aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/dma/ep93xx_dma.c
diff options
context:
space:
mode:
authorMika Westerberg <mika.westerberg@iki.fi>2011-05-29 06:10:02 -0400
committerVinod Koul <vinod.koul@intel.com>2011-06-06 02:36:44 -0400
commit5fa29a17fabfe204fa9f20edd5fc81ab2364eb4b (patch)
tree5d74f96a7238a9fbd7d407a1292fee23abbcfbcc /drivers/dma/ep93xx_dma.c
parentc3d4913cd4cd469cbf29d411293e937729e83f3a (diff)
dmaengine: add ep93xx DMA support
The ep93xx DMA controller has 10 independent memory to peripheral (M2P) channels, and 2 dedicated memory to memory (M2M) channels. M2M channels can also be used by SPI and IDE to perform DMA transfers to/from their memory mapped FIFOs. This driver supports both M2P and M2M channels with DMA_SLAVE, DMA_CYCLIC and DMA_MEMCPY (M2M only) capabilities. Signed-off-by: Mika Westerberg <mika.westerberg@iki.fi> Signed-off-by: Ryan Mallon <rmallon@gmail.com> Acked-by: H Hartley Sweeten <hsweeten@visionengravers.com> Acked-by: Vinod Koul <vinod.koul@intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Vinod Koul <vinod.koul@intel.com>
Diffstat (limited to 'drivers/dma/ep93xx_dma.c')
-rw-r--r--drivers/dma/ep93xx_dma.c1355
1 files changed, 1355 insertions, 0 deletions
diff --git a/drivers/dma/ep93xx_dma.c b/drivers/dma/ep93xx_dma.c
new file mode 100644
index 000000000000..0766c1e53b1d
--- /dev/null
+++ b/drivers/dma/ep93xx_dma.c
@@ -0,0 +1,1355 @@
1/*
2 * Driver for the Cirrus Logic EP93xx DMA Controller
3 *
4 * Copyright (C) 2011 Mika Westerberg
5 *
6 * DMA M2P implementation is based on the original
7 * arch/arm/mach-ep93xx/dma-m2p.c which has following copyrights:
8 *
9 * Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org>
10 * Copyright (C) 2006 Applied Data Systems
11 * Copyright (C) 2009 Ryan Mallon <rmallon@gmail.com>
12 *
13 * This driver is based on dw_dmac and amba-pl08x drivers.
14 *
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
19 */
20
21#include <linux/clk.h>
22#include <linux/init.h>
23#include <linux/interrupt.h>
24#include <linux/dmaengine.h>
25#include <linux/platform_device.h>
26#include <linux/slab.h>
27
28#include <mach/dma.h>
29
30/* M2P registers */
31#define M2P_CONTROL 0x0000
32#define M2P_CONTROL_STALLINT BIT(0)
33#define M2P_CONTROL_NFBINT BIT(1)
34#define M2P_CONTROL_CH_ERROR_INT BIT(3)
35#define M2P_CONTROL_ENABLE BIT(4)
36#define M2P_CONTROL_ICE BIT(6)
37
38#define M2P_INTERRUPT 0x0004
39#define M2P_INTERRUPT_STALL BIT(0)
40#define M2P_INTERRUPT_NFB BIT(1)
41#define M2P_INTERRUPT_ERROR BIT(3)
42
43#define M2P_PPALLOC 0x0008
44#define M2P_STATUS 0x000c
45
46#define M2P_MAXCNT0 0x0020
47#define M2P_BASE0 0x0024
48#define M2P_MAXCNT1 0x0030
49#define M2P_BASE1 0x0034
50
51#define M2P_STATE_IDLE 0
52#define M2P_STATE_STALL 1
53#define M2P_STATE_ON 2
54#define M2P_STATE_NEXT 3
55
56/* M2M registers */
57#define M2M_CONTROL 0x0000
58#define M2M_CONTROL_DONEINT BIT(2)
59#define M2M_CONTROL_ENABLE BIT(3)
60#define M2M_CONTROL_START BIT(4)
61#define M2M_CONTROL_DAH BIT(11)
62#define M2M_CONTROL_SAH BIT(12)
63#define M2M_CONTROL_PW_SHIFT 9
64#define M2M_CONTROL_PW_8 (0 << M2M_CONTROL_PW_SHIFT)
65#define M2M_CONTROL_PW_16 (1 << M2M_CONTROL_PW_SHIFT)
66#define M2M_CONTROL_PW_32 (2 << M2M_CONTROL_PW_SHIFT)
67#define M2M_CONTROL_PW_MASK (3 << M2M_CONTROL_PW_SHIFT)
68#define M2M_CONTROL_TM_SHIFT 13
69#define M2M_CONTROL_TM_TX (1 << M2M_CONTROL_TM_SHIFT)
70#define M2M_CONTROL_TM_RX (2 << M2M_CONTROL_TM_SHIFT)
71#define M2M_CONTROL_RSS_SHIFT 22
72#define M2M_CONTROL_RSS_SSPRX (1 << M2M_CONTROL_RSS_SHIFT)
73#define M2M_CONTROL_RSS_SSPTX (2 << M2M_CONTROL_RSS_SHIFT)
74#define M2M_CONTROL_RSS_IDE (3 << M2M_CONTROL_RSS_SHIFT)
75#define M2M_CONTROL_NO_HDSK BIT(24)
76#define M2M_CONTROL_PWSC_SHIFT 25
77
78#define M2M_INTERRUPT 0x0004
79#define M2M_INTERRUPT_DONEINT BIT(1)
80
81#define M2M_BCR0 0x0010
82#define M2M_BCR1 0x0014
83#define M2M_SAR_BASE0 0x0018
84#define M2M_SAR_BASE1 0x001c
85#define M2M_DAR_BASE0 0x002c
86#define M2M_DAR_BASE1 0x0030
87
88#define DMA_MAX_CHAN_BYTES 0xffff
89#define DMA_MAX_CHAN_DESCRIPTORS 32
90
91struct ep93xx_dma_engine;
92
93/**
94 * struct ep93xx_dma_desc - EP93xx specific transaction descriptor
95 * @src_addr: source address of the transaction
96 * @dst_addr: destination address of the transaction
97 * @size: size of the transaction (in bytes)
98 * @complete: this descriptor is completed
99 * @txd: dmaengine API descriptor
100 * @tx_list: list of linked descriptors
101 * @node: link used for putting this into a channel queue
102 */
103struct ep93xx_dma_desc {
104 u32 src_addr;
105 u32 dst_addr;
106 size_t size;
107 bool complete;
108 struct dma_async_tx_descriptor txd;
109 struct list_head tx_list;
110 struct list_head node;
111};
112
113/**
114 * struct ep93xx_dma_chan - an EP93xx DMA M2P/M2M channel
115 * @chan: dmaengine API channel
116 * @edma: pointer to to the engine device
117 * @regs: memory mapped registers
118 * @irq: interrupt number of the channel
119 * @clk: clock used by this channel
120 * @tasklet: channel specific tasklet used for callbacks
121 * @lock: lock protecting the fields following
122 * @flags: flags for the channel
123 * @buffer: which buffer to use next (0/1)
124 * @last_completed: last completed cookie value
125 * @active: flattened chain of descriptors currently being processed
126 * @queue: pending descriptors which are handled next
127 * @free_list: list of free descriptors which can be used
128 * @runtime_addr: physical address currently used as dest/src (M2M only). This
129 * is set via %DMA_SLAVE_CONFIG before slave operation is
130 * prepared
131 * @runtime_ctrl: M2M runtime values for the control register.
132 *
133 * As EP93xx DMA controller doesn't support real chained DMA descriptors we
134 * will have slightly different scheme here: @active points to a head of
135 * flattened DMA descriptor chain.
136 *
137 * @queue holds pending transactions. These are linked through the first
138 * descriptor in the chain. When a descriptor is moved to the @active queue,
139 * the first and chained descriptors are flattened into a single list.
140 *
141 * @chan.private holds pointer to &struct ep93xx_dma_data which contains
142 * necessary channel configuration information. For memcpy channels this must
143 * be %NULL.
144 */
145struct ep93xx_dma_chan {
146 struct dma_chan chan;
147 const struct ep93xx_dma_engine *edma;
148 void __iomem *regs;
149 int irq;
150 struct clk *clk;
151 struct tasklet_struct tasklet;
152 /* protects the fields following */
153 spinlock_t lock;
154 unsigned long flags;
155/* Channel is configured for cyclic transfers */
156#define EP93XX_DMA_IS_CYCLIC 0
157
158 int buffer;
159 dma_cookie_t last_completed;
160 struct list_head active;
161 struct list_head queue;
162 struct list_head free_list;
163 u32 runtime_addr;
164 u32 runtime_ctrl;
165};
166
167/**
168 * struct ep93xx_dma_engine - the EP93xx DMA engine instance
169 * @dma_dev: holds the dmaengine device
170 * @m2m: is this an M2M or M2P device
171 * @hw_setup: method which sets the channel up for operation
172 * @hw_shutdown: shuts the channel down and flushes whatever is left
173 * @hw_submit: pushes active descriptor(s) to the hardware
174 * @hw_interrupt: handle the interrupt
175 * @num_channels: number of channels for this instance
176 * @channels: array of channels
177 *
178 * There is one instance of this struct for the M2P channels and one for the
179 * M2M channels. hw_xxx() methods are used to perform operations which are
180 * different on M2M and M2P channels. These methods are called with channel
181 * lock held and interrupts disabled so they cannot sleep.
182 */
183struct ep93xx_dma_engine {
184 struct dma_device dma_dev;
185 bool m2m;
186 int (*hw_setup)(struct ep93xx_dma_chan *);
187 void (*hw_shutdown)(struct ep93xx_dma_chan *);
188 void (*hw_submit)(struct ep93xx_dma_chan *);
189 int (*hw_interrupt)(struct ep93xx_dma_chan *);
190#define INTERRUPT_UNKNOWN 0
191#define INTERRUPT_DONE 1
192#define INTERRUPT_NEXT_BUFFER 2
193
194 size_t num_channels;
195 struct ep93xx_dma_chan channels[];
196};
197
198static inline struct device *chan2dev(struct ep93xx_dma_chan *edmac)
199{
200 return &edmac->chan.dev->device;
201}
202
203static struct ep93xx_dma_chan *to_ep93xx_dma_chan(struct dma_chan *chan)
204{
205 return container_of(chan, struct ep93xx_dma_chan, chan);
206}
207
208/**
209 * ep93xx_dma_set_active - set new active descriptor chain
210 * @edmac: channel
211 * @desc: head of the new active descriptor chain
212 *
213 * Sets @desc to be the head of the new active descriptor chain. This is the
214 * chain which is processed next. The active list must be empty before calling
215 * this function.
216 *
217 * Called with @edmac->lock held and interrupts disabled.
218 */
219static void ep93xx_dma_set_active(struct ep93xx_dma_chan *edmac,
220 struct ep93xx_dma_desc *desc)
221{
222 BUG_ON(!list_empty(&edmac->active));
223
224 list_add_tail(&desc->node, &edmac->active);
225
226 /* Flatten the @desc->tx_list chain into @edmac->active list */
227 while (!list_empty(&desc->tx_list)) {
228 struct ep93xx_dma_desc *d = list_first_entry(&desc->tx_list,
229 struct ep93xx_dma_desc, node);
230
231 /*
232 * We copy the callback parameters from the first descriptor
233 * to all the chained descriptors. This way we can call the
234 * callback without having to find out the first descriptor in
235 * the chain. Useful for cyclic transfers.
236 */
237 d->txd.callback = desc->txd.callback;
238 d->txd.callback_param = desc->txd.callback_param;
239
240 list_move_tail(&d->node, &edmac->active);
241 }
242}
243
244/* Called with @edmac->lock held and interrupts disabled */
245static struct ep93xx_dma_desc *
246ep93xx_dma_get_active(struct ep93xx_dma_chan *edmac)
247{
248 return list_first_entry(&edmac->active, struct ep93xx_dma_desc, node);
249}
250
251/**
252 * ep93xx_dma_advance_active - advances to the next active descriptor
253 * @edmac: channel
254 *
255 * Function advances active descriptor to the next in the @edmac->active and
256 * returns %true if we still have descriptors in the chain to process.
257 * Otherwise returns %false.
258 *
259 * When the channel is in cyclic mode always returns %true.
260 *
261 * Called with @edmac->lock held and interrupts disabled.
262 */
263static bool ep93xx_dma_advance_active(struct ep93xx_dma_chan *edmac)
264{
265 list_rotate_left(&edmac->active);
266
267 if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
268 return true;
269
270 /*
271 * If txd.cookie is set it means that we are back in the first
272 * descriptor in the chain and hence done with it.
273 */
274 return !ep93xx_dma_get_active(edmac)->txd.cookie;
275}
276
277/*
278 * M2P DMA implementation
279 */
280
281static void m2p_set_control(struct ep93xx_dma_chan *edmac, u32 control)
282{
283 writel(control, edmac->regs + M2P_CONTROL);
284 /*
285 * EP93xx User's Guide states that we must perform a dummy read after
286 * write to the control register.
287 */
288 readl(edmac->regs + M2P_CONTROL);
289}
290
291static int m2p_hw_setup(struct ep93xx_dma_chan *edmac)
292{
293 struct ep93xx_dma_data *data = edmac->chan.private;
294 u32 control;
295
296 writel(data->port & 0xf, edmac->regs + M2P_PPALLOC);
297
298 control = M2P_CONTROL_CH_ERROR_INT | M2P_CONTROL_ICE
299 | M2P_CONTROL_ENABLE;
300 m2p_set_control(edmac, control);
301
302 return 0;
303}
304
305static inline u32 m2p_channel_state(struct ep93xx_dma_chan *edmac)
306{
307 return (readl(edmac->regs + M2P_STATUS) >> 4) & 0x3;
308}
309
310static void m2p_hw_shutdown(struct ep93xx_dma_chan *edmac)
311{
312 u32 control;
313
314 control = readl(edmac->regs + M2P_CONTROL);
315 control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
316 m2p_set_control(edmac, control);
317
318 while (m2p_channel_state(edmac) >= M2P_STATE_ON)
319 cpu_relax();
320
321 m2p_set_control(edmac, 0);
322
323 while (m2p_channel_state(edmac) == M2P_STATE_STALL)
324 cpu_relax();
325}
326
327static void m2p_fill_desc(struct ep93xx_dma_chan *edmac)
328{
329 struct ep93xx_dma_desc *desc = ep93xx_dma_get_active(edmac);
330 u32 bus_addr;
331
332 if (ep93xx_dma_chan_direction(&edmac->chan) == DMA_TO_DEVICE)
333 bus_addr = desc->src_addr;
334 else
335 bus_addr = desc->dst_addr;
336
337 if (edmac->buffer == 0) {
338 writel(desc->size, edmac->regs + M2P_MAXCNT0);
339 writel(bus_addr, edmac->regs + M2P_BASE0);
340 } else {
341 writel(desc->size, edmac->regs + M2P_MAXCNT1);
342 writel(bus_addr, edmac->regs + M2P_BASE1);
343 }
344
345 edmac->buffer ^= 1;
346}
347
348static void m2p_hw_submit(struct ep93xx_dma_chan *edmac)
349{
350 u32 control = readl(edmac->regs + M2P_CONTROL);
351
352 m2p_fill_desc(edmac);
353 control |= M2P_CONTROL_STALLINT;
354
355 if (ep93xx_dma_advance_active(edmac)) {
356 m2p_fill_desc(edmac);
357 control |= M2P_CONTROL_NFBINT;
358 }
359
360 m2p_set_control(edmac, control);
361}
362
363static int m2p_hw_interrupt(struct ep93xx_dma_chan *edmac)
364{
365 u32 irq_status = readl(edmac->regs + M2P_INTERRUPT);
366 u32 control;
367
368 if (irq_status & M2P_INTERRUPT_ERROR) {
369 struct ep93xx_dma_desc *desc = ep93xx_dma_get_active(edmac);
370
371 /* Clear the error interrupt */
372 writel(1, edmac->regs + M2P_INTERRUPT);
373
374 /*
375 * It seems that there is no easy way of reporting errors back
376 * to client so we just report the error here and continue as
377 * usual.
378 *
379 * Revisit this when there is a mechanism to report back the
380 * errors.
381 */
382 dev_err(chan2dev(edmac),
383 "DMA transfer failed! Details:\n"
384 "\tcookie : %d\n"
385 "\tsrc_addr : 0x%08x\n"
386 "\tdst_addr : 0x%08x\n"
387 "\tsize : %zu\n",
388 desc->txd.cookie, desc->src_addr, desc->dst_addr,
389 desc->size);
390 }
391
392 switch (irq_status & (M2P_INTERRUPT_STALL | M2P_INTERRUPT_NFB)) {
393 case M2P_INTERRUPT_STALL:
394 /* Disable interrupts */
395 control = readl(edmac->regs + M2P_CONTROL);
396 control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
397 m2p_set_control(edmac, control);
398
399 return INTERRUPT_DONE;
400
401 case M2P_INTERRUPT_NFB:
402 if (ep93xx_dma_advance_active(edmac))
403 m2p_fill_desc(edmac);
404
405 return INTERRUPT_NEXT_BUFFER;
406 }
407
408 return INTERRUPT_UNKNOWN;
409}
410
411/*
412 * M2M DMA implementation
413 *
414 * For the M2M transfers we don't use NFB at all. This is because it simply
415 * doesn't work well with memcpy transfers. When you submit both buffers it is
416 * extremely unlikely that you get an NFB interrupt, but it instead reports
417 * DONE interrupt and both buffers are already transferred which means that we
418 * weren't able to update the next buffer.
419 *
420 * So for now we "simulate" NFB by just submitting buffer after buffer
421 * without double buffering.
422 */
423
424static int m2m_hw_setup(struct ep93xx_dma_chan *edmac)
425{
426 const struct ep93xx_dma_data *data = edmac->chan.private;
427 u32 control = 0;
428
429 if (!data) {
430 /* This is memcpy channel, nothing to configure */
431 writel(control, edmac->regs + M2M_CONTROL);
432 return 0;
433 }
434
435 switch (data->port) {
436 case EP93XX_DMA_SSP:
437 /*
438 * This was found via experimenting - anything less than 5
439 * causes the channel to perform only a partial transfer which
440 * leads to problems since we don't get DONE interrupt then.
441 */
442 control = (5 << M2M_CONTROL_PWSC_SHIFT);
443 control |= M2M_CONTROL_NO_HDSK;
444
445 if (data->direction == DMA_TO_DEVICE) {
446 control |= M2M_CONTROL_DAH;
447 control |= M2M_CONTROL_TM_TX;
448 control |= M2M_CONTROL_RSS_SSPTX;
449 } else {
450 control |= M2M_CONTROL_SAH;
451 control |= M2M_CONTROL_TM_RX;
452 control |= M2M_CONTROL_RSS_SSPRX;
453 }
454 break;
455
456 case EP93XX_DMA_IDE:
457 /*
458 * This IDE part is totally untested. Values below are taken
459 * from the EP93xx Users's Guide and might not be correct.
460 */
461 control |= M2M_CONTROL_NO_HDSK;
462 control |= M2M_CONTROL_RSS_IDE;
463 control |= M2M_CONTROL_PW_16;
464
465 if (data->direction == DMA_TO_DEVICE) {
466 /* Worst case from the UG */
467 control = (3 << M2M_CONTROL_PWSC_SHIFT);
468 control |= M2M_CONTROL_DAH;
469 control |= M2M_CONTROL_TM_TX;
470 } else {
471 control = (2 << M2M_CONTROL_PWSC_SHIFT);
472 control |= M2M_CONTROL_SAH;
473 control |= M2M_CONTROL_TM_RX;
474 }
475 break;
476
477 default:
478 return -EINVAL;
479 }
480
481 writel(control, edmac->regs + M2M_CONTROL);
482 return 0;
483}
484
485static void m2m_hw_shutdown(struct ep93xx_dma_chan *edmac)
486{
487 /* Just disable the channel */
488 writel(0, edmac->regs + M2M_CONTROL);
489}
490
491static void m2m_fill_desc(struct ep93xx_dma_chan *edmac)
492{
493 struct ep93xx_dma_desc *desc = ep93xx_dma_get_active(edmac);
494
495 if (edmac->buffer == 0) {
496 writel(desc->src_addr, edmac->regs + M2M_SAR_BASE0);
497 writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE0);
498 writel(desc->size, edmac->regs + M2M_BCR0);
499 } else {
500 writel(desc->src_addr, edmac->regs + M2M_SAR_BASE1);
501 writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE1);
502 writel(desc->size, edmac->regs + M2M_BCR1);
503 }
504
505 edmac->buffer ^= 1;
506}
507
508static void m2m_hw_submit(struct ep93xx_dma_chan *edmac)
509{
510 struct ep93xx_dma_data *data = edmac->chan.private;
511 u32 control = readl(edmac->regs + M2M_CONTROL);
512
513 /*
514 * Since we allow clients to configure PW (peripheral width) we always
515 * clear PW bits here and then set them according what is given in
516 * the runtime configuration.
517 */
518 control &= ~M2M_CONTROL_PW_MASK;
519 control |= edmac->runtime_ctrl;
520
521 m2m_fill_desc(edmac);
522 control |= M2M_CONTROL_DONEINT;
523
524 /*
525 * Now we can finally enable the channel. For M2M channel this must be
526 * done _after_ the BCRx registers are programmed.
527 */
528 control |= M2M_CONTROL_ENABLE;
529 writel(control, edmac->regs + M2M_CONTROL);
530
531 if (!data) {
532 /*
533 * For memcpy channels the software trigger must be asserted
534 * in order to start the memcpy operation.
535 */
536 control |= M2M_CONTROL_START;
537 writel(control, edmac->regs + M2M_CONTROL);
538 }
539}
540
541static int m2m_hw_interrupt(struct ep93xx_dma_chan *edmac)
542{
543 u32 control;
544
545 if (!(readl(edmac->regs + M2M_INTERRUPT) & M2M_INTERRUPT_DONEINT))
546 return INTERRUPT_UNKNOWN;
547
548 /* Clear the DONE bit */
549 writel(0, edmac->regs + M2M_INTERRUPT);
550
551 /* Disable interrupts and the channel */
552 control = readl(edmac->regs + M2M_CONTROL);
553 control &= ~(M2M_CONTROL_DONEINT | M2M_CONTROL_ENABLE);
554 writel(control, edmac->regs + M2M_CONTROL);
555
556 /*
557 * Since we only get DONE interrupt we have to find out ourselves
558 * whether there still is something to process. So we try to advance
559 * the chain an see whether it succeeds.
560 */
561 if (ep93xx_dma_advance_active(edmac)) {
562 edmac->edma->hw_submit(edmac);
563 return INTERRUPT_NEXT_BUFFER;
564 }
565
566 return INTERRUPT_DONE;
567}
568
569/*
570 * DMA engine API implementation
571 */
572
573static struct ep93xx_dma_desc *
574ep93xx_dma_desc_get(struct ep93xx_dma_chan *edmac)
575{
576 struct ep93xx_dma_desc *desc, *_desc;
577 struct ep93xx_dma_desc *ret = NULL;
578 unsigned long flags;
579
580 spin_lock_irqsave(&edmac->lock, flags);
581 list_for_each_entry_safe(desc, _desc, &edmac->free_list, node) {
582 if (async_tx_test_ack(&desc->txd)) {
583 list_del_init(&desc->node);
584
585 /* Re-initialize the descriptor */
586 desc->src_addr = 0;
587 desc->dst_addr = 0;
588 desc->size = 0;
589 desc->complete = false;
590 desc->txd.cookie = 0;
591 desc->txd.callback = NULL;
592 desc->txd.callback_param = NULL;
593
594 ret = desc;
595 break;
596 }
597 }
598 spin_unlock_irqrestore(&edmac->lock, flags);
599 return ret;
600}
601
602static void ep93xx_dma_desc_put(struct ep93xx_dma_chan *edmac,
603 struct ep93xx_dma_desc *desc)
604{
605 if (desc) {
606 unsigned long flags;
607
608 spin_lock_irqsave(&edmac->lock, flags);
609 list_splice_init(&desc->tx_list, &edmac->free_list);
610 list_add(&desc->node, &edmac->free_list);
611 spin_unlock_irqrestore(&edmac->lock, flags);
612 }
613}
614
615/**
616 * ep93xx_dma_advance_work - start processing the next pending transaction
617 * @edmac: channel
618 *
619 * If we have pending transactions queued and we are currently idling, this
620 * function takes the next queued transaction from the @edmac->queue and
621 * pushes it to the hardware for execution.
622 */
623static void ep93xx_dma_advance_work(struct ep93xx_dma_chan *edmac)
624{
625 struct ep93xx_dma_desc *new;
626 unsigned long flags;
627
628 spin_lock_irqsave(&edmac->lock, flags);
629 if (!list_empty(&edmac->active) || list_empty(&edmac->queue)) {
630 spin_unlock_irqrestore(&edmac->lock, flags);
631 return;
632 }
633
634 /* Take the next descriptor from the pending queue */
635 new = list_first_entry(&edmac->queue, struct ep93xx_dma_desc, node);
636 list_del_init(&new->node);
637
638 ep93xx_dma_set_active(edmac, new);
639
640 /* Push it to the hardware */
641 edmac->edma->hw_submit(edmac);
642 spin_unlock_irqrestore(&edmac->lock, flags);
643}
644
645static void ep93xx_dma_unmap_buffers(struct ep93xx_dma_desc *desc)
646{
647 struct device *dev = desc->txd.chan->device->dev;
648
649 if (!(desc->txd.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
650 if (desc->txd.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
651 dma_unmap_single(dev, desc->src_addr, desc->size,
652 DMA_TO_DEVICE);
653 else
654 dma_unmap_page(dev, desc->src_addr, desc->size,
655 DMA_TO_DEVICE);
656 }
657 if (!(desc->txd.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
658 if (desc->txd.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
659 dma_unmap_single(dev, desc->dst_addr, desc->size,
660 DMA_FROM_DEVICE);
661 else
662 dma_unmap_page(dev, desc->dst_addr, desc->size,
663 DMA_FROM_DEVICE);
664 }
665}
666
667static void ep93xx_dma_tasklet(unsigned long data)
668{
669 struct ep93xx_dma_chan *edmac = (struct ep93xx_dma_chan *)data;
670 struct ep93xx_dma_desc *desc, *d;
671 dma_async_tx_callback callback;
672 void *callback_param;
673 LIST_HEAD(list);
674
675 spin_lock_irq(&edmac->lock);
676 desc = ep93xx_dma_get_active(edmac);
677 if (desc->complete) {
678 edmac->last_completed = desc->txd.cookie;
679 list_splice_init(&edmac->active, &list);
680 }
681 spin_unlock_irq(&edmac->lock);
682
683 /* Pick up the next descriptor from the queue */
684 ep93xx_dma_advance_work(edmac);
685
686 callback = desc->txd.callback;
687 callback_param = desc->txd.callback_param;
688
689 /* Now we can release all the chained descriptors */
690 list_for_each_entry_safe(desc, d, &list, node) {
691 /*
692 * For the memcpy channels the API requires us to unmap the
693 * buffers unless requested otherwise.
694 */
695 if (!edmac->chan.private)
696 ep93xx_dma_unmap_buffers(desc);
697
698 ep93xx_dma_desc_put(edmac, desc);
699 }
700
701 if (callback)
702 callback(callback_param);
703}
704
705static irqreturn_t ep93xx_dma_interrupt(int irq, void *dev_id)
706{
707 struct ep93xx_dma_chan *edmac = dev_id;
708 irqreturn_t ret = IRQ_HANDLED;
709
710 spin_lock(&edmac->lock);
711
712 switch (edmac->edma->hw_interrupt(edmac)) {
713 case INTERRUPT_DONE:
714 ep93xx_dma_get_active(edmac)->complete = true;
715 tasklet_schedule(&edmac->tasklet);
716 break;
717
718 case INTERRUPT_NEXT_BUFFER:
719 if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
720 tasklet_schedule(&edmac->tasklet);
721 break;
722
723 default:
724 dev_warn(chan2dev(edmac), "unknown interrupt!\n");
725 ret = IRQ_NONE;
726 break;
727 }
728
729 spin_unlock(&edmac->lock);
730 return ret;
731}
732
733/**
734 * ep93xx_dma_tx_submit - set the prepared descriptor(s) to be executed
735 * @tx: descriptor to be executed
736 *
737 * Function will execute given descriptor on the hardware or if the hardware
738 * is busy, queue the descriptor to be executed later on. Returns cookie which
739 * can be used to poll the status of the descriptor.
740 */
741static dma_cookie_t ep93xx_dma_tx_submit(struct dma_async_tx_descriptor *tx)
742{
743 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(tx->chan);
744 struct ep93xx_dma_desc *desc;
745 dma_cookie_t cookie;
746 unsigned long flags;
747
748 spin_lock_irqsave(&edmac->lock, flags);
749
750 cookie = edmac->chan.cookie;
751
752 if (++cookie < 0)
753 cookie = 1;
754
755 desc = container_of(tx, struct ep93xx_dma_desc, txd);
756
757 edmac->chan.cookie = cookie;
758 desc->txd.cookie = cookie;
759
760 /*
761 * If nothing is currently prosessed, we push this descriptor
762 * directly to the hardware. Otherwise we put the descriptor
763 * to the pending queue.
764 */
765 if (list_empty(&edmac->active)) {
766 ep93xx_dma_set_active(edmac, desc);
767 edmac->edma->hw_submit(edmac);
768 } else {
769 list_add_tail(&desc->node, &edmac->queue);
770 }
771
772 spin_unlock_irqrestore(&edmac->lock, flags);
773 return cookie;
774}
775
776/**
777 * ep93xx_dma_alloc_chan_resources - allocate resources for the channel
778 * @chan: channel to allocate resources
779 *
780 * Function allocates necessary resources for the given DMA channel and
781 * returns number of allocated descriptors for the channel. Negative errno
782 * is returned in case of failure.
783 */
784static int ep93xx_dma_alloc_chan_resources(struct dma_chan *chan)
785{
786 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
787 struct ep93xx_dma_data *data = chan->private;
788 const char *name = dma_chan_name(chan);
789 int ret, i;
790
791 /* Sanity check the channel parameters */
792 if (!edmac->edma->m2m) {
793 if (!data)
794 return -EINVAL;
795 if (data->port < EP93XX_DMA_I2S1 ||
796 data->port > EP93XX_DMA_IRDA)
797 return -EINVAL;
798 if (data->direction != ep93xx_dma_chan_direction(chan))
799 return -EINVAL;
800 } else {
801 if (data) {
802 switch (data->port) {
803 case EP93XX_DMA_SSP:
804 case EP93XX_DMA_IDE:
805 if (data->direction != DMA_TO_DEVICE &&
806 data->direction != DMA_FROM_DEVICE)
807 return -EINVAL;
808 break;
809 default:
810 return -EINVAL;
811 }
812 }
813 }
814
815 if (data && data->name)
816 name = data->name;
817
818 ret = clk_enable(edmac->clk);
819 if (ret)
820 return ret;
821
822 ret = request_irq(edmac->irq, ep93xx_dma_interrupt, 0, name, edmac);
823 if (ret)
824 goto fail_clk_disable;
825
826 spin_lock_irq(&edmac->lock);
827 edmac->last_completed = 1;
828 edmac->chan.cookie = 1;
829 ret = edmac->edma->hw_setup(edmac);
830 spin_unlock_irq(&edmac->lock);
831
832 if (ret)
833 goto fail_free_irq;
834
835 for (i = 0; i < DMA_MAX_CHAN_DESCRIPTORS; i++) {
836 struct ep93xx_dma_desc *desc;
837
838 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
839 if (!desc) {
840 dev_warn(chan2dev(edmac), "not enough descriptors\n");
841 break;
842 }
843
844 INIT_LIST_HEAD(&desc->tx_list);
845
846 dma_async_tx_descriptor_init(&desc->txd, chan);
847 desc->txd.flags = DMA_CTRL_ACK;
848 desc->txd.tx_submit = ep93xx_dma_tx_submit;
849
850 ep93xx_dma_desc_put(edmac, desc);
851 }
852
853 return i;
854
855fail_free_irq:
856 free_irq(edmac->irq, edmac);
857fail_clk_disable:
858 clk_disable(edmac->clk);
859
860 return ret;
861}
862
863/**
864 * ep93xx_dma_free_chan_resources - release resources for the channel
865 * @chan: channel
866 *
867 * Function releases all the resources allocated for the given channel.
868 * The channel must be idle when this is called.
869 */
870static void ep93xx_dma_free_chan_resources(struct dma_chan *chan)
871{
872 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
873 struct ep93xx_dma_desc *desc, *d;
874 unsigned long flags;
875 LIST_HEAD(list);
876
877 BUG_ON(!list_empty(&edmac->active));
878 BUG_ON(!list_empty(&edmac->queue));
879
880 spin_lock_irqsave(&edmac->lock, flags);
881 edmac->edma->hw_shutdown(edmac);
882 edmac->runtime_addr = 0;
883 edmac->runtime_ctrl = 0;
884 edmac->buffer = 0;
885 list_splice_init(&edmac->free_list, &list);
886 spin_unlock_irqrestore(&edmac->lock, flags);
887
888 list_for_each_entry_safe(desc, d, &list, node)
889 kfree(desc);
890
891 clk_disable(edmac->clk);
892 free_irq(edmac->irq, edmac);
893}
894
895/**
896 * ep93xx_dma_prep_dma_memcpy - prepare a memcpy DMA operation
897 * @chan: channel
898 * @dest: destination bus address
899 * @src: source bus address
900 * @len: size of the transaction
901 * @flags: flags for the descriptor
902 *
903 * Returns a valid DMA descriptor or %NULL in case of failure.
904 */
905struct dma_async_tx_descriptor *
906ep93xx_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
907 dma_addr_t src, size_t len, unsigned long flags)
908{
909 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
910 struct ep93xx_dma_desc *desc, *first;
911 size_t bytes, offset;
912
913 first = NULL;
914 for (offset = 0; offset < len; offset += bytes) {
915 desc = ep93xx_dma_desc_get(edmac);
916 if (!desc) {
917 dev_warn(chan2dev(edmac), "couln't get descriptor\n");
918 goto fail;
919 }
920
921 bytes = min_t(size_t, len - offset, DMA_MAX_CHAN_BYTES);
922
923 desc->src_addr = src + offset;
924 desc->dst_addr = dest + offset;
925 desc->size = bytes;
926
927 if (!first)
928 first = desc;
929 else
930 list_add_tail(&desc->node, &first->tx_list);
931 }
932
933 first->txd.cookie = -EBUSY;
934 first->txd.flags = flags;
935
936 return &first->txd;
937fail:
938 ep93xx_dma_desc_put(edmac, first);
939 return NULL;
940}
941
942/**
943 * ep93xx_dma_prep_slave_sg - prepare a slave DMA operation
944 * @chan: channel
945 * @sgl: list of buffers to transfer
946 * @sg_len: number of entries in @sgl
947 * @dir: direction of tha DMA transfer
948 * @flags: flags for the descriptor
949 *
950 * Returns a valid DMA descriptor or %NULL in case of failure.
951 */
952static struct dma_async_tx_descriptor *
953ep93xx_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
954 unsigned int sg_len, enum dma_data_direction dir,
955 unsigned long flags)
956{
957 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
958 struct ep93xx_dma_desc *desc, *first;
959 struct scatterlist *sg;
960 int i;
961
962 if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
963 dev_warn(chan2dev(edmac),
964 "channel was configured with different direction\n");
965 return NULL;
966 }
967
968 if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
969 dev_warn(chan2dev(edmac),
970 "channel is already used for cyclic transfers\n");
971 return NULL;
972 }
973
974 first = NULL;
975 for_each_sg(sgl, sg, sg_len, i) {
976 size_t sg_len = sg_dma_len(sg);
977
978 if (sg_len > DMA_MAX_CHAN_BYTES) {
979 dev_warn(chan2dev(edmac), "too big transfer size %d\n",
980 sg_len);
981 goto fail;
982 }
983
984 desc = ep93xx_dma_desc_get(edmac);
985 if (!desc) {
986 dev_warn(chan2dev(edmac), "couln't get descriptor\n");
987 goto fail;
988 }
989
990 if (dir == DMA_TO_DEVICE) {
991 desc->src_addr = sg_dma_address(sg);
992 desc->dst_addr = edmac->runtime_addr;
993 } else {
994 desc->src_addr = edmac->runtime_addr;
995 desc->dst_addr = sg_dma_address(sg);
996 }
997 desc->size = sg_len;
998
999 if (!first)
1000 first = desc;
1001 else
1002 list_add_tail(&desc->node, &first->tx_list);
1003 }
1004
1005 first->txd.cookie = -EBUSY;
1006 first->txd.flags = flags;
1007
1008 return &first->txd;
1009
1010fail:
1011 ep93xx_dma_desc_put(edmac, first);
1012 return NULL;
1013}
1014
1015/**
1016 * ep93xx_dma_prep_dma_cyclic - prepare a cyclic DMA operation
1017 * @chan: channel
1018 * @dma_addr: DMA mapped address of the buffer
1019 * @buf_len: length of the buffer (in bytes)
1020 * @period_len: lenght of a single period
1021 * @dir: direction of the operation
1022 *
1023 * Prepares a descriptor for cyclic DMA operation. This means that once the
1024 * descriptor is submitted, we will be submitting in a @period_len sized
1025 * buffers and calling callback once the period has been elapsed. Transfer
1026 * terminates only when client calls dmaengine_terminate_all() for this
1027 * channel.
1028 *
1029 * Returns a valid DMA descriptor or %NULL in case of failure.
1030 */
1031static struct dma_async_tx_descriptor *
1032ep93xx_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
1033 size_t buf_len, size_t period_len,
1034 enum dma_data_direction dir)
1035{
1036 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1037 struct ep93xx_dma_desc *desc, *first;
1038 size_t offset = 0;
1039
1040 if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1041 dev_warn(chan2dev(edmac),
1042 "channel was configured with different direction\n");
1043 return NULL;
1044 }
1045
1046 if (test_and_set_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1047 dev_warn(chan2dev(edmac),
1048 "channel is already used for cyclic transfers\n");
1049 return NULL;
1050 }
1051
1052 if (period_len > DMA_MAX_CHAN_BYTES) {
1053 dev_warn(chan2dev(edmac), "too big period length %d\n",
1054 period_len);
1055 return NULL;
1056 }
1057
1058 /* Split the buffer into period size chunks */
1059 first = NULL;
1060 for (offset = 0; offset < buf_len; offset += period_len) {
1061 desc = ep93xx_dma_desc_get(edmac);
1062 if (!desc) {
1063 dev_warn(chan2dev(edmac), "couln't get descriptor\n");
1064 goto fail;
1065 }
1066
1067 if (dir == DMA_TO_DEVICE) {
1068 desc->src_addr = dma_addr + offset;
1069 desc->dst_addr = edmac->runtime_addr;
1070 } else {
1071 desc->src_addr = edmac->runtime_addr;
1072 desc->dst_addr = dma_addr + offset;
1073 }
1074
1075 desc->size = period_len;
1076
1077 if (!first)
1078 first = desc;
1079 else
1080 list_add_tail(&desc->node, &first->tx_list);
1081 }
1082
1083 first->txd.cookie = -EBUSY;
1084
1085 return &first->txd;
1086
1087fail:
1088 ep93xx_dma_desc_put(edmac, first);
1089 return NULL;
1090}
1091
1092/**
1093 * ep93xx_dma_terminate_all - terminate all transactions
1094 * @edmac: channel
1095 *
1096 * Stops all DMA transactions. All descriptors are put back to the
1097 * @edmac->free_list and callbacks are _not_ called.
1098 */
1099static int ep93xx_dma_terminate_all(struct ep93xx_dma_chan *edmac)
1100{
1101 struct ep93xx_dma_desc *desc, *_d;
1102 unsigned long flags;
1103 LIST_HEAD(list);
1104
1105 spin_lock_irqsave(&edmac->lock, flags);
1106 /* First we disable and flush the DMA channel */
1107 edmac->edma->hw_shutdown(edmac);
1108 clear_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags);
1109 list_splice_init(&edmac->active, &list);
1110 list_splice_init(&edmac->queue, &list);
1111 /*
1112 * We then re-enable the channel. This way we can continue submitting
1113 * the descriptors by just calling ->hw_submit() again.
1114 */
1115 edmac->edma->hw_setup(edmac);
1116 spin_unlock_irqrestore(&edmac->lock, flags);
1117
1118 list_for_each_entry_safe(desc, _d, &list, node)
1119 ep93xx_dma_desc_put(edmac, desc);
1120
1121 return 0;
1122}
1123
1124static int ep93xx_dma_slave_config(struct ep93xx_dma_chan *edmac,
1125 struct dma_slave_config *config)
1126{
1127 enum dma_slave_buswidth width;
1128 unsigned long flags;
1129 u32 addr, ctrl;
1130
1131 if (!edmac->edma->m2m)
1132 return -EINVAL;
1133
1134 switch (config->direction) {
1135 case DMA_FROM_DEVICE:
1136 width = config->src_addr_width;
1137 addr = config->src_addr;
1138 break;
1139
1140 case DMA_TO_DEVICE:
1141 width = config->dst_addr_width;
1142 addr = config->dst_addr;
1143 break;
1144
1145 default:
1146 return -EINVAL;
1147 }
1148
1149 switch (width) {
1150 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1151 ctrl = 0;
1152 break;
1153 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1154 ctrl = M2M_CONTROL_PW_16;
1155 break;
1156 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1157 ctrl = M2M_CONTROL_PW_32;
1158 break;
1159 default:
1160 return -EINVAL;
1161 }
1162
1163 spin_lock_irqsave(&edmac->lock, flags);
1164 edmac->runtime_addr = addr;
1165 edmac->runtime_ctrl = ctrl;
1166 spin_unlock_irqrestore(&edmac->lock, flags);
1167
1168 return 0;
1169}
1170
1171/**
1172 * ep93xx_dma_control - manipulate all pending operations on a channel
1173 * @chan: channel
1174 * @cmd: control command to perform
1175 * @arg: optional argument
1176 *
1177 * Controls the channel. Function returns %0 in case of success or negative
1178 * error in case of failure.
1179 */
1180static int ep93xx_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1181 unsigned long arg)
1182{
1183 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1184 struct dma_slave_config *config;
1185
1186 switch (cmd) {
1187 case DMA_TERMINATE_ALL:
1188 return ep93xx_dma_terminate_all(edmac);
1189
1190 case DMA_SLAVE_CONFIG:
1191 config = (struct dma_slave_config *)arg;
1192 return ep93xx_dma_slave_config(edmac, config);
1193
1194 default:
1195 break;
1196 }
1197
1198 return -ENOSYS;
1199}
1200
1201/**
1202 * ep93xx_dma_tx_status - check if a transaction is completed
1203 * @chan: channel
1204 * @cookie: transaction specific cookie
1205 * @state: state of the transaction is stored here if given
1206 *
1207 * This function can be used to query state of a given transaction.
1208 */
1209static enum dma_status ep93xx_dma_tx_status(struct dma_chan *chan,
1210 dma_cookie_t cookie,
1211 struct dma_tx_state *state)
1212{
1213 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1214 dma_cookie_t last_used, last_completed;
1215 enum dma_status ret;
1216 unsigned long flags;
1217
1218 spin_lock_irqsave(&edmac->lock, flags);
1219 last_used = chan->cookie;
1220 last_completed = edmac->last_completed;
1221 spin_unlock_irqrestore(&edmac->lock, flags);
1222
1223 ret = dma_async_is_complete(cookie, last_completed, last_used);
1224 dma_set_tx_state(state, last_completed, last_used, 0);
1225
1226 return ret;
1227}
1228
1229/**
1230 * ep93xx_dma_issue_pending - push pending transactions to the hardware
1231 * @chan: channel
1232 *
1233 * When this function is called, all pending transactions are pushed to the
1234 * hardware and executed.
1235 */
1236static void ep93xx_dma_issue_pending(struct dma_chan *chan)
1237{
1238 ep93xx_dma_advance_work(to_ep93xx_dma_chan(chan));
1239}
1240
1241static int __init ep93xx_dma_probe(struct platform_device *pdev)
1242{
1243 struct ep93xx_dma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1244 struct ep93xx_dma_engine *edma;
1245 struct dma_device *dma_dev;
1246 size_t edma_size;
1247 int ret, i;
1248
1249 edma_size = pdata->num_channels * sizeof(struct ep93xx_dma_chan);
1250 edma = kzalloc(sizeof(*edma) + edma_size, GFP_KERNEL);
1251 if (!edma)
1252 return -ENOMEM;
1253
1254 dma_dev = &edma->dma_dev;
1255 edma->m2m = platform_get_device_id(pdev)->driver_data;
1256 edma->num_channels = pdata->num_channels;
1257
1258 INIT_LIST_HEAD(&dma_dev->channels);
1259 for (i = 0; i < pdata->num_channels; i++) {
1260 const struct ep93xx_dma_chan_data *cdata = &pdata->channels[i];
1261 struct ep93xx_dma_chan *edmac = &edma->channels[i];
1262
1263 edmac->chan.device = dma_dev;
1264 edmac->regs = cdata->base;
1265 edmac->irq = cdata->irq;
1266 edmac->edma = edma;
1267
1268 edmac->clk = clk_get(NULL, cdata->name);
1269 if (IS_ERR(edmac->clk)) {
1270 dev_warn(&pdev->dev, "failed to get clock for %s\n",
1271 cdata->name);
1272 continue;
1273 }
1274
1275 spin_lock_init(&edmac->lock);
1276 INIT_LIST_HEAD(&edmac->active);
1277 INIT_LIST_HEAD(&edmac->queue);
1278 INIT_LIST_HEAD(&edmac->free_list);
1279 tasklet_init(&edmac->tasklet, ep93xx_dma_tasklet,
1280 (unsigned long)edmac);
1281
1282 list_add_tail(&edmac->chan.device_node,
1283 &dma_dev->channels);
1284 }
1285
1286 dma_cap_zero(dma_dev->cap_mask);
1287 dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1288 dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
1289
1290 dma_dev->dev = &pdev->dev;
1291 dma_dev->device_alloc_chan_resources = ep93xx_dma_alloc_chan_resources;
1292 dma_dev->device_free_chan_resources = ep93xx_dma_free_chan_resources;
1293 dma_dev->device_prep_slave_sg = ep93xx_dma_prep_slave_sg;
1294 dma_dev->device_prep_dma_cyclic = ep93xx_dma_prep_dma_cyclic;
1295 dma_dev->device_control = ep93xx_dma_control;
1296 dma_dev->device_issue_pending = ep93xx_dma_issue_pending;
1297 dma_dev->device_tx_status = ep93xx_dma_tx_status;
1298
1299 dma_set_max_seg_size(dma_dev->dev, DMA_MAX_CHAN_BYTES);
1300
1301 if (edma->m2m) {
1302 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1303 dma_dev->device_prep_dma_memcpy = ep93xx_dma_prep_dma_memcpy;
1304
1305 edma->hw_setup = m2m_hw_setup;
1306 edma->hw_shutdown = m2m_hw_shutdown;
1307 edma->hw_submit = m2m_hw_submit;
1308 edma->hw_interrupt = m2m_hw_interrupt;
1309 } else {
1310 dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1311
1312 edma->hw_setup = m2p_hw_setup;
1313 edma->hw_shutdown = m2p_hw_shutdown;
1314 edma->hw_submit = m2p_hw_submit;
1315 edma->hw_interrupt = m2p_hw_interrupt;
1316 }
1317
1318 ret = dma_async_device_register(dma_dev);
1319 if (unlikely(ret)) {
1320 for (i = 0; i < edma->num_channels; i++) {
1321 struct ep93xx_dma_chan *edmac = &edma->channels[i];
1322 if (!IS_ERR_OR_NULL(edmac->clk))
1323 clk_put(edmac->clk);
1324 }
1325 kfree(edma);
1326 } else {
1327 dev_info(dma_dev->dev, "EP93xx M2%s DMA ready\n",
1328 edma->m2m ? "M" : "P");
1329 }
1330
1331 return ret;
1332}
1333
1334static struct platform_device_id ep93xx_dma_driver_ids[] = {
1335 { "ep93xx-dma-m2p", 0 },
1336 { "ep93xx-dma-m2m", 1 },
1337 { },
1338};
1339
1340static struct platform_driver ep93xx_dma_driver = {
1341 .driver = {
1342 .name = "ep93xx-dma",
1343 },
1344 .id_table = ep93xx_dma_driver_ids,
1345};
1346
1347static int __init ep93xx_dma_module_init(void)
1348{
1349 return platform_driver_probe(&ep93xx_dma_driver, ep93xx_dma_probe);
1350}
1351subsys_initcall(ep93xx_dma_module_init);
1352
1353MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1354MODULE_DESCRIPTION("EP93xx DMA driver");
1355MODULE_LICENSE("GPL");