2t_free */ | ||
332 | e->next = d->l2tab[hash].first; | ||
333 | d->l2tab[hash].first = e; | ||
334 | e->state = L2T_STATE_RESOLVING; | ||
335 | e->addr = addr; | ||
336 | e->ifindex = ifidx; | ||
337 | e->smt_idx = smt_idx; | ||
338 | atomic_set(&e->refcnt, 1); | ||
339 | neigh_replace(e, neigh); | ||
340 | if (neigh->dev->priv_flags & IFF_802_1Q_VLAN) | ||
341 | e->vlan = VLAN_DEV_INFO(neigh->dev)->vlan_id; | ||
342 | else | ||
343 | e->vlan = VLAN_NONE; | ||
344 | spin_unlock(&e->lock); | ||
345 | } | ||
346 | done: | ||
347 | write_unlock_bh(&d->lock); | ||
348 | return e; | ||
349 | } | ||
350 | |||
351 | EXPORT_SYMBOL(t3_l2t_get); | ||
352 | |||
353 | /* | ||
354 | * Called when address resolution fails for an L2T entry to handle packets | ||
355 | * on the arpq head. If a packet specifies a failure handler it is invoked, | ||
356 | * otherwise the packets is sent to the offload device. | ||
357 | * | ||
358 | * XXX: maybe we should abandon the latter behavior and just require a failure | ||
359 | * handler. | ||
360 | */ | ||
361 | static void handle_failed_resolution(struct t3cdev *dev, struct sk_buff *arpq) | ||
362 | { | ||
363 | while (arpq) { | ||
364 | struct sk_buff *skb = arpq; | ||
365 | struct l2t_skb_cb *cb = L2T_SKB_CB(skb); | ||
366 | |||
367 | arpq = skb->next; | ||
368 | skb->next = NULL; | ||
369 | if (cb->arp_failure_handler) | ||
370 | cb->arp_failure_handler(dev, skb); | ||
371 | else | ||
372 | cxgb3_ofld_send(dev, skb); | ||
373 | } | ||
374 | } | ||
375 | |||
376 | /* | ||
377 | * Called when the host's ARP layer makes a change to some entry that is | ||
378 | * loaded into the HW L2 table. | ||
379 | */ | ||
380 | void t3_l2t_update(struct t3cdev *dev, struct neighbour *neigh) | ||
381 | { | ||
382 | struct l2t_entry *e; | ||
383 | struct sk_buff *arpq = NULL; | ||
384 | struct l2t_data *d = L2DATA(dev); | ||
385 | u32 addr = *(u32 *) neigh->primary_key; | ||
386 | int ifidx = neigh->dev->ifindex; | ||
387 | int hash = arp_hash(addr, ifidx, d); | ||
388 | |||
389 | read_lock_bh(&d->lock); | ||
390 | for (e = d->l2tab[hash].first; e; e = e->next) | ||
391 | if (e->addr == addr && e->ifindex == ifidx) { | ||
392 | spin_lock(&e->lock); | ||
393 | goto found; | ||
394 | } | ||
395 | read_unlock_bh(&d->lock); | ||
396 | return; | ||
397 | |||
398 | found: | ||
399 | read_unlock(&d->lock); | ||
400 | if (atomic_read(&e->refcnt)) { | ||
401 | if (neigh != e->neigh) | ||
402 | neigh_replace(e, neigh); | ||
403 | |||
404 | if (e->state == L2T_STATE_RESOLVING) { | ||
405 | if (neigh->nud_state & NUD_FAILED) { | ||
406 | arpq = e->arpq_head; | ||
407 | e->arpq_head = e->arpq_tail = NULL; | ||
408 | } else if (neigh_is_connected(neigh)) | ||
409 | setup_l2e_send_pending(dev, NULL, e); | ||
410 | } else { | ||
411 | e->state = neigh_is_connected(neigh) ? | ||
412 | L2T_STATE_VALID : L2T_STATE_STALE; | ||
413 | if (memcmp(e->dmac, neigh->ha, 6)) | ||
414 | setup_l2e_send_pending(dev, NULL, e); | ||
415 | } | ||
416 | } | ||
417 | spin_unlock_bh(&e->lock); | ||
418 | |||
419 | if (arpq) | ||
420 | handle_failed_resolution(dev, arpq); | ||
421 | } | ||
422 | |||
423 | struct l2t_data *t3_init_l2t(unsigned int l2t_capacity) | ||
424 | { | ||
425 | struct l2t_data *d; | ||
426 | int i, size = sizeof(*d) + l2t_capacity * sizeof(struct l2t_entry); | ||
427 | |||
428 | d = cxgb_alloc_mem(size); | ||
429 | if (!d) | ||
430 | return NULL; | ||
431 | |||
432 | d->nentries = l2t_capacity; | ||
433 | d->rover = &d->l2tab[1]; /* entry 0 is not used */ | ||
434 | atomic_set(&d->nfree, l2t_capacity - 1); | ||
435 | rwlock_init(&d->lock); | ||
436 | |||
437 | for (i = 0; i < l2t_capacity; ++i) { | ||
438 | d->l2tab[i].idx = i; | ||
439 | d->l2tab[i].state = L2T_STATE_UNUSED; | ||
440 | spin_lock_init(&d->l2tab[i].lock); | ||
441 | atomic_set(&d->l2tab[i].refcnt, 0); | ||
442 | } | ||
443 | return d; | ||
444 | } | ||
445 | |||
446 | void t3_free_l2t(struct l2t_data *d) | ||
447 | { | ||
448 | cxgb_free_mem(d); | ||
449 | } | ||
450 | |||
diff --git a/drivers/net/cxgb3/l2t.h b/drivers/net/cxgb3/l2t.h new file mode 100644 index 000000000000..51a9c1f2c58a --- /dev/null +++ b/drivers/net/cxgb3/l2t.h | |||
@@ -0,0 +1,143 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2006 Chelsio, Inc. All rights reserved. | ||
3 | * Copyright (c) 2006 Open Grid Computing, Inc. All rights reserved. | ||
4 | * | ||
5 | * This software is available to you under a choice of one of two | ||
6 | * licenses. You may choose to be licensed under the terms of the GNU | ||
7 | * General Public License (GPL) Version 2, available from the file | ||
8 | * COPYING in the main directory of this source tree, or the | ||
9 | * OpenIB.org BSD license below: | ||
10 | * | ||
11 | * Redistribution and use in source and binary forms, with or | ||
12 | * without modification, are permitted provided that the following | ||
13 | * conditions are met: | ||
14 | * | ||
15 | * - Redistributions of source code must retain the above | ||
16 | * copyright notice, this list of conditions and the following | ||
17 | * disclaimer. | ||
18 | * | ||
19 | * - Redistributions in binary form must reproduce the above | ||
20 | * copyright notice, this list of conditions and the following | ||
21 | * disclaimer in the documentation and/or other materials | ||
22 | * provided with the distribution. | ||
23 | * | ||
24 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||
25 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
26 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
27 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | ||
28 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | ||
29 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | ||
30 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
31 | * SOFTWARE. | ||
32 | */ | ||
33 | #ifndef _CHELSIO_L2T_H | ||
34 | #define _CHELSIO_L2T_H | ||
35 | |||
36 | #include <linux/spinlock.h> | ||
37 | #include "t3cdev.h" | ||
38 | #include <asm/atomic.h> | ||
39 | |||
40 | enum { | ||
41 | L2T_STATE_VALID, /* entry is up to date */ | ||
42 | L2T_STATE_STALE, /* entry may be used but needs revalidation */ | ||
43 | L2T_STATE_RESOLVING, /* entry needs address resolution */ | ||
44 | L2T_STATE_UNUSED /* entry not in use */ | ||
45 | }; | ||
46 | |||
47 | struct neighbour; | ||
48 | struct sk_buff; | ||
49 | |||
50 | /* | ||
51 | * Each L2T entry plays multiple roles. First of all, it keeps state for the | ||
52 | * corresponding entry of the HW L2 table and maintains a queue of offload | ||
53 | * packets awaiting address resolution. Second, it is a node of a hash table | ||
54 | * chain, where the nodes of the chain are linked together through their next | ||
55 | * pointer. Finally, each node is a bucket of a hash table, pointing to the | ||
56 | * first element in its chain through its first pointer. | ||
57 | */ | ||
58 | struct l2t_entry { | ||
59 | u16 state; /* entry state */ | ||
60 | u16 idx; /* entry index */ | ||
61 | u32 addr; /* dest IP address */ | ||
62 | int ifindex; /* neighbor's net_device's ifindex */ | ||
63 | u16 smt_idx; /* SMT index */ | ||
64 | u16 vlan; /* VLAN TCI (id: bits 0-11, prio: 13-15 */ | ||
65 | struct neighbour *neigh; /* associated neighbour */ | ||
66 | struct l2t_entry *first; /* start of hash chain */ | ||
67 | struct l2t_entry *next; /* next l2t_entry on chain */ | ||
68 | struct sk_buff *arpq_head; /* queue of packets awaiting resolution */ | ||
69 | struct sk_buff *arpq_tail; | ||
70 | spinlock_t lock; | ||
71 | atomic_t refcnt; /* entry reference count */ | ||
72 | u8 dmac[6]; /* neighbour's MAC address */ | ||
73 | }; | ||
74 | |||
75 | struct l2t_data { | ||
76 | unsigned int nentries; /* number of entries */ | ||
77 | struct l2t_entry *rover; /* starting point for next allocation */ | ||
78 | atomic_t nfree; /* number of free entries */ | ||
79 | rwlock_t lock; | ||
80 | struct l2t_entry l2tab[0]; | ||
81 | }; | ||
82 | |||
83 | typedef void (*arp_failure_handler_func)(struct t3cdev * dev, | ||
84 | struct sk_buff * skb); | ||
85 | |||
86 | /* | ||
87 | * Callback stored in an skb to handle address resolution failure. | ||
88 | */ | ||
89 | struct l2t_skb_cb { | ||
90 | arp_failure_handler_func arp_failure_handler; | ||
91 | }; | ||
92 | |||
93 | #define L2T_SKB_CB(skb) ((struct l2t_skb_cb *)(skb)->cb) | ||
94 | |||
95 | static inline void set_arp_failure_handler(struct sk_buff *skb, | ||
96 | arp_failure_handler_func hnd) | ||
97 | { | ||
98 | L2T_SKB_CB(skb)->arp_failure_handler = hnd; | ||
99 | } | ||
100 | |||
101 | /* | ||
102 | * Getting to the L2 data from an offload device. | ||
103 | */ | ||
104 | #define L2DATA(dev) ((dev)->l2opt) | ||
105 | |||
106 | #define W_TCB_L2T_IX 0 | ||
107 | #define S_TCB_L2T_IX 7 | ||
108 | #define M_TCB_L2T_IX 0x7ffULL | ||
109 | #define V_TCB_L2T_IX(x) ((x) << S_TCB_L2T_IX) | ||
110 | |||
111 | void t3_l2e_free(struct l2t_data *d, struct l2t_entry *e); | ||
112 | void t3_l2t_update(struct t3cdev *dev, struct neighbour *neigh); | ||
113 | struct l2t_entry *t3_l2t_get(struct t3cdev *cdev, struct neighbour *neigh, | ||
114 | struct net_device *dev); | ||
115 | int t3_l2t_send_slow(struct t3cdev *dev, struct sk_buff *skb, | ||
116 | struct l2t_entry *e); | ||
117 | void t3_l2t_send_event(struct t3cdev *dev, struct l2t_entry *e); | ||
118 | struct l2t_data *t3_init_l2t(unsigned int l2t_capacity); | ||
119 | void t3_free_l2t(struct l2t_data *d); | ||
120 | |||
121 | int cxgb3_ofld_send(struct t3cdev *dev, struct sk_buff *skb); | ||
122 | |||
123 | static inline int l2t_send(struct t3cdev *dev, struct sk_buff *skb, | ||
124 | struct l2t_entry *e) | ||
125 | { | ||
126 | if (likely(e->state == L2T_STATE_VALID)) | ||
127 | return cxgb3_ofld_send(dev, skb); | ||
128 | return t3_l2t_send_slow(dev, skb, e); | ||
129 | } | ||
130 | |||
131 | static inline void l2t_release(struct l2t_data *d, struct l2t_entry *e) | ||
132 | { | ||
133 | if (atomic_dec_and_test(&e->refcnt)) | ||
134 | t3_l2e_free(d, e); | ||
135 | } | ||
136 | |||
137 | static inline void l2t_hold(struct l2t_data *d, struct l2t_entry *e) | ||
138 | { | ||
139 | if (atomic_add_return(1, &e->refcnt) == 1) /* 0 -> 1 transition */ | ||
140 | atomic_dec(&d->nfree); | ||
141 | } | ||
142 | |||
143 | #endif | ||
diff --git a/drivers/net/cxgb3/mc5.c b/drivers/net/cxgb3/mc5.c new file mode 100644 index 000000000000..44fa9eaedcc3 --- /dev/null +++ b/drivers/net/cxgb3/mc5.c | |||
@@ -0,0 +1,453 @@ | |||
1 | /* | ||
2 | * This file is part of the Chelsio T3 Ethernet driver. | ||
3 | * | ||
4 | * Copyright (C) 2003-2006 Chelsio Communications. All rights reserved. | ||
5 | * | ||
6 | * This program is distributed in the hope that it will be useful, but WITHOUT | ||
7 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
8 | * FITNESS FOR A PARTICULAR PURPOSE. See the LICENSE file included in this | ||
9 | * release for licensing terms and conditions. | ||
10 | */ | ||
11 | |||
12 | #include "common.h" | ||
13 | #include "regs.h" | ||
14 | |||
15 | enum { | ||
16 | IDT75P52100 = 4, | ||
17 | IDT75N43102 = 5 | ||
18 | }; | ||
19 | |||
20 | /* DBGI command mode */ | ||
21 | enum { | ||
22 | DBGI_MODE_MBUS = 0, | ||
23 | DBGI_MODE_IDT52100 = 5 | ||
24 | }; | ||
25 | |||
26 | /* IDT 75P52100 commands */ | ||
27 | #define IDT_CMD_READ 0 | ||
28 | #define IDT_CMD_WRITE 1 | ||
29 | #define IDT_CMD_SEARCH 2 | ||
30 | #define IDT_CMD_LEARN 3 | ||
31 | |||
32 | /* IDT LAR register address and value for 144-bit mode (low 32 bits) */ | ||
33 | #define IDT_LAR_ADR0 0x180006 | ||
34 | #define IDT_LAR_MODE144 0xffff0000 | ||
35 | |||
36 | /* IDT SCR and SSR addresses (low 32 bits) */ | ||
37 | #define IDT_SCR_ADR0 0x180000 | ||
38 | #define IDT_SSR0_ADR0 0x180002 | ||
39 | #define IDT_SSR1_ADR0 0x180004 | ||
40 | |||
41 | /* IDT GMR base address (low 32 bits) */ | ||
42 | #define IDT_GMR_BASE_ADR0 0x180020 | ||
43 | |||
44 | /* IDT data and mask array base addresses (low 32 bits) */ | ||
45 | #define IDT_DATARY_BASE_ADR0 0 | ||
46 | #define IDT_MSKARY_BASE_ADR0 0x80000 | ||
47 | |||
48 | /* IDT 75N43102 commands */ | ||
49 | #define IDT4_CMD_SEARCH144 3 | ||
50 | #define IDT4_CMD_WRITE 4 | ||
51 | #define IDT4_CMD_READ 5 | ||
52 | |||
53 | /* IDT 75N43102 SCR address (low 32 bits) */ | ||
54 | #define IDT4_SCR_ADR0 0x3 | ||
55 | |||
56 | /* IDT 75N43102 GMR base addresses (low 32 bits) */ | ||
57 | #define IDT4_GMR_BASE0 0x10 | ||
58 | #define IDT4_GMR_BASE1 0x20 | ||
59 | #define IDT4_GMR_BASE2 0x30 | ||
60 | |||
61 | /* IDT 75N43102 data and mask array base addresses (low 32 bits) */ | ||
62 | #define IDT4_DATARY_BASE_ADR0 0x1000000 | ||
63 | #define IDT4_MSKARY_BASE_ADR0 0x2000000 | ||
64 | |||
65 | #define MAX_WRITE_ATTEMPTS 5 | ||
66 | |||
67 | #define MAX_ROUTES 2048 | ||
68 | |||
69 | /* | ||
70 | * Issue a command to the TCAM and wait for its completion. The address and | ||
71 | * any data required by the command must have been setup by the caller. | ||
72 | */ | ||
73 | static int mc5_cmd_write(struct adapter *adapter, u32 cmd) | ||
74 | { | ||
75 | t3_write_reg(adapter, A_MC5_DB_DBGI_REQ_CMD, cmd); | ||
76 | return t3_wait_op_done(adapter, A_MC5_DB_DBGI_RSP_STATUS, | ||
77 | F_DBGIRSPVALID, 1, MAX_WRITE_ATTEMPTS, 1); | ||
78 | } | ||
79 | |||
80 | static inline void dbgi_wr_addr3(struct adapter *adapter, u32 v1, u32 v2, | ||
81 | u32 v3) | ||
82 | { | ||
83 | t3_write_reg(adapter, A_MC5_DB_DBGI_REQ_ADDR0, v1); | ||
84 | t3_write_reg(adapter, A_MC5_DB_DBGI_REQ_ADDR1, v2); | ||
85 | t3_write_reg(adapter, A_MC5_DB_DBGI_REQ_ADDR2, v3); | ||
86 | } | ||
87 | |||
88 | static inline void dbgi_wr_data3(struct adapter *adapter, u32 v1, u32 v2, | ||
89 | u32 v3) | ||
90 | { | ||
91 | t3_write_reg(adapter, A_MC5_DB_DBGI_REQ_DATA0, v1); | ||
92 | t3_write_reg(adapter, A_MC5_DB_DBGI_REQ_DATA1, v2); | ||
93 | t3_write_reg(adapter, A_MC5_DB_DBGI_REQ_DATA2, v3); | ||
94 | } | ||
95 | |||
96 | static inline void dbgi_rd_rsp3(struct adapter *adapter, u32 *v1, u32 *v2, | ||
97 | u32 *v3) | ||
98 | { | ||
99 | *v1 = t3_read_reg(adapter, A_MC5_DB_DBGI_RSP_DATA0); | ||
100 | *v2 = t3_read_reg(adapter, A_MC5_DB_DBGI_RSP_DATA1); | ||
101 | *v3 = t3_read_reg(adapter, A_MC5_DB_DBGI_RSP_DATA2); | ||
102 | } | ||
103 | |||
104 | /* | ||
105 | * Write data to the TCAM register at address (0, 0, addr_lo) using the TCAM | ||
106 | * command cmd. The data to be written must have been set up by the caller. | ||
107 | * Returns -1 on failure, 0 on success. | ||
108 | */ | ||
109 | static int mc5_write(struct adapter *adapter, u32 addr_lo, u32 cmd) | ||
110 | { | ||
111 | t3_write_reg(adapter, A_MC5_DB_DBGI_REQ_ADDR0, addr_lo); | ||
112 | if (mc5_cmd_write(adapter, cmd) == 0) | ||
113 | return 0; | ||
114 | CH_ERR(adapter, "MC5 timeout writing to TCAM address 0x%x\n", | ||
115 | addr_lo); | ||
116 | return -1; | ||
117 | } | ||
118 | |||
119 | static int init_mask_data_array(struct mc5 *mc5, u32 mask_array_base, | ||
120 | u32 data_array_base, u32 write_cmd, | ||
121 | int addr_shift) | ||
122 | { | ||
123 | unsigned int i; | ||
124 | struct adapter *adap = mc5->adapter; | ||
125 | |||
126 | /* | ||
127 | * We need the size of the TCAM data and mask arrays in terms of | ||
128 | * 72-bit entries. | ||
129 | */ | ||
130 | unsigned int size72 = mc5->tcam_size; | ||
131 | unsigned int server_base = t3_read_reg(adap, A_MC5_DB_SERVER_INDEX); | ||
132 | |||
133 | if (mc5->mode == MC5_MODE_144_BIT) { | ||
134 | size72 *= 2; /* 1 144-bit entry is 2 72-bit entries */ | ||
135 | server_base *= 2; | ||
136 | } | ||
137 | |||
138 | /* Clear the data array */ | ||
139 | dbgi_wr_data3(adap, 0, 0, 0); | ||
140 | for (i = 0; i < size72; i++) | ||
141 | if (mc5_write(adap, data_array_base + (i << addr_shift), | ||
142 | write_cmd)) | ||
143 | return -1; | ||
144 | |||
145 | /* Initialize the mask array. */ | ||
146 | dbgi_wr_data3(adap, 0xffffffff, 0xffffffff, 0xff); | ||
147 | for (i = 0; i < size72; i++) { | ||
148 | if (i == server_base) /* entering server or routing region */ | ||
149 | t3_write_reg(adap, A_MC5_DB_DBGI_REQ_DATA0, | ||
150 | mc5->mode == MC5_MODE_144_BIT ? | ||
151 | 0xfffffff9 : 0xfffffffd); | ||
152 | if (mc5_write(adap, mask_array_base + (i << addr_shift), | ||
153 | write_cmd)) | ||
154 | return -1; | ||
155 | } | ||
156 | return 0; | ||
157 | } | ||
158 | |||
159 | static int init_idt52100(struct mc5 *mc5) | ||
160 | { | ||
161 | int i; | ||
162 | struct adapter *adap = mc5->adapter; | ||
163 | |||
164 | t3_write_reg(adap, A_MC5_DB_RSP_LATENCY, | ||
165 | V_RDLAT(0x15) | V_LRNLAT(0x15) | V_SRCHLAT(0x15)); | ||
166 | t3_write_reg(adap, A_MC5_DB_PART_ID_INDEX, 2); | ||
167 | |||
168 | /* | ||
169 | * Use GMRs 14-15 for ELOOKUP, GMRs 12-13 for SYN lookups, and | ||
170 | * GMRs 8-9 for ACK- and AOPEN searches. | ||
171 | */ | ||
172 | t3_write_reg(adap, A_MC5_DB_POPEN_DATA_WR_CMD, IDT_CMD_WRITE); | ||
173 | t3_write_reg(adap, A_MC5_DB_POPEN_MASK_WR_CMD, IDT_CMD_WRITE); | ||
174 | t3_write_reg(adap, A_MC5_DB_AOPEN_SRCH_CMD, IDT_CMD_SEARCH); | ||
175 | t3_write_reg(adap, A_MC5_DB_AOPEN_LRN_CMD, IDT_CMD_LEARN); | ||
176 | t3_write_reg(adap, A_MC5_DB_SYN_SRCH_CMD, IDT_CMD_SEARCH | 0x6000); | ||
177 | t3_write_reg(adap, A_MC5_DB_SYN_LRN_CMD, IDT_CMD_LEARN); | ||
178 | t3_write_reg(adap, A_MC5_DB_ACK_SRCH_CMD, IDT_CMD_SEARCH); | ||
179 | t3_write_reg(adap, A_MC5_DB_ACK_LRN_CMD, IDT_CMD_LEARN); | ||
180 | t3_write_reg(adap, A_MC5_DB_ILOOKUP_CMD, IDT_CMD_SEARCH); | ||
181 | t3_write_reg(adap, A_MC5_DB_ELOOKUP_CMD, IDT_CMD_SEARCH | 0x7000); | ||
182 | t3_write_reg(adap, A_MC5_DB_DATA_WRITE_CMD, IDT_CMD_WRITE); | ||
183 | t3_write_reg(adap, A_MC5_DB_DATA_READ_CMD, IDT_CMD_READ); | ||
184 | |||
185 | /* Set DBGI command mode for IDT TCAM. */ | ||
186 | t3_write_reg(adap, A_MC5_DB_DBGI_CONFIG, DBGI_MODE_IDT52100); | ||
187 | |||
188 | /* Set up LAR */ | ||
189 | dbgi_wr_data3(adap, IDT_LAR_MODE144, 0, 0); | ||
190 | if (mc5_write(adap, IDT_LAR_ADR0, IDT_CMD_WRITE)) | ||
191 | goto err; | ||
192 | |||
193 | /* Set up SSRs */ | ||
194 | dbgi_wr_data3(adap, 0xffffffff, 0xffffffff, 0); | ||
195 | if (mc5_write(adap, IDT_SSR0_ADR0, IDT_CMD_WRITE) || | ||
196 | mc5_write(adap, IDT_SSR1_ADR0, IDT_CMD_WRITE)) | ||
197 | goto err; | ||
198 | |||
199 | /* Set up GMRs */ | ||
200 | for (i = 0; i < 32; ++i) { | ||
201 | if (i >= 12 && i < 15) | ||
202 | dbgi_wr_data3(adap, 0xfffffff9, 0xffffffff, 0xff); | ||
203 | else if (i == 15) | ||
204 | dbgi_wr_data3(adap, 0xfffffff9, 0xffff8007, 0xff); | ||
205 | else | ||
206 | dbgi_wr_data3(adap, 0xffffffff, 0xffffffff, 0xff); | ||
207 | |||
208 | if (mc5_write(adap, IDT_GMR_BASE_ADR0 + i, IDT_CMD_WRITE)) | ||
209 | goto err; | ||
210 | } | ||
211 | |||
212 | /* Set up SCR */ | ||
213 | dbgi_wr_data3(adap, 1, 0, 0); | ||
214 | if (mc5_write(adap, IDT_SCR_ADR0, IDT_CMD_WRITE)) | ||
215 | goto err; | ||
216 | |||
217 | return init_mask_data_array(mc5, IDT_MSKARY_BASE_ADR0, | ||
218 | IDT_DATARY_BASE_ADR0, IDT_CMD_WRITE, 0); | ||
219 | err: | ||
220 | return -EIO; | ||
221 | } | ||
222 | |||
223 | static int init_idt43102(struct mc5 *mc5) | ||
224 | { | ||
225 | int i; | ||
226 | struct adapter *adap = mc5->adapter; | ||
227 | |||
228 | t3_write_reg(adap, A_MC5_DB_RSP_LATENCY, | ||
229 | adap->params.rev == 0 ? V_RDLAT(0xd) | V_SRCHLAT(0x11) : | ||
230 | V_RDLAT(0xd) | V_SRCHLAT(0x12)); | ||
231 | |||
232 | /* | ||
233 | * Use GMRs 24-25 for ELOOKUP, GMRs 20-21 for SYN lookups, and no mask | ||
234 | * for ACK- and AOPEN searches. | ||
235 | */ | ||
236 | t3_write_reg(adap, A_MC5_DB_POPEN_DATA_WR_CMD, IDT4_CMD_WRITE); | ||
237 | t3_write_reg(adap, A_MC5_DB_POPEN_MASK_WR_CMD, IDT4_CMD_WRITE); | ||
238 | t3_write_reg(adap, A_MC5_DB_AOPEN_SRCH_CMD, | ||
239 | IDT4_CMD_SEARCH144 | 0x3800); | ||
240 | t3_write_reg(adap, A_MC5_DB_SYN_SRCH_CMD, IDT4_CMD_SEARCH144); | ||
241 | t3_write_reg(adap, A_MC5_DB_ACK_SRCH_CMD, IDT4_CMD_SEARCH144 | 0x3800); | ||
242 | t3_write_reg(adap, A_MC5_DB_ILOOKUP_CMD, IDT4_CMD_SEARCH144 | 0x3800); | ||
243 | t3_write_reg(adap, A_MC5_DB_ELOOKUP_CMD, IDT4_CMD_SEARCH144 | 0x800); | ||
244 | t3_write_reg(adap, A_MC5_DB_DATA_WRITE_CMD, IDT4_CMD_WRITE); | ||
245 | t3_write_reg(adap, A_MC5_DB_DATA_READ_CMD, IDT4_CMD_READ); | ||
246 | |||
247 | t3_write_reg(adap, A_MC5_DB_PART_ID_INDEX, 3); | ||
248 | |||
249 | /* Set DBGI command mode for IDT TCAM. */ | ||
250 | t3_write_reg(adap, A_MC5_DB_DBGI_CONFIG, DBGI_MODE_IDT52100); | ||
251 | |||
252 | /* Set up GMRs */ | ||
253 | dbgi_wr_data3(adap, 0xffffffff, 0xffffffff, 0xff); | ||
254 | for (i = 0; i < 7; ++i) | ||
255 | if (mc5_write(adap, IDT4_GMR_BASE0 + i, IDT4_CMD_WRITE)) | ||
256 | goto err; | ||
257 | |||
258 | for (i = 0; i < 4; ++i) | ||
259 | if (mc5_write(adap, IDT4_GMR_BASE2 + i, IDT4_CMD_WRITE)) | ||
260 | goto err; | ||
261 | |||
262 | dbgi_wr_data3(adap, 0xfffffff9, 0xffffffff, 0xff); | ||
263 | if (mc5_write(adap, IDT4_GMR_BASE1, IDT4_CMD_WRITE) || | ||
264 | mc5_write(adap, IDT4_GMR_BASE1 + 1, IDT4_CMD_WRITE) || | ||
265 | mc5_write(adap, IDT4_GMR_BASE1 + 4, IDT4_CMD_WRITE)) | ||
266 | goto err; | ||
267 | |||
268 | dbgi_wr_data3(adap, 0xfffffff9, 0xffff8007, 0xff); | ||
269 | if (mc5_write(adap, IDT4_GMR_BASE1 + 5, IDT4_CMD_WRITE)) | ||
270 | goto err; | ||
271 | |||
272 | /* Set up SCR */ | ||
273 | dbgi_wr_data3(adap, 0xf0000000, 0, 0); | ||
274 | if (mc5_write(adap, IDT4_SCR_ADR0, IDT4_CMD_WRITE)) | ||
275 | goto err; | ||
276 | |||
277 | return init_mask_data_array(mc5, IDT4_MSKARY_BASE_ADR0, | ||
278 | IDT4_DATARY_BASE_ADR0, IDT4_CMD_WRITE, 1); | ||
279 | err: | ||
280 | return -EIO; | ||
281 | } | ||
282 | |||
283 | /* Put MC5 in DBGI mode. */ | ||
284 | static inline void mc5_dbgi_mode_enable(const struct mc5 *mc5) | ||
285 | { | ||
286 | t3_write_reg(mc5->adapter, A_MC5_DB_CONFIG, | ||
287 | V_TMMODE(mc5->mode == MC5_MODE_72_BIT) | F_DBGIEN); | ||
288 | } | ||
289 | |||
290 | /* Put MC5 in M-Bus mode. */ | ||
291 | static void mc5_dbgi_mode_disable(const struct mc5 *mc5) | ||
292 | { | ||
293 | t3_write_reg(mc5->adapter, A_MC5_DB_CONFIG, | ||
294 | V_TMMODE(mc5->mode == MC5_MODE_72_BIT) | | ||
295 | V_COMPEN(mc5->mode == MC5_MODE_72_BIT) | | ||
296 | V_PRTYEN(mc5->parity_enabled) | F_MBUSEN); | ||
297 | } | ||
298 | |||
299 | /* | ||
300 | * Initialization that requires the OS and protocol layers to already | ||
301 | * be intialized goes here. | ||
302 | */ | ||
303 | int t3_mc5_init(struct mc5 *mc5, unsigned int nservers, unsigned int nfilters, | ||
304 | unsigned int nroutes) | ||
305 | { | ||
306 | u32 cfg; | ||
307 | int err; | ||
308 | unsigned int tcam_size = mc5->tcam_size; | ||
309 | struct adapter *adap = mc5->adapter; | ||
310 | |||
311 | if (nroutes > MAX_ROUTES || nroutes + nservers + nfilters > tcam_size) | ||
312 | return -EINVAL; | ||
313 | |||
314 | /* Reset the TCAM */ | ||
315 | cfg = t3_read_reg(adap, A_MC5_DB_CONFIG) & ~F_TMMODE; | ||
316 | cfg |= V_TMMODE(mc5->mode == MC5_MODE_72_BIT) | F_TMRST; | ||
317 | t3_write_reg(adap, A_MC5_DB_CONFIG, cfg); | ||
318 | if (t3_wait_op_done(adap, A_MC5_DB_CONFIG, F_TMRDY, 1, 500, 0)) { | ||
319 | CH_ERR(adap, "TCAM reset timed out\n"); | ||
320 | return -1; | ||
321 | } | ||
322 | |||
323 | t3_write_reg(adap, A_MC5_DB_ROUTING_TABLE_INDEX, tcam_size - nroutes); | ||
324 | t3_write_reg(adap, A_MC5_DB_FILTER_TABLE, | ||
325 | tcam_size - nroutes - nfilters); | ||
326 | t3_write_reg(adap, A_MC5_DB_SERVER_INDEX, | ||
327 | tcam_size - nroutes - nfilters - nservers); | ||
328 | |||
329 | mc5->parity_enabled = 1; | ||
330 | |||
331 | /* All the TCAM addresses we access have only the low 32 bits non 0 */ | ||
332 | t3_write_reg(adap, A_MC5_DB_DBGI_REQ_ADDR1, 0); | ||
333 | t3_write_reg(adap, A_MC5_DB_DBGI_REQ_ADDR2, 0); | ||
334 | |||
335 | mc5_dbgi_mode_enable(mc5); | ||
336 | |||
337 | switch (mc5->part_type) { | ||
338 | case IDT75P52100: | ||
339 | err = init_idt52100(mc5); | ||
340 | break; | ||
341 | case IDT75N43102: | ||
342 | err = init_idt43102(mc5); | ||
343 | break; | ||
344 | default: | ||
345 | CH_ERR(adap, "Unsupported TCAM type %d\n", mc5->part_type); | ||
346 | err = -EINVAL; | ||
347 | break; | ||
348 | } | ||
349 | |||
350 | mc5_dbgi_mode_disable(mc5); | ||
351 | return err; | ||
352 | } | ||
353 | |||
354 | /* | ||
355 | * read_mc5_range - dump a part of the memory managed by MC5 | ||
356 | * @mc5: the MC5 handle | ||
357 | * @start: the start address for the dump | ||
358 | * @n: number of 72-bit words to read | ||
359 | * @buf: result buffer | ||
360 | * | ||
361 | * Read n 72-bit words from MC5 memory from the given start location. | ||
362 | */ | ||
363 | int t3_read_mc5_range(const struct mc5 *mc5, unsigned int start, | ||
364 | unsigned int n, u32 *buf) | ||
365 | { | ||
366 | u32 read_cmd; | ||
367 | int err = 0; | ||
368 | struct adapter *adap = mc5->adapter; | ||
369 | |||
370 | if (mc5->part_type == IDT75P52100) | ||
371 | read_cmd = IDT_CMD_READ; | ||
372 | else if (mc5->part_type == IDT75N43102) | ||
373 | read_cmd = IDT4_CMD_READ; | ||
374 | else | ||
375 | return -EINVAL; | ||
376 | |||
377 | mc5_dbgi_mode_enable(mc5); | ||
378 | |||
379 | while (n--) { | ||
380 | t3_write_reg(adap, A_MC5_DB_DBGI_REQ_ADDR0, start++); | ||
381 | if (mc5_cmd_write(adap, read_cmd)) { | ||
382 | err = -EIO; | ||
383 | break; | ||
384 | } | ||
385 | dbgi_rd_rsp3(adap, buf + 2, buf + 1, buf); | ||
386 | buf += 3; | ||
387 | } | ||
388 | |||
389 | mc5_dbgi_mode_disable(mc5); | ||
390 | return 0; | ||
391 | } | ||
392 | |||
393 | #define MC5_INT_FATAL (F_PARITYERR | F_REQQPARERR | F_DISPQPARERR) | ||
394 | |||
395 | /* | ||
396 | * MC5 interrupt handler | ||
397 | */ | ||
398 | void t3_mc5_intr_handler(struct mc5 *mc5) | ||
399 | { | ||
400 | struct adapter *adap = mc5->adapter; | ||
401 | u32 cause = t3_read_reg(adap, A_MC5_DB_INT_CAUSE); | ||
402 | |||
403 | if ((cause & F_PARITYERR) && mc5->parity_enabled) { | ||
404 | CH_ALERT(adap, "MC5 parity error\n"); | ||
405 | mc5->stats.parity_err++; | ||
406 | } | ||
407 | |||
408 | if (cause & F_REQQPARERR) { | ||
409 | CH_ALERT(adap, "MC5 request queue parity error\n"); | ||
410 | mc5->stats.reqq_parity_err++; | ||
411 | } | ||
412 | |||
413 | if (cause & F_DISPQPARERR) { | ||
414 | CH_ALERT(adap, "MC5 dispatch queue parity error\n"); | ||
415 | mc5->stats.dispq_parity_err++; | ||
416 | } | ||
417 | |||
418 | if (cause & F_ACTRGNFULL) | ||
419 | mc5->stats.active_rgn_full++; | ||
420 | if (cause & F_NFASRCHFAIL) | ||
421 | mc5->stats.nfa_srch_err++; | ||
422 | if (cause & F_UNKNOWNCMD) | ||
423 | mc5->stats.unknown_cmd++; | ||
424 | if (cause & F_DELACTEMPTY) | ||
425 | mc5->stats.del_act_empty++; | ||
426 | if (cause & MC5_INT_FATAL) | ||
427 | t3_fatal_err(adap); | ||
428 | |||
429 | t3_write_reg(adap, A_MC5_DB_INT_CAUSE, cause); | ||
430 | } | ||
431 | |||
432 | void __devinit t3_mc5_prep(struct adapter *adapter, struct mc5 *mc5, int mode) | ||
433 | { | ||
434 | #define K * 1024 | ||
435 | |||
436 | static unsigned int tcam_part_size[] = { /* in K 72-bit entries */ | ||
437 | 64 K, 128 K, 256 K, 32 K | ||
438 | }; | ||
439 | |||
440 | #undef K | ||
441 | |||
442 | u32 cfg = t3_read_reg(adapter, A_MC5_DB_CONFIG); | ||
443 | |||
444 | mc5->adapter = adapter; | ||
445 | mc5->mode = (unsigned char)mode; | ||
446 | mc5->part_type = (unsigned char)G_TMTYPE(cfg); | ||
447 | if (cfg & F_TMTYPEHI) | ||
448 | mc5->part_type |= 4; | ||
449 | |||
450 | mc5->tcam_size = tcam_part_size[G_TMPARTSIZE(cfg)]; | ||
451 | if (mode == MC5_MODE_144_BIT) | ||
452 | mc5->tcam_size /= 2; | ||
453 | } | ||
diff --git a/drivers/net/cxgb3/regs.h b/drivers/net/cxgb3/regs.h new file mode 100644 index 000000000000..b56c5f52bcdc --- /dev/null +++ b/drivers/net/cxgb3/regs.h | |||
@@ -0,0 +1,2195 @@ | |||
1 | #define A_SG_CONTROL 0x0 | ||
2 | |||
3 | #define S_DROPPKT 20 | ||
4 | #define V_DROPPKT(x) ((x) << S_DROPPKT) | ||
5 | #define F_DROPPKT V_DROPPKT(1U) | ||
6 | |||
7 | #define S_EGRGENCTRL 19 | ||
8 | #define V_EGRGENCTRL(x) ((x) << S_EGRGENCTRL) | ||
9 | #define F_EGRGENCTRL V_EGRGENCTRL(1U) | ||
10 | |||
11 | #define S_USERSPACESIZE 14 | ||
12 | #define M_USERSPACESIZE 0x1f | ||
13 | #define V_USERSPACESIZE(x) ((x) << S_USERSPACESIZE) | ||
14 | |||
15 | #define S_HOSTPAGESIZE 11 | ||
16 | #define M_HOSTPAGESIZE 0x7 | ||
17 | #define V_HOSTPAGESIZE(x) ((x) << S_HOSTPAGESIZE) | ||
18 | |||
19 | #define S_FLMODE 9 | ||
20 | #define V_FLMODE(x) ((x) << S_FLMODE) | ||
21 | #define F_FLMODE V_FLMODE(1U) | ||
22 | |||
23 | #define S_PKTSHIFT 6 | ||
24 | #define M_PKTSHIFT 0x7 | ||
25 | #define V_PKTSHIFT(x) ((x) << S_PKTSHIFT) | ||
26 | |||
27 | #define S_ONEINTMULTQ 5 | ||
28 | #define V_ONEINTMULTQ(x) ((x) << S_ONEINTMULTQ) | ||
29 | #define F_ONEINTMULTQ V_ONEINTMULTQ(1U) | ||
30 | |||
31 | #define S_BIGENDIANINGRESS 2 | ||
32 | #define V_BIGENDIANINGRESS(x) ((x) << S_BIGENDIANINGRESS) | ||
33 | #define F_BIGENDIANINGRESS V_BIGENDIANINGRESS(1U) | ||
34 | |||
35 | #define S_ISCSICOALESCING 1 | ||
36 | #define V_ISCSICOALESCING(x) ((x) << S_ISCSICOALESCING) | ||
37 | #define F_ISCSICOALESCING V_ISCSICOALESCING(1U) | ||
38 | |||
39 | #define S_GLOBALENABLE 0 | ||
40 | #define V_GLOBALENABLE(x) ((x) << S_GLOBALENABLE) | ||
41 | #define F_GLOBALENABLE V_GLOBALENABLE(1U) | ||
42 | |||
43 | #define S_AVOIDCQOVFL 24 | ||
44 | #define V_AVOIDCQOVFL(x) ((x) << S_AVOIDCQOVFL) | ||
45 | #define F_AVOIDCQOVFL V_AVOIDCQOVFL(1U) | ||
46 | |||
47 | #define S_OPTONEINTMULTQ 23 | ||
48 | #define V_OPTONEINTMULTQ(x) ((x) << S_OPTONEINTMULTQ) | ||
49 | #define F_OPTONEINTMULTQ V_OPTONEINTMULTQ(1U) | ||
50 | |||
51 | #define S_CQCRDTCTRL 22 | ||
52 | #define V_CQCRDTCTRL(x) ((x) << S_CQCRDTCTRL) | ||
53 | #define F_CQCRDTCTRL V_CQCRDTCTRL(1U) | ||
54 | |||
55 | #define A_SG_KDOORBELL 0x4 | ||
56 | |||
57 | #define S_SELEGRCNTX 31 | ||
58 | #define V_SELEGRCNTX(x) ((x) << S_SELEGRCNTX) | ||
59 | #define F_SELEGRCNTX V_SELEGRCNTX(1U) | ||
60 | |||
61 | #define S_EGRCNTX 0 | ||
62 | #define M_EGRCNTX 0xffff | ||
63 | #define V_EGRCNTX(x) ((x) << S_EGRCNTX) | ||
64 | |||
65 | #define A_SG_GTS 0x8 | ||
66 | |||
67 | #define S_RSPQ 29 | ||
68 | #define M_RSPQ 0x7 | ||
69 | #define V_RSPQ(x) ((x) << S_RSPQ) | ||
70 | #define G_RSPQ(x) (((x) >> S_RSPQ) & M_RSPQ) | ||
71 | |||
72 | #define S_NEWTIMER 16 | ||
73 | #define M_NEWTIMER 0x1fff | ||
74 | #define V_NEWTIMER(x) ((x) << S_NEWTIMER) | ||
75 | |||
76 | #define S_NEWINDEX 0 | ||
77 | #define M_NEWINDEX 0xffff | ||
78 | #define V_NEWINDEX(x) ((x) << S_NEWINDEX) | ||
79 | |||
80 | #define A_SG_CONTEXT_CMD 0xc | ||
81 | |||
82 | #define S_CONTEXT_CMD_OPCODE 28 | ||
83 | #define M_CONTEXT_CMD_OPCODE 0xf | ||
84 | #define V_CONTEXT_CMD_OPCODE(x) ((x) << S_CONTEXT_CMD_OPCODE) | ||
85 | |||
86 | #define S_CONTEXT_CMD_BUSY 27 | ||
87 | #define V_CONTEXT_CMD_BUSY(x) ((x) << S_CONTEXT_CMD_BUSY) | ||
88 | #define F_CONTEXT_CMD_BUSY V_CONTEXT_CMD_BUSY(1U) | ||
89 | |||
90 | #define S_CQ_CREDIT 20 | ||
91 | |||
92 | #define M_CQ_CREDIT 0x7f | ||
93 | |||
94 | #define V_CQ_CREDIT(x) ((x) << S_CQ_CREDIT) | ||
95 | |||
96 | #define G_CQ_CREDIT(x) (((x) >> S_CQ_CREDIT) & M_CQ_CREDIT) | ||
97 | |||
98 | #define S_CQ 19 | ||
99 | |||
100 | #define V_CQ(x) ((x) << S_CQ) | ||
101 | #define F_CQ V_CQ(1U) | ||
102 | |||
103 | #define S_RESPONSEQ 18 | ||
104 | #define V_RESPONSEQ(x) ((x) << S_RESPONSEQ) | ||
105 | #define F_RESPONSEQ V_RESPONSEQ(1U) | ||
106 | |||
107 | #define S_EGRESS 17 | ||
108 | #define V_EGRESS(x) ((x) << S_EGRESS) | ||
109 | #define F_EGRESS V_EGRESS(1U) | ||
110 | |||
111 | #define S_FREELIST 16 | ||
112 | #define V_FREELIST(x) ((x) << S_FREELIST) | ||
113 | #define F_FREELIST V_FREELIST(1U) | ||
114 | |||
115 | #define S_CONTEXT 0 | ||
116 | #define M_CONTEXT 0xffff | ||
117 | #define V_CONTEXT(x) ((x) << S_CONTEXT) | ||
118 | |||
119 | #define G_CONTEXT(x) (((x) >> S_CONTEXT) & M_CONTEXT) | ||
120 | |||
121 | #define A_SG_CONTEXT_DATA0 0x10 | ||
122 | |||
123 | #define A_SG_CONTEXT_DATA1 0x14 | ||
124 | |||
125 | #define A_SG_CONTEXT_DATA2 0x18 | ||
126 | |||
127 | #define A_SG_CONTEXT_DATA3 0x1c | ||
128 | |||
129 | #define A_SG_CONTEXT_MASK0 0x20 | ||
130 | |||
131 | #define A_SG_CONTEXT_MASK1 0x24 | ||
132 | |||
133 | #define A_SG_CONTEXT_MASK2 0x28 | ||
134 | |||
135 | #define A_SG_CONTEXT_MASK3 0x2c | ||
136 | |||
137 | #define A_SG_RSPQ_CREDIT_RETURN 0x30 | ||
138 | |||
139 | #define S_CREDITS 0 | ||
140 | #define M_CREDITS 0xffff | ||
141 | #define V_CREDITS(x) ((x) << S_CREDITS) | ||
142 | |||
143 | #define A_SG_DATA_INTR 0x34 | ||
144 | |||
145 | #define S_ERRINTR 31 | ||
146 | #define V_ERRINTR(x) ((x) << S_ERRINTR) | ||
147 | #define F_ERRINTR V_ERRINTR(1U) | ||
148 | |||
149 | #define A_SG_HI_DRB_HI_THRSH 0x38 | ||
150 | |||
151 | #define A_SG_HI_DRB_LO_THRSH 0x3c | ||
152 | |||
153 | #define A_SG_LO_DRB_HI_THRSH 0x40 | ||
154 | |||
155 | #define A_SG_LO_DRB_LO_THRSH 0x44 | ||
156 | |||
157 | #define A_SG_RSPQ_FL_STATUS 0x4c | ||
158 | |||
159 | #define S_RSPQ0DISABLED 8 | ||
160 | |||
161 | #define A_SG_EGR_RCQ_DRB_THRSH 0x54 | ||
162 | |||
163 | #define S_HIRCQDRBTHRSH 16 | ||
164 | #define M_HIRCQDRBTHRSH 0x7ff | ||
165 | #define V_HIRCQDRBTHRSH(x) ((x) << S_HIRCQDRBTHRSH) | ||
166 | |||
167 | #define S_LORCQDRBTHRSH 0 | ||
168 | #define M_LORCQDRBTHRSH 0x7ff | ||
169 | #define V_LORCQDRBTHRSH(x) ((x) << S_LORCQDRBTHRSH) | ||
170 | |||
171 | #define A_SG_EGR_CNTX_BADDR 0x58 | ||
172 | |||
173 | #define A_SG_INT_CAUSE 0x5c | ||
174 | |||
175 | #define S_RSPQDISABLED 3 | ||
176 | #define V_RSPQDISABLED(x) ((x) << S_RSPQDISABLED) | ||
177 | #define F_RSPQDISABLED V_RSPQDISABLED(1U) | ||
178 | |||
179 | #define S_RSPQCREDITOVERFOW 2 | ||
180 | #define V_RSPQCREDITOVERFOW(x) ((x) << S_RSPQCREDITOVERFOW) | ||
181 | #define F_RSPQCREDITOVERFOW V_RSPQCREDITOVERFOW(1U) | ||
182 | |||
183 | #define A_SG_INT_ENABLE 0x60 | ||
184 | |||
185 | #define A_SG_CMDQ_CREDIT_TH 0x64 | ||
186 | |||
187 | #define S_TIMEOUT 8 | ||
188 | #define M_TIMEOUT 0xffffff | ||
189 | #define V_TIMEOUT(x) ((x) << S_TIMEOUT) | ||
190 | |||
191 | #define S_THRESHOLD 0 | ||
192 | #define M_THRESHOLD 0xff | ||
193 | #define V_THRESHOLD(x) ((x) << S_THRESHOLD) | ||
194 | |||
195 | #define A_SG_TIMER_TICK 0x68 | ||
196 | |||
197 | #define A_SG_CQ_CONTEXT_BADDR 0x6c | ||
198 | |||
199 | #define A_SG_OCO_BASE 0x70 | ||
200 | |||
201 | #define S_BASE1 16 | ||
202 | #define M_BASE1 0xffff | ||
203 | #define V_BASE1(x) ((x) << S_BASE1) | ||
204 | |||
205 | #define A_SG_DRB_PRI_THRESH 0x74 | ||
206 | |||
207 | #define A_PCIX_INT_ENABLE 0x80 | ||
208 | |||
209 | #define S_MSIXPARERR 22 | ||
210 | #define M_MSIXPARERR 0x7 | ||
211 | |||
212 | #define V_MSIXPARERR(x) ((x) << S_MSIXPARERR) | ||
213 | |||
214 | #define S_CFPARERR 18 | ||
215 | #define M_CFPARERR 0xf | ||
216 | |||
217 | #define V_CFPARERR(x) ((x) << S_CFPARERR) | ||
218 | |||
219 | #define S_RFPARERR 14 | ||
220 | #define M_RFPARERR 0xf | ||
221 | |||
222 | #define V_RFPARERR(x) ((x) << S_RFPARERR) | ||
223 | |||
224 | #define S_WFPARERR 12 | ||
225 | #define M_WFPARERR 0x3 | ||
226 | |||
227 | #define V_WFPARERR(x) ((x) << S_WFPARERR) | ||
228 | |||
229 | #define S_PIOPARERR 11 | ||
230 | #define V_PIOPARERR(x) ((x) << S_PIOPARERR) | ||
231 | #define F_PIOPARERR V_PIOPARERR(1U) | ||
232 | |||
233 | #define S_DETUNCECCERR 10 | ||
234 | #define V_DETUNCECCERR(x) ((x) << S_DETUNCECCERR) | ||
235 | #define F_DETUNCECCERR V_DETUNCECCERR(1U) | ||
236 | |||
237 | #define S_DETCORECCERR 9 | ||
238 | #define V_DETCORECCERR(x) ((x) << S_DETCORECCERR) | ||
239 | #define F_DETCORECCERR V_DETCORECCERR(1U) | ||
240 | |||
241 | #define S_RCVSPLCMPERR 8 | ||
242 | #define V_RCVSPLCMPERR(x) ((x) << S_RCVSPLCMPERR) | ||
243 | #define F_RCVSPLCMPERR V_RCVSPLCMPERR(1U) | ||
244 | |||
245 | #define S_UNXSPLCMP 7 | ||
246 | #define V_UNXSPLCMP(x) ((x) << S_UNXSPLCMP) | ||
247 | #define F_UNXSPLCMP V_UNXSPLCMP(1U) | ||
248 | |||
249 | #define S_SPLCMPDIS 6 | ||
250 | #define V_SPLCMPDIS(x) ((x) << S_SPLCMPDIS) | ||
251 | #define F_SPLCMPDIS V_SPLCMPDIS(1U) | ||
252 | |||
253 | #define S_DETPARERR 5 | ||
254 | #define V_DETPARERR(x) ((x) << S_DETPARERR) | ||
255 | #define F_DETPARERR V_DETPARERR(1U) | ||
256 | |||
257 | #define S_SIGSYSERR 4 | ||
258 | #define V_SIGSYSERR(x) ((x) << S_SIGSYSERR) | ||
259 | #define F_SIGSYSERR V_SIGSYSERR(1U) | ||
260 | |||
261 | #define S_RCVMSTABT 3 | ||
262 | #define V_RCVMSTABT(x) ((x) << S_RCVMSTABT) | ||
263 | #define F_RCVMSTABT V_RCVMSTABT(1U) | ||
264 | |||
265 | #define S_RCVTARABT 2 | ||
266 | #define V_RCVTARABT(x) ((x) << S_RCVTARABT) | ||
267 | #define F_RCVTARABT V_RCVTARABT(1U) | ||
268 | |||
269 | #define S_SIGTARABT 1 | ||
270 | #define V_SIGTARABT(x) ((x) << S_SIGTARABT) | ||
271 | #define F_SIGTARABT V_SIGTARABT(1U) | ||
272 | |||
273 | #define S_MSTDETPARERR 0 | ||
274 | #define V_MSTDETPARERR(x) ((x) << S_MSTDETPARERR) | ||
275 | #define F_MSTDETPARERR V_MSTDETPARERR(1U) | ||
276 | |||
277 | #define A_PCIX_INT_CAUSE 0x84 | ||
278 | |||
279 | #define A_PCIX_CFG 0x88 | ||
280 | |||
281 | #define S_CLIDECEN 18 | ||
282 | #define V_CLIDECEN(x) ((x) << S_CLIDECEN) | ||
283 | #define F_CLIDECEN V_CLIDECEN(1U) | ||
284 | |||
285 | #define A_PCIX_MODE 0x8c | ||
286 | |||
287 | #define S_PCLKRANGE 6 | ||
288 | #define M_PCLKRANGE 0x3 | ||
289 | #define V_PCLKRANGE(x) ((x) << S_PCLKRANGE) | ||
290 | #define G_PCLKRANGE(x) (((x) >> S_PCLKRANGE) & M_PCLKRANGE) | ||
291 | |||
292 | #define S_PCIXINITPAT 2 | ||
293 | #define M_PCIXINITPAT 0xf | ||
294 | #define V_PCIXINITPAT(x) ((x) << S_PCIXINITPAT) | ||
295 | #define G_PCIXINITPAT(x) (((x) >> S_PCIXINITPAT) & M_PCIXINITPAT) | ||
296 | |||
297 | #define S_64BIT 0 | ||
298 | #define V_64BIT(x) ((x) << S_64BIT) | ||
299 | #define F_64BIT V_64BIT(1U) | ||
300 | |||
301 | #define A_PCIE_INT_ENABLE 0x80 | ||
302 | |||
303 | #define S_BISTERR 15 | ||
304 | #define M_BISTERR 0xff | ||
305 | |||
306 | #define V_BISTERR(x) ((x) << S_BISTERR) | ||
307 | |||
308 | #define S_PCIE_MSIXPARERR 12 | ||
309 | #define M_PCIE_MSIXPARERR 0x7 | ||
310 | |||
311 | #define V_PCIE_MSIXPARERR(x) ((x) << S_PCIE_MSIXPARERR) | ||
312 | |||
313 | #define S_PCIE_CFPARERR 11 | ||
314 | #define V_PCIE_CFPARERR(x) ((x) << S_PCIE_CFPARERR) | ||
315 | #define F_PCIE_CFPARERR V_PCIE_CFPARERR(1U) | ||
316 | |||
317 | #define S_PCIE_RFPARERR 10 | ||
318 | #define V_PCIE_RFPARERR(x) ((x) << S_PCIE_RFPARERR) | ||
319 | #define F_PCIE_RFPARERR V_PCIE_RFPARERR(1U) | ||
320 | |||
321 | #define S_PCIE_WFPARERR 9 | ||
322 | #define V_PCIE_WFPARERR(x) ((x) << S_PCIE_WFPARERR) | ||
323 | #define F_PCIE_WFPARERR V_PCIE_WFPARERR(1U) | ||
324 | |||
325 | #define S_PCIE_PIOPARERR 8 | ||
326 | #define V_PCIE_PIOPARERR(x) ((x) << S_PCIE_PIOPARERR) | ||
327 | #define F_PCIE_PIOPARERR V_PCIE_PIOPARERR(1U) | ||
328 | |||
329 | #define S_UNXSPLCPLERRC 7 | ||
330 | #define V_UNXSPLCPLERRC(x) ((x) << S_UNXSPLCPLERRC) | ||
331 | #define F_UNXSPLCPLERRC V_UNXSPLCPLERRC(1U) | ||
332 | |||
333 | #define S_UNXSPLCPLERRR 6 | ||
334 | #define V_UNXSPLCPLERRR(x) ((x) << S_UNXSPLCPLERRR) | ||
335 | #define F_UNXSPLCPLERRR V_UNXSPLCPLERRR(1U) | ||
336 | |||
337 | #define S_PEXERR 0 | ||
338 | #define V_PEXERR(x) ((x) << S_PEXERR) | ||
339 | #define F_PEXERR V_PEXERR(1U) | ||
340 | |||
341 | #define A_PCIE_INT_CAUSE 0x84 | ||
342 | |||
343 | #define A_PCIE_CFG 0x88 | ||
344 | |||
345 | #define S_PCIE_CLIDECEN 16 | ||
346 | #define V_PCIE_CLIDECEN(x) ((x) << S_PCIE_CLIDECEN) | ||
347 | #define F_PCIE_CLIDECEN V_PCIE_CLIDECEN(1U) | ||
348 | |||
349 | #define S_CRSTWRMMODE 0 | ||
350 | #define V_CRSTWRMMODE(x) ((x) << S_CRSTWRMMODE) | ||
351 | #define F_CRSTWRMMODE V_CRSTWRMMODE(1U) | ||
352 | |||
353 | #define A_PCIE_MODE 0x8c | ||
354 | |||
355 | #define S_NUMFSTTRNSEQRX 10 | ||
356 | #define M_NUMFSTTRNSEQRX 0xff | ||
357 | #define V_NUMFSTTRNSEQRX(x) ((x) << S_NUMFSTTRNSEQRX) | ||
358 | #define G_NUMFSTTRNSEQRX(x) (((x) >> S_NUMFSTTRNSEQRX) & M_NUMFSTTRNSEQRX) | ||
359 | |||
360 | #define A_PCIE_PEX_CTRL0 0x98 | ||
361 | |||
362 | #define S_NUMFSTTRNSEQ 22 | ||
363 | #define M_NUMFSTTRNSEQ 0xff | ||
364 | #define V_NUMFSTTRNSEQ(x) ((x) << S_NUMFSTTRNSEQ) | ||
365 | #define G_NUMFSTTRNSEQ(x) (((x) >> S_NUMFSTTRNSEQ) & M_NUMFSTTRNSEQ) | ||
366 | |||
367 | #define S_REPLAYLMT 2 | ||
368 | #define M_REPLAYLMT 0xfffff | ||
369 | |||
370 | #define V_REPLAYLMT(x) ((x) << S_REPLAYLMT) | ||
371 | |||
372 | #define A_PCIE_PEX_CTRL1 0x9c | ||
373 | |||
374 | #define S_T3A_ACKLAT 0 | ||
375 | #define M_T3A_ACKLAT 0x7ff | ||
376 | |||
377 | #define V_T3A_ACKLAT(x) ((x) << S_T3A_ACKLAT) | ||
378 | |||
379 | #define S_ACKLAT 0 | ||
380 | #define M_ACKLAT 0x1fff | ||
381 | |||
382 | #define V_ACKLAT(x) ((x) << S_ACKLAT) | ||
383 | |||
384 | #define A_PCIE_PEX_ERR 0xa4 | ||
385 | |||
386 | #define A_T3DBG_GPIO_EN 0xd0 | ||
387 | |||
388 | #define S_GPIO11_OEN 27 | ||
389 | #define V_GPIO11_OEN(x) ((x) << S_GPIO11_OEN) | ||
390 | #define F_GPIO11_OEN V_GPIO11_OEN(1U) | ||
391 | |||
392 | #define S_GPIO10_OEN 26 | ||
393 | #define V_GPIO10_OEN(x) ((x) << S_GPIO10_OEN) | ||
394 | #define F_GPIO10_OEN V_GPIO10_OEN(1U) | ||
395 | |||
396 | #define S_GPIO7_OEN 23 | ||
397 | #define V_GPIO7_OEN(x) ((x) << S_GPIO7_OEN) | ||
398 | #define F_GPIO7_OEN V_GPIO7_OEN(1U) | ||
399 | |||
400 | #define S_GPIO6_OEN 22 | ||
401 | #define V_GPIO6_OEN(x) ((x) << S_GPIO6_OEN) | ||
402 | #define F_GPIO6_OEN V_GPIO6_OEN(1U) | ||
403 | |||
404 | #define S_GPIO5_OEN 21 | ||
405 | #define V_GPIO5_OEN(x) ((x) << S_GPIO5_OEN) | ||
406 | #define F_GPIO5_OEN V_GPIO5_OEN(1U) | ||
407 | |||
408 | #define S_GPIO4_OEN 20 | ||
409 | #define V_GPIO4_OEN(x) ((x) << S_GPIO4_OEN) | ||
410 | #define F_GPIO4_OEN V_GPIO4_OEN(1U) | ||
411 | |||
412 | #define S_GPIO2_OEN 18 | ||
413 | #define V_GPIO2_OEN(x) ((x) << S_GPIO2_OEN) | ||
414 | #define F_GPIO2_OEN V_GPIO2_OEN(1U) | ||
415 | |||
416 | #define S_GPIO1_OEN 17 | ||
417 | #define V_GPIO1_OEN(x) ((x) << S_GPIO1_OEN) | ||
418 | #define F_GPIO1_OEN V_GPIO1_OEN(1U) | ||
419 | |||
420 | #define S_GPIO0_OEN 16 | ||
421 | #define V_GPIO0_OEN(x) ((x) << S_GPIO0_OEN) | ||
422 | #define F_GPIO0_OEN V_GPIO0_OEN(1U) | ||
423 | |||
424 | #define S_GPIO10_OUT_VAL 10 | ||
425 | #define V_GPIO10_OUT_VAL(x) ((x) << S_GPIO10_OUT_VAL) | ||
426 | #define F_GPIO10_OUT_VAL V_GPIO10_OUT_VAL(1U) | ||
427 | |||
428 | #define S_GPIO7_OUT_VAL 7 | ||
429 | #define V_GPIO7_OUT_VAL(x) ((x) << S_GPIO7_OUT_VAL) | ||
430 | #define F_GPIO7_OUT_VAL V_GPIO7_OUT_VAL(1U) | ||
431 | |||
432 | #define S_GPIO6_OUT_VAL 6 | ||
433 | #define V_GPIO6_OUT_VAL(x) ((x) << S_GPIO6_OUT_VAL) | ||
434 | #define F_GPIO6_OUT_VAL V_GPIO6_OUT_VAL(1U) | ||
435 | |||
436 | #define S_GPIO5_OUT_VAL 5 | ||
437 | #define V_GPIO5_OUT_VAL(x) ((x) << S_GPIO5_OUT_VAL) | ||
438 | #define F_GPIO5_OUT_VAL V_GPIO5_OUT_VAL(1U) | ||
439 | |||
440 | #define S_GPIO4_OUT_VAL 4 | ||
441 | #define V_GPIO4_OUT_VAL(x) ((x) << S_GPIO4_OUT_VAL) | ||
442 | #define F_GPIO4_OUT_VAL V_GPIO4_OUT_VAL(1U) | ||
443 | |||
444 | #define S_GPIO2_OUT_VAL 2 | ||
445 | #define V_GPIO2_OUT_VAL(x) ((x) << S_GPIO2_OUT_VAL) | ||
446 | #define F_GPIO2_OUT_VAL V_GPIO2_OUT_VAL(1U) | ||
447 | |||
448 | #define S_GPIO1_OUT_VAL 1 | ||
449 | #define V_GPIO1_OUT_VAL(x) ((x) << S_GPIO1_OUT_VAL) | ||
450 | #define F_GPIO1_OUT_VAL V_GPIO1_OUT_VAL(1U) | ||
451 | |||
452 | #define S_GPIO0_OUT_VAL 0 | ||
453 | #define V_GPIO0_OUT_VAL(x) ((x) << S_GPIO0_OUT_VAL) | ||
454 | #define F_GPIO0_OUT_VAL V_GPIO0_OUT_VAL(1U) | ||
455 | |||
456 | #define A_T3DBG_INT_ENABLE 0xd8 | ||
457 | |||
458 | #define S_GPIO11 11 | ||
459 | #define V_GPIO11(x) ((x) << S_GPIO11) | ||
460 | #define F_GPIO11 V_GPIO11(1U) | ||
461 | |||
462 | #define S_GPIO10 10 | ||
463 | #define V_GPIO10(x) ((x) << S_GPIO10) | ||
464 | #define F_GPIO10 V_GPIO10(1U) | ||
465 | |||
466 | #define S_GPIO7 7 | ||
467 | #define V_GPIO7(x) ((x) << S_GPIO7) | ||
468 | #define F_GPIO7 V_GPIO7(1U) | ||
469 | |||
470 | #define S_GPIO6 6 | ||
471 | #define V_GPIO6(x) ((x) << S_GPIO6) | ||
472 | #define F_GPIO6 V_GPIO6(1U) | ||
473 | |||
474 | #define S_GPIO5 5 | ||
475 | #define V_GPIO5(x) ((x) << S_GPIO5) | ||
476 | #define F_GPIO5 V_GPIO5(1U) | ||
477 | |||
478 | #define S_GPIO4 4 | ||
479 | #define V_GPIO4(x) ((x) << S_GPIO4) | ||
480 | #define F_GPIO4 V_GPIO4(1U) | ||
481 | |||
482 | #define S_GPIO3 3 | ||
483 | #define V_GPIO3(x) ((x) << S_GPIO3) | ||
484 | #define F_GPIO3 V_GPIO3(1U) | ||
485 | |||
486 | #define S_GPIO2 2 | ||
487 | #define V_GPIO2(x) ((x) << S_GPIO2) | ||
488 | #define F_GPIO2 V_GPIO2(1U) | ||
489 | |||
490 | #define S_GPIO1 1 | ||
491 | #define V_GPIO1(x) ((x) << S_GPIO1) | ||
492 | #define F_GPIO1 V_GPIO1(1U) | ||
493 | |||
494 | #define S_GPIO0 0 | ||
495 | #define V_GPIO0(x) ((x) << S_GPIO0) | ||
496 | #define F_GPIO0 V_GPIO0(1U) | ||
497 | |||
498 | #define A_T3DBG_INT_CAUSE 0xdc | ||
499 | |||
500 | #define A_T3DBG_GPIO_ACT_LOW 0xf0 | ||
501 | |||
502 | #define MC7_PMRX_BASE_ADDR 0x100 | ||
503 | |||
504 | #define A_MC7_CFG 0x100 | ||
505 | |||
506 | #define S_IFEN 13 | ||
507 | #define V_IFEN(x) ((x) << S_IFEN) | ||
508 | #define F_IFEN V_IFEN(1U) | ||
509 | |||
510 | #define S_TERM150 11 | ||
511 | #define V_TERM150(x) ((x) << S_TERM150) | ||
512 | #define F_TERM150 V_TERM150(1U) | ||
513 | |||
514 | #define S_SLOW 10 | ||
515 | #define V_SLOW(x) ((x) << S_SLOW) | ||
516 | #define F_SLOW V_SLOW(1U) | ||
517 | |||
518 | #define S_WIDTH 8 | ||
519 | #define M_WIDTH 0x3 | ||
520 | #define V_WIDTH(x) ((x) << S_WIDTH) | ||
521 | #define G_WIDTH(x) (((x) >> S_WIDTH) & M_WIDTH) | ||
522 | |||
523 | #define S_BKS 6 | ||
524 | #define V_BKS(x) ((x) << S_BKS) | ||
525 | #define F_BKS V_BKS(1U) | ||
526 | |||
527 | #define S_ORG 5 | ||
528 | #define V_ORG(x) ((x) << S_ORG) | ||
529 | #define F_ORG V_ORG(1U) | ||
530 | |||
531 | #define S_DEN 2 | ||
532 | #define M_DEN 0x7 | ||
533 | #define V_DEN(x) ((x) << S_DEN) | ||
534 | #define G_DEN(x) (((x) >> S_DEN) & M_DEN) | ||
535 | |||
536 | #define S_RDY 1 | ||
537 | #define V_RDY(x) ((x) << S_RDY) | ||
538 | #define F_RDY V_RDY(1U) | ||
539 | |||
540 | #define S_CLKEN 0 | ||
541 | #define V_CLKEN(x) ((x) << S_CLKEN) | ||
542 | #define F_CLKEN V_CLKEN(1U) | ||
543 | |||
544 | #define A_MC7_MODE 0x104 | ||
545 | |||
546 | #define S_BUSY 31 | ||
547 | #define V_BUSY(x) ((x) << S_BUSY) | ||
548 | #define F_BUSY V_BUSY(1U) | ||
549 | |||
550 | #define S_BUSY 31 | ||
551 | #define V_BUSY(x) ((x) << S_BUSY) | ||
552 | #define F_BUSY V_BUSY(1U) | ||
553 | |||
554 | #define A_MC7_EXT_MODE1 0x108 | ||
555 | |||
556 | #define A_MC7_EXT_MODE2 0x10c | ||
557 | |||
558 | #define A_MC7_EXT_MODE3 0x110 | ||
559 | |||
560 | #define A_MC7_PRE 0x114 | ||
561 | |||
562 | #define A_MC7_REF 0x118 | ||
563 | |||
564 | #define S_PREREFDIV 1 | ||
565 | #define M_PREREFDIV 0x3fff | ||
566 | #define V_PREREFDIV(x) ((x) << S_PREREFDIV) | ||
567 | |||
568 | #define S_PERREFEN 0 | ||
569 | #define V_PERREFEN(x) ((x) << S_PERREFEN) | ||
570 | #define F_PERREFEN V_PERREFEN(1U) | ||
571 | |||
572 | #define A_MC7_DLL 0x11c | ||
573 | |||
574 | #define S_DLLENB 1 | ||
575 | #define V_DLLENB(x) ((x) << S_DLLENB) | ||
576 | #define F_DLLENB V_DLLENB(1U) | ||
577 | |||
578 | #define S_DLLRST 0 | ||
579 | #define V_DLLRST(x) ((x) << S_DLLRST) | ||
580 | #define F_DLLRST V_DLLRST(1U) | ||
581 | |||
582 | #define A_MC7_PARM 0x120 | ||
583 | |||
584 | #define S_ACTTOPREDLY 26 | ||
585 | #define M_ACTTOPREDLY 0xf | ||
586 | #define V_ACTTOPREDLY(x) ((x) << S_ACTTOPREDLY) | ||
587 | |||
588 | #define S_ACTTORDWRDLY 23 | ||
589 | #define M_ACTTORDWRDLY 0x7 | ||
590 | #define V_ACTTORDWRDLY(x) ((x) << S_ACTTORDWRDLY) | ||
591 | |||
592 | #define S_PRECYC 20 | ||
593 | #define M_PRECYC 0x7 | ||
594 | #define V_PRECYC(x) ((x) << S_PRECYC) | ||
595 | |||
596 | #define S_REFCYC 13 | ||
597 | #define M_REFCYC 0x7f | ||
598 | #define V_REFCYC(x) ((x) << S_REFCYC) | ||
599 | |||
600 | #define S_BKCYC 8 | ||
601 | #define M_BKCYC 0x1f | ||
602 | #define V_BKCYC(x) ((x) << S_BKCYC) | ||
603 | |||
604 | #define S_WRTORDDLY 4 | ||
605 | #define M_WRTORDDLY 0xf | ||
606 | #define V_WRTORDDLY(x) ((x) << S_WRTORDDLY) | ||
607 | |||
608 | #define S_RDTOWRDLY 0 | ||
609 | #define M_RDTOWRDLY 0xf | ||
610 | #define V_RDTOWRDLY(x) ((x) << S_RDTOWRDLY) | ||
611 | |||
612 | #define A_MC7_CAL 0x128 | ||
613 | |||
614 | #define S_BUSY 31 | ||
615 | #define V_BUSY(x) ((x) << S_BUSY) | ||
616 | #define F_BUSY V_BUSY(1U) | ||
617 | |||
618 | #define S_BUSY 31 | ||
619 | #define V_BUSY(x) ((x) << S_BUSY) | ||
620 | #define F_BUSY V_BUSY(1U) | ||
621 | |||
622 | #define S_CAL_FAULT 30 | ||
623 | #define V_CAL_FAULT(x) ((x) << S_CAL_FAULT) | ||
624 | #define F_CAL_FAULT V_CAL_FAULT(1U) | ||
625 | |||
626 | #define S_SGL_CAL_EN 20 | ||
627 | #define V_SGL_CAL_EN(x) ((x) << S_SGL_CAL_EN) | ||
628 | #define F_SGL_CAL_EN V_SGL_CAL_EN(1U) | ||
629 | |||
630 | #define A_MC7_ERR_ADDR 0x12c | ||
631 | |||
632 | #define A_MC7_ECC 0x130 | ||
633 | |||
634 | #define S_ECCCHKEN 1 | ||
635 | #define V_ECCCHKEN(x) ((x) << S_ECCCHKEN) | ||
636 | #define F_ECCCHKEN V_ECCCHKEN(1U) | ||
637 | |||
638 | #define S_ECCGENEN 0 | ||
639 | #define V_ECCGENEN(x) ((x) << S_ECCGENEN) | ||
640 | #define F_ECCGENEN V_ECCGENEN(1U) | ||
641 | |||
642 | #define A_MC7_CE_ADDR 0x134 | ||
643 | |||
644 | #define A_MC7_CE_DATA0 0x138 | ||
645 | |||
646 | #define A_MC7_CE_DATA1 0x13c | ||
647 | |||
648 | #define A_MC7_CE_DATA2 0x140 | ||
649 | |||
650 | #define S_DATA 0 | ||
651 | #define M_DATA 0xff | ||
652 | |||
653 | #define G_DATA(x) (((x) >> S_DATA) & M_DATA) | ||
654 | |||
655 | #define A_MC7_UE_ADDR 0x144 | ||
656 | |||
657 | #define A_MC7_UE_DATA0 0x148 | ||
658 | |||
659 | #define A_MC7_UE_DATA1 0x14c | ||
660 | |||
661 | #define A_MC7_UE_DATA2 0x150 | ||
662 | |||
663 | #define A_MC7_BD_ADDR 0x154 | ||
664 | |||
665 | #define S_ADDR 3 | ||
666 | |||
667 | #define M_ADDR 0x1fffffff | ||
668 | |||
669 | #define A_MC7_BD_DATA0 0x158 | ||
670 | |||
671 | #define A_MC7_BD_DATA1 0x15c | ||
672 | |||
673 | #define A_MC7_BD_OP 0x164 | ||
674 | |||
675 | #define S_OP 0 | ||
676 | |||
677 | #define V_OP(x) ((x) << S_OP) | ||
678 | #define F_OP V_OP(1U) | ||
679 | |||
680 | #define F_OP V_OP(1U) | ||
681 | #define A_SF_OP 0x6dc | ||
682 | |||
683 | #define A_MC7_BIST_ADDR_BEG 0x168 | ||
684 | |||
685 | #define A_MC7_BIST_ADDR_END 0x16c | ||
686 | |||
687 | #define A_MC7_BIST_DATA 0x170 | ||
688 | |||
689 | #define A_MC7_BIST_OP 0x174 | ||
690 | |||
691 | #define S_CONT 3 | ||
692 | #define V_CONT(x) ((x) << S_CONT) | ||
693 | #define F_CONT V_CONT(1U) | ||
694 | |||
695 | #define F_CONT V_CONT(1U) | ||
696 | |||
697 | #define A_MC7_INT_ENABLE 0x178 | ||
698 | |||
699 | #define S_AE 17 | ||
700 | #define V_AE(x) ((x) << S_AE) | ||
701 | #define F_AE V_AE(1U) | ||
702 | |||
703 | #define S_PE 2 | ||
704 | #define M_PE 0x7fff | ||
705 | |||
706 | #define V_PE(x) ((x) << S_PE) | ||
707 | |||
708 | #define G_PE(x) (((x) >> S_PE) & M_PE) | ||
709 | |||
710 | #define S_UE 1 | ||
711 | #define V_UE(x) ((x) << S_UE) | ||
712 | #define F_UE V_UE(1U) | ||
713 | |||
714 | #define S_CE 0 | ||
715 | #define V_CE(x) ((x) << S_CE) | ||
716 | #define F_CE V_CE(1U) | ||
717 | |||
718 | #define A_MC7_INT_CAUSE 0x17c | ||
719 | |||
720 | #define MC7_PMTX_BASE_ADDR 0x180 | ||
721 | |||
722 | #define MC7_CM_BASE_ADDR 0x200 | ||
723 | |||
724 | #define A_CIM_BOOT_CFG 0x280 | ||
725 | |||
726 | #define S_BOOTADDR 2 | ||
727 | #define M_BOOTADDR 0x3fffffff | ||
728 | #define V_BOOTADDR(x) ((x) << S_BOOTADDR) | ||
729 | |||
730 | #define A_CIM_SDRAM_BASE_ADDR 0x28c | ||
731 | |||
732 | #define A_CIM_SDRAM_ADDR_SIZE 0x290 | ||
733 | |||
734 | #define A_CIM_HOST_INT_ENABLE 0x298 | ||
735 | |||
736 | #define A_CIM_HOST_INT_CAUSE 0x29c | ||
737 | |||
738 | #define S_BLKWRPLINT 12 | ||
739 | #define V_BLKWRPLINT(x) ((x) << S_BLKWRPLINT) | ||
740 | #define F_BLKWRPLINT V_BLKWRPLINT(1U) | ||
741 | |||
742 | #define S_BLKRDPLINT 11 | ||
743 | #define V_BLKRDPLINT(x) ((x) << S_BLKRDPLINT) | ||
744 | #define F_BLKRDPLINT V_BLKRDPLINT(1U) | ||
745 | |||
746 | #define S_BLKWRCTLINT 10 | ||
747 | #define V_BLKWRCTLINT(x) ((x) << S_BLKWRCTLINT) | ||
748 | #define F_BLKWRCTLINT V_BLKWRCTLINT(1U) | ||
749 | |||
750 | #define S_BLKRDCTLINT 9 | ||
751 | #define V_BLKRDCTLINT(x) ((x) << S_BLKRDCTLINT) | ||
752 | #define F_BLKRDCTLINT V_BLKRDCTLINT(1U) | ||
753 | |||
754 | #define S_BLKWRFLASHINT 8 | ||
755 | #define V_BLKWRFLASHINT(x) ((x) << S_BLKWRFLASHINT) | ||
756 | #define F_BLKWRFLASHINT V_BLKWRFLASHINT(1U) | ||
757 | |||
758 | #define S_BLKRDFLASHINT 7 | ||
759 | #define V_BLKRDFLASHINT(x) ((x) << S_BLKRDFLASHINT) | ||
760 | #define F_BLKRDFLASHINT V_BLKRDFLASHINT(1U) | ||
761 | |||
762 | #define S_SGLWRFLASHINT 6 | ||
763 | #define V_SGLWRFLASHINT(x) ((x) << S_SGLWRFLASHINT) | ||
764 | #define F_SGLWRFLASHINT V_SGLWRFLASHINT(1U) | ||
765 | |||
766 | #define S_WRBLKFLASHINT 5 | ||
767 | #define V_WRBLKFLASHINT(x) ((x) << S_WRBLKFLASHINT) | ||
768 | #define F_WRBLKFLASHINT V_WRBLKFLASHINT(1U) | ||
769 | |||
770 | #define S_BLKWRBOOTINT 4 | ||
771 | #define V_BLKWRBOOTINT(x) ((x) << S_BLKWRBOOTINT) | ||
772 | #define F_BLKWRBOOTINT V_BLKWRBOOTINT(1U) | ||
773 | |||
774 | #define S_FLASHRANGEINT 2 | ||
775 | #define V_FLASHRANGEINT(x) ((x) << S_FLASHRANGEINT) | ||
776 | #define F_FLASHRANGEINT V_FLASHRANGEINT(1U) | ||
777 | |||
778 | #define S_SDRAMRANGEINT 1 | ||
779 | #define V_SDRAMRANGEINT(x) ((x) << S_SDRAMRANGEINT) | ||
780 | #define F_SDRAMRANGEINT V_SDRAMRANGEINT(1U) | ||
781 | |||
782 | #define S_RSVDSPACEINT 0 | ||
783 | #define V_RSVDSPACEINT(x) ((x) << S_RSVDSPACEINT) | ||
784 | #define F_RSVDSPACEINT V_RSVDSPACEINT(1U) | ||
785 | |||
786 | #define A_CIM_HOST_ACC_CTRL 0x2b0 | ||
787 | |||
788 | #define S_HOSTBUSY 17 | ||
789 | #define V_HOSTBUSY(x) ((x) << S_HOSTBUSY) | ||
790 | #define F_HOSTBUSY V_HOSTBUSY(1U) | ||
791 | |||
792 | #define A_CIM_HOST_ACC_DATA 0x2b4 | ||
793 | |||
794 | #define A_TP_IN_CONFIG 0x300 | ||
795 | |||
796 | #define S_NICMODE 14 | ||
797 | #define V_NICMODE(x) ((x) << S_NICMODE) | ||
798 | #define F_NICMODE V_NICMODE(1U) | ||
799 | |||
800 | #define F_NICMODE V_NICMODE(1U) | ||
801 | |||
802 | #define S_IPV6ENABLE 15 | ||
803 | #define V_IPV6ENABLE(x) ((x) << S_IPV6ENABLE) | ||
804 | #define F_IPV6ENABLE V_IPV6ENABLE(1U) | ||
805 | |||
806 | #define A_TP_OUT_CONFIG 0x304 | ||
807 | |||
808 | #define S_VLANEXTRACTIONENABLE 12 | ||
809 | |||
810 | #define A_TP_GLOBAL_CONFIG 0x308 | ||
811 | |||
812 | #define S_TXPACINGENABLE 24 | ||
813 | #define V_TXPACINGENABLE(x) ((x) << S_TXPACINGENABLE) | ||
814 | #define F_TXPACINGENABLE V_TXPACINGENABLE(1U) | ||
815 | |||
816 | #define S_PATHMTU 15 | ||
817 | #define V_PATHMTU(x) ((x) << S_PATHMTU) | ||
818 | #define F_PATHMTU V_PATHMTU(1U) | ||
819 | |||
820 | #define S_IPCHECKSUMOFFLOAD 13 | ||
821 | #define V_IPCHECKSUMOFFLOAD(x) ((x) << S_IPCHECKSUMOFFLOAD) | ||
822 | #define F_IPCHECKSUMOFFLOAD V_IPCHECKSUMOFFLOAD(1U) | ||
823 | |||
824 | #define S_UDPCHECKSUMOFFLOAD 12 | ||
825 | #define V_UDPCHECKSUMOFFLOAD(x) ((x) << S_UDPCHECKSUMOFFLOAD) | ||
826 | #define F_UDPCHECKSUMOFFLOAD V_UDPCHECKSUMOFFLOAD(1U) | ||
827 | |||
828 | #define S_TCPCHECKSUMOFFLOAD 11 | ||
829 | #define V_TCPCHECKSUMOFFLOAD(x) ((x) << S_TCPCHECKSUMOFFLOAD) | ||
830 | #define F_TCPCHECKSUMOFFLOAD V_TCPCHECKSUMOFFLOAD(1U) | ||
831 | |||
832 | #define S_IPTTL 0 | ||
833 | #define M_IPTTL 0xff | ||
834 | #define V_IPTTL(x) ((x) << S_IPTTL) | ||
835 | |||
836 | #define A_TP_CMM_MM_BASE 0x314 | ||
837 | |||
838 | #define A_TP_CMM_TIMER_BASE 0x318 | ||
839 | |||
840 | #define S_CMTIMERMAXNUM 28 | ||
841 | #define M_CMTIMERMAXNUM 0x3 | ||
842 | #define V_CMTIMERMAXNUM(x) ((x) << S_CMTIMERMAXNUM) | ||
843 | |||
844 | #define A_TP_PMM_SIZE 0x31c | ||
845 | |||
846 | #define A_TP_PMM_TX_BASE 0x320 | ||
847 | |||
848 | #define A_TP_PMM_RX_BASE 0x328 | ||
849 | |||
850 | #define A_TP_PMM_RX_PAGE_SIZE 0x32c | ||
851 | |||
852 | #define A_TP_PMM_RX_MAX_PAGE 0x330 | ||
853 | |||
854 | #define A_TP_PMM_TX_PAGE_SIZE 0x334 | ||
855 | |||
856 | #define A_TP_PMM_TX_MAX_PAGE 0x338 | ||
857 | |||
858 | #define A_TP_TCP_OPTIONS 0x340 | ||
859 | |||
860 | #define S_MTUDEFAULT 16 | ||
861 | #define M_MTUDEFAULT 0xffff | ||
862 | #define V_MTUDEFAULT(x) ((x) << S_MTUDEFAULT) | ||
863 | |||
864 | #define S_MTUENABLE 10 | ||
865 | #define V_MTUENABLE(x) ((x) << S_MTUENABLE) | ||
866 | #define F_MTUENABLE V_MTUENABLE(1U) | ||
867 | |||
868 | #define S_SACKRX 8 | ||
869 | #define V_SACKRX(x) ((x) << S_SACKRX) | ||
870 | #define F_SACKRX V_SACKRX(1U) | ||
871 | |||
872 | #define S_SACKMODE 4 | ||
873 | |||
874 | #define M_SACKMODE 0x3 | ||
875 | |||
876 | #define V_SACKMODE(x) ((x) << S_SACKMODE) | ||
877 | |||
878 | #define S_WINDOWSCALEMODE 2 | ||
879 | #define M_WINDOWSCALEMODE 0x3 | ||
880 | #define V_WINDOWSCALEMODE(x) ((x) << S_WINDOWSCALEMODE) | ||
881 | |||
882 | #define S_TIMESTAMPSMODE 0 | ||
883 | |||
884 | #define M_TIMESTAMPSMODE 0x3 | ||
885 | |||
886 | #define V_TIMESTAMPSMODE(x) ((x) << S_TIMESTAMPSMODE) | ||
887 | |||
888 | #define A_TP_DACK_CONFIG 0x344 | ||
889 | |||
890 | #define S_AUTOSTATE3 30 | ||
891 | #define M_AUTOSTATE3 0x3 | ||
892 | #define V_AUTOSTATE3(x) ((x) << S_AUTOSTATE3) | ||
893 | |||
894 | #define S_AUTOSTATE2 28 | ||
895 | #define M_AUTOSTATE2 0x3 | ||
896 | #define V_AUTOSTATE2(x) ((x) << S_AUTOSTATE2) | ||
897 | |||
898 | #define S_AUTOSTATE1 26 | ||
899 | #define M_AUTOSTATE1 0x3 | ||
900 | #define V_AUTOSTATE1(x) ((x) << S_AUTOSTATE1) | ||
901 | |||
902 | #define S_BYTETHRESHOLD 5 | ||
903 | #define M_BYTETHRESHOLD 0xfffff | ||
904 | #define V_BYTETHRESHOLD(x) ((x) << S_BYTETHRESHOLD) | ||
905 | |||
906 | #define S_MSSTHRESHOLD 3 | ||
907 | #define M_MSSTHRESHOLD 0x3 | ||
908 | #define V_MSSTHRESHOLD(x) ((x) << S_MSSTHRESHOLD) | ||
909 | |||
910 | #define S_AUTOCAREFUL 2 | ||
911 | #define V_AUTOCAREFUL(x) ((x) << S_AUTOCAREFUL) | ||
912 | #define F_AUTOCAREFUL V_AUTOCAREFUL(1U) | ||
913 | |||
914 | #define S_AUTOENABLE 1 | ||
915 | #define V_AUTOENABLE(x) ((x) << S_AUTOENABLE) | ||
916 | #define F_AUTOENABLE V_AUTOENABLE(1U) | ||
917 | |||
918 | #define S_DACK_MODE 0 | ||
919 | #define V_DACK_MODE(x) ((x) << S_DACK_MODE) | ||
920 | #define F_DACK_MODE V_DACK_MODE(1U) | ||
921 | |||
922 | #define A_TP_PC_CONFIG 0x348 | ||
923 | |||
924 | #define S_TXTOSQUEUEMAPMODE 26 | ||
925 | #define V_TXTOSQUEUEMAPMODE(x) ((x) << S_TXTOSQUEUEMAPMODE) | ||
926 | #define F_TXTOSQUEUEMAPMODE V_TXTOSQUEUEMAPMODE(1U) | ||
927 | |||
928 | #define S_ENABLEEPCMDAFULL 23 | ||
929 | #define V_ENABLEEPCMDAFULL(x) ((x) << S_ENABLEEPCMDAFULL) | ||
930 | #define F_ENABLEEPCMDAFULL V_ENABLEEPCMDAFULL(1U) | ||
931 | |||
932 | #define S_MODULATEUNIONMODE 22 | ||
933 | #define V_MODULATEUNIONMODE(x) ((x) << S_MODULATEUNIONMODE) | ||
934 | #define F_MODULATEUNIONMODE V_MODULATEUNIONMODE(1U) | ||
935 | |||
936 | #define S_TXDEFERENABLE 20 | ||
937 | #define V_TXDEFERENABLE(x) ((x) << S_TXDEFERENABLE) | ||
938 | #define F_TXDEFERENABLE V_TXDEFERENABLE(1U) | ||
939 | |||
940 | #define S_RXCONGESTIONMODE 19 | ||
941 | #define V_RXCONGESTIONMODE(x) ((x) << S_RXCONGESTIONMODE) | ||
942 | #define F_RXCONGESTIONMODE V_RXCONGESTIONMODE(1U) | ||
943 | |||
944 | #define S_HEARBEATDACK 16 | ||
945 | #define V_HEARBEATDACK(x) ((x) << S_HEARBEATDACK) | ||
946 | #define F_HEARBEATDACK V_HEARBEATDACK(1U) | ||
947 | |||
948 | #define S_TXCONGESTIONMODE 15 | ||
949 | #define V_TXCONGESTIONMODE(x) ((x) << S_TXCONGESTIONMODE) | ||
950 | #define F_TXCONGESTIONMODE V_TXCONGESTIONMODE(1U) | ||
951 | |||
952 | #define S_ENABLEOCSPIFULL 30 | ||
953 | #define V_ENABLEOCSPIFULL(x) ((x) << S_ENABLEOCSPIFULL) | ||
954 | #define F_ENABLEOCSPIFULL V_ENABLEOCSPIFULL(1U) | ||
955 | |||
956 | #define S_LOCKTID 28 | ||
957 | #define V_LOCKTID(x) ((x) << S_LOCKTID) | ||
958 | #define F_LOCKTID V_LOCKTID(1U) | ||
959 | |||
960 | #define A_TP_PC_CONFIG2 0x34c | ||
961 | |||
962 | #define S_CHDRAFULL 4 | ||
963 | #define V_CHDRAFULL(x) ((x) << S_CHDRAFULL) | ||
964 | #define F_CHDRAFULL V_CHDRAFULL(1U) | ||
965 | |||
966 | #define A_TP_TCP_BACKOFF_REG0 0x350 | ||
967 | |||
968 | #define A_TP_TCP_BACKOFF_REG1 0x354 | ||
969 | |||
970 | #define A_TP_TCP_BACKOFF_REG2 0x358 | ||
971 | |||
972 | #define A_TP_TCP_BACKOFF_REG3 0x35c | ||
973 | |||
974 | #define A_TP_PARA_REG2 0x368 | ||
975 | |||
976 | #define S_MAXRXDATA 16 | ||
977 | #define M_MAXRXDATA 0xffff | ||
978 | #define V_MAXRXDATA(x) ((x) << S_MAXRXDATA) | ||
979 | |||
980 | #define S_RXCOALESCESIZE 0 | ||
981 | #define M_RXCOALESCESIZE 0xffff | ||
982 | #define V_RXCOALESCESIZE(x) ((x) << S_RXCOALESCESIZE) | ||
983 | |||
984 | #define A_TP_PARA_REG3 0x36c | ||
985 | |||
986 | #define S_TXDATAACKIDX 16 | ||
987 | #define M_TXDATAACKIDX 0xf | ||
988 | |||
989 | #define V_TXDATAACKIDX(x) ((x) << S_TXDATAACKIDX) | ||
990 | |||
991 | #define S_TXPACEAUTOSTRICT 10 | ||
992 | #define V_TXPACEAUTOSTRICT(x) ((x) << S_TXPACEAUTOSTRICT) | ||
993 | #define F_TXPACEAUTOSTRICT V_TXPACEAUTOSTRICT(1U) | ||
994 | |||
995 | #define S_TXPACEFIXED 9 | ||
996 | #define V_TXPACEFIXED(x) ((x) << S_TXPACEFIXED) | ||
997 | #define F_TXPACEFIXED V_TXPACEFIXED(1U) | ||
998 | |||
999 | #define S_TXPACEAUTO 8 | ||
1000 | #define V_TXPACEAUTO(x) ((x) << S_TXPACEAUTO) | ||
1001 | #define F_TXPACEAUTO V_TXPACEAUTO(1U) | ||
1002 | |||
1003 | #define S_RXCOALESCEENABLE 1 | ||
1004 | #define V_RXCOALESCEENABLE(x) ((x) << S_RXCOALESCEENABLE) | ||
1005 | #define F_RXCOALESCEENABLE V_RXCOALESCEENABLE(1U) | ||
1006 | |||
1007 | #define S_RXCOALESCEPSHEN 0 | ||
1008 | #define V_RXCOALESCEPSHEN(x) ((x) << S_RXCOALESCEPSHEN) | ||
1009 | #define F_RXCOALESCEPSHEN V_RXCOALESCEPSHEN(1U) | ||
1010 | |||
1011 | #define A_TP_PARA_REG4 0x370 | ||
1012 | |||
1013 | #define A_TP_PARA_REG6 0x378 | ||
1014 | |||
1015 | #define S_T3A_ENABLEESND 13 | ||
1016 | #define V_T3A_ENABLEESND(x) ((x) << S_T3A_ENABLEESND) | ||
1017 | #define F_T3A_ENABLEESND V_T3A_ENABLEESND(1U) | ||
1018 | |||
1019 | #define S_ENABLEESND 11 | ||
1020 | #define V_ENABLEESND(x) ((x) << S_ENABLEESND) | ||
1021 | #define F_ENABLEESND V_ENABLEESND(1U) | ||
1022 | |||
1023 | #define A_TP_PARA_REG7 0x37c | ||
1024 | |||
1025 | #define S_PMMAXXFERLEN1 16 | ||
1026 | #define M_PMMAXXFERLEN1 0xffff | ||
1027 | #define V_PMMAXXFERLEN1(x) ((x) << S_PMMAXXFERLEN1) | ||
1028 | |||
1029 | #define S_PMMAXXFERLEN0 0 | ||
1030 | #define M_PMMAXXFERLEN0 0xffff | ||
1031 | #define V_PMMAXXFERLEN0(x) ((x) << S_PMMAXXFERLEN0) | ||
1032 | |||
1033 | #define A_TP_TIMER_RESOLUTION 0x390 | ||
1034 | |||
1035 | #define S_TIMERRESOLUTION 16 | ||
1036 | #define M_TIMERRESOLUTION 0xff | ||
1037 | #define V_TIMERRESOLUTION(x) ((x) << S_TIMERRESOLUTION) | ||
1038 | |||
1039 | #define S_TIMESTAMPRESOLUTION 8 | ||
1040 | #define M_TIMESTAMPRESOLUTION 0xff | ||
1041 | #define V_TIMESTAMPRESOLUTION(x) ((x) << S_TIMESTAMPRESOLUTION) | ||
1042 | |||
1043 | #define S_DELAYEDACKRESOLUTION 0 | ||
1044 | #define M_DELAYEDACKRESOLUTION 0xff | ||
1045 | #define V_DELAYEDACKRESOLUTION(x) ((x) << S_DELAYEDACKRESOLUTION) | ||
1046 | |||
1047 | #define A_TP_MSL 0x394 | ||
1048 | |||
1049 | #define A_TP_RXT_MIN 0x398 | ||
1050 | |||
1051 | #define A_TP_RXT_MAX 0x39c | ||
1052 | |||
1053 | #define A_TP_PERS_MIN 0x3a0 | ||
1054 | |||
1055 | #define A_TP_PERS_MAX 0x3a4 | ||
1056 | |||
1057 | #define A_TP_KEEP_IDLE 0x3a8 | ||
1058 | |||
1059 | #define A_TP_KEEP_INTVL 0x3ac | ||
1060 | |||
1061 | #define A_TP_INIT_SRTT 0x3b0 | ||
1062 | |||
1063 | #define A_TP_DACK_TIMER 0x3b4 | ||
1064 | |||
1065 | #define A_TP_FINWAIT2_TIMER 0x3b8 | ||
1066 | |||
1067 | #define A_TP_SHIFT_CNT 0x3c0 | ||
1068 | |||
1069 | #define S_SYNSHIFTMAX 24 | ||
1070 | |||
1071 | #define M_SYNSHIFTMAX 0xff | ||
1072 | |||
1073 | #define V_SYNSHIFTMAX(x) ((x) << S_SYNSHIFTMAX) | ||
1074 | |||
1075 | #define S_RXTSHIFTMAXR1 20 | ||
1076 | |||
1077 | #define M_RXTSHIFTMAXR1 0xf | ||
1078 | |||
1079 | #define V_RXTSHIFTMAXR1(x) ((x) << S_RXTSHIFTMAXR1) | ||
1080 | |||
1081 | #define S_RXTSHIFTMAXR2 16 | ||
1082 | |||
1083 | #define M_RXTSHIFTMAXR2 0xf | ||
1084 | |||
1085 | #define V_RXTSHIFTMAXR2(x) ((x) << S_RXTSHIFTMAXR2) | ||
1086 | |||
1087 | #define S_PERSHIFTBACKOFFMAX 12 | ||
1088 | #define M_PERSHIFTBACKOFFMAX 0xf | ||
1089 | #define V_PERSHIFTBACKOFFMAX(x) ((x) << S_PERSHIFTBACKOFFMAX) | ||
1090 | |||
1091 | #define S_PERSHIFTMAX 8 | ||
1092 | #define M_PERSHIFTMAX 0xf | ||
1093 | #define V_PERSHIFTMAX(x) ((x) << S_PERSHIFTMAX) | ||
1094 | |||
1095 | #define S_KEEPALIVEMAX 0 | ||
1096 | |||
1097 | #define M_KEEPALIVEMAX 0xff | ||
1098 | |||
1099 | #define V_KEEPALIVEMAX(x) ((x) << S_KEEPALIVEMAX) | ||
1100 | |||
1101 | #define A_TP_MTU_PORT_TABLE 0x3d0 | ||
1102 | |||
1103 | #define A_TP_CCTRL_TABLE 0x3dc | ||
1104 | |||
1105 | #define A_TP_MTU_TABLE 0x3e4 | ||
1106 | |||
1107 | #define A_TP_RSS_MAP_TABLE 0x3e8 | ||
1108 | |||
1109 | #define A_TP_RSS_LKP_TABLE 0x3ec | ||
1110 | |||
1111 | #define A_TP_RSS_CONFIG 0x3f0 | ||
1112 | |||
1113 | #define S_TNL4TUPEN 29 | ||
1114 | #define V_TNL4TUPEN(x) ((x) << S_TNL4TUPEN) | ||
1115 | #define F_TNL4TUPEN V_TNL4TUPEN(1U) | ||
1116 | |||
1117 | #define S_TNL2TUPEN 28 | ||
1118 | #define V_TNL2TUPEN(x) ((x) << S_TNL2TUPEN) | ||
1119 | #define F_TNL2TUPEN V_TNL2TUPEN(1U) | ||
1120 | |||
1121 | #define S_TNLPRTEN 26 | ||
1122 | #define V_TNLPRTEN(x) ((x) << S_TNLPRTEN) | ||
1123 | #define F_TNLPRTEN V_TNLPRTEN(1U) | ||
1124 | |||
1125 | #define S_TNLMAPEN 25 | ||
1126 | #define V_TNLMAPEN(x) ((x) << S_TNLMAPEN) | ||
1127 | #define F_TNLMAPEN V_TNLMAPEN(1U) | ||
1128 | |||
1129 | #define S_TNLLKPEN 24 | ||
1130 | #define V_TNLLKPEN(x) ((x) << S_TNLLKPEN) | ||
1131 | #define F_TNLLKPEN V_TNLLKPEN(1U) | ||
1132 | |||
1133 | #define S_RRCPLCPUSIZE 4 | ||
1134 | #define M_RRCPLCPUSIZE 0x7 | ||
1135 | #define V_RRCPLCPUSIZE(x) ((x) << S_RRCPLCPUSIZE) | ||
1136 | |||
1137 | #define S_RQFEEDBACKENABLE 3 | ||
1138 | #define V_RQFEEDBACKENABLE(x) ((x) << S_RQFEEDBACKENABLE) | ||
1139 | #define F_RQFEEDBACKENABLE V_RQFEEDBACKENABLE(1U) | ||
1140 | |||
1141 | #define S_DISABLE 0 | ||
1142 | |||
1143 | #define A_TP_TM_PIO_ADDR 0x418 | ||
1144 | |||
1145 | #define A_TP_TM_PIO_DATA 0x41c | ||
1146 | |||
1147 | #define A_TP_TX_MOD_QUE_TABLE 0x420 | ||
1148 | |||
1149 | #define A_TP_TX_RESOURCE_LIMIT 0x424 | ||
1150 | |||
1151 | #define A_TP_TX_MOD_QUEUE_REQ_MAP 0x428 | ||
1152 | |||
1153 | #define S_TX_MOD_QUEUE_REQ_MAP 0 | ||
1154 | #define M_TX_MOD_QUEUE_REQ_MAP 0xff | ||
1155 | #define V_TX_MOD_QUEUE_REQ_MAP(x) ((x) << S_TX_MOD_QUEUE_REQ_MAP) | ||
1156 | |||
1157 | #define A_TP_TX_MOD_QUEUE_WEIGHT1 0x42c | ||
1158 | |||
1159 | #define A_TP_TX_MOD_QUEUE_WEIGHT0 0x430 | ||
1160 | |||
1161 | #define A_TP_MOD_CHANNEL_WEIGHT 0x434 | ||
1162 | |||
1163 | #define A_TP_PIO_ADDR 0x440 | ||
1164 | |||
1165 | #define A_TP_PIO_DATA 0x444 | ||
1166 | |||
1167 | #define A_TP_RESET 0x44c | ||
1168 | |||
1169 | #define S_FLSTINITENABLE 1 | ||
1170 | #define V_FLSTINITENABLE(x) ((x) << S_FLSTINITENABLE) | ||
1171 | #define F_FLSTINITENABLE V_FLSTINITENABLE(1U) | ||
1172 | |||
1173 | #define S_TPRESET 0 | ||
1174 | #define V_TPRESET(x) ((x) << S_TPRESET) | ||
1175 | #define F_TPRESET V_TPRESET(1U) | ||
1176 | |||
1177 | #define A_TP_CMM_MM_RX_FLST_BASE 0x460 | ||
1178 | |||
1179 | #define A_TP_CMM_MM_TX_FLST_BASE 0x464 | ||
1180 | |||
1181 | #define A_TP_CMM_MM_PS_FLST_BASE 0x468 | ||
1182 | |||
1183 | #define A_TP_MIB_INDEX 0x450 | ||
1184 | |||
1185 | #define A_TP_MIB_RDATA 0x454 | ||
1186 | |||
1187 | #define A_TP_CMM_MM_MAX_PSTRUCT 0x46c | ||
1188 | |||
1189 | #define A_TP_INT_ENABLE 0x470 | ||
1190 | |||
1191 | #define A_TP_INT_CAUSE 0x474 | ||
1192 | |||
1193 | #define A_TP_TX_MOD_Q1_Q0_RATE_LIMIT 0x8 | ||
1194 | |||
1195 | #define A_TP_TX_DROP_CFG_CH0 0x12b | ||
1196 | |||
1197 | #define A_TP_TX_DROP_MODE 0x12f | ||
1198 | |||
1199 | #define A_TP_EGRESS_CONFIG 0x145 | ||
1200 | |||
1201 | #define S_REWRITEFORCETOSIZE 0 | ||
1202 | #define V_REWRITEFORCETOSIZE(x) ((x) << S_REWRITEFORCETOSIZE) | ||
1203 | #define F_REWRITEFORCETOSIZE V_REWRITEFORCETOSIZE(1U) | ||
1204 | |||
1205 | #define A_TP_TX_TRC_KEY0 0x20 | ||
1206 | |||
1207 | #define A_TP_RX_TRC_KEY0 0x120 | ||
1208 | |||
1209 | #define A_ULPRX_CTL 0x500 | ||
1210 | |||
1211 | #define S_ROUND_ROBIN 4 | ||
1212 | #define V_ROUND_ROBIN(x) ((x) << S_ROUND_ROBIN) | ||
1213 | #define F_ROUND_ROBIN V_ROUND_ROBIN(1U) | ||
1214 | |||
1215 | #define A_ULPRX_INT_ENABLE 0x504 | ||
1216 | |||
1217 | #define S_PARERR 0 | ||
1218 | #define V_PARERR(x) ((x) << S_PARERR) | ||
1219 | #define F_PARERR V_PARERR(1U) | ||
1220 | |||
1221 | #define A_ULPRX_INT_CAUSE 0x508 | ||
1222 | |||
1223 | #define A_ULPRX_ISCSI_LLIMIT 0x50c | ||
1224 | |||
1225 | #define A_ULPRX_ISCSI_ULIMIT 0x510 | ||
1226 | |||
1227 | #define A_ULPRX_ISCSI_TAGMASK 0x514 | ||
1228 | |||
1229 | #define A_ULPRX_TDDP_LLIMIT 0x51c | ||
1230 | |||
1231 | #define A_ULPRX_TDDP_ULIMIT 0x520 | ||
1232 | |||
1233 | #define A_ULPRX_STAG_LLIMIT 0x52c | ||
1234 | |||
1235 | #define A_ULPRX_STAG_ULIMIT 0x530 | ||
1236 | |||
1237 | #define A_ULPRX_RQ_LLIMIT 0x534 | ||
1238 | #define A_ULPRX_RQ_LLIMIT 0x534 | ||
1239 | |||
1240 | #define A_ULPRX_RQ_ULIMIT 0x538 | ||
1241 | #define A_ULPRX_RQ_ULIMIT 0x538 | ||
1242 | |||
1243 | #define A_ULPRX_PBL_LLIMIT 0x53c | ||
1244 | |||
1245 | #define A_ULPRX_PBL_ULIMIT 0x540 | ||
1246 | #define A_ULPRX_PBL_ULIMIT 0x540 | ||
1247 | |||
1248 | #define A_ULPRX_TDDP_TAGMASK 0x524 | ||
1249 | |||
1250 | #define A_ULPRX_RQ_LLIMIT 0x534 | ||
1251 | #define A_ULPRX_RQ_LLIMIT 0x534 | ||
1252 | |||
1253 | #define A_ULPRX_RQ_ULIMIT 0x538 | ||
1254 | #define A_ULPRX_RQ_ULIMIT 0x538 | ||
1255 | |||
1256 | #define A_ULPRX_PBL_ULIMIT 0x540 | ||
1257 | #define A_ULPRX_PBL_ULIMIT 0x540 | ||
1258 | |||
1259 | #define A_ULPTX_CONFIG 0x580 | ||
1260 | |||
1261 | #define S_CFG_RR_ARB 0 | ||
1262 | #define V_CFG_RR_ARB(x) ((x) << S_CFG_RR_ARB) | ||
1263 | #define F_CFG_RR_ARB V_CFG_RR_ARB(1U) | ||
1264 | |||
1265 | #define A_ULPTX_INT_ENABLE 0x584 | ||
1266 | |||
1267 | #define S_PBL_BOUND_ERR_CH1 1 | ||
1268 | #define V_PBL_BOUND_ERR_CH1(x) ((x) << S_PBL_BOUND_ERR_CH1) | ||
1269 | #define F_PBL_BOUND_ERR_CH1 V_PBL_BOUND_ERR_CH1(1U) | ||
1270 | |||
1271 | #define S_PBL_BOUND_ERR_CH0 0 | ||
1272 | #define V_PBL_BOUND_ERR_CH0(x) ((x) << S_PBL_BOUND_ERR_CH0) | ||
1273 | #define F_PBL_BOUND_ERR_CH0 V_PBL_BOUND_ERR_CH0(1U) | ||
1274 | |||
1275 | #define A_ULPTX_INT_CAUSE 0x588 | ||
1276 | |||
1277 | #define A_ULPTX_TPT_LLIMIT 0x58c | ||
1278 | |||
1279 | #define A_ULPTX_TPT_ULIMIT 0x590 | ||
1280 | |||
1281 | #define A_ULPTX_PBL_LLIMIT 0x594 | ||
1282 | |||
1283 | #define A_ULPTX_PBL_ULIMIT 0x598 | ||
1284 | |||
1285 | #define A_ULPTX_DMA_WEIGHT 0x5ac | ||
1286 | |||
1287 | #define S_D1_WEIGHT 16 | ||
1288 | #define M_D1_WEIGHT 0xffff | ||
1289 | #define V_D1_WEIGHT(x) ((x) << S_D1_WEIGHT) | ||
1290 | |||
1291 | #define S_D0_WEIGHT 0 | ||
1292 | #define M_D0_WEIGHT 0xffff | ||
1293 | #define V_D0_WEIGHT(x) ((x) << S_D0_WEIGHT) | ||
1294 | |||
1295 | #define A_PM1_RX_CFG 0x5c0 | ||
1296 | |||
1297 | #define A_PM1_RX_INT_ENABLE 0x5d8 | ||
1298 | |||
1299 | #define S_ZERO_E_CMD_ERROR 18 | ||
1300 | #define V_ZERO_E_CMD_ERROR(x) ((x) << S_ZERO_E_CMD_ERROR) | ||
1301 | #define F_ZERO_E_CMD_ERROR V_ZERO_E_CMD_ERROR(1U) | ||
1302 | |||
1303 | #define S_IESPI0_FIFO2X_RX_FRAMING_ERROR 17 | ||
1304 | #define V_IESPI0_FIFO2X_RX_FRAMING_ERROR(x) ((x) << S_IESPI0_FIFO2X_RX_FRAMING_ERROR) | ||
1305 | #define F_IESPI0_FIFO2X_RX_FRAMING_ERROR V_IESPI0_FIFO2X_RX_FRAMING_ERROR(1U) | ||
1306 | |||
1307 | #define S_IESPI1_FIFO2X_RX_FRAMING_ERROR 16 | ||
1308 | #define V_IESPI1_FIFO2X_RX_FRAMING_ERROR(x) ((x) << S_IESPI1_FIFO2X_RX_FRAMING_ERROR) | ||
1309 | #define F_IESPI1_FIFO2X_RX_FRAMING_ERROR V_IESPI1_FIFO2X_RX_FRAMING_ERROR(1U) | ||
1310 | |||
1311 | #define S_IESPI0_RX_FRAMING_ERROR 15 | ||
1312 | #define V_IESPI0_RX_FRAMING_ERROR(x) ((x) << S_IESPI0_RX_FRAMING_ERROR) | ||
1313 | #define F_IESPI0_RX_FRAMING_ERROR V_IESPI0_RX_FRAMING_ERROR(1U) | ||
1314 | |||
1315 | #define S_IESPI1_RX_FRAMING_ERROR 14 | ||
1316 | #define V_IESPI1_RX_FRAMING_ERROR(x) ((x) << S_IESPI1_RX_FRAMING_ERROR) | ||
1317 | #define F_IESPI1_RX_FRAMING_ERROR V_IESPI1_RX_FRAMING_ERROR(1U) | ||
1318 | |||
1319 | #define S_IESPI0_TX_FRAMING_ERROR 13 | ||
1320 | #define V_IESPI0_TX_FRAMING_ERROR(x) ((x) << S_IESPI0_TX_FRAMING_ERROR) | ||
1321 | #define F_IESPI0_TX_FRAMING_ERROR V_IESPI0_TX_FRAMING_ERROR(1U) | ||
1322 | |||
1323 | #define S_IESPI1_TX_FRAMING_ERROR 12 | ||
1324 | #define V_IESPI1_TX_FRAMING_ERROR(x) ((x) << S_IESPI1_TX_FRAMING_ERROR) | ||
1325 | #define F_IESPI1_TX_FRAMING_ERROR V_IESPI1_TX_FRAMING_ERROR(1U) | ||
1326 | |||
1327 | #define S_OCSPI0_RX_FRAMING_ERROR 11 | ||
1328 | #define V_OCSPI0_RX_FRAMING_ERROR(x) ((x) << S_OCSPI0_RX_FRAMING_ERROR) | ||
1329 | #define F_OCSPI0_RX_FRAMING_ERROR V_OCSPI0_RX_FRAMING_ERROR(1U) | ||
1330 | |||
1331 | #define S_OCSPI1_RX_FRAMING_ERROR 10 | ||
1332 | #define V_OCSPI1_RX_FRAMING_ERROR(x) ((x) << S_OCSPI1_RX_FRAMING_ERROR) | ||
1333 | #define F_OCSPI1_RX_FRAMING_ERROR V_OCSPI1_RX_FRAMING_ERROR(1U) | ||
1334 | |||
1335 | #define S_OCSPI0_TX_FRAMING_ERROR 9 | ||
1336 | #define V_OCSPI0_TX_FRAMING_ERROR(x) ((x) << S_OCSPI0_TX_FRAMING_ERROR) | ||
1337 | #define F_OCSPI0_TX_FRAMING_ERROR V_OCSPI0_TX_FRAMING_ERROR(1U) | ||
1338 | |||
1339 | #define S_OCSPI1_TX_FRAMING_ERROR 8 | ||
1340 | #define V_OCSPI1_TX_FRAMING_ERROR(x) ((x) << S_OCSPI1_TX_FRAMING_ERROR) | ||
1341 | #define F_OCSPI1_TX_FRAMING_ERROR V_OCSPI1_TX_FRAMING_ERROR(1U) | ||
1342 | |||
1343 | #define S_OCSPI0_OFIFO2X_TX_FRAMING_ERROR 7 | ||
1344 | #define V_OCSPI0_OFIFO2X_TX_FRAMING_ERROR(x) ((x) << S_OCSPI0_OFIFO2X_TX_FRAMING_ERROR) | ||
1345 | #define F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR V_OCSPI0_OFIFO2X_TX_FRAMING_ERROR(1U) | ||
1346 | |||
1347 | #define S_OCSPI1_OFIFO2X_TX_FRAMING_ERROR 6 | ||
1348 | #define V_OCSPI1_OFIFO2X_TX_FRAMING_ERROR(x) ((x) << S_OCSPI1_OFIFO2X_TX_FRAMING_ERROR) | ||
1349 | #define F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR V_OCSPI1_OFIFO2X_TX_FRAMING_ERROR(1U) | ||
1350 | |||
1351 | #define S_IESPI_PAR_ERROR 3 | ||
1352 | #define M_IESPI_PAR_ERROR 0x7 | ||
1353 | |||
1354 | #define V_IESPI_PAR_ERROR(x) ((x) << S_IESPI_PAR_ERROR) | ||
1355 | |||
1356 | #define S_OCSPI_PAR_ERROR 0 | ||
1357 | #define M_OCSPI_PAR_ERROR 0x7 | ||
1358 | |||
1359 | #define V_OCSPI_PAR_ERROR(x) ((x) << S_OCSPI_PAR_ERROR) | ||
1360 | |||
1361 | #define A_PM1_RX_INT_CAUSE 0x5dc | ||
1362 | |||
1363 | #define A_PM1_TX_CFG 0x5e0 | ||
1364 | |||
1365 | #define A_PM1_TX_INT_ENABLE 0x5f8 | ||
1366 | |||
1367 | #define S_ZERO_C_CMD_ERROR 18 | ||
1368 | #define V_ZERO_C_CMD_ERROR(x) ((x) << S_ZERO_C_CMD_ERROR) | ||
1369 | #define F_ZERO_C_CMD_ERROR V_ZERO_C_CMD_ERROR(1U) | ||
1370 | |||
1371 | #define S_ICSPI0_FIFO2X_RX_FRAMING_ERROR 17 | ||
1372 | #define V_ICSPI0_FIFO2X_RX_FRAMING_ERROR(x) ((x) << S_ICSPI0_FIFO2X_RX_FRAMING_ERROR) | ||
1373 | #define F_ICSPI0_FIFO2X_RX_FRAMING_ERROR V_ICSPI0_FIFO2X_RX_FRAMING_ERROR(1U) | ||
1374 | |||
1375 | #define S_ICSPI1_FIFO2X_RX_FRAMING_ERROR 16 | ||
1376 | #define V_ICSPI1_FIFO2X_RX_FRAMING_ERROR(x) ((x) << S_ICSPI1_FIFO2X_RX_FRAMING_ERROR) | ||
1377 | #define F_ICSPI1_FIFO2X_RX_FRAMING_ERROR V_ICSPI1_FIFO2X_RX_FRAMING_ERROR(1U) | ||
1378 | |||
1379 | #define S_ICSPI0_RX_FRAMING_ERROR 15 | ||
1380 | #define V_ICSPI0_RX_FRAMING_ERROR(x) ((x) << S_ICSPI0_RX_FRAMING_ERROR) | ||
1381 | #define F_ICSPI0_RX_FRAMING_ERROR V_ICSPI0_RX_FRAMING_ERROR(1U) | ||
1382 | |||
1383 | #define S_ICSPI1_RX_FRAMING_ERROR 14 | ||
1384 | #define V_ICSPI1_RX_FRAMING_ERROR(x) ((x) << S_ICSPI1_RX_FRAMING_ERROR) | ||
1385 | #define F_ICSPI1_RX_FRAMING_ERROR V_ICSPI1_RX_FRAMING_ERROR(1U) | ||
1386 | |||
1387 | #define S_ICSPI0_TX_FRAMING_ERROR 13 | ||
1388 | #define V_ICSPI0_TX_FRAMING_ERROR(x) ((x) << S_ICSPI0_TX_FRAMING_ERROR) | ||
1389 | #define F_ICSPI0_TX_FRAMING_ERROR V_ICSPI0_TX_FRAMING_ERROR(1U) | ||
1390 | |||
1391 | #define S_ICSPI1_TX_FRAMING_ERROR 12 | ||
1392 | #define V_ICSPI1_TX_FRAMING_ERROR(x) ((x) << S_ICSPI1_TX_FRAMING_ERROR) | ||
1393 | #define F_ICSPI1_TX_FRAMING_ERROR V_ICSPI1_TX_FRAMING_ERROR(1U) | ||
1394 | |||
1395 | #define S_OESPI0_RX_FRAMING_ERROR 11 | ||
1396 | #define V_OESPI0_RX_FRAMING_ERROR(x) ((x) << S_OESPI0_RX_FRAMING_ERROR) | ||
1397 | #define F_OESPI0_RX_FRAMING_ERROR V_OESPI0_RX_FRAMING_ERROR(1U) | ||
1398 | |||
1399 | #define S_OESPI1_RX_FRAMING_ERROR 10 | ||
1400 | #define V_OESPI1_RX_FRAMING_ERROR(x) ((x) << S_OESPI1_RX_FRAMING_ERROR) | ||
1401 | #define F_OESPI1_RX_FRAMING_ERROR V_OESPI1_RX_FRAMING_ERROR(1U) | ||
1402 | |||
1403 | #define S_OESPI0_TX_FRAMING_ERROR 9 | ||
1404 | #define V_OESPI0_TX_FRAMING_ERROR(x) ((x) << S_OESPI0_TX_FRAMING_ERROR) | ||
1405 | #define F_OESPI0_TX_FRAMING_ERROR V_OESPI0_TX_FRAMING_ERROR(1U) | ||
1406 | |||
1407 | #define S_OESPI1_TX_FRAMING_ERROR 8 | ||
1408 | #define V_OESPI1_TX_FRAMING_ERROR(x) ((x) << S_OESPI1_TX_FRAMING_ERROR) | ||
1409 | #define F_OESPI1_TX_FRAMING_ERROR V_OESPI1_TX_FRAMING_ERROR(1U) | ||
1410 | |||
1411 | #define S_OESPI0_OFIFO2X_TX_FRAMING_ERROR 7 | ||
1412 | #define V_OESPI0_OFIFO2X_TX_FRAMING_ERROR(x) ((x) << S_OESPI0_OFIFO2X_TX_FRAMING_ERROR) | ||
1413 | #define F_OESPI0_OFIFO2X_TX_FRAMING_ERROR V_OESPI0_OFIFO2X_TX_FRAMING_ERROR(1U) | ||
1414 | |||
1415 | #define S_OESPI1_OFIFO2X_TX_FRAMING_ERROR 6 | ||
1416 | #define V_OESPI1_OFIFO2X_TX_FRAMING_ERROR(x) ((x) << S_OESPI1_OFIFO2X_TX_FRAMING_ERROR) | ||
1417 | #define F_OESPI1_OFIFO2X_TX_FRAMING_ERROR V_OESPI1_OFIFO2X_TX_FRAMING_ERROR(1U) | ||
1418 | |||
1419 | #define S_ICSPI_PAR_ERROR 3 | ||
1420 | #define M_ICSPI_PAR_ERROR 0x7 | ||
1421 | |||
1422 | #define V_ICSPI_PAR_ERROR(x) ((x) << S_ICSPI_PAR_ERROR) | ||
1423 | |||
1424 | #define S_OESPI_PAR_ERROR 0 | ||
1425 | #define M_OESPI_PAR_ERROR 0x7 | ||
1426 | |||
1427 | #define V_OESPI_PAR_ERROR(x) ((x) << S_OESPI_PAR_ERROR) | ||
1428 | |||
1429 | #define A_PM1_TX_INT_CAUSE 0x5fc | ||
1430 | |||
1431 | #define A_MPS_CFG 0x600 | ||
1432 | |||
1433 | #define S_TPRXPORTEN 4 | ||
1434 | #define V_TPRXPORTEN(x) ((x) << S_TPRXPORTEN) | ||
1435 | #define F_TPRXPORTEN V_TPRXPORTEN(1U) | ||
1436 | |||
1437 | #define S_TPTXPORT1EN 3 | ||
1438 | #define V_TPTXPORT1EN(x) ((x) << S_TPTXPORT1EN) | ||
1439 | #define F_TPTXPORT1EN V_TPTXPORT1EN(1U) | ||
1440 | |||
1441 | #define S_TPTXPORT0EN 2 | ||
1442 | #define V_TPTXPORT0EN(x) ((x) << S_TPTXPORT0EN) | ||
1443 | #define F_TPTXPORT0EN V_TPTXPORT0EN(1U) | ||
1444 | |||
1445 | #define S_PORT1ACTIVE 1 | ||
1446 | #define V_PORT1ACTIVE(x) ((x) << S_PORT1ACTIVE) | ||
1447 | #define F_PORT1ACTIVE V_PORT1ACTIVE(1U) | ||
1448 | |||
1449 | #define S_PORT0ACTIVE 0 | ||
1450 | #define V_PORT0ACTIVE(x) ((x) << S_PORT0ACTIVE) | ||
1451 | #define F_PORT0ACTIVE V_PORT0ACTIVE(1U) | ||
1452 | |||
1453 | #define S_ENFORCEPKT 11 | ||
1454 | #define V_ENFORCEPKT(x) ((x) << S_ENFORCEPKT) | ||
1455 | #define F_ENFORCEPKT V_ENFORCEPKT(1U) | ||
1456 | |||
1457 | #define A_MPS_INT_ENABLE 0x61c | ||
1458 | |||
1459 | #define S_MCAPARERRENB 6 | ||
1460 | #define M_MCAPARERRENB 0x7 | ||
1461 | |||
1462 | #define V_MCAPARERRENB(x) ((x) << S_MCAPARERRENB) | ||
1463 | |||
1464 | #define S_RXTPPARERRENB 4 | ||
1465 | #define M_RXTPPARERRENB 0x3 | ||
1466 | |||
1467 | #define V_RXTPPARERRENB(x) ((x) << S_RXTPPARERRENB) | ||
1468 | |||
1469 | #define S_TX1TPPARERRENB 2 | ||
1470 | #define M_TX1TPPARERRENB 0x3 | ||
1471 | |||
1472 | #define V_TX1TPPARERRENB(x) ((x) << S_TX1TPPARERRENB) | ||
1473 | |||
1474 | #define S_TX0TPPARERRENB 0 | ||
1475 | #define M_TX0TPPARERRENB 0x3 | ||
1476 | |||
1477 | #define V_TX0TPPARERRENB(x) ((x) << S_TX0TPPARERRENB) | ||
1478 | |||
1479 | #define A_MPS_INT_CAUSE 0x620 | ||
1480 | |||
1481 | #define S_MCAPARERR 6 | ||
1482 | #define M_MCAPARERR 0x7 | ||
1483 | |||
1484 | #define V_MCAPARERR(x) ((x) << S_MCAPARERR) | ||
1485 | |||
1486 | #define S_RXTPPARERR 4 | ||
1487 | #define M_RXTPPARERR 0x3 | ||
1488 | |||
1489 | #define V_RXTPPARERR(x) ((x) << S_RXTPPARERR) | ||
1490 | |||
1491 | #define S_TX1TPPARERR 2 | ||
1492 | #define M_TX1TPPARERR 0x3 | ||
1493 | |||
1494 | #define V_TX1TPPARERR(x) ((x) << S_TX1TPPARERR) | ||
1495 | |||
1496 | #define S_TX0TPPARERR 0 | ||
1497 | #define M_TX0TPPARERR 0x3 | ||
1498 | |||
1499 | #define V_TX0TPPARERR(x) ((x) << S_TX0TPPARERR) | ||
1500 | |||
1501 | #define A_CPL_SWITCH_CNTRL 0x640 | ||
1502 | |||
1503 | #define A_CPL_INTR_ENABLE 0x650 | ||
1504 | |||
1505 | #define S_CIM_OVFL_ERROR 4 | ||
1506 | #define V_CIM_OVFL_ERROR(x) ((x) << S_CIM_OVFL_ERROR) | ||
1507 | #define F_CIM_OVFL_ERROR V_CIM_OVFL_ERROR(1U) | ||
1508 | |||
1509 | #define S_TP_FRAMING_ERROR 3 | ||
1510 | #define V_TP_FRAMING_ERROR(x) ((x) << S_TP_FRAMING_ERROR) | ||
1511 | #define F_TP_FRAMING_ERROR V_TP_FRAMING_ERROR(1U) | ||
1512 | |||
1513 | #define S_SGE_FRAMING_ERROR 2 | ||
1514 | #define V_SGE_FRAMING_ERROR(x) ((x) << S_SGE_FRAMING_ERROR) | ||
1515 | #define F_SGE_FRAMING_ERROR V_SGE_FRAMING_ERROR(1U) | ||
1516 | |||
1517 | #define S_CIM_FRAMING_ERROR 1 | ||
1518 | #define V_CIM_FRAMING_ERROR(x) ((x) << S_CIM_FRAMING_ERROR) | ||
1519 | #define F_CIM_FRAMING_ERROR V_CIM_FRAMING_ERROR(1U) | ||
1520 | |||
1521 | #define S_ZERO_SWITCH_ERROR 0 | ||
1522 | #define V_ZERO_SWITCH_ERROR(x) ((x) << S_ZERO_SWITCH_ERROR) | ||
1523 | #define F_ZERO_SWITCH_ERROR V_ZERO_SWITCH_ERROR(1U) | ||
1524 | |||
1525 | #define A_CPL_INTR_CAUSE 0x654 | ||
1526 | |||
1527 | #define A_CPL_MAP_TBL_DATA 0x65c | ||
1528 | |||
1529 | #define A_SMB_GLOBAL_TIME_CFG 0x660 | ||
1530 | |||
1531 | #define A_I2C_CFG 0x6a0 | ||
1532 | |||
1533 | #define S_I2C_CLKDIV 0 | ||
1534 | #define M_I2C_CLKDIV 0xfff | ||
1535 | #define V_I2C_CLKDIV(x) ((x) << S_I2C_CLKDIV) | ||
1536 | |||
1537 | #define A_MI1_CFG 0x6b0 | ||
1538 | |||
1539 | #define S_CLKDIV 5 | ||
1540 | #define M_CLKDIV 0xff | ||
1541 | #define V_CLKDIV(x) ((x) << S_CLKDIV) | ||
1542 | |||
1543 | #define S_ST 3 | ||
1544 | |||
1545 | #define M_ST 0x3 | ||
1546 | |||
1547 | #define V_ST(x) ((x) << S_ST) | ||
1548 | |||
1549 | #define G_ST(x) (((x) >> S_ST) & M_ST) | ||
1550 | |||
1551 | #define S_PREEN 2 | ||
1552 | #define V_PREEN(x) ((x) << S_PREEN) | ||
1553 | #define F_PREEN V_PREEN(1U) | ||
1554 | |||
1555 | #define S_MDIINV 1 | ||
1556 | #define V_MDIINV(x) ((x) << S_MDIINV) | ||
1557 | #define F_MDIINV V_MDIINV(1U) | ||
1558 | |||
1559 | #define S_MDIEN 0 | ||
1560 | #define V_MDIEN(x) ((x) << S_MDIEN) | ||
1561 | #define F_MDIEN V_MDIEN(1U) | ||
1562 | |||
1563 | #define A_MI1_ADDR 0x6b4 | ||
1564 | |||
1565 | #define S_PHYADDR 5 | ||
1566 | #define M_PHYADDR 0x1f | ||
1567 | #define V_PHYADDR(x) ((x) << S_PHYADDR) | ||
1568 | |||
1569 | #define S_REGADDR 0 | ||
1570 | #define M_REGADDR 0x1f | ||
1571 | #define V_REGADDR(x) ((x) << S_REGADDR) | ||
1572 | |||
1573 | #define A_MI1_DATA 0x6b8 | ||
1574 | |||
1575 | #define A_MI1_OP 0x6bc | ||
1576 | |||
1577 | #define S_MDI_OP 0 | ||
1578 | #define M_MDI_OP 0x3 | ||
1579 | #define V_MDI_OP(x) ((x) << S_MDI_OP) | ||
1580 | |||
1581 | #define A_SF_DATA 0x6d8 | ||
1582 | |||
1583 | #define A_SF_OP 0x6dc | ||
1584 | |||
1585 | #define S_BYTECNT 1 | ||
1586 | #define M_BYTECNT 0x3 | ||
1587 | #define V_BYTECNT(x) ((x) << S_BYTECNT) | ||
1588 | |||
1589 | #define A_PL_INT_ENABLE0 0x6e0 | ||
1590 | |||
1591 | #define S_T3DBG 23 | ||
1592 | #define V_T3DBG(x) ((x) << S_T3DBG) | ||
1593 | #define F_T3DBG V_T3DBG(1U) | ||
1594 | |||
1595 | #define S_XGMAC0_1 20 | ||
1596 | #define V_XGMAC0_1(x) ((x) << S_XGMAC0_1) | ||
1597 | #define F_XGMAC0_1 V_XGMAC0_1(1U) | ||
1598 | |||
1599 | #define S_XGMAC0_0 19 | ||
1600 | #define V_XGMAC0_0(x) ((x) << S_XGMAC0_0) | ||
1601 | #define F_XGMAC0_0 V_XGMAC0_0(1U) | ||
1602 | |||
1603 | #define S_MC5A 18 | ||
1604 | #define V_MC5A(x) ((x) << S_MC5A) | ||
1605 | #define F_MC5A V_MC5A(1U) | ||
1606 | |||
1607 | #define S_CPL_SWITCH 12 | ||
1608 | #define V_CPL_SWITCH(x) ((x) << S_CPL_SWITCH) | ||
1609 | #define F_CPL_SWITCH V_CPL_SWITCH(1U) | ||
1610 | |||
1611 | #define S_MPS0 11 | ||
1612 | #define V_MPS0(x) ((x) << S_MPS0) | ||
1613 | #define F_MPS0 V_MPS0(1U) | ||
1614 | |||
1615 | #define S_PM1_TX 10 | ||
1616 | #define V_PM1_TX(x) ((x) << S_PM1_TX) | ||
1617 | #define F_PM1_TX V_PM1_TX(1U) | ||
1618 | |||
1619 | #define S_PM1_RX 9 | ||
1620 | #define V_PM1_RX(x) ((x) << S_PM1_RX) | ||
1621 | #define F_PM1_RX V_PM1_RX(1U) | ||
1622 | |||
1623 | #define S_ULP2_TX 8 | ||
1624 | #define V_ULP2_TX(x) ((x) << S_ULP2_TX) | ||
1625 | #define F_ULP2_TX V_ULP2_TX(1U) | ||
1626 | |||
1627 | #define S_ULP2_RX 7 | ||
1628 | #define V_ULP2_RX(x) ((x) << S_ULP2_RX) | ||
1629 | #define F_ULP2_RX V_ULP2_RX(1U) | ||
1630 | |||
1631 | #define S_TP1 6 | ||
1632 | #define V_TP1(x) ((x) << S_TP1) | ||
1633 | #define F_TP1 V_TP1(1U) | ||
1634 | |||
1635 | #define S_CIM 5 | ||
1636 | #define V_CIM(x) ((x) << S_CIM) | ||
1637 | #define F_CIM V_CIM(1U) | ||
1638 | |||
1639 | #define S_MC7_CM 4 | ||
1640 | #define V_MC7_CM(x) ((x) << S_MC7_CM) | ||
1641 | #define F_MC7_CM V_MC7_CM(1U) | ||
1642 | |||
1643 | #define S_MC7_PMTX 3 | ||
1644 | #define V_MC7_PMTX(x) ((x) << S_MC7_PMTX) | ||
1645 | #define F_MC7_PMTX V_MC7_PMTX(1U) | ||
1646 | |||
1647 | #define S_MC7_PMRX 2 | ||
1648 | #define V_MC7_PMRX(x) ((x) << S_MC7_PMRX) | ||
1649 | #define F_MC7_PMRX V_MC7_PMRX(1U) | ||
1650 | |||
1651 | #define S_PCIM0 1 | ||
1652 | #define V_PCIM0(x) ((x) << S_PCIM0) | ||
1653 | #define F_PCIM0 V_PCIM0(1U) | ||
1654 | |||
1655 | #define S_SGE3 0 | ||
1656 | #define V_SGE3(x) ((x) << S_SGE3) | ||
1657 | #define F_SGE3 V_SGE3(1U) | ||
1658 | |||
1659 | #define A_PL_INT_CAUSE0 0x6e4 | ||
1660 | |||
1661 | #define A_PL_RST 0x6f0 | ||
1662 | |||
1663 | #define S_CRSTWRM 1 | ||
1664 | #define V_CRSTWRM(x) ((x) << S_CRSTWRM) | ||
1665 | #define F_CRSTWRM V_CRSTWRM(1U) | ||
1666 | |||
1667 | #define A_PL_REV 0x6f4 | ||
1668 | |||
1669 | #define A_PL_CLI 0x6f8 | ||
1670 | |||
1671 | #define A_MC5_DB_CONFIG 0x704 | ||
1672 | |||
1673 | #define S_TMTYPEHI 30 | ||
1674 | #define V_TMTYPEHI(x) ((x) << S_TMTYPEHI) | ||
1675 | #define F_TMTYPEHI V_TMTYPEHI(1U) | ||
1676 | |||
1677 | #define S_TMPARTSIZE 28 | ||
1678 | #define M_TMPARTSIZE 0x3 | ||
1679 | #define V_TMPARTSIZE(x) ((x) << S_TMPARTSIZE) | ||
1680 | #define G_TMPARTSIZE(x) (((x) >> S_TMPARTSIZE) & M_TMPARTSIZE) | ||
1681 | |||
1682 | #define S_TMTYPE 26 | ||
1683 | #define M_TMTYPE 0x3 | ||
1684 | #define V_TMTYPE(x) ((x) << S_TMTYPE) | ||
1685 | #define G_TMTYPE(x) (((x) >> S_TMTYPE) & M_TMTYPE) | ||
1686 | |||
1687 | #define S_COMPEN 17 | ||
1688 | #define V_COMPEN(x) ((x) << S_COMPEN) | ||
1689 | #define F_COMPEN V_COMPEN(1U) | ||
1690 | |||
1691 | #define S_PRTYEN 6 | ||
1692 | #define V_PRTYEN(x) ((x) << S_PRTYEN) | ||
1693 | #define F_PRTYEN V_PRTYEN(1U) | ||
1694 | |||
1695 | #define S_MBUSEN 5 | ||
1696 | #define V_MBUSEN(x) ((x) << S_MBUSEN) | ||
1697 | #define F_MBUSEN V_MBUSEN(1U) | ||
1698 | |||
1699 | #define S_DBGIEN 4 | ||
1700 | #define V_DBGIEN(x) ((x) << S_DBGIEN) | ||
1701 | #define F_DBGIEN V_DBGIEN(1U) | ||
1702 | |||
1703 | #define S_TMRDY 2 | ||
1704 | #define V_TMRDY(x) ((x) << S_TMRDY) | ||
1705 | #define F_TMRDY V_TMRDY(1U) | ||
1706 | |||
1707 | #define S_TMRST 1 | ||
1708 | #define V_TMRST(x) ((x) << S_TMRST) | ||
1709 | #define F_TMRST V_TMRST(1U) | ||
1710 | |||
1711 | #define S_TMMODE 0 | ||
1712 | #define V_TMMODE(x) ((x) << S_TMMODE) | ||
1713 | #define F_TMMODE V_TMMODE(1U) | ||
1714 | |||
1715 | #define F_TMMODE V_TMMODE(1U) | ||
1716 | |||
1717 | #define A_MC5_DB_ROUTING_TABLE_INDEX 0x70c | ||
1718 | |||
1719 | #define A_MC5_DB_FILTER_TABLE 0x710 | ||
1720 | |||
1721 | #define A_MC5_DB_SERVER_INDEX 0x714 | ||
1722 | |||
1723 | #define A_MC5_DB_RSP_LATENCY 0x720 | ||
1724 | |||
1725 | #define S_RDLAT 16 | ||
1726 | #define M_RDLAT 0x1f | ||
1727 | #define V_RDLAT(x) ((x) << S_RDLAT) | ||
1728 | |||
1729 | #define S_LRNLAT 8 | ||
1730 | #define M_LRNLAT 0x1f | ||
1731 | #define V_LRNLAT(x) ((x) << S_LRNLAT) | ||
1732 | |||
1733 | #define S_SRCHLAT 0 | ||
1734 | #define M_SRCHLAT 0x1f | ||
1735 | #define V_SRCHLAT(x) ((x) << S_SRCHLAT) | ||
1736 | |||
1737 | #define A_MC5_DB_PART_ID_INDEX 0x72c | ||
1738 | |||
1739 | #define A_MC5_DB_INT_ENABLE 0x740 | ||
1740 | |||
1741 | #define S_DELACTEMPTY 18 | ||
1742 | #define V_DELACTEMPTY(x) ((x) << S_DELACTEMPTY) | ||
1743 | #define F_DELACTEMPTY V_DELACTEMPTY(1U) | ||
1744 | |||
1745 | #define S_DISPQPARERR 17 | ||
1746 | #define V_DISPQPARERR(x) ((x) << S_DISPQPARERR) | ||
1747 | #define F_DISPQPARERR V_DISPQPARERR(1U) | ||
1748 | |||
1749 | #define S_REQQPARERR 16 | ||
1750 | #define V_REQQPARERR(x) ((x) << S_REQQPARERR) | ||
1751 | #define F_REQQPARERR V_REQQPARERR(1U) | ||
1752 | |||
1753 | #define S_UNKNOWNCMD 15 | ||
1754 | #define V_UNKNOWNCMD(x) ((x) << S_UNKNOWNCMD) | ||
1755 | #define F_UNKNOWNCMD V_UNKNOWNCMD(1U) | ||
1756 | |||
1757 | #define S_NFASRCHFAIL 8 | ||
1758 | #define V_NFASRCHFAIL(x) ((x) << S_NFASRCHFAIL) | ||
1759 | #define F_NFASRCHFAIL V_NFASRCHFAIL(1U) | ||
1760 | |||
1761 | #define S_ACTRGNFULL 7 | ||
1762 | #define V_ACTRGNFULL(x) ((x) << S_ACTRGNFULL) | ||
1763 | #define F_ACTRGNFULL V_ACTRGNFULL(1U) | ||
1764 | |||
1765 | #define S_PARITYERR 6 | ||
1766 | #define V_PARITYERR(x) ((x) << S_PARITYERR) | ||
1767 | #define F_PARITYERR V_PARITYERR(1U) | ||
1768 | |||
1769 | #define A_MC5_DB_INT_CAUSE 0x744 | ||
1770 | |||
1771 | #define A_MC5_DB_DBGI_CONFIG 0x774 | ||
1772 | |||
1773 | #define A_MC5_DB_DBGI_REQ_CMD 0x778 | ||
1774 | |||
1775 | #define A_MC5_DB_DBGI_REQ_ADDR0 0x77c | ||
1776 | |||
1777 | #define A_MC5_DB_DBGI_REQ_ADDR1 0x780 | ||
1778 | |||
1779 | #define A_MC5_DB_DBGI_REQ_ADDR2 0x784 | ||
1780 | |||
1781 | #define A_MC5_DB_DBGI_REQ_DATA0 0x788 | ||
1782 | |||
1783 | #define A_MC5_DB_DBGI_REQ_DATA1 0x78c | ||
1784 | |||
1785 | #define A_MC5_DB_DBGI_REQ_DATA2 0x790 | ||
1786 | |||
1787 | #define A_MC5_DB_DBGI_RSP_STATUS 0x7b0 | ||
1788 | |||
1789 | #define S_DBGIRSPVALID 0 | ||
1790 | #define V_DBGIRSPVALID(x) ((x) << S_DBGIRSPVALID) | ||
1791 | #define F_DBGIRSPVALID V_DBGIRSPVALID(1U) | ||
1792 | |||
1793 | #define A_MC5_DB_DBGI_RSP_DATA0 0x7b4 | ||
1794 | |||
1795 | #define A_MC5_DB_DBGI_RSP_DATA1 0x7b8 | ||
1796 | |||
1797 | #define A_MC5_DB_DBGI_RSP_DATA2 0x7bc | ||
1798 | |||
1799 | #define A_MC5_DB_POPEN_DATA_WR_CMD 0x7cc | ||
1800 | |||
1801 | #define A_MC5_DB_POPEN_MASK_WR_CMD 0x7d0 | ||
1802 | |||
1803 | #define A_MC5_DB_AOPEN_SRCH_CMD 0x7d4 | ||
1804 | |||
1805 | #define A_MC5_DB_AOPEN_LRN_CMD 0x7d8 | ||
1806 | |||
1807 | #define A_MC5_DB_SYN_SRCH_CMD 0x7dc | ||
1808 | |||
1809 | #define A_MC5_DB_SYN_LRN_CMD 0x7e0 | ||
1810 | |||
1811 | #define A_MC5_DB_ACK_SRCH_CMD 0x7e4 | ||
1812 | |||
1813 | #define A_MC5_DB_ACK_LRN_CMD 0x7e8 | ||
1814 | |||
1815 | #define A_MC5_DB_ILOOKUP_CMD 0x7ec | ||
1816 | |||
1817 | #define A_MC5_DB_ELOOKUP_CMD 0x7f0 | ||
1818 | |||
1819 | #define A_MC5_DB_DATA_WRITE_CMD 0x7f4 | ||
1820 | |||
1821 | #define A_MC5_DB_DATA_READ_CMD 0x7f8 | ||
1822 | |||
1823 | #define XGMAC0_0_BASE_ADDR 0x800 | ||
1824 | |||
1825 | #define A_XGM_TX_CTRL 0x800 | ||
1826 | |||
1827 | #define S_TXEN 0 | ||
1828 | #define V_TXEN(x) ((x) << S_TXEN) | ||
1829 | #define F_TXEN V_TXEN(1U) | ||
1830 | |||
1831 | #define A_XGM_TX_CFG 0x804 | ||
1832 | |||
1833 | #define S_TXPAUSEEN 0 | ||
1834 | #define V_TXPAUSEEN(x) ((x) << S_TXPAUSEEN) | ||
1835 | #define F_TXPAUSEEN V_TXPAUSEEN(1U) | ||
1836 | |||
1837 | #define A_XGM_RX_CTRL 0x80c | ||
1838 | |||
1839 | #define S_RXEN 0 | ||
1840 | #define V_RXEN(x) ((x) << S_RXEN) | ||
1841 | #define F_RXEN V_RXEN(1U) | ||
1842 | |||
1843 | #define A_XGM_RX_CFG 0x810 | ||
1844 | |||
1845 | #define S_DISPAUSEFRAMES 9 | ||
1846 | #define V_DISPAUSEFRAMES(x) ((x) << S_DISPAUSEFRAMES) | ||
1847 | #define F_DISPAUSEFRAMES V_DISPAUSEFRAMES(1U) | ||
1848 | |||
1849 | #define S_EN1536BFRAMES 8 | ||
1850 | #define V_EN1536BFRAMES(x) ((x) << S_EN1536BFRAMES) | ||
1851 | #define F_EN1536BFRAMES V_EN1536BFRAMES(1U) | ||
1852 | |||
1853 | #define S_ENJUMBO 7 | ||
1854 | #define V_ENJUMBO(x) ((x) << S_ENJUMBO) | ||
1855 | #define F_ENJUMBO V_ENJUMBO(1U) | ||
1856 | |||
1857 | #define S_RMFCS 6 | ||
1858 | #define V_RMFCS(x) ((x) << S_RMFCS) | ||
1859 | #define F_RMFCS V_RMFCS(1U) | ||
1860 | |||
1861 | #define S_ENHASHMCAST 2 | ||
1862 | #define V_ENHASHMCAST(x) ((x) << S_ENHASHMCAST) | ||
1863 | #define F_ENHASHMCAST V_ENHASHMCAST(1U) | ||
1864 | |||
1865 | #define S_COPYALLFRAMES 0 | ||
1866 | #define V_COPYALLFRAMES(x) ((x) << S_COPYALLFRAMES) | ||
1867 | #define F_COPYALLFRAMES V_COPYALLFRAMES(1U) | ||
1868 | |||
1869 | #define A_XGM_RX_HASH_LOW 0x814 | ||
1870 | |||
1871 | #define A_XGM_RX_HASH_HIGH 0x818 | ||
1872 | |||
1873 | #define A_XGM_RX_EXACT_MATCH_LOW_1 0x81c | ||
1874 | |||
1875 | #define A_XGM_RX_EXACT_MATCH_HIGH_1 0x820 | ||
1876 | |||
1877 | #define A_XGM_RX_EXACT_MATCH_LOW_2 0x824 | ||
1878 | |||
1879 | #define A_XGM_RX_EXACT_MATCH_LOW_3 0x82c | ||
1880 | |||
1881 | #define A_XGM_RX_EXACT_MATCH_LOW_4 0x834 | ||
1882 | |||
1883 | #define A_XGM_RX_EXACT_MATCH_LOW_5 0x83c | ||
1884 | |||
1885 | #define A_XGM_RX_EXACT_MATCH_LOW_6 0x844 | ||
1886 | |||
1887 | #define A_XGM_RX_EXACT_MATCH_LOW_7 0x84c | ||
1888 | |||
1889 | #define A_XGM_RX_EXACT_MATCH_LOW_8 0x854 | ||
1890 | |||
1891 | #define A_XGM_STAT_CTRL 0x880 | ||
1892 | |||
1893 | #define S_CLRSTATS 2 | ||
1894 | #define V_CLRSTATS(x) ((x) << S_CLRSTATS) | ||
1895 | #define F_CLRSTATS V_CLRSTATS(1U) | ||
1896 | |||
1897 | #define A_XGM_RXFIFO_CFG 0x884 | ||
1898 | |||
1899 | #define S_RXFIFOPAUSEHWM 17 | ||
1900 | #define M_RXFIFOPAUSEHWM 0xfff | ||
1901 | |||
1902 | #define V_RXFIFOPAUSEHWM(x) ((x) << S_RXFIFOPAUSEHWM) | ||
1903 | |||
1904 | #define G_RXFIFOPAUSEHWM(x) (((x) >> S_RXFIFOPAUSEHWM) & M_RXFIFOPAUSEHWM) | ||
1905 | |||
1906 | #define S_RXFIFOPAUSELWM 5 | ||
1907 | #define M_RXFIFOPAUSELWM 0xfff | ||
1908 | |||
1909 | #define V_RXFIFOPAUSELWM(x) ((x) << S_RXFIFOPAUSELWM) | ||
1910 | |||
1911 | #define G_RXFIFOPAUSELWM(x) (((x) >> S_RXFIFOPAUSELWM) & M_RXFIFOPAUSELWM) | ||
1912 | |||
1913 | #define S_RXSTRFRWRD 1 | ||
1914 | #define V_RXSTRFRWRD(x) ((x) << S_RXSTRFRWRD) | ||
1915 | #define F_RXSTRFRWRD V_RXSTRFRWRD(1U) | ||
1916 | |||
1917 | #define S_DISERRFRAMES 0 | ||
1918 | #define V_DISERRFRAMES(x) ((x) << S_DISERRFRAMES) | ||
1919 | #define F_DISERRFRAMES V_DISERRFRAMES(1U) | ||
1920 | |||
1921 | #define A_XGM_TXFIFO_CFG 0x888 | ||
1922 | |||
1923 | #define S_TXFIFOTHRESH 4 | ||
1924 | #define M_TXFIFOTHRESH 0x1ff | ||
1925 | |||
1926 | #define V_TXFIFOTHRESH(x) ((x) << S_TXFIFOTHRESH) | ||
1927 | |||
1928 | #define A_XGM_SERDES_CTRL 0x890 | ||
1929 | #define A_XGM_SERDES_CTRL0 0x8e0 | ||
1930 | |||
1931 | #define S_SERDESRESET_ 24 | ||
1932 | #define V_SERDESRESET_(x) ((x) << S_SERDESRESET_) | ||
1933 | #define F_SERDESRESET_ V_SERDESRESET_(1U) | ||
1934 | |||
1935 | #define S_RXENABLE 4 | ||
1936 | #define V_RXENABLE(x) ((x) << S_RXENABLE) | ||
1937 | #define F_RXENABLE V_RXENABLE(1U) | ||
1938 | |||
1939 | #define S_TXENABLE 3 | ||
1940 | #define V_TXENABLE(x) ((x) << S_TXENABLE) | ||
1941 | #define F_TXENABLE V_TXENABLE(1U) | ||
1942 | |||
1943 | #define A_XGM_PAUSE_TIMER 0x890 | ||
1944 | |||
1945 | #define A_XGM_RGMII_IMP 0x89c | ||
1946 | |||
1947 | #define S_XGM_IMPSETUPDATE 6 | ||
1948 | #define V_XGM_IMPSETUPDATE(x) ((x) << S_XGM_IMPSETUPDATE) | ||
1949 | #define F_XGM_IMPSETUPDATE V_XGM_IMPSETUPDATE(1U) | ||
1950 | |||
1951 | #define S_RGMIIIMPPD 3 | ||
1952 | #define M_RGMIIIMPPD 0x7 | ||
1953 | #define V_RGMIIIMPPD(x) ((x) << S_RGMIIIMPPD) | ||
1954 | |||
1955 | #define S_RGMIIIMPPU 0 | ||
1956 | #define M_RGMIIIMPPU 0x7 | ||
1957 | #define V_RGMIIIMPPU(x) ((x) << S_RGMIIIMPPU) | ||
1958 | |||
1959 | #define S_CALRESET 8 | ||
1960 | #define V_CALRESET(x) ((x) << S_CALRESET) | ||
1961 | #define F_CALRESET V_CALRESET(1U) | ||
1962 | |||
1963 | #define S_CALUPDATE 7 | ||
1964 | #define V_CALUPDATE(x) ((x) << S_CALUPDATE) | ||
1965 | #define F_CALUPDATE V_CALUPDATE(1U) | ||
1966 | |||
1967 | #define A_XGM_XAUI_IMP 0x8a0 | ||
1968 | |||
1969 | #define S_CALBUSY 31 | ||
1970 | #define V_CALBUSY(x) ((x) << S_CALBUSY) | ||
1971 | #define F_CALBUSY V_CALBUSY(1U) | ||
1972 | |||
1973 | #define S_XGM_CALFAULT 29 | ||
1974 | #define V_XGM_CALFAULT(x) ((x) << S_XGM_CALFAULT) | ||
1975 | #define F_XGM_CALFAULT V_XGM_CALFAULT(1U) | ||
1976 | |||
1977 | #define S_CALIMP 24 | ||
1978 | #define M_CALIMP 0x1f | ||
1979 | #define V_CALIMP(x) ((x) << S_CALIMP) | ||
1980 | #define G_CALIMP(x) (((x) >> S_CALIMP) & M_CALIMP) | ||
1981 | |||
1982 | #define S_XAUIIMP 0 | ||
1983 | #define M_XAUIIMP 0x7 | ||
1984 | #define V_XAUIIMP(x) ((x) << S_XAUIIMP) | ||
1985 | |||
1986 | #define A_XGM_RX_MAX_PKT_SIZE 0x8a8 | ||
1987 | #define A_XGM_RX_MAX_PKT_SIZE_ERR_CNT 0x9a4 | ||
1988 | |||
1989 | #define A_XGM_RESET_CTRL 0x8ac | ||
1990 | |||
1991 | #define S_XG2G_RESET_ 3 | ||
1992 | #define V_XG2G_RESET_(x) ((x) << S_XG2G_RESET_) | ||
1993 | #define F_XG2G_RESET_ V_XG2G_RESET_(1U) | ||
1994 | |||
1995 | #define S_RGMII_RESET_ 2 | ||
1996 | #define V_RGMII_RESET_(x) ((x) << S_RGMII_RESET_) | ||
1997 | #define F_RGMII_RESET_ V_RGMII_RESET_(1U) | ||
1998 | |||
1999 | #define S_PCS_RESET_ 1 | ||
2000 | #define V_PCS_RESET_(x) ((x) << S_PCS_RESET_) | ||
2001 | #define F_PCS_RESET_ V_PCS_RESET_(1U) | ||
2002 | |||
2003 | #define S_MAC_RESET_ 0 | ||
2004 | #define V_MAC_RESET_(x) ((x) << S_MAC_RESET_) | ||
2005 | #define F_MAC_RESET_ V_MAC_RESET_(1U) | ||
2006 | |||
2007 | #define A_XGM_PORT_CFG 0x8b8 | ||
2008 | |||
2009 | #define S_CLKDIVRESET_ 3 | ||
2010 | #define V_CLKDIVRESET_(x) ((x) << S_CLKDIVRESET_) | ||
2011 | #define F_CLKDIVRESET_ V_CLKDIVRESET_(1U) | ||
2012 | |||
2013 | #define S_PORTSPEED 1 | ||
2014 | #define M_PORTSPEED 0x3 | ||
2015 | |||
2016 | #define V_PORTSPEED(x) ((x) << S_PORTSPEED) | ||
2017 | |||
2018 | #define S_ENRGMII 0 | ||
2019 | #define V_ENRGMII(x) ((x) << S_ENRGMII) | ||
2020 | #define F_ENRGMII V_ENRGMII(1U) | ||
2021 | |||
2022 | #define A_XGM_INT_ENABLE 0x8d4 | ||
2023 | |||
2024 | #define S_TXFIFO_PRTY_ERR 17 | ||
2025 | #define M_TXFIFO_PRTY_ERR 0x7 | ||
2026 | |||
2027 | #define V_TXFIFO_PRTY_ERR(x) ((x) << S_TXFIFO_PRTY_ERR) | ||
2028 | |||
2029 | #define S_RXFIFO_PRTY_ERR 14 | ||
2030 | #define M_RXFIFO_PRTY_ERR 0x7 | ||
2031 | |||
2032 | #define V_RXFIFO_PRTY_ERR(x) ((x) << S_RXFIFO_PRTY_ERR) | ||
2033 | |||
2034 | #define S_TXFIFO_UNDERRUN 13 | ||
2035 | #define V_TXFIFO_UNDERRUN(x) ((x) << S_TXFIFO_UNDERRUN) | ||
2036 | #define F_TXFIFO_UNDERRUN V_TXFIFO_UNDERRUN(1U) | ||
2037 | |||
2038 | #define S_RXFIFO_OVERFLOW 12 | ||
2039 | #define V_RXFIFO_OVERFLOW(x) ((x) << S_RXFIFO_OVERFLOW) | ||
2040 | #define F_RXFIFO_OVERFLOW V_RXFIFO_OVERFLOW(1U) | ||
2041 | |||
2042 | #define S_SERDES_LOS 4 | ||
2043 | #define M_SERDES_LOS 0xf | ||
2044 | |||
2045 | #define V_SERDES_LOS(x) ((x) << S_SERDES_LOS) | ||
2046 | |||
2047 | #define S_XAUIPCSCTCERR 3 | ||
2048 | #define V_XAUIPCSCTCERR(x) ((x) << S_XAUIPCSCTCERR) | ||
2049 | #define F_XAUIPCSCTCERR V_XAUIPCSCTCERR(1U) | ||
2050 | |||
2051 | #define S_XAUIPCSALIGNCHANGE 2 | ||
2052 | #define V_XAUIPCSALIGNCHANGE(x) ((x) << S_XAUIPCSALIGNCHANGE) | ||
2053 | #define F_XAUIPCSALIGNCHANGE V_XAUIPCSALIGNCHANGE(1U) | ||
2054 | |||
2055 | #define A_XGM_INT_CAUSE 0x8d8 | ||
2056 | |||
2057 | #define A_XGM_XAUI_ACT_CTRL 0x8dc | ||
2058 | |||
2059 | #define S_TXACTENABLE 1 | ||
2060 | #define V_TXACTENABLE(x) ((x) << S_TXACTENABLE) | ||
2061 | #define F_TXACTENABLE V_TXACTENABLE(1U) | ||
2062 | |||
2063 | #define A_XGM_SERDES_CTRL0 0x8e0 | ||
2064 | |||
2065 | #define S_RESET3 23 | ||
2066 | #define V_RESET3(x) ((x) << S_RESET3) | ||
2067 | #define F_RESET3 V_RESET3(1U) | ||
2068 | |||
2069 | #define S_RESET2 22 | ||
2070 | #define V_RESET2(x) ((x) << S_RESET2) | ||
2071 | #define F_RESET2 V_RESET2(1U) | ||
2072 | |||
2073 | #define S_RESET1 21 | ||
2074 | #define V_RESET1(x) ((x) << S_RESET1) | ||
2075 | #define F_RESET1 V_RESET1(1U) | ||
2076 | |||
2077 | #define S_RESET0 20 | ||
2078 | #define V_RESET0(x) ((x) << S_RESET0) | ||
2079 | #define F_RESET0 V_RESET0(1U) | ||
2080 | |||
2081 | #define S_PWRDN3 19 | ||
2082 | #define V_PWRDN3(x) ((x) << S_PWRDN3) | ||
2083 | #define F_PWRDN3 V_PWRDN3(1U) | ||
2084 | |||
2085 | #define S_PWRDN2 18 | ||
2086 | #define V_PWRDN2(x) ((x) << S_PWRDN2) | ||
2087 | #define F_PWRDN2 V_PWRDN2(1U) | ||
2088 | |||
2089 | #define S_PWRDN1 17 | ||
2090 | #define V_PWRDN1(x) ((x) << S_PWRDN1) | ||
2091 | #define F_PWRDN1 V_PWRDN1(1U) | ||
2092 | |||
2093 | #define S_PWRDN0 16 | ||
2094 | #define V_PWRDN0(x) ((x) << S_PWRDN0) | ||
2095 | #define F_PWRDN0 V_PWRDN0(1U) | ||
2096 | |||
2097 | #define S_RESETPLL23 15 | ||
2098 | #define V_RESETPLL23(x) ((x) << S_RESETPLL23) | ||
2099 | #define F_RESETPLL23 V_RESETPLL23(1U) | ||
2100 | |||
2101 | #define S_RESETPLL01 14 | ||
2102 | #define V_RESETPLL01(x) ((x) << S_RESETPLL01) | ||
2103 | #define F_RESETPLL01 V_RESETPLL01(1U) | ||
2104 | |||
2105 | #define A_XGM_SERDES_STAT0 0x8f0 | ||
2106 | |||
2107 | #define S_LOWSIG0 0 | ||
2108 | #define V_LOWSIG0(x) ((x) << S_LOWSIG0) | ||
2109 | #define F_LOWSIG0 V_LOWSIG0(1U) | ||
2110 | |||
2111 | #define A_XGM_SERDES_STAT3 0x8fc | ||
2112 | |||
2113 | #define A_XGM_STAT_TX_BYTE_LOW 0x900 | ||
2114 | |||
2115 | #define A_XGM_STAT_TX_BYTE_HIGH 0x904 | ||
2116 | |||
2117 | #define A_XGM_STAT_TX_FRAME_LOW 0x908 | ||
2118 | |||
2119 | #define A_XGM_STAT_TX_FRAME_HIGH 0x90c | ||
2120 | |||
2121 | #define A_XGM_STAT_TX_BCAST 0x910 | ||
2122 | |||
2123 | #define A_XGM_STAT_TX_MCAST 0x914 | ||
2124 | |||
2125 | #define A_XGM_STAT_TX_PAUSE 0x918 | ||
2126 | |||
2127 | #define A_XGM_STAT_TX_64B_FRAMES 0x91c | ||
2128 | |||
2129 | #define A_XGM_STAT_TX_65_127B_FRAMES 0x920 | ||
2130 | |||
2131 | #define A_XGM_STAT_TX_128_255B_FRAMES 0x924 | ||
2132 | |||
2133 | #define A_XGM_STAT_TX_256_511B_FRAMES 0x928 | ||
2134 | |||
2135 | #define A_XGM_STAT_TX_512_1023B_FRAMES 0x92c | ||
2136 | |||
2137 | #define A_XGM_STAT_TX_1024_1518B_FRAMES 0x930 | ||
2138 | |||
2139 | #define A_XGM_STAT_TX_1519_MAXB_FRAMES 0x934 | ||
2140 | |||
2141 | #define A_XGM_STAT_TX_ERR_FRAMES 0x938 | ||
2142 | |||
2143 | #define A_XGM_STAT_RX_BYTES_LOW 0x93c | ||
2144 | |||
2145 | #define A_XGM_STAT_RX_BYTES_HIGH 0x940 | ||
2146 | |||
2147 | #define A_XGM_STAT_RX_FRAMES_LOW 0x944 | ||
2148 | |||
2149 | #define A_XGM_STAT_RX_FRAMES_HIGH 0x948 | ||
2150 | |||
2151 | #define A_XGM_STAT_RX_BCAST_FRAMES 0x94c | ||
2152 | |||
2153 | #define A_XGM_STAT_RX_MCAST_FRAMES 0x950 | ||
2154 | |||
2155 | #define A_XGM_STAT_RX_PAUSE_FRAMES 0x954 | ||
2156 | |||
2157 | #define A_XGM_STAT_RX_64B_FRAMES 0x958 | ||
2158 | |||
2159 | #define A_XGM_STAT_RX_65_127B_FRAMES 0x95c | ||
2160 | |||
2161 | #define A_XGM_STAT_RX_128_255B_FRAMES 0x960 | ||
2162 | |||
2163 | #define A_XGM_STAT_RX_256_511B_FRAMES 0x964 | ||
2164 | |||
2165 | #define A_XGM_STAT_RX_512_1023B_FRAMES 0x968 | ||
2166 | |||
2167 | #define A_XGM_STAT_RX_1024_1518B_FRAMES 0x96c | ||
2168 | |||
2169 | #define A_XGM_STAT_RX_1519_MAXB_FRAMES 0x970 | ||
2170 | |||
2171 | #define A_XGM_STAT_RX_SHORT_FRAMES 0x974 | ||
2172 | |||
2173 | #define A_XGM_STAT_RX_OVERSIZE_FRAMES 0x978 | ||
2174 | |||
2175 | #define A_XGM_STAT_RX_JABBER_FRAMES 0x97c | ||
2176 | |||
2177 | #define A_XGM_STAT_RX_CRC_ERR_FRAMES 0x980 | ||
2178 | |||
2179 | #define A_XGM_STAT_RX_LENGTH_ERR_FRAMES 0x984 | ||
2180 | |||
2181 | #define A_XGM_STAT_RX_SYM_CODE_ERR_FRAMES 0x988 | ||
2182 | |||
2183 | #define A_XGM_SERDES_STATUS0 0x98c | ||
2184 | |||
2185 | #define A_XGM_SERDES_STATUS1 0x990 | ||
2186 | |||
2187 | #define S_CMULOCK 31 | ||
2188 | #define V_CMULOCK(x) ((x) << S_CMULOCK) | ||
2189 | #define F_CMULOCK V_CMULOCK(1U) | ||
2190 | |||
2191 | #define A_XGM_RX_MAX_PKT_SIZE_ERR_CNT 0x9a4 | ||
2192 | |||
2193 | #define A_XGM_RX_SPI4_SOP_EOP_CNT 0x9ac | ||
2194 | |||
2195 | #define XGMAC0_1_BASE_ADDR 0xa00 | ||
diff --git a/drivers/net/cxgb3/sge.c b/drivers/net/cxgb3/sge.c new file mode 100644 index 000000000000..6c77f4bab62f --- /dev/null +++ b/drivers/net/cxgb3/sge.c | |||
@@ -0,0 +1,2702 @@ | |||
1 | /* | ||
2 | * This file is part of the Chelsio T3 Ethernet driver. | ||
3 | * | ||
4 | * Copyright (C) 2005-2006 Chelsio Communications. All rights reserved. | ||
5 | * | ||
6 | * This program is distributed in the hope that it will be useful, but WITHOUT | ||
7 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
8 | * FITNESS FOR A PARTICULAR PURPOSE. See the LICENSE file included in this | ||
9 | * release for licensing terms and conditions. | ||
10 | */ | ||
11 | |||
12 | #include <linux/skbuff.h> | ||
13 | #include <linux/netdevice.h> | ||
14 | #include <linux/etherdevice.h> | ||
15 | #include <linux/if_vlan.h> | ||
16 | #include <linux/ip.h> | ||
17 | #include <linux/tcp.h> | ||
18 | #include <linux/dma-mapping.h> | ||
19 | #include "common.h" | ||
20 | #include "regs.h" | ||
21 | #include "sge_defs.h" | ||
22 | #include "t3_cpl.h" | ||
23 | #include "firmware_exports.h" | ||
24 | |||
25 | #define USE_GTS 0 | ||
26 | |||
27 | #define SGE_RX_SM_BUF_SIZE 1536 | ||
28 | #define SGE_RX_COPY_THRES 256 | ||
29 | |||
30 | # define SGE_RX_DROP_THRES 16 | ||
31 | |||
32 | /* | ||
33 | * Period of the Tx buffer reclaim timer. This timer does not need to run | ||
34 | * frequently as Tx buffers are usually reclaimed by new Tx packets. | ||
35 | */ | ||
36 | #define TX_RECLAIM_PERIOD (HZ / 4) | ||
37 | |||
38 | /* WR size in bytes */ | ||
39 | #define WR_LEN (WR_FLITS * 8) | ||
40 | |||
41 | /* | ||
42 | * Types of Tx queues in each queue set. Order here matters, do not change. | ||
43 | */ | ||
44 | enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL }; | ||
45 | |||
46 | /* Values for sge_txq.flags */ | ||
47 | enum { | ||
48 | TXQ_RUNNING = 1 << 0, /* fetch engine is running */ | ||
49 | TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */ | ||
50 | }; | ||
51 | |||
52 | struct tx_desc { | ||
53 | u64 flit[TX_DESC_FLITS]; | ||
54 | }; | ||
55 | |||
56 | struct rx_desc { | ||
57 | __be32 addr_lo; | ||
58 | __be32 len_gen; | ||
59 | __be32 gen2; | ||
60 | __be32 addr_hi; | ||
61 | }; | ||
62 | |||
63 | struct tx_sw_desc { /* SW state per Tx descriptor */ | ||
64 | struct sk_buff *skb; | ||
65 | }; | ||
66 | |||
67 | struct rx_sw_desc { /* SW state per Rx descriptor */ | ||
68 | struct sk_buff *skb; | ||
69 | DECLARE_PCI_UNMAP_ADDR(dma_addr); | ||
70 | }; | ||
71 | |||
72 | struct rsp_desc { /* response queue descriptor */ | ||
73 | struct rss_header rss_hdr; | ||
74 | __be32 flags; | ||
75 | __be32 len_cq; | ||
76 | u8 imm_data[47]; | ||
77 | u8 intr_gen; | ||
78 | }; | ||
79 | |||
80 | struct unmap_info { /* packet unmapping info, overlays skb->cb */ | ||
81 | int sflit; /* start flit of first SGL entry in Tx descriptor */ | ||
82 | u16 fragidx; /* first page fragment in current Tx descriptor */ | ||
83 | u16 addr_idx; /* buffer index of first SGL entry in descriptor */ | ||
84 | u32 len; /* mapped length of skb main body */ | ||
85 | }; | ||
86 | |||
87 | /* | ||
88 | * Maps a number of flits to the number of Tx descriptors that can hold them. | ||
89 | * The formula is | ||
90 | * | ||
91 | * desc = 1 + (flits - 2) / (WR_FLITS - 1). | ||
92 | * | ||
93 | * HW allows up to 4 descriptors to be combined into a WR. | ||
94 | */ | ||
95 | static u8 flit_desc_map[] = { | ||
96 | 0, | ||
97 | #if SGE_NUM_GENBITS == 1 | ||
98 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | ||
99 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | ||
100 | 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, | ||
101 | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 | ||
102 | #elif SGE_NUM_GENBITS == 2 | ||
103 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | ||
104 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | ||
105 | 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, | ||
106 | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | ||
107 | #else | ||
108 | # error "SGE_NUM_GENBITS must be 1 or 2" | ||
109 | #endif | ||
110 | }; | ||
111 | |||
112 | static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx) | ||
113 | { | ||
114 | return container_of(q, struct sge_qset, fl[qidx]); | ||
115 | } | ||
116 | |||
117 | static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q) | ||
118 | { | ||
119 | return container_of(q, struct sge_qset, rspq); | ||
120 | } | ||
121 | |||
122 | static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx) | ||
123 | { | ||
124 | return container_of(q, struct sge_qset, txq[qidx]); | ||
125 | } | ||
126 | |||
127 | /** | ||
128 | * refill_rspq - replenish an SGE response queue | ||
129 | * @adapter: the adapter | ||
130 | * @q: the response queue to replenish | ||
131 | * @credits: how many new responses to make available | ||
132 | * | ||
133 | * Replenishes a response queue by making the supplied number of responses | ||
134 | * available to HW. | ||
135 | */ | ||
136 | static inline void refill_rspq(struct adapter *adapter, | ||
137 | const struct sge_rspq *q, unsigned int credits) | ||
138 | { | ||
139 | t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN, | ||
140 | V_RSPQ(q->cntxt_id) | V_CREDITS(credits)); | ||
141 | } | ||
142 | |||
143 | /** | ||
144 | * need_skb_unmap - does the platform need unmapping of sk_buffs? | ||
145 | * | ||
146 | * Returns true if the platfrom needs sk_buff unmapping. The compiler | ||
147 | * optimizes away unecessary code if this returns true. | ||
148 | */ | ||
149 | static inline int need_skb_unmap(void) | ||
150 | { | ||
151 | /* | ||
152 | * This structure is used to tell if the platfrom needs buffer | ||
153 | * unmapping by checking if DECLARE_PCI_UNMAP_ADDR defines anything. | ||
154 | */ | ||
155 | struct dummy { | ||
156 | DECLARE_PCI_UNMAP_ADDR(addr); | ||
157 | }; | ||
158 | |||
159 | return sizeof(struct dummy) != 0; | ||
160 | } | ||
161 | |||
162 | /** | ||
163 | * unmap_skb - unmap a packet main body and its page fragments | ||
164 | * @skb: the packet | ||
165 | * @q: the Tx queue containing Tx descriptors for the packet | ||
166 | * @cidx: index of Tx descriptor | ||
167 | * @pdev: the PCI device | ||
168 | * | ||
169 | * Unmap the main body of an sk_buff and its page fragments, if any. | ||
170 | * Because of the fairly complicated structure of our SGLs and the desire | ||
171 | * to conserve space for metadata, we keep the information necessary to | ||
172 | * unmap an sk_buff partly in the sk_buff itself (in its cb), and partly | ||
173 | * in the Tx descriptors (the physical addresses of the various data | ||
174 | * buffers). The send functions initialize the state in skb->cb so we | ||
175 | * can unmap the buffers held in the first Tx descriptor here, and we | ||
176 | * have enough information at this point to update the state for the next | ||
177 | * Tx descriptor. | ||
178 | */ | ||
179 | static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q, | ||
180 | unsigned int cidx, struct pci_dev *pdev) | ||
181 | { | ||
182 | const struct sg_ent *sgp; | ||
183 | struct unmap_info *ui = (struct unmap_info *)skb->cb; | ||
184 | int nfrags, frag_idx, curflit, j = ui->addr_idx; | ||
185 | |||
186 | sgp = (struct sg_ent *)&q->desc[cidx].flit[ui->sflit]; | ||
187 | |||
188 | if (ui->len) { | ||
189 | pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]), ui->len, | ||
190 | PCI_DMA_TODEVICE); | ||
191 | ui->len = 0; /* so we know for next descriptor for this skb */ | ||
192 | j = 1; | ||
193 | } | ||
194 | |||
195 | frag_idx = ui->fragidx; | ||
196 | curflit = ui->sflit + 1 + j; | ||
197 | nfrags = skb_shinfo(skb)->nr_frags; | ||
198 | |||
199 | while (frag_idx < nfrags && curflit < WR_FLITS) { | ||
200 | pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]), | ||
201 | skb_shinfo(skb)->frags[frag_idx].size, | ||
202 | PCI_DMA_TODEVICE); | ||
203 | j ^= 1; | ||
204 | if (j == 0) { | ||
205 | sgp++; | ||
206 | curflit++; | ||
207 | } | ||
208 | curflit++; | ||
209 | frag_idx++; | ||
210 | } | ||
211 | |||
212 | if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */ | ||
213 | ui->fragidx = frag_idx; | ||
214 | ui->addr_idx = j; | ||
215 | ui->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */ | ||
216 | } | ||
217 | } | ||
218 | |||
219 | /** | ||
220 | * free_tx_desc - reclaims Tx descriptors and their buffers | ||
221 | * @adapter: the adapter | ||
222 | * @q: the Tx queue to reclaim descriptors from | ||
223 | * @n: the number of descriptors to reclaim | ||
224 | * | ||
225 | * Reclaims Tx descriptors from an SGE Tx queue and frees the associated | ||
226 | * Tx buffers. Called with the Tx queue lock held. | ||
227 | */ | ||
228 | static void free_tx_desc(struct adapter *adapter, struct sge_txq *q, | ||
229 | unsigned int n) | ||
230 | { | ||
231 | struct tx_sw_desc *d; | ||
232 | struct pci_dev *pdev = adapter->pdev; | ||
233 | unsigned int cidx = q->cidx; | ||
234 | |||
235 | d = &q->sdesc[cidx]; | ||
236 | while (n--) { | ||
237 | if (d->skb) { /* an SGL is present */ | ||
238 | if (need_skb_unmap()) | ||
239 | unmap_skb(d->skb, q, cidx, pdev); | ||
240 | if (d->skb->priority == cidx) | ||
241 | kfree_skb(d->skb); | ||
242 | } | ||
243 | ++d; | ||
244 | if (++cidx == q->size) { | ||
245 | cidx = 0; | ||
246 | d = q->sdesc; | ||
247 | } | ||
248 | } | ||
249 | q->cidx = cidx; | ||
250 | } | ||
251 | |||
252 | /** | ||
253 | * reclaim_completed_tx - reclaims completed Tx descriptors | ||
254 | * @adapter: the adapter | ||
255 | * @q: the Tx queue to reclaim completed descriptors from | ||
256 | * | ||
257 | * Reclaims Tx descriptors that the SGE has indicated it has processed, | ||
258 | * and frees the associated buffers if possible. Called with the Tx | ||
259 | * queue's lock held. | ||
260 | */ | ||
261 | static inline void reclaim_completed_tx(struct adapter *adapter, | ||
262 | struct sge_txq *q) | ||
263 | { | ||
264 | unsigned int reclaim = q->processed - q->cleaned; | ||
265 | |||
266 | if (reclaim) { | ||
267 | free_tx_desc(adapter, q, reclaim); | ||
268 | q->cleaned += reclaim; | ||
269 | q->in_use -= reclaim; | ||
270 | } | ||
271 | } | ||
272 | |||
273 | /** | ||
274 | * should_restart_tx - are there enough resources to restart a Tx queue? | ||
275 | * @q: the Tx queue | ||
276 | * | ||
277 | * Checks if there are enough descriptors to restart a suspended Tx queue. | ||
278 | */ | ||
279 | static inline int should_restart_tx(const struct sge_txq *q) | ||
280 | { | ||
281 | unsigned int r = q->processed - q->cleaned; | ||
282 | |||
283 | return q->in_use - r < (q->size >> 1); | ||
284 | } | ||
285 | |||
286 | /** | ||
287 | * free_rx_bufs - free the Rx buffers on an SGE free list | ||
288 | * @pdev: the PCI device associated with the adapter | ||
289 | * @rxq: the SGE free list to clean up | ||
290 | * | ||
291 | * Release the buffers on an SGE free-buffer Rx queue. HW fetching from | ||
292 | * this queue should be stopped before calling this function. | ||
293 | */ | ||
294 | static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q) | ||
295 | { | ||
296 | unsigned int cidx = q->cidx; | ||
297 | |||
298 | while (q->credits--) { | ||
299 | struct rx_sw_desc *d = &q->sdesc[cidx]; | ||
300 | |||
301 | pci_unmap_single(pdev, pci_unmap_addr(d, dma_addr), | ||
302 | q->buf_size, PCI_DMA_FROMDEVICE); | ||
303 | kfree_skb(d->skb); | ||
304 | d->skb = NULL; | ||
305 | if (++cidx == q->size) | ||
306 | cidx = 0; | ||
307 | } | ||
308 | } | ||
309 | |||
310 | /** | ||
311 | * add_one_rx_buf - add a packet buffer to a free-buffer list | ||
312 | * @skb: the buffer to add | ||
313 | * @len: the buffer length | ||
314 | * @d: the HW Rx descriptor to write | ||
315 | * @sd: the SW Rx descriptor to write | ||
316 | * @gen: the generation bit value | ||
317 | * @pdev: the PCI device associated with the adapter | ||
318 | * | ||
319 | * Add a buffer of the given length to the supplied HW and SW Rx | ||
320 | * descriptors. | ||
321 | */ | ||
322 | static inline void add_one_rx_buf(struct sk_buff *skb, unsigned int len, | ||
323 | struct rx_desc *d, struct rx_sw_desc *sd, | ||
324 | unsigned int gen, struct pci_dev *pdev) | ||
325 | { | ||
326 | dma_addr_t mapping; | ||
327 | |||
328 | sd->skb = skb; | ||
329 | mapping = pci_map_single(pdev, skb->data, len, PCI_DMA_FROMDEVICE); | ||
330 | pci_unmap_addr_set(sd, dma_addr, mapping); | ||
331 | |||
332 | d->addr_lo = cpu_to_be32(mapping); | ||
333 | d->addr_hi = cpu_to_be32((u64) mapping >> 32); | ||
334 | wmb(); | ||
335 | d->len_gen = cpu_to_be32(V_FLD_GEN1(gen)); | ||
336 | d->gen2 = cpu_to_be32(V_FLD_GEN2(gen)); | ||
337 | } | ||
338 | |||
339 | /** | ||
340 | * refill_fl - refill an SGE free-buffer list | ||
341 | * @adapter: the adapter | ||
342 | * @q: the free-list to refill | ||
343 | * @n: the number of new buffers to allocate | ||
344 | * @gfp: the gfp flags for allocating new buffers | ||
345 | * | ||
346 | * (Re)populate an SGE free-buffer list with up to @n new packet buffers, | ||
347 | * allocated with the supplied gfp flags. The caller must assure that | ||
348 | * @n does not exceed the queue's capacity. | ||
349 | */ | ||
350 | static void refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp) | ||
351 | { | ||
352 | struct rx_sw_desc *sd = &q->sdesc[q->pidx]; | ||
353 | struct rx_desc *d = &q->desc[q->pidx]; | ||
354 | |||
355 | while (n--) { | ||
356 | struct sk_buff *skb = alloc_skb(q->buf_size, gfp); | ||
357 | |||
358 | if (!skb) | ||
359 | break; | ||
360 | |||
361 | add_one_rx_buf(skb, q->buf_size, d, sd, q->gen, adap->pdev); | ||
362 | d++; | ||
363 | sd++; | ||
364 | if (++q->pidx == q->size) { | ||
365 | q->pidx = 0; | ||
366 | q->gen ^= 1; | ||
367 | sd = q->sdesc; | ||
368 | d = q->desc; | ||
369 | } | ||
370 | q->credits++; | ||
371 | } | ||
372 | |||
373 | t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id)); | ||
374 | } | ||
375 | |||
376 | static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) | ||
377 | { | ||
378 | refill_fl(adap, fl, min(16U, fl->size - fl->credits), GFP_ATOMIC); | ||
379 | } | ||
380 | |||
381 | /** | ||
382 | * recycle_rx_buf - recycle a receive buffer | ||
383 | * @adapter: the adapter | ||
384 | * @q: the SGE free list | ||
385 | * @idx: index of buffer to recycle | ||
386 | * | ||
387 | * Recycles the specified buffer on the given free list by adding it at | ||
388 | * the next available slot on the list. | ||
389 | */ | ||
390 | static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q, | ||
391 | unsigned int idx) | ||
392 | { | ||
393 | struct rx_desc *from = &q->desc[idx]; | ||
394 | struct rx_desc *to = &q->desc[q->pidx]; | ||
395 | |||
396 | q->sdesc[q->pidx] = q->sdesc[idx]; | ||
397 | to->addr_lo = from->addr_lo; /* already big endian */ | ||
398 | to->addr_hi = from->addr_hi; /* likewise */ | ||
399 | wmb(); | ||
400 | to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen)); | ||
401 | to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen)); | ||
402 | q->credits++; | ||
403 | |||
404 | if (++q->pidx == q->size) { | ||
405 | q->pidx = 0; | ||
406 | q->gen ^= 1; | ||
407 | } | ||
408 | t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id)); | ||
409 | } | ||
410 | |||
411 | /** | ||
412 | * alloc_ring - allocate resources for an SGE descriptor ring | ||
413 | * @pdev: the PCI device | ||
414 | * @nelem: the number of descriptors | ||
415 | * @elem_size: the size of each descriptor | ||
416 | * @sw_size: the size of the SW state associated with each ring element | ||
417 | * @phys: the physical address of the allocated ring | ||
418 | * @metadata: address of the array holding the SW state for the ring | ||
419 | * | ||
420 | * Allocates resources for an SGE descriptor ring, such as Tx queues, | ||
421 | * free buffer lists, or response queues. Each SGE ring requires | ||
422 | * space for its HW descriptors plus, optionally, space for the SW state | ||
423 | * associated with each HW entry (the metadata). The function returns | ||
424 | * three values: the virtual address for the HW ring (the return value | ||
425 | * of the function), the physical address of the HW ring, and the address | ||
426 | * of the SW ring. | ||
427 | */ | ||
428 | static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size, | ||
429 | size_t sw_size, dma_addr_t *phys, void *metadata) | ||
430 | { | ||
431 | size_t len = nelem * elem_size; | ||
432 | void *s = NULL; | ||
433 | void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL); | ||
434 | |||
435 | if (!p) | ||
436 | return NULL; | ||
437 | if (sw_size) { | ||
438 | s = kcalloc(nelem, sw_size, GFP_KERNEL); | ||
439 | |||
440 | if (!s) { | ||
441 | dma_free_coherent(&pdev->dev, len, p, *phys); | ||
442 | return NULL; | ||
443 | } | ||
444 | } | ||
445 | if (metadata) | ||
446 | *(void **)metadata = s; | ||
447 | memset(p, 0, len); | ||
448 | return p; | ||
449 | } | ||
450 | |||
451 | /** | ||
452 | * free_qset - free the resources of an SGE queue set | ||
453 | * @adapter: the adapter owning the queue set | ||
454 | * @q: the queue set | ||
455 | * | ||
456 | * Release the HW and SW resources associated with an SGE queue set, such | ||
457 | * as HW contexts, packet buffers, and descriptor rings. Traffic to the | ||
458 | * queue set must be quiesced prior to calling this. | ||
459 | */ | ||
460 | void t3_free_qset(struct adapter *adapter, struct sge_qset *q) | ||
461 | { | ||
462 | int i; | ||
463 | struct pci_dev *pdev = adapter->pdev; | ||
464 | |||
465 | if (q->tx_reclaim_timer.function) | ||
466 | del_timer_sync(&q->tx_reclaim_timer); | ||
467 | |||
468 | for (i = 0; i < SGE_RXQ_PER_SET; ++i) | ||
469 | if (q->fl[i].desc) { | ||
470 | spin_lock(&adapter->sge.reg_lock); | ||
471 | t3_sge_disable_fl(adapter, q->fl[i].cntxt_id); | ||
472 | spin_unlock(&adapter->sge.reg_lock); | ||
473 | free_rx_bufs(pdev, &q->fl[i]); | ||
474 | kfree(q->fl[i].sdesc); | ||
475 | dma_free_coherent(&pdev->dev, | ||
476 | q->fl[i].size * | ||
477 | sizeof(struct rx_desc), q->fl[i].desc, | ||
478 | q->fl[i].phys_addr); | ||
479 | } | ||
480 | |||
481 | for (i = 0; i < SGE_TXQ_PER_SET; ++i) | ||
482 | if (q->txq[i].desc) { | ||
483 | spin_lock(&adapter->sge.reg_lock); | ||
484 | t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0); | ||
485 | spin_unlock(&adapter->sge.reg_lock); | ||
486 | if (q->txq[i].sdesc) { | ||
487 | free_tx_desc(adapter, &q->txq[i], | ||
488 | q->txq[i].in_use); | ||
489 | kfree(q->txq[i].sdesc); | ||
490 | } | ||
491 | dma_free_coherent(&pdev->dev, | ||
492 | q->txq[i].size * | ||
493 | sizeof(struct tx_desc), | ||
494 | q->txq[i].desc, q->txq[i].phys_addr); | ||
495 | __skb_queue_purge(&q->txq[i].sendq); | ||
496 | } | ||
497 | |||
498 | if (q->rspq.desc) { | ||
499 | spin_lock(&adapter->sge.reg_lock); | ||
500 | t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id); | ||
501 | spin_unlock(&adapter->sge.reg_lock); | ||
502 | dma_free_coherent(&pdev->dev, | ||
503 | q->rspq.size * sizeof(struct rsp_desc), | ||
504 | q->rspq.desc, q->rspq.phys_addr); | ||
505 | } | ||
506 | |||
507 | if (q->netdev) | ||
508 | q->netdev->atalk_ptr = NULL; | ||
509 | |||
510 | memset(q, 0, sizeof(*q)); | ||
511 | } | ||
512 | |||
513 | /** | ||
514 | * init_qset_cntxt - initialize an SGE queue set context info | ||
515 | * @qs: the queue set | ||
516 | * @id: the queue set id | ||
517 | * | ||
518 | * Initializes the TIDs and context ids for the queues of a queue set. | ||
519 | */ | ||
520 | static void init_qset_cntxt(struct sge_qset *qs, unsigned int id) | ||
521 | { | ||
522 | qs->rspq.cntxt_id = id; | ||
523 | qs->fl[0].cntxt_id = 2 * id; | ||
524 | qs->fl[1].cntxt_id = 2 * id + 1; | ||
525 | qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id; | ||
526 | qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id; | ||
527 | qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id; | ||
528 | qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id; | ||
529 | qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id; | ||
530 | } | ||
531 | |||
532 | /** | ||
533 | * sgl_len - calculates the size of an SGL of the given capacity | ||
534 | * @n: the number of SGL entries | ||
535 | * | ||
536 | * Calculates the number of flits needed for a scatter/gather list that | ||
537 | * can hold the given number of entries. | ||
538 | */ | ||
539 | static inline unsigned int sgl_len(unsigned int n) | ||
540 | { | ||
541 | /* alternatively: 3 * (n / 2) + 2 * (n & 1) */ | ||
542 | return (3 * n) / 2 + (n & 1); | ||
543 | } | ||
544 | |||
545 | /** | ||
546 | * flits_to_desc - returns the num of Tx descriptors for the given flits | ||
547 | * @n: the number of flits | ||
548 | * | ||
549 | * Calculates the number of Tx descriptors needed for the supplied number | ||
550 | * of flits. | ||
551 | */ | ||
552 | static inline unsigned int flits_to_desc(unsigned int n) | ||
553 | { | ||
554 | BUG_ON(n >= ARRAY_SIZE(flit_desc_map)); | ||
555 | return flit_desc_map[n]; | ||
556 | } | ||
557 | |||
558 | /** | ||
559 | * get_packet - return the next ingress packet buffer from a free list | ||
560 | * @adap: the adapter that received the packet | ||
561 | * @fl: the SGE free list holding the packet | ||
562 | * @len: the packet length including any SGE padding | ||
563 | * @drop_thres: # of remaining buffers before we start dropping packets | ||
564 | * | ||
565 | * Get the next packet from a free list and complete setup of the | ||
566 | * sk_buff. If the packet is small we make a copy and recycle the | ||
567 | * original buffer, otherwise we use the original buffer itself. If a | ||
568 | * positive drop threshold is supplied packets are dropped and their | ||
569 | * buffers recycled if (a) the number of remaining buffers is under the | ||
570 | * threshold and the packet is too big to copy, or (b) the packet should | ||
571 | * be copied but there is no memory for the copy. | ||
572 | */ | ||
573 | static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl, | ||
574 | unsigned int len, unsigned int drop_thres) | ||
575 | { | ||
576 | struct sk_buff *skb = NULL; | ||
577 | struct rx_sw_desc *sd = &fl->sdesc[fl->cidx]; | ||
578 | |||
579 | prefetch(sd->skb->data); | ||
580 | |||
581 | if (len <= SGE_RX_COPY_THRES) { | ||
582 | skb = alloc_skb(len, GFP_ATOMIC); | ||
583 | if (likely(skb != NULL)) { | ||
584 | __skb_put(skb, len); | ||
585 | pci_dma_sync_single_for_cpu(adap->pdev, | ||
586 | pci_unmap_addr(sd, | ||
587 | dma_addr), | ||
588 | len, PCI_DMA_FROMDEVICE); | ||
589 | memcpy(skb->data, sd->skb->data, len); | ||
590 | pci_dma_sync_single_for_device(adap->pdev, | ||
591 | pci_unmap_addr(sd, | ||
592 | dma_addr), | ||
593 | len, PCI_DMA_FROMDEVICE); | ||
594 | } else if (!drop_thres) | ||
595 | goto use_orig_buf; | ||
596 | recycle: | ||
597 | recycle_rx_buf(adap, fl, fl->cidx); | ||
598 | return skb; | ||
599 | } | ||
600 | |||
601 | if (unlikely(fl->credits < drop_thres)) | ||
602 | goto recycle; | ||
603 | |||
604 | use_orig_buf: | ||
605 | pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr), | ||
606 | fl->buf_size, PCI_DMA_FROMDEVICE); | ||
607 | skb = sd->skb; | ||
608 | skb_put(skb, len); | ||
609 | __refill_fl(adap, fl); | ||
610 | return skb; | ||
611 | } | ||
612 | |||
613 | /** | ||
614 | * get_imm_packet - return the next ingress packet buffer from a response | ||
615 | * @resp: the response descriptor containing the packet data | ||
616 | * | ||
617 | * Return a packet containing the immediate data of the given response. | ||
618 | */ | ||
619 | static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp) | ||
620 | { | ||
621 | struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC); | ||
622 | |||
623 | if (skb) { | ||
624 | __skb_put(skb, IMMED_PKT_SIZE); | ||
625 | memcpy(skb->data, resp->imm_data, IMMED_PKT_SIZE); | ||
626 | } | ||
627 | return skb; | ||
628 | } | ||
629 | |||
630 | /** | ||
631 | * calc_tx_descs - calculate the number of Tx descriptors for a packet | ||
632 | * @skb: the packet | ||
633 | * | ||
634 | * Returns the number of Tx descriptors needed for the given Ethernet | ||
635 | * packet. Ethernet packets require addition of WR and CPL headers. | ||
636 | */ | ||
637 | static inline unsigned int calc_tx_descs(const struct sk_buff *skb) | ||
638 | { | ||
639 | unsigned int flits; | ||
640 | |||
641 | if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt)) | ||
642 | return 1; | ||
643 | |||
644 | flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2; | ||
645 | if (skb_shinfo(skb)->gso_size) | ||
646 | flits++; | ||
647 | return flits_to_desc(flits); | ||
648 | } | ||
649 | |||
650 | /** | ||
651 | * make_sgl - populate a scatter/gather list for a packet | ||
652 | * @skb: the packet | ||
653 | * @sgp: the SGL to populate | ||
654 | * @start: start address of skb main body data to include in the SGL | ||
655 | * @len: length of skb main body data to include in the SGL | ||
656 | * @pdev: the PCI device | ||
657 | * | ||
658 | * Generates a scatter/gather list for the buffers that make up a packet | ||
659 | * and returns the SGL size in 8-byte words. The caller must size the SGL | ||
660 | * appropriately. | ||
661 | */ | ||
662 | static inline unsigned int make_sgl(const struct sk_buff *skb, | ||
663 | struct sg_ent *sgp, unsigned char *start, | ||
664 | unsigned int len, struct pci_dev *pdev) | ||
665 | { | ||
666 | dma_addr_t mapping; | ||
667 | unsigned int i, j = 0, nfrags; | ||
668 | |||
669 | if (len) { | ||
670 | mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE); | ||
671 | sgp->len[0] = cpu_to_be32(len); | ||
672 | sgp->addr[0] = cpu_to_be64(mapping); | ||
673 | j = 1; | ||
674 | } | ||
675 | |||
676 | nfrags = skb_shinfo(skb)->nr_frags; | ||
677 | for (i = 0; i < nfrags; i++) { | ||
678 | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | ||
679 | |||
680 | mapping = pci_map_page(pdev, frag->page, frag->page_offset, | ||
681 | frag->size, PCI_DMA_TODEVICE); | ||
682 | sgp->len[j] = cpu_to_be32(frag->size); | ||
683 | sgp->addr[j] = cpu_to_be64(mapping); | ||
684 | j ^= 1; | ||
685 | if (j == 0) | ||
686 | ++sgp; | ||
687 | } | ||
688 | if (j) | ||
689 | sgp->len[j] = 0; | ||
690 | return ((nfrags + (len != 0)) * 3) / 2 + j; | ||
691 | } | ||
692 | |||
693 | /** | ||
694 | * check_ring_tx_db - check and potentially ring a Tx queue's doorbell | ||
695 | * @adap: the adapter | ||
696 | * @q: the Tx queue | ||
697 | * | ||
698 | * Ring the doorbel if a Tx queue is asleep. There is a natural race, | ||
699 | * where the HW is going to sleep just after we checked, however, | ||
700 | * then the interrupt handler will detect the outstanding TX packet | ||
701 | * and ring the doorbell for us. | ||
702 | * | ||
703 | * When GTS is disabled we unconditionally ring the doorbell. | ||
704 | */ | ||
705 | static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q) | ||
706 | { | ||
707 | #if USE_GTS | ||
708 | clear_bit(TXQ_LAST_PKT_DB, &q->flags); | ||
709 | if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) { | ||
710 | set_bit(TXQ_LAST_PKT_DB, &q->flags); | ||
711 | t3_write_reg(adap, A_SG_KDOORBELL, | ||
712 | F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); | ||
713 | } | ||
714 | #else | ||
715 | wmb(); /* write descriptors before telling HW */ | ||
716 | t3_write_reg(adap, A_SG_KDOORBELL, | ||
717 | F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); | ||
718 | #endif | ||
719 | } | ||
720 | |||
721 | static inline void wr_gen2(struct tx_desc *d, unsigned int gen) | ||
722 | { | ||
723 | #if SGE_NUM_GENBITS == 2 | ||
724 | d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen); | ||
725 | #endif | ||
726 | } | ||
727 | |||
728 | /** | ||
729 | * write_wr_hdr_sgl - write a WR header and, optionally, SGL | ||
730 | * @ndesc: number of Tx descriptors spanned by the SGL | ||
731 | * @skb: the packet corresponding to the WR | ||
732 | * @d: first Tx descriptor to be written | ||
733 | * @pidx: index of above descriptors | ||
734 | * @q: the SGE Tx queue | ||
735 | * @sgl: the SGL | ||
736 | * @flits: number of flits to the start of the SGL in the first descriptor | ||
737 | * @sgl_flits: the SGL size in flits | ||
738 | * @gen: the Tx descriptor generation | ||
739 | * @wr_hi: top 32 bits of WR header based on WR type (big endian) | ||
740 | * @wr_lo: low 32 bits of WR header based on WR type (big endian) | ||
741 | * | ||
742 | * Write a work request header and an associated SGL. If the SGL is | ||
743 | * small enough to fit into one Tx descriptor it has already been written | ||
744 | * and we just need to write the WR header. Otherwise we distribute the | ||
745 | * SGL across the number of descriptors it spans. | ||
746 | */ | ||
747 | static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb, | ||
748 | struct tx_desc *d, unsigned int pidx, | ||
749 | const struct sge_txq *q, | ||
750 | const struct sg_ent *sgl, | ||
751 | unsigned int flits, unsigned int sgl_flits, | ||
752 | unsigned int gen, unsigned int wr_hi, | ||
753 | unsigned int wr_lo) | ||
754 | { | ||
755 | struct work_request_hdr *wrp = (struct work_request_hdr *)d; | ||
756 | struct tx_sw_desc *sd = &q->sdesc[pidx]; | ||
757 | |||
758 | sd->skb = skb; | ||
759 | if (need_skb_unmap()) { | ||
760 | struct unmap_info *ui = (struct unmap_info *)skb->cb; | ||
761 | |||
762 | ui->fragidx = 0; | ||
763 | ui->addr_idx = 0; | ||
764 | ui->sflit = flits; | ||
765 | } | ||
766 | |||
767 | if (likely(ndesc == 1)) { | ||
768 | skb->priority = pidx; | ||
769 | wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) | | ||
770 | V_WR_SGLSFLT(flits)) | wr_hi; | ||
771 | wmb(); | ||
772 | wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) | | ||
773 | V_WR_GEN(gen)) | wr_lo; | ||
774 | wr_gen2(d, gen); | ||
775 | } else { | ||
776 | unsigned int ogen = gen; | ||
777 | const u64 *fp = (const u64 *)sgl; | ||
778 | struct work_request_hdr *wp = wrp; | ||
779 | |||
780 | wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) | | ||
781 | V_WR_SGLSFLT(flits)) | wr_hi; | ||
782 | |||
783 | while (sgl_flits) { | ||
784 | unsigned int avail = WR_FLITS - flits; | ||
785 | |||
786 | if (avail > sgl_flits) | ||
787 | avail = sgl_flits; | ||
788 | memcpy(&d->flit[flits], fp, avail * sizeof(*fp)); | ||
789 | sgl_flits -= avail; | ||
790 | ndesc--; | ||
791 | if (!sgl_flits) | ||
792 | break; | ||
793 | |||
794 | fp += avail; | ||
795 | d++; | ||
796 | sd++; | ||
797 | if (++pidx == q->size) { | ||
798 | pidx = 0; | ||
799 | gen ^= 1; | ||
800 | d = q->desc; | ||
801 | sd = q->sdesc; | ||
802 | } | ||
803 | |||
804 | sd->skb = skb; | ||
805 | wrp = (struct work_request_hdr *)d; | ||
806 | wrp->wr_hi = htonl(V_WR_DATATYPE(1) | | ||
807 | V_WR_SGLSFLT(1)) | wr_hi; | ||
808 | wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS, | ||
809 | sgl_flits + 1)) | | ||
810 | V_WR_GEN(gen)) | wr_lo; | ||
811 | wr_gen2(d, gen); | ||
812 | flits = 1; | ||
813 | } | ||
814 | skb->priority = pidx; | ||
815 | wrp->wr_hi |= htonl(F_WR_EOP); | ||
816 | wmb(); | ||
817 | wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo; | ||
818 | wr_gen2((struct tx_desc *)wp, ogen); | ||
819 | WARN_ON(ndesc != 0); | ||
820 | } | ||
821 | } | ||
822 | |||
823 | /** | ||
824 | * write_tx_pkt_wr - write a TX_PKT work request | ||
825 | * @adap: the adapter | ||
826 | * @skb: the packet to send | ||
827 | * @pi: the egress interface | ||
828 | * @pidx: index of the first Tx descriptor to write | ||
829 | * @gen: the generation value to use | ||
830 | * @q: the Tx queue | ||
831 | * @ndesc: number of descriptors the packet will occupy | ||
832 | * @compl: the value of the COMPL bit to use | ||
833 | * | ||
834 | * Generate a TX_PKT work request to send the supplied packet. | ||
835 | */ | ||
836 | static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb, | ||
837 | const struct port_info *pi, | ||
838 | unsigned int pidx, unsigned int gen, | ||
839 | struct sge_txq *q, unsigned int ndesc, | ||
840 | unsigned int compl) | ||
841 | { | ||
842 | unsigned int flits, sgl_flits, cntrl, tso_info; | ||
843 | struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1]; | ||
844 | struct tx_desc *d = &q->desc[pidx]; | ||
845 | struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d; | ||
846 | |||
847 | cpl->len = htonl(skb->len | 0x80000000); | ||
848 | cntrl = V_TXPKT_INTF(pi->port_id); | ||
849 | |||
850 | if (vlan_tx_tag_present(skb) && pi->vlan_grp) | ||
851 | cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_tx_tag_get(skb)); | ||
852 | |||
853 | tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size); | ||
854 | if (tso_info) { | ||
855 | int eth_type; | ||
856 | struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl; | ||
857 | |||
858 | d->flit[2] = 0; | ||
859 | cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO); | ||
860 | hdr->cntrl = htonl(cntrl); | ||
861 | eth_type = skb->nh.raw - skb->data == ETH_HLEN ? | ||
862 | CPL_ETH_II : CPL_ETH_II_VLAN; | ||
863 | tso_info |= V_LSO_ETH_TYPE(eth_type) | | ||
864 | V_LSO_IPHDR_WORDS(skb->nh.iph->ihl) | | ||
865 | V_LSO_TCPHDR_WORDS(skb->h.th->doff); | ||
866 | hdr->lso_info = htonl(tso_info); | ||
867 | flits = 3; | ||
868 | } else { | ||
869 | cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT); | ||
870 | cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */ | ||
871 | cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL); | ||
872 | cpl->cntrl = htonl(cntrl); | ||
873 | |||
874 | if (skb->len <= WR_LEN - sizeof(*cpl)) { | ||
875 | q->sdesc[pidx].skb = NULL; | ||
876 | if (!skb->data_len) | ||
877 | memcpy(&d->flit[2], skb->data, skb->len); | ||
878 | else | ||
879 | skb_copy_bits(skb, 0, &d->flit[2], skb->len); | ||
880 | |||
881 | flits = (skb->len + 7) / 8 + 2; | ||
882 | cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) | | ||
883 | V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | ||
884 | | F_WR_SOP | F_WR_EOP | compl); | ||
885 | wmb(); | ||
886 | cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) | | ||
887 | V_WR_TID(q->token)); | ||
888 | wr_gen2(d, gen); | ||
889 | kfree_skb(skb); | ||
890 | return; | ||
891 | } | ||
892 | |||
893 | flits = 2; | ||
894 | } | ||
895 | |||
896 | sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl; | ||
897 | sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev); | ||
898 | if (need_skb_unmap()) | ||
899 | ((struct unmap_info *)skb->cb)->len = skb_headlen(skb); | ||
900 | |||
901 | write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen, | ||
902 | htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl), | ||
903 | htonl(V_WR_TID(q->token))); | ||
904 | } | ||
905 | |||
906 | /** | ||
907 | * eth_xmit - add a packet to the Ethernet Tx queue | ||
908 | * @skb: the packet | ||
909 | * @dev: the egress net device | ||
910 | * | ||
911 | * Add a packet to an SGE Tx queue. Runs with softirqs disabled. | ||
912 | */ | ||
913 | int t3_eth_xmit(struct sk_buff *skb, struct net_device *dev) | ||
914 | { | ||
915 | unsigned int ndesc, pidx, credits, gen, compl; | ||
916 | const struct port_info *pi = netdev_priv(dev); | ||
917 | struct adapter *adap = dev->priv; | ||
918 | struct sge_qset *qs = dev2qset(dev); | ||
919 | struct sge_txq *q = &qs->txq[TXQ_ETH]; | ||
920 | |||
921 | /* | ||
922 | * The chip min packet length is 9 octets but play safe and reject | ||
923 | * anything shorter than an Ethernet header. | ||
924 | */ | ||
925 | if (unlikely(skb->len < ETH_HLEN)) { | ||
926 | dev_kfree_skb(skb); | ||
927 | return NETDEV_TX_OK; | ||
928 | } | ||
929 | |||
930 | spin_lock(&q->lock); | ||
931 | reclaim_completed_tx(adap, q); | ||
932 | |||
933 | credits = q->size - q->in_use; | ||
934 | ndesc = calc_tx_descs(skb); | ||
935 | |||
936 | if (unlikely(credits < ndesc)) { | ||
937 | if (!netif_queue_stopped(dev)) { | ||
938 | netif_stop_queue(dev); | ||
939 | set_bit(TXQ_ETH, &qs->txq_stopped); | ||
940 | q->stops++; | ||
941 | dev_err(&adap->pdev->dev, | ||
942 | "%s: Tx ring %u full while queue awake!\n", | ||
943 | dev->name, q->cntxt_id & 7); | ||
944 | } | ||
945 | spin_unlock(&q->lock); | ||
946 | return NETDEV_TX_BUSY; | ||
947 | } | ||
948 | |||
949 | q->in_use += ndesc; | ||
950 | if (unlikely(credits - ndesc < q->stop_thres)) { | ||
951 | q->stops++; | ||
952 | netif_stop_queue(dev); | ||
953 | set_bit(TXQ_ETH, &qs->txq_stopped); | ||
954 | #if !USE_GTS | ||
955 | if (should_restart_tx(q) && | ||
956 | test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) { | ||
957 | q->restarts++; | ||
958 | netif_wake_queue(dev); | ||
959 | } | ||
960 | #endif | ||
961 | } | ||
962 | |||
963 | gen = q->gen; | ||
964 | q->unacked += ndesc; | ||
965 | compl = (q->unacked & 8) << (S_WR_COMPL - 3); | ||
966 | q->unacked &= 7; | ||
967 | pidx = q->pidx; | ||
968 | q->pidx += ndesc; | ||
969 | if (q->pidx >= q->size) { | ||
970 | q->pidx -= q->size; | ||
971 | q->gen ^= 1; | ||
972 | } | ||
973 | |||
974 | /* update port statistics */ | ||
975 | if (skb->ip_summed == CHECKSUM_COMPLETE) | ||
976 | qs->port_stats[SGE_PSTAT_TX_CSUM]++; | ||
977 | if (skb_shinfo(skb)->gso_size) | ||
978 | qs->port_stats[SGE_PSTAT_TSO]++; | ||
979 | if (vlan_tx_tag_present(skb) && pi->vlan_grp) | ||
980 | qs->port_stats[SGE_PSTAT_VLANINS]++; | ||
981 | |||
982 | dev->trans_start = jiffies; | ||
983 | spin_unlock(&q->lock); | ||
984 | |||
985 | /* | ||
986 | * We do not use Tx completion interrupts to free DMAd Tx packets. | ||
987 | * This is good for performamce but means that we rely on new Tx | ||
988 | * packets arriving to run the destructors of completed packets, | ||
989 | * which open up space in their sockets' send queues. Sometimes | ||
990 | * we do not get such new packets causing Tx to stall. A single | ||
991 | * UDP transmitter is a good example of this situation. We have | ||
992 | * a clean up timer that periodically reclaims completed packets | ||
993 | * but it doesn't run often enough (nor do we want it to) to prevent | ||
994 | * lengthy stalls. A solution to this problem is to run the | ||
995 | * destructor early, after the packet is queued but before it's DMAd. | ||
996 | * A cons is that we lie to socket memory accounting, but the amount | ||
997 | * of extra memory is reasonable (limited by the number of Tx | ||
998 | * descriptors), the packets do actually get freed quickly by new | ||
999 | * packets almost always, and for protocols like TCP that wait for | ||
1000 | * acks to really free up the data the extra memory is even less. | ||
1001 | * On the positive side we run the destructors on the sending CPU | ||
1002 | * rather than on a potentially different completing CPU, usually a | ||
1003 | * good thing. We also run them without holding our Tx queue lock, | ||
1004 | * unlike what reclaim_completed_tx() would otherwise do. | ||
1005 | * | ||
1006 | * Run the destructor before telling the DMA engine about the packet | ||
1007 | * to make sure it doesn't complete and get freed prematurely. | ||
1008 | */ | ||
1009 | if (likely(!skb_shared(skb))) | ||
1010 | skb_orphan(skb); | ||
1011 | |||
1012 | write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl); | ||
1013 | check_ring_tx_db(adap, q); | ||
1014 | return NETDEV_TX_OK; | ||
1015 | } | ||
1016 | |||
1017 | /** | ||
1018 | * write_imm - write a packet into a Tx descriptor as immediate data | ||
1019 | * @d: the Tx descriptor to write | ||
1020 | * @skb: the packet | ||
1021 | * @len: the length of packet data to write as immediate data | ||
1022 | * @gen: the generation bit value to write | ||
1023 | * | ||
1024 | * Writes a packet as immediate data into a Tx descriptor. The packet | ||
1025 | * contains a work request at its beginning. We must write the packet | ||
1026 | * carefully so the SGE doesn't read accidentally before it's written in | ||
1027 | * its entirety. | ||
1028 | */ | ||
1029 | static inline void write_imm(struct tx_desc *d, struct sk_buff *skb, | ||
1030 | unsigned int len, unsigned int gen) | ||
1031 | { | ||
1032 | struct work_request_hdr *from = (struct work_request_hdr *)skb->data; | ||
1033 | struct work_request_hdr *to = (struct work_request_hdr *)d; | ||
1034 | |||
1035 | memcpy(&to[1], &from[1], len - sizeof(*from)); | ||
1036 | to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP | | ||
1037 | V_WR_BCNTLFLT(len & 7)); | ||
1038 | wmb(); | ||
1039 | to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) | | ||
1040 | V_WR_LEN((len + 7) / 8)); | ||
1041 | wr_gen2(d, gen); | ||
1042 | kfree_skb(skb); | ||
1043 | } | ||
1044 | |||
1045 | /** | ||
1046 | * check_desc_avail - check descriptor availability on a send queue | ||
1047 | * @adap: the adapter | ||
1048 | * @q: the send queue | ||
1049 | * @skb: the packet needing the descriptors | ||
1050 | * @ndesc: the number of Tx descriptors needed | ||
1051 | * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL) | ||
1052 | * | ||
1053 | * Checks if the requested number of Tx descriptors is available on an | ||
1054 | * SGE send queue. If the queue is already suspended or not enough | ||
1055 | * descriptors are available the packet is queued for later transmission. | ||
1056 | * Must be called with the Tx queue locked. | ||
1057 | * | ||
1058 | * Returns 0 if enough descriptors are available, 1 if there aren't | ||
1059 | * enough descriptors and the packet has been queued, and 2 if the caller | ||
1060 | * needs to retry because there weren't enough descriptors at the | ||
1061 | * beginning of the call but some freed up in the mean time. | ||
1062 | */ | ||
1063 | static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q, | ||
1064 | struct sk_buff *skb, unsigned int ndesc, | ||
1065 | unsigned int qid) | ||
1066 | { | ||
1067 | if (unlikely(!skb_queue_empty(&q->sendq))) { | ||
1068 | addq_exit:__skb_queue_tail(&q->sendq, skb); | ||
1069 | return 1; | ||
1070 | } | ||
1071 | if (unlikely(q->size - q->in_use < ndesc)) { | ||
1072 | struct sge_qset *qs = txq_to_qset(q, qid); | ||
1073 | |||
1074 | set_bit(qid, &qs->txq_stopped); | ||
1075 | smp_mb__after_clear_bit(); | ||
1076 | |||
1077 | if (should_restart_tx(q) && | ||
1078 | test_and_clear_bit(qid, &qs->txq_stopped)) | ||
1079 | return 2; | ||
1080 | |||
1081 | q->stops++; | ||
1082 | goto addq_exit; | ||
1083 | } | ||
1084 | return 0; | ||
1085 | } | ||
1086 | |||
1087 | /** | ||
1088 | * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs | ||
1089 | * @q: the SGE control Tx queue | ||
1090 | * | ||
1091 | * This is a variant of reclaim_completed_tx() that is used for Tx queues | ||
1092 | * that send only immediate data (presently just the control queues) and | ||
1093 | * thus do not have any sk_buffs to release. | ||
1094 | */ | ||
1095 | static inline void reclaim_completed_tx_imm(struct sge_txq *q) | ||
1096 | { | ||
1097 | unsigned int reclaim = q->processed - q->cleaned; | ||
1098 | |||
1099 | q->in_use -= reclaim; | ||
1100 | q->cleaned += reclaim; | ||
1101 | } | ||
1102 | |||
1103 | static inline int immediate(const struct sk_buff *skb) | ||
1104 | { | ||
1105 | return skb->len <= WR_LEN && !skb->data_len; | ||
1106 | } | ||
1107 | |||
1108 | /** | ||
1109 | * ctrl_xmit - send a packet through an SGE control Tx queue | ||
1110 | * @adap: the adapter | ||
1111 | * @q: the control queue | ||
1112 | * @skb: the packet | ||
1113 | * | ||
1114 | * Send a packet through an SGE control Tx queue. Packets sent through | ||
1115 | * a control queue must fit entirely as immediate data in a single Tx | ||
1116 | * descriptor and have no page fragments. | ||
1117 | */ | ||
1118 | static int ctrl_xmit(struct adapter *adap, struct sge_txq *q, | ||
1119 | struct sk_buff *skb) | ||
1120 | { | ||
1121 | int ret; | ||
1122 | struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data; | ||
1123 | |||
1124 | if (unlikely(!immediate(skb))) { | ||
1125 | WARN_ON(1); | ||
1126 | dev_kfree_skb(skb); | ||
1127 | return NET_XMIT_SUCCESS; | ||
1128 | } | ||
1129 | |||
1130 | wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP); | ||
1131 | wrp->wr_lo = htonl(V_WR_TID(q->token)); | ||
1132 | |||
1133 | spin_lock(&q->lock); | ||
1134 | again:reclaim_completed_tx_imm(q); | ||
1135 | |||
1136 | ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL); | ||
1137 | if (unlikely(ret)) { | ||
1138 | if (ret == 1) { | ||
1139 | spin_unlock(&q->lock); | ||
1140 | return NET_XMIT_CN; | ||
1141 | } | ||
1142 | goto again; | ||
1143 | } | ||
1144 | |||
1145 | write_imm(&q->desc[q->pidx], skb, skb->len, q->gen); | ||
1146 | |||
1147 | q->in_use++; | ||
1148 | if (++q->pidx >= q->size) { | ||
1149 | q->pidx = 0; | ||
1150 | q->gen ^= 1; | ||
1151 | } | ||
1152 | spin_unlock(&q->lock); | ||
1153 | wmb(); | ||
1154 | t3_write_reg(adap, A_SG_KDOORBELL, | ||
1155 | F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); | ||
1156 | return NET_XMIT_SUCCESS; | ||
1157 | } | ||
1158 | |||
1159 | /** | ||
1160 | * restart_ctrlq - restart a suspended control queue | ||
1161 | * @qs: the queue set cotaining the control queue | ||
1162 | * | ||
1163 | * Resumes transmission on a suspended Tx control queue. | ||
1164 | */ | ||
1165 | static void restart_ctrlq(unsigned long data) | ||
1166 | { | ||
1167 | struct sk_buff *skb; | ||
1168 | struct sge_qset *qs = (struct sge_qset *)data; | ||
1169 | struct sge_txq *q = &qs->txq[TXQ_CTRL]; | ||
1170 | struct adapter *adap = qs->netdev->priv; | ||
1171 | |||
1172 | spin_lock(&q->lock); | ||
1173 | again:reclaim_completed_tx_imm(q); | ||
1174 | |||
1175 | while (q->in_use < q->size && (skb = __skb_dequeue(&q->sendq)) != NULL) { | ||
1176 | |||
1177 | write_imm(&q->desc[q->pidx], skb, skb->len, q->gen); | ||
1178 | |||
1179 | if (++q->pidx >= q->size) { | ||
1180 | q->pidx = 0; | ||
1181 | q->gen ^= 1; | ||
1182 | } | ||
1183 | q->in_use++; | ||
1184 | } | ||
1185 | |||
1186 | if (!skb_queue_empty(&q->sendq)) { | ||
1187 | set_bit(TXQ_CTRL, &qs->txq_stopped); | ||
1188 | smp_mb__after_clear_bit(); | ||
1189 | |||
1190 | if (should_restart_tx(q) && | ||
1191 | test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) | ||
1192 | goto again; | ||
1193 | q->stops++; | ||
1194 | } | ||
1195 | |||
1196 | spin_unlock(&q->lock); | ||
1197 | t3_write_reg(adap, A_SG_KDOORBELL, | ||
1198 | F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); | ||
1199 | } | ||
1200 | |||
1201 | /** | ||
1202 | * write_ofld_wr - write an offload work request | ||
1203 | * @adap: the adapter | ||
1204 | * @skb: the packet to send | ||
1205 | * @q: the Tx queue | ||
1206 | * @pidx: index of the first Tx descriptor to write | ||
1207 | * @gen: the generation value to use | ||
1208 | * @ndesc: number of descriptors the packet will occupy | ||
1209 | * | ||
1210 | * Write an offload work request to send the supplied packet. The packet | ||
1211 | * data already carry the work request with most fields populated. | ||
1212 | */ | ||
1213 | static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb, | ||
1214 | struct sge_txq *q, unsigned int pidx, | ||
1215 | unsigned int gen, unsigned int ndesc) | ||
1216 | { | ||
1217 | unsigned int sgl_flits, flits; | ||
1218 | struct work_request_hdr *from; | ||
1219 | struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1]; | ||
1220 | struct tx_desc *d = &q->desc[pidx]; | ||
1221 | |||
1222 | if (immediate(skb)) { | ||
1223 | q->sdesc[pidx].skb = NULL; | ||
1224 | write_imm(d, skb, skb->len, gen); | ||
1225 | return; | ||
1226 | } | ||
1227 | |||
1228 | /* Only TX_DATA builds SGLs */ | ||
1229 | |||
1230 | from = (struct work_request_hdr *)skb->data; | ||
1231 | memcpy(&d->flit[1], &from[1], skb->h.raw - skb->data - sizeof(*from)); | ||
1232 | |||
1233 | flits = (skb->h.raw - skb->data) / 8; | ||
1234 | sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl; | ||
1235 | sgl_flits = make_sgl(skb, sgp, skb->h.raw, skb->tail - skb->h.raw, | ||
1236 | adap->pdev); | ||
1237 | if (need_skb_unmap()) | ||
1238 | ((struct unmap_info *)skb->cb)->len = skb->tail - skb->h.raw; | ||
1239 | |||
1240 | write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, | ||
1241 | gen, from->wr_hi, from->wr_lo); | ||
1242 | } | ||
1243 | |||
1244 | /** | ||
1245 | * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet | ||
1246 | * @skb: the packet | ||
1247 | * | ||
1248 | * Returns the number of Tx descriptors needed for the given offload | ||
1249 | * packet. These packets are already fully constructed. | ||
1250 | */ | ||
1251 | static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb) | ||
1252 | { | ||
1253 | unsigned int flits, cnt = skb_shinfo(skb)->nr_frags; | ||
1254 | |||
1255 | if (skb->len <= WR_LEN && cnt == 0) | ||
1256 | return 1; /* packet fits as immediate data */ | ||
1257 | |||
1258 | flits = (skb->h.raw - skb->data) / 8; /* headers */ | ||
1259 | if (skb->tail != skb->h.raw) | ||
1260 | cnt++; | ||
1261 | return flits_to_desc(flits + sgl_len(cnt)); | ||
1262 | } | ||
1263 | |||
1264 | /** | ||
1265 | * ofld_xmit - send a packet through an offload queue | ||
1266 | * @adap: the adapter | ||
1267 | * @q: the Tx offload queue | ||
1268 | * @skb: the packet | ||
1269 | * | ||
1270 | * Send an offload packet through an SGE offload queue. | ||
1271 | */ | ||
1272 | static int ofld_xmit(struct adapter *adap, struct sge_txq *q, | ||
1273 | struct sk_buff *skb) | ||
1274 | { | ||
1275 | int ret; | ||
1276 | unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen; | ||
1277 | |||
1278 | spin_lock(&q->lock); | ||
1279 | again:reclaim_completed_tx(adap, q); | ||
1280 | |||
1281 | ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD); | ||
1282 | if (unlikely(ret)) { | ||
1283 | if (ret == 1) { | ||
1284 | skb->priority = ndesc; /* save for restart */ | ||
1285 | spin_unlock(&q->lock); | ||
1286 | return NET_XMIT_CN; | ||
1287 | } | ||
1288 | goto again; | ||
1289 | } | ||
1290 | |||
1291 | gen = q->gen; | ||
1292 | q->in_use += ndesc; | ||
1293 | pidx = q->pidx; | ||
1294 | q->pidx += ndesc; | ||
1295 | if (q->pidx >= q->size) { | ||
1296 | q->pidx -= q->size; | ||
1297 | q->gen ^= 1; | ||
1298 | } | ||
1299 | spin_unlock(&q->lock); | ||
1300 | |||
1301 | write_ofld_wr(adap, skb, q, pidx, gen, ndesc); | ||
1302 | check_ring_tx_db(adap, q); | ||
1303 | return NET_XMIT_SUCCESS; | ||
1304 | } | ||
1305 | |||
1306 | /** | ||
1307 | * restart_offloadq - restart a suspended offload queue | ||
1308 | * @qs: the queue set cotaining the offload queue | ||
1309 | * | ||
1310 | * Resumes transmission on a suspended Tx offload queue. | ||
1311 | */ | ||
1312 | static void restart_offloadq(unsigned long data) | ||
1313 | { | ||
1314 | struct sk_buff *skb; | ||
1315 | struct sge_qset *qs = (struct sge_qset *)data; | ||
1316 | struct sge_txq *q = &qs->txq[TXQ_OFLD]; | ||
1317 | struct adapter *adap = qs->netdev->priv; | ||
1318 | |||
1319 | spin_lock(&q->lock); | ||
1320 | again:reclaim_completed_tx(adap, q); | ||
1321 | |||
1322 | while ((skb = skb_peek(&q->sendq)) != NULL) { | ||
1323 | unsigned int gen, pidx; | ||
1324 | unsigned int ndesc = skb->priority; | ||
1325 | |||
1326 | if (unlikely(q->size - q->in_use < ndesc)) { | ||
1327 | set_bit(TXQ_OFLD, &qs->txq_stopped); | ||
1328 | smp_mb__after_clear_bit(); | ||
1329 | |||
1330 | if (should_restart_tx(q) && | ||
1331 | test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) | ||
1332 | goto again; | ||
1333 | q->stops++; | ||
1334 | break; | ||
1335 | } | ||
1336 | |||
1337 | gen = q->gen; | ||
1338 | q->in_use += ndesc; | ||
1339 | pidx = q->pidx; | ||
1340 | q->pidx += ndesc; | ||
1341 | if (q->pidx >= q->size) { | ||
1342 | q->pidx -= q->size; | ||
1343 | q->gen ^= 1; | ||
1344 | } | ||
1345 | __skb_unlink(skb, &q->sendq); | ||
1346 | spin_unlock(&q->lock); | ||
1347 | |||
1348 | write_ofld_wr(adap, skb, q, pidx, gen, ndesc); | ||
1349 | spin_lock(&q->lock); | ||
1350 | } | ||
1351 | spin_unlock(&q->lock); | ||
1352 | |||
1353 | #if USE_GTS | ||
1354 | set_bit(TXQ_RUNNING, &q->flags); | ||
1355 | set_bit(TXQ_LAST_PKT_DB, &q->flags); | ||
1356 | #endif | ||
1357 | t3_write_reg(adap, A_SG_KDOORBELL, | ||
1358 | F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); | ||
1359 | } | ||
1360 | |||
1361 | /** | ||
1362 | * queue_set - return the queue set a packet should use | ||
1363 | * @skb: the packet | ||
1364 | * | ||
1365 | * Maps a packet to the SGE queue set it should use. The desired queue | ||
1366 | * set is carried in bits 1-3 in the packet's priority. | ||
1367 | */ | ||
1368 | static inline int queue_set(const struct sk_buff *skb) | ||
1369 | { | ||
1370 | return skb->priority >> 1; | ||
1371 | } | ||
1372 | |||
1373 | /** | ||
1374 | * is_ctrl_pkt - return whether an offload packet is a control packet | ||
1375 | * @skb: the packet | ||
1376 | * | ||
1377 | * Determines whether an offload packet should use an OFLD or a CTRL | ||
1378 | * Tx queue. This is indicated by bit 0 in the packet's priority. | ||
1379 | */ | ||
1380 | static inline int is_ctrl_pkt(const struct sk_buff *skb) | ||
1381 | { | ||
1382 | return skb->priority & 1; | ||
1383 | } | ||
1384 | |||
1385 | /** | ||
1386 | * t3_offload_tx - send an offload packet | ||
1387 | * @tdev: the offload device to send to | ||
1388 | * @skb: the packet | ||
1389 | * | ||
1390 | * Sends an offload packet. We use the packet priority to select the | ||
1391 | * appropriate Tx queue as follows: bit 0 indicates whether the packet | ||
1392 | * should be sent as regular or control, bits 1-3 select the queue set. | ||
1393 | */ | ||
1394 | int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb) | ||
1395 | { | ||
1396 | struct adapter *adap = tdev2adap(tdev); | ||
1397 | struct sge_qset *qs = &adap->sge.qs[queue_set(skb)]; | ||
1398 | |||
1399 | if (unlikely(is_ctrl_pkt(skb))) | ||
1400 | return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb); | ||
1401 | |||
1402 | return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb); | ||
1403 | } | ||
1404 | |||
1405 | /** | ||
1406 | * offload_enqueue - add an offload packet to an SGE offload receive queue | ||
1407 | * @q: the SGE response queue | ||
1408 | * @skb: the packet | ||
1409 | * | ||
1410 | * Add a new offload packet to an SGE response queue's offload packet | ||
1411 | * queue. If the packet is the first on the queue it schedules the RX | ||
1412 | * softirq to process the queue. | ||
1413 | */ | ||
1414 | static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb) | ||
1415 | { | ||
1416 | skb->next = skb->prev = NULL; | ||
1417 | if (q->rx_tail) | ||
1418 | q->rx_tail->next = skb; | ||
1419 | else { | ||
1420 | struct sge_qset *qs = rspq_to_qset(q); | ||
1421 | |||
1422 | if (__netif_rx_schedule_prep(qs->netdev)) | ||
1423 | __netif_rx_schedule(qs->netdev); | ||
1424 | q->rx_head = skb; | ||
1425 | } | ||
1426 | q->rx_tail = skb; | ||
1427 | } | ||
1428 | |||
1429 | /** | ||
1430 | * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts | ||
1431 | * @tdev: the offload device that will be receiving the packets | ||
1432 | * @q: the SGE response queue that assembled the bundle | ||
1433 | * @skbs: the partial bundle | ||
1434 | * @n: the number of packets in the bundle | ||
1435 | * | ||
1436 | * Delivers a (partial) bundle of Rx offload packets to an offload device. | ||
1437 | */ | ||
1438 | static inline void deliver_partial_bundle(struct t3cdev *tdev, | ||
1439 | struct sge_rspq *q, | ||
1440 | struct sk_buff *skbs[], int n) | ||
1441 | { | ||
1442 | if (n) { | ||
1443 | q->offload_bundles++; | ||
1444 | tdev->recv(tdev, skbs, n); | ||
1445 | } | ||
1446 | } | ||
1447 | |||
1448 | /** | ||
1449 | * ofld_poll - NAPI handler for offload packets in interrupt mode | ||
1450 | * @dev: the network device doing the polling | ||
1451 | * @budget: polling budget | ||
1452 | * | ||
1453 | * The NAPI handler for offload packets when a response queue is serviced | ||
1454 | * by the hard interrupt handler, i.e., when it's operating in non-polling | ||
1455 | * mode. Creates small packet batches and sends them through the offload | ||
1456 | * receive handler. Batches need to be of modest size as we do prefetches | ||
1457 | * on the packets in each. | ||
1458 | */ | ||
1459 | static int ofld_poll(struct net_device *dev, int *budget) | ||
1460 | { | ||
1461 | struct adapter *adapter = dev->priv; | ||
1462 | struct sge_qset *qs = dev2qset(dev); | ||
1463 | struct sge_rspq *q = &qs->rspq; | ||
1464 | int work_done, limit = min(*budget, dev->quota), avail = limit; | ||
1465 | |||
1466 | while (avail) { | ||
1467 | struct sk_buff *head, *tail, *skbs[RX_BUNDLE_SIZE]; | ||
1468 | int ngathered; | ||
1469 | |||
1470 | spin_lock_irq(&q->lock); | ||
1471 | head = q->rx_head; | ||
1472 | if (!head) { | ||
1473 | work_done = limit - avail; | ||
1474 | *budget -= work_done; | ||
1475 | dev->quota -= work_done; | ||
1476 | __netif_rx_complete(dev); | ||
1477 | spin_unlock_irq(&q->lock); | ||
1478 | return 0; | ||
1479 | } | ||
1480 | |||
1481 | tail = q->rx_tail; | ||
1482 | q->rx_head = q->rx_tail = NULL; | ||
1483 | spin_unlock_irq(&q->lock); | ||
1484 | |||
1485 | for (ngathered = 0; avail && head; avail--) { | ||
1486 | prefetch(head->data); | ||
1487 | skbs[ngathered] = head; | ||
1488 | head = head->next; | ||
1489 | skbs[ngathered]->next = NULL; | ||
1490 | if (++ngathered == RX_BUNDLE_SIZE) { | ||
1491 | q->offload_bundles++; | ||
1492 | adapter->tdev.recv(&adapter->tdev, skbs, | ||
1493 | ngathered); | ||
1494 | ngathered = 0; | ||
1495 | } | ||
1496 | } | ||
1497 | if (head) { /* splice remaining packets back onto Rx queue */ | ||
1498 | spin_lock_irq(&q->lock); | ||
1499 | tail->next = q->rx_head; | ||
1500 | if (!q->rx_head) | ||
1501 | q->rx_tail = tail; | ||
1502 | q->rx_head = head; | ||
1503 | spin_unlock_irq(&q->lock); | ||
1504 | } | ||
1505 | deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered); | ||
1506 | } | ||
1507 | work_done = limit - avail; | ||
1508 | *budget -= work_done; | ||
1509 | dev->quota -= work_done; | ||
1510 | return 1; | ||
1511 | } | ||
1512 | |||
1513 | /** | ||
1514 | * rx_offload - process a received offload packet | ||
1515 | * @tdev: the offload device receiving the packet | ||
1516 | * @rq: the response queue that received the packet | ||
1517 | * @skb: the packet | ||
1518 | * @rx_gather: a gather list of packets if we are building a bundle | ||
1519 | * @gather_idx: index of the next available slot in the bundle | ||
1520 | * | ||
1521 | * Process an ingress offload pakcet and add it to the offload ingress | ||
1522 | * queue. Returns the index of the next available slot in the bundle. | ||
1523 | */ | ||
1524 | static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq, | ||
1525 | struct sk_buff *skb, struct sk_buff *rx_gather[], | ||
1526 | unsigned int gather_idx) | ||
1527 | { | ||
1528 | rq->offload_pkts++; | ||
1529 | skb->mac.raw = skb->nh.raw = skb->h.raw = skb->data; | ||
1530 | |||
1531 | if (rq->polling) { | ||
1532 | rx_gather[gather_idx++] = skb; | ||
1533 | if (gather_idx == RX_BUNDLE_SIZE) { | ||
1534 | tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE); | ||
1535 | gather_idx = 0; | ||
1536 | rq->offload_bundles++; | ||
1537 | } | ||
1538 | } else | ||
1539 | offload_enqueue(rq, skb); | ||
1540 | |||
1541 | return gather_idx; | ||
1542 | } | ||
1543 | |||
1544 | /** | ||
1545 | * update_tx_completed - update the number of processed Tx descriptors | ||
1546 | * @qs: the queue set to update | ||
1547 | * @idx: which Tx queue within the set to update | ||
1548 | * @credits: number of new processed descriptors | ||
1549 | * @tx_completed: accumulates credits for the queues | ||
1550 | * | ||
1551 | * Updates the number of completed Tx descriptors for a queue set's Tx | ||
1552 | * queue. On UP systems we updated the information immediately but on | ||
1553 | * MP we accumulate the credits locally and update the Tx queue when we | ||
1554 | * reach a threshold to avoid cache-line bouncing. | ||
1555 | */ | ||
1556 | static inline void update_tx_completed(struct sge_qset *qs, int idx, | ||
1557 | unsigned int credits, | ||
1558 | unsigned int tx_completed[]) | ||
1559 | { | ||
1560 | #ifdef CONFIG_SMP | ||
1561 | tx_completed[idx] += credits; | ||
1562 | if (tx_completed[idx] > 32) { | ||
1563 | qs->txq[idx].processed += tx_completed[idx]; | ||
1564 | tx_completed[idx] = 0; | ||
1565 | } | ||
1566 | #else | ||
1567 | qs->txq[idx].processed += credits; | ||
1568 | #endif | ||
1569 | } | ||
1570 | |||
1571 | /** | ||
1572 | * restart_tx - check whether to restart suspended Tx queues | ||
1573 | * @qs: the queue set to resume | ||
1574 | * | ||
1575 | * Restarts suspended Tx queues of an SGE queue set if they have enough | ||
1576 | * free resources to resume operation. | ||
1577 | */ | ||
1578 | static void restart_tx(struct sge_qset *qs) | ||
1579 | { | ||
1580 | if (test_bit(TXQ_ETH, &qs->txq_stopped) && | ||
1581 | should_restart_tx(&qs->txq[TXQ_ETH]) && | ||
1582 | test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) { | ||
1583 | qs->txq[TXQ_ETH].restarts++; | ||
1584 | if (netif_running(qs->netdev)) | ||
1585 | netif_wake_queue(qs->netdev); | ||
1586 | } | ||
1587 | |||
1588 | if (test_bit(TXQ_OFLD, &qs->txq_stopped) && | ||
1589 | should_restart_tx(&qs->txq[TXQ_OFLD]) && | ||
1590 | test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) { | ||
1591 | qs->txq[TXQ_OFLD].restarts++; | ||
1592 | tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk); | ||
1593 | } | ||
1594 | if (test_bit(TXQ_CTRL, &qs->txq_stopped) && | ||
1595 | should_restart_tx(&qs->txq[TXQ_CTRL]) && | ||
1596 | test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) { | ||
1597 | qs->txq[TXQ_CTRL].restarts++; | ||
1598 | tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk); | ||
1599 | } | ||
1600 | } | ||
1601 | |||
1602 | /** | ||
1603 | * rx_eth - process an ingress ethernet packet | ||
1604 | * @adap: the adapter | ||
1605 | * @rq: the response queue that received the packet | ||
1606 | * @skb: the packet | ||
1607 | * @pad: amount of padding at the start of the buffer | ||
1608 | * | ||
1609 | * Process an ingress ethernet pakcet and deliver it to the stack. | ||
1610 | * The padding is 2 if the packet was delivered in an Rx buffer and 0 | ||
1611 | * if it was immediate data in a response. | ||
1612 | */ | ||
1613 | static void rx_eth(struct adapter *adap, struct sge_rspq *rq, | ||
1614 | struct sk_buff *skb, int pad) | ||
1615 | { | ||
1616 | struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad); | ||
1617 | struct port_info *pi; | ||
1618 | |||
1619 | rq->eth_pkts++; | ||
1620 | skb_pull(skb, sizeof(*p) + pad); | ||
1621 | skb->dev = adap->port[p->iff]; | ||
1622 | skb->dev->last_rx = jiffies; | ||
1623 | skb->protocol = eth_type_trans(skb, skb->dev); | ||
1624 | pi = netdev_priv(skb->dev); | ||
1625 | if (pi->rx_csum_offload && p->csum_valid && p->csum == 0xffff && | ||
1626 | !p->fragment) { | ||
1627 | rspq_to_qset(rq)->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++; | ||
1628 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
1629 | } else | ||
1630 | skb->ip_summed = CHECKSUM_NONE; | ||
1631 | |||
1632 | if (unlikely(p->vlan_valid)) { | ||
1633 | struct vlan_group *grp = pi->vlan_grp; | ||
1634 | |||
1635 | rspq_to_qset(rq)->port_stats[SGE_PSTAT_VLANEX]++; | ||
1636 | if (likely(grp)) | ||
1637 | __vlan_hwaccel_rx(skb, grp, ntohs(p->vlan), | ||
1638 | rq->polling); | ||
1639 | else | ||
1640 | dev_kfree_skb_any(skb); | ||
1641 | } else if (rq->polling) | ||
1642 | netif_receive_skb(skb); | ||
1643 | else | ||
1644 | netif_rx(skb); | ||
1645 | } | ||
1646 | |||
1647 | /** | ||
1648 | * handle_rsp_cntrl_info - handles control information in a response | ||
1649 | * @qs: the queue set corresponding to the response | ||
1650 | * @flags: the response control flags | ||
1651 | * @tx_completed: accumulates completion credits for the Tx queues | ||
1652 | * | ||
1653 | * Handles the control information of an SGE response, such as GTS | ||
1654 | * indications and completion credits for the queue set's Tx queues. | ||
1655 | */ | ||
1656 | static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags, | ||
1657 | unsigned int tx_completed[]) | ||
1658 | { | ||
1659 | unsigned int credits; | ||
1660 | |||
1661 | #if USE_GTS | ||
1662 | if (flags & F_RSPD_TXQ0_GTS) | ||
1663 | clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags); | ||
1664 | #endif | ||
1665 | |||
1666 | /* ETH credits are already coalesced, return them immediately. */ | ||
1667 | credits = G_RSPD_TXQ0_CR(flags); | ||
1668 | if (credits) | ||
1669 | qs->txq[TXQ_ETH].processed += credits; | ||
1670 | |||
1671 | # if USE_GTS | ||
1672 | if (flags & F_RSPD_TXQ1_GTS) | ||
1673 | clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags); | ||
1674 | # endif | ||
1675 | update_tx_completed(qs, TXQ_OFLD, G_RSPD_TXQ1_CR(flags), tx_completed); | ||
1676 | update_tx_completed(qs, TXQ_CTRL, G_RSPD_TXQ2_CR(flags), tx_completed); | ||
1677 | } | ||
1678 | |||
1679 | /** | ||
1680 | * flush_tx_completed - returns accumulated Tx completions to Tx queues | ||
1681 | * @qs: the queue set to update | ||
1682 | * @tx_completed: pending completion credits to return to Tx queues | ||
1683 | * | ||
1684 | * Updates the number of completed Tx descriptors for a queue set's Tx | ||
1685 | * queues with the credits pending in @tx_completed. This does something | ||
1686 | * only on MP systems as on UP systems we return the credits immediately. | ||
1687 | */ | ||
1688 | static inline void flush_tx_completed(struct sge_qset *qs, | ||
1689 | unsigned int tx_completed[]) | ||
1690 | { | ||
1691 | #if defined(CONFIG_SMP) | ||
1692 | if (tx_completed[TXQ_OFLD]) | ||
1693 | qs->txq[TXQ_OFLD].processed += tx_completed[TXQ_OFLD]; | ||
1694 | if (tx_completed[TXQ_CTRL]) | ||
1695 | qs->txq[TXQ_CTRL].processed += tx_completed[TXQ_CTRL]; | ||
1696 | #endif | ||
1697 | } | ||
1698 | |||
1699 | /** | ||
1700 | * check_ring_db - check if we need to ring any doorbells | ||
1701 | * @adapter: the adapter | ||
1702 | * @qs: the queue set whose Tx queues are to be examined | ||
1703 | * @sleeping: indicates which Tx queue sent GTS | ||
1704 | * | ||
1705 | * Checks if some of a queue set's Tx queues need to ring their doorbells | ||
1706 | * to resume transmission after idling while they still have unprocessed | ||
1707 | * descriptors. | ||
1708 | */ | ||
1709 | static void check_ring_db(struct adapter *adap, struct sge_qset *qs, | ||
1710 | unsigned int sleeping) | ||
1711 | { | ||
1712 | if (sleeping & F_RSPD_TXQ0_GTS) { | ||
1713 | struct sge_txq *txq = &qs->txq[TXQ_ETH]; | ||
1714 | |||
1715 | if (txq->cleaned + txq->in_use != txq->processed && | ||
1716 | !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) { | ||
1717 | set_bit(TXQ_RUNNING, &txq->flags); | ||
1718 | t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | | ||
1719 | V_EGRCNTX(txq->cntxt_id)); | ||
1720 | } | ||
1721 | } | ||
1722 | |||
1723 | if (sleeping & F_RSPD_TXQ1_GTS) { | ||
1724 | struct sge_txq *txq = &qs->txq[TXQ_OFLD]; | ||
1725 | |||
1726 | if (txq->cleaned + txq->in_use != txq->processed && | ||
1727 | !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) { | ||
1728 | set_bit(TXQ_RUNNING, &txq->flags); | ||
1729 | t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | | ||
1730 | V_EGRCNTX(txq->cntxt_id)); | ||
1731 | } | ||
1732 | } | ||
1733 | } | ||
1734 | |||
1735 | /** | ||
1736 | * is_new_response - check if a response is newly written | ||
1737 | * @r: the response descriptor | ||
1738 | * @q: the response queue | ||
1739 | * | ||
1740 | * Returns true if a response descriptor contains a yet unprocessed | ||
1741 | * response. | ||
1742 | */ | ||
1743 | static inline int is_new_response(const struct rsp_desc *r, | ||
1744 | const struct sge_rspq *q) | ||
1745 | { | ||
1746 | return (r->intr_gen & F_RSPD_GEN2) == q->gen; | ||
1747 | } | ||
1748 | |||
1749 | #define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS) | ||
1750 | #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \ | ||
1751 | V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \ | ||
1752 | V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \ | ||
1753 | V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR)) | ||
1754 | |||
1755 | /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */ | ||
1756 | #define NOMEM_INTR_DELAY 2500 | ||
1757 | |||
1758 | /** | ||
1759 | * process_responses - process responses from an SGE response queue | ||
1760 | * @adap: the adapter | ||
1761 | * @qs: the queue set to which the response queue belongs | ||
1762 | * @budget: how many responses can be processed in this round | ||
1763 | * | ||
1764 | * Process responses from an SGE response queue up to the supplied budget. | ||
1765 | * Responses include received packets as well as credits and other events | ||
1766 | * for the queues that belong to the response queue's queue set. | ||
1767 | * A negative budget is effectively unlimited. | ||
1768 | * | ||
1769 | * Additionally choose the interrupt holdoff time for the next interrupt | ||
1770 | * on this queue. If the system is under memory shortage use a fairly | ||
1771 | * long delay to help recovery. | ||
1772 | */ | ||
1773 | static int process_responses(struct adapter *adap, struct sge_qset *qs, | ||
1774 | int budget) | ||
1775 | { | ||
1776 | struct sge_rspq *q = &qs->rspq; | ||
1777 | struct rsp_desc *r = &q->desc[q->cidx]; | ||
1778 | int budget_left = budget; | ||
1779 | unsigned int sleeping = 0, tx_completed[3] = { 0, 0, 0 }; | ||
1780 | struct sk_buff *offload_skbs[RX_BUNDLE_SIZE]; | ||
1781 | int ngathered = 0; | ||
1782 | |||
1783 | q->next_holdoff = q->holdoff_tmr; | ||
1784 | |||
1785 | while (likely(budget_left && is_new_response(r, q))) { | ||
1786 | int eth, ethpad = 0; | ||
1787 | struct sk_buff *skb = NULL; | ||
1788 | u32 len, flags = ntohl(r->flags); | ||
1789 | u32 rss_hi = *(const u32 *)r, rss_lo = r->rss_hdr.rss_hash_val; | ||
1790 | |||
1791 | eth = r->rss_hdr.opcode == CPL_RX_PKT; | ||
1792 | |||
1793 | if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) { | ||
1794 | skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC); | ||
1795 | if (!skb) | ||
1796 | goto no_mem; | ||
1797 | |||
1798 | memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE); | ||
1799 | skb->data[0] = CPL_ASYNC_NOTIF; | ||
1800 | rss_hi = htonl(CPL_ASYNC_NOTIF << 24); | ||
1801 | q->async_notif++; | ||
1802 | } else if (flags & F_RSPD_IMM_DATA_VALID) { | ||
1803 | skb = get_imm_packet(r); | ||
1804 | if (unlikely(!skb)) { | ||
1805 | no_mem: | ||
1806 | q->next_holdoff = NOMEM_INTR_DELAY; | ||
1807 | q->nomem++; | ||
1808 | /* consume one credit since we tried */ | ||
1809 | budget_left--; | ||
1810 | break; | ||
1811 | } | ||
1812 | q->imm_data++; | ||
1813 | } else if ((len = ntohl(r->len_cq)) != 0) { | ||
1814 | struct sge_fl *fl; | ||
1815 | |||
1816 | fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0]; | ||
1817 | fl->credits--; | ||
1818 | skb = get_packet(adap, fl, G_RSPD_LEN(len), | ||
1819 | eth ? SGE_RX_DROP_THRES : 0); | ||
1820 | if (!skb) | ||
1821 | q->rx_drops++; | ||
1822 | else if (r->rss_hdr.opcode == CPL_TRACE_PKT) | ||
1823 | __skb_pull(skb, 2); | ||
1824 | ethpad = 2; | ||
1825 | if (++fl->cidx == fl->size) | ||
1826 | fl->cidx = 0; | ||
1827 | } else | ||
1828 | q->pure_rsps++; | ||
1829 | |||
1830 | if (flags & RSPD_CTRL_MASK) { | ||
1831 | sleeping |= flags & RSPD_GTS_MASK; | ||
1832 | handle_rsp_cntrl_info(qs, flags, tx_completed); | ||
1833 | } | ||
1834 | |||
1835 | r++; | ||
1836 | if (unlikely(++q->cidx == q->size)) { | ||
1837 | q->cidx = 0; | ||
1838 | q->gen ^= 1; | ||
1839 | r = q->desc; | ||
1840 | } | ||
1841 | prefetch(r); | ||
1842 | |||
1843 | if (++q->credits >= (q->size / 4)) { | ||
1844 | refill_rspq(adap, q, q->credits); | ||
1845 | q->credits = 0; | ||
1846 | } | ||
1847 | |||
1848 | if (likely(skb != NULL)) { | ||
1849 | if (eth) | ||
1850 | rx_eth(adap, q, skb, ethpad); | ||
1851 | else { | ||
1852 | /* Preserve the RSS info in csum & priority */ | ||
1853 | skb->csum = rss_hi; | ||
1854 | skb->priority = rss_lo; | ||
1855 | ngathered = rx_offload(&adap->tdev, q, skb, | ||
1856 | offload_skbs, ngathered); | ||
1857 | } | ||
1858 | } | ||
1859 | |||
1860 | --budget_left; | ||
1861 | } | ||
1862 | |||
1863 | flush_tx_completed(qs, tx_completed); | ||
1864 | deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered); | ||
1865 | if (sleeping) | ||
1866 | check_ring_db(adap, qs, sleeping); | ||
1867 | |||
1868 | smp_mb(); /* commit Tx queue .processed updates */ | ||
1869 | if (unlikely(qs->txq_stopped != 0)) | ||
1870 | restart_tx(qs); | ||
1871 | |||
1872 | budget -= budget_left; | ||
1873 | return budget; | ||
1874 | } | ||
1875 | |||
1876 | static inline int is_pure_response(const struct rsp_desc *r) | ||
1877 | { | ||
1878 | u32 n = ntohl(r->flags) & (F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID); | ||
1879 | |||
1880 | return (n | r->len_cq) == 0; | ||
1881 | } | ||
1882 | |||
1883 | /** | ||
1884 | * napi_rx_handler - the NAPI handler for Rx processing | ||
1885 | * @dev: the net device | ||
1886 | * @budget: how many packets we can process in this round | ||
1887 | * | ||
1888 | * Handler for new data events when using NAPI. | ||
1889 | */ | ||
1890 | static int napi_rx_handler(struct net_device *dev, int *budget) | ||
1891 | { | ||
1892 | struct adapter *adap = dev->priv; | ||
1893 | struct sge_qset *qs = dev2qset(dev); | ||
1894 | int effective_budget = min(*budget, dev->quota); | ||
1895 | |||
1896 | int work_done = process_responses(adap, qs, effective_budget); | ||
1897 | *budget -= work_done; | ||
1898 | dev->quota -= work_done; | ||
1899 | |||
1900 | if (work_done >= effective_budget) | ||
1901 | return 1; | ||
1902 | |||
1903 | netif_rx_complete(dev); | ||
1904 | |||
1905 | /* | ||
1906 | * Because we don't atomically flush the following write it is | ||
1907 | * possible that in very rare cases it can reach the device in a way | ||
1908 | * that races with a new response being written plus an error interrupt | ||
1909 | * causing the NAPI interrupt handler below to return unhandled status | ||
1910 | * to the OS. To protect against this would require flushing the write | ||
1911 | * and doing both the write and the flush with interrupts off. Way too | ||
1912 | * expensive and unjustifiable given the rarity of the race. | ||
1913 | * | ||
1914 | * The race cannot happen at all with MSI-X. | ||
1915 | */ | ||
1916 | t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) | | ||
1917 | V_NEWTIMER(qs->rspq.next_holdoff) | | ||
1918 | V_NEWINDEX(qs->rspq.cidx)); | ||
1919 | return 0; | ||
1920 | } | ||
1921 | |||
1922 | /* | ||
1923 | * Returns true if the device is already scheduled for polling. | ||
1924 | */ | ||
1925 | static inline int napi_is_scheduled(struct net_device *dev) | ||
1926 | { | ||
1927 | return test_bit(__LINK_STATE_RX_SCHED, &dev->state); | ||
1928 | } | ||
1929 | |||
1930 | /** | ||
1931 | * process_pure_responses - process pure responses from a response queue | ||
1932 | * @adap: the adapter | ||
1933 | * @qs: the queue set owning the response queue | ||
1934 | * @r: the first pure response to process | ||
1935 | * | ||
1936 | * A simpler version of process_responses() that handles only pure (i.e., | ||
1937 | * non data-carrying) responses. Such respones are too light-weight to | ||
1938 | * justify calling a softirq under NAPI, so we handle them specially in | ||
1939 | * the interrupt handler. The function is called with a pointer to a | ||
1940 | * response, which the caller must ensure is a valid pure response. | ||
1941 | * | ||
1942 | * Returns 1 if it encounters a valid data-carrying response, 0 otherwise. | ||
1943 | */ | ||
1944 | static int process_pure_responses(struct adapter *adap, struct sge_qset *qs, | ||
1945 | struct rsp_desc *r) | ||
1946 | { | ||
1947 | struct sge_rspq *q = &qs->rspq; | ||
1948 | unsigned int sleeping = 0, tx_completed[3] = { 0, 0, 0 }; | ||
1949 | |||
1950 | do { | ||
1951 | u32 flags = ntohl(r->flags); | ||
1952 | |||
1953 | r++; | ||
1954 | if (unlikely(++q->cidx == q->size)) { | ||
1955 | q->cidx = 0; | ||
1956 | q->gen ^= 1; | ||
1957 | r = q->desc; | ||
1958 | } | ||
1959 | prefetch(r); | ||
1960 | |||
1961 | if (flags & RSPD_CTRL_MASK) { | ||
1962 | sleeping |= flags & RSPD_GTS_MASK; | ||
1963 | handle_rsp_cntrl_info(qs, flags, tx_completed); | ||
1964 | } | ||
1965 | |||
1966 | q->pure_rsps++; | ||
1967 | if (++q->credits >= (q->size / 4)) { | ||
1968 | refill_rspq(adap, q, q->credits); | ||
1969 | q->credits = 0; | ||
1970 | } | ||
1971 | } while (is_new_response(r, q) && is_pure_response(r)); | ||
1972 | |||
1973 | flush_tx_completed(qs, tx_completed); | ||
1974 | |||
1975 | if (sleeping) | ||
1976 | check_ring_db(adap, qs, sleeping); | ||
1977 | |||
1978 | smp_mb(); /* commit Tx queue .processed updates */ | ||
1979 | if (unlikely(qs->txq_stopped != 0)) | ||
1980 | restart_tx(qs); | ||
1981 | |||
1982 | return is_new_response(r, q); | ||
1983 | } | ||
1984 | |||
1985 | /** | ||
1986 | * handle_responses - decide what to do with new responses in NAPI mode | ||
1987 | * @adap: the adapter | ||
1988 | * @q: the response queue | ||
1989 | * | ||
1990 | * This is used by the NAPI interrupt handlers to decide what to do with | ||
1991 | * new SGE responses. If there are no new responses it returns -1. If | ||
1992 | * there are new responses and they are pure (i.e., non-data carrying) | ||
1993 | * it handles them straight in hard interrupt context as they are very | ||
1994 | * cheap and don't deliver any packets. Finally, if there are any data | ||
1995 | * signaling responses it schedules the NAPI handler. Returns 1 if it | ||
1996 | * schedules NAPI, 0 if all new responses were pure. | ||
1997 | * | ||
1998 | * The caller must ascertain NAPI is not already running. | ||
1999 | */ | ||
2000 | static inline int handle_responses(struct adapter *adap, struct sge_rspq *q) | ||
2001 | { | ||
2002 | struct sge_qset *qs = rspq_to_qset(q); | ||
2003 | struct rsp_desc *r = &q->desc[q->cidx]; | ||
2004 | |||
2005 | if (!is_new_response(r, q)) | ||
2006 | return -1; | ||
2007 | if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) { | ||
2008 | t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) | | ||
2009 | V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx)); | ||
2010 | return 0; | ||
2011 | } | ||
2012 | if (likely(__netif_rx_schedule_prep(qs->netdev))) | ||
2013 | __netif_rx_schedule(qs->netdev); | ||
2014 | return 1; | ||
2015 | } | ||
2016 | |||
2017 | /* | ||
2018 | * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case | ||
2019 | * (i.e., response queue serviced in hard interrupt). | ||
2020 | */ | ||
2021 | irqreturn_t t3_sge_intr_msix(int irq, void *cookie) | ||
2022 | { | ||
2023 | struct sge_qset *qs = cookie; | ||
2024 | struct adapter *adap = qs->netdev->priv; | ||
2025 | struct sge_rspq *q = &qs->rspq; | ||
2026 | |||
2027 | spin_lock(&q->lock); | ||
2028 | if (process_responses(adap, qs, -1) == 0) | ||
2029 | q->unhandled_irqs++; | ||
2030 | t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) | | ||
2031 | V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx)); | ||
2032 | spin_unlock(&q->lock); | ||
2033 | return IRQ_HANDLED; | ||
2034 | } | ||
2035 | |||
2036 | /* | ||
2037 | * The MSI-X interrupt handler for an SGE response queue for the NAPI case | ||
2038 | * (i.e., response queue serviced by NAPI polling). | ||
2039 | */ | ||
2040 | irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie) | ||
2041 | { | ||
2042 | struct sge_qset *qs = cookie; | ||
2043 | struct adapter *adap = qs->netdev->priv; | ||
2044 | struct sge_rspq *q = &qs->rspq; | ||
2045 | |||
2046 | spin_lock(&q->lock); | ||
2047 | BUG_ON(napi_is_scheduled(qs->netdev)); | ||
2048 | |||
2049 | if (handle_responses(adap, q) < 0) | ||
2050 | q->unhandled_irqs++; | ||
2051 | spin_unlock(&q->lock); | ||
2052 | return IRQ_HANDLED; | ||
2053 | } | ||
2054 | |||
2055 | /* | ||
2056 | * The non-NAPI MSI interrupt handler. This needs to handle data events from | ||
2057 | * SGE response queues as well as error and other async events as they all use | ||
2058 | * the same MSI vector. We use one SGE response queue per port in this mode | ||
2059 | * and protect all response queues with queue 0's lock. | ||
2060 | */ | ||
2061 | static irqreturn_t t3_intr_msi(int irq, void *cookie) | ||
2062 | { | ||
2063 | int new_packets = 0; | ||
2064 | struct adapter *adap = cookie; | ||
2065 | struct sge_rspq *q = &adap->sge.qs[0].rspq; | ||
2066 | |||
2067 | spin_lock(&q->lock); | ||
2068 | |||
2069 | if (process_responses(adap, &adap->sge.qs[0], -1)) { | ||
2070 | t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) | | ||
2071 | V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx)); | ||
2072 | new_packets = 1; | ||
2073 | } | ||
2074 | |||
2075 | if (adap->params.nports == 2 && | ||
2076 | process_responses(adap, &adap->sge.qs[1], -1)) { | ||
2077 | struct sge_rspq *q1 = &adap->sge.qs[1].rspq; | ||
2078 | |||
2079 | t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) | | ||
2080 | V_NEWTIMER(q1->next_holdoff) | | ||
2081 | V_NEWINDEX(q1->cidx)); | ||
2082 | new_packets = 1; | ||
2083 | } | ||
2084 | |||
2085 | if (!new_packets && t3_slow_intr_handler(adap) == 0) | ||
2086 | q->unhandled_irqs++; | ||
2087 | |||
2088 | spin_unlock(&q->lock); | ||
2089 | return IRQ_HANDLED; | ||
2090 | } | ||
2091 | |||
2092 | static int rspq_check_napi(struct net_device *dev, struct sge_rspq *q) | ||
2093 | { | ||
2094 | if (!napi_is_scheduled(dev) && is_new_response(&q->desc[q->cidx], q)) { | ||
2095 | if (likely(__netif_rx_schedule_prep(dev))) | ||
2096 | __netif_rx_schedule(dev); | ||
2097 | return 1; | ||
2098 | } | ||
2099 | return 0; | ||
2100 | } | ||
2101 | |||
2102 | /* | ||
2103 | * The MSI interrupt handler for the NAPI case (i.e., response queues serviced | ||
2104 | * by NAPI polling). Handles data events from SGE response queues as well as | ||
2105 | * error and other async events as they all use the same MSI vector. We use | ||
2106 | * one SGE response queue per port in this mode and protect all response | ||
2107 | * queues with queue 0's lock. | ||
2108 | */ | ||
2109 | irqreturn_t t3_intr_msi_napi(int irq, void *cookie) | ||
2110 | { | ||
2111 | int new_packets; | ||
2112 | struct adapter *adap = cookie; | ||
2113 | struct sge_rspq *q = &adap->sge.qs[0].rspq; | ||
2114 | |||
2115 | spin_lock(&q->lock); | ||
2116 | |||
2117 | new_packets = rspq_check_napi(adap->sge.qs[0].netdev, q); | ||
2118 | if (adap->params.nports == 2) | ||
2119 | new_packets += rspq_check_napi(adap->sge.qs[1].netdev, | ||
2120 | &adap->sge.qs[1].rspq); | ||
2121 | if (!new_packets && t3_slow_intr_handler(adap) == 0) | ||
2122 | q->unhandled_irqs++; | ||
2123 | |||
2124 | spin_unlock(&q->lock); | ||
2125 | return IRQ_HANDLED; | ||
2126 | } | ||
2127 | |||
2128 | /* | ||
2129 | * A helper function that processes responses and issues GTS. | ||
2130 | */ | ||
2131 | static inline int process_responses_gts(struct adapter *adap, | ||
2132 | struct sge_rspq *rq) | ||
2133 | { | ||
2134 | int work; | ||
2135 | |||
2136 | work = process_responses(adap, rspq_to_qset(rq), -1); | ||
2137 | t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) | | ||
2138 | V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx)); | ||
2139 | return work; | ||
2140 | } | ||
2141 | |||
2142 | /* | ||
2143 | * The legacy INTx interrupt handler. This needs to handle data events from | ||
2144 | * SGE response queues as well as error and other async events as they all use | ||
2145 | * the same interrupt pin. We use one SGE response queue per port in this mode | ||
2146 | * and protect all response queues with queue 0's lock. | ||
2147 | */ | ||
2148 | static irqreturn_t t3_intr(int irq, void *cookie) | ||
2149 | { | ||
2150 | int work_done, w0, w1; | ||
2151 | struct adapter *adap = cookie; | ||
2152 | struct sge_rspq *q0 = &adap->sge.qs[0].rspq; | ||
2153 | struct sge_rspq *q1 = &adap->sge.qs[1].rspq; | ||
2154 | |||
2155 | spin_lock(&q0->lock); | ||
2156 | |||
2157 | w0 = is_new_response(&q0->desc[q0->cidx], q0); | ||
2158 | w1 = adap->params.nports == 2 && | ||
2159 | is_new_response(&q1->desc[q1->cidx], q1); | ||
2160 | |||
2161 | if (likely(w0 | w1)) { | ||
2162 | t3_write_reg(adap, A_PL_CLI, 0); | ||
2163 | t3_read_reg(adap, A_PL_CLI); /* flush */ | ||
2164 | |||
2165 | if (likely(w0)) | ||
2166 | process_responses_gts(adap, q0); | ||
2167 | |||
2168 | if (w1) | ||
2169 | process_responses_gts(adap, q1); | ||
2170 | |||
2171 | work_done = w0 | w1; | ||
2172 | } else | ||
2173 | work_done = t3_slow_intr_handler(adap); | ||
2174 | |||
2175 | spin_unlock(&q0->lock); | ||
2176 | return IRQ_RETVAL(work_done != 0); | ||
2177 | } | ||
2178 | |||
2179 | /* | ||
2180 | * Interrupt handler for legacy INTx interrupts for T3B-based cards. | ||
2181 | * Handles data events from SGE response queues as well as error and other | ||
2182 | * async events as they all use the same interrupt pin. We use one SGE | ||
2183 | * response queue per port in this mode and protect all response queues with | ||
2184 | * queue 0's lock. | ||
2185 | */ | ||
2186 | static irqreturn_t t3b_intr(int irq, void *cookie) | ||
2187 | { | ||
2188 | u32 map; | ||
2189 | struct adapter *adap = cookie; | ||
2190 | struct sge_rspq *q0 = &adap->sge.qs[0].rspq; | ||
2191 | |||
2192 | t3_write_reg(adap, A_PL_CLI, 0); | ||
2193 | map = t3_read_reg(adap, A_SG_DATA_INTR); | ||
2194 | |||
2195 | if (unlikely(!map)) /* shared interrupt, most likely */ | ||
2196 | return IRQ_NONE; | ||
2197 | |||
2198 | spin_lock(&q0->lock); | ||
2199 | |||
2200 | if (unlikely(map & F_ERRINTR)) | ||
2201 | t3_slow_intr_handler(adap); | ||
2202 | |||
2203 | if (likely(map & 1)) | ||
2204 | process_responses_gts(adap, q0); | ||
2205 | |||
2206 | if (map & 2) | ||
2207 | process_responses_gts(adap, &adap->sge.qs[1].rspq); | ||
2208 | |||
2209 | spin_unlock(&q0->lock); | ||
2210 | return IRQ_HANDLED; | ||
2211 | } | ||
2212 | |||
2213 | /* | ||
2214 | * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards. | ||
2215 | * Handles data events from SGE response queues as well as error and other | ||
2216 | * async events as they all use the same interrupt pin. We use one SGE | ||
2217 | * response queue per port in this mode and protect all response queues with | ||
2218 | * queue 0's lock. | ||
2219 | */ | ||
2220 | static irqreturn_t t3b_intr_napi(int irq, void *cookie) | ||
2221 | { | ||
2222 | u32 map; | ||
2223 | struct net_device *dev; | ||
2224 | struct adapter *adap = cookie; | ||
2225 | struct sge_rspq *q0 = &adap->sge.qs[0].rspq; | ||
2226 | |||
2227 | t3_write_reg(adap, A_PL_CLI, 0); | ||
2228 | map = t3_read_reg(adap, A_SG_DATA_INTR); | ||
2229 | |||
2230 | if (unlikely(!map)) /* shared interrupt, most likely */ | ||
2231 | return IRQ_NONE; | ||
2232 | |||
2233 | spin_lock(&q0->lock); | ||
2234 | |||
2235 | if (unlikely(map & F_ERRINTR)) | ||
2236 | t3_slow_intr_handler(adap); | ||
2237 | |||
2238 | if (likely(map & 1)) { | ||
2239 | dev = adap->sge.qs[0].netdev; | ||
2240 | |||
2241 | BUG_ON(napi_is_scheduled(dev)); | ||
2242 | if (likely(__netif_rx_schedule_prep(dev))) | ||
2243 | __netif_rx_schedule(dev); | ||
2244 | } | ||
2245 | if (map & 2) { | ||
2246 | dev = adap->sge.qs[1].netdev; | ||
2247 | |||
2248 | BUG_ON(napi_is_scheduled(dev)); | ||
2249 | if (likely(__netif_rx_schedule_prep(dev))) | ||
2250 | __netif_rx_schedule(dev); | ||
2251 | } | ||
2252 | |||
2253 | spin_unlock(&q0->lock); | ||
2254 | return IRQ_HANDLED; | ||
2255 | } | ||
2256 | |||
2257 | /** | ||
2258 | * t3_intr_handler - select the top-level interrupt handler | ||
2259 | * @adap: the adapter | ||
2260 | * @polling: whether using NAPI to service response queues | ||
2261 | * | ||
2262 | * Selects the top-level interrupt handler based on the type of interrupts | ||
2263 | * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the | ||
2264 | * response queues. | ||
2265 | */ | ||
2266 | intr_handler_t t3_intr_handler(struct adapter *adap, int polling) | ||
2267 | { | ||
2268 | if (adap->flags & USING_MSIX) | ||
2269 | return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix; | ||
2270 | if (adap->flags & USING_MSI) | ||
2271 | return polling ? t3_intr_msi_napi : t3_intr_msi; | ||
2272 | if (adap->params.rev > 0) | ||
2273 | return polling ? t3b_intr_napi : t3b_intr; | ||
2274 | return t3_intr; | ||
2275 | } | ||
2276 | |||
2277 | /** | ||
2278 | * t3_sge_err_intr_handler - SGE async event interrupt handler | ||
2279 | * @adapter: the adapter | ||
2280 | * | ||
2281 | * Interrupt handler for SGE asynchronous (non-data) events. | ||
2282 | */ | ||
2283 | void t3_sge_err_intr_handler(struct adapter *adapter) | ||
2284 | { | ||
2285 | unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE); | ||
2286 | |||
2287 | if (status & F_RSPQCREDITOVERFOW) | ||
2288 | CH_ALERT(adapter, "SGE response queue credit overflow\n"); | ||
2289 | |||
2290 | if (status & F_RSPQDISABLED) { | ||
2291 | v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS); | ||
2292 | |||
2293 | CH_ALERT(adapter, | ||
2294 | "packet delivered to disabled response queue " | ||
2295 | "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff); | ||
2296 | } | ||
2297 | |||
2298 | t3_write_reg(adapter, A_SG_INT_CAUSE, status); | ||
2299 | if (status & (F_RSPQCREDITOVERFOW | F_RSPQDISABLED)) | ||
2300 | t3_fatal_err(adapter); | ||
2301 | } | ||
2302 | |||
2303 | /** | ||
2304 | * sge_timer_cb - perform periodic maintenance of an SGE qset | ||
2305 | * @data: the SGE queue set to maintain | ||
2306 | * | ||
2307 | * Runs periodically from a timer to perform maintenance of an SGE queue | ||
2308 | * set. It performs two tasks: | ||
2309 | * | ||
2310 | * a) Cleans up any completed Tx descriptors that may still be pending. | ||
2311 | * Normal descriptor cleanup happens when new packets are added to a Tx | ||
2312 | * queue so this timer is relatively infrequent and does any cleanup only | ||
2313 | * if the Tx queue has not seen any new packets in a while. We make a | ||
2314 | * best effort attempt to reclaim descriptors, in that we don't wait | ||
2315 | * around if we cannot get a queue's lock (which most likely is because | ||
2316 | * someone else is queueing new packets and so will also handle the clean | ||
2317 | * up). Since control queues use immediate data exclusively we don't | ||
2318 | * bother cleaning them up here. | ||
2319 | * | ||
2320 | * b) Replenishes Rx queues that have run out due to memory shortage. | ||
2321 | * Normally new Rx buffers are added when existing ones are consumed but | ||
2322 | * when out of memory a queue can become empty. We try to add only a few | ||
2323 | * buffers here, the queue will be replenished fully as these new buffers | ||
2324 | * are used up if memory shortage has subsided. | ||
2325 | */ | ||
2326 | static void sge_timer_cb(unsigned long data) | ||
2327 | { | ||
2328 | spinlock_t *lock; | ||
2329 | struct sge_qset *qs = (struct sge_qset *)data; | ||
2330 | struct adapter *adap = qs->netdev->priv; | ||
2331 | |||
2332 | if (spin_trylock(&qs->txq[TXQ_ETH].lock)) { | ||
2333 | reclaim_completed_tx(adap, &qs->txq[TXQ_ETH]); | ||
2334 | spin_unlock(&qs->txq[TXQ_ETH].lock); | ||
2335 | } | ||
2336 | if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) { | ||
2337 | reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD]); | ||
2338 | spin_unlock(&qs->txq[TXQ_OFLD].lock); | ||
2339 | } | ||
2340 | lock = (adap->flags & USING_MSIX) ? &qs->rspq.lock : | ||
2341 | &adap->sge.qs[0].rspq.lock; | ||
2342 | if (spin_trylock_irq(lock)) { | ||
2343 | if (!napi_is_scheduled(qs->netdev)) { | ||
2344 | if (qs->fl[0].credits < qs->fl[0].size) | ||
2345 | __refill_fl(adap, &qs->fl[0]); | ||
2346 | if (qs->fl[1].credits < qs->fl[1].size) | ||
2347 | __refill_fl(adap, &qs->fl[1]); | ||
2348 | } | ||
2349 | spin_unlock_irq(lock); | ||
2350 | } | ||
2351 | mod_timer(&qs->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD); | ||
2352 | } | ||
2353 | |||
2354 | /** | ||
2355 | * t3_update_qset_coalesce - update coalescing settings for a queue set | ||
2356 | * @qs: the SGE queue set | ||
2357 | * @p: new queue set parameters | ||
2358 | * | ||
2359 | * Update the coalescing settings for an SGE queue set. Nothing is done | ||
2360 | * if the queue set is not initialized yet. | ||
2361 | */ | ||
2362 | void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p) | ||
2363 | { | ||
2364 | if (!qs->netdev) | ||
2365 | return; | ||
2366 | |||
2367 | qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */ | ||
2368 | qs->rspq.polling = p->polling; | ||
2369 | qs->netdev->poll = p->polling ? napi_rx_handler : ofld_poll; | ||
2370 | } | ||
2371 | |||
2372 | /** | ||
2373 | * t3_sge_alloc_qset - initialize an SGE queue set | ||
2374 | * @adapter: the adapter | ||
2375 | * @id: the queue set id | ||
2376 | * @nports: how many Ethernet ports will be using this queue set | ||
2377 | * @irq_vec_idx: the IRQ vector index for response queue interrupts | ||
2378 | * @p: configuration parameters for this queue set | ||
2379 | * @ntxq: number of Tx queues for the queue set | ||
2380 | * @netdev: net device associated with this queue set | ||
2381 | * | ||
2382 | * Allocate resources and initialize an SGE queue set. A queue set | ||
2383 | * comprises a response queue, two Rx free-buffer queues, and up to 3 | ||
2384 | * Tx queues. The Tx queues are assigned roles in the order Ethernet | ||
2385 | * queue, offload queue, and control queue. | ||
2386 | */ | ||
2387 | int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports, | ||
2388 | int irq_vec_idx, const struct qset_params *p, | ||
2389 | int ntxq, struct net_device *netdev) | ||
2390 | { | ||
2391 | int i, ret = -ENOMEM; | ||
2392 | struct sge_qset *q = &adapter->sge.qs[id]; | ||
2393 | |||
2394 | init_qset_cntxt(q, id); | ||
2395 | init_timer(&q->tx_reclaim_timer); | ||
2396 | q->tx_reclaim_timer.data = (unsigned long)q; | ||
2397 | q->tx_reclaim_timer.function = sge_timer_cb; | ||
2398 | |||
2399 | q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size, | ||
2400 | sizeof(struct rx_desc), | ||
2401 | sizeof(struct rx_sw_desc), | ||
2402 | &q->fl[0].phys_addr, &q->fl[0].sdesc); | ||
2403 | if (!q->fl[0].desc) | ||
2404 | goto err; | ||
2405 | |||
2406 | q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size, | ||
2407 | sizeof(struct rx_desc), | ||
2408 | sizeof(struct rx_sw_desc), | ||
2409 | &q->fl[1].phys_addr, &q->fl[1].sdesc); | ||
2410 | if (!q->fl[1].desc) | ||
2411 | goto err; | ||
2412 | |||
2413 | q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size, | ||
2414 | sizeof(struct rsp_desc), 0, | ||
2415 | &q->rspq.phys_addr, NULL); | ||
2416 | if (!q->rspq.desc) | ||
2417 | goto err; | ||
2418 | |||
2419 | for (i = 0; i < ntxq; ++i) { | ||
2420 | /* | ||
2421 | * The control queue always uses immediate data so does not | ||
2422 | * need to keep track of any sk_buffs. | ||
2423 | */ | ||
2424 | size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc); | ||
2425 | |||
2426 | q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i], | ||
2427 | sizeof(struct tx_desc), sz, | ||
2428 | &q->txq[i].phys_addr, | ||
2429 | &q->txq[i].sdesc); | ||
2430 | if (!q->txq[i].desc) | ||
2431 | goto err; | ||
2432 | |||
2433 | q->txq[i].gen = 1; | ||
2434 | q->txq[i].size = p->txq_size[i]; | ||
2435 | spin_lock_init(&q->txq[i].lock); | ||
2436 | skb_queue_head_init(&q->txq[i].sendq); | ||
2437 | } | ||
2438 | |||
2439 | tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq, | ||
2440 | (unsigned long)q); | ||
2441 | tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq, | ||
2442 | (unsigned long)q); | ||
2443 | |||
2444 | q->fl[0].gen = q->fl[1].gen = 1; | ||
2445 | q->fl[0].size = p->fl_size; | ||
2446 | q->fl[1].size = p->jumbo_size; | ||
2447 | |||
2448 | q->rspq.gen = 1; | ||
2449 | q->rspq.size = p->rspq_size; | ||
2450 | spin_lock_init(&q->rspq.lock); | ||
2451 | |||
2452 | q->txq[TXQ_ETH].stop_thres = nports * | ||
2453 | flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3); | ||
2454 | |||
2455 | if (ntxq == 1) { | ||
2456 | q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + 2 + | ||
2457 | sizeof(struct cpl_rx_pkt); | ||
2458 | q->fl[1].buf_size = MAX_FRAME_SIZE + 2 + | ||
2459 | sizeof(struct cpl_rx_pkt); | ||
2460 | } else { | ||
2461 | q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + | ||
2462 | sizeof(struct cpl_rx_data); | ||
2463 | q->fl[1].buf_size = (16 * 1024) - | ||
2464 | SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); | ||
2465 | } | ||
2466 | |||
2467 | spin_lock(&adapter->sge.reg_lock); | ||
2468 | |||
2469 | /* FL threshold comparison uses < */ | ||
2470 | ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx, | ||
2471 | q->rspq.phys_addr, q->rspq.size, | ||
2472 | q->fl[0].buf_size, 1, 0); | ||
2473 | if (ret) | ||
2474 | goto err_unlock; | ||
2475 | |||
2476 | for (i = 0; i < SGE_RXQ_PER_SET; ++i) { | ||
2477 | ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0, | ||
2478 | q->fl[i].phys_addr, q->fl[i].size, | ||
2479 | q->fl[i].buf_size, p->cong_thres, 1, | ||
2480 | 0); | ||
2481 | if (ret) | ||
2482 | goto err_unlock; | ||
2483 | } | ||
2484 | |||
2485 | ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS, | ||
2486 | SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr, | ||
2487 | q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token, | ||
2488 | 1, 0); | ||
2489 | if (ret) | ||
2490 | goto err_unlock; | ||
2491 | |||
2492 | if (ntxq > 1) { | ||
2493 | ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id, | ||
2494 | USE_GTS, SGE_CNTXT_OFLD, id, | ||
2495 | q->txq[TXQ_OFLD].phys_addr, | ||
2496 | q->txq[TXQ_OFLD].size, 0, 1, 0); | ||
2497 | if (ret) | ||
2498 | goto err_unlock; | ||
2499 | } | ||
2500 | |||
2501 | if (ntxq > 2) { | ||
2502 | ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0, | ||
2503 | SGE_CNTXT_CTRL, id, | ||
2504 | q->txq[TXQ_CTRL].phys_addr, | ||
2505 | q->txq[TXQ_CTRL].size, | ||
2506 | q->txq[TXQ_CTRL].token, 1, 0); | ||
2507 | if (ret) | ||
2508 | goto err_unlock; | ||
2509 | } | ||
2510 | |||
2511 | spin_unlock(&adapter->sge.reg_lock); | ||
2512 | q->netdev = netdev; | ||
2513 | t3_update_qset_coalesce(q, p); | ||
2514 | |||
2515 | /* | ||
2516 | * We use atalk_ptr as a backpointer to a qset. In case a device is | ||
2517 | * associated with multiple queue sets only the first one sets | ||
2518 | * atalk_ptr. | ||
2519 | */ | ||
2520 | if (netdev->atalk_ptr == NULL) | ||
2521 | netdev->atalk_ptr = q; | ||
2522 | |||
2523 | refill_fl(adapter, &q->fl[0], q->fl[0].size, GFP_KERNEL); | ||
2524 | refill_fl(adapter, &q->fl[1], q->fl[1].size, GFP_KERNEL); | ||
2525 | refill_rspq(adapter, &q->rspq, q->rspq.size - 1); | ||
2526 | |||
2527 | t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) | | ||
2528 | V_NEWTIMER(q->rspq.holdoff_tmr)); | ||
2529 | |||
2530 | mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD); | ||
2531 | return 0; | ||
2532 | |||
2533 | err_unlock: | ||
2534 | spin_unlock(&adapter->sge.reg_lock); | ||
2535 | err: | ||
2536 | t3_free_qset(adapter, q); | ||
2537 | return ret; | ||
2538 | } | ||
2539 | |||
2540 | /** | ||
2541 | * t3_free_sge_resources - free SGE resources | ||
2542 | * @adap: the adapter | ||
2543 | * | ||
2544 | * Frees resources used by the SGE queue sets. | ||
2545 | */ | ||
2546 | void t3_free_sge_resources(struct adapter *adap) | ||
2547 | { | ||
2548 | int i; | ||
2549 | |||
2550 | for (i = 0; i < SGE_QSETS; ++i) | ||
2551 | t3_free_qset(adap, &adap->sge.qs[i]); | ||
2552 | } | ||
2553 | |||
2554 | /** | ||
2555 | * t3_sge_start - enable SGE | ||
2556 | * @adap: the adapter | ||
2557 | * | ||
2558 | * Enables the SGE for DMAs. This is the last step in starting packet | ||
2559 | * transfers. | ||
2560 | */ | ||
2561 | void t3_sge_start(struct adapter *adap) | ||
2562 | { | ||
2563 | t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE); | ||
2564 | } | ||
2565 | |||
2566 | /** | ||
2567 | * t3_sge_stop - disable SGE operation | ||
2568 | * @adap: the adapter | ||
2569 | * | ||
2570 | * Disables the DMA engine. This can be called in emeregencies (e.g., | ||
2571 | * from error interrupts) or from normal process context. In the latter | ||
2572 | * case it also disables any pending queue restart tasklets. Note that | ||
2573 | * if it is called in interrupt context it cannot disable the restart | ||
2574 | * tasklets as it cannot wait, however the tasklets will have no effect | ||
2575 | * since the doorbells are disabled and the driver will call this again | ||
2576 | * later from process context, at which time the tasklets will be stopped | ||
2577 | * if they are still running. | ||
2578 | */ | ||
2579 | void t3_sge_stop(struct adapter *adap) | ||
2580 | { | ||
2581 | t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0); | ||
2582 | if (!in_interrupt()) { | ||
2583 | int i; | ||
2584 | |||
2585 | for (i = 0; i < SGE_QSETS; ++i) { | ||
2586 | struct sge_qset *qs = &adap->sge.qs[i]; | ||
2587 | |||
2588 | tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk); | ||
2589 | tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk); | ||
2590 | } | ||
2591 | } | ||
2592 | } | ||
2593 | |||
2594 | /** | ||
2595 | * t3_sge_init - initialize SGE | ||
2596 | * @adap: the adapter | ||
2597 | * @p: the SGE parameters | ||
2598 | * | ||
2599 | * Performs SGE initialization needed every time after a chip reset. | ||
2600 | * We do not initialize any of the queue sets here, instead the driver | ||
2601 | * top-level must request those individually. We also do not enable DMA | ||
2602 | * here, that should be done after the queues have been set up. | ||
2603 | */ | ||
2604 | void t3_sge_init(struct adapter *adap, struct sge_params *p) | ||
2605 | { | ||
2606 | unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12); | ||
2607 | |||
2608 | ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL | | ||
2609 | F_CQCRDTCTRL | | ||
2610 | V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS | | ||
2611 | V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING; | ||
2612 | #if SGE_NUM_GENBITS == 1 | ||
2613 | ctrl |= F_EGRGENCTRL; | ||
2614 | #endif | ||
2615 | if (adap->params.rev > 0) { | ||
2616 | if (!(adap->flags & (USING_MSIX | USING_MSI))) | ||
2617 | ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ; | ||
2618 | ctrl |= F_CQCRDTCTRL | F_AVOIDCQOVFL; | ||
2619 | } | ||
2620 | t3_write_reg(adap, A_SG_CONTROL, ctrl); | ||
2621 | t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) | | ||
2622 | V_LORCQDRBTHRSH(512)); | ||
2623 | t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10); | ||
2624 | t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) | | ||
2625 | V_TIMEOUT(100 * core_ticks_per_usec(adap))); | ||
2626 | t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH, 1000); | ||
2627 | t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256); | ||
2628 | t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000); | ||
2629 | t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256); | ||
2630 | t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff)); | ||
2631 | t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024); | ||
2632 | } | ||
2633 | |||
2634 | /** | ||
2635 | * t3_sge_prep - one-time SGE initialization | ||
2636 | * @adap: the associated adapter | ||
2637 | * @p: SGE parameters | ||
2638 | * | ||
2639 | * Performs one-time initialization of SGE SW state. Includes determining | ||
2640 | * defaults for the assorted SGE parameters, which admins can change until | ||
2641 | * they are used to initialize the SGE. | ||
2642 | */ | ||
2643 | void __devinit t3_sge_prep(struct adapter *adap, struct sge_params *p) | ||
2644 | { | ||
2645 | int i; | ||
2646 | |||
2647 | p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) - | ||
2648 | SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); | ||
2649 | |||
2650 | for (i = 0; i < SGE_QSETS; ++i) { | ||
2651 | struct qset_params *q = p->qset + i; | ||
2652 | |||
2653 | q->polling = adap->params.rev > 0; | ||
2654 | q->coalesce_usecs = 5; | ||
2655 | q->rspq_size = 1024; | ||
2656 | q->fl_size = 4096; | ||
2657 | q->jumbo_size = 512; | ||
2658 | q->txq_size[TXQ_ETH] = 1024; | ||
2659 | q->txq_size[TXQ_OFLD] = 1024; | ||
2660 | q->txq_size[TXQ_CTRL] = 256; | ||
2661 | q->cong_thres = 0; | ||
2662 | } | ||
2663 | |||
2664 | spin_lock_init(&adap->sge.reg_lock); | ||
2665 | } | ||
2666 | |||
2667 | /** | ||
2668 | * t3_get_desc - dump an SGE descriptor for debugging purposes | ||
2669 | * @qs: the queue set | ||
2670 | * @qnum: identifies the specific queue (0..2: Tx, 3:response, 4..5: Rx) | ||
2671 | * @idx: the descriptor index in the queue | ||
2672 | * @data: where to dump the descriptor contents | ||
2673 | * | ||
2674 | * Dumps the contents of a HW descriptor of an SGE queue. Returns the | ||
2675 | * size of the descriptor. | ||
2676 | */ | ||
2677 | int t3_get_desc(const struct sge_qset *qs, unsigned int qnum, unsigned int idx, | ||
2678 | unsigned char *data) | ||
2679 | { | ||
2680 | if (qnum >= 6) | ||
2681 | return -EINVAL; | ||
2682 | |||
2683 | if (qnum < 3) { | ||
2684 | if (!qs->txq[qnum].desc || idx >= qs->txq[qnum].size) | ||
2685 | return -EINVAL; | ||
2686 | memcpy(data, &qs->txq[qnum].desc[idx], sizeof(struct tx_desc)); | ||
2687 | return sizeof(struct tx_desc); | ||
2688 | } | ||
2689 | |||
2690 | if (qnum == 3) { | ||
2691 | if (!qs->rspq.desc || idx >= qs->rspq.size) | ||
2692 | return -EINVAL; | ||
2693 | memcpy(data, &qs->rspq.desc[idx], sizeof(struct rsp_desc)); | ||
2694 | return sizeof(struct rsp_desc); | ||
2695 | } | ||
2696 | |||
2697 | qnum -= 4; | ||
2698 | if (!qs->fl[qnum].desc || idx >= qs->fl[qnum].size) | ||
2699 | return -EINVAL; | ||
2700 | memcpy(data, &qs->fl[qnum].desc[idx], sizeof(struct rx_desc)); | ||
2701 | return sizeof(struct rx_desc); | ||
2702 | } | ||
diff --git a/drivers/net/cxgb3/sge_defs.h b/drivers/net/cxgb3/sge_defs.h new file mode 100644 index 000000000000..514869e26a76 --- /dev/null +++ b/drivers/net/cxgb3/sge_defs.h | |||
@@ -0,0 +1,251 @@ | |||
1 | /* | ||
2 | * This file is automatically generated --- any changes will be lost. | ||
3 | */ | ||
4 | |||
5 | #ifndef _SGE_DEFS_H | ||
6 | #define _SGE_DEFS_H | ||
7 | |||
8 | #define S_EC_CREDITS 0 | ||
9 | #define M_EC_CREDITS 0x7FFF | ||
10 | #define V_EC_CREDITS(x) ((x) << S_EC_CREDITS) | ||
11 | #define G_EC_CREDITS(x) (((x) >> S_EC_CREDITS) & M_EC_CREDITS) | ||
12 | |||
13 | #define S_EC_GTS 15 | ||
14 | #define V_EC_GTS(x) ((x) << S_EC_GTS) | ||
15 | #define F_EC_GTS V_EC_GTS(1U) | ||
16 | |||
17 | #define S_EC_INDEX 16 | ||
18 | #define M_EC_INDEX 0xFFFF | ||
19 | #define V_EC_INDEX(x) ((x) << S_EC_INDEX) | ||
20 | #define G_EC_INDEX(x) (((x) >> S_EC_INDEX) & M_EC_INDEX) | ||
21 | |||
22 | #define S_EC_SIZE 0 | ||
23 | #define M_EC_SIZE 0xFFFF | ||
24 | #define V_EC_SIZE(x) ((x) << S_EC_SIZE) | ||
25 | #define G_EC_SIZE(x) (((x) >> S_EC_SIZE) & M_EC_SIZE) | ||
26 | |||
27 | #define S_EC_BASE_LO 16 | ||
28 | #define M_EC_BASE_LO 0xFFFF | ||
29 | #define V_EC_BASE_LO(x) ((x) << S_EC_BASE_LO) | ||
30 | #define G_EC_BASE_LO(x) (((x) >> S_EC_BASE_LO) & M_EC_BASE_LO) | ||
31 | |||
32 | #define S_EC_BASE_HI 0 | ||
33 | #define M_EC_BASE_HI 0xF | ||
34 | #define V_EC_BASE_HI(x) ((x) << S_EC_BASE_HI) | ||
35 | #define G_EC_BASE_HI(x) (((x) >> S_EC_BASE_HI) & M_EC_BASE_HI) | ||
36 | |||
37 | #define S_EC_RESPQ 4 | ||
38 | #define M_EC_RESPQ 0x7 | ||
39 | #define V_EC_RESPQ(x) ((x) << S_EC_RESPQ) | ||
40 | #define G_EC_RESPQ(x) (((x) >> S_EC_RESPQ) & M_EC_RESPQ) | ||
41 | |||
42 | #define S_EC_TYPE 7 | ||
43 | #define M_EC_TYPE 0x7 | ||
44 | #define V_EC_TYPE(x) ((x) << S_EC_TYPE) | ||
45 | #define G_EC_TYPE(x) (((x) >> S_EC_TYPE) & M_EC_TYPE) | ||
46 | |||
47 | #define S_EC_GEN 10 | ||
48 | #define V_EC_GEN(x) ((x) << S_EC_GEN) | ||
49 | #define F_EC_GEN V_EC_GEN(1U) | ||
50 | |||
51 | #define S_EC_UP_TOKEN 11 | ||
52 | #define M_EC_UP_TOKEN 0xFFFFF | ||
53 | #define V_EC_UP_TOKEN(x) ((x) << S_EC_UP_TOKEN) | ||
54 | #define G_EC_UP_TOKEN(x) (((x) >> S_EC_UP_TOKEN) & M_EC_UP_TOKEN) | ||
55 | |||
56 | #define S_EC_VALID 31 | ||
57 | #define V_EC_VALID(x) ((x) << S_EC_VALID) | ||
58 | #define F_EC_VALID V_EC_VALID(1U) | ||
59 | |||
60 | #define S_RQ_MSI_VEC 20 | ||
61 | #define M_RQ_MSI_VEC 0x3F | ||
62 | #define V_RQ_MSI_VEC(x) ((x) << S_RQ_MSI_VEC) | ||
63 | #define G_RQ_MSI_VEC(x) (((x) >> S_RQ_MSI_VEC) & M_RQ_MSI_VEC) | ||
64 | |||
65 | #define S_RQ_INTR_EN 26 | ||
66 | #define V_RQ_INTR_EN(x) ((x) << S_RQ_INTR_EN) | ||
67 | #define F_RQ_INTR_EN V_RQ_INTR_EN(1U) | ||
68 | |||
69 | #define S_RQ_GEN 28 | ||
70 | #define V_RQ_GEN(x) ((x) << S_RQ_GEN) | ||
71 | #define F_RQ_GEN V_RQ_GEN(1U) | ||
72 | |||
73 | #define S_CQ_INDEX 0 | ||
74 | #define M_CQ_INDEX 0xFFFF | ||
75 | #define V_CQ_INDEX(x) ((x) << S_CQ_INDEX) | ||
76 | #define G_CQ_INDEX(x) (((x) >> S_CQ_INDEX) & M_CQ_INDEX) | ||
77 | |||
78 | #define S_CQ_SIZE 16 | ||
79 | #define M_CQ_SIZE 0xFFFF | ||
80 | #define V_CQ_SIZE(x) ((x) << S_CQ_SIZE) | ||
81 | #define G_CQ_SIZE(x) (((x) >> S_CQ_SIZE) & M_CQ_SIZE) | ||
82 | |||
83 | #define S_CQ_BASE_HI 0 | ||
84 | #define M_CQ_BASE_HI 0xFFFFF | ||
85 | #define V_CQ_BASE_HI(x) ((x) << S_CQ_BASE_HI) | ||
86 | #define G_CQ_BASE_HI(x) (((x) >> S_CQ_BASE_HI) & M_CQ_BASE_HI) | ||
87 | |||
88 | #define S_CQ_RSPQ 20 | ||
89 | #define M_CQ_RSPQ 0x3F | ||
90 | #define V_CQ_RSPQ(x) ((x) << S_CQ_RSPQ) | ||
91 | #define G_CQ_RSPQ(x) (((x) >> S_CQ_RSPQ) & M_CQ_RSPQ) | ||
92 | |||
93 | #define S_CQ_ASYNC_NOTIF 26 | ||
94 | #define V_CQ_ASYNC_NOTIF(x) ((x) << S_CQ_ASYNC_NOTIF) | ||
95 | #define F_CQ_ASYNC_NOTIF V_CQ_ASYNC_NOTIF(1U) | ||
96 | |||
97 | #define S_CQ_ARMED 27 | ||
98 | #define V_CQ_ARMED(x) ((x) << S_CQ_ARMED) | ||
99 | #define F_CQ_ARMED V_CQ_ARMED(1U) | ||
100 | |||
101 | #define S_CQ_ASYNC_NOTIF_SOL 28 | ||
102 | #define V_CQ_ASYNC_NOTIF_SOL(x) ((x) << S_CQ_ASYNC_NOTIF_SOL) | ||
103 | #define F_CQ_ASYNC_NOTIF_SOL V_CQ_ASYNC_NOTIF_SOL(1U) | ||
104 | |||
105 | #define S_CQ_GEN 29 | ||
106 | #define V_CQ_GEN(x) ((x) << S_CQ_GEN) | ||
107 | #define F_CQ_GEN V_CQ_GEN(1U) | ||
108 | |||
109 | #define S_CQ_OVERFLOW_MODE 31 | ||
110 | #define V_CQ_OVERFLOW_MODE(x) ((x) << S_CQ_OVERFLOW_MODE) | ||
111 | #define F_CQ_OVERFLOW_MODE V_CQ_OVERFLOW_MODE(1U) | ||
112 | |||
113 | #define S_CQ_CREDITS 0 | ||
114 | #define M_CQ_CREDITS 0xFFFF | ||
115 | #define V_CQ_CREDITS(x) ((x) << S_CQ_CREDITS) | ||
116 | #define G_CQ_CREDITS(x) (((x) >> S_CQ_CREDITS) & M_CQ_CREDITS) | ||
117 | |||
118 | #define S_CQ_CREDIT_THRES 16 | ||
119 | #define M_CQ_CREDIT_THRES 0x1FFF | ||
120 | #define V_CQ_CREDIT_THRES(x) ((x) << S_CQ_CREDIT_THRES) | ||
121 | #define G_CQ_CREDIT_THRES(x) (((x) >> S_CQ_CREDIT_THRES) & M_CQ_CREDIT_THRES) | ||
122 | |||
123 | #define S_FL_BASE_HI 0 | ||
124 | #define M_FL_BASE_HI 0xFFFFF | ||
125 | #define V_FL_BASE_HI(x) ((x) << S_FL_BASE_HI) | ||
126 | #define G_FL_BASE_HI(x) (((x) >> S_FL_BASE_HI) & M_FL_BASE_HI) | ||
127 | |||
128 | #define S_FL_INDEX_LO 20 | ||
129 | #define M_FL_INDEX_LO 0xFFF | ||
130 | #define V_FL_INDEX_LO(x) ((x) << S_FL_INDEX_LO) | ||
131 | #define G_FL_INDEX_LO(x) (((x) >> S_FL_INDEX_LO) & M_FL_INDEX_LO) | ||
132 | |||
133 | #define S_FL_INDEX_HI 0 | ||
134 | #define M_FL_INDEX_HI 0xF | ||
135 | #define V_FL_INDEX_HI(x) ((x) << S_FL_INDEX_HI) | ||
136 | #define G_FL_INDEX_HI(x) (((x) >> S_FL_INDEX_HI) & M_FL_INDEX_HI) | ||
137 | |||
138 | #define S_FL_SIZE 4 | ||
139 | #define M_FL_SIZE 0xFFFF | ||
140 | #define V_FL_SIZE(x) ((x) << S_FL_SIZE) | ||
141 | #define G_FL_SIZE(x) (((x) >> S_FL_SIZE) & M_FL_SIZE) | ||
142 | |||
143 | #define S_FL_GEN 20 | ||
144 | #define V_FL_GEN(x) ((x) << S_FL_GEN) | ||
145 | #define F_FL_GEN V_FL_GEN(1U) | ||
146 | |||
147 | #define S_FL_ENTRY_SIZE_LO 21 | ||
148 | #define M_FL_ENTRY_SIZE_LO 0x7FF | ||
149 | #define V_FL_ENTRY_SIZE_LO(x) ((x) << S_FL_ENTRY_SIZE_LO) | ||
150 | #define G_FL_ENTRY_SIZE_LO(x) (((x) >> S_FL_ENTRY_SIZE_LO) & M_FL_ENTRY_SIZE_LO) | ||
151 | |||
152 | #define S_FL_ENTRY_SIZE_HI 0 | ||
153 | #define M_FL_ENTRY_SIZE_HI 0x1FFFFF | ||
154 | #define V_FL_ENTRY_SIZE_HI(x) ((x) << S_FL_ENTRY_SIZE_HI) | ||
155 | #define G_FL_ENTRY_SIZE_HI(x) (((x) >> S_FL_ENTRY_SIZE_HI) & M_FL_ENTRY_SIZE_HI) | ||
156 | |||
157 | #define S_FL_CONG_THRES 21 | ||
158 | #define M_FL_CONG_THRES 0x3FF | ||
159 | #define V_FL_CONG_THRES(x) ((x) << S_FL_CONG_THRES) | ||
160 | #define G_FL_CONG_THRES(x) (((x) >> S_FL_CONG_THRES) & M_FL_CONG_THRES) | ||
161 | |||
162 | #define S_FL_GTS 31 | ||
163 | #define V_FL_GTS(x) ((x) << S_FL_GTS) | ||
164 | #define F_FL_GTS V_FL_GTS(1U) | ||
165 | |||
166 | #define S_FLD_GEN1 31 | ||
167 | #define V_FLD_GEN1(x) ((x) << S_FLD_GEN1) | ||
168 | #define F_FLD_GEN1 V_FLD_GEN1(1U) | ||
169 | |||
170 | #define S_FLD_GEN2 0 | ||
171 | #define V_FLD_GEN2(x) ((x) << S_FLD_GEN2) | ||
172 | #define F_FLD_GEN2 V_FLD_GEN2(1U) | ||
173 | |||
174 | #define S_RSPD_TXQ1_CR 0 | ||
175 | #define M_RSPD_TXQ1_CR 0x7F | ||
176 | #define V_RSPD_TXQ1_CR(x) ((x) << S_RSPD_TXQ1_CR) | ||
177 | #define G_RSPD_TXQ1_CR(x) (((x) >> S_RSPD_TXQ1_CR) & M_RSPD_TXQ1_CR) | ||
178 | |||
179 | #define S_RSPD_TXQ1_GTS 7 | ||
180 | #define V_RSPD_TXQ1_GTS(x) ((x) << S_RSPD_TXQ1_GTS) | ||
181 | #define F_RSPD_TXQ1_GTS V_RSPD_TXQ1_GTS(1U) | ||
182 | |||
183 | #define S_RSPD_TXQ2_CR 8 | ||
184 | #define M_RSPD_TXQ2_CR 0x7F | ||
185 | #define V_RSPD_TXQ2_CR(x) ((x) << S_RSPD_TXQ2_CR) | ||
186 | #define G_RSPD_TXQ2_CR(x) (((x) >> S_RSPD_TXQ2_CR) & M_RSPD_TXQ2_CR) | ||
187 | |||
188 | #define S_RSPD_TXQ2_GTS 15 | ||
189 | #define V_RSPD_TXQ2_GTS(x) ((x) << S_RSPD_TXQ2_GTS) | ||
190 | #define F_RSPD_TXQ2_GTS V_RSPD_TXQ2_GTS(1U) | ||
191 | |||
192 | #define S_RSPD_TXQ0_CR 16 | ||
193 | #define M_RSPD_TXQ0_CR 0x7F | ||
194 | #define V_RSPD_TXQ0_CR(x) ((x) << S_RSPD_TXQ0_CR) | ||
195 | #define G_RSPD_TXQ0_CR(x) (((x) >> S_RSPD_TXQ0_CR) & M_RSPD_TXQ0_CR) | ||
196 | |||
197 | #define S_RSPD_TXQ0_GTS 23 | ||
198 | #define V_RSPD_TXQ0_GTS(x) ((x) << S_RSPD_TXQ0_GTS) | ||
199 | #define F_RSPD_TXQ0_GTS V_RSPD_TXQ0_GTS(1U) | ||
200 | |||
201 | #define S_RSPD_EOP 24 | ||
202 | #define V_RSPD_EOP(x) ((x) << S_RSPD_EOP) | ||
203 | #define F_RSPD_EOP V_RSPD_EOP(1U) | ||
204 | |||
205 | #define S_RSPD_SOP 25 | ||
206 | #define V_RSPD_SOP(x) ((x) << S_RSPD_SOP) | ||
207 | #define F_RSPD_SOP V_RSPD_SOP(1U) | ||
208 | |||
209 | #define S_RSPD_ASYNC_NOTIF 26 | ||
210 | #define V_RSPD_ASYNC_NOTIF(x) ((x) << S_RSPD_ASYNC_NOTIF) | ||
211 | #define F_RSPD_ASYNC_NOTIF V_RSPD_ASYNC_NOTIF(1U) | ||
212 | |||
213 | #define S_RSPD_FL0_GTS 27 | ||
214 | #define V_RSPD_FL0_GTS(x) ((x) << S_RSPD_FL0_GTS) | ||
215 | #define F_RSPD_FL0_GTS V_RSPD_FL0_GTS(1U) | ||
216 | |||
217 | #define S_RSPD_FL1_GTS 28 | ||
218 | #define V_RSPD_FL1_GTS(x) ((x) << S_RSPD_FL1_GTS) | ||
219 | #define F_RSPD_FL1_GTS V_RSPD_FL1_GTS(1U) | ||
220 | |||
221 | #define S_RSPD_IMM_DATA_VALID 29 | ||
222 | #define V_RSPD_IMM_DATA_VALID(x) ((x) << S_RSPD_IMM_DATA_VALID) | ||
223 | #define F_RSPD_IMM_DATA_VALID V_RSPD_IMM_DATA_VALID(1U) | ||
224 | |||
225 | #define S_RSPD_OFFLOAD 30 | ||
226 | #define V_RSPD_OFFLOAD(x) ((x) << S_RSPD_OFFLOAD) | ||
227 | #define F_RSPD_OFFLOAD V_RSPD_OFFLOAD(1U) | ||
228 | |||
229 | #define S_RSPD_GEN1 31 | ||
230 | #define V_RSPD_GEN1(x) ((x) << S_RSPD_GEN1) | ||
231 | #define F_RSPD_GEN1 V_RSPD_GEN1(1U) | ||
232 | |||
233 | #define S_RSPD_LEN 0 | ||
234 | #define M_RSPD_LEN 0x7FFFFFFF | ||
235 | #define V_RSPD_LEN(x) ((x) << S_RSPD_LEN) | ||
236 | #define G_RSPD_LEN(x) (((x) >> S_RSPD_LEN) & M_RSPD_LEN) | ||
237 | |||
238 | #define S_RSPD_FLQ 31 | ||
239 | #define V_RSPD_FLQ(x) ((x) << S_RSPD_FLQ) | ||
240 | #define F_RSPD_FLQ V_RSPD_FLQ(1U) | ||
241 | |||
242 | #define S_RSPD_GEN2 0 | ||
243 | #define V_RSPD_GEN2(x) ((x) << S_RSPD_GEN2) | ||
244 | #define F_RSPD_GEN2 V_RSPD_GEN2(1U) | ||
245 | |||
246 | #define S_RSPD_INR_VEC 1 | ||
247 | #define M_RSPD_INR_VEC 0x7F | ||
248 | #define V_RSPD_INR_VEC(x) ((x) << S_RSPD_INR_VEC) | ||
249 | #define G_RSPD_INR_VEC(x) (((x) >> S_RSPD_INR_VEC) & M_RSPD_INR_VEC) | ||
250 | |||
251 | #endif /* _SGE_DEFS_H */ | ||
diff --git a/drivers/net/cxgb3/t3_cpl.h b/drivers/net/cxgb3/t3_cpl.h new file mode 100644 index 000000000000..b0df4ba94e02 --- /dev/null +++ b/drivers/net/cxgb3/t3_cpl.h | |||
@@ -0,0 +1,1426 @@ | |||
1 | /* | ||
2 | * Definitions of the CPL 5 commands and status codes. | ||
3 | * | ||
4 | * Copyright (C) 2004-2006 Chelsio Communications. All rights reserved. | ||
5 | * | ||
6 | * Written by Dimitris Michailidis (dm@chelsio.com) | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, but WITHOUT | ||
9 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
10 | * FITNESS FOR A PARTICULAR PURPOSE. See the LICENSE file included in this | ||
11 | * release for licensing terms and conditions. | ||
12 | */ | ||
13 | |||
14 | #ifndef T3_CPL_H | ||
15 | #define T3_CPL_H | ||
16 | |||
17 | #if !defined(__LITTLE_ENDIAN_BITFIELD) && !defined(__BIG_ENDIAN_BITFIELD) | ||
18 | # include <asm/byteorder.h> | ||
19 | #endif | ||
20 | |||
21 | enum CPL_opcode { | ||
22 | CPL_PASS_OPEN_REQ = 0x1, | ||
23 | CPL_PASS_ACCEPT_RPL = 0x2, | ||
24 | CPL_ACT_OPEN_REQ = 0x3, | ||
25 | CPL_SET_TCB = 0x4, | ||
26 | CPL_SET_TCB_FIELD = 0x5, | ||
27 | CPL_GET_TCB = 0x6, | ||
28 | CPL_PCMD = 0x7, | ||
29 | CPL_CLOSE_CON_REQ = 0x8, | ||
30 | CPL_CLOSE_LISTSRV_REQ = 0x9, | ||
31 | CPL_ABORT_REQ = 0xA, | ||
32 | CPL_ABORT_RPL = 0xB, | ||
33 | CPL_TX_DATA = 0xC, | ||
34 | CPL_RX_DATA_ACK = 0xD, | ||
35 | CPL_TX_PKT = 0xE, | ||
36 | CPL_RTE_DELETE_REQ = 0xF, | ||
37 | CPL_RTE_WRITE_REQ = 0x10, | ||
38 | CPL_RTE_READ_REQ = 0x11, | ||
39 | CPL_L2T_WRITE_REQ = 0x12, | ||
40 | CPL_L2T_READ_REQ = 0x13, | ||
41 | CPL_SMT_WRITE_REQ = 0x14, | ||
42 | CPL_SMT_READ_REQ = 0x15, | ||
43 | CPL_TX_PKT_LSO = 0x16, | ||
44 | CPL_PCMD_READ = 0x17, | ||
45 | CPL_BARRIER = 0x18, | ||
46 | CPL_TID_RELEASE = 0x1A, | ||
47 | |||
48 | CPL_CLOSE_LISTSRV_RPL = 0x20, | ||
49 | CPL_ERROR = 0x21, | ||
50 | CPL_GET_TCB_RPL = 0x22, | ||
51 | CPL_L2T_WRITE_RPL = 0x23, | ||
52 | CPL_PCMD_READ_RPL = 0x24, | ||
53 | CPL_PCMD_RPL = 0x25, | ||
54 | CPL_PEER_CLOSE = 0x26, | ||
55 | CPL_RTE_DELETE_RPL = 0x27, | ||
56 | CPL_RTE_WRITE_RPL = 0x28, | ||
57 | CPL_RX_DDP_COMPLETE = 0x29, | ||
58 | CPL_RX_PHYS_ADDR = 0x2A, | ||
59 | CPL_RX_PKT = 0x2B, | ||
60 | CPL_RX_URG_NOTIFY = 0x2C, | ||
61 | CPL_SET_TCB_RPL = 0x2D, | ||
62 | CPL_SMT_WRITE_RPL = 0x2E, | ||
63 | CPL_TX_DATA_ACK = 0x2F, | ||
64 | |||
65 | CPL_ABORT_REQ_RSS = 0x30, | ||
66 | CPL_ABORT_RPL_RSS = 0x31, | ||
67 | CPL_CLOSE_CON_RPL = 0x32, | ||
68 | CPL_ISCSI_HDR = 0x33, | ||
69 | CPL_L2T_READ_RPL = 0x34, | ||
70 | CPL_RDMA_CQE = 0x35, | ||
71 | CPL_RDMA_CQE_READ_RSP = 0x36, | ||
72 | CPL_RDMA_CQE_ERR = 0x37, | ||
73 | CPL_RTE_READ_RPL = 0x38, | ||
74 | CPL_RX_DATA = 0x39, | ||
75 | |||
76 | CPL_ACT_OPEN_RPL = 0x40, | ||
77 | CPL_PASS_OPEN_RPL = 0x41, | ||
78 | CPL_RX_DATA_DDP = 0x42, | ||
79 | CPL_SMT_READ_RPL = 0x43, | ||
80 | |||
81 | CPL_ACT_ESTABLISH = 0x50, | ||
82 | CPL_PASS_ESTABLISH = 0x51, | ||
83 | |||
84 | CPL_PASS_ACCEPT_REQ = 0x70, | ||
85 | |||
86 | CPL_ASYNC_NOTIF = 0x80, /* fake opcode for async notifications */ | ||
87 | |||
88 | CPL_TX_DMA_ACK = 0xA0, | ||
89 | CPL_RDMA_READ_REQ = 0xA1, | ||
90 | CPL_RDMA_TERMINATE = 0xA2, | ||
91 | CPL_TRACE_PKT = 0xA3, | ||
92 | CPL_RDMA_EC_STATUS = 0xA5, | ||
93 | |||
94 | NUM_CPL_CMDS /* must be last and previous entries must be sorted */ | ||
95 | }; | ||
96 | |||
97 | enum CPL_error { | ||
98 | CPL_ERR_NONE = 0, | ||
99 | CPL_ERR_TCAM_PARITY = 1, | ||
100 | CPL_ERR_TCAM_FULL = 3, | ||
101 | CPL_ERR_CONN_RESET = 20, | ||
102 | CPL_ERR_CONN_EXIST = 22, | ||
103 | CPL_ERR_ARP_MISS = 23, | ||
104 | CPL_ERR_BAD_SYN = 24, | ||
105 | CPL_ERR_CONN_TIMEDOUT = 30, | ||
106 | CPL_ERR_XMIT_TIMEDOUT = 31, | ||
107 | CPL_ERR_PERSIST_TIMEDOUT = 32, | ||
108 | CPL_ERR_FINWAIT2_TIMEDOUT = 33, | ||
109 | CPL_ERR_KEEPALIVE_TIMEDOUT = 34, | ||
110 | CPL_ERR_RTX_NEG_ADVICE = 35, | ||
111 | CPL_ERR_PERSIST_NEG_ADVICE = 36, | ||
112 | CPL_ERR_ABORT_FAILED = 42, | ||
113 | CPL_ERR_GENERAL = 99 | ||
114 | }; | ||
115 | |||
116 | enum { | ||
117 | CPL_CONN_POLICY_AUTO = 0, | ||
118 | CPL_CONN_POLICY_ASK = 1, | ||
119 | CPL_CONN_POLICY_DENY = 3 | ||
120 | }; | ||
121 | |||
122 | enum { | ||
123 | ULP_MODE_NONE = 0, | ||
124 | ULP_MODE_ISCSI = 2, | ||
125 | ULP_MODE_RDMA = 4, | ||
126 | ULP_MODE_TCPDDP = 5 | ||
127 | }; | ||
128 | |||
129 | enum { | ||
130 | ULP_CRC_HEADER = 1 << 0, | ||
131 | ULP_CRC_DATA = 1 << 1 | ||
132 | }; | ||
133 | |||
134 | enum { | ||
135 | CPL_PASS_OPEN_ACCEPT, | ||
136 | CPL_PASS_OPEN_REJECT | ||
137 | }; | ||
138 | |||
139 | enum { | ||
140 | CPL_ABORT_SEND_RST = 0, | ||
141 | CPL_ABORT_NO_RST, | ||
142 | CPL_ABORT_POST_CLOSE_REQ = 2 | ||
143 | }; | ||
144 | |||
145 | enum { /* TX_PKT_LSO ethernet types */ | ||
146 | CPL_ETH_II, | ||
147 | CPL_ETH_II_VLAN, | ||
148 | CPL_ETH_802_3, | ||
149 | CPL_ETH_802_3_VLAN | ||
150 | }; | ||
151 | |||
152 | enum { /* TCP congestion control algorithms */ | ||
153 | CONG_ALG_RENO, | ||
154 | CONG_ALG_TAHOE, | ||
155 | CONG_ALG_NEWRENO, | ||
156 | CONG_ALG_HIGHSPEED | ||
157 | }; | ||
158 | |||
159 | union opcode_tid { | ||
160 | __be32 opcode_tid; | ||
161 | __u8 opcode; | ||
162 | }; | ||
163 | |||
164 | #define S_OPCODE 24 | ||
165 | #define V_OPCODE(x) ((x) << S_OPCODE) | ||
166 | #define G_OPCODE(x) (((x) >> S_OPCODE) & 0xFF) | ||
167 | #define G_TID(x) ((x) & 0xFFFFFF) | ||
168 | |||
169 | /* tid is assumed to be 24-bits */ | ||
170 | #define MK_OPCODE_TID(opcode, tid) (V_OPCODE(opcode) | (tid)) | ||
171 | |||
172 | #define OPCODE_TID(cmd) ((cmd)->ot.opcode_tid) | ||
173 | |||
174 | /* extract the TID from a CPL command */ | ||
175 | #define GET_TID(cmd) (G_TID(ntohl(OPCODE_TID(cmd)))) | ||
176 | |||
177 | struct tcp_options { | ||
178 | __be16 mss; | ||
179 | __u8 wsf; | ||
180 | #if defined(__LITTLE_ENDIAN_BITFIELD) | ||
181 | __u8:5; | ||
182 | __u8 ecn:1; | ||
183 | __u8 sack:1; | ||
184 | __u8 tstamp:1; | ||
185 | #else | ||
186 | __u8 tstamp:1; | ||
187 | __u8 sack:1; | ||
188 | __u8 ecn:1; | ||
189 | __u8:5; | ||
190 | #endif | ||
191 | }; | ||
192 | |||
193 | struct rss_header { | ||
194 | __u8 opcode; | ||
195 | #if defined(__LITTLE_ENDIAN_BITFIELD) | ||
196 | __u8 cpu_idx:6; | ||
197 | __u8 hash_type:2; | ||
198 | #else | ||
199 | __u8 hash_type:2; | ||
200 | __u8 cpu_idx:6; | ||
201 | #endif | ||
202 | __be16 cq_idx; | ||
203 | __be32 rss_hash_val; | ||
204 | }; | ||
205 | |||
206 | #ifndef CHELSIO_FW | ||
207 | struct work_request_hdr { | ||
208 | __be32 wr_hi; | ||
209 | __be32 wr_lo; | ||
210 | }; | ||
211 | |||
212 | /* wr_hi fields */ | ||
213 | #define S_WR_SGE_CREDITS 0 | ||
214 | #define M_WR_SGE_CREDITS 0xFF | ||
215 | #define V_WR_SGE_CREDITS(x) ((x) << S_WR_SGE_CREDITS) | ||
216 | #define G_WR_SGE_CREDITS(x) (((x) >> S_WR_SGE_CREDITS) & M_WR_SGE_CREDITS) | ||
217 | |||
218 | #define S_WR_SGLSFLT 8 | ||
219 | #define M_WR_SGLSFLT 0xFF | ||
220 | #define V_WR_SGLSFLT(x) ((x) << S_WR_SGLSFLT) | ||
221 | #define G_WR_SGLSFLT(x) (((x) >> S_WR_SGLSFLT) & M_WR_SGLSFLT) | ||
222 | |||
223 | #define S_WR_BCNTLFLT 16 | ||
224 | #define M_WR_BCNTLFLT 0xF | ||
225 | #define V_WR_BCNTLFLT(x) ((x) << S_WR_BCNTLFLT) | ||
226 | #define G_WR_BCNTLFLT(x) (((x) >> S_WR_BCNTLFLT) & M_WR_BCNTLFLT) | ||
227 | |||
228 | #define S_WR_DATATYPE 20 | ||
229 | #define V_WR_DATATYPE(x) ((x) << S_WR_DATATYPE) | ||
230 | #define F_WR_DATATYPE V_WR_DATATYPE(1U) | ||
231 | |||
232 | #define S_WR_COMPL 21 | ||
233 | #define V_WR_COMPL(x) ((x) << S_WR_COMPL) | ||
234 | #define F_WR_COMPL V_WR_COMPL(1U) | ||
235 | |||
236 | #define S_WR_EOP 22 | ||
237 | #define V_WR_EOP(x) ((x) << S_WR_EOP) | ||
238 | #define F_WR_EOP V_WR_EOP(1U) | ||
239 | |||
240 | #define S_WR_SOP 23 | ||
241 | #define V_WR_SOP(x) ((x) << S_WR_SOP) | ||
242 | #define F_WR_SOP V_WR_SOP(1U) | ||
243 | |||
244 | #define S_WR_OP 24 | ||
245 | #define M_WR_OP 0xFF | ||
246 | #define V_WR_OP(x) ((x) << S_WR_OP) | ||
247 | #define G_WR_OP(x) (((x) >> S_WR_OP) & M_WR_OP) | ||
248 | |||
249 | /* wr_lo fields */ | ||
250 | #define S_WR_LEN 0 | ||
251 | #define M_WR_LEN 0xFF | ||
252 | #define V_WR_LEN(x) ((x) << S_WR_LEN) | ||
253 | #define G_WR_LEN(x) (((x) >> S_WR_LEN) & M_WR_LEN) | ||
254 | |||
255 | #define S_WR_TID 8 | ||
256 | #define M_WR_TID 0xFFFFF | ||
257 | #define V_WR_TID(x) ((x) << S_WR_TID) | ||
258 | #define G_WR_TID(x) (((x) >> S_WR_TID) & M_WR_TID) | ||
259 | |||
260 | #define S_WR_CR_FLUSH 30 | ||
261 | #define V_WR_CR_FLUSH(x) ((x) << S_WR_CR_FLUSH) | ||
262 | #define F_WR_CR_FLUSH V_WR_CR_FLUSH(1U) | ||
263 | |||
264 | #define S_WR_GEN 31 | ||
265 | #define V_WR_GEN(x) ((x) << S_WR_GEN) | ||
266 | #define F_WR_GEN V_WR_GEN(1U) | ||
267 | |||
268 | # define WR_HDR struct work_request_hdr wr | ||
269 | # define RSS_HDR | ||
270 | #else | ||
271 | # define WR_HDR | ||
272 | # define RSS_HDR struct rss_header rss_hdr; | ||
273 | #endif | ||
274 | |||
275 | /* option 0 lower-half fields */ | ||
276 | #define S_CPL_STATUS 0 | ||
277 | #define M_CPL_STATUS 0xFF | ||
278 | #define V_CPL_STATUS(x) ((x) << S_CPL_STATUS) | ||
279 | #define G_CPL_STATUS(x) (((x) >> S_CPL_STATUS) & M_CPL_STATUS) | ||
280 | |||
281 | #define S_INJECT_TIMER 6 | ||
282 | #define V_INJECT_TIMER(x) ((x) << S_INJECT_TIMER) | ||
283 | #define F_INJECT_TIMER V_INJECT_TIMER(1U) | ||
284 | |||
285 | #define S_NO_OFFLOAD 7 | ||
286 | #define V_NO_OFFLOAD(x) ((x) << S_NO_OFFLOAD) | ||
287 | #define F_NO_OFFLOAD V_NO_OFFLOAD(1U) | ||
288 | |||
289 | #define S_ULP_MODE 8 | ||
290 | #define M_ULP_MODE 0xF | ||
291 | #define V_ULP_MODE(x) ((x) << S_ULP_MODE) | ||
292 | #define G_ULP_MODE(x) (((x) >> S_ULP_MODE) & M_ULP_MODE) | ||
293 | |||
294 | #define S_RCV_BUFSIZ 12 | ||
295 | #define M_RCV_BUFSIZ 0x3FFF | ||
296 | #define V_RCV_BUFSIZ(x) ((x) << S_RCV_BUFSIZ) | ||
297 | #define G_RCV_BUFSIZ(x) (((x) >> S_RCV_BUFSIZ) & M_RCV_BUFSIZ) | ||
298 | |||
299 | #define S_TOS 26 | ||
300 | #define M_TOS 0x3F | ||
301 | #define V_TOS(x) ((x) << S_TOS) | ||
302 | #define G_TOS(x) (((x) >> S_TOS) & M_TOS) | ||
303 | |||
304 | /* option 0 upper-half fields */ | ||
305 | #define S_DELACK 0 | ||
306 | #define V_DELACK(x) ((x) << S_DELACK) | ||
307 | #define F_DELACK V_DELACK(1U) | ||
308 | |||
309 | #define S_NO_CONG 1 | ||
310 | #define V_NO_CONG(x) ((x) << S_NO_CONG) | ||
311 | #define F_NO_CONG V_NO_CONG(1U) | ||
312 | |||
313 | #define S_SRC_MAC_SEL 2 | ||
314 | #define M_SRC_MAC_SEL 0x3 | ||
315 | #define V_SRC_MAC_SEL(x) ((x) << S_SRC_MAC_SEL) | ||
316 | #define G_SRC_MAC_SEL(x) (((x) >> S_SRC_MAC_SEL) & M_SRC_MAC_SEL) | ||
317 | |||
318 | #define S_L2T_IDX 4 | ||
319 | #define M_L2T_IDX 0x7FF | ||
320 | #define V_L2T_IDX(x) ((x) << S_L2T_IDX) | ||
321 | #define G_L2T_IDX(x) (((x) >> S_L2T_IDX) & M_L2T_IDX) | ||
322 | |||
323 | #define S_TX_CHANNEL 15 | ||
324 | #define V_TX_CHANNEL(x) ((x) << S_TX_CHANNEL) | ||
325 | #define F_TX_CHANNEL V_TX_CHANNEL(1U) | ||
326 | |||
327 | #define S_TCAM_BYPASS 16 | ||
328 | #define V_TCAM_BYPASS(x) ((x) << S_TCAM_BYPASS) | ||
329 | #define F_TCAM_BYPASS V_TCAM_BYPASS(1U) | ||
330 | |||
331 | #define S_NAGLE 17 | ||
332 | #define V_NAGLE(x) ((x) << S_NAGLE) | ||
333 | #define F_NAGLE V_NAGLE(1U) | ||
334 | |||
335 | #define S_WND_SCALE 18 | ||
336 | #define M_WND_SCALE 0xF | ||
337 | #define V_WND_SCALE(x) ((x) << S_WND_SCALE) | ||
338 | #define G_WND_SCALE(x) (((x) >> S_WND_SCALE) & M_WND_SCALE) | ||
339 | |||
340 | #define S_KEEP_ALIVE 22 | ||
341 | #define V_KEEP_ALIVE(x) ((x) << S_KEEP_ALIVE) | ||
342 | #define F_KEEP_ALIVE V_KEEP_ALIVE(1U) | ||
343 | |||
344 | #define S_MAX_RETRANS 23 | ||
345 | #define M_MAX_RETRANS 0xF | ||
346 | #define V_MAX_RETRANS(x) ((x) << S_MAX_RETRANS) | ||
347 | #define G_MAX_RETRANS(x) (((x) >> S_MAX_RETRANS) & M_MAX_RETRANS) | ||
348 | |||
349 | #define S_MAX_RETRANS_OVERRIDE 27 | ||
350 | #define V_MAX_RETRANS_OVERRIDE(x) ((x) << S_MAX_RETRANS_OVERRIDE) | ||
351 | #define F_MAX_RETRANS_OVERRIDE V_MAX_RETRANS_OVERRIDE(1U) | ||
352 | |||
353 | #define S_MSS_IDX 28 | ||
354 | #define M_MSS_IDX 0xF | ||
355 | #define V_MSS_IDX(x) ((x) << S_MSS_IDX) | ||
356 | #define G_MSS_IDX(x) (((x) >> S_MSS_IDX) & M_MSS_IDX) | ||
357 | |||
358 | /* option 1 fields */ | ||
359 | #define S_RSS_ENABLE 0 | ||
360 | #define V_RSS_ENABLE(x) ((x) << S_RSS_ENABLE) | ||
361 | #define F_RSS_ENABLE V_RSS_ENABLE(1U) | ||
362 | |||
363 | #define S_RSS_MASK_LEN 1 | ||
364 | #define M_RSS_MASK_LEN 0x7 | ||
365 | #define V_RSS_MASK_LEN(x) ((x) << S_RSS_MASK_LEN) | ||
366 | #define G_RSS_MASK_LEN(x) (((x) >> S_RSS_MASK_LEN) & M_RSS_MASK_LEN) | ||
367 | |||
368 | #define S_CPU_IDX 4 | ||
369 | #define M_CPU_IDX 0x3F | ||
370 | #define V_CPU_IDX(x) ((x) << S_CPU_IDX) | ||
371 | #define G_CPU_IDX(x) (((x) >> S_CPU_IDX) & M_CPU_IDX) | ||
372 | |||
373 | #define S_MAC_MATCH_VALID 18 | ||
374 | #define V_MAC_MATCH_VALID(x) ((x) << S_MAC_MATCH_VALID) | ||
375 | #define F_MAC_MATCH_VALID V_MAC_MATCH_VALID(1U) | ||
376 | |||
377 | #define S_CONN_POLICY 19 | ||
378 | #define M_CONN_POLICY 0x3 | ||
379 | #define V_CONN_POLICY(x) ((x) << S_CONN_POLICY) | ||
380 | #define G_CONN_POLICY(x) (((x) >> S_CONN_POLICY) & M_CONN_POLICY) | ||
381 | |||
382 | #define S_SYN_DEFENSE 21 | ||
383 | #define V_SYN_DEFENSE(x) ((x) << S_SYN_DEFENSE) | ||
384 | #define F_SYN_DEFENSE V_SYN_DEFENSE(1U) | ||
385 | |||
386 | #define S_VLAN_PRI 22 | ||
387 | #define M_VLAN_PRI 0x3 | ||
388 | #define V_VLAN_PRI(x) ((x) << S_VLAN_PRI) | ||
389 | #define G_VLAN_PRI(x) (((x) >> S_VLAN_PRI) & M_VLAN_PRI) | ||
390 | |||
391 | #define S_VLAN_PRI_VALID 24 | ||
392 | #define V_VLAN_PRI_VALID(x) ((x) << S_VLAN_PRI_VALID) | ||
393 | #define F_VLAN_PRI_VALID V_VLAN_PRI_VALID(1U) | ||
394 | |||
395 | #define S_PKT_TYPE 25 | ||
396 | #define M_PKT_TYPE 0x3 | ||
397 | #define V_PKT_TYPE(x) ((x) << S_PKT_TYPE) | ||
398 | #define G_PKT_TYPE(x) (((x) >> S_PKT_TYPE) & M_PKT_TYPE) | ||
399 | |||
400 | #define S_MAC_MATCH 27 | ||
401 | #define M_MAC_MATCH 0x1F | ||
402 | #define V_MAC_MATCH(x) ((x) << S_MAC_MATCH) | ||
403 | #define G_MAC_MATCH(x) (((x) >> S_MAC_MATCH) & M_MAC_MATCH) | ||
404 | |||
405 | /* option 2 fields */ | ||
406 | #define S_CPU_INDEX 0 | ||
407 | #define M_CPU_INDEX 0x7F | ||
408 | #define V_CPU_INDEX(x) ((x) << S_CPU_INDEX) | ||
409 | #define G_CPU_INDEX(x) (((x) >> S_CPU_INDEX) & M_CPU_INDEX) | ||
410 | |||
411 | #define S_CPU_INDEX_VALID 7 | ||
412 | #define V_CPU_INDEX_VALID(x) ((x) << S_CPU_INDEX_VALID) | ||
413 | #define F_CPU_INDEX_VALID V_CPU_INDEX_VALID(1U) | ||
414 | |||
415 | #define S_RX_COALESCE 8 | ||
416 | #define M_RX_COALESCE 0x3 | ||
417 | #define V_RX_COALESCE(x) ((x) << S_RX_COALESCE) | ||
418 | #define G_RX_COALESCE(x) (((x) >> S_RX_COALESCE) & M_RX_COALESCE) | ||
419 | |||
420 | #define S_RX_COALESCE_VALID 10 | ||
421 | #define V_RX_COALESCE_VALID(x) ((x) << S_RX_COALESCE_VALID) | ||
422 | #define F_RX_COALESCE_VALID V_RX_COALESCE_VALID(1U) | ||
423 | |||
424 | #define S_CONG_CONTROL_FLAVOR 11 | ||
425 | #define M_CONG_CONTROL_FLAVOR 0x3 | ||
426 | #define V_CONG_CONTROL_FLAVOR(x) ((x) << S_CONG_CONTROL_FLAVOR) | ||
427 | #define G_CONG_CONTROL_FLAVOR(x) (((x) >> S_CONG_CONTROL_FLAVOR) & M_CONG_CONTROL_FLAVOR) | ||
428 | |||
429 | #define S_PACING_FLAVOR 13 | ||
430 | #define M_PACING_FLAVOR 0x3 | ||
431 | #define V_PACING_FLAVOR(x) ((x) << S_PACING_FLAVOR) | ||
432 | #define G_PACING_FLAVOR(x) (((x) >> S_PACING_FLAVOR) & M_PACING_FLAVOR) | ||
433 | |||
434 | #define S_FLAVORS_VALID 15 | ||
435 | #define V_FLAVORS_VALID(x) ((x) << S_FLAVORS_VALID) | ||
436 | #define F_FLAVORS_VALID V_FLAVORS_VALID(1U) | ||
437 | |||
438 | #define S_RX_FC_DISABLE 16 | ||
439 | #define V_RX_FC_DISABLE(x) ((x) << S_RX_FC_DISABLE) | ||
440 | #define F_RX_FC_DISABLE V_RX_FC_DISABLE(1U) | ||
441 | |||
442 | #define S_RX_FC_VALID 17 | ||
443 | #define V_RX_FC_VALID(x) ((x) << S_RX_FC_VALID) | ||
444 | #define F_RX_FC_VALID V_RX_FC_VALID(1U) | ||
445 | |||
446 | struct cpl_pass_open_req { | ||
447 | WR_HDR; | ||
448 | union opcode_tid ot; | ||
449 | __be16 local_port; | ||
450 | __be16 peer_port; | ||
451 | __be32 local_ip; | ||
452 | __be32 peer_ip; | ||
453 | __be32 opt0h; | ||
454 | __be32 opt0l; | ||
455 | __be32 peer_netmask; | ||
456 | __be32 opt1; | ||
457 | }; | ||
458 | |||
459 | struct cpl_pass_open_rpl { | ||
460 | RSS_HDR union opcode_tid ot; | ||
461 | __be16 local_port; | ||
462 | __be16 peer_port; | ||
463 | __be32 local_ip; | ||
464 | __be32 peer_ip; | ||
465 | __u8 resvd[7]; | ||
466 | __u8 status; | ||
467 | }; | ||
468 | |||
469 | struct cpl_pass_establish { | ||
470 | RSS_HDR union opcode_tid ot; | ||
471 | __be16 local_port; | ||
472 | __be16 peer_port; | ||
473 | __be32 local_ip; | ||
474 | __be32 peer_ip; | ||
475 | __be32 tos_tid; | ||
476 | __be16 l2t_idx; | ||
477 | __be16 tcp_opt; | ||
478 | __be32 snd_isn; | ||
479 | __be32 rcv_isn; | ||
480 | }; | ||
481 | |||
482 | /* cpl_pass_establish.tos_tid fields */ | ||
483 | #define S_PASS_OPEN_TID 0 | ||
484 | #define M_PASS_OPEN_TID 0xFFFFFF | ||
485 | #define V_PASS_OPEN_TID(x) ((x) << S_PASS_OPEN_TID) | ||
486 | #define G_PASS_OPEN_TID(x) (((x) >> S_PASS_OPEN_TID) & M_PASS_OPEN_TID) | ||
487 | |||
488 | #define S_PASS_OPEN_TOS 24 | ||
489 | #define M_PASS_OPEN_TOS 0xFF | ||
490 | #define V_PASS_OPEN_TOS(x) ((x) << S_PASS_OPEN_TOS) | ||
491 | #define G_PASS_OPEN_TOS(x) (((x) >> S_PASS_OPEN_TOS) & M_PASS_OPEN_TOS) | ||
492 | |||
493 | /* cpl_pass_establish.l2t_idx fields */ | ||
494 | #define S_L2T_IDX16 5 | ||
495 | #define M_L2T_IDX16 0x7FF | ||
496 | #define V_L2T_IDX16(x) ((x) << S_L2T_IDX16) | ||
497 | #define G_L2T_IDX16(x) (((x) >> S_L2T_IDX16) & M_L2T_IDX16) | ||
498 | |||
499 | /* cpl_pass_establish.tcp_opt fields (also applies act_open_establish) */ | ||
500 | #define G_TCPOPT_WSCALE_OK(x) (((x) >> 5) & 1) | ||
501 | #define G_TCPOPT_SACK(x) (((x) >> 6) & 1) | ||
502 | #define G_TCPOPT_TSTAMP(x) (((x) >> 7) & 1) | ||
503 | #define G_TCPOPT_SND_WSCALE(x) (((x) >> 8) & 0xf) | ||
504 | #define G_TCPOPT_MSS(x) (((x) >> 12) & 0xf) | ||
505 | |||
506 | struct cpl_pass_accept_req { | ||
507 | RSS_HDR union opcode_tid ot; | ||
508 | __be16 local_port; | ||
509 | __be16 peer_port; | ||
510 | __be32 local_ip; | ||
511 | __be32 peer_ip; | ||
512 | __be32 tos_tid; | ||
513 | struct tcp_options tcp_options; | ||
514 | __u8 dst_mac[6]; | ||
515 | __be16 vlan_tag; | ||
516 | __u8 src_mac[6]; | ||
517 | #if defined(__LITTLE_ENDIAN_BITFIELD) | ||
518 | __u8:3; | ||
519 | __u8 addr_idx:3; | ||
520 | __u8 port_idx:1; | ||
521 | __u8 exact_match:1; | ||
522 | #else | ||
523 | __u8 exact_match:1; | ||
524 | __u8 port_idx:1; | ||
525 | __u8 addr_idx:3; | ||
526 | __u8:3; | ||
527 | #endif | ||
528 | __u8 rsvd; | ||
529 | __be32 rcv_isn; | ||
530 | __be32 rsvd2; | ||
531 | }; | ||
532 | |||
533 | struct cpl_pass_accept_rpl { | ||
534 | WR_HDR; | ||
535 | union opcode_tid ot; | ||
536 | __be32 opt2; | ||
537 | __be32 rsvd; | ||
538 | __be32 peer_ip; | ||
539 | __be32 opt0h; | ||
540 | __be32 opt0l_status; | ||
541 | }; | ||
542 | |||
543 | struct cpl_act_open_req { | ||
544 | WR_HDR; | ||
545 | union opcode_tid ot; | ||
546 | __be16 local_port; | ||
547 | __be16 peer_port; | ||
548 | __be32 local_ip; | ||
549 | __be32 peer_ip; | ||
550 | __be32 opt0h; | ||
551 | __be32 opt0l; | ||
552 | __be32 params; | ||
553 | __be32 opt2; | ||
554 | }; | ||
555 | |||
556 | /* cpl_act_open_req.params fields */ | ||
557 | #define S_AOPEN_VLAN_PRI 9 | ||
558 | #define M_AOPEN_VLAN_PRI 0x3 | ||
559 | #define V_AOPEN_VLAN_PRI(x) ((x) << S_AOPEN_VLAN_PRI) | ||
560 | #define G_AOPEN_VLAN_PRI(x) (((x) >> S_AOPEN_VLAN_PRI) & M_AOPEN_VLAN_PRI) | ||
561 | |||
562 | #define S_AOPEN_VLAN_PRI_VALID 11 | ||
563 | #define V_AOPEN_VLAN_PRI_VALID(x) ((x) << S_AOPEN_VLAN_PRI_VALID) | ||
564 | #define F_AOPEN_VLAN_PRI_VALID V_AOPEN_VLAN_PRI_VALID(1U) | ||
565 | |||
566 | #define S_AOPEN_PKT_TYPE 12 | ||
567 | #define M_AOPEN_PKT_TYPE 0x3 | ||
568 | #define V_AOPEN_PKT_TYPE(x) ((x) << S_AOPEN_PKT_TYPE) | ||
569 | #define G_AOPEN_PKT_TYPE(x) (((x) >> S_AOPEN_PKT_TYPE) & M_AOPEN_PKT_TYPE) | ||
570 | |||
571 | #define S_AOPEN_MAC_MATCH 14 | ||
572 | #define M_AOPEN_MAC_MATCH 0x1F | ||
573 | #define V_AOPEN_MAC_MATCH(x) ((x) << S_AOPEN_MAC_MATCH) | ||
574 | #define G_AOPEN_MAC_MATCH(x) (((x) >> S_AOPEN_MAC_MATCH) & M_AOPEN_MAC_MATCH) | ||
575 | |||
576 | #define S_AOPEN_MAC_MATCH_VALID 19 | ||
577 | #define V_AOPEN_MAC_MATCH_VALID(x) ((x) << S_AOPEN_MAC_MATCH_VALID) | ||
578 | #define F_AOPEN_MAC_MATCH_VALID V_AOPEN_MAC_MATCH_VALID(1U) | ||
579 | |||
580 | #define S_AOPEN_IFF_VLAN 20 | ||
581 | #define M_AOPEN_IFF_VLAN 0xFFF | ||
582 | #define V_AOPEN_IFF_VLAN(x) ((x) << S_AOPEN_IFF_VLAN) | ||
583 | #define G_AOPEN_IFF_VLAN(x) (((x) >> S_AOPEN_IFF_VLAN) & M_AOPEN_IFF_VLAN) | ||
584 | |||
585 | struct cpl_act_open_rpl { | ||
586 | RSS_HDR union opcode_tid ot; | ||
587 | __be16 local_port; | ||
588 | __be16 peer_port; | ||
589 | __be32 local_ip; | ||
590 | __be32 peer_ip; | ||
591 | __be32 atid; | ||
592 | __u8 rsvd[3]; | ||
593 | __u8 status; | ||
594 | }; | ||
595 | |||
596 | struct cpl_act_establish { | ||
597 | RSS_HDR union opcode_tid ot; | ||
598 | __be16 local_port; | ||
599 | __be16 peer_port; | ||
600 | __be32 local_ip; | ||
601 | __be32 peer_ip; | ||
602 | __be32 tos_tid; | ||
603 | __be16 l2t_idx; | ||
604 | __be16 tcp_opt; | ||
605 | __be32 snd_isn; | ||
606 | __be32 rcv_isn; | ||
607 | }; | ||
608 | |||
609 | struct cpl_get_tcb { | ||
610 | WR_HDR; | ||
611 | union opcode_tid ot; | ||
612 | __be16 cpuno; | ||
613 | __be16 rsvd; | ||
614 | }; | ||
615 | |||
616 | struct cpl_get_tcb_rpl { | ||
617 | RSS_HDR union opcode_tid ot; | ||
618 | __u8 rsvd; | ||
619 | __u8 status; | ||
620 | __be16 len; | ||
621 | }; | ||
622 | |||
623 | struct cpl_set_tcb { | ||
624 | WR_HDR; | ||
625 | union opcode_tid ot; | ||
626 | __u8 reply; | ||
627 | __u8 cpu_idx; | ||
628 | __be16 len; | ||
629 | }; | ||
630 | |||
631 | /* cpl_set_tcb.reply fields */ | ||
632 | #define S_NO_REPLY 7 | ||
633 | #define V_NO_REPLY(x) ((x) << S_NO_REPLY) | ||
634 | #define F_NO_REPLY V_NO_REPLY(1U) | ||
635 | |||
636 | struct cpl_set_tcb_field { | ||
637 | WR_HDR; | ||
638 | union opcode_tid ot; | ||
639 | __u8 reply; | ||
640 | __u8 cpu_idx; | ||
641 | __be16 word; | ||
642 | __be64 mask; | ||
643 | __be64 val; | ||
644 | }; | ||
645 | |||
646 | struct cpl_set_tcb_rpl { | ||
647 | RSS_HDR union opcode_tid ot; | ||
648 | __u8 rsvd[3]; | ||
649 | __u8 status; | ||
650 | }; | ||
651 | |||
652 | struct cpl_pcmd { | ||
653 | WR_HDR; | ||
654 | union opcode_tid ot; | ||
655 | __u8 rsvd[3]; | ||
656 | #if defined(__LITTLE_ENDIAN_BITFIELD) | ||
657 | __u8 src:1; | ||
658 | __u8 bundle:1; | ||
659 | __u8 channel:1; | ||
660 | __u8:5; | ||
661 | #else | ||
662 | __u8:5; | ||
663 | __u8 channel:1; | ||
664 | __u8 bundle:1; | ||
665 | __u8 src:1; | ||
666 | #endif | ||
667 | __be32 pcmd_parm[2]; | ||
668 | }; | ||
669 | |||
670 | struct cpl_pcmd_reply { | ||
671 | RSS_HDR union opcode_tid ot; | ||
672 | __u8 status; | ||
673 | __u8 rsvd; | ||
674 | __be16 len; | ||
675 | }; | ||
676 | |||
677 | struct cpl_close_con_req { | ||
678 | WR_HDR; | ||
679 | union opcode_tid ot; | ||
680 | __be32 rsvd; | ||
681 | }; | ||
682 | |||
683 | struct cpl_close_con_rpl { | ||
684 | RSS_HDR union opcode_tid ot; | ||
685 | __u8 rsvd[3]; | ||
686 | __u8 status; | ||
687 | __be32 snd_nxt; | ||
688 | __be32 rcv_nxt; | ||
689 | }; | ||
690 | |||
691 | struct cpl_close_listserv_req { | ||
692 | WR_HDR; | ||
693 | union opcode_tid ot; | ||
694 | __u8 rsvd0; | ||
695 | __u8 cpu_idx; | ||
696 | __be16 rsvd1; | ||
697 | }; | ||
698 | |||
699 | struct cpl_close_listserv_rpl { | ||
700 | RSS_HDR union opcode_tid ot; | ||
701 | __u8 rsvd[3]; | ||
702 | __u8 status; | ||
703 | }; | ||
704 | |||
705 | struct cpl_abort_req_rss { | ||
706 | RSS_HDR union opcode_tid ot; | ||
707 | __be32 rsvd0; | ||
708 | __u8 rsvd1; | ||
709 | __u8 status; | ||
710 | __u8 rsvd2[6]; | ||
711 | }; | ||
712 | |||
713 | struct cpl_abort_req { | ||
714 | WR_HDR; | ||
715 | union opcode_tid ot; | ||
716 | __be32 rsvd0; | ||
717 | __u8 rsvd1; | ||
718 | __u8 cmd; | ||
719 | __u8 rsvd2[6]; | ||
720 | }; | ||
721 | |||
722 | struct cpl_abort_rpl_rss { | ||
723 | RSS_HDR union opcode_tid ot; | ||
724 | __be32 rsvd0; | ||
725 | __u8 rsvd1; | ||
726 | __u8 status; | ||
727 | __u8 rsvd2[6]; | ||
728 | }; | ||
729 | |||
730 | struct cpl_abort_rpl { | ||
731 | WR_HDR; | ||
732 | union opcode_tid ot; | ||
733 | __be32 rsvd0; | ||
734 | __u8 rsvd1; | ||
735 | __u8 cmd; | ||
736 | __u8 rsvd2[6]; | ||
737 | }; | ||
738 | |||
739 | struct cpl_peer_close { | ||
740 | RSS_HDR union opcode_tid ot; | ||
741 | __be32 rcv_nxt; | ||
742 | }; | ||
743 | |||
744 | struct tx_data_wr { | ||
745 | __be32 wr_hi; | ||
746 | __be32 wr_lo; | ||
747 | __be32 len; | ||
748 | __be32 flags; | ||
749 | __be32 sndseq; | ||
750 | __be32 param; | ||
751 | }; | ||
752 | |||
753 | /* tx_data_wr.param fields */ | ||
754 | #define S_TX_PORT 0 | ||
755 | #define M_TX_PORT 0x7 | ||
756 | #define V_TX_PORT(x) ((x) << S_TX_PORT) | ||
757 | #define G_TX_PORT(x) (((x) >> S_TX_PORT) & M_TX_PORT) | ||
758 | |||
759 | #define S_TX_MSS 4 | ||
760 | #define M_TX_MSS 0xF | ||
761 | #define V_TX_MSS(x) ((x) << S_TX_MSS) | ||
762 | #define G_TX_MSS(x) (((x) >> S_TX_MSS) & M_TX_MSS) | ||
763 | |||
764 | #define S_TX_QOS 8 | ||
765 | #define M_TX_QOS 0xFF | ||
766 | #define V_TX_QOS(x) ((x) << S_TX_QOS) | ||
767 | #define G_TX_QOS(x) (((x) >> S_TX_QOS) & M_TX_QOS) | ||
768 | |||
769 | #define S_TX_SNDBUF 16 | ||
770 | #define M_TX_SNDBUF 0xFFFF | ||
771 | #define V_TX_SNDBUF(x) ((x) << S_TX_SNDBUF) | ||
772 | #define G_TX_SNDBUF(x) (((x) >> S_TX_SNDBUF) & M_TX_SNDBUF) | ||
773 | |||
774 | struct cpl_tx_data { | ||
775 | union opcode_tid ot; | ||
776 | __be32 len; | ||
777 | __be32 rsvd; | ||
778 | __be16 urg; | ||
779 | __be16 flags; | ||
780 | }; | ||
781 | |||
782 | /* cpl_tx_data.flags fields */ | ||
783 | #define S_TX_ULP_SUBMODE 6 | ||
784 | #define M_TX_ULP_SUBMODE 0xF | ||
785 | #define V_TX_ULP_SUBMODE(x) ((x) << S_TX_ULP_SUBMODE) | ||
786 | #define G_TX_ULP_SUBMODE(x) (((x) >> S_TX_ULP_SUBMODE) & M_TX_ULP_SUBMODE) | ||
787 | |||
788 | #define S_TX_ULP_MODE 10 | ||
789 | #define M_TX_ULP_MODE 0xF | ||
790 | #define V_TX_ULP_MODE(x) ((x) << S_TX_ULP_MODE) | ||
791 | #define G_TX_ULP_MODE(x) (((x) >> S_TX_ULP_MODE) & M_TX_ULP_MODE) | ||
792 | |||
793 | #define S_TX_SHOVE 14 | ||
794 | #define V_TX_SHOVE(x) ((x) << S_TX_SHOVE) | ||
795 | #define F_TX_SHOVE V_TX_SHOVE(1U) | ||
796 | |||
797 | #define S_TX_MORE 15 | ||
798 | #define V_TX_MORE(x) ((x) << S_TX_MORE) | ||
799 | #define F_TX_MORE V_TX_MORE(1U) | ||
800 | |||
801 | /* additional tx_data_wr.flags fields */ | ||
802 | #define S_TX_CPU_IDX 0 | ||
803 | #define M_TX_CPU_IDX 0x3F | ||
804 | #define V_TX_CPU_IDX(x) ((x) << S_TX_CPU_IDX) | ||
805 | #define G_TX_CPU_IDX(x) (((x) >> S_TX_CPU_IDX) & M_TX_CPU_IDX) | ||
806 | |||
807 | #define S_TX_URG 16 | ||
808 | #define V_TX_URG(x) ((x) << S_TX_URG) | ||
809 | #define F_TX_URG V_TX_URG(1U) | ||
810 | |||
811 | #define S_TX_CLOSE 17 | ||
812 | #define V_TX_CLOSE(x) ((x) << S_TX_CLOSE) | ||
813 | #define F_TX_CLOSE V_TX_CLOSE(1U) | ||
814 | |||
815 | #define S_TX_INIT 18 | ||
816 | #define V_TX_INIT(x) ((x) << S_TX_INIT) | ||
817 | #define F_TX_INIT V_TX_INIT(1U) | ||
818 | |||
819 | #define S_TX_IMM_ACK 19 | ||
820 | #define V_TX_IMM_ACK(x) ((x) << S_TX_IMM_ACK) | ||
821 | #define F_TX_IMM_ACK V_TX_IMM_ACK(1U) | ||
822 | |||
823 | #define S_TX_IMM_DMA 20 | ||
824 | #define V_TX_IMM_DMA(x) ((x) << S_TX_IMM_DMA) | ||
825 | #define F_TX_IMM_DMA V_TX_IMM_DMA(1U) | ||
826 | |||
827 | struct cpl_tx_data_ack { | ||
828 | RSS_HDR union opcode_tid ot; | ||
829 | __be32 ack_seq; | ||
830 | }; | ||
831 | |||
832 | struct cpl_wr_ack { | ||
833 | RSS_HDR union opcode_tid ot; | ||
834 | __be16 credits; | ||
835 | __be16 rsvd; | ||
836 | __be32 snd_nxt; | ||
837 | __be32 snd_una; | ||
838 | }; | ||
839 | |||
840 | struct cpl_rdma_ec_status { | ||
841 | RSS_HDR union opcode_tid ot; | ||
842 | __u8 rsvd[3]; | ||
843 | __u8 status; | ||
844 | }; | ||
845 | |||
846 | struct mngt_pktsched_wr { | ||
847 | __be32 wr_hi; | ||
848 | __be32 wr_lo; | ||
849 | __u8 mngt_opcode; | ||
850 | __u8 rsvd[7]; | ||
851 | __u8 sched; | ||
852 | __u8 idx; | ||
853 | __u8 min; | ||
854 | __u8 max; | ||
855 | __u8 binding; | ||
856 | __u8 rsvd1[3]; | ||
857 | }; | ||
858 | |||
859 | struct cpl_iscsi_hdr { | ||
860 | RSS_HDR union opcode_tid ot; | ||
861 | __be16 pdu_len_ddp; | ||
862 | __be16 len; | ||
863 | __be32 seq; | ||
864 | __be16 urg; | ||
865 | __u8 rsvd; | ||
866 | __u8 status; | ||
867 | }; | ||
868 | |||
869 | /* cpl_iscsi_hdr.pdu_len_ddp fields */ | ||
870 | #define S_ISCSI_PDU_LEN 0 | ||
871 | #define M_ISCSI_PDU_LEN 0x7FFF | ||
872 | #define V_ISCSI_PDU_LEN(x) ((x) << S_ISCSI_PDU_LEN) | ||
873 | #define G_ISCSI_PDU_LEN(x) (((x) >> S_ISCSI_PDU_LEN) & M_ISCSI_PDU_LEN) | ||
874 | |||
875 | #define S_ISCSI_DDP 15 | ||
876 | #define V_ISCSI_DDP(x) ((x) << S_ISCSI_DDP) | ||
877 | #define F_ISCSI_DDP V_ISCSI_DDP(1U) | ||
878 | |||
879 | struct cpl_rx_data { | ||
880 | RSS_HDR union opcode_tid ot; | ||
881 | __be16 rsvd; | ||
882 | __be16 len; | ||
883 | __be32 seq; | ||
884 | __be16 urg; | ||
885 | #if defined(__LITTLE_ENDIAN_BITFIELD) | ||
886 | __u8 dack_mode:2; | ||
887 | __u8 psh:1; | ||
888 | __u8 heartbeat:1; | ||
889 | __u8:4; | ||
890 | #else | ||
891 | __u8:4; | ||
892 | __u8 heartbeat:1; | ||
893 | __u8 psh:1; | ||
894 | __u8 dack_mode:2; | ||
895 | #endif | ||
896 | __u8 status; | ||
897 | }; | ||
898 | |||
899 | struct cpl_rx_data_ack { | ||
900 | WR_HDR; | ||
901 | union opcode_tid ot; | ||
902 | __be32 credit_dack; | ||
903 | }; | ||
904 | |||
905 | /* cpl_rx_data_ack.ack_seq fields */ | ||
906 | #define S_RX_CREDITS 0 | ||
907 | #define M_RX_CREDITS 0x7FFFFFF | ||
908 | #define V_RX_CREDITS(x) ((x) << S_RX_CREDITS) | ||
909 | #define G_RX_CREDITS(x) (((x) >> S_RX_CREDITS) & M_RX_CREDITS) | ||
910 | |||
911 | #define S_RX_MODULATE 27 | ||
912 | #define V_RX_MODULATE(x) ((x) << S_RX_MODULATE) | ||
913 | #define F_RX_MODULATE V_RX_MODULATE(1U) | ||
914 | |||
915 | #define S_RX_FORCE_ACK 28 | ||
916 | #define V_RX_FORCE_ACK(x) ((x) << S_RX_FORCE_ACK) | ||
917 | #define F_RX_FORCE_ACK V_RX_FORCE_ACK(1U) | ||
918 | |||
919 | #define S_RX_DACK_MODE 29 | ||
920 | #define M_RX_DACK_MODE 0x3 | ||
921 | #define V_RX_DACK_MODE(x) ((x) << S_RX_DACK_MODE) | ||
922 | #define G_RX_DACK_MODE(x) (((x) >> S_RX_DACK_MODE) & M_RX_DACK_MODE) | ||
923 | |||
924 | #define S_RX_DACK_CHANGE 31 | ||
925 | #define V_RX_DACK_CHANGE(x) ((x) << S_RX_DACK_CHANGE) | ||
926 | #define F_RX_DACK_CHANGE V_RX_DACK_CHANGE(1U) | ||
927 | |||
928 | struct cpl_rx_urg_notify { | ||
929 | RSS_HDR union opcode_tid ot; | ||
930 | __be32 seq; | ||
931 | }; | ||
932 | |||
933 | struct cpl_rx_ddp_complete { | ||
934 | RSS_HDR union opcode_tid ot; | ||
935 | __be32 ddp_report; | ||
936 | }; | ||
937 | |||
938 | struct cpl_rx_data_ddp { | ||
939 | RSS_HDR union opcode_tid ot; | ||
940 | __be16 urg; | ||
941 | __be16 len; | ||
942 | __be32 seq; | ||
943 | union { | ||
944 | __be32 nxt_seq; | ||
945 | __be32 ddp_report; | ||
946 | }; | ||
947 | __be32 ulp_crc; | ||
948 | __be32 ddpvld_status; | ||
949 | }; | ||
950 | |||
951 | /* cpl_rx_data_ddp.ddpvld_status fields */ | ||
952 | #define S_DDP_STATUS 0 | ||
953 | #define M_DDP_STATUS 0xFF | ||
954 | #define V_DDP_STATUS(x) ((x) << S_DDP_STATUS) | ||
955 | #define G_DDP_STATUS(x) (((x) >> S_DDP_STATUS) & M_DDP_STATUS) | ||
956 | |||
957 | #define S_DDP_VALID 15 | ||
958 | #define M_DDP_VALID 0x1FFFF | ||
959 | #define V_DDP_VALID(x) ((x) << S_DDP_VALID) | ||
960 | #define G_DDP_VALID(x) (((x) >> S_DDP_VALID) & M_DDP_VALID) | ||
961 | |||
962 | #define S_DDP_PPOD_MISMATCH 15 | ||
963 | #define V_DDP_PPOD_MISMATCH(x) ((x) << S_DDP_PPOD_MISMATCH) | ||
964 | #define F_DDP_PPOD_MISMATCH V_DDP_PPOD_MISMATCH(1U) | ||
965 | |||
966 | #define S_DDP_PDU 16 | ||
967 | #define V_DDP_PDU(x) ((x) << S_DDP_PDU) | ||
968 | #define F_DDP_PDU V_DDP_PDU(1U) | ||
969 | |||
970 | #define S_DDP_LLIMIT_ERR 17 | ||
971 | #define V_DDP_LLIMIT_ERR(x) ((x) << S_DDP_LLIMIT_ERR) | ||
972 | #define F_DDP_LLIMIT_ERR V_DDP_LLIMIT_ERR(1U) | ||
973 | |||
974 | #define S_DDP_PPOD_PARITY_ERR 18 | ||
975 | #define V_DDP_PPOD_PARITY_ERR(x) ((x) << S_DDP_PPOD_PARITY_ERR) | ||
976 | #define F_DDP_PPOD_PARITY_ERR V_DDP_PPOD_PARITY_ERR(1U) | ||
977 | |||
978 | #define S_DDP_PADDING_ERR 19 | ||
979 | #define V_DDP_PADDING_ERR(x) ((x) << S_DDP_PADDING_ERR) | ||
980 | #define F_DDP_PADDING_ERR V_DDP_PADDING_ERR(1U) | ||
981 | |||
982 | #define S_DDP_HDRCRC_ERR 20 | ||
983 | #define V_DDP_HDRCRC_ERR(x) ((x) << S_DDP_HDRCRC_ERR) | ||
984 | #define F_DDP_HDRCRC_ERR V_DDP_HDRCRC_ERR(1U) | ||
985 | |||
986 | #define S_DDP_DATACRC_ERR 21 | ||
987 | #define V_DDP_DATACRC_ERR(x) ((x) << S_DDP_DATACRC_ERR) | ||
988 | #define F_DDP_DATACRC_ERR V_DDP_DATACRC_ERR(1U) | ||
989 | |||
990 | #define S_DDP_INVALID_TAG 22 | ||
991 | #define V_DDP_INVALID_TAG(x) ((x) << S_DDP_INVALID_TAG) | ||
992 | #define F_DDP_INVALID_TAG V_DDP_INVALID_TAG(1U) | ||
993 | |||
994 | #define S_DDP_ULIMIT_ERR 23 | ||
995 | #define V_DDP_ULIMIT_ERR(x) ((x) << S_DDP_ULIMIT_ERR) | ||
996 | #define F_DDP_ULIMIT_ERR V_DDP_ULIMIT_ERR(1U) | ||
997 | |||
998 | #define S_DDP_OFFSET_ERR 24 | ||
999 | #define V_DDP_OFFSET_ERR(x) ((x) << S_DDP_OFFSET_ERR) | ||
1000 | #define F_DDP_OFFSET_ERR V_DDP_OFFSET_ERR(1U) | ||
1001 | |||
1002 | #define S_DDP_COLOR_ERR 25 | ||
1003 | #define V_DDP_COLOR_ERR(x) ((x) << S_DDP_COLOR_ERR) | ||
1004 | #define F_DDP_COLOR_ERR V_DDP_COLOR_ERR(1U) | ||
1005 | |||
1006 | #define S_DDP_TID_MISMATCH 26 | ||
1007 | #define V_DDP_TID_MISMATCH(x) ((x) << S_DDP_TID_MISMATCH) | ||
1008 | #define F_DDP_TID_MISMATCH V_DDP_TID_MISMATCH(1U) | ||
1009 | |||
1010 | #define S_DDP_INVALID_PPOD 27 | ||
1011 | #define V_DDP_INVALID_PPOD(x) ((x) << S_DDP_INVALID_PPOD) | ||
1012 | #define F_DDP_INVALID_PPOD V_DDP_INVALID_PPOD(1U) | ||
1013 | |||
1014 | #define S_DDP_ULP_MODE 28 | ||
1015 | #define M_DDP_ULP_MODE 0xF | ||
1016 | #define V_DDP_ULP_MODE(x) ((x) << S_DDP_ULP_MODE) | ||
1017 | #define G_DDP_ULP_MODE(x) (((x) >> S_DDP_ULP_MODE) & M_DDP_ULP_MODE) | ||
1018 | |||
1019 | /* cpl_rx_data_ddp.ddp_report fields */ | ||
1020 | #define S_DDP_OFFSET 0 | ||
1021 | #define M_DDP_OFFSET 0x3FFFFF | ||
1022 | #define V_DDP_OFFSET(x) ((x) << S_DDP_OFFSET) | ||
1023 | #define G_DDP_OFFSET(x) (((x) >> S_DDP_OFFSET) & M_DDP_OFFSET) | ||
1024 | |||
1025 | #define S_DDP_URG 24 | ||
1026 | #define V_DDP_URG(x) ((x) << S_DDP_URG) | ||
1027 | #define F_DDP_URG V_DDP_URG(1U) | ||
1028 | |||
1029 | #define S_DDP_PSH 25 | ||
1030 | #define V_DDP_PSH(x) ((x) << S_DDP_PSH) | ||
1031 | #define F_DDP_PSH V_DDP_PSH(1U) | ||
1032 | |||
1033 | #define S_DDP_BUF_COMPLETE 26 | ||
1034 | #define V_DDP_BUF_COMPLETE(x) ((x) << S_DDP_BUF_COMPLETE) | ||
1035 | #define F_DDP_BUF_COMPLETE V_DDP_BUF_COMPLETE(1U) | ||
1036 | |||
1037 | #define S_DDP_BUF_TIMED_OUT 27 | ||
1038 | #define V_DDP_BUF_TIMED_OUT(x) ((x) << S_DDP_BUF_TIMED_OUT) | ||
1039 | #define F_DDP_BUF_TIMED_OUT V_DDP_BUF_TIMED_OUT(1U) | ||
1040 | |||
1041 | #define S_DDP_BUF_IDX 28 | ||
1042 | #define V_DDP_BUF_IDX(x) ((x) << S_DDP_BUF_IDX) | ||
1043 | #define F_DDP_BUF_IDX V_DDP_BUF_IDX(1U) | ||
1044 | |||
1045 | struct cpl_tx_pkt { | ||
1046 | WR_HDR; | ||
1047 | __be32 cntrl; | ||
1048 | __be32 len; | ||
1049 | }; | ||
1050 | |||
1051 | struct cpl_tx_pkt_lso { | ||
1052 | WR_HDR; | ||
1053 | __be32 cntrl; | ||
1054 | __be32 len; | ||
1055 | |||
1056 | __be32 rsvd; | ||
1057 | __be32 lso_info; | ||
1058 | }; | ||
1059 | |||
1060 | /* cpl_tx_pkt*.cntrl fields */ | ||
1061 | #define S_TXPKT_VLAN 0 | ||
1062 | #define M_TXPKT_VLAN 0xFFFF | ||
1063 | #define V_TXPKT_VLAN(x) ((x) << S_TXPKT_VLAN) | ||
1064 | #define G_TXPKT_VLAN(x) (((x) >> S_TXPKT_VLAN) & M_TXPKT_VLAN) | ||
1065 | |||
1066 | #define S_TXPKT_INTF 16 | ||
1067 | #define M_TXPKT_INTF 0xF | ||
1068 | #define V_TXPKT_INTF(x) ((x) << S_TXPKT_INTF) | ||
1069 | #define G_TXPKT_INTF(x) (((x) >> S_TXPKT_INTF) & M_TXPKT_INTF) | ||
1070 | |||
1071 | #define S_TXPKT_IPCSUM_DIS 20 | ||
1072 | #define V_TXPKT_IPCSUM_DIS(x) ((x) << S_TXPKT_IPCSUM_DIS) | ||
1073 | #define F_TXPKT_IPCSUM_DIS V_TXPKT_IPCSUM_DIS(1U) | ||
1074 | |||
1075 | #define S_TXPKT_L4CSUM_DIS 21 | ||
1076 | #define V_TXPKT_L4CSUM_DIS(x) ((x) << S_TXPKT_L4CSUM_DIS) | ||
1077 | #define F_TXPKT_L4CSUM_DIS V_TXPKT_L4CSUM_DIS(1U) | ||
1078 | |||
1079 | #define S_TXPKT_VLAN_VLD 22 | ||
1080 | #define V_TXPKT_VLAN_VLD(x) ((x) << S_TXPKT_VLAN_VLD) | ||
1081 | #define F_TXPKT_VLAN_VLD V_TXPKT_VLAN_VLD(1U) | ||
1082 | |||
1083 | #define S_TXPKT_LOOPBACK 23 | ||
1084 | #define V_TXPKT_LOOPBACK(x) ((x) << S_TXPKT_LOOPBACK) | ||
1085 | #define F_TXPKT_LOOPBACK V_TXPKT_LOOPBACK(1U) | ||
1086 | |||
1087 | #define S_TXPKT_OPCODE 24 | ||
1088 | #define M_TXPKT_OPCODE 0xFF | ||
1089 | #define V_TXPKT_OPCODE(x) ((x) << S_TXPKT_OPCODE) | ||
1090 | #define G_TXPKT_OPCODE(x) (((x) >> S_TXPKT_OPCODE) & M_TXPKT_OPCODE) | ||
1091 | |||
1092 | /* cpl_tx_pkt_lso.lso_info fields */ | ||
1093 | #define S_LSO_MSS 0 | ||
1094 | #define M_LSO_MSS 0x3FFF | ||
1095 | #define V_LSO_MSS(x) ((x) << S_LSO_MSS) | ||
1096 | #define G_LSO_MSS(x) (((x) >> S_LSO_MSS) & M_LSO_MSS) | ||
1097 | |||
1098 | #define S_LSO_ETH_TYPE 14 | ||
1099 | #define M_LSO_ETH_TYPE 0x3 | ||
1100 | #define V_LSO_ETH_TYPE(x) ((x) << S_LSO_ETH_TYPE) | ||
1101 | #define G_LSO_ETH_TYPE(x) (((x) >> S_LSO_ETH_TYPE) & M_LSO_ETH_TYPE) | ||
1102 | |||
1103 | #define S_LSO_TCPHDR_WORDS 16 | ||
1104 | #define M_LSO_TCPHDR_WORDS 0xF | ||
1105 | #define V_LSO_TCPHDR_WORDS(x) ((x) << S_LSO_TCPHDR_WORDS) | ||
1106 | #define G_LSO_TCPHDR_WORDS(x) (((x) >> S_LSO_TCPHDR_WORDS) & M_LSO_TCPHDR_WORDS) | ||
1107 | |||
1108 | #define S_LSO_IPHDR_WORDS 20 | ||
1109 | #define M_LSO_IPHDR_WORDS 0xF | ||
1110 | #define V_LSO_IPHDR_WORDS(x) ((x) << S_LSO_IPHDR_WORDS) | ||
1111 | #define G_LSO_IPHDR_WORDS(x) (((x) >> S_LSO_IPHDR_WORDS) & M_LSO_IPHDR_WORDS) | ||
1112 | |||
1113 | #define S_LSO_IPV6 24 | ||
1114 | #define V_LSO_IPV6(x) ((x) << S_LSO_IPV6) | ||
1115 | #define F_LSO_IPV6 V_LSO_IPV6(1U) | ||
1116 | |||
1117 | struct cpl_trace_pkt { | ||
1118 | #ifdef CHELSIO_FW | ||
1119 | __u8 rss_opcode; | ||
1120 | #if defined(__LITTLE_ENDIAN_BITFIELD) | ||
1121 | __u8 err:1; | ||
1122 | __u8:7; | ||
1123 | #else | ||
1124 | __u8:7; | ||
1125 | __u8 err:1; | ||
1126 | #endif | ||
1127 | __u8 rsvd0; | ||
1128 | #if defined(__LITTLE_ENDIAN_BITFIELD) | ||
1129 | __u8 qid:4; | ||
1130 | __u8:4; | ||
1131 | #else | ||
1132 | __u8:4; | ||
1133 | __u8 qid:4; | ||
1134 | #endif | ||
1135 | __be32 tstamp; | ||
1136 | #endif /* CHELSIO_FW */ | ||
1137 | |||
1138 | __u8 opcode; | ||
1139 | #if defined(__LITTLE_ENDIAN_BITFIELD) | ||
1140 | __u8 iff:4; | ||
1141 | __u8:4; | ||
1142 | #else | ||
1143 | __u8:4; | ||
1144 | __u8 iff:4; | ||
1145 | #endif | ||
1146 | __u8 rsvd[4]; | ||
1147 | __be16 len; | ||
1148 | }; | ||
1149 | |||
1150 | struct cpl_rx_pkt { | ||
1151 | RSS_HDR __u8 opcode; | ||
1152 | #if defined(__LITTLE_ENDIAN_BITFIELD) | ||
1153 | __u8 iff:4; | ||
1154 | __u8 csum_valid:1; | ||
1155 | __u8 ipmi_pkt:1; | ||
1156 | __u8 vlan_valid:1; | ||
1157 | __u8 fragment:1; | ||
1158 | #else | ||
1159 | __u8 fragment:1; | ||
1160 | __u8 vlan_valid:1; | ||
1161 | __u8 ipmi_pkt:1; | ||
1162 | __u8 csum_valid:1; | ||
1163 | __u8 iff:4; | ||
1164 | #endif | ||
1165 | __be16 csum; | ||
1166 | __be16 vlan; | ||
1167 | __be16 len; | ||
1168 | }; | ||
1169 | |||
1170 | struct cpl_l2t_write_req { | ||
1171 | WR_HDR; | ||
1172 | union opcode_tid ot; | ||
1173 | __be32 params; | ||
1174 | __u8 rsvd[2]; | ||
1175 | __u8 dst_mac[6]; | ||
1176 | }; | ||
1177 | |||
1178 | /* cpl_l2t_write_req.params fields */ | ||
1179 | #define S_L2T_W_IDX 0 | ||
1180 | #define M_L2T_W_IDX 0x7FF | ||
1181 | #define V_L2T_W_IDX(x) ((x) << S_L2T_W_IDX) | ||
1182 | #define G_L2T_W_IDX(x) (((x) >> S_L2T_W_IDX) & M_L2T_W_IDX) | ||
1183 | |||
1184 | #define S_L2T_W_VLAN 11 | ||
1185 | #define M_L2T_W_VLAN 0xFFF | ||
1186 | #define V_L2T_W_VLAN(x) ((x) << S_L2T_W_VLAN) | ||
1187 | #define G_L2T_W_VLAN(x) (((x) >> S_L2T_W_VLAN) & M_L2T_W_VLAN) | ||
1188 | |||
1189 | #define S_L2T_W_IFF 23 | ||
1190 | #define M_L2T_W_IFF 0xF | ||
1191 | #define V_L2T_W_IFF(x) ((x) << S_L2T_W_IFF) | ||
1192 | #define G_L2T_W_IFF(x) (((x) >> S_L2T_W_IFF) & M_L2T_W_IFF) | ||
1193 | |||
1194 | #define S_L2T_W_PRIO 27 | ||
1195 | #define M_L2T_W_PRIO 0x7 | ||
1196 | #define V_L2T_W_PRIO(x) ((x) << S_L2T_W_PRIO) | ||
1197 | #define G_L2T_W_PRIO(x) (((x) >> S_L2T_W_PRIO) & M_L2T_W_PRIO) | ||
1198 | |||
1199 | struct cpl_l2t_write_rpl { | ||
1200 | RSS_HDR union opcode_tid ot; | ||
1201 | __u8 status; | ||
1202 | __u8 rsvd[3]; | ||
1203 | }; | ||
1204 | |||
1205 | struct cpl_l2t_read_req { | ||
1206 | WR_HDR; | ||
1207 | union opcode_tid ot; | ||
1208 | __be16 rsvd; | ||
1209 | __be16 l2t_idx; | ||
1210 | }; | ||
1211 | |||
1212 | struct cpl_l2t_read_rpl { | ||
1213 | RSS_HDR union opcode_tid ot; | ||
1214 | __be32 params; | ||
1215 | __u8 rsvd[2]; | ||
1216 | __u8 dst_mac[6]; | ||
1217 | }; | ||
1218 | |||
1219 | /* cpl_l2t_read_rpl.params fields */ | ||
1220 | #define S_L2T_R_PRIO 0 | ||
1221 | #define M_L2T_R_PRIO 0x7 | ||
1222 | #define V_L2T_R_PRIO(x) ((x) << S_L2T_R_PRIO) | ||
1223 | #define G_L2T_R_PRIO(x) (((x) >> S_L2T_R_PRIO) & M_L2T_R_PRIO) | ||
1224 | |||
1225 | #define S_L2T_R_VLAN 8 | ||
1226 | #define M_L2T_R_VLAN 0xFFF | ||
1227 | #define V_L2T_R_VLAN(x) ((x) << S_L2T_R_VLAN) | ||
1228 | #define G_L2T_R_VLAN(x) (((x) >> S_L2T_R_VLAN) & M_L2T_R_VLAN) | ||
1229 | |||
1230 | #define S_L2T_R_IFF 20 | ||
1231 | #define M_L2T_R_IFF 0xF | ||
1232 | #define V_L2T_R_IFF(x) ((x) << S_L2T_R_IFF) | ||
1233 | #define G_L2T_R_IFF(x) (((x) >> S_L2T_R_IFF) & M_L2T_R_IFF) | ||
1234 | |||
1235 | #define S_L2T_STATUS 24 | ||
1236 | #define M_L2T_STATUS 0xFF | ||
1237 | #define V_L2T_STATUS(x) ((x) << S_L2T_STATUS) | ||
1238 | #define G_L2T_STATUS(x) (((x) >> S_L2T_STATUS) & M_L2T_STATUS) | ||
1239 | |||
1240 | struct cpl_smt_write_req { | ||
1241 | WR_HDR; | ||
1242 | union opcode_tid ot; | ||
1243 | __u8 rsvd0; | ||
1244 | #if defined(__LITTLE_ENDIAN_BITFIELD) | ||
1245 | __u8 mtu_idx:4; | ||
1246 | __u8 iff:4; | ||
1247 | #else | ||
1248 | __u8 iff:4; | ||
1249 | __u8 mtu_idx:4; | ||
1250 | #endif | ||
1251 | __be16 rsvd2; | ||
1252 | __be16 rsvd3; | ||
1253 | __u8 src_mac1[6]; | ||
1254 | __be16 rsvd4; | ||
1255 | __u8 src_mac0[6]; | ||
1256 | }; | ||
1257 | |||
1258 | struct cpl_smt_write_rpl { | ||
1259 | RSS_HDR union opcode_tid ot; | ||
1260 | __u8 status; | ||
1261 | __u8 rsvd[3]; | ||
1262 | }; | ||
1263 | |||
1264 | struct cpl_smt_read_req { | ||
1265 | WR_HDR; | ||
1266 | union opcode_tid ot; | ||
1267 | __u8 rsvd0; | ||
1268 | #if defined(__LITTLE_ENDIAN_BITFIELD) | ||
1269 | __u8:4; | ||
1270 | __u8 iff:4; | ||
1271 | #else | ||
1272 | __u8 iff:4; | ||
1273 | __u8:4; | ||
1274 | #endif | ||
1275 | __be16 rsvd2; | ||
1276 | }; | ||
1277 | |||
1278 | struct cpl_smt_read_rpl { | ||
1279 | RSS_HDR union opcode_tid ot; | ||
1280 | __u8 status; | ||
1281 | #if defined(__LITTLE_ENDIAN_BITFIELD) | ||
1282 | __u8 mtu_idx:4; | ||
1283 | __u8:4; | ||
1284 | #else | ||
1285 | __u8:4; | ||
1286 | __u8 mtu_idx:4; | ||
1287 | #endif | ||
1288 | __be16 rsvd2; | ||
1289 | __be16 rsvd3; | ||
1290 | __u8 src_mac1[6]; | ||
1291 | __be16 rsvd4; | ||
1292 | __u8 src_mac0[6]; | ||
1293 | }; | ||
1294 | |||
1295 | struct cpl_rte_delete_req { | ||
1296 | WR_HDR; | ||
1297 | union opcode_tid ot; | ||
1298 | __be32 params; | ||
1299 | }; | ||
1300 | |||
1301 | /* { cpl_rte_delete_req, cpl_rte_read_req }.params fields */ | ||
1302 | #define S_RTE_REQ_LUT_IX 8 | ||
1303 | #define M_RTE_REQ_LUT_IX 0x7FF | ||
1304 | #define V_RTE_REQ_LUT_IX(x) ((x) << S_RTE_REQ_LUT_IX) | ||
1305 | #define G_RTE_REQ_LUT_IX(x) (((x) >> S_RTE_REQ_LUT_IX) & M_RTE_REQ_LUT_IX) | ||
1306 | |||
1307 | #define S_RTE_REQ_LUT_BASE 19 | ||
1308 | #define M_RTE_REQ_LUT_BASE 0x7FF | ||
1309 | #define V_RTE_REQ_LUT_BASE(x) ((x) << S_RTE_REQ_LUT_BASE) | ||
1310 | #define G_RTE_REQ_LUT_BASE(x) (((x) >> S_RTE_REQ_LUT_BASE) & M_RTE_REQ_LUT_BASE) | ||
1311 | |||
1312 | #define S_RTE_READ_REQ_SELECT 31 | ||
1313 | #define V_RTE_READ_REQ_SELECT(x) ((x) << S_RTE_READ_REQ_SELECT) | ||
1314 | #define F_RTE_READ_REQ_SELECT V_RTE_READ_REQ_SELECT(1U) | ||
1315 | |||
1316 | struct cpl_rte_delete_rpl { | ||
1317 | RSS_HDR union opcode_tid ot; | ||
1318 | __u8 status; | ||
1319 | __u8 rsvd[3]; | ||
1320 | }; | ||
1321 | |||
1322 | struct cpl_rte_write_req { | ||
1323 | WR_HDR; | ||
1324 | union opcode_tid ot; | ||
1325 | #if defined(__LITTLE_ENDIAN_BITFIELD) | ||
1326 | __u8:6; | ||
1327 | __u8 write_tcam:1; | ||
1328 | __u8 write_l2t_lut:1; | ||
1329 | #else | ||
1330 | __u8 write_l2t_lut:1; | ||
1331 | __u8 write_tcam:1; | ||
1332 | __u8:6; | ||
1333 | #endif | ||
1334 | __u8 rsvd[3]; | ||
1335 | __be32 lut_params; | ||
1336 | __be16 rsvd2; | ||
1337 | __be16 l2t_idx; | ||
1338 | __be32 netmask; | ||
1339 | __be32 faddr; | ||
1340 | }; | ||
1341 | |||
1342 | /* cpl_rte_write_req.lut_params fields */ | ||
1343 | #define S_RTE_WRITE_REQ_LUT_IX 10 | ||
1344 | #define M_RTE_WRITE_REQ_LUT_IX 0x7FF | ||
1345 | #define V_RTE_WRITE_REQ_LUT_IX(x) ((x) << S_RTE_WRITE_REQ_LUT_IX) | ||
1346 | #define G_RTE_WRITE_REQ_LUT_IX(x) (((x) >> S_RTE_WRITE_REQ_LUT_IX) & M_RTE_WRITE_REQ_LUT_IX) | ||
1347 | |||
1348 | #define S_RTE_WRITE_REQ_LUT_BASE 21 | ||
1349 | #define M_RTE_WRITE_REQ_LUT_BASE 0x7FF | ||
1350 | #define V_RTE_WRITE_REQ_LUT_BASE(x) ((x) << S_RTE_WRITE_REQ_LUT_BASE) | ||
1351 | #define G_RTE_WRITE_REQ_LUT_BASE(x) (((x) >> S_RTE_WRITE_REQ_LUT_BASE) & M_RTE_WRITE_REQ_LUT_BASE) | ||
1352 | |||
1353 | struct cpl_rte_write_rpl { | ||
1354 | RSS_HDR union opcode_tid ot; | ||
1355 | __u8 status; | ||
1356 | __u8 rsvd[3]; | ||
1357 | }; | ||
1358 | |||
1359 | struct cpl_rte_read_req { | ||
1360 | WR_HDR; | ||
1361 | union opcode_tid ot; | ||
1362 | __be32 params; | ||
1363 | }; | ||
1364 | |||
1365 | struct cpl_rte_read_rpl { | ||
1366 | RSS_HDR union opcode_tid ot; | ||
1367 | __u8 status; | ||
1368 | __u8 rsvd0; | ||
1369 | __be16 l2t_idx; | ||
1370 | #if defined(__LITTLE_ENDIAN_BITFIELD) | ||
1371 | __u8:7; | ||
1372 | __u8 select:1; | ||
1373 | #else | ||
1374 | __u8 select:1; | ||
1375 | __u8:7; | ||
1376 | #endif | ||
1377 | __u8 rsvd2[3]; | ||
1378 | __be32 addr; | ||
1379 | }; | ||
1380 | |||
1381 | struct cpl_tid_release { | ||
1382 | WR_HDR; | ||
1383 | union opcode_tid ot; | ||
1384 | __be32 rsvd; | ||
1385 | }; | ||
1386 | |||
1387 | struct cpl_barrier { | ||
1388 | WR_HDR; | ||
1389 | __u8 opcode; | ||
1390 | __u8 rsvd[7]; | ||
1391 | }; | ||
1392 | |||
1393 | struct cpl_rdma_read_req { | ||
1394 | __u8 opcode; | ||
1395 | __u8 rsvd[15]; | ||
1396 | }; | ||
1397 | |||
1398 | struct cpl_rdma_terminate { | ||
1399 | #ifdef CHELSIO_FW | ||
1400 | __u8 opcode; | ||
1401 | __u8 rsvd[2]; | ||
1402 | #if defined(__LITTLE_ENDIAN_BITFIELD) | ||
1403 | __u8 rspq:3; | ||
1404 | __u8:5; | ||
1405 | #else | ||
1406 | __u8:5; | ||
1407 | __u8 rspq:3; | ||
1408 | #endif | ||
1409 | __be32 tid_len; | ||
1410 | #endif | ||
1411 | __be32 msn; | ||
1412 | __be32 mo; | ||
1413 | __u8 data[0]; | ||
1414 | }; | ||
1415 | |||
1416 | /* cpl_rdma_terminate.tid_len fields */ | ||
1417 | #define S_FLIT_CNT 0 | ||
1418 | #define M_FLIT_CNT 0xFF | ||
1419 | #define V_FLIT_CNT(x) ((x) << S_FLIT_CNT) | ||
1420 | #define G_FLIT_CNT(x) (((x) >> S_FLIT_CNT) & M_FLIT_CNT) | ||
1421 | |||
1422 | #define S_TERM_TID 8 | ||
1423 | #define M_TERM_TID 0xFFFFF | ||
1424 | #define V_TERM_TID(x) ((x) << S_TERM_TID) | ||
1425 | #define G_TERM_TID(x) (((x) >> S_TERM_TID) & M_TERM_TID) | ||
1426 | #endif /* T3_CPL_H */ | ||
diff --git a/drivers/net/cxgb3/t3_hw.c b/drivers/net/cxgb3/t3_hw.c new file mode 100644 index 000000000000..a4e2e57e1465 --- /dev/null +++ b/drivers/net/cxgb3/t3_hw.c | |||
@@ -0,0 +1,3354 @@ | |||
1 | /* | ||
2 | * This file is part of the Chelsio T3 Ethernet driver. | ||
3 | * | ||
4 | * Copyright (C) 2003-2006 Chelsio Communications. All rights reserved. | ||
5 | * | ||
6 | * This program is distributed in the hope that it will be useful, but WITHOUT | ||
7 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
8 | * FITNESS FOR A PARTICULAR PURPOSE. See the LICENSE file included in this | ||
9 | * release for licensing terms and conditions. | ||
10 | */ | ||
11 | |||
12 | #include "common.h" | ||
13 | #include "regs.h" | ||
14 | #include "sge_defs.h" | ||
15 | #include "firmware_exports.h" | ||
16 | |||
17 | /** | ||
18 | * t3_wait_op_done_val - wait until an operation is completed | ||
19 | * @adapter: the adapter performing the operation | ||
20 | * @reg: the register to check for completion | ||
21 | * @mask: a single-bit field within @reg that indicates completion | ||
22 | * @polarity: the value of the field when the operation is completed | ||
23 | * @attempts: number of check iterations | ||
24 | * @delay: delay in usecs between iterations | ||
25 | * @valp: where to store the value of the register at completion time | ||
26 | * | ||
27 | * Wait until an operation is completed by checking a bit in a register | ||
28 | * up to @attempts times. If @valp is not NULL the value of the register | ||
29 | * at the time it indicated completion is stored there. Returns 0 if the | ||
30 | * operation completes and -EAGAIN otherwise. | ||
31 | */ | ||
32 | |||
33 | int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, | ||
34 | int polarity, int attempts, int delay, u32 *valp) | ||
35 | { | ||
36 | while (1) { | ||
37 | u32 val = t3_read_reg(adapter, reg); | ||
38 | |||
39 | if (!!(val & mask) == polarity) { | ||
40 | if (valp) | ||
41 | *valp = val; | ||
42 | return 0; | ||
43 | } | ||
44 | if (--attempts == 0) | ||
45 | return -EAGAIN; | ||
46 | if (delay) | ||
47 | udelay(delay); | ||
48 | } | ||
49 | } | ||
50 | |||
51 | /** | ||
52 | * t3_write_regs - write a bunch of registers | ||
53 | * @adapter: the adapter to program | ||
54 | * @p: an array of register address/register value pairs | ||
55 | * @n: the number of address/value pairs | ||
56 | * @offset: register address offset | ||
57 | * | ||
58 | * Takes an array of register address/register value pairs and writes each | ||
59 | * value to the corresponding register. Register addresses are adjusted | ||
60 | * by the supplied offset. | ||
61 | */ | ||
62 | void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p, | ||
63 | int n, unsigned int offset) | ||
64 | { | ||
65 | while (n--) { | ||
66 | t3_write_reg(adapter, p->reg_addr + offset, p->val); | ||
67 | p++; | ||
68 | } | ||
69 | } | ||
70 | |||
71 | /** | ||
72 | * t3_set_reg_field - set a register field to a value | ||
73 | * @adapter: the adapter to program | ||
74 | * @addr: the register address | ||
75 | * @mask: specifies the portion of the register to modify | ||
76 | * @val: the new value for the register field | ||
77 | * | ||
78 | * Sets a register field specified by the supplied mask to the | ||
79 | * given value. | ||
80 | */ | ||
81 | void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, | ||
82 | u32 val) | ||
83 | { | ||
84 | u32 v = t3_read_reg(adapter, addr) & ~mask; | ||
85 | |||
86 | t3_write_reg(adapter, addr, v | val); | ||
87 | t3_read_reg(adapter, addr); /* flush */ | ||
88 | } | ||
89 | |||
90 | /** | ||
91 | * t3_read_indirect - read indirectly addressed registers | ||
92 | * @adap: the adapter | ||
93 | * @addr_reg: register holding the indirect address | ||
94 | * @data_reg: register holding the value of the indirect register | ||
95 | * @vals: where the read register values are stored | ||
96 | * @start_idx: index of first indirect register to read | ||
97 | * @nregs: how many indirect registers to read | ||
98 | * | ||
99 | * Reads registers that are accessed indirectly through an address/data | ||
100 | * register pair. | ||
101 | */ | ||
102 | void t3_read_indirect(struct adapter *adap, unsigned int addr_reg, | ||
103 | unsigned int data_reg, u32 *vals, unsigned int nregs, | ||
104 | unsigned int start_idx) | ||
105 | { | ||
106 | while (nregs--) { | ||
107 | t3_write_reg(adap, addr_reg, start_idx); | ||
108 | *vals++ = t3_read_reg(adap, data_reg); | ||
109 | start_idx++; | ||
110 | } | ||
111 | } | ||
112 | |||
113 | /** | ||
114 | * t3_mc7_bd_read - read from MC7 through backdoor accesses | ||
115 | * @mc7: identifies MC7 to read from | ||
116 | * @start: index of first 64-bit word to read | ||
117 | * @n: number of 64-bit words to read | ||
118 | * @buf: where to store the read result | ||
119 | * | ||
120 | * Read n 64-bit words from MC7 starting at word start, using backdoor | ||
121 | * accesses. | ||
122 | */ | ||
123 | int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n, | ||
124 | u64 *buf) | ||
125 | { | ||
126 | static const int shift[] = { 0, 0, 16, 24 }; | ||
127 | static const int step[] = { 0, 32, 16, 8 }; | ||
128 | |||
129 | unsigned int size64 = mc7->size / 8; /* # of 64-bit words */ | ||
130 | struct adapter *adap = mc7->adapter; | ||
131 | |||
132 | if (start >= size64 || start + n > size64) | ||
133 | return -EINVAL; | ||
134 | |||
135 | start *= (8 << mc7->width); | ||
136 | while (n--) { | ||
137 | int i; | ||
138 | u64 val64 = 0; | ||
139 | |||
140 | for (i = (1 << mc7->width) - 1; i >= 0; --i) { | ||
141 | int attempts = 10; | ||
142 | u32 val; | ||
143 | |||
144 | t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start); | ||
145 | t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0); | ||
146 | val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP); | ||
147 | while ((val & F_BUSY) && attempts--) | ||
148 | val = t3_read_reg(adap, | ||
149 | mc7->offset + A_MC7_BD_OP); | ||
150 | if (val & F_BUSY) | ||
151 | return -EIO; | ||
152 | |||
153 | val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1); | ||
154 | if (mc7->width == 0) { | ||
155 | val64 = t3_read_reg(adap, | ||
156 | mc7->offset + | ||
157 | A_MC7_BD_DATA0); | ||
158 | val64 |= (u64) val << 32; | ||
159 | } else { | ||
160 | if (mc7->width > 1) | ||
161 | val >>= shift[mc7->width]; | ||
162 | val64 |= (u64) val << (step[mc7->width] * i); | ||
163 | } | ||
164 | start += 8; | ||
165 | } | ||
166 | *buf++ = val64; | ||
167 | } | ||
168 | return 0; | ||
169 | } | ||
170 | |||
171 | /* | ||
172 | * Initialize MI1. | ||
173 | */ | ||
174 | static void mi1_init(struct adapter *adap, const struct adapter_info *ai) | ||
175 | { | ||
176 | u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1; | ||
177 | u32 val = F_PREEN | V_MDIINV(ai->mdiinv) | V_MDIEN(ai->mdien) | | ||
178 | V_CLKDIV(clkdiv); | ||
179 | |||
180 | if (!(ai->caps & SUPPORTED_10000baseT_Full)) | ||
181 | val |= V_ST(1); | ||
182 | t3_write_reg(adap, A_MI1_CFG, val); | ||
183 | } | ||
184 | |||
185 | #define MDIO_ATTEMPTS 10 | ||
186 | |||
187 | /* | ||
188 | * MI1 read/write operations for direct-addressed PHYs. | ||
189 | */ | ||
190 | static int mi1_read(struct adapter *adapter, int phy_addr, int mmd_addr, | ||
191 | int reg_addr, unsigned int *valp) | ||
192 | { | ||
193 | int ret; | ||
194 | u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr); | ||
195 | |||
196 | if (mmd_addr) | ||
197 | return -EINVAL; | ||
198 | |||
199 | mutex_lock(&adapter->mdio_lock); | ||
200 | t3_write_reg(adapter, A_MI1_ADDR, addr); | ||
201 | t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2)); | ||
202 | ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20); | ||
203 | if (!ret) | ||
204 | *valp = t3_read_reg(adapter, A_MI1_DATA); | ||
205 | mutex_unlock(&adapter->mdio_lock); | ||
206 | return ret; | ||
207 | } | ||
208 | |||
209 | static int mi1_write(struct adapter *adapter, int phy_addr, int mmd_addr, | ||
210 | int reg_addr, unsigned int val) | ||
211 | { | ||
212 | int ret; | ||
213 | u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr); | ||
214 | |||
215 | if (mmd_addr) | ||
216 | return -EINVAL; | ||
217 | |||
218 | mutex_lock(&adapter->mdio_lock); | ||
219 | t3_write_reg(adapter, A_MI1_ADDR, addr); | ||
220 | t3_write_reg(adapter, A_MI1_DATA, val); | ||
221 | t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1)); | ||
222 | ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20); | ||
223 | mutex_unlock(&adapter->mdio_lock); | ||
224 | return ret; | ||
225 | } | ||
226 | |||
227 | static const struct mdio_ops mi1_mdio_ops = { | ||
228 | mi1_read, | ||
229 | mi1_write | ||
230 | }; | ||
231 | |||
232 | /* | ||
233 | * MI1 read/write operations for indirect-addressed PHYs. | ||
234 | */ | ||
235 | static int mi1_ext_read(struct adapter *adapter, int phy_addr, int mmd_addr, | ||
236 | int reg_addr, unsigned int *valp) | ||
237 | { | ||
238 | int ret; | ||
239 | u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr); | ||
240 | |||
241 | mutex_lock(&adapter->mdio_lock); | ||
242 | t3_write_reg(adapter, A_MI1_ADDR, addr); | ||
243 | t3_write_reg(adapter, A_MI1_DATA, reg_addr); | ||
244 | t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0)); | ||
245 | ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20); | ||
246 | if (!ret) { | ||
247 | t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3)); | ||
248 | ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, | ||
249 | MDIO_ATTEMPTS, 20); | ||
250 | if (!ret) | ||
251 | *valp = t3_read_reg(adapter, A_MI1_DATA); | ||
252 | } | ||
253 | mutex_unlock(&adapter->mdio_lock); | ||
254 | return ret; | ||
255 | } | ||
256 | |||
257 | static int mi1_ext_write(struct adapter *adapter, int phy_addr, int mmd_addr, | ||
258 | int reg_addr, unsigned int val) | ||
259 | { | ||
260 | int ret; | ||
261 | u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr); | ||
262 | |||
263 | mutex_lock(&adapter->mdio_lock); | ||
264 | t3_write_reg(adapter, A_MI1_ADDR, addr); | ||
265 | t3_write_reg(adapter, A_MI1_DATA, reg_addr); | ||
266 | t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0)); | ||
267 | ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20); | ||
268 | if (!ret) { | ||
269 | t3_write_reg(adapter, A_MI1_DATA, val); | ||
270 | t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1)); | ||
271 | ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, | ||
272 | MDIO_ATTEMPTS, 20); | ||
273 | } | ||
274 | mutex_unlock(&adapter->mdio_lock); | ||
275 | return ret; | ||
276 | } | ||
277 | |||
278 | static const struct mdio_ops mi1_mdio_ext_ops = { | ||
279 | mi1_ext_read, | ||
280 | mi1_ext_write | ||
281 | }; | ||
282 | |||
283 | /** | ||
284 | * t3_mdio_change_bits - modify the value of a PHY register | ||
285 | * @phy: the PHY to operate on | ||
286 | * @mmd: the device address | ||
287 | * @reg: the register address | ||
288 | * @clear: what part of the register value to mask off | ||
289 | * @set: what part of the register value to set | ||
290 | * | ||
291 | * Changes the value of a PHY register by applying a mask to its current | ||
292 | * value and ORing the result with a new value. | ||
293 | */ | ||
294 | int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear, | ||
295 | unsigned int set) | ||
296 | { | ||
297 | int ret; | ||
298 | unsigned int val; | ||
299 | |||
300 | ret = mdio_read(phy, mmd, reg, &val); | ||
301 | if (!ret) { | ||
302 | val &= ~clear; | ||
303 | ret = mdio_write(phy, mmd, reg, val | set); | ||
304 | } | ||
305 | return ret; | ||
306 | } | ||
307 | |||
308 | /** | ||
309 | * t3_phy_reset - reset a PHY block | ||
310 | * @phy: the PHY to operate on | ||
311 | * @mmd: the device address of the PHY block to reset | ||
312 | * @wait: how long to wait for the reset to complete in 1ms increments | ||
313 | * | ||
314 | * Resets a PHY block and optionally waits for the reset to complete. | ||
315 | * @mmd should be 0 for 10/100/1000 PHYs and the device address to reset | ||
316 | * for 10G PHYs. | ||
317 | */ | ||
318 | int t3_phy_reset(struct cphy *phy, int mmd, int wait) | ||
319 | { | ||
320 | int err; | ||
321 | unsigned int ctl; | ||
322 | |||
323 | err = t3_mdio_change_bits(phy, mmd, MII_BMCR, BMCR_PDOWN, BMCR_RESET); | ||
324 | if (err || !wait) | ||
325 | return err; | ||
326 | |||
327 | do { | ||
328 | err = mdio_read(phy, mmd, MII_BMCR, &ctl); | ||
329 | if (err) | ||
330 | return err; | ||
331 | ctl &= BMCR_RESET; | ||
332 | if (ctl) | ||
333 | msleep(1); | ||
334 | } while (ctl && --wait); | ||
335 | |||
336 | return ctl ? -1 : 0; | ||
337 | } | ||
338 | |||
339 | /** | ||
340 | * t3_phy_advertise - set the PHY advertisement registers for autoneg | ||
341 | * @phy: the PHY to operate on | ||
342 | * @advert: bitmap of capabilities the PHY should advertise | ||
343 | * | ||
344 | * Sets a 10/100/1000 PHY's advertisement registers to advertise the | ||
345 | * requested capabilities. | ||
346 | */ | ||
347 | int t3_phy_advertise(struct cphy *phy, unsigned int advert) | ||
348 | { | ||
349 | int err; | ||
350 | unsigned int val = 0; | ||
351 | |||
352 | err = mdio_read(phy, 0, MII_CTRL1000, &val); | ||
353 | if (err) | ||
354 | return err; | ||
355 | |||
356 | val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL); | ||
357 | if (advert & ADVERTISED_1000baseT_Half) | ||
358 | val |= ADVERTISE_1000HALF; | ||
359 | if (advert & ADVERTISED_1000baseT_Full) | ||
360 | val |= ADVERTISE_1000FULL; | ||
361 | |||
362 | err = mdio_write(phy, 0, MII_CTRL1000, val); | ||
363 | if (err) | ||
364 | return err; | ||
365 | |||
366 | val = 1; | ||
367 | if (advert & ADVERTISED_10baseT_Half) | ||
368 | val |= ADVERTISE_10HALF; | ||
369 | if (advert & ADVERTISED_10baseT_Full) | ||
370 | val |= ADVERTISE_10FULL; | ||
371 | if (advert & ADVERTISED_100baseT_Half) | ||
372 | val |= ADVERTISE_100HALF; | ||
373 | if (advert & ADVERTISED_100baseT_Full) | ||
374 | val |= ADVERTISE_100FULL; | ||
375 | if (advert & ADVERTISED_Pause) | ||
376 | val |= ADVERTISE_PAUSE_CAP; | ||
377 | if (advert & ADVERTISED_Asym_Pause) | ||
378 | val |= ADVERTISE_PAUSE_ASYM; | ||
379 | return mdio_write(phy, 0, MII_ADVERTISE, val); | ||
380 | } | ||
381 | |||
382 | /** | ||
383 | * t3_set_phy_speed_duplex - force PHY speed and duplex | ||
384 | * @phy: the PHY to operate on | ||
385 | * @speed: requested PHY speed | ||
386 | * @duplex: requested PHY duplex | ||
387 | * | ||
388 | * Force a 10/100/1000 PHY's speed and duplex. This also disables | ||
389 | * auto-negotiation except for GigE, where auto-negotiation is mandatory. | ||
390 | */ | ||
391 | int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex) | ||
392 | { | ||
393 | int err; | ||
394 | unsigned int ctl; | ||
395 | |||
396 | err = mdio_read(phy, 0, MII_BMCR, &ctl); | ||
397 | if (err) | ||
398 | return err; | ||
399 | |||
400 | if (speed >= 0) { | ||
401 | ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE); | ||
402 | if (speed == SPEED_100) | ||
403 | ctl |= BMCR_SPEED100; | ||
404 | else if (speed == SPEED_1000) | ||
405 | ctl |= BMCR_SPEED1000; | ||
406 | } | ||
407 | if (duplex >= 0) { | ||
408 | ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE); | ||
409 | if (duplex == DUPLEX_FULL) | ||
410 | ctl |= BMCR_FULLDPLX; | ||
411 | } | ||
412 | if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */ | ||
413 | ctl |= BMCR_ANENABLE; | ||
414 | return mdio_write(phy, 0, MII_BMCR, ctl); | ||
415 | } | ||
416 | |||
417 | static const struct adapter_info t3_adap_info[] = { | ||
418 | {2, 0, 0, 0, | ||
419 | F_GPIO2_OEN | F_GPIO4_OEN | | ||
420 | F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5, | ||
421 | SUPPORTED_OFFLOAD, | ||
422 | &mi1_mdio_ops, "Chelsio PE9000"}, | ||
423 | {2, 0, 0, 0, | ||
424 | F_GPIO2_OEN | F_GPIO4_OEN | | ||
425 | F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5, | ||
426 | SUPPORTED_OFFLOAD, | ||
427 | &mi1_mdio_ops, "Chelsio T302"}, | ||
428 | {1, 0, 0, 0, | ||
429 | F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN | | ||
430 | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 0, | ||
431 | SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_OFFLOAD, | ||
432 | &mi1_mdio_ext_ops, "Chelsio T310"}, | ||
433 | {2, 0, 0, 0, | ||
434 | F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN | | ||
435 | F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL | | ||
436 | F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 0, | ||
437 | SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_OFFLOAD, | ||
438 | &mi1_mdio_ext_ops, "Chelsio T320"}, | ||
439 | }; | ||
440 | |||
441 | /* | ||
442 | * Return the adapter_info structure with a given index. Out-of-range indices | ||
443 | * return NULL. | ||
444 | */ | ||
445 | const struct adapter_info *t3_get_adapter_info(unsigned int id) | ||
446 | { | ||
447 | return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL; | ||
448 | } | ||
449 | |||
450 | #define CAPS_1G (SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full | \ | ||
451 | SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_MII) | ||
452 | #define CAPS_10G (SUPPORTED_10000baseT_Full | SUPPORTED_AUI) | ||
453 | |||
454 | static const struct port_type_info port_types[] = { | ||
455 | {NULL}, | ||
456 | {t3_ael1002_phy_prep, CAPS_10G | SUPPORTED_FIBRE, | ||
457 | "10GBASE-XR"}, | ||
458 | {t3_vsc8211_phy_prep, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ, | ||
459 | "10/100/1000BASE-T"}, | ||
460 | {NULL, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ, | ||
461 | "10/100/1000BASE-T"}, | ||
462 | {t3_xaui_direct_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"}, | ||
463 | {NULL, CAPS_10G, "10GBASE-KX4"}, | ||
464 | {t3_qt2045_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"}, | ||
465 | {t3_ael1006_phy_prep, CAPS_10G | SUPPORTED_FIBRE, | ||
466 | "10GBASE-SR"}, | ||
467 | {NULL, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"}, | ||
468 | }; | ||
469 | |||
470 | #undef CAPS_1G | ||
471 | #undef CAPS_10G | ||
472 | |||
473 | #define VPD_ENTRY(name, len) \ | ||
474 | u8 name##_kword[2]; u8 name##_len; u8 name##_data[len] | ||
475 | |||
476 | /* | ||
477 | * Partial EEPROM Vital Product Data structure. Includes only the ID and | ||
478 | * VPD-R sections. | ||
479 | */ | ||
480 | struct t3_vpd { | ||
481 | u8 id_tag; | ||
482 | u8 id_len[2]; | ||
483 | u8 id_data[16]; | ||
484 | u8 vpdr_tag; | ||
485 | u8 vpdr_len[2]; | ||
486 | VPD_ENTRY(pn, 16); /* part number */ | ||
487 | VPD_ENTRY(ec, 16); /* EC level */ | ||
488 | VPD_ENTRY(sn, 16); /* serial number */ | ||
489 | VPD_ENTRY(na, 12); /* MAC address base */ | ||
490 | VPD_ENTRY(cclk, 6); /* core clock */ | ||
491 | VPD_ENTRY(mclk, 6); /* mem clock */ | ||
492 | VPD_ENTRY(uclk, 6); /* uP clk */ | ||
493 | VPD_ENTRY(mdc, 6); /* MDIO clk */ | ||
494 | VPD_ENTRY(mt, 2); /* mem timing */ | ||
495 | VPD_ENTRY(xaui0cfg, 6); /* XAUI0 config */ | ||
496 | VPD_ENTRY(xaui1cfg, 6); /* XAUI1 config */ | ||
497 | VPD_ENTRY(port0, 2); /* PHY0 complex */ | ||
498 | VPD_ENTRY(port1, 2); /* PHY1 complex */ | ||
499 | VPD_ENTRY(port2, 2); /* PHY2 complex */ | ||
500 | VPD_ENTRY(port3, 2); /* PHY3 complex */ | ||
501 | VPD_ENTRY(rv, 1); /* csum */ | ||
502 | u32 pad; /* for multiple-of-4 sizing and alignment */ | ||
503 | }; | ||
504 | |||
505 | #define EEPROM_MAX_POLL 4 | ||
506 | #define EEPROM_STAT_ADDR 0x4000 | ||
507 | #define VPD_BASE 0xc00 | ||
508 | |||
509 | /** | ||
510 | * t3_seeprom_read - read a VPD EEPROM location | ||
511 | * @adapter: adapter to read | ||
512 | * @addr: EEPROM address | ||
513 | * @data: where to store the read data | ||
514 | * | ||
515 | * Read a 32-bit word from a location in VPD EEPROM using the card's PCI | ||
516 | * VPD ROM capability. A zero is written to the flag bit when the | ||
517 | * addres is written to the control register. The hardware device will | ||
518 | * set the flag to 1 when 4 bytes have been read into the data register. | ||
519 | */ | ||
520 | int t3_seeprom_read(struct adapter *adapter, u32 addr, u32 *data) | ||
521 | { | ||
522 | u16 val; | ||
523 | int attempts = EEPROM_MAX_POLL; | ||
524 | unsigned int base = adapter->params.pci.vpd_cap_addr; | ||
525 | |||
526 | if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3)) | ||
527 | return -EINVAL; | ||
528 | |||
529 | pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, addr); | ||
530 | do { | ||
531 | udelay(10); | ||
532 | pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val); | ||
533 | } while (!(val & PCI_VPD_ADDR_F) && --attempts); | ||
534 | |||
535 | if (!(val & PCI_VPD_ADDR_F)) { | ||
536 | CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr); | ||
537 | return -EIO; | ||
538 | } | ||
539 | pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, data); | ||
540 | *data = le32_to_cpu(*data); | ||
541 | return 0; | ||
542 | } | ||
543 | |||
544 | /** | ||
545 | * t3_seeprom_write - write a VPD EEPROM location | ||
546 | * @adapter: adapter to write | ||
547 | * @addr: EEPROM address | ||
548 | * @data: value to write | ||
549 | * | ||
550 | * Write a 32-bit word to a location in VPD EEPROM using the card's PCI | ||
551 | * VPD ROM capability. | ||
552 | */ | ||
553 | int t3_seeprom_write(struct adapter *adapter, u32 addr, u32 data) | ||
554 | { | ||
555 | u16 val; | ||
556 | int attempts = EEPROM_MAX_POLL; | ||
557 | unsigned int base = adapter->params.pci.vpd_cap_addr; | ||
558 | |||
559 | if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3)) | ||
560 | return -EINVAL; | ||
561 | |||
562 | pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA, | ||
563 | cpu_to_le32(data)); | ||
564 | pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR, | ||
565 | addr | PCI_VPD_ADDR_F); | ||
566 | do { | ||
567 | msleep(1); | ||
568 | pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val); | ||
569 | } while ((val & PCI_VPD_ADDR_F) && --attempts); | ||
570 | |||
571 | if (val & PCI_VPD_ADDR_F) { | ||
572 | CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr); | ||
573 | return -EIO; | ||
574 | } | ||
575 | return 0; | ||
576 | } | ||
577 | |||
578 | /** | ||
579 | * t3_seeprom_wp - enable/disable EEPROM write protection | ||
580 | * @adapter: the adapter | ||
581 | * @enable: 1 to enable write protection, 0 to disable it | ||
582 | * | ||
583 | * Enables or disables write protection on the serial EEPROM. | ||
584 | */ | ||
585 | int t3_seeprom_wp(struct adapter *adapter, int enable) | ||
586 | { | ||
587 | return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0); | ||
588 | } | ||
589 | |||
590 | /* | ||
591 | * Convert a character holding a hex digit to a number. | ||
592 | */ | ||
593 | static unsigned int hex2int(unsigned char c) | ||
594 | { | ||
595 | return isdigit(c) ? c - '0' : toupper(c) - 'A' + 10; | ||
596 | } | ||
597 | |||
598 | /** | ||
599 | * get_vpd_params - read VPD parameters from VPD EEPROM | ||
600 | * @adapter: adapter to read | ||
601 | * @p: where to store the parameters | ||
602 | * | ||
603 | * Reads card parameters stored in VPD EEPROM. | ||
604 | */ | ||
605 | static int get_vpd_params(struct adapter *adapter, struct vpd_params *p) | ||
606 | { | ||
607 | int i, addr, ret; | ||
608 | struct t3_vpd vpd; | ||
609 | |||
610 | /* | ||
611 | * Card information is normally at VPD_BASE but some early cards had | ||
612 | * it at 0. | ||
613 | */ | ||
614 | ret = t3_seeprom_read(adapter, VPD_BASE, (u32 *)&vpd); | ||
615 | if (ret) | ||
616 | return ret; | ||
617 | addr = vpd.id_tag == 0x82 ? VPD_BASE : 0; | ||
618 | |||
619 | for (i = 0; i < sizeof(vpd); i += 4) { | ||
620 | ret = t3_seeprom_read(adapter, addr + i, | ||
621 | (u32 *)((u8 *)&vpd + i)); | ||
622 | if (ret) | ||
623 | return ret; | ||
624 | } | ||
625 | |||
626 | p->cclk = simple_strtoul(vpd.cclk_data, NULL, 10); | ||
627 | p->mclk = simple_strtoul(vpd.mclk_data, NULL, 10); | ||
628 | p->uclk = simple_strtoul(vpd.uclk_data, NULL, 10); | ||
629 | p->mdc = simple_strtoul(vpd.mdc_data, NULL, 10); | ||
630 | p->mem_timing = simple_strtoul(vpd.mt_data, NULL, 10); | ||
631 | |||
632 | /* Old eeproms didn't have port information */ | ||
633 | if (adapter->params.rev == 0 && !vpd.port0_data[0]) { | ||
634 | p->port_type[0] = uses_xaui(adapter) ? 1 : 2; | ||
635 | p->port_type[1] = uses_xaui(adapter) ? 6 : 2; | ||
636 | } else { | ||
637 | p->port_type[0] = hex2int(vpd.port0_data[0]); | ||
638 | p->port_type[1] = hex2int(vpd.port1_data[0]); | ||
639 | p->xauicfg[0] = simple_strtoul(vpd.xaui0cfg_data, NULL, 16); | ||
640 | p->xauicfg[1] = simple_strtoul(vpd.xaui1cfg_data, NULL, 16); | ||
641 | } | ||
642 | |||
643 | for (i = 0; i < 6; i++) | ||
644 | p->eth_base[i] = hex2int(vpd.na_data[2 * i]) * 16 + | ||
645 | hex2int(vpd.na_data[2 * i + 1]); | ||
646 | return 0; | ||
647 | } | ||
648 | |||
649 | /* serial flash and firmware constants */ | ||
650 | enum { | ||
651 | SF_ATTEMPTS = 5, /* max retries for SF1 operations */ | ||
652 | SF_SEC_SIZE = 64 * 1024, /* serial flash sector size */ | ||
653 | SF_SIZE = SF_SEC_SIZE * 8, /* serial flash size */ | ||
654 | |||
655 | /* flash command opcodes */ | ||
656 | SF_PROG_PAGE = 2, /* program page */ | ||
657 | SF_WR_DISABLE = 4, /* disable writes */ | ||
658 | SF_RD_STATUS = 5, /* read status register */ | ||
659 | SF_WR_ENABLE = 6, /* enable writes */ | ||
660 | SF_RD_DATA_FAST = 0xb, /* read flash */ | ||
661 | SF_ERASE_SECTOR = 0xd8, /* erase sector */ | ||
662 | |||
663 | FW_FLASH_BOOT_ADDR = 0x70000, /* start address of FW in flash */ | ||
664 | FW_VERS_ADDR = 0x77ffc /* flash address holding FW version */ | ||
665 | }; | ||
666 | |||
667 | /** | ||
668 | * sf1_read - read data from the serial flash | ||
669 | * @adapter: the adapter | ||
670 | * @byte_cnt: number of bytes to read | ||
671 | * @cont: whether another operation will be chained | ||
672 | * @valp: where to store the read data | ||
673 | * | ||
674 | * Reads up to 4 bytes of data from the serial flash. The location of | ||
675 | * the read needs to be specified prior to calling this by issuing the | ||
676 | * appropriate commands to the serial flash. | ||
677 | */ | ||
678 | static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, | ||
679 | u32 *valp) | ||
680 | { | ||
681 | int ret; | ||
682 | |||
683 | if (!byte_cnt || byte_cnt > 4) | ||
684 | return -EINVAL; | ||
685 | if (t3_read_reg(adapter, A_SF_OP) & F_BUSY) | ||
686 | return -EBUSY; | ||
687 | t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1)); | ||
688 | ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10); | ||
689 | if (!ret) | ||
690 | *valp = t3_read_reg(adapter, A_SF_DATA); | ||
691 | return ret; | ||
692 | } | ||
693 | |||
694 | /** | ||
695 | * sf1_write - write data to the serial flash | ||
696 | * @adapter: the adapter | ||
697 | * @byte_cnt: number of bytes to write | ||
698 | * @cont: whether another operation will be chained | ||
699 | * @val: value to write | ||
700 | * | ||
701 | * Writes up to 4 bytes of data to the serial flash. The location of | ||
702 | * the write needs to be specified prior to calling this by issuing the | ||
703 | * appropriate commands to the serial flash. | ||
704 | */ | ||
705 | static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, | ||
706 | u32 val) | ||
707 | { | ||
708 | if (!byte_cnt || byte_cnt > 4) | ||
709 | return -EINVAL; | ||
710 | if (t3_read_reg(adapter, A_SF_OP) & F_BUSY) | ||
711 | return -EBUSY; | ||
712 | t3_write_reg(adapter, A_SF_DATA, val); | ||
713 | t3_write_reg(adapter, A_SF_OP, | ||
714 | V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1)); | ||
715 | return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10); | ||
716 | } | ||
717 | |||
718 | /** | ||
719 | * flash_wait_op - wait for a flash operation to complete | ||
720 | * @adapter: the adapter | ||
721 | * @attempts: max number of polls of the status register | ||
722 | * @delay: delay between polls in ms | ||
723 | * | ||
724 | * Wait for a flash operation to complete by polling the status register. | ||
725 | */ | ||
726 | static int flash_wait_op(struct adapter *adapter, int attempts, int delay) | ||
727 | { | ||
728 | int ret; | ||
729 | u32 status; | ||
730 | |||
731 | while (1) { | ||
732 | if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 || | ||
733 | (ret = sf1_read(adapter, 1, 0, &status)) != 0) | ||
734 | return ret; | ||
735 | if (!(status & 1)) | ||
736 | return 0; | ||
737 | if (--attempts == 0) | ||
738 | return -EAGAIN; | ||
739 | if (delay) | ||
740 | msleep(delay); | ||
741 | } | ||
742 | } | ||
743 | |||
744 | /** | ||
745 | * t3_read_flash - read words from serial flash | ||
746 | * @adapter: the adapter | ||
747 | * @addr: the start address for the read | ||
748 | * @nwords: how many 32-bit words to read | ||
749 | * @data: where to store the read data | ||
750 | * @byte_oriented: whether to store data as bytes or as words | ||
751 | * | ||
752 | * Read the specified number of 32-bit words from the serial flash. | ||
753 | * If @byte_oriented is set the read data is stored as a byte array | ||
754 | * (i.e., big-endian), otherwise as 32-bit words in the platform's | ||
755 | * natural endianess. | ||
756 | */ | ||
757 | int t3_read_flash(struct adapter *adapter, unsigned int addr, | ||
758 | unsigned int nwords, u32 *data, int byte_oriented) | ||
759 | { | ||
760 | int ret; | ||
761 | |||
762 | if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3)) | ||
763 | return -EINVAL; | ||
764 | |||
765 | addr = swab32(addr) | SF_RD_DATA_FAST; | ||
766 | |||
767 | if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 || | ||
768 | (ret = sf1_read(adapter, 1, 1, data)) != 0) | ||
769 | return ret; | ||
770 | |||
771 | for (; nwords; nwords--, data++) { | ||
772 | ret = sf1_read(adapter, 4, nwords > 1, data); | ||
773 | if (ret) | ||
774 | return ret; | ||
775 | if (byte_oriented) | ||
776 | *data = htonl(*data); | ||
777 | } | ||
778 | return 0; | ||
779 | } | ||
780 | |||
781 | /** | ||
782 | * t3_write_flash - write up to a page of data to the serial flash | ||
783 | * @adapter: the adapter | ||
784 | * @addr: the start address to write | ||
785 | * @n: length of data to write | ||
786 | * @data: the data to write | ||
787 | * | ||
788 | * Writes up to a page of data (256 bytes) to the serial flash starting | ||
789 | * at the given address. | ||
790 | */ | ||
791 | static int t3_write_flash(struct adapter *adapter, unsigned int addr, | ||
792 | unsigned int n, const u8 *data) | ||
793 | { | ||
794 | int ret; | ||
795 | u32 buf[64]; | ||
796 | unsigned int i, c, left, val, offset = addr & 0xff; | ||
797 | |||
798 | if (addr + n > SF_SIZE || offset + n > 256) | ||
799 | return -EINVAL; | ||
800 | |||
801 | val = swab32(addr) | SF_PROG_PAGE; | ||
802 | |||
803 | if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 || | ||
804 | (ret = sf1_write(adapter, 4, 1, val)) != 0) | ||
805 | return ret; | ||
806 | |||
807 | for (left = n; left; left -= c) { | ||
808 | c = min(left, 4U); | ||
809 | for (val = 0, i = 0; i < c; ++i) | ||
810 | val = (val << 8) + *data++; | ||
811 | |||
812 | ret = sf1_write(adapter, c, c != left, val); | ||
813 | if (ret) | ||
814 | return ret; | ||
815 | } | ||
816 | if ((ret = flash_wait_op(adapter, 5, 1)) != 0) | ||
817 | return ret; | ||
818 | |||
819 | /* Read the page to verify the write succeeded */ | ||
820 | ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); | ||
821 | if (ret) | ||
822 | return ret; | ||
823 | |||
824 | if (memcmp(data - n, (u8 *) buf + offset, n)) | ||
825 | return -EIO; | ||
826 | return 0; | ||
827 | } | ||
828 | |||
829 | /** | ||
830 | * t3_get_fw_version - read the firmware version | ||
831 | * @adapter: the adapter | ||
832 | * @vers: where to place the version | ||
833 | * | ||
834 | * Reads the FW version from flash. | ||
835 | */ | ||
836 | int t3_get_fw_version(struct adapter *adapter, u32 *vers) | ||
837 | { | ||
838 | return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0); | ||
839 | } | ||
840 | |||
841 | /** | ||
842 | * t3_check_fw_version - check if the FW is compatible with this driver | ||
843 | * @adapter: the adapter | ||
844 | * | ||
845 | * Checks if an adapter's FW is compatible with the driver. Returns 0 | ||
846 | * if the versions are compatible, a negative error otherwise. | ||
847 | */ | ||
848 | int t3_check_fw_version(struct adapter *adapter) | ||
849 | { | ||
850 | int ret; | ||
851 | u32 vers; | ||
852 | |||
853 | ret = t3_get_fw_version(adapter, &vers); | ||
854 | if (ret) | ||
855 | return ret; | ||
856 | |||
857 | /* Minor 0xfff means the FW is an internal development-only version. */ | ||
858 | if ((vers & 0xfff) == 0xfff) | ||
859 | return 0; | ||
860 | |||
861 | if (vers == 0x1002009) | ||
862 | return 0; | ||
863 | |||
864 | CH_ERR(adapter, "found wrong FW version, driver needs version 2.9\n"); | ||
865 | return -EINVAL; | ||
866 | } | ||
867 | |||
868 | /** | ||
869 | * t3_flash_erase_sectors - erase a range of flash sectors | ||
870 | * @adapter: the adapter | ||
871 | * @start: the first sector to erase | ||
872 | * @end: the last sector to erase | ||
873 | * | ||
874 | * Erases the sectors in the given range. | ||
875 | */ | ||
876 | static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end) | ||
877 | { | ||
878 | while (start <= end) { | ||
879 | int ret; | ||
880 | |||
881 | if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 || | ||
882 | (ret = sf1_write(adapter, 4, 0, | ||
883 | SF_ERASE_SECTOR | (start << 8))) != 0 || | ||
884 | (ret = flash_wait_op(adapter, 5, 500)) != 0) | ||
885 | return ret; | ||
886 | start++; | ||
887 | } | ||
888 | return 0; | ||
889 | } | ||
890 | |||
891 | /* | ||
892 | * t3_load_fw - download firmware | ||
893 | * @adapter: the adapter | ||
894 | * @fw_data: the firrware image to write | ||
895 | * @size: image size | ||
896 | * | ||
897 | * Write the supplied firmware image to the card's serial flash. | ||
898 | * The FW image has the following sections: @size - 8 bytes of code and | ||
899 | * data, followed by 4 bytes of FW version, followed by the 32-bit | ||
900 | * 1's complement checksum of the whole image. | ||
901 | */ | ||
902 | int t3_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size) | ||
903 | { | ||
904 | u32 csum; | ||
905 | unsigned int i; | ||
906 | const u32 *p = (const u32 *)fw_data; | ||
907 | int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16; | ||
908 | |||
909 | if (size & 3) | ||
910 | return -EINVAL; | ||
911 | if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR) | ||
912 | return -EFBIG; | ||
913 | |||
914 | for (csum = 0, i = 0; i < size / sizeof(csum); i++) | ||
915 | csum += ntohl(p[i]); | ||
916 | if (csum != 0xffffffff) { | ||
917 | CH_ERR(adapter, "corrupted firmware image, checksum %u\n", | ||
918 | csum); | ||
919 | return -EINVAL; | ||
920 | } | ||
921 | |||
922 | ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector); | ||
923 | if (ret) | ||
924 | goto out; | ||
925 | |||
926 | size -= 8; /* trim off version and checksum */ | ||
927 | for (addr = FW_FLASH_BOOT_ADDR; size;) { | ||
928 | unsigned int chunk_size = min(size, 256U); | ||
929 | |||
930 | ret = t3_write_flash(adapter, addr, chunk_size, fw_data); | ||
931 | if (ret) | ||
932 | goto out; | ||
933 | |||
934 | addr += chunk_size; | ||
935 | fw_data += chunk_size; | ||
936 | size -= chunk_size; | ||
937 | } | ||
938 | |||
939 | ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data); | ||
940 | out: | ||
941 | if (ret) | ||
942 | CH_ERR(adapter, "firmware download failed, error %d\n", ret); | ||
943 | return ret; | ||
944 | } | ||
945 | |||
946 | #define CIM_CTL_BASE 0x2000 | ||
947 | |||
948 | /** | ||
949 | * t3_cim_ctl_blk_read - read a block from CIM control region | ||
950 | * | ||
951 | * @adap: the adapter | ||
952 | * @addr: the start address within the CIM control region | ||
953 | * @n: number of words to read | ||
954 | * @valp: where to store the result | ||
955 | * | ||
956 | * Reads a block of 4-byte words from the CIM control region. | ||
957 | */ | ||
958 | int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr, | ||
959 | unsigned int n, unsigned int *valp) | ||
960 | { | ||
961 | int ret = 0; | ||
962 | |||
963 | if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY) | ||
964 | return -EBUSY; | ||
965 | |||
966 | for ( ; !ret && n--; addr += 4) { | ||
967 | t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr); | ||
968 | ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY, | ||
969 | 0, 5, 2); | ||
970 | if (!ret) | ||
971 | *valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA); | ||
972 | } | ||
973 | return ret; | ||
974 | } | ||
975 | |||
976 | |||
977 | /** | ||
978 | * t3_link_changed - handle interface link changes | ||
979 | * @adapter: the adapter | ||
980 | * @port_id: the port index that changed link state | ||
981 | * | ||
982 | * Called when a port's link settings change to propagate the new values | ||
983 | * to the associated PHY and MAC. After performing the common tasks it | ||
984 | * invokes an OS-specific handler. | ||
985 | */ | ||
986 | void t3_link_changed(struct adapter *adapter, int port_id) | ||
987 | { | ||
988 | int link_ok, speed, duplex, fc; | ||
989 | struct port_info *pi = adap2pinfo(adapter, port_id); | ||
990 | struct cphy *phy = &pi->phy; | ||
991 | struct cmac *mac = &pi->mac; | ||
992 | struct link_config *lc = &pi->link_config; | ||
993 | |||
994 | phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc); | ||
995 | |||
996 | if (link_ok != lc->link_ok && adapter->params.rev > 0 && | ||
997 | uses_xaui(adapter)) { | ||
998 | if (link_ok) | ||
999 | t3b_pcs_reset(mac); | ||
1000 | t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset, | ||
1001 | link_ok ? F_TXACTENABLE | F_RXEN : 0); | ||
1002 | } | ||
1003 | lc->link_ok = link_ok; | ||
1004 | lc->speed = speed < 0 ? SPEED_INVALID : speed; | ||
1005 | lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex; | ||
1006 | if (lc->requested_fc & PAUSE_AUTONEG) | ||
1007 | fc &= lc->requested_fc; | ||
1008 | else | ||
1009 | fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); | ||
1010 | |||
1011 | if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) { | ||
1012 | /* Set MAC speed, duplex, and flow control to match PHY. */ | ||
1013 | t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc); | ||
1014 | lc->fc = fc; | ||
1015 | } | ||
1016 | |||
1017 | t3_os_link_changed(adapter, port_id, link_ok, speed, duplex, fc); | ||
1018 | } | ||
1019 | |||
1020 | /** | ||
1021 | * t3_link_start - apply link configuration to MAC/PHY | ||
1022 | * @phy: the PHY to setup | ||
1023 | * @mac: the MAC to setup | ||
1024 | * @lc: the requested link configuration | ||
1025 | * | ||
1026 | * Set up a port's MAC and PHY according to a desired link configuration. | ||
1027 | * - If the PHY can auto-negotiate first decide what to advertise, then | ||
1028 | * enable/disable auto-negotiation as desired, and reset. | ||
1029 | * - If the PHY does not auto-negotiate just reset it. | ||
1030 | * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, | ||
1031 | * otherwise do it later based on the outcome of auto-negotiation. | ||
1032 | */ | ||
1033 | int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc) | ||
1034 | { | ||
1035 | unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); | ||
1036 | |||
1037 | lc->link_ok = 0; | ||
1038 | if (lc->supported & SUPPORTED_Autoneg) { | ||
1039 | lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause); | ||
1040 | if (fc) { | ||
1041 | lc->advertising |= ADVERTISED_Asym_Pause; | ||
1042 | if (fc & PAUSE_RX) | ||
1043 | lc->advertising |= ADVERTISED_Pause; | ||
1044 | } | ||
1045 | phy->ops->advertise(phy, lc->advertising); | ||
1046 | |||
1047 | if (lc->autoneg == AUTONEG_DISABLE) { | ||
1048 | lc->speed = lc->requested_speed; | ||
1049 | lc->duplex = lc->requested_duplex; | ||
1050 | lc->fc = (unsigned char)fc; | ||
1051 | t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex, | ||
1052 | fc); | ||
1053 | /* Also disables autoneg */ | ||
1054 | phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex); | ||
1055 | phy->ops->reset(phy, 0); | ||
1056 | } else | ||
1057 | phy->ops->autoneg_enable(phy); | ||
1058 | } else { | ||
1059 | t3_mac_set_speed_duplex_fc(mac, -1, -1, fc); | ||
1060 | lc->fc = (unsigned char)fc; | ||
1061 | phy->ops->reset(phy, 0); | ||
1062 | } | ||
1063 | return 0; | ||
1064 | } | ||
1065 | |||
1066 | /** | ||
1067 | * t3_set_vlan_accel - control HW VLAN extraction | ||
1068 | * @adapter: the adapter | ||
1069 | * @ports: bitmap of adapter ports to operate on | ||
1070 | * @on: enable (1) or disable (0) HW VLAN extraction | ||
1071 | * | ||
1072 | * Enables or disables HW extraction of VLAN tags for the given port. | ||
1073 | */ | ||
1074 | void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on) | ||
1075 | { | ||
1076 | t3_set_reg_field(adapter, A_TP_OUT_CONFIG, | ||
1077 | ports << S_VLANEXTRACTIONENABLE, | ||
1078 | on ? (ports << S_VLANEXTRACTIONENABLE) : 0); | ||
1079 | } | ||
1080 | |||
1081 | struct intr_info { | ||
1082 | unsigned int mask; /* bits to check in interrupt status */ | ||
1083 | const char *msg; /* message to print or NULL */ | ||
1084 | short stat_idx; /* stat counter to increment or -1 */ | ||
1085 | unsigned short fatal:1; /* whether the condition reported is fatal */ | ||
1086 | }; | ||
1087 | |||
1088 | /** | ||
1089 | * t3_handle_intr_status - table driven interrupt handler | ||
1090 | * @adapter: the adapter that generated the interrupt | ||
1091 | * @reg: the interrupt status register to process | ||
1092 | * @mask: a mask to apply to the interrupt status | ||
1093 | * @acts: table of interrupt actions | ||
1094 | * @stats: statistics counters tracking interrupt occurences | ||
1095 | * | ||
1096 | * A table driven interrupt handler that applies a set of masks to an | ||
1097 | * interrupt status word and performs the corresponding actions if the | ||
1098 | * interrupts described by the mask have occured. The actions include | ||
1099 | * optionally printing a warning or alert message, and optionally | ||
1100 | * incrementing a stat counter. The table is terminated by an entry | ||
1101 | * specifying mask 0. Returns the number of fatal interrupt conditions. | ||
1102 | */ | ||
1103 | static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg, | ||
1104 | unsigned int mask, | ||
1105 | const struct intr_info *acts, | ||
1106 | unsigned long *stats) | ||
1107 | { | ||
1108 | int fatal = 0; | ||
1109 | unsigned int status = t3_read_reg(adapter, reg) & mask; | ||
1110 | |||
1111 | for (; acts->mask; ++acts) { | ||
1112 | if (!(status & acts->mask)) | ||
1113 | continue; | ||
1114 | if (acts->fatal) { | ||
1115 | fatal++; | ||
1116 | CH_ALERT(adapter, "%s (0x%x)\n", | ||
1117 | acts->msg, status & acts->mask); | ||
1118 | } else if (acts->msg) | ||
1119 | CH_WARN(adapter, "%s (0x%x)\n", | ||
1120 | acts->msg, status & acts->mask); | ||
1121 | if (acts->stat_idx >= 0) | ||
1122 | stats[acts->stat_idx]++; | ||
1123 | } | ||
1124 | if (status) /* clear processed interrupts */ | ||
1125 | t3_write_reg(adapter, reg, status); | ||
1126 | return fatal; | ||
1127 | } | ||
1128 | |||
1129 | #define SGE_INTR_MASK (F_RSPQDISABLED) | ||
1130 | #define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \ | ||
1131 | F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \ | ||
1132 | F_NFASRCHFAIL) | ||
1133 | #define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE)) | ||
1134 | #define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \ | ||
1135 | V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \ | ||
1136 | F_TXFIFO_UNDERRUN | F_RXFIFO_OVERFLOW) | ||
1137 | #define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \ | ||
1138 | F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \ | ||
1139 | F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \ | ||
1140 | F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \ | ||
1141 | V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \ | ||
1142 | V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */) | ||
1143 | #define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\ | ||
1144 | F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \ | ||
1145 | /* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \ | ||
1146 | V_BISTERR(M_BISTERR) | F_PEXERR) | ||
1147 | #define ULPRX_INTR_MASK F_PARERR | ||
1148 | #define ULPTX_INTR_MASK 0 | ||
1149 | #define CPLSW_INTR_MASK (F_TP_FRAMING_ERROR | \ | ||
1150 | F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \ | ||
1151 | F_ZERO_SWITCH_ERROR) | ||
1152 | #define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \ | ||
1153 | F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \ | ||
1154 | F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \ | ||
1155 | F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT) | ||
1156 | #define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \ | ||
1157 | V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \ | ||
1158 | V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR)) | ||
1159 | #define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \ | ||
1160 | V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \ | ||
1161 | V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR)) | ||
1162 | #define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \ | ||
1163 | V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \ | ||
1164 | V_RXTPPARERRENB(M_RXTPPARERRENB) | \ | ||
1165 | V_MCAPARERRENB(M_MCAPARERRENB)) | ||
1166 | #define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \ | ||
1167 | F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \ | ||
1168 | F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \ | ||
1169 | F_MPS0 | F_CPL_SWITCH) | ||
1170 | |||
1171 | /* | ||
1172 | * Interrupt handler for the PCIX1 module. | ||
1173 | */ | ||
1174 | static void pci_intr_handler(struct adapter *adapter) | ||
1175 | { | ||
1176 | static const struct intr_info pcix1_intr_info[] = { | ||
1177 | { F_PEXERR, "PCI PEX error", -1, 1 }, | ||
1178 | {F_MSTDETPARERR, "PCI master detected parity error", -1, 1}, | ||
1179 | {F_SIGTARABT, "PCI signaled target abort", -1, 1}, | ||
1180 | {F_RCVTARABT, "PCI received target abort", -1, 1}, | ||
1181 | {F_RCVMSTABT, "PCI received master abort", -1, 1}, | ||
1182 | {F_SIGSYSERR, "PCI signaled system error", -1, 1}, | ||
1183 | {F_DETPARERR, "PCI detected parity error", -1, 1}, | ||
1184 | {F_SPLCMPDIS, "PCI split completion discarded", -1, 1}, | ||
1185 | {F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1}, | ||
1186 | {F_RCVSPLCMPERR, "PCI received split completion error", -1, | ||
1187 | 1}, | ||
1188 | {F_DETCORECCERR, "PCI correctable ECC error", | ||
1189 | STAT_PCI_CORR_ECC, 0}, | ||
1190 | {F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1}, | ||
1191 | {F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1}, | ||
1192 | {V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1, | ||
1193 | 1}, | ||
1194 | {V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1, | ||
1195 | 1}, | ||
1196 | {V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1, | ||
1197 | 1}, | ||
1198 | {V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity " | ||
1199 | "error", -1, 1}, | ||
1200 | {0} | ||
1201 | }; | ||
1202 | |||
1203 | if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK, | ||
1204 | pcix1_intr_info, adapter->irq_stats)) | ||
1205 | t3_fatal_err(adapter); | ||
1206 | } | ||
1207 | |||
1208 | /* | ||
1209 | * Interrupt handler for the PCIE module. | ||
1210 | */ | ||
1211 | static void pcie_intr_handler(struct adapter *adapter) | ||
1212 | { | ||
1213 | static const struct intr_info pcie_intr_info[] = { | ||
1214 | {F_UNXSPLCPLERRR, | ||
1215 | "PCI unexpected split completion DMA read error", -1, 1}, | ||
1216 | {F_UNXSPLCPLERRC, | ||
1217 | "PCI unexpected split completion DMA command error", -1, 1}, | ||
1218 | {F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1}, | ||
1219 | {F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1}, | ||
1220 | {F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1}, | ||
1221 | {F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1}, | ||
1222 | {V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR), | ||
1223 | "PCI MSI-X table/PBA parity error", -1, 1}, | ||
1224 | {V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1}, | ||
1225 | {0} | ||
1226 | }; | ||
1227 | |||
1228 | if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK, | ||
1229 | pcie_intr_info, adapter->irq_stats)) | ||
1230 | t3_fatal_err(adapter); | ||
1231 | } | ||
1232 | |||
1233 | /* | ||
1234 | * TP interrupt handler. | ||
1235 | */ | ||
1236 | static void tp_intr_handler(struct adapter *adapter) | ||
1237 | { | ||
1238 | static const struct intr_info tp_intr_info[] = { | ||
1239 | {0xffffff, "TP parity error", -1, 1}, | ||
1240 | {0x1000000, "TP out of Rx pages", -1, 1}, | ||
1241 | {0x2000000, "TP out of Tx pages", -1, 1}, | ||
1242 | {0} | ||
1243 | }; | ||
1244 | |||
1245 | if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff, | ||
1246 | tp_intr_info, NULL)) | ||
1247 | t3_fatal_err(adapter); | ||
1248 | } | ||
1249 | |||
1250 | /* | ||
1251 | * CIM interrupt handler. | ||
1252 | */ | ||
1253 | static void cim_intr_handler(struct adapter *adapter) | ||
1254 | { | ||
1255 | static const struct intr_info cim_intr_info[] = { | ||
1256 | {F_RSVDSPACEINT, "CIM reserved space write", -1, 1}, | ||
1257 | {F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1}, | ||
1258 | {F_FLASHRANGEINT, "CIM flash address out of range", -1, 1}, | ||
1259 | {F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1}, | ||
1260 | {F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1}, | ||
1261 | {F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1}, | ||
1262 | {F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1}, | ||
1263 | {F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1}, | ||
1264 | {F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1}, | ||
1265 | {F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1}, | ||
1266 | {F_BLKRDPLINT, "CIM block read from PL space", -1, 1}, | ||
1267 | {F_BLKWRPLINT, "CIM block write to PL space", -1, 1}, | ||
1268 | {0} | ||
1269 | }; | ||
1270 | |||
1271 | if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff, | ||
1272 | cim_intr_info, NULL)) | ||
1273 | t3_fatal_err(adapter); | ||
1274 | } | ||
1275 | |||
1276 | /* | ||
1277 | * ULP RX interrupt handler. | ||
1278 | */ | ||
1279 | static void ulprx_intr_handler(struct adapter *adapter) | ||
1280 | { | ||
1281 | static const struct intr_info ulprx_intr_info[] = { | ||
1282 | {F_PARERR, "ULP RX parity error", -1, 1}, | ||
1283 | {0} | ||
1284 | }; | ||
1285 | |||
1286 | if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff, | ||
1287 | ulprx_intr_info, NULL)) | ||
1288 | t3_fatal_err(adapter); | ||
1289 | } | ||
1290 | |||
1291 | /* | ||
1292 | * ULP TX interrupt handler. | ||
1293 | */ | ||
1294 | static void ulptx_intr_handler(struct adapter *adapter) | ||
1295 | { | ||
1296 | static const struct intr_info ulptx_intr_info[] = { | ||
1297 | {F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds", | ||
1298 | STAT_ULP_CH0_PBL_OOB, 0}, | ||
1299 | {F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds", | ||
1300 | STAT_ULP_CH1_PBL_OOB, 0}, | ||
1301 | {0} | ||
1302 | }; | ||
1303 | |||
1304 | if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff, | ||
1305 | ulptx_intr_info, adapter->irq_stats)) | ||
1306 | t3_fatal_err(adapter); | ||
1307 | } | ||
1308 | |||
1309 | #define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \ | ||
1310 | F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \ | ||
1311 | F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \ | ||
1312 | F_ICSPI1_TX_FRAMING_ERROR) | ||
1313 | #define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \ | ||
1314 | F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \ | ||
1315 | F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \ | ||
1316 | F_OESPI1_OFIFO2X_TX_FRAMING_ERROR) | ||
1317 | |||
1318 | /* | ||
1319 | * PM TX interrupt handler. | ||
1320 | */ | ||
1321 | static void pmtx_intr_handler(struct adapter *adapter) | ||
1322 | { | ||
1323 | static const struct intr_info pmtx_intr_info[] = { | ||
1324 | {F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1}, | ||
1325 | {ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1}, | ||
1326 | {OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1}, | ||
1327 | {V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR), | ||
1328 | "PMTX ispi parity error", -1, 1}, | ||
1329 | {V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR), | ||
1330 | "PMTX ospi parity error", -1, 1}, | ||
1331 | {0} | ||
1332 | }; | ||
1333 | |||
1334 | if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff, | ||
1335 | pmtx_intr_info, NULL)) | ||
1336 | t3_fatal_err(adapter); | ||
1337 | } | ||
1338 | |||
1339 | #define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \ | ||
1340 | F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \ | ||
1341 | F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \ | ||
1342 | F_IESPI1_TX_FRAMING_ERROR) | ||
1343 | #define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \ | ||
1344 | F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \ | ||
1345 | F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \ | ||
1346 | F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR) | ||
1347 | |||
1348 | /* | ||
1349 | * PM RX interrupt handler. | ||
1350 | */ | ||
1351 | static void pmrx_intr_handler(struct adapter *adapter) | ||
1352 | { | ||
1353 | static const struct intr_info pmrx_intr_info[] = { | ||
1354 | {F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1}, | ||
1355 | {IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1}, | ||
1356 | {OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1}, | ||
1357 | {V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR), | ||
1358 | "PMRX ispi parity error", -1, 1}, | ||
1359 | {V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR), | ||
1360 | "PMRX ospi parity error", -1, 1}, | ||
1361 | {0} | ||
1362 | }; | ||
1363 | |||
1364 | if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff, | ||
1365 | pmrx_intr_info, NULL)) | ||
1366 | t3_fatal_err(adapter); | ||
1367 | } | ||
1368 | |||
1369 | /* | ||
1370 | * CPL switch interrupt handler. | ||
1371 | */ | ||
1372 | static void cplsw_intr_handler(struct adapter *adapter) | ||
1373 | { | ||
1374 | static const struct intr_info cplsw_intr_info[] = { | ||
1375 | /* { F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1 }, */ | ||
1376 | {F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1}, | ||
1377 | {F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1}, | ||
1378 | {F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1}, | ||
1379 | {F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1}, | ||
1380 | {0} | ||
1381 | }; | ||
1382 | |||
1383 | if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff, | ||
1384 | cplsw_intr_info, NULL)) | ||
1385 | t3_fatal_err(adapter); | ||
1386 | } | ||
1387 | |||
1388 | /* | ||
1389 | * MPS interrupt handler. | ||
1390 | */ | ||
1391 | static void mps_intr_handler(struct adapter *adapter) | ||
1392 | { | ||
1393 | static const struct intr_info mps_intr_info[] = { | ||
1394 | {0x1ff, "MPS parity error", -1, 1}, | ||
1395 | {0} | ||
1396 | }; | ||
1397 | |||
1398 | if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff, | ||
1399 | mps_intr_info, NULL)) | ||
1400 | t3_fatal_err(adapter); | ||
1401 | } | ||
1402 | |||
1403 | #define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE) | ||
1404 | |||
1405 | /* | ||
1406 | * MC7 interrupt handler. | ||
1407 | */ | ||
1408 | static void mc7_intr_handler(struct mc7 *mc7) | ||
1409 | { | ||
1410 | struct adapter *adapter = mc7->adapter; | ||
1411 | u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE); | ||
1412 | |||
1413 | if (cause & F_CE) { | ||
1414 | mc7->stats.corr_err++; | ||
1415 | CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, " | ||
1416 | "data 0x%x 0x%x 0x%x\n", mc7->name, | ||
1417 | t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR), | ||
1418 | t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0), | ||
1419 | t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1), | ||
1420 | t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2)); | ||
1421 | } | ||
1422 | |||
1423 | if (cause & F_UE) { | ||
1424 | mc7->stats.uncorr_err++; | ||
1425 | CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, " | ||
1426 | "data 0x%x 0x%x 0x%x\n", mc7->name, | ||
1427 | t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR), | ||
1428 | t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0), | ||
1429 | t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1), | ||
1430 | t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2)); | ||
1431 | } | ||
1432 | |||
1433 | if (G_PE(cause)) { | ||
1434 | mc7->stats.parity_err++; | ||
1435 | CH_ALERT(adapter, "%s MC7 parity error 0x%x\n", | ||
1436 | mc7->name, G_PE(cause)); | ||
1437 | } | ||
1438 | |||
1439 | if (cause & F_AE) { | ||
1440 | u32 addr = 0; | ||
1441 | |||
1442 | if (adapter->params.rev > 0) | ||
1443 | addr = t3_read_reg(adapter, | ||
1444 | mc7->offset + A_MC7_ERR_ADDR); | ||
1445 | mc7->stats.addr_err++; | ||
1446 | CH_ALERT(adapter, "%s MC7 address error: 0x%x\n", | ||
1447 | mc7->name, addr); | ||
1448 | } | ||
1449 | |||
1450 | if (cause & MC7_INTR_FATAL) | ||
1451 | t3_fatal_err(adapter); | ||
1452 | |||
1453 | t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause); | ||
1454 | } | ||
1455 | |||
1456 | #define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \ | ||
1457 | V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) | ||
1458 | /* | ||
1459 | * XGMAC interrupt handler. | ||
1460 | */ | ||
1461 | static int mac_intr_handler(struct adapter *adap, unsigned int idx) | ||
1462 | { | ||
1463 | struct cmac *mac = &adap2pinfo(adap, idx)->mac; | ||
1464 | u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset); | ||
1465 | |||
1466 | if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) { | ||
1467 | mac->stats.tx_fifo_parity_err++; | ||
1468 | CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx); | ||
1469 | } | ||
1470 | if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) { | ||
1471 | mac->stats.rx_fifo_parity_err++; | ||
1472 | CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx); | ||
1473 | } | ||
1474 | if (cause & F_TXFIFO_UNDERRUN) | ||
1475 | mac->stats.tx_fifo_urun++; | ||
1476 | if (cause & F_RXFIFO_OVERFLOW) | ||
1477 | mac->stats.rx_fifo_ovfl++; | ||
1478 | if (cause & V_SERDES_LOS(M_SERDES_LOS)) | ||
1479 | mac->stats.serdes_signal_loss++; | ||
1480 | if (cause & F_XAUIPCSCTCERR) | ||
1481 | mac->stats.xaui_pcs_ctc_err++; | ||
1482 | if (cause & F_XAUIPCSALIGNCHANGE) | ||
1483 | mac->stats.xaui_pcs_align_change++; | ||
1484 | |||
1485 | t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause); | ||
1486 | if (cause & XGM_INTR_FATAL) | ||
1487 | t3_fatal_err(adap); | ||
1488 | return cause != 0; | ||
1489 | } | ||
1490 | |||
1491 | /* | ||
1492 | * Interrupt handler for PHY events. | ||
1493 | */ | ||
1494 | int t3_phy_intr_handler(struct adapter *adapter) | ||
1495 | { | ||
1496 | static const int intr_gpio_bits[] = { 8, 0x20 }; | ||
1497 | |||
1498 | u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE); | ||
1499 | |||
1500 | for_each_port(adapter, i) { | ||
1501 | if (cause & intr_gpio_bits[i]) { | ||
1502 | struct cphy *phy = &adap2pinfo(adapter, i)->phy; | ||
1503 | int phy_cause = phy->ops->intr_handler(phy); | ||
1504 | |||
1505 | if (phy_cause & cphy_cause_link_change) | ||
1506 | t3_link_changed(adapter, i); | ||
1507 | if (phy_cause & cphy_cause_fifo_error) | ||
1508 | phy->fifo_errors++; | ||
1509 | } | ||
1510 | } | ||
1511 | |||
1512 | t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause); | ||
1513 | return 0; | ||
1514 | } | ||
1515 | |||
1516 | /* | ||
1517 | * T3 slow path (non-data) interrupt handler. | ||
1518 | */ | ||
1519 | int t3_slow_intr_handler(struct adapter *adapter) | ||
1520 | { | ||
1521 | u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0); | ||
1522 | |||
1523 | cause &= adapter->slow_intr_mask; | ||
1524 | if (!cause) | ||
1525 | return 0; | ||
1526 | if (cause & F_PCIM0) { | ||
1527 | if (is_pcie(adapter)) | ||
1528 | pcie_intr_handler(adapter); | ||
1529 | else | ||
1530 | pci_intr_handler(adapter); | ||
1531 | } | ||
1532 | if (cause & F_SGE3) | ||
1533 | t3_sge_err_intr_handler(adapter); | ||
1534 | if (cause & F_MC7_PMRX) | ||
1535 | mc7_intr_handler(&adapter->pmrx); | ||
1536 | if (cause & F_MC7_PMTX) | ||
1537 | mc7_intr_handler(&adapter->pmtx); | ||
1538 | if (cause & F_MC7_CM) | ||
1539 | mc7_intr_handler(&adapter->cm); | ||
1540 | if (cause & F_CIM) | ||
1541 | cim_intr_handler(adapter); | ||
1542 | if (cause & F_TP1) | ||
1543 | tp_intr_handler(adapter); | ||
1544 | if (cause & F_ULP2_RX) | ||
1545 | ulprx_intr_handler(adapter); | ||
1546 | if (cause & F_ULP2_TX) | ||
1547 | ulptx_intr_handler(adapter); | ||
1548 | if (cause & F_PM1_RX) | ||
1549 | pmrx_intr_handler(adapter); | ||
1550 | if (cause & F_PM1_TX) | ||
1551 | pmtx_intr_handler(adapter); | ||
1552 | if (cause & F_CPL_SWITCH) | ||
1553 | cplsw_intr_handler(adapter); | ||
1554 | if (cause & F_MPS0) | ||
1555 | mps_intr_handler(adapter); | ||
1556 | if (cause & F_MC5A) | ||
1557 | t3_mc5_intr_handler(&adapter->mc5); | ||
1558 | if (cause & F_XGMAC0_0) | ||
1559 | mac_intr_handler(adapter, 0); | ||
1560 | if (cause & F_XGMAC0_1) | ||
1561 | mac_intr_handler(adapter, 1); | ||
1562 | if (cause & F_T3DBG) | ||
1563 | t3_os_ext_intr_handler(adapter); | ||
1564 | |||
1565 | /* Clear the interrupts just processed. */ | ||
1566 | t3_write_reg(adapter, A_PL_INT_CAUSE0, cause); | ||
1567 | t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */ | ||
1568 | return 1; | ||
1569 | } | ||
1570 | |||
1571 | /** | ||
1572 | * t3_intr_enable - enable interrupts | ||
1573 | * @adapter: the adapter whose interrupts should be enabled | ||
1574 | * | ||
1575 | * Enable interrupts by setting the interrupt enable registers of the | ||
1576 | * various HW modules and then enabling the top-level interrupt | ||
1577 | * concentrator. | ||
1578 | */ | ||
1579 | void t3_intr_enable(struct adapter *adapter) | ||
1580 | { | ||
1581 | static const struct addr_val_pair intr_en_avp[] = { | ||
1582 | {A_SG_INT_ENABLE, SGE_INTR_MASK}, | ||
1583 | {A_MC7_INT_ENABLE, MC7_INTR_MASK}, | ||
1584 | {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR, | ||
1585 | MC7_INTR_MASK}, | ||
1586 | {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR, | ||
1587 | MC7_INTR_MASK}, | ||
1588 | {A_MC5_DB_INT_ENABLE, MC5_INTR_MASK}, | ||
1589 | {A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK}, | ||
1590 | {A_TP_INT_ENABLE, 0x3bfffff}, | ||
1591 | {A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK}, | ||
1592 | {A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK}, | ||
1593 | {A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK}, | ||
1594 | {A_MPS_INT_ENABLE, MPS_INTR_MASK}, | ||
1595 | }; | ||
1596 | |||
1597 | adapter->slow_intr_mask = PL_INTR_MASK; | ||
1598 | |||
1599 | t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0); | ||
1600 | |||
1601 | if (adapter->params.rev > 0) { | ||
1602 | t3_write_reg(adapter, A_CPL_INTR_ENABLE, | ||
1603 | CPLSW_INTR_MASK | F_CIM_OVFL_ERROR); | ||
1604 | t3_write_reg(adapter, A_ULPTX_INT_ENABLE, | ||
1605 | ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 | | ||
1606 | F_PBL_BOUND_ERR_CH1); | ||
1607 | } else { | ||
1608 | t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK); | ||
1609 | t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK); | ||
1610 | } | ||
1611 | |||
1612 | t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW, | ||
1613 | adapter_info(adapter)->gpio_intr); | ||
1614 | t3_write_reg(adapter, A_T3DBG_INT_ENABLE, | ||
1615 | adapter_info(adapter)->gpio_intr); | ||
1616 | if (is_pcie(adapter)) | ||
1617 | t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK); | ||
1618 | else | ||
1619 | t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK); | ||
1620 | t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask); | ||
1621 | t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */ | ||
1622 | } | ||
1623 | |||
1624 | /** | ||
1625 | * t3_intr_disable - disable a card's interrupts | ||
1626 | * @adapter: the adapter whose interrupts should be disabled | ||
1627 | * | ||
1628 | * Disable interrupts. We only disable the top-level interrupt | ||
1629 | * concentrator and the SGE data interrupts. | ||
1630 | */ | ||
1631 | void t3_intr_disable(struct adapter *adapter) | ||
1632 | { | ||
1633 | t3_write_reg(adapter, A_PL_INT_ENABLE0, 0); | ||
1634 | t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */ | ||
1635 | adapter->slow_intr_mask = 0; | ||
1636 | } | ||
1637 | |||
1638 | /** | ||
1639 | * t3_intr_clear - clear all interrupts | ||
1640 | * @adapter: the adapter whose interrupts should be cleared | ||
1641 | * | ||
1642 | * Clears all interrupts. | ||
1643 | */ | ||
1644 | void t3_intr_clear(struct adapter *adapter) | ||
1645 | { | ||
1646 | static const unsigned int cause_reg_addr[] = { | ||
1647 | A_SG_INT_CAUSE, | ||
1648 | A_SG_RSPQ_FL_STATUS, | ||
1649 | A_PCIX_INT_CAUSE, | ||
1650 | A_MC7_INT_CAUSE, | ||
1651 | A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR, | ||
1652 | A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR, | ||
1653 | A_CIM_HOST_INT_CAUSE, | ||
1654 | A_TP_INT_CAUSE, | ||
1655 | A_MC5_DB_INT_CAUSE, | ||
1656 | A_ULPRX_INT_CAUSE, | ||
1657 | A_ULPTX_INT_CAUSE, | ||
1658 | A_CPL_INTR_CAUSE, | ||
1659 | A_PM1_TX_INT_CAUSE, | ||
1660 | A_PM1_RX_INT_CAUSE, | ||
1661 | A_MPS_INT_CAUSE, | ||
1662 | A_T3DBG_INT_CAUSE, | ||
1663 | }; | ||
1664 | unsigned int i; | ||
1665 | |||
1666 | /* Clear PHY and MAC interrupts for each port. */ | ||
1667 | for_each_port(adapter, i) | ||
1668 | t3_port_intr_clear(adapter, i); | ||
1669 | |||
1670 | for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i) | ||
1671 | t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff); | ||
1672 | |||
1673 | t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff); | ||
1674 | t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */ | ||
1675 | } | ||
1676 | |||
1677 | /** | ||
1678 | * t3_port_intr_enable - enable port-specific interrupts | ||
1679 | * @adapter: associated adapter | ||
1680 | * @idx: index of port whose interrupts should be enabled | ||
1681 | * | ||
1682 | * Enable port-specific (i.e., MAC and PHY) interrupts for the given | ||
1683 | * adapter port. | ||
1684 | */ | ||
1685 | void t3_port_intr_enable(struct adapter *adapter, int idx) | ||
1686 | { | ||
1687 | struct cphy *phy = &adap2pinfo(adapter, idx)->phy; | ||
1688 | |||
1689 | t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK); | ||
1690 | t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */ | ||
1691 | phy->ops->intr_enable(phy); | ||
1692 | } | ||
1693 | |||
1694 | /** | ||
1695 | * t3_port_intr_disable - disable port-specific interrupts | ||
1696 | * @adapter: associated adapter | ||
1697 | * @idx: index of port whose interrupts should be disabled | ||
1698 | * | ||
1699 | * Disable port-specific (i.e., MAC and PHY) interrupts for the given | ||
1700 | * adapter port. | ||
1701 | */ | ||
1702 | void t3_port_intr_disable(struct adapter *adapter, int idx) | ||
1703 | { | ||
1704 | struct cphy *phy = &adap2pinfo(adapter, idx)->phy; | ||
1705 | |||
1706 | t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0); | ||
1707 | t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */ | ||
1708 | phy->ops->intr_disable(phy); | ||
1709 | } | ||
1710 | |||
1711 | /** | ||
1712 | * t3_port_intr_clear - clear port-specific interrupts | ||
1713 | * @adapter: associated adapter | ||
1714 | * @idx: index of port whose interrupts to clear | ||
1715 | * | ||
1716 | * Clear port-specific (i.e., MAC and PHY) interrupts for the given | ||
1717 | * adapter port. | ||
1718 | */ | ||
1719 | void t3_port_intr_clear(struct adapter *adapter, int idx) | ||
1720 | { | ||
1721 | struct cphy *phy = &adap2pinfo(adapter, idx)->phy; | ||
1722 | |||
1723 | t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff); | ||
1724 | t3_read_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx)); /* flush */ | ||
1725 | phy->ops->intr_clear(phy); | ||
1726 | } | ||
1727 | |||
1728 | /** | ||
1729 | * t3_sge_write_context - write an SGE context | ||
1730 | * @adapter: the adapter | ||
1731 | * @id: the context id | ||
1732 | * @type: the context type | ||
1733 | * | ||
1734 | * Program an SGE context with the values already loaded in the | ||
1735 | * CONTEXT_DATA? registers. | ||
1736 | */ | ||
1737 | static int t3_sge_write_context(struct adapter *adapter, unsigned int id, | ||
1738 | unsigned int type) | ||
1739 | { | ||
1740 | t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff); | ||
1741 | t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff); | ||
1742 | t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff); | ||
1743 | t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff); | ||
1744 | t3_write_reg(adapter, A_SG_CONTEXT_CMD, | ||
1745 | V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id)); | ||
1746 | return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, | ||
1747 | 0, 5, 1); | ||
1748 | } | ||
1749 | |||
1750 | /** | ||
1751 | * t3_sge_init_ecntxt - initialize an SGE egress context | ||
1752 | * @adapter: the adapter to configure | ||
1753 | * @id: the context id | ||
1754 | * @gts_enable: whether to enable GTS for the context | ||
1755 | * @type: the egress context type | ||
1756 | * @respq: associated response queue | ||
1757 | * @base_addr: base address of queue | ||
1758 | * @size: number of queue entries | ||
1759 | * @token: uP token | ||
1760 | * @gen: initial generation value for the context | ||
1761 | * @cidx: consumer pointer | ||
1762 | * | ||
1763 | * Initialize an SGE egress context and make it ready for use. If the | ||
1764 | * platform allows concurrent context operations, the caller is | ||
1765 | * responsible for appropriate locking. | ||
1766 | */ | ||
1767 | int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable, | ||
1768 | enum sge_context_type type, int respq, u64 base_addr, | ||
1769 | unsigned int size, unsigned int token, int gen, | ||
1770 | unsigned int cidx) | ||
1771 | { | ||
1772 | unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM; | ||
1773 | |||
1774 | if (base_addr & 0xfff) /* must be 4K aligned */ | ||
1775 | return -EINVAL; | ||
1776 | if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) | ||
1777 | return -EBUSY; | ||
1778 | |||
1779 | base_addr >>= 12; | ||
1780 | t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) | | ||
1781 | V_EC_CREDITS(credits) | V_EC_GTS(gts_enable)); | ||
1782 | t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) | | ||
1783 | V_EC_BASE_LO(base_addr & 0xffff)); | ||
1784 | base_addr >>= 16; | ||
1785 | t3_write_reg(adapter, A_SG_CONTEXT_DATA2, base_addr); | ||
1786 | base_addr >>= 32; | ||
1787 | t3_write_reg(adapter, A_SG_CONTEXT_DATA3, | ||
1788 | V_EC_BASE_HI(base_addr & 0xf) | V_EC_RESPQ(respq) | | ||
1789 | V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) | | ||
1790 | F_EC_VALID); | ||
1791 | return t3_sge_write_context(adapter, id, F_EGRESS); | ||
1792 | } | ||
1793 | |||
1794 | /** | ||
1795 | * t3_sge_init_flcntxt - initialize an SGE free-buffer list context | ||
1796 | * @adapter: the adapter to configure | ||
1797 | * @id: the context id | ||
1798 | * @gts_enable: whether to enable GTS for the context | ||
1799 | * @base_addr: base address of queue | ||
1800 | * @size: number of queue entries | ||
1801 | * @bsize: size of each buffer for this queue | ||
1802 | * @cong_thres: threshold to signal congestion to upstream producers | ||
1803 | * @gen: initial generation value for the context | ||
1804 | * @cidx: consumer pointer | ||
1805 | * | ||
1806 | * Initialize an SGE free list context and make it ready for use. The | ||
1807 | * caller is responsible for ensuring only one context operation occurs | ||
1808 | * at a time. | ||
1809 | */ | ||
1810 | int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id, | ||
1811 | int gts_enable, u64 base_addr, unsigned int size, | ||
1812 | unsigned int bsize, unsigned int cong_thres, int gen, | ||
1813 | unsigned int cidx) | ||
1814 | { | ||
1815 | if (base_addr & 0xfff) /* must be 4K aligned */ | ||
1816 | return -EINVAL; | ||
1817 | if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) | ||
1818 | return -EBUSY; | ||
1819 | |||
1820 | base_addr >>= 12; | ||
1821 | t3_write_reg(adapter, A_SG_CONTEXT_DATA0, base_addr); | ||
1822 | base_addr >>= 32; | ||
1823 | t3_write_reg(adapter, A_SG_CONTEXT_DATA1, | ||
1824 | V_FL_BASE_HI((u32) base_addr) | | ||
1825 | V_FL_INDEX_LO(cidx & M_FL_INDEX_LO)); | ||
1826 | t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) | | ||
1827 | V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) | | ||
1828 | V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO)); | ||
1829 | t3_write_reg(adapter, A_SG_CONTEXT_DATA3, | ||
1830 | V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) | | ||
1831 | V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable)); | ||
1832 | return t3_sge_write_context(adapter, id, F_FREELIST); | ||
1833 | } | ||
1834 | |||
1835 | /** | ||
1836 | * t3_sge_init_rspcntxt - initialize an SGE response queue context | ||
1837 | * @adapter: the adapter to configure | ||
1838 | * @id: the context id | ||
1839 | * @irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ | ||
1840 | * @base_addr: base address of queue | ||
1841 | * @size: number of queue entries | ||
1842 | * @fl_thres: threshold for selecting the normal or jumbo free list | ||
1843 | * @gen: initial generation value for the context | ||
1844 | * @cidx: consumer pointer | ||
1845 | * | ||
1846 | * Initialize an SGE response queue context and make it ready for use. | ||
1847 | * The caller is responsible for ensuring only one context operation | ||
1848 | * occurs at a time. | ||
1849 | */ | ||
1850 | int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id, | ||
1851 | int irq_vec_idx, u64 base_addr, unsigned int size, | ||
1852 | unsigned int fl_thres, int gen, unsigned int cidx) | ||
1853 | { | ||
1854 | unsigned int intr = 0; | ||
1855 | |||
1856 | if (base_addr & 0xfff) /* must be 4K aligned */ | ||
1857 | return -EINVAL; | ||
1858 | if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) | ||
1859 | return -EBUSY; | ||
1860 | |||
1861 | base_addr >>= 12; | ||
1862 | t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) | | ||
1863 | V_CQ_INDEX(cidx)); | ||
1864 | t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr); | ||
1865 | base_addr >>= 32; | ||
1866 | if (irq_vec_idx >= 0) | ||
1867 | intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN; | ||
1868 | t3_write_reg(adapter, A_SG_CONTEXT_DATA2, | ||
1869 | V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen)); | ||
1870 | t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres); | ||
1871 | return t3_sge_write_context(adapter, id, F_RESPONSEQ); | ||
1872 | } | ||
1873 | |||
1874 | /** | ||
1875 | * t3_sge_init_cqcntxt - initialize an SGE completion queue context | ||
1876 | * @adapter: the adapter to configure | ||
1877 | * @id: the context id | ||
1878 | * @base_addr: base address of queue | ||
1879 | * @size: number of queue entries | ||
1880 | * @rspq: response queue for async notifications | ||
1881 | * @ovfl_mode: CQ overflow mode | ||
1882 | * @credits: completion queue credits | ||
1883 | * @credit_thres: the credit threshold | ||
1884 | * | ||
1885 | * Initialize an SGE completion queue context and make it ready for use. | ||
1886 | * The caller is responsible for ensuring only one context operation | ||
1887 | * occurs at a time. | ||
1888 | */ | ||
1889 | int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr, | ||
1890 | unsigned int size, int rspq, int ovfl_mode, | ||
1891 | unsigned int credits, unsigned int credit_thres) | ||
1892 | { | ||
1893 | if (base_addr & 0xfff) /* must be 4K aligned */ | ||
1894 | return -EINVAL; | ||
1895 | if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) | ||
1896 | return -EBUSY; | ||
1897 | |||
1898 | base_addr >>= 12; | ||
1899 | t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size)); | ||
1900 | t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr); | ||
1901 | base_addr >>= 32; | ||
1902 | t3_write_reg(adapter, A_SG_CONTEXT_DATA2, | ||
1903 | V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) | | ||
1904 | V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode)); | ||
1905 | t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) | | ||
1906 | V_CQ_CREDIT_THRES(credit_thres)); | ||
1907 | return t3_sge_write_context(adapter, id, F_CQ); | ||
1908 | } | ||
1909 | |||
1910 | /** | ||
1911 | * t3_sge_enable_ecntxt - enable/disable an SGE egress context | ||
1912 | * @adapter: the adapter | ||
1913 | * @id: the egress context id | ||
1914 | * @enable: enable (1) or disable (0) the context | ||
1915 | * | ||
1916 | * Enable or disable an SGE egress context. The caller is responsible for | ||
1917 | * ensuring only one context operation occurs at a time. | ||
1918 | */ | ||
1919 | int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable) | ||
1920 | { | ||
1921 | if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) | ||
1922 | return -EBUSY; | ||
1923 | |||
1924 | t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0); | ||
1925 | t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0); | ||
1926 | t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0); | ||
1927 | t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID); | ||
1928 | t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable)); | ||
1929 | t3_write_reg(adapter, A_SG_CONTEXT_CMD, | ||
1930 | V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id)); | ||
1931 | return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, | ||
1932 | 0, 5, 1); | ||
1933 | } | ||
1934 | |||
1935 | /** | ||
1936 | * t3_sge_disable_fl - disable an SGE free-buffer list | ||
1937 | * @adapter: the adapter | ||
1938 | * @id: the free list context id | ||
1939 | * | ||
1940 | * Disable an SGE free-buffer list. The caller is responsible for | ||
1941 | * ensuring only one context operation occurs at a time. | ||
1942 | */ | ||
1943 | int t3_sge_disable_fl(struct adapter *adapter, unsigned int id) | ||
1944 | { | ||
1945 | if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) | ||
1946 | return -EBUSY; | ||
1947 | |||
1948 | t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0); | ||
1949 | t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0); | ||
1950 | t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE)); | ||
1951 | t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0); | ||
1952 | t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0); | ||
1953 | t3_write_reg(adapter, A_SG_CONTEXT_CMD, | ||
1954 | V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id)); | ||
1955 | return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, | ||
1956 | 0, 5, 1); | ||
1957 | } | ||
1958 | |||
1959 | /** | ||
1960 | * t3_sge_disable_rspcntxt - disable an SGE response queue | ||
1961 | * @adapter: the adapter | ||
1962 | * @id: the response queue context id | ||
1963 | * | ||
1964 | * Disable an SGE response queue. The caller is responsible for | ||
1965 | * ensuring only one context operation occurs at a time. | ||
1966 | */ | ||
1967 | int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id) | ||
1968 | { | ||
1969 | if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) | ||
1970 | return -EBUSY; | ||
1971 | |||
1972 | t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE)); | ||
1973 | t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0); | ||
1974 | t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0); | ||
1975 | t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0); | ||
1976 | t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0); | ||
1977 | t3_write_reg(adapter, A_SG_CONTEXT_CMD, | ||
1978 | V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id)); | ||
1979 | return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, | ||
1980 | 0, 5, 1); | ||
1981 | } | ||
1982 | |||
1983 | /** | ||
1984 | * t3_sge_disable_cqcntxt - disable an SGE completion queue | ||
1985 | * @adapter: the adapter | ||
1986 | * @id: the completion queue context id | ||
1987 | * | ||
1988 | * Disable an SGE completion queue. The caller is responsible for | ||
1989 | * ensuring only one context operation occurs at a time. | ||
1990 | */ | ||
1991 | int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id) | ||
1992 | { | ||
1993 | if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) | ||
1994 | return -EBUSY; | ||
1995 | |||
1996 | t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE)); | ||
1997 | t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0); | ||
1998 | t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0); | ||
1999 | t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0); | ||
2000 | t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0); | ||
2001 | t3_write_reg(adapter, A_SG_CONTEXT_CMD, | ||
2002 | V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id)); | ||
2003 | return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, | ||
2004 | 0, 5, 1); | ||
2005 | } | ||
2006 | |||
2007 | /** | ||
2008 | * t3_sge_cqcntxt_op - perform an operation on a completion queue context | ||
2009 | * @adapter: the adapter | ||
2010 | * @id: the context id | ||
2011 | * @op: the operation to perform | ||
2012 | * | ||
2013 | * Perform the selected operation on an SGE completion queue context. | ||
2014 | * The caller is responsible for ensuring only one context operation | ||
2015 | * occurs at a time. | ||
2016 | */ | ||
2017 | int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op, | ||
2018 | unsigned int credits) | ||
2019 | { | ||
2020 | u32 val; | ||
2021 | |||
2022 | if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) | ||
2023 | return -EBUSY; | ||
2024 | |||
2025 | t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16); | ||
2026 | t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) | | ||
2027 | V_CONTEXT(id) | F_CQ); | ||
2028 | if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, | ||
2029 | 0, 5, 1, &val)) | ||
2030 | return -EIO; | ||
2031 | |||
2032 | if (op >= 2 && op < 7) { | ||
2033 | if (adapter->params.rev > 0) | ||
2034 | return G_CQ_INDEX(val); | ||
2035 | |||
2036 | t3_write_reg(adapter, A_SG_CONTEXT_CMD, | ||
2037 | V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id)); | ||
2038 | if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, | ||
2039 | F_CONTEXT_CMD_BUSY, 0, 5, 1)) | ||
2040 | return -EIO; | ||
2041 | return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0)); | ||
2042 | } | ||
2043 | return 0; | ||
2044 | } | ||
2045 | |||
2046 | /** | ||
2047 | * t3_sge_read_context - read an SGE context | ||
2048 | * @type: the context type | ||
2049 | * @adapter: the adapter | ||
2050 | * @id: the context id | ||
2051 | * @data: holds the retrieved context | ||
2052 | * | ||
2053 | * Read an SGE egress context. The caller is responsible for ensuring | ||
2054 | * only one context operation occurs at a time. | ||
2055 | */ | ||
2056 | static int t3_sge_read_context(unsigned int type, struct adapter *adapter, | ||
2057 | unsigned int id, u32 data[4]) | ||
2058 | { | ||
2059 | if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) | ||
2060 | return -EBUSY; | ||
2061 | |||
2062 | t3_write_reg(adapter, A_SG_CONTEXT_CMD, | ||
2063 | V_CONTEXT_CMD_OPCODE(0) | type | V_CONTEXT(id)); | ||
2064 | if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 0, | ||
2065 | 5, 1)) | ||
2066 | return -EIO; | ||
2067 | data[0] = t3_read_reg(adapter, A_SG_CONTEXT_DATA0); | ||
2068 | data[1] = t3_read_reg(adapter, A_SG_CONTEXT_DATA1); | ||
2069 | data[2] = t3_read_reg(adapter, A_SG_CONTEXT_DATA2); | ||
2070 | data[3] = t3_read_reg(adapter, A_SG_CONTEXT_DATA3); | ||
2071 | return 0; | ||
2072 | } | ||
2073 | |||
2074 | /** | ||
2075 | * t3_sge_read_ecntxt - read an SGE egress context | ||
2076 | * @adapter: the adapter | ||
2077 | * @id: the context id | ||
2078 | * @data: holds the retrieved context | ||
2079 | * | ||
2080 | * Read an SGE egress context. The caller is responsible for ensuring | ||
2081 | * only one context operation occurs at a time. | ||
2082 | */ | ||
2083 | int t3_sge_read_ecntxt(struct adapter *adapter, unsigned int id, u32 data[4]) | ||
2084 | { | ||
2085 | if (id >= 65536) | ||
2086 | return -EINVAL; | ||
2087 | return t3_sge_read_context(F_EGRESS, adapter, id, data); | ||
2088 | } | ||
2089 | |||
2090 | /** | ||
2091 | * t3_sge_read_cq - read an SGE CQ context | ||
2092 | * @adapter: the adapter | ||
2093 | * @id: the context id | ||
2094 | * @data: holds the retrieved context | ||
2095 | * | ||
2096 | * Read an SGE CQ context. The caller is responsible for ensuring | ||
2097 | * only one context operation occurs at a time. | ||
2098 | */ | ||
2099 | int t3_sge_read_cq(struct adapter *adapter, unsigned int id, u32 data[4]) | ||
2100 | { | ||
2101 | if (id >= 65536) | ||
2102 | return -EINVAL; | ||
2103 | return t3_sge_read_context(F_CQ, adapter, id, data); | ||
2104 | } | ||
2105 | |||
2106 | /** | ||
2107 | * t3_sge_read_fl - read an SGE free-list context | ||
2108 | * @adapter: the adapter | ||
2109 | * @id: the context id | ||
2110 | * @data: holds the retrieved context | ||
2111 | * | ||
2112 | * Read an SGE free-list context. The caller is responsible for ensuring | ||
2113 | * only one context operation occurs at a time. | ||
2114 | */ | ||
2115 | int t3_sge_read_fl(struct adapter *adapter, unsigned int id, u32 data[4]) | ||
2116 | { | ||
2117 | if (id >= SGE_QSETS * 2) | ||
2118 | return -EINVAL; | ||
2119 | return t3_sge_read_context(F_FREELIST, adapter, id, data); | ||
2120 | } | ||
2121 | |||
2122 | /** | ||
2123 | * t3_sge_read_rspq - read an SGE response queue context | ||
2124 | * @adapter: the adapter | ||
2125 | * @id: the context id | ||
2126 | * @data: holds the retrieved context | ||
2127 | * | ||
2128 | * Read an SGE response queue context. The caller is responsible for | ||
2129 | * ensuring only one context operation occurs at a time. | ||
2130 | */ | ||
2131 | int t3_sge_read_rspq(struct adapter *adapter, unsigned int id, u32 data[4]) | ||
2132 | { | ||
2133 | if (id >= SGE_QSETS) | ||
2134 | return -EINVAL; | ||
2135 | return t3_sge_read_context(F_RESPONSEQ, adapter, id, data); | ||
2136 | } | ||
2137 | |||
2138 | /** | ||
2139 | * t3_config_rss - configure Rx packet steering | ||
2140 | * @adapter: the adapter | ||
2141 | * @rss_config: RSS settings (written to TP_RSS_CONFIG) | ||
2142 | * @cpus: values for the CPU lookup table (0xff terminated) | ||
2143 | * @rspq: values for the response queue lookup table (0xffff terminated) | ||
2144 | * | ||
2145 | * Programs the receive packet steering logic. @cpus and @rspq provide | ||
2146 | * the values for the CPU and response queue lookup tables. If they | ||
2147 | * provide fewer values than the size of the tables the supplied values | ||
2148 | * are used repeatedly until the tables are fully populated. | ||
2149 | */ | ||
2150 | void t3_config_rss(struct adapter *adapter, unsigned int rss_config, | ||
2151 | const u8 * cpus, const u16 *rspq) | ||
2152 | { | ||
2153 | int i, j, cpu_idx = 0, q_idx = 0; | ||
2154 | |||
2155 | if (cpus) | ||
2156 | for (i = 0; i < RSS_TABLE_SIZE; ++i) { | ||
2157 | u32 val = i << 16; | ||
2158 | |||
2159 | for (j = 0; j < 2; ++j) { | ||
2160 | val |= (cpus[cpu_idx++] & 0x3f) << (8 * j); | ||
2161 | if (cpus[cpu_idx] == 0xff) | ||
2162 | cpu_idx = 0; | ||
2163 | } | ||
2164 | t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val); | ||
2165 | } | ||
2166 | |||
2167 | if (rspq) | ||
2168 | for (i = 0; i < RSS_TABLE_SIZE; ++i) { | ||
2169 | t3_write_reg(adapter, A_TP_RSS_MAP_TABLE, | ||
2170 | (i << 16) | rspq[q_idx++]); | ||
2171 | if (rspq[q_idx] == 0xffff) | ||
2172 | q_idx = 0; | ||
2173 | } | ||
2174 | |||
2175 | t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config); | ||
2176 | } | ||
2177 | |||
2178 | /** | ||
2179 | * t3_read_rss - read the contents of the RSS tables | ||
2180 | * @adapter: the adapter | ||
2181 | * @lkup: holds the contents of the RSS lookup table | ||
2182 | * @map: holds the contents of the RSS map table | ||
2183 | * | ||
2184 | * Reads the contents of the receive packet steering tables. | ||
2185 | */ | ||
2186 | int t3_read_rss(struct adapter *adapter, u8 * lkup, u16 *map) | ||
2187 | { | ||
2188 | int i; | ||
2189 | u32 val; | ||
2190 | |||
2191 | if (lkup) | ||
2192 | for (i = 0; i < RSS_TABLE_SIZE; ++i) { | ||
2193 | t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, | ||
2194 | 0xffff0000 | i); | ||
2195 | val = t3_read_reg(adapter, A_TP_RSS_LKP_TABLE); | ||
2196 | if (!(val & 0x80000000)) | ||
2197 | return -EAGAIN; | ||
2198 | *lkup++ = val; | ||
2199 | *lkup++ = (val >> 8); | ||
2200 | } | ||
2201 | |||
2202 | if (map) | ||
2203 | for (i = 0; i < RSS_TABLE_SIZE; ++i) { | ||
2204 | t3_write_reg(adapter, A_TP_RSS_MAP_TABLE, | ||
2205 | 0xffff0000 | i); | ||
2206 | val = t3_read_reg(adapter, A_TP_RSS_MAP_TABLE); | ||
2207 | if (!(val & 0x80000000)) | ||
2208 | return -EAGAIN; | ||
2209 | *map++ = val; | ||
2210 | } | ||
2211 | return 0; | ||
2212 | } | ||
2213 | |||
2214 | /** | ||
2215 | * t3_tp_set_offload_mode - put TP in NIC/offload mode | ||
2216 | * @adap: the adapter | ||
2217 | * @enable: 1 to select offload mode, 0 for regular NIC | ||
2218 | * | ||
2219 | * Switches TP to NIC/offload mode. | ||
2220 | */ | ||
2221 | void t3_tp_set_offload_mode(struct adapter *adap, int enable) | ||
2222 | { | ||
2223 | if (is_offload(adap) || !enable) | ||
2224 | t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE, | ||
2225 | V_NICMODE(!enable)); | ||
2226 | } | ||
2227 | |||
2228 | /** | ||
2229 | * pm_num_pages - calculate the number of pages of the payload memory | ||
2230 | * @mem_size: the size of the payload memory | ||
2231 | * @pg_size: the size of each payload memory page | ||
2232 | * | ||
2233 | * Calculate the number of pages, each of the given size, that fit in a | ||
2234 | * memory of the specified size, respecting the HW requirement that the | ||
2235 | * number of pages must be a multiple of 24. | ||
2236 | */ | ||
2237 | static inline unsigned int pm_num_pages(unsigned int mem_size, | ||
2238 | unsigned int pg_size) | ||
2239 | { | ||
2240 | unsigned int n = mem_size / pg_size; | ||
2241 | |||
2242 | return n - n % 24; | ||
2243 | } | ||
2244 | |||
2245 | #define mem_region(adap, start, size, reg) \ | ||
2246 | t3_write_reg((adap), A_ ## reg, (start)); \ | ||
2247 | start += size | ||
2248 | |||
2249 | /* | ||
2250 | * partition_mem - partition memory and configure TP memory settings | ||
2251 | * @adap: the adapter | ||
2252 | * @p: the TP parameters | ||
2253 | * | ||
2254 | * Partitions context and payload memory and configures TP's memory | ||
2255 | * registers. | ||
2256 | */ | ||
2257 | static void partition_mem(struct adapter *adap, const struct tp_params *p) | ||
2258 | { | ||
2259 | unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5); | ||
2260 | unsigned int timers = 0, timers_shift = 22; | ||
2261 | |||
2262 | if (adap->params.rev > 0) { | ||
2263 | if (tids <= 16 * 1024) { | ||
2264 | timers = 1; | ||
2265 | timers_shift = 16; | ||
2266 | } else if (tids <= 64 * 1024) { | ||
2267 | timers = 2; | ||
2268 | timers_shift = 18; | ||
2269 | } else if (tids <= 256 * 1024) { | ||
2270 | timers = 3; | ||
2271 | timers_shift = 20; | ||
2272 | } | ||
2273 | } | ||
2274 | |||
2275 | t3_write_reg(adap, A_TP_PMM_SIZE, | ||
2276 | p->chan_rx_size | (p->chan_tx_size >> 16)); | ||
2277 | |||
2278 | t3_write_reg(adap, A_TP_PMM_TX_BASE, 0); | ||
2279 | t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size); | ||
2280 | t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs); | ||
2281 | t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX), | ||
2282 | V_TXDATAACKIDX(fls(p->tx_pg_size) - 12)); | ||
2283 | |||
2284 | t3_write_reg(adap, A_TP_PMM_RX_BASE, 0); | ||
2285 | t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size); | ||
2286 | t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs); | ||
2287 | |||
2288 | pstructs = p->rx_num_pgs + p->tx_num_pgs; | ||
2289 | /* Add a bit of headroom and make multiple of 24 */ | ||
2290 | pstructs += 48; | ||
2291 | pstructs -= pstructs % 24; | ||
2292 | t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs); | ||
2293 | |||
2294 | m = tids * TCB_SIZE; | ||
2295 | mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR); | ||
2296 | mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR); | ||
2297 | t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m); | ||
2298 | m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22); | ||
2299 | mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE); | ||
2300 | mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE); | ||
2301 | mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE); | ||
2302 | mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE); | ||
2303 | |||
2304 | m = (m + 4095) & ~0xfff; | ||
2305 | t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m); | ||
2306 | t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m); | ||
2307 | |||
2308 | tids = (p->cm_size - m - (3 << 20)) / 3072 - 32; | ||
2309 | m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers - | ||
2310 | adap->params.mc5.nfilters - adap->params.mc5.nroutes; | ||
2311 | if (tids < m) | ||
2312 | adap->params.mc5.nservers += m - tids; | ||
2313 | } | ||
2314 | |||
2315 | static inline void tp_wr_indirect(struct adapter *adap, unsigned int addr, | ||
2316 | u32 val) | ||
2317 | { | ||
2318 | t3_write_reg(adap, A_TP_PIO_ADDR, addr); | ||
2319 | t3_write_reg(adap, A_TP_PIO_DATA, val); | ||
2320 | } | ||
2321 | |||
2322 | static void tp_config(struct adapter *adap, const struct tp_params *p) | ||
2323 | { | ||
2324 | unsigned int v; | ||
2325 | |||
2326 | t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU | | ||
2327 | F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD | | ||
2328 | F_TCPCHECKSUMOFFLOAD | V_IPTTL(64)); | ||
2329 | t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) | | ||
2330 | F_MTUENABLE | V_WINDOWSCALEMODE(1) | | ||
2331 | V_TIMESTAMPSMODE(1) | V_SACKMODE(1) | V_SACKRX(1)); | ||
2332 | t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) | | ||
2333 | V_AUTOSTATE2(1) | V_AUTOSTATE1(0) | | ||
2334 | V_BYTETHRESHOLD(16384) | V_MSSTHRESHOLD(2) | | ||
2335 | F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1)); | ||
2336 | t3_set_reg_field(adap, A_TP_IN_CONFIG, F_IPV6ENABLE | F_NICMODE, | ||
2337 | F_IPV6ENABLE | F_NICMODE); | ||
2338 | t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814); | ||
2339 | t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105); | ||
2340 | t3_set_reg_field(adap, A_TP_PARA_REG6, | ||
2341 | adap->params.rev > 0 ? F_ENABLEESND : F_T3A_ENABLEESND, | ||
2342 | 0); | ||
2343 | |||
2344 | v = t3_read_reg(adap, A_TP_PC_CONFIG); | ||
2345 | v &= ~(F_ENABLEEPCMDAFULL | F_ENABLEOCSPIFULL); | ||
2346 | t3_write_reg(adap, A_TP_PC_CONFIG, v | F_TXDEFERENABLE | | ||
2347 | F_MODULATEUNIONMODE | F_HEARBEATDACK | | ||
2348 | F_TXCONGESTIONMODE | F_RXCONGESTIONMODE); | ||
2349 | |||
2350 | v = t3_read_reg(adap, A_TP_PC_CONFIG2); | ||
2351 | v &= ~F_CHDRAFULL; | ||
2352 | t3_write_reg(adap, A_TP_PC_CONFIG2, v); | ||
2353 | |||
2354 | if (adap->params.rev > 0) { | ||
2355 | tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE); | ||
2356 | t3_set_reg_field(adap, A_TP_PARA_REG3, F_TXPACEAUTO, | ||
2357 | F_TXPACEAUTO); | ||
2358 | t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID); | ||
2359 | t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEAUTOSTRICT); | ||
2360 | } else | ||
2361 | t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED); | ||
2362 | |||
2363 | t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0x12121212); | ||
2364 | t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0x12121212); | ||
2365 | t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0x1212); | ||
2366 | } | ||
2367 | |||
2368 | /* Desired TP timer resolution in usec */ | ||
2369 | #define TP_TMR_RES 50 | ||
2370 | |||
2371 | /* TCP timer values in ms */ | ||
2372 | #define TP_DACK_TIMER 50 | ||
2373 | #define TP_RTO_MIN 250 | ||
2374 | |||
2375 | /** | ||
2376 | * tp_set_timers - set TP timing parameters | ||
2377 | * @adap: the adapter to set | ||
2378 | * @core_clk: the core clock frequency in Hz | ||
2379 | * | ||
2380 | * Set TP's timing parameters, such as the various timer resolutions and | ||
2381 | * the TCP timer values. | ||
2382 | */ | ||
2383 | static void tp_set_timers(struct adapter *adap, unsigned int core_clk) | ||
2384 | { | ||
2385 | unsigned int tre = fls(core_clk / (1000000 / TP_TMR_RES)) - 1; | ||
2386 | unsigned int dack_re = fls(core_clk / 5000) - 1; /* 200us */ | ||
2387 | unsigned int tstamp_re = fls(core_clk / 1000); /* 1ms, at least */ | ||
2388 | unsigned int tps = core_clk >> tre; | ||
2389 | |||
2390 | t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) | | ||
2391 | V_DELAYEDACKRESOLUTION(dack_re) | | ||
2392 | V_TIMESTAMPRESOLUTION(tstamp_re)); | ||
2393 | t3_write_reg(adap, A_TP_DACK_TIMER, | ||
2394 | (core_clk >> dack_re) / (1000 / TP_DACK_TIMER)); | ||
2395 | t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100); | ||
2396 | t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504); | ||
2397 | t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908); | ||
2398 | t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c); | ||
2399 | t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) | | ||
2400 | V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) | | ||
2401 | V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) | | ||
2402 | V_KEEPALIVEMAX(9)); | ||
2403 | |||
2404 | #define SECONDS * tps | ||
2405 | |||
2406 | t3_write_reg(adap, A_TP_MSL, adap->params.rev > 0 ? 0 : 2 SECONDS); | ||
2407 | t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN)); | ||
2408 | t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS); | ||
2409 | t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS); | ||
2410 | t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS); | ||
2411 | t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS); | ||
2412 | t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS); | ||
2413 | t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS); | ||
2414 | t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS); | ||
2415 | |||
2416 | #undef SECONDS | ||
2417 | } | ||
2418 | |||
2419 | /** | ||
2420 | * t3_tp_set_coalescing_size - set receive coalescing size | ||
2421 | * @adap: the adapter | ||
2422 | * @size: the receive coalescing size | ||
2423 | * @psh: whether a set PSH bit should deliver coalesced data | ||
2424 | * | ||
2425 | * Set the receive coalescing size and PSH bit handling. | ||
2426 | */ | ||
2427 | int t3_tp_set_coalescing_size(struct adapter *adap, unsigned int size, int psh) | ||
2428 | { | ||
2429 | u32 val; | ||
2430 | |||
2431 | if (size > MAX_RX_COALESCING_LEN) | ||
2432 | return -EINVAL; | ||
2433 | |||
2434 | val = t3_read_reg(adap, A_TP_PARA_REG3); | ||
2435 | val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN); | ||
2436 | |||
2437 | if (size) { | ||
2438 | val |= F_RXCOALESCEENABLE; | ||
2439 | if (psh) | ||
2440 | val |= F_RXCOALESCEPSHEN; | ||
2441 | t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) | | ||
2442 | V_MAXRXDATA(MAX_RX_COALESCING_LEN)); | ||
2443 | } | ||
2444 | t3_write_reg(adap, A_TP_PARA_REG3, val); | ||
2445 | return 0; | ||
2446 | } | ||
2447 | |||
2448 | /** | ||
2449 | * t3_tp_set_max_rxsize - set the max receive size | ||
2450 | * @adap: the adapter | ||
2451 | * @size: the max receive size | ||
2452 | * | ||
2453 | * Set TP's max receive size. This is the limit that applies when | ||
2454 | * receive coalescing is disabled. | ||
2455 | */ | ||
2456 | void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size) | ||
2457 | { | ||
2458 | t3_write_reg(adap, A_TP_PARA_REG7, | ||
2459 | V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size)); | ||
2460 | } | ||
2461 | |||
2462 | static void __devinit init_mtus(unsigned short mtus[]) | ||
2463 | { | ||
2464 | /* | ||
2465 | * See draft-mathis-plpmtud-00.txt for the values. The min is 88 so | ||
2466 | * it can accomodate max size TCP/IP headers when SACK and timestamps | ||
2467 | * are enabled and still have at least 8 bytes of payload. | ||
2468 | */ | ||
2469 | mtus[0] = 88; | ||
2470 | mtus[1] = 256; | ||
2471 | mtus[2] = 512; | ||
2472 | mtus[3] = 576; | ||
2473 | mtus[4] = 808; | ||
2474 | mtus[5] = 1024; | ||
2475 | mtus[6] = 1280; | ||
2476 | mtus[7] = 1492; | ||
2477 | mtus[8] = 1500; | ||
2478 | mtus[9] = 2002; | ||
2479 | mtus[10] = 2048; | ||
2480 | mtus[11] = 4096; | ||
2481 | mtus[12] = 4352; | ||
2482 | mtus[13] = 8192; | ||
2483 | mtus[14] = 9000; | ||
2484 | mtus[15] = 9600; | ||
2485 | } | ||
2486 | |||
2487 | /* | ||
2488 | * Initial congestion control parameters. | ||
2489 | */ | ||
2490 | static void __devinit init_cong_ctrl(unsigned short *a, unsigned short *b) | ||
2491 | { | ||
2492 | a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; | ||
2493 | a[9] = 2; | ||
2494 | a[10] = 3; | ||
2495 | a[11] = 4; | ||
2496 | a[12] = 5; | ||
2497 | a[13] = 6; | ||
2498 | a[14] = 7; | ||
2499 | a[15] = 8; | ||
2500 | a[16] = 9; | ||
2501 | a[17] = 10; | ||
2502 | a[18] = 14; | ||
2503 | a[19] = 17; | ||
2504 | a[20] = 21; | ||
2505 | a[21] = 25; | ||
2506 | a[22] = 30; | ||
2507 | a[23] = 35; | ||
2508 | a[24] = 45; | ||
2509 | a[25] = 60; | ||
2510 | a[26] = 80; | ||
2511 | a[27] = 100; | ||
2512 | a[28] = 200; | ||
2513 | a[29] = 300; | ||
2514 | a[30] = 400; | ||
2515 | a[31] = 500; | ||
2516 | |||
2517 | b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; | ||
2518 | b[9] = b[10] = 1; | ||
2519 | b[11] = b[12] = 2; | ||
2520 | b[13] = b[14] = b[15] = b[16] = 3; | ||
2521 | b[17] = b[18] = b[19] = b[20] = b[21] = 4; | ||
2522 | b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; | ||
2523 | b[28] = b[29] = 6; | ||
2524 | b[30] = b[31] = 7; | ||
2525 | } | ||
2526 | |||
2527 | /* The minimum additive increment value for the congestion control table */ | ||
2528 | #define CC_MIN_INCR 2U | ||
2529 | |||
2530 | /** | ||
2531 | * t3_load_mtus - write the MTU and congestion control HW tables | ||
2532 | * @adap: the adapter | ||
2533 | * @mtus: the unrestricted values for the MTU table | ||
2534 | * @alphs: the values for the congestion control alpha parameter | ||
2535 | * @beta: the values for the congestion control beta parameter | ||
2536 | * @mtu_cap: the maximum permitted effective MTU | ||
2537 | * | ||
2538 | * Write the MTU table with the supplied MTUs capping each at &mtu_cap. | ||
2539 | * Update the high-speed congestion control table with the supplied alpha, | ||
2540 | * beta, and MTUs. | ||
2541 | */ | ||
2542 | void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS], | ||
2543 | unsigned short alpha[NCCTRL_WIN], | ||
2544 | unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap) | ||
2545 | { | ||
2546 | static const unsigned int avg_pkts[NCCTRL_WIN] = { | ||
2547 | 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, | ||
2548 | 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, | ||
2549 | 28672, 40960, 57344, 81920, 114688, 163840, 229376 | ||
2550 | }; | ||
2551 | |||
2552 | unsigned int i, w; | ||
2553 | |||
2554 | for (i = 0; i < NMTUS; ++i) { | ||
2555 | unsigned int mtu = min(mtus[i], mtu_cap); | ||
2556 | unsigned int log2 = fls(mtu); | ||
2557 | |||
2558 | if (!(mtu & ((1 << log2) >> 2))) /* round */ | ||
2559 | log2--; | ||
2560 | t3_write_reg(adap, A_TP_MTU_TABLE, | ||
2561 | (i << 24) | (log2 << 16) | mtu); | ||
2562 | |||
2563 | for (w = 0; w < NCCTRL_WIN; ++w) { | ||
2564 | unsigned int inc; | ||
2565 | |||
2566 | inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], | ||
2567 | CC_MIN_INCR); | ||
2568 | |||
2569 | t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) | | ||
2570 | (w << 16) | (beta[w] << 13) | inc); | ||
2571 | } | ||
2572 | } | ||
2573 | } | ||
2574 | |||
2575 | /** | ||
2576 | * t3_read_hw_mtus - returns the values in the HW MTU table | ||
2577 | * @adap: the adapter | ||
2578 | * @mtus: where to store the HW MTU values | ||
2579 | * | ||
2580 | * Reads the HW MTU table. | ||
2581 | */ | ||
2582 | void t3_read_hw_mtus(struct adapter *adap, unsigned short mtus[NMTUS]) | ||
2583 | { | ||
2584 | int i; | ||
2585 | |||
2586 | for (i = 0; i < NMTUS; ++i) { | ||
2587 | unsigned int val; | ||
2588 | |||
2589 | t3_write_reg(adap, A_TP_MTU_TABLE, 0xff000000 | i); | ||
2590 | val = t3_read_reg(adap, A_TP_MTU_TABLE); | ||
2591 | mtus[i] = val & 0x3fff; | ||
2592 | } | ||
2593 | } | ||
2594 | |||
2595 | /** | ||
2596 | * t3_get_cong_cntl_tab - reads the congestion control table | ||
2597 | * @adap: the adapter | ||
2598 | * @incr: where to store the alpha values | ||
2599 | * | ||
2600 | * Reads the additive increments programmed into the HW congestion | ||
2601 | * control table. | ||
2602 | */ | ||
2603 | void t3_get_cong_cntl_tab(struct adapter *adap, | ||
2604 | unsigned short incr[NMTUS][NCCTRL_WIN]) | ||
2605 | { | ||
2606 | unsigned int mtu, w; | ||
2607 | |||
2608 | for (mtu = 0; mtu < NMTUS; ++mtu) | ||
2609 | for (w = 0; w < NCCTRL_WIN; ++w) { | ||
2610 | t3_write_reg(adap, A_TP_CCTRL_TABLE, | ||
2611 | 0xffff0000 | (mtu << 5) | w); | ||
2612 | incr[mtu][w] = t3_read_reg(adap, A_TP_CCTRL_TABLE) & | ||
2613 | 0x1fff; | ||
2614 | } | ||
2615 | } | ||
2616 | |||
2617 | /** | ||
2618 | * t3_tp_get_mib_stats - read TP's MIB counters | ||
2619 | * @adap: the adapter | ||
2620 | * @tps: holds the returned counter values | ||
2621 | * | ||
2622 | * Returns the values of TP's MIB counters. | ||
2623 | */ | ||
2624 | void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps) | ||
2625 | { | ||
2626 | t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *) tps, | ||
2627 | sizeof(*tps) / sizeof(u32), 0); | ||
2628 | } | ||
2629 | |||
2630 | #define ulp_region(adap, name, start, len) \ | ||
2631 | t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \ | ||
2632 | t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \ | ||
2633 | (start) + (len) - 1); \ | ||
2634 | start += len | ||
2635 | |||
2636 | #define ulptx_region(adap, name, start, len) \ | ||
2637 | t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \ | ||
2638 | t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \ | ||
2639 | (start) + (len) - 1) | ||
2640 | |||
2641 | static void ulp_config(struct adapter *adap, const struct tp_params *p) | ||
2642 | { | ||
2643 | unsigned int m = p->chan_rx_size; | ||
2644 | |||
2645 | ulp_region(adap, ISCSI, m, p->chan_rx_size / 8); | ||
2646 | ulp_region(adap, TDDP, m, p->chan_rx_size / 8); | ||
2647 | ulptx_region(adap, TPT, m, p->chan_rx_size / 4); | ||
2648 | ulp_region(adap, STAG, m, p->chan_rx_size / 4); | ||
2649 | ulp_region(adap, RQ, m, p->chan_rx_size / 4); | ||
2650 | ulptx_region(adap, PBL, m, p->chan_rx_size / 4); | ||
2651 | ulp_region(adap, PBL, m, p->chan_rx_size / 4); | ||
2652 | t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff); | ||
2653 | } | ||
2654 | |||
2655 | void t3_config_trace_filter(struct adapter *adapter, | ||
2656 | const struct trace_params *tp, int filter_index, | ||
2657 | int invert, int enable) | ||
2658 | { | ||
2659 | u32 addr, key[4], mask[4]; | ||
2660 | |||
2661 | key[0] = tp->sport | (tp->sip << 16); | ||
2662 | key[1] = (tp->sip >> 16) | (tp->dport << 16); | ||
2663 | key[2] = tp->dip; | ||
2664 | key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20); | ||
2665 | |||
2666 | mask[0] = tp->sport_mask | (tp->sip_mask << 16); | ||
2667 | mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16); | ||
2668 | mask[2] = tp->dip_mask; | ||
2669 | mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20); | ||
2670 | |||
2671 | if (invert) | ||
2672 | key[3] |= (1 << 29); | ||
2673 | if (enable) | ||
2674 | key[3] |= (1 << 28); | ||
2675 | |||
2676 | addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0; | ||
2677 | tp_wr_indirect(adapter, addr++, key[0]); | ||
2678 | tp_wr_indirect(adapter, addr++, mask[0]); | ||
2679 | tp_wr_indirect(adapter, addr++, key[1]); | ||
2680 | tp_wr_indirect(adapter, addr++, mask[1]); | ||
2681 | tp_wr_indirect(adapter, addr++, key[2]); | ||
2682 | tp_wr_indirect(adapter, addr++, mask[2]); | ||
2683 | tp_wr_indirect(adapter, addr++, key[3]); | ||
2684 | tp_wr_indirect(adapter, addr, mask[3]); | ||
2685 | t3_read_reg(adapter, A_TP_PIO_DATA); | ||
2686 | } | ||
2687 | |||
2688 | /** | ||
2689 | * t3_config_sched - configure a HW traffic scheduler | ||
2690 | * @adap: the adapter | ||
2691 | * @kbps: target rate in Kbps | ||
2692 | * @sched: the scheduler index | ||
2693 | * | ||
2694 | * Configure a HW scheduler for the target rate | ||
2695 | */ | ||
2696 | int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched) | ||
2697 | { | ||
2698 | unsigned int v, tps, cpt, bpt, delta, mindelta = ~0; | ||
2699 | unsigned int clk = adap->params.vpd.cclk * 1000; | ||
2700 | unsigned int selected_cpt = 0, selected_bpt = 0; | ||
2701 | |||
2702 | if (kbps > 0) { | ||
2703 | kbps *= 125; /* -> bytes */ | ||
2704 | for (cpt = 1; cpt <= 255; cpt++) { | ||
2705 | tps = clk / cpt; | ||
2706 | bpt = (kbps + tps / 2) / tps; | ||
2707 | if (bpt > 0 && bpt <= 255) { | ||
2708 | v = bpt * tps; | ||
2709 | delta = v >= kbps ? v - kbps : kbps - v; | ||
2710 | if (delta <= mindelta) { | ||
2711 | mindelta = delta; | ||
2712 | selected_cpt = cpt; | ||
2713 | selected_bpt = bpt; | ||
2714 | } | ||
2715 | } else if (selected_cpt) | ||
2716 | break; | ||
2717 | } | ||
2718 | if (!selected_cpt) | ||
2719 | return -EINVAL; | ||
2720 | } | ||
2721 | t3_write_reg(adap, A_TP_TM_PIO_ADDR, | ||
2722 | A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2); | ||
2723 | v = t3_read_reg(adap, A_TP_TM_PIO_DATA); | ||
2724 | if (sched & 1) | ||
2725 | v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24); | ||
2726 | else | ||
2727 | v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8); | ||
2728 | t3_write_reg(adap, A_TP_TM_PIO_DATA, v); | ||
2729 | return 0; | ||
2730 | } | ||
2731 | |||
2732 | static int tp_init(struct adapter *adap, const struct tp_params *p) | ||
2733 | { | ||
2734 | int busy = 0; | ||
2735 | |||
2736 | tp_config(adap, p); | ||
2737 | t3_set_vlan_accel(adap, 3, 0); | ||
2738 | |||
2739 | if (is_offload(adap)) { | ||
2740 | tp_set_timers(adap, adap->params.vpd.cclk * 1000); | ||
2741 | t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE); | ||
2742 | busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE, | ||
2743 | 0, 1000, 5); | ||
2744 | if (busy) | ||
2745 | CH_ERR(adap, "TP initialization timed out\n"); | ||
2746 | } | ||
2747 | |||
2748 | if (!busy) | ||
2749 | t3_write_reg(adap, A_TP_RESET, F_TPRESET); | ||
2750 | return busy; | ||
2751 | } | ||
2752 | |||
2753 | int t3_mps_set_active_ports(struct adapter *adap, unsigned int port_mask) | ||
2754 | { | ||
2755 | if (port_mask & ~((1 << adap->params.nports) - 1)) | ||
2756 | return -EINVAL; | ||
2757 | t3_set_reg_field(adap, A_MPS_CFG, F_PORT1ACTIVE | F_PORT0ACTIVE, | ||
2758 | port_mask << S_PORT0ACTIVE); | ||
2759 | return 0; | ||
2760 | } | ||
2761 | |||
2762 | /* | ||
2763 | * Perform the bits of HW initialization that are dependent on the number | ||
2764 | * of available ports. | ||
2765 | */ | ||
2766 | static void init_hw_for_avail_ports(struct adapter *adap, int nports) | ||
2767 | { | ||
2768 | int i; | ||
2769 | |||
2770 | if (nports == 1) { | ||
2771 | t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0); | ||
2772 | t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0); | ||
2773 | t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_TPTXPORT0EN | | ||
2774 | F_PORT0ACTIVE | F_ENFORCEPKT); | ||
2775 | t3_write_reg(adap, A_PM1_TX_CFG, 0xc000c000); | ||
2776 | } else { | ||
2777 | t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN); | ||
2778 | t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB); | ||
2779 | t3_write_reg(adap, A_ULPTX_DMA_WEIGHT, | ||
2780 | V_D1_WEIGHT(16) | V_D0_WEIGHT(16)); | ||
2781 | t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN | | ||
2782 | F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE | | ||
2783 | F_ENFORCEPKT); | ||
2784 | t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000); | ||
2785 | t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE); | ||
2786 | t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP, | ||
2787 | V_TX_MOD_QUEUE_REQ_MAP(0xaa)); | ||
2788 | for (i = 0; i < 16; i++) | ||
2789 | t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE, | ||
2790 | (i << 16) | 0x1010); | ||
2791 | } | ||
2792 | } | ||
2793 | |||
2794 | static int calibrate_xgm(struct adapter *adapter) | ||
2795 | { | ||
2796 | if (uses_xaui(adapter)) { | ||
2797 | unsigned int v, i; | ||
2798 | |||
2799 | for (i = 0; i < 5; ++i) { | ||
2800 | t3_write_reg(adapter, A_XGM_XAUI_IMP, 0); | ||
2801 | t3_read_reg(adapter, A_XGM_XAUI_IMP); | ||
2802 | msleep(1); | ||
2803 | v = t3_read_reg(adapter, A_XGM_XAUI_IMP); | ||
2804 | if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) { | ||
2805 | t3_write_reg(adapter, A_XGM_XAUI_IMP, | ||
2806 | V_XAUIIMP(G_CALIMP(v) >> 2)); | ||
2807 | return 0; | ||
2808 | } | ||
2809 | } | ||
2810 | CH_ERR(adapter, "MAC calibration failed\n"); | ||
2811 | return -1; | ||
2812 | } else { | ||
2813 | t3_write_reg(adapter, A_XGM_RGMII_IMP, | ||
2814 | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3)); | ||
2815 | t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE, | ||
2816 | F_XGM_IMPSETUPDATE); | ||
2817 | } | ||
2818 | return 0; | ||
2819 | } | ||
2820 | |||
2821 | static void calibrate_xgm_t3b(struct adapter *adapter) | ||
2822 | { | ||
2823 | if (!uses_xaui(adapter)) { | ||
2824 | t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET | | ||
2825 | F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3)); | ||
2826 | t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0); | ||
2827 | t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, | ||
2828 | F_XGM_IMPSETUPDATE); | ||
2829 | t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE, | ||
2830 | 0); | ||
2831 | t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0); | ||
2832 | t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE); | ||
2833 | } | ||
2834 | } | ||
2835 | |||
2836 | struct mc7_timing_params { | ||
2837 | unsigned char ActToPreDly; | ||
2838 | unsigned char ActToRdWrDly; | ||
2839 | unsigned char PreCyc; | ||
2840 | unsigned char RefCyc[5]; | ||
2841 | unsigned char BkCyc; | ||
2842 | unsigned char WrToRdDly; | ||
2843 | unsigned char RdToWrDly; | ||
2844 | }; | ||
2845 | |||
2846 | /* | ||
2847 | * Write a value to a register and check that the write completed. These | ||
2848 | * writes normally complete in a cycle or two, so one read should suffice. | ||
2849 | * The very first read exists to flush the posted write to the device. | ||
2850 | */ | ||
2851 | static int wrreg_wait(struct adapter *adapter, unsigned int addr, u32 val) | ||
2852 | { | ||
2853 | t3_write_reg(adapter, addr, val); | ||
2854 | t3_read_reg(adapter, addr); /* flush */ | ||
2855 | if (!(t3_read_reg(adapter, addr) & F_BUSY)) | ||
2856 | return 0; | ||
2857 | CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr); | ||
2858 | return -EIO; | ||
2859 | } | ||
2860 | |||
2861 | static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type) | ||
2862 | { | ||
2863 | static const unsigned int mc7_mode[] = { | ||
2864 | 0x632, 0x642, 0x652, 0x432, 0x442 | ||
2865 | }; | ||
2866 | static const struct mc7_timing_params mc7_timings[] = { | ||
2867 | {12, 3, 4, {20, 28, 34, 52, 0}, 15, 6, 4}, | ||
2868 | {12, 4, 5, {20, 28, 34, 52, 0}, 16, 7, 4}, | ||
2869 | {12, 5, 6, {20, 28, 34, 52, 0}, 17, 8, 4}, | ||
2870 | {9, 3, 4, {15, 21, 26, 39, 0}, 12, 6, 4}, | ||
2871 | {9, 4, 5, {15, 21, 26, 39, 0}, 13, 7, 4} | ||
2872 | }; | ||
2873 | |||
2874 | u32 val; | ||
2875 | unsigned int width, density, slow, attempts; | ||
2876 | struct adapter *adapter = mc7->adapter; | ||
2877 | const struct mc7_timing_params *p = &mc7_timings[mem_type]; | ||
2878 | |||
2879 | val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); | ||
2880 | slow = val & F_SLOW; | ||
2881 | width = G_WIDTH(val); | ||
2882 | density = G_DEN(val); | ||
2883 | |||
2884 | t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN); | ||
2885 | val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */ | ||
2886 | msleep(1); | ||
2887 | |||
2888 | if (!slow) { | ||
2889 | t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN); | ||
2890 | t3_read_reg(adapter, mc7->offset + A_MC7_CAL); | ||
2891 | msleep(1); | ||
2892 | if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) & | ||
2893 | (F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) { | ||
2894 | CH_ERR(adapter, "%s MC7 calibration timed out\n", | ||
2895 | mc7->name); | ||
2896 | goto out_fail; | ||
2897 | } | ||
2898 | } | ||
2899 | |||
2900 | t3_write_reg(adapter, mc7->offset + A_MC7_PARM, | ||
2901 | V_ACTTOPREDLY(p->ActToPreDly) | | ||
2902 | V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) | | ||
2903 | V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) | | ||
2904 | V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly)); | ||
2905 | |||
2906 | t3_write_reg(adapter, mc7->offset + A_MC7_CFG, | ||
2907 | val | F_CLKEN | F_TERM150); | ||
2908 | t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */ | ||
2909 | |||
2910 | if (!slow) | ||
2911 | t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB, | ||
2912 | F_DLLENB); | ||
2913 | udelay(1); | ||
2914 | |||
2915 | val = slow ? 3 : 6; | ||
2916 | if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) || | ||
2917 | wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) || | ||
2918 | wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) || | ||
2919 | wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val)) | ||
2920 | goto out_fail; | ||
2921 | |||
2922 | if (!slow) { | ||
2923 | t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100); | ||
2924 | t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLRST, 0); | ||
2925 | udelay(5); | ||
2926 | } | ||
2927 | |||
2928 | if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) || | ||
2929 | wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) || | ||
2930 | wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) || | ||
2931 | wrreg_wait(adapter, mc7->offset + A_MC7_MODE, | ||
2932 | mc7_mode[mem_type]) || | ||
2933 | wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) || | ||
2934 | wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val)) | ||
2935 | goto out_fail; | ||
2936 | |||
2937 | /* clock value is in KHz */ | ||
2938 | mc7_clock = mc7_clock * 7812 + mc7_clock / 2; /* ns */ | ||
2939 | mc7_clock /= 1000000; /* KHz->MHz, ns->us */ | ||
2940 | |||
2941 | t3_write_reg(adapter, mc7->offset + A_MC7_REF, | ||
2942 | F_PERREFEN | V_PREREFDIV(mc7_clock)); | ||
2943 | t3_read_reg(adapter, mc7->offset + A_MC7_REF); /* flush */ | ||
2944 | |||
2945 | t3_write_reg(adapter, mc7->offset + A_MC7_ECC, F_ECCGENEN | F_ECCCHKEN); | ||
2946 | t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0); | ||
2947 | t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0); | ||
2948 | t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END, | ||
2949 | (mc7->size << width) - 1); | ||
2950 | t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1)); | ||
2951 | t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); /* flush */ | ||
2952 | |||
2953 | attempts = 50; | ||
2954 | do { | ||
2955 | msleep(250); | ||
2956 | val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); | ||
2957 | } while ((val & F_BUSY) && --attempts); | ||
2958 | if (val & F_BUSY) { | ||
2959 | CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name); | ||
2960 | goto out_fail; | ||
2961 | } | ||
2962 | |||
2963 | /* Enable normal memory accesses. */ | ||
2964 | t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY); | ||
2965 | return 0; | ||
2966 | |||
2967 | out_fail: | ||
2968 | return -1; | ||
2969 | } | ||
2970 | |||
2971 | static void config_pcie(struct adapter *adap) | ||
2972 | { | ||
2973 | static const u16 ack_lat[4][6] = { | ||
2974 | {237, 416, 559, 1071, 2095, 4143}, | ||
2975 | {128, 217, 289, 545, 1057, 2081}, | ||
2976 | {73, 118, 154, 282, 538, 1050}, | ||
2977 | {67, 107, 86, 150, 278, 534} | ||
2978 | }; | ||
2979 | static const u16 rpl_tmr[4][6] = { | ||
2980 | {711, 1248, 1677, 3213, 6285, 12429}, | ||
2981 | {384, 651, 867, 1635, 3171, 6243}, | ||
2982 | {219, 354, 462, 846, 1614, 3150}, | ||
2983 | {201, 321, 258, 450, 834, 1602} | ||
2984 | }; | ||
2985 | |||
2986 | u16 val; | ||
2987 | unsigned int log2_width, pldsize; | ||
2988 | unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt; | ||
2989 | |||
2990 | pci_read_config_word(adap->pdev, | ||
2991 | adap->params.pci.pcie_cap_addr + PCI_EXP_DEVCTL, | ||
2992 | &val); | ||
2993 | pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5; | ||
2994 | pci_read_config_word(adap->pdev, | ||
2995 | adap->params.pci.pcie_cap_addr + PCI_EXP_LNKCTL, | ||
2996 | &val); | ||
2997 | |||
2998 | fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0)); | ||
2999 | fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx : | ||
3000 | G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE)); | ||
3001 | log2_width = fls(adap->params.pci.width) - 1; | ||
3002 | acklat = ack_lat[log2_width][pldsize]; | ||
3003 | if (val & 1) /* check LOsEnable */ | ||
3004 | acklat += fst_trn_tx * 4; | ||
3005 | rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4; | ||
3006 | |||
3007 | if (adap->params.rev == 0) | ||
3008 | t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, | ||
3009 | V_T3A_ACKLAT(M_T3A_ACKLAT), | ||
3010 | V_T3A_ACKLAT(acklat)); | ||
3011 | else | ||
3012 | t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT), | ||
3013 | V_ACKLAT(acklat)); | ||
3014 | |||
3015 | t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT), | ||
3016 | V_REPLAYLMT(rpllmt)); | ||
3017 | |||
3018 | t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff); | ||
3019 | t3_set_reg_field(adap, A_PCIE_CFG, F_PCIE_CLIDECEN, F_PCIE_CLIDECEN); | ||
3020 | } | ||
3021 | |||
3022 | /* | ||
3023 | * Initialize and configure T3 HW modules. This performs the | ||
3024 | * initialization steps that need to be done once after a card is reset. | ||
3025 | * MAC and PHY initialization is handled separarely whenever a port is enabled. | ||
3026 | * | ||
3027 | * fw_params are passed to FW and their value is platform dependent. Only the | ||
3028 | * top 8 bits are available for use, the rest must be 0. | ||
3029 | */ | ||
3030 | int t3_init_hw(struct adapter *adapter, u32 fw_params) | ||
3031 | { | ||
3032 | int err = -EIO, attempts = 100; | ||
3033 | const struct vpd_params *vpd = &adapter->params.vpd; | ||
3034 | |||
3035 | if (adapter->params.rev > 0) | ||
3036 | calibrate_xgm_t3b(adapter); | ||
3037 | else if (calibrate_xgm(adapter)) | ||
3038 | goto out_err; | ||
3039 | |||
3040 | if (vpd->mclk) { | ||
3041 | partition_mem(adapter, &adapter->params.tp); | ||
3042 | |||
3043 | if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) || | ||
3044 | mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) || | ||
3045 | mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) || | ||
3046 | t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers, | ||
3047 | adapter->params.mc5.nfilters, | ||
3048 | adapter->params.mc5.nroutes)) | ||
3049 | goto out_err; | ||
3050 | } | ||
3051 | |||
3052 | if (tp_init(adapter, &adapter->params.tp)) | ||
3053 | goto out_err; | ||
3054 | |||
3055 | t3_tp_set_coalescing_size(adapter, | ||
3056 | min(adapter->params.sge.max_pkt_size, | ||
3057 | MAX_RX_COALESCING_LEN), 1); | ||
3058 | t3_tp_set_max_rxsize(adapter, | ||
3059 | min(adapter->params.sge.max_pkt_size, 16384U)); | ||
3060 | ulp_config(adapter, &adapter->params.tp); | ||
3061 | |||
3062 | if (is_pcie(adapter)) | ||
3063 | config_pcie(adapter); | ||
3064 | else | ||
3065 | t3_set_reg_field(adapter, A_PCIX_CFG, 0, F_CLIDECEN); | ||
3066 | |||
3067 | t3_write_reg(adapter, A_PM1_RX_CFG, 0xf000f000); | ||
3068 | init_hw_for_avail_ports(adapter, adapter->params.nports); | ||
3069 | t3_sge_init(adapter, &adapter->params.sge); | ||
3070 | |||
3071 | t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params); | ||
3072 | t3_write_reg(adapter, A_CIM_BOOT_CFG, | ||
3073 | V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2)); | ||
3074 | t3_read_reg(adapter, A_CIM_BOOT_CFG); /* flush */ | ||
3075 | |||
3076 | do { /* wait for uP to initialize */ | ||
3077 | msleep(20); | ||
3078 | } while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts); | ||
3079 | if (!attempts) | ||
3080 | goto out_err; | ||
3081 | |||
3082 | err = 0; | ||
3083 | out_err: | ||
3084 | return err; | ||
3085 | } | ||
3086 | |||
3087 | /** | ||
3088 | * get_pci_mode - determine a card's PCI mode | ||
3089 | * @adapter: the adapter | ||
3090 | * @p: where to store the PCI settings | ||
3091 | * | ||
3092 | * Determines a card's PCI mode and associated parameters, such as speed | ||
3093 | * and width. | ||
3094 | */ | ||
3095 | static void __devinit get_pci_mode(struct adapter *adapter, | ||
3096 | struct pci_params *p) | ||
3097 | { | ||
3098 | static unsigned short speed_map[] = { 33, 66, 100, 133 }; | ||
3099 | u32 pci_mode, pcie_cap; | ||
3100 | |||
3101 | pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); | ||
3102 | if (pcie_cap) { | ||
3103 | u16 val; | ||
3104 | |||
3105 | p->variant = PCI_VARIANT_PCIE; | ||
3106 | p->pcie_cap_addr = pcie_cap; | ||
3107 | pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA, | ||
3108 | &val); | ||
3109 | p->width = (val >> 4) & 0x3f; | ||
3110 | return; | ||
3111 | } | ||
3112 | |||
3113 | pci_mode = t3_read_reg(adapter, A_PCIX_MODE); | ||
3114 | p->speed = speed_map[G_PCLKRANGE(pci_mode)]; | ||
3115 | p->width = (pci_mode & F_64BIT) ? 64 : 32; | ||
3116 | pci_mode = G_PCIXINITPAT(pci_mode); | ||
3117 | if (pci_mode == 0) | ||
3118 | p->variant = PCI_VARIANT_PCI; | ||
3119 | else if (pci_mode < 4) | ||
3120 | p->variant = PCI_VARIANT_PCIX_MODE1_PARITY; | ||
3121 | else if (pci_mode < 8) | ||
3122 | p->variant = PCI_VARIANT_PCIX_MODE1_ECC; | ||
3123 | else | ||
3124 | p->variant = PCI_VARIANT_PCIX_266_MODE2; | ||
3125 | } | ||
3126 | |||
3127 | /** | ||
3128 | * init_link_config - initialize a link's SW state | ||
3129 | * @lc: structure holding the link state | ||
3130 | * @ai: information about the current card | ||
3131 | * | ||
3132 | * Initializes the SW state maintained for each link, including the link's | ||
3133 | * capabilities and default speed/duplex/flow-control/autonegotiation | ||
3134 | * settings. | ||
3135 | */ | ||
3136 | static void __devinit init_link_config(struct link_config *lc, | ||
3137 | unsigned int caps) | ||
3138 | { | ||
3139 | lc->supported = caps; | ||
3140 | lc->requested_speed = lc->speed = SPEED_INVALID; | ||
3141 | lc->requested_duplex = lc->duplex = DUPLEX_INVALID; | ||
3142 | lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; | ||
3143 | if (lc->supported & SUPPORTED_Autoneg) { | ||
3144 | lc->advertising = lc->supported; | ||
3145 | lc->autoneg = AUTONEG_ENABLE; | ||
3146 | lc->requested_fc |= PAUSE_AUTONEG; | ||
3147 | } else { | ||
3148 | lc->advertising = 0; | ||
3149 | lc->autoneg = AUTONEG_DISABLE; | ||
3150 | } | ||
3151 | } | ||
3152 | |||
3153 | /** | ||
3154 | * mc7_calc_size - calculate MC7 memory size | ||
3155 | * @cfg: the MC7 configuration | ||
3156 | * | ||
3157 | * Calculates the size of an MC7 memory in bytes from the value of its | ||
3158 | * configuration register. | ||
3159 | */ | ||
3160 | static unsigned int __devinit mc7_calc_size(u32 cfg) | ||
3161 | { | ||
3162 | unsigned int width = G_WIDTH(cfg); | ||
3163 | unsigned int banks = !!(cfg & F_BKS) + 1; | ||
3164 | unsigned int org = !!(cfg & F_ORG) + 1; | ||
3165 | unsigned int density = G_DEN(cfg); | ||
3166 | unsigned int MBs = ((256 << density) * banks) / (org << width); | ||
3167 | |||
3168 | return MBs << 20; | ||
3169 | } | ||
3170 | |||
3171 | static void __devinit mc7_prep(struct adapter *adapter, struct mc7 *mc7, | ||
3172 | unsigned int base_addr, const char *name) | ||
3173 | { | ||
3174 | u32 cfg; | ||
3175 | |||
3176 | mc7->adapter = adapter; | ||
3177 | mc7->name = name; | ||
3178 | mc7->offset = base_addr - MC7_PMRX_BASE_ADDR; | ||
3179 | cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); | ||
3180 | mc7->size = mc7_calc_size(cfg); | ||
3181 | mc7->width = G_WIDTH(cfg); | ||
3182 | } | ||
3183 | |||
3184 | void mac_prep(struct cmac *mac, struct adapter *adapter, int index) | ||
3185 | { | ||
3186 | mac->adapter = adapter; | ||
3187 | mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index; | ||
3188 | mac->nucast = 1; | ||
3189 | |||
3190 | if (adapter->params.rev == 0 && uses_xaui(adapter)) { | ||
3191 | t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset, | ||
3192 | is_10G(adapter) ? 0x2901c04 : 0x2301c04); | ||
3193 | t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset, | ||
3194 | F_ENRGMII, 0); | ||
3195 | } | ||
3196 | } | ||
3197 | |||
3198 | void early_hw_init(struct adapter *adapter, const struct adapter_info *ai) | ||
3199 | { | ||
3200 | u32 val = V_PORTSPEED(is_10G(adapter) ? 3 : 2); | ||
3201 | |||
3202 | mi1_init(adapter, ai); | ||
3203 | t3_write_reg(adapter, A_I2C_CFG, /* set for 80KHz */ | ||
3204 | V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1)); | ||
3205 | t3_write_reg(adapter, A_T3DBG_GPIO_EN, | ||
3206 | ai->gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL); | ||
3207 | |||
3208 | if (adapter->params.rev == 0 || !uses_xaui(adapter)) | ||
3209 | val |= F_ENRGMII; | ||
3210 | |||
3211 | /* Enable MAC clocks so we can access the registers */ | ||
3212 | t3_write_reg(adapter, A_XGM_PORT_CFG, val); | ||
3213 | t3_read_reg(adapter, A_XGM_PORT_CFG); | ||
3214 | |||
3215 | val |= F_CLKDIVRESET_; | ||
3216 | t3_write_reg(adapter, A_XGM_PORT_CFG, val); | ||
3217 | t3_read_reg(adapter, A_XGM_PORT_CFG); | ||
3218 | t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val); | ||
3219 | t3_read_reg(adapter, A_XGM_PORT_CFG); | ||
3220 | } | ||
3221 | |||
3222 | /* | ||
3223 | * Reset the adapter. PCIe cards lose their config space during reset, PCI-X | ||
3224 | * ones don't. | ||
3225 | */ | ||
3226 | int t3_reset_adapter(struct adapter *adapter) | ||
3227 | { | ||
3228 | int i; | ||
3229 | uint16_t devid = 0; | ||
3230 | |||
3231 | if (is_pcie(adapter)) | ||
3232 | pci_save_state(adapter->pdev); | ||
3233 | t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE); | ||
3234 | |||
3235 | /* | ||
3236 | * Delay. Give Some time to device to reset fully. | ||
3237 | * XXX The delay time should be modified. | ||
3238 | */ | ||
3239 | for (i = 0; i < 10; i++) { | ||
3240 | msleep(50); | ||
3241 | pci_read_config_word(adapter->pdev, 0x00, &devid); | ||
3242 | if (devid == 0x1425) | ||
3243 | break; | ||
3244 | } | ||
3245 | |||
3246 | if (devid != 0x1425) | ||
3247 | return -1; | ||
3248 | |||
3249 | if (is_pcie(adapter)) | ||
3250 | pci_restore_state(adapter->pdev); | ||
3251 | return 0; | ||
3252 | } | ||
3253 | |||
3254 | /* | ||
3255 | * Initialize adapter SW state for the various HW modules, set initial values | ||
3256 | * for some adapter tunables, take PHYs out of reset, and initialize the MDIO | ||
3257 | * interface. | ||
3258 | */ | ||
3259 | int __devinit t3_prep_adapter(struct adapter *adapter, | ||
3260 | const struct adapter_info *ai, int reset) | ||
3261 | { | ||
3262 | int ret; | ||
3263 | unsigned int i, j = 0; | ||
3264 | |||
3265 | get_pci_mode(adapter, &adapter->params.pci); | ||
3266 | |||
3267 | adapter->params.info = ai; | ||
3268 | adapter->params.nports = ai->nports; | ||
3269 | adapter->params.rev = t3_read_reg(adapter, A_PL_REV); | ||
3270 | adapter->params.linkpoll_period = 0; | ||
3271 | adapter->params.stats_update_period = is_10G(adapter) ? | ||
3272 | MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10); | ||
3273 | adapter->params.pci.vpd_cap_addr = | ||
3274 | pci_find_capability(adapter->pdev, PCI_CAP_ID_VPD); | ||
3275 | ret = get_vpd_params(adapter, &adapter->params.vpd); | ||
3276 | if (ret < 0) | ||
3277 | return ret; | ||
3278 | |||
3279 | if (reset && t3_reset_adapter(adapter)) | ||
3280 | return -1; | ||
3281 | |||
3282 | t3_sge_prep(adapter, &adapter->params.sge); | ||
3283 | |||
3284 | if (adapter->params.vpd.mclk) { | ||
3285 | struct tp_params *p = &adapter->params.tp; | ||
3286 | |||
3287 | mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX"); | ||
3288 | mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX"); | ||
3289 | mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM"); | ||
3290 | |||
3291 | p->nchan = ai->nports; | ||
3292 | p->pmrx_size = t3_mc7_size(&adapter->pmrx); | ||
3293 | p->pmtx_size = t3_mc7_size(&adapter->pmtx); | ||
3294 | p->cm_size = t3_mc7_size(&adapter->cm); | ||
3295 | p->chan_rx_size = p->pmrx_size / 2; /* only 1 Rx channel */ | ||
3296 | p->chan_tx_size = p->pmtx_size / p->nchan; | ||
3297 | p->rx_pg_size = 64 * 1024; | ||
3298 | p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024; | ||
3299 | p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size); | ||
3300 | p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size); | ||
3301 | p->ntimer_qs = p->cm_size >= (128 << 20) || | ||
3302 | adapter->params.rev > 0 ? 12 : 6; | ||
3303 | |||
3304 | adapter->params.mc5.nservers = DEFAULT_NSERVERS; | ||
3305 | adapter->params.mc5.nfilters = adapter->params.rev > 0 ? | ||
3306 | DEFAULT_NFILTERS : 0; | ||
3307 | adapter->params.mc5.nroutes = 0; | ||
3308 | t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT); | ||
3309 | |||
3310 | init_mtus(adapter->params.mtus); | ||
3311 | init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); | ||
3312 | } | ||
3313 | |||
3314 | early_hw_init(adapter, ai); | ||
3315 | |||
3316 | for_each_port(adapter, i) { | ||
3317 | u8 hw_addr[6]; | ||
3318 | struct port_info *p = adap2pinfo(adapter, i); | ||
3319 | |||
3320 | while (!adapter->params.vpd.port_type[j]) | ||
3321 | ++j; | ||
3322 | |||
3323 | p->port_type = &port_types[adapter->params.vpd.port_type[j]]; | ||
3324 | p->port_type->phy_prep(&p->phy, adapter, ai->phy_base_addr + j, | ||
3325 | ai->mdio_ops); | ||
3326 | mac_prep(&p->mac, adapter, j); | ||
3327 | ++j; | ||
3328 | |||
3329 | /* | ||
3330 | * The VPD EEPROM stores the base Ethernet address for the | ||
3331 | * card. A port's address is derived from the base by adding | ||
3332 | * the port's index to the base's low octet. | ||
3333 | */ | ||
3334 | memcpy(hw_addr, adapter->params.vpd.eth_base, 5); | ||
3335 | hw_addr[5] = adapter->params.vpd.eth_base[5] + i; | ||
3336 | |||
3337 | memcpy(adapter->port[i]->dev_addr, hw_addr, | ||
3338 | ETH_ALEN); | ||
3339 | memcpy(adapter->port[i]->perm_addr, hw_addr, | ||
3340 | ETH_ALEN); | ||
3341 | init_link_config(&p->link_config, p->port_type->caps); | ||
3342 | p->phy.ops->power_down(&p->phy, 1); | ||
3343 | if (!(p->port_type->caps & SUPPORTED_IRQ)) | ||
3344 | adapter->params.linkpoll_period = 10; | ||
3345 | } | ||
3346 | |||
3347 | return 0; | ||
3348 | } | ||
3349 | |||
3350 | void t3_led_ready(struct adapter *adapter) | ||
3351 | { | ||
3352 | t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, | ||
3353 | F_GPIO0_OUT_VAL); | ||
3354 | } | ||
diff --git a/drivers/net/cxgb3/t3cdev.h b/drivers/net/cxgb3/t3cdev.h new file mode 100644 index 000000000000..359584e7d582 --- /dev/null +++ b/drivers/net/cxgb3/t3cdev.h | |||
@@ -0,0 +1,72 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2003-2006 Chelsio Communications. All rights reserved. | ||
3 | * | ||
4 | * This software is available to you under a choice of one of two | ||
5 | * licenses. You may choose to be licensed under the terms of the GNU | ||
6 | * General Public License (GPL) Version 2, available from the file | ||
7 | * COPYING in the main directory of this source tree, or the | ||
8 | * OpenIB.org BSD license below: | ||
9 | * | ||
10 | * Redistribution and use in source and binary forms, with or | ||
11 | * without modification, are permitted provided that the following | ||
12 | * conditions are met: | ||
13 | * | ||
14 | * - Redistributions of source code must retain the above | ||
15 | * copyright notice, this list of conditions and the following | ||
16 | * disclaimer. | ||
17 | * | ||
18 | * - Redistributions in binary form must reproduce the above | ||
19 | * copyright notice, this list of conditions and the following | ||
20 | * disclaimer in the documentation and/or other materials | ||
21 | * provided with the distribution. | ||
22 | * | ||
23 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||
24 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
25 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
26 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | ||
27 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | ||
28 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | ||
29 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
30 | * SOFTWARE. | ||
31 | */ | ||
32 | #ifndef _T3CDEV_H_ | ||
33 | #define _T3CDEV_H_ | ||
34 | |||
35 | #include <linux/list.h> | ||
36 | #include <asm/atomic.h> | ||
37 | #include <asm/semaphore.h> | ||
38 | #include <linux/netdevice.h> | ||
39 | #include <linux/proc_fs.h> | ||
40 | #include <linux/skbuff.h> | ||
41 | #include <net/neighbour.h> | ||
42 | |||
43 | #define T3CNAMSIZ 16 | ||
44 | |||
45 | /* Get the t3cdev associated with a net_device */ | ||
46 | #define T3CDEV(netdev) (struct t3cdev *)(netdev->priv) | ||
47 | |||
48 | struct cxgb3_client; | ||
49 | |||
50 | enum t3ctype { | ||
51 | T3A = 0, | ||
52 | T3B | ||
53 | }; | ||
54 | |||
55 | struct t3cdev { | ||
56 | char name[T3CNAMSIZ]; /* T3C device name */ | ||
57 | enum t3ctype type; | ||
58 | struct list_head ofld_dev_list; /* for list linking */ | ||
59 | struct net_device *lldev; /* LL dev associated with T3C messages */ | ||
60 | struct proc_dir_entry *proc_dir; /* root of proc dir for this T3C */ | ||
61 | int (*send)(struct t3cdev *dev, struct sk_buff *skb); | ||
62 | int (*recv)(struct t3cdev *dev, struct sk_buff **skb, int n); | ||
63 | int (*ctl)(struct t3cdev *dev, unsigned int req, void *data); | ||
64 | void (*neigh_update)(struct t3cdev *dev, struct neighbour *neigh); | ||
65 | void *priv; /* driver private data */ | ||
66 | void *l2opt; /* optional layer 2 data */ | ||
67 | void *l3opt; /* optional layer 3 data */ | ||
68 | void *l4opt; /* optional layer 4 data */ | ||
69 | void *ulp; /* ulp stuff */ | ||
70 | }; | ||
71 | |||
72 | #endif /* _T3CDEV_H_ */ | ||
diff --git a/drivers/net/cxgb3/version.h b/drivers/net/cxgb3/version.h new file mode 100644 index 000000000000..1413ea37f415 --- /dev/null +++ b/drivers/net/cxgb3/version.h | |||
@@ -0,0 +1,24 @@ | |||
1 | /***************************************************************************** | ||
2 | * * | ||
3 | * File: * | ||
4 | * version.h * | ||
5 | * * | ||
6 | * Description: * | ||
7 | * Chelsio driver version defines. * | ||
8 | * * | ||
9 | * Copyright (c) 2003 - 2006 Chelsio Communications, Inc. * | ||
10 | * All rights reserved. * | ||
11 | * * | ||
12 | * Maintainers: maintainers@chelsio.com * | ||
13 | * * | ||
14 | * http://www.chelsio.com * | ||
15 | * * | ||
16 | ****************************************************************************/ | ||
17 | /* $Date: 2006/10/31 18:57:51 $ $RCSfile: version.h,v $ $Revision: 1.3 $ */ | ||
18 | #ifndef __CHELSIO_VERSION_H | ||
19 | #define __CHELSIO_VERSION_H | ||
20 | #define DRV_DESC "Chelsio T3 Network Driver" | ||
21 | #define DRV_NAME "cxgb3" | ||
22 | /* Driver version */ | ||
23 | #define DRV_VERSION "1.0" | ||
24 | #endif /* __CHELSIO_VERSION_H */ | ||
diff --git a/drivers/net/cxgb3/vsc8211.c b/drivers/net/cxgb3/vsc8211.c new file mode 100644 index 000000000000..6a0a815b89c1 --- /dev/null +++ b/drivers/net/cxgb3/vsc8211.c | |||
@@ -0,0 +1,208 @@ | |||
1 | /* | ||
2 | * This file is part of the Chelsio T3 Ethernet driver. | ||
3 | * | ||
4 | * Copyright (C) 2005-2006 Chelsio Communications. All rights reserved. | ||
5 | * | ||
6 | * This program is distributed in the hope that it will be useful, but WITHOUT | ||
7 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
8 | * FITNESS FOR A PARTICULAR PURPOSE. See the LICENSE file included in this | ||
9 | * release for licensing terms and conditions. | ||
10 | */ | ||
11 | |||
12 | #include "common.h" | ||
13 | |||
14 | /* VSC8211 PHY specific registers. */ | ||
15 | enum { | ||
16 | VSC8211_INTR_ENABLE = 25, | ||
17 | VSC8211_INTR_STATUS = 26, | ||
18 | VSC8211_AUX_CTRL_STAT = 28, | ||
19 | }; | ||
20 | |||
21 | enum { | ||
22 | VSC_INTR_RX_ERR = 1 << 0, | ||
23 | VSC_INTR_MS_ERR = 1 << 1, /* master/slave resolution error */ | ||
24 | VSC_INTR_CABLE = 1 << 2, /* cable impairment */ | ||
25 | VSC_INTR_FALSE_CARR = 1 << 3, /* false carrier */ | ||
26 | VSC_INTR_MEDIA_CHG = 1 << 4, /* AMS media change */ | ||
27 | VSC_INTR_RX_FIFO = 1 << 5, /* Rx FIFO over/underflow */ | ||
28 | VSC_INTR_TX_FIFO = 1 << 6, /* Tx FIFO over/underflow */ | ||
29 | VSC_INTR_DESCRAMBL = 1 << 7, /* descrambler lock-lost */ | ||
30 | VSC_INTR_SYMBOL_ERR = 1 << 8, /* symbol error */ | ||
31 | VSC_INTR_NEG_DONE = 1 << 10, /* autoneg done */ | ||
32 | VSC_INTR_NEG_ERR = 1 << 11, /* autoneg error */ | ||
33 | VSC_INTR_LINK_CHG = 1 << 13, /* link change */ | ||
34 | VSC_INTR_ENABLE = 1 << 15, /* interrupt enable */ | ||
35 | }; | ||
36 | |||
37 | #define CFG_CHG_INTR_MASK (VSC_INTR_LINK_CHG | VSC_INTR_NEG_ERR | \ | ||
38 | VSC_INTR_NEG_DONE) | ||
39 | #define INTR_MASK (CFG_CHG_INTR_MASK | VSC_INTR_TX_FIFO | VSC_INTR_RX_FIFO | \ | ||
40 | VSC_INTR_ENABLE) | ||
41 | |||
42 | /* PHY specific auxiliary control & status register fields */ | ||
43 | #define S_ACSR_ACTIPHY_TMR 0 | ||
44 | #define M_ACSR_ACTIPHY_TMR 0x3 | ||
45 | #define V_ACSR_ACTIPHY_TMR(x) ((x) << S_ACSR_ACTIPHY_TMR) | ||
46 | |||
47 | #define S_ACSR_SPEED 3 | ||
48 | #define M_ACSR_SPEED 0x3 | ||
49 | #define G_ACSR_SPEED(x) (((x) >> S_ACSR_SPEED) & M_ACSR_SPEED) | ||
50 | |||
51 | #define S_ACSR_DUPLEX 5 | ||
52 | #define F_ACSR_DUPLEX (1 << S_ACSR_DUPLEX) | ||
53 | |||
54 | #define S_ACSR_ACTIPHY 6 | ||
55 | #define F_ACSR_ACTIPHY (1 << S_ACSR_ACTIPHY) | ||
56 | |||
57 | /* | ||
58 | * Reset the PHY. This PHY completes reset immediately so we never wait. | ||
59 | */ | ||
60 | static int vsc8211_reset(struct cphy *cphy, int wait) | ||
61 | { | ||
62 | return t3_phy_reset(cphy, 0, 0); | ||
63 | } | ||
64 | |||
65 | static int vsc8211_intr_enable(struct cphy *cphy) | ||
66 | { | ||
67 | return mdio_write(cphy, 0, VSC8211_INTR_ENABLE, INTR_MASK); | ||
68 | } | ||
69 | |||
70 | static int vsc8211_intr_disable(struct cphy *cphy) | ||
71 | { | ||
72 | return mdio_write(cphy, 0, VSC8211_INTR_ENABLE, 0); | ||
73 | } | ||
74 | |||
75 | static int vsc8211_intr_clear(struct cphy *cphy) | ||
76 | { | ||
77 | u32 val; | ||
78 | |||
79 | /* Clear PHY interrupts by reading the register. */ | ||
80 | return mdio_read(cphy, 0, VSC8211_INTR_STATUS, &val); | ||
81 | } | ||
82 | |||
83 | static int vsc8211_autoneg_enable(struct cphy *cphy) | ||
84 | { | ||
85 | return t3_mdio_change_bits(cphy, 0, MII_BMCR, BMCR_PDOWN | BMCR_ISOLATE, | ||
86 | BMCR_ANENABLE | BMCR_ANRESTART); | ||
87 | } | ||
88 | |||
89 | static int vsc8211_autoneg_restart(struct cphy *cphy) | ||
90 | { | ||
91 | return t3_mdio_change_bits(cphy, 0, MII_BMCR, BMCR_PDOWN | BMCR_ISOLATE, | ||
92 | BMCR_ANRESTART); | ||
93 | } | ||
94 | |||
95 | static int vsc8211_get_link_status(struct cphy *cphy, int *link_ok, | ||
96 | int *speed, int *duplex, int *fc) | ||
97 | { | ||
98 | unsigned int bmcr, status, lpa, adv; | ||
99 | int err, sp = -1, dplx = -1, pause = 0; | ||
100 | |||
101 | err = mdio_read(cphy, 0, MII_BMCR, &bmcr); | ||
102 | if (!err) | ||
103 | err = mdio_read(cphy, 0, MII_BMSR, &status); | ||
104 | if (err) | ||
105 | return err; | ||
106 | |||
107 | if (link_ok) { | ||
108 | /* | ||
109 | * BMSR_LSTATUS is latch-low, so if it is 0 we need to read it | ||
110 | * once more to get the current link state. | ||
111 | */ | ||
112 | if (!(status & BMSR_LSTATUS)) | ||
113 | err = mdio_read(cphy, 0, MII_BMSR, &status); | ||
114 | if (err) | ||
115 | return err; | ||
116 | *link_ok = (status & BMSR_LSTATUS) != 0; | ||
117 | } | ||
118 | if (!(bmcr & BMCR_ANENABLE)) { | ||
119 | dplx = (bmcr & BMCR_FULLDPLX) ? DUPLEX_FULL : DUPLEX_HALF; | ||
120 | if (bmcr & BMCR_SPEED1000) | ||
121 | sp = SPEED_1000; | ||
122 | else if (bmcr & BMCR_SPEED100) | ||
123 | sp = SPEED_100; | ||
124 | else | ||
125 | sp = SPEED_10; | ||
126 | } else if (status & BMSR_ANEGCOMPLETE) { | ||
127 | err = mdio_read(cphy, 0, VSC8211_AUX_CTRL_STAT, &status); | ||
128 | if (err) | ||
129 | return err; | ||
130 | |||
131 | dplx = (status & F_ACSR_DUPLEX) ? DUPLEX_FULL : DUPLEX_HALF; | ||
132 | sp = G_ACSR_SPEED(status); | ||
133 | if (sp == 0) | ||
134 | sp = SPEED_10; | ||
135 | else if (sp == 1) | ||
136 | sp = SPEED_100; | ||
137 | else | ||
138 | sp = SPEED_1000; | ||
139 | |||
140 | if (fc && dplx == DUPLEX_FULL) { | ||
141 | err = mdio_read(cphy, 0, MII_LPA, &lpa); | ||
142 | if (!err) | ||
143 | err = mdio_read(cphy, 0, MII_ADVERTISE, &adv); | ||
144 | if (err) | ||
145 | return err; | ||
146 | |||
147 | if (lpa & adv & ADVERTISE_PAUSE_CAP) | ||
148 | pause = PAUSE_RX | PAUSE_TX; | ||
149 | else if ((lpa & ADVERTISE_PAUSE_CAP) && | ||
150 | (lpa & ADVERTISE_PAUSE_ASYM) && | ||
151 | (adv & ADVERTISE_PAUSE_ASYM)) | ||
152 | pause = PAUSE_TX; | ||
153 | else if ((lpa & ADVERTISE_PAUSE_ASYM) && | ||
154 | (adv & ADVERTISE_PAUSE_CAP)) | ||
155 | pause = PAUSE_RX; | ||
156 | } | ||
157 | } | ||
158 | if (speed) | ||
159 | *speed = sp; | ||
160 | if (duplex) | ||
161 | *duplex = dplx; | ||
162 | if (fc) | ||
163 | *fc = pause; | ||
164 | return 0; | ||
165 | } | ||
166 | |||
167 | static int vsc8211_power_down(struct cphy *cphy, int enable) | ||
168 | { | ||
169 | return t3_mdio_change_bits(cphy, 0, MII_BMCR, BMCR_PDOWN, | ||
170 | enable ? BMCR_PDOWN : 0); | ||
171 | } | ||
172 | |||
173 | static int vsc8211_intr_handler(struct cphy *cphy) | ||
174 | { | ||
175 | unsigned int cause; | ||
176 | int err, cphy_cause = 0; | ||
177 | |||
178 | err = mdio_read(cphy, 0, VSC8211_INTR_STATUS, &cause); | ||
179 | if (err) | ||
180 | return err; | ||
181 | |||
182 | cause &= INTR_MASK; | ||
183 | if (cause & CFG_CHG_INTR_MASK) | ||
184 | cphy_cause |= cphy_cause_link_change; | ||
185 | if (cause & (VSC_INTR_RX_FIFO | VSC_INTR_TX_FIFO)) | ||
186 | cphy_cause |= cphy_cause_fifo_error; | ||
187 | return cphy_cause; | ||
188 | } | ||
189 | |||
190 | static struct cphy_ops vsc8211_ops = { | ||
191 | .reset = vsc8211_reset, | ||
192 | .intr_enable = vsc8211_intr_enable, | ||
193 | .intr_disable = vsc8211_intr_disable, | ||
194 | .intr_clear = vsc8211_intr_clear, | ||
195 | .intr_handler = vsc8211_intr_handler, | ||
196 | .autoneg_enable = vsc8211_autoneg_enable, | ||
197 | .autoneg_restart = vsc8211_autoneg_restart, | ||
198 | .advertise = t3_phy_advertise, | ||
199 | .set_speed_duplex = t3_set_phy_speed_duplex, | ||
200 | .get_link_status = vsc8211_get_link_status, | ||
201 | .power_down = vsc8211_power_down, | ||
202 | }; | ||
203 | |||
204 | void t3_vsc8211_phy_prep(struct cphy *phy, struct adapter *adapter, | ||
205 | int phy_addr, const struct mdio_ops *mdio_ops) | ||
206 | { | ||
207 | cphy_init(phy, adapter, phy_addr, &vsc8211_ops, mdio_ops); | ||
208 | } | ||
diff --git a/drivers/net/cxgb3/xgmac.c b/drivers/net/cxgb3/xgmac.c new file mode 100644 index 000000000000..0f209c776929 --- /dev/null +++ b/drivers/net/cxgb3/xgmac.c | |||
@@ -0,0 +1,389 @@ | |||
1 | /* | ||
2 | * This file is part of the Chelsio T3 Ethernet driver. | ||
3 | * | ||
4 | * Copyright (C) 2005-2006 Chelsio Communications. All rights reserved. | ||
5 | * | ||
6 | * This program is distributed in the hope that it will be useful, but WITHOUT | ||
7 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
8 | * FITNESS FOR A PARTICULAR PURPOSE. See the LICENSE file included in this | ||
9 | * release for licensing terms and conditions. | ||
10 | */ | ||
11 | |||
12 | #include "common.h" | ||
13 | #include "regs.h" | ||
14 | |||
15 | /* | ||
16 | * # of exact address filters. The first one is used for the station address, | ||
17 | * the rest are available for multicast addresses. | ||
18 | */ | ||
19 | #define EXACT_ADDR_FILTERS 8 | ||
20 | |||
21 | static inline int macidx(const struct cmac *mac) | ||
22 | { | ||
23 | return mac->offset / (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR); | ||
24 | } | ||
25 | |||
26 | static void xaui_serdes_reset(struct cmac *mac) | ||
27 | { | ||
28 | static const unsigned int clear[] = { | ||
29 | F_PWRDN0 | F_PWRDN1, F_RESETPLL01, F_RESET0 | F_RESET1, | ||
30 | F_PWRDN2 | F_PWRDN3, F_RESETPLL23, F_RESET2 | F_RESET3 | ||
31 | }; | ||
32 | |||
33 | int i; | ||
34 | struct adapter *adap = mac->adapter; | ||
35 | u32 ctrl = A_XGM_SERDES_CTRL0 + mac->offset; | ||
36 | |||
37 | t3_write_reg(adap, ctrl, adap->params.vpd.xauicfg[macidx(mac)] | | ||
38 | F_RESET3 | F_RESET2 | F_RESET1 | F_RESET0 | | ||
39 | F_PWRDN3 | F_PWRDN2 | F_PWRDN1 | F_PWRDN0 | | ||
40 | F_RESETPLL23 | F_RESETPLL01); | ||
41 | t3_read_reg(adap, ctrl); | ||
42 | udelay(15); | ||
43 | |||
44 | for (i = 0; i < ARRAY_SIZE(clear); i++) { | ||
45 | t3_set_reg_field(adap, ctrl, clear[i], 0); | ||
46 | udelay(15); | ||
47 | } | ||
48 | } | ||
49 | |||
50 | void t3b_pcs_reset(struct cmac *mac) | ||
51 | { | ||
52 | t3_set_reg_field(mac->adapter, A_XGM_RESET_CTRL + mac->offset, | ||
53 | F_PCS_RESET_, 0); | ||
54 | udelay(20); | ||
55 | t3_set_reg_field(mac->adapter, A_XGM_RESET_CTRL + mac->offset, 0, | ||
56 | F_PCS_RESET_); | ||
57 | } | ||
58 | |||
59 | int t3_mac_reset(struct cmac *mac) | ||
60 | { | ||
61 | static const struct addr_val_pair mac_reset_avp[] = { | ||
62 | {A_XGM_TX_CTRL, 0}, | ||
63 | {A_XGM_RX_CTRL, 0}, | ||
64 | {A_XGM_RX_CFG, F_DISPAUSEFRAMES | F_EN1536BFRAMES | | ||
65 | F_RMFCS | F_ENJUMBO | F_ENHASHMCAST}, | ||
66 | {A_XGM_RX_HASH_LOW, 0}, | ||
67 | {A_XGM_RX_HASH_HIGH, 0}, | ||
68 | {A_XGM_RX_EXACT_MATCH_LOW_1, 0}, | ||
69 | {A_XGM_RX_EXACT_MATCH_LOW_2, 0}, | ||
70 | {A_XGM_RX_EXACT_MATCH_LOW_3, 0}, | ||
71 | {A_XGM_RX_EXACT_MATCH_LOW_4, 0}, | ||
72 | {A_XGM_RX_EXACT_MATCH_LOW_5, 0}, | ||
73 | {A_XGM_RX_EXACT_MATCH_LOW_6, 0}, | ||
74 | {A_XGM_RX_EXACT_MATCH_LOW_7, 0}, | ||
75 | {A_XGM_RX_EXACT_MATCH_LOW_8, 0}, | ||
76 | {A_XGM_STAT_CTRL, F_CLRSTATS} | ||
77 | }; | ||
78 | u32 val; | ||
79 | struct adapter *adap = mac->adapter; | ||
80 | unsigned int oft = mac->offset; | ||
81 | |||
82 | t3_write_reg(adap, A_XGM_RESET_CTRL + oft, F_MAC_RESET_); | ||
83 | t3_read_reg(adap, A_XGM_RESET_CTRL + oft); /* flush */ | ||
84 | |||
85 | t3_write_regs(adap, mac_reset_avp, ARRAY_SIZE(mac_reset_avp), oft); | ||
86 | t3_set_reg_field(adap, A_XGM_RXFIFO_CFG + oft, | ||
87 | F_RXSTRFRWRD | F_DISERRFRAMES, | ||
88 | uses_xaui(adap) ? 0 : F_RXSTRFRWRD); | ||
89 | |||
90 | if (uses_xaui(adap)) { | ||
91 | if (adap->params.rev == 0) { | ||
92 | t3_set_reg_field(adap, A_XGM_SERDES_CTRL + oft, 0, | ||
93 | F_RXENABLE | F_TXENABLE); | ||
94 | if (t3_wait_op_done(adap, A_XGM_SERDES_STATUS1 + oft, | ||
95 | F_CMULOCK, 1, 5, 2)) { | ||
96 | CH_ERR(adap, | ||
97 | "MAC %d XAUI SERDES CMU lock failed\n", | ||
98 | macidx(mac)); | ||
99 | return -1; | ||
100 | } | ||
101 | t3_set_reg_field(adap, A_XGM_SERDES_CTRL + oft, 0, | ||
102 | F_SERDESRESET_); | ||
103 | } else | ||
104 | xaui_serdes_reset(mac); | ||
105 | } | ||
106 | |||
107 | if (adap->params.rev > 0) | ||
108 | t3_write_reg(adap, A_XGM_PAUSE_TIMER + oft, 0xf000); | ||
109 | |||
110 | val = F_MAC_RESET_; | ||
111 | if (is_10G(adap)) | ||
112 | val |= F_PCS_RESET_; | ||
113 | else if (uses_xaui(adap)) | ||
114 | val |= F_PCS_RESET_ | F_XG2G_RESET_; | ||
115 | else | ||
116 | val |= F_RGMII_RESET_ | F_XG2G_RESET_; | ||
117 | t3_write_reg(adap, A_XGM_RESET_CTRL + oft, val); | ||
118 | t3_read_reg(adap, A_XGM_RESET_CTRL + oft); /* flush */ | ||
119 | if ((val & F_PCS_RESET_) && adap->params.rev) { | ||
120 | msleep(1); | ||
121 | t3b_pcs_reset(mac); | ||
122 | } | ||
123 | |||
124 | memset(&mac->stats, 0, sizeof(mac->stats)); | ||
125 | return 0; | ||
126 | } | ||
127 | |||
128 | /* | ||
129 | * Set the exact match register 'idx' to recognize the given Ethernet address. | ||
130 | */ | ||
131 | static void set_addr_filter(struct cmac *mac, int idx, const u8 * addr) | ||
132 | { | ||
133 | u32 addr_lo, addr_hi; | ||
134 | unsigned int oft = mac->offset + idx * 8; | ||
135 | |||
136 | addr_lo = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0]; | ||
137 | addr_hi = (addr[5] << 8) | addr[4]; | ||
138 | |||
139 | t3_write_reg(mac->adapter, A_XGM_RX_EXACT_MATCH_LOW_1 + oft, addr_lo); | ||
140 | t3_write_reg(mac->adapter, A_XGM_RX_EXACT_MATCH_HIGH_1 + oft, addr_hi); | ||
141 | } | ||
142 | |||
143 | /* Set one of the station's unicast MAC addresses. */ | ||
144 | int t3_mac_set_address(struct cmac *mac, unsigned int idx, u8 addr[6]) | ||
145 | { | ||
146 | if (idx >= mac->nucast) | ||
147 | return -EINVAL; | ||
148 | set_addr_filter(mac, idx, addr); | ||
149 | return 0; | ||
150 | } | ||
151 | |||
152 | /* | ||
153 | * Specify the number of exact address filters that should be reserved for | ||
154 | * unicast addresses. Caller should reload the unicast and multicast addresses | ||
155 | * after calling this. | ||
156 | */ | ||
157 | int t3_mac_set_num_ucast(struct cmac *mac, int n) | ||
158 | { | ||
159 | if (n > EXACT_ADDR_FILTERS) | ||
160 | return -EINVAL; | ||
161 | mac->nucast = n; | ||
162 | return 0; | ||
163 | } | ||
164 | |||
165 | /* Calculate the RX hash filter index of an Ethernet address */ | ||
166 | static int hash_hw_addr(const u8 * addr) | ||
167 | { | ||
168 | int hash = 0, octet, bit, i = 0, c; | ||
169 | |||
170 | for (octet = 0; octet < 6; ++octet) | ||
171 | for (c = addr[octet], bit = 0; bit < 8; c >>= 1, ++bit) { | ||
172 | hash ^= (c & 1) << i; | ||
173 | if (++i == 6) | ||
174 | i = 0; | ||
175 | } | ||
176 | return hash; | ||
177 | } | ||
178 | |||
179 | int t3_mac_set_rx_mode(struct cmac *mac, struct t3_rx_mode *rm) | ||
180 | { | ||
181 | u32 val, hash_lo, hash_hi; | ||
182 | struct adapter *adap = mac->adapter; | ||
183 | unsigned int oft = mac->offset; | ||
184 | |||
185 | val = t3_read_reg(adap, A_XGM_RX_CFG + oft) & ~F_COPYALLFRAMES; | ||
186 | if (rm->dev->flags & IFF_PROMISC) | ||
187 | val |= F_COPYALLFRAMES; | ||
188 | t3_write_reg(adap, A_XGM_RX_CFG + oft, val); | ||
189 | |||
190 | if (rm->dev->flags & IFF_ALLMULTI) | ||
191 | hash_lo = hash_hi = 0xffffffff; | ||
192 | else { | ||
193 | u8 *addr; | ||
194 | int exact_addr_idx = mac->nucast; | ||
195 | |||
196 | hash_lo = hash_hi = 0; | ||
197 | while ((addr = t3_get_next_mcaddr(rm))) | ||
198 | if (exact_addr_idx < EXACT_ADDR_FILTERS) | ||
199 | set_addr_filter(mac, exact_addr_idx++, addr); | ||
200 | else { | ||
201 | int hash = hash_hw_addr(addr); | ||
202 | |||
203 | if (hash < 32) | ||
204 | hash_lo |= (1 << hash); | ||
205 | else | ||
206 | hash_hi |= (1 << (hash - 32)); | ||
207 | } | ||
208 | } | ||
209 | |||
210 | t3_write_reg(adap, A_XGM_RX_HASH_LOW + oft, hash_lo); | ||
211 | t3_write_reg(adap, A_XGM_RX_HASH_HIGH + oft, hash_hi); | ||
212 | return 0; | ||
213 | } | ||
214 | |||
215 | int t3_mac_set_mtu(struct cmac *mac, unsigned int mtu) | ||
216 | { | ||
217 | int hwm, lwm; | ||
218 | unsigned int thres, v; | ||
219 | struct adapter *adap = mac->adapter; | ||
220 | |||
221 | /* | ||
222 | * MAX_FRAME_SIZE inludes header + FCS, mtu doesn't. The HW max | ||
223 | * packet size register includes header, but not FCS. | ||
224 | */ | ||
225 | mtu += 14; | ||
226 | if (mtu > MAX_FRAME_SIZE - 4) | ||
227 | return -EINVAL; | ||
228 | t3_write_reg(adap, A_XGM_RX_MAX_PKT_SIZE + mac->offset, mtu); | ||
229 | |||
230 | /* | ||
231 | * Adjust the PAUSE frame watermarks. We always set the LWM, and the | ||
232 | * HWM only if flow-control is enabled. | ||
233 | */ | ||
234 | hwm = max(MAC_RXFIFO_SIZE - 3 * mtu, MAC_RXFIFO_SIZE / 2U); | ||
235 | hwm = min(hwm, 3 * MAC_RXFIFO_SIZE / 4 + 1024); | ||
236 | lwm = hwm - 1024; | ||
237 | v = t3_read_reg(adap, A_XGM_RXFIFO_CFG + mac->offset); | ||
238 | v &= ~V_RXFIFOPAUSELWM(M_RXFIFOPAUSELWM); | ||
239 | v |= V_RXFIFOPAUSELWM(lwm / 8); | ||
240 | if (G_RXFIFOPAUSEHWM(v)) | ||
241 | v = (v & ~V_RXFIFOPAUSEHWM(M_RXFIFOPAUSEHWM)) | | ||
242 | V_RXFIFOPAUSEHWM(hwm / 8); | ||
243 | t3_write_reg(adap, A_XGM_RXFIFO_CFG + mac->offset, v); | ||
244 | |||
245 | /* Adjust the TX FIFO threshold based on the MTU */ | ||
246 | thres = (adap->params.vpd.cclk * 1000) / 15625; | ||
247 | thres = (thres * mtu) / 1000; | ||
248 | if (is_10G(adap)) | ||
249 | thres /= 10; | ||
250 | thres = mtu > thres ? (mtu - thres + 7) / 8 : 0; | ||
251 | thres = max(thres, 8U); /* need at least 8 */ | ||
252 | t3_set_reg_field(adap, A_XGM_TXFIFO_CFG + mac->offset, | ||
253 | V_TXFIFOTHRESH(M_TXFIFOTHRESH), V_TXFIFOTHRESH(thres)); | ||
254 | return 0; | ||
255 | } | ||
256 | |||
257 | int t3_mac_set_speed_duplex_fc(struct cmac *mac, int speed, int duplex, int fc) | ||
258 | { | ||
259 | u32 val; | ||
260 | struct adapter *adap = mac->adapter; | ||
261 | unsigned int oft = mac->offset; | ||
262 | |||
263 | if (duplex >= 0 && duplex != DUPLEX_FULL) | ||
264 | return -EINVAL; | ||
265 | if (speed >= 0) { | ||
266 | if (speed == SPEED_10) | ||
267 | val = V_PORTSPEED(0); | ||
268 | else if (speed == SPEED_100) | ||
269 | val = V_PORTSPEED(1); | ||
270 | else if (speed == SPEED_1000) | ||
271 | val = V_PORTSPEED(2); | ||
272 | else if (speed == SPEED_10000) | ||
273 | val = V_PORTSPEED(3); | ||
274 | else | ||
275 | return -EINVAL; | ||
276 | |||
277 | t3_set_reg_field(adap, A_XGM_PORT_CFG + oft, | ||
278 | V_PORTSPEED(M_PORTSPEED), val); | ||
279 | } | ||
280 | |||
281 | val = t3_read_reg(adap, A_XGM_RXFIFO_CFG + oft); | ||
282 | val &= ~V_RXFIFOPAUSEHWM(M_RXFIFOPAUSEHWM); | ||
283 | if (fc & PAUSE_TX) | ||
284 | val |= V_RXFIFOPAUSEHWM(G_RXFIFOPAUSELWM(val) + 128); /* +1KB */ | ||
285 | t3_write_reg(adap, A_XGM_RXFIFO_CFG + oft, val); | ||
286 | |||
287 | t3_set_reg_field(adap, A_XGM_TX_CFG + oft, F_TXPAUSEEN, | ||
288 | (fc & PAUSE_RX) ? F_TXPAUSEEN : 0); | ||
289 | return 0; | ||
290 | } | ||
291 | |||
292 | int t3_mac_enable(struct cmac *mac, int which) | ||
293 | { | ||
294 | int idx = macidx(mac); | ||
295 | struct adapter *adap = mac->adapter; | ||
296 | unsigned int oft = mac->offset; | ||
297 | |||
298 | if (which & MAC_DIRECTION_TX) { | ||
299 | t3_write_reg(adap, A_XGM_TX_CTRL + oft, F_TXEN); | ||
300 | t3_write_reg(adap, A_TP_PIO_ADDR, A_TP_TX_DROP_CFG_CH0 + idx); | ||
301 | t3_write_reg(adap, A_TP_PIO_DATA, 0xbf000001); | ||
302 | t3_write_reg(adap, A_TP_PIO_ADDR, A_TP_TX_DROP_MODE); | ||
303 | t3_set_reg_field(adap, A_TP_PIO_DATA, 1 << idx, 1 << idx); | ||
304 | } | ||
305 | if (which & MAC_DIRECTION_RX) | ||
306 | t3_write_reg(adap, A_XGM_RX_CTRL + oft, F_RXEN); | ||
307 | return 0; | ||
308 | } | ||
309 | |||
310 | int t3_mac_disable(struct cmac *mac, int which) | ||
311 | { | ||
312 | int idx = macidx(mac); | ||
313 | struct adapter *adap = mac->adapter; | ||
314 | |||
315 | if (which & MAC_DIRECTION_TX) { | ||
316 | t3_write_reg(adap, A_XGM_TX_CTRL + mac->offset, 0); | ||
317 | t3_write_reg(adap, A_TP_PIO_ADDR, A_TP_TX_DROP_CFG_CH0 + idx); | ||
318 | t3_write_reg(adap, A_TP_PIO_DATA, 0xc000001f); | ||
319 | t3_write_reg(adap, A_TP_PIO_ADDR, A_TP_TX_DROP_MODE); | ||
320 | t3_set_reg_field(adap, A_TP_PIO_DATA, 1 << idx, 0); | ||
321 | } | ||
322 | if (which & MAC_DIRECTION_RX) | ||
323 | t3_write_reg(adap, A_XGM_RX_CTRL + mac->offset, 0); | ||
324 | return 0; | ||
325 | } | ||
326 | |||
327 | /* | ||
328 | * This function is called periodically to accumulate the current values of the | ||
329 | * RMON counters into the port statistics. Since the packet counters are only | ||
330 | * 32 bits they can overflow in ~286 secs at 10G, so the function should be | ||
331 | * called more frequently than that. The byte counters are 45-bit wide, they | ||
332 | * would overflow in ~7.8 hours. | ||
333 | */ | ||
334 | const struct mac_stats *t3_mac_update_stats(struct cmac *mac) | ||
335 | { | ||
336 | #define RMON_READ(mac, addr) t3_read_reg(mac->adapter, addr + mac->offset) | ||
337 | #define RMON_UPDATE(mac, name, reg) \ | ||
338 | (mac)->stats.name += (u64)RMON_READ(mac, A_XGM_STAT_##reg) | ||
339 | #define RMON_UPDATE64(mac, name, reg_lo, reg_hi) \ | ||
340 | (mac)->stats.name += RMON_READ(mac, A_XGM_STAT_##reg_lo) + \ | ||
341 | ((u64)RMON_READ(mac, A_XGM_STAT_##reg_hi) << 32) | ||
342 | |||
343 | u32 v, lo; | ||
344 | |||
345 | RMON_UPDATE64(mac, rx_octets, RX_BYTES_LOW, RX_BYTES_HIGH); | ||
346 | RMON_UPDATE64(mac, rx_frames, RX_FRAMES_LOW, RX_FRAMES_HIGH); | ||
347 | RMON_UPDATE(mac, rx_mcast_frames, RX_MCAST_FRAMES); | ||
348 | RMON_UPDATE(mac, rx_bcast_frames, RX_BCAST_FRAMES); | ||
349 | RMON_UPDATE(mac, rx_fcs_errs, RX_CRC_ERR_FRAMES); | ||
350 | RMON_UPDATE(mac, rx_pause, RX_PAUSE_FRAMES); | ||
351 | RMON_UPDATE(mac, rx_jabber, RX_JABBER_FRAMES); | ||
352 | RMON_UPDATE(mac, rx_short, RX_SHORT_FRAMES); | ||
353 | RMON_UPDATE(mac, rx_symbol_errs, RX_SYM_CODE_ERR_FRAMES); | ||
354 | |||
355 | RMON_UPDATE(mac, rx_too_long, RX_OVERSIZE_FRAMES); | ||
356 | mac->stats.rx_too_long += RMON_READ(mac, A_XGM_RX_MAX_PKT_SIZE_ERR_CNT); | ||
357 | |||
358 | RMON_UPDATE(mac, rx_frames_64, RX_64B_FRAMES); | ||
359 | RMON_UPDATE(mac, rx_frames_65_127, RX_65_127B_FRAMES); | ||
360 | RMON_UPDATE(mac, rx_frames_128_255, RX_128_255B_FRAMES); | ||
361 | RMON_UPDATE(mac, rx_frames_256_511, RX_256_511B_FRAMES); | ||
362 | RMON_UPDATE(mac, rx_frames_512_1023, RX_512_1023B_FRAMES); | ||
363 | RMON_UPDATE(mac, rx_frames_1024_1518, RX_1024_1518B_FRAMES); | ||
364 | RMON_UPDATE(mac, rx_frames_1519_max, RX_1519_MAXB_FRAMES); | ||
365 | |||
366 | RMON_UPDATE64(mac, tx_octets, TX_BYTE_LOW, TX_BYTE_HIGH); | ||
367 | RMON_UPDATE64(mac, tx_frames, TX_FRAME_LOW, TX_FRAME_HIGH); | ||
368 | RMON_UPDATE(mac, tx_mcast_frames, TX_MCAST); | ||
369 | RMON_UPDATE(mac, tx_bcast_frames, TX_BCAST); | ||
370 | RMON_UPDATE(mac, tx_pause, TX_PAUSE); | ||
371 | /* This counts error frames in general (bad FCS, underrun, etc). */ | ||
372 | RMON_UPDATE(mac, tx_underrun, TX_ERR_FRAMES); | ||
373 | |||
374 | RMON_UPDATE(mac, tx_frames_64, TX_64B_FRAMES); | ||
375 | RMON_UPDATE(mac, tx_frames_65_127, TX_65_127B_FRAMES); | ||
376 | RMON_UPDATE(mac, tx_frames_128_255, TX_128_255B_FRAMES); | ||
377 | RMON_UPDATE(mac, tx_frames_256_511, TX_256_511B_FRAMES); | ||
378 | RMON_UPDATE(mac, tx_frames_512_1023, TX_512_1023B_FRAMES); | ||
379 | RMON_UPDATE(mac, tx_frames_1024_1518, TX_1024_1518B_FRAMES); | ||
380 | RMON_UPDATE(mac, tx_frames_1519_max, TX_1519_MAXB_FRAMES); | ||
381 | |||
382 | /* The next stat isn't clear-on-read. */ | ||
383 | t3_write_reg(mac->adapter, A_TP_MIB_INDEX, mac->offset ? 51 : 50); | ||
384 | v = t3_read_reg(mac->adapter, A_TP_MIB_RDATA); | ||
385 | lo = (u32) mac->stats.rx_cong_drops; | ||
386 | mac->stats.rx_cong_drops += (u64) (v - lo); | ||
387 | |||
388 | return &mac->stats; | ||
389 | } | ||