aboutsummaryrefslogtreecommitdiffstats
path: root/arch
diff options
context:
space:
mode:
authorShaohua Li <shaohua.li@intel.com>2008-02-28 03:09:42 -0500
committerTony Luck <tony.luck@intel.com>2008-03-12 19:28:02 -0400
commit4cd8dc83581906948ff4cfa65007e64496b5a7c8 (patch)
treefa3265bc11dcf158731b06419b29ed1fa5fd578c /arch
parent6cb53d7a6f40858181facde0f52587731d2e621f (diff)
[IA64] remove duplicate code for register access
We have duplicate code to access registers (access_uarea and regset way). They just have different layout, so remove duplicate code. Signed-off-by: Shaohua Li <shaohua.li@intel.com> Signed-off-by: Tony Luck <tony.luck@intel.com>
Diffstat (limited to 'arch')
-rw-r--r--arch/ia64/kernel/ptrace.c522
1 files changed, 200 insertions, 322 deletions
diff --git a/arch/ia64/kernel/ptrace.c b/arch/ia64/kernel/ptrace.c
index 4c104170ca4d..2a9943b5947f 100644
--- a/arch/ia64/kernel/ptrace.c
+++ b/arch/ia64/kernel/ptrace.c
@@ -745,25 +745,6 @@ ia64_sync_fph (struct task_struct *task)
745 psr->dfh = 1; 745 psr->dfh = 1;
746} 746}
747 747
748static int
749access_fr (struct unw_frame_info *info, int regnum, int hi,
750 unsigned long *data, int write_access)
751{
752 struct ia64_fpreg fpval;
753 int ret;
754
755 ret = unw_get_fr(info, regnum, &fpval);
756 if (ret < 0)
757 return ret;
758
759 if (write_access) {
760 fpval.u.bits[hi] = *data;
761 ret = unw_set_fr(info, regnum, fpval);
762 } else
763 *data = fpval.u.bits[hi];
764 return ret;
765}
766
767/* 748/*
768 * Change the machine-state of CHILD such that it will return via the normal 749 * Change the machine-state of CHILD such that it will return via the normal
769 * kernel exit-path, rather than the syscall-exit path. 750 * kernel exit-path, rather than the syscall-exit path.
@@ -865,309 +846,7 @@ access_nat_bits (struct task_struct *child, struct pt_regs *pt,
865 846
866static int 847static int
867access_uarea (struct task_struct *child, unsigned long addr, 848access_uarea (struct task_struct *child, unsigned long addr,
868 unsigned long *data, int write_access) 849 unsigned long *data, int write_access);
869{
870 unsigned long *ptr, regnum, urbs_end, cfm;
871 struct switch_stack *sw;
872 struct pt_regs *pt;
873# define pt_reg_addr(pt, reg) ((void *) \
874 ((unsigned long) (pt) \
875 + offsetof(struct pt_regs, reg)))
876
877
878 pt = task_pt_regs(child);
879 sw = (struct switch_stack *) (child->thread.ksp + 16);
880
881 if ((addr & 0x7) != 0) {
882 dprintk("ptrace: unaligned register address 0x%lx\n", addr);
883 return -1;
884 }
885
886 if (addr < PT_F127 + 16) {
887 /* accessing fph */
888 if (write_access)
889 ia64_sync_fph(child);
890 else
891 ia64_flush_fph(child);
892 ptr = (unsigned long *)
893 ((unsigned long) &child->thread.fph + addr);
894 } else if ((addr >= PT_F10) && (addr < PT_F11 + 16)) {
895 /* scratch registers untouched by kernel (saved in pt_regs) */
896 ptr = pt_reg_addr(pt, f10) + (addr - PT_F10);
897 } else if (addr >= PT_F12 && addr < PT_F15 + 16) {
898 /*
899 * Scratch registers untouched by kernel (saved in
900 * switch_stack).
901 */
902 ptr = (unsigned long *) ((long) sw
903 + (addr - PT_NAT_BITS - 32));
904 } else if (addr < PT_AR_LC + 8) {
905 /* preserved state: */
906 struct unw_frame_info info;
907 char nat = 0;
908 int ret;
909
910 unw_init_from_blocked_task(&info, child);
911 if (unw_unwind_to_user(&info) < 0)
912 return -1;
913
914 switch (addr) {
915 case PT_NAT_BITS:
916 return access_nat_bits(child, pt, &info,
917 data, write_access);
918
919 case PT_R4: case PT_R5: case PT_R6: case PT_R7:
920 if (write_access) {
921 /* read NaT bit first: */
922 unsigned long dummy;
923
924 ret = unw_get_gr(&info, (addr - PT_R4)/8 + 4,
925 &dummy, &nat);
926 if (ret < 0)
927 return ret;
928 }
929 return unw_access_gr(&info, (addr - PT_R4)/8 + 4, data,
930 &nat, write_access);
931
932 case PT_B1: case PT_B2: case PT_B3:
933 case PT_B4: case PT_B5:
934 return unw_access_br(&info, (addr - PT_B1)/8 + 1, data,
935 write_access);
936
937 case PT_AR_EC:
938 return unw_access_ar(&info, UNW_AR_EC, data,
939 write_access);
940
941 case PT_AR_LC:
942 return unw_access_ar(&info, UNW_AR_LC, data,
943 write_access);
944
945 default:
946 if (addr >= PT_F2 && addr < PT_F5 + 16)
947 return access_fr(&info, (addr - PT_F2)/16 + 2,
948 (addr & 8) != 0, data,
949 write_access);
950 else if (addr >= PT_F16 && addr < PT_F31 + 16)
951 return access_fr(&info,
952 (addr - PT_F16)/16 + 16,
953 (addr & 8) != 0,
954 data, write_access);
955 else {
956 dprintk("ptrace: rejecting access to register "
957 "address 0x%lx\n", addr);
958 return -1;
959 }
960 }
961 } else if (addr < PT_F9+16) {
962 /* scratch state */
963 switch (addr) {
964 case PT_AR_BSP:
965 /*
966 * By convention, we use PT_AR_BSP to refer to
967 * the end of the user-level backing store.
968 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
969 * to get the real value of ar.bsp at the time
970 * the kernel was entered.
971 *
972 * Furthermore, when changing the contents of
973 * PT_AR_BSP (or PT_CFM) while the task is
974 * blocked in a system call, convert the state
975 * so that the non-system-call exit
976 * path is used. This ensures that the proper
977 * state will be picked up when resuming
978 * execution. However, it *also* means that
979 * once we write PT_AR_BSP/PT_CFM, it won't be
980 * possible to modify the syscall arguments of
981 * the pending system call any longer. This
982 * shouldn't be an issue because modifying
983 * PT_AR_BSP/PT_CFM generally implies that
984 * we're either abandoning the pending system
985 * call or that we defer it's re-execution
986 * (e.g., due to GDB doing an inferior
987 * function call).
988 */
989 urbs_end = ia64_get_user_rbs_end(child, pt, &cfm);
990 if (write_access) {
991 if (*data != urbs_end) {
992 if (in_syscall(pt))
993 convert_to_non_syscall(child,
994 pt,
995 cfm);
996 /*
997 * Simulate user-level write
998 * of ar.bsp:
999 */
1000 pt->loadrs = 0;
1001 pt->ar_bspstore = *data;
1002 }
1003 } else
1004 *data = urbs_end;
1005 return 0;
1006
1007 case PT_CFM:
1008 urbs_end = ia64_get_user_rbs_end(child, pt, &cfm);
1009 if (write_access) {
1010 if (((cfm ^ *data) & PFM_MASK) != 0) {
1011 if (in_syscall(pt))
1012 convert_to_non_syscall(child,
1013 pt,
1014 cfm);
1015 pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
1016 | (*data & PFM_MASK));
1017 }
1018 } else
1019 *data = cfm;
1020 return 0;
1021
1022 case PT_CR_IPSR:
1023 if (write_access) {
1024 unsigned long tmp = *data;
1025 /* psr.ri==3 is a reserved value: SDM 2:25 */
1026 if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
1027 tmp &= ~IA64_PSR_RI;
1028 pt->cr_ipsr = ((tmp & IPSR_MASK)
1029 | (pt->cr_ipsr & ~IPSR_MASK));
1030 } else
1031 *data = (pt->cr_ipsr & IPSR_MASK);
1032 return 0;
1033
1034 case PT_AR_RSC:
1035 if (write_access)
1036 pt->ar_rsc = *data | (3 << 2); /* force PL3 */
1037 else
1038 *data = pt->ar_rsc;
1039 return 0;
1040
1041 case PT_AR_RNAT:
1042 ptr = pt_reg_addr(pt, ar_rnat);
1043 break;
1044 case PT_R1:
1045 ptr = pt_reg_addr(pt, r1);
1046 break;
1047 case PT_R2: case PT_R3:
1048 ptr = pt_reg_addr(pt, r2) + (addr - PT_R2);
1049 break;
1050 case PT_R8: case PT_R9: case PT_R10: case PT_R11:
1051 ptr = pt_reg_addr(pt, r8) + (addr - PT_R8);
1052 break;
1053 case PT_R12: case PT_R13:
1054 ptr = pt_reg_addr(pt, r12) + (addr - PT_R12);
1055 break;
1056 case PT_R14:
1057 ptr = pt_reg_addr(pt, r14);
1058 break;
1059 case PT_R15:
1060 ptr = pt_reg_addr(pt, r15);
1061 break;
1062 case PT_R16: case PT_R17: case PT_R18: case PT_R19:
1063 case PT_R20: case PT_R21: case PT_R22: case PT_R23:
1064 case PT_R24: case PT_R25: case PT_R26: case PT_R27:
1065 case PT_R28: case PT_R29: case PT_R30: case PT_R31:
1066 ptr = pt_reg_addr(pt, r16) + (addr - PT_R16);
1067 break;
1068 case PT_B0:
1069 ptr = pt_reg_addr(pt, b0);
1070 break;
1071 case PT_B6:
1072 ptr = pt_reg_addr(pt, b6);
1073 break;
1074 case PT_B7:
1075 ptr = pt_reg_addr(pt, b7);
1076 break;
1077 case PT_F6: case PT_F6+8: case PT_F7: case PT_F7+8:
1078 case PT_F8: case PT_F8+8: case PT_F9: case PT_F9+8:
1079 ptr = pt_reg_addr(pt, f6) + (addr - PT_F6);
1080 break;
1081 case PT_AR_BSPSTORE:
1082 ptr = pt_reg_addr(pt, ar_bspstore);
1083 break;
1084 case PT_AR_UNAT:
1085 ptr = pt_reg_addr(pt, ar_unat);
1086 break;
1087 case PT_AR_PFS:
1088 ptr = pt_reg_addr(pt, ar_pfs);
1089 break;
1090 case PT_AR_CCV:
1091 ptr = pt_reg_addr(pt, ar_ccv);
1092 break;
1093 case PT_AR_FPSR:
1094 ptr = pt_reg_addr(pt, ar_fpsr);
1095 break;
1096 case PT_CR_IIP:
1097 ptr = pt_reg_addr(pt, cr_iip);
1098 break;
1099 case PT_PR:
1100 ptr = pt_reg_addr(pt, pr);
1101 break;
1102 /* scratch register */
1103
1104 default:
1105 /* disallow accessing anything else... */
1106 dprintk("ptrace: rejecting access to register "
1107 "address 0x%lx\n", addr);
1108 return -1;
1109 }
1110 } else if (addr <= PT_AR_SSD) {
1111 ptr = pt_reg_addr(pt, ar_csd) + (addr - PT_AR_CSD);
1112 } else {
1113 /* access debug registers */
1114
1115 if (addr >= PT_IBR) {
1116 regnum = (addr - PT_IBR) >> 3;
1117 ptr = &child->thread.ibr[0];
1118 } else {
1119 regnum = (addr - PT_DBR) >> 3;
1120 ptr = &child->thread.dbr[0];
1121 }
1122
1123 if (regnum >= 8) {
1124 dprintk("ptrace: rejecting access to register "
1125 "address 0x%lx\n", addr);
1126 return -1;
1127 }
1128#ifdef CONFIG_PERFMON
1129 /*
1130 * Check if debug registers are used by perfmon. This
1131 * test must be done once we know that we can do the
1132 * operation, i.e. the arguments are all valid, but
1133 * before we start modifying the state.
1134 *
1135 * Perfmon needs to keep a count of how many processes
1136 * are trying to modify the debug registers for system
1137 * wide monitoring sessions.
1138 *
1139 * We also include read access here, because they may
1140 * cause the PMU-installed debug register state
1141 * (dbr[], ibr[]) to be reset. The two arrays are also
1142 * used by perfmon, but we do not use
1143 * IA64_THREAD_DBG_VALID. The registers are restored
1144 * by the PMU context switch code.
1145 */
1146 if (pfm_use_debug_registers(child)) return -1;
1147#endif
1148
1149 if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
1150 child->thread.flags |= IA64_THREAD_DBG_VALID;
1151 memset(child->thread.dbr, 0,
1152 sizeof(child->thread.dbr));
1153 memset(child->thread.ibr, 0,
1154 sizeof(child->thread.ibr));
1155 }
1156
1157 ptr += regnum;
1158
1159 if ((regnum & 1) && write_access) {
1160 /* don't let the user set kernel-level breakpoints: */
1161 *ptr = *data & ~(7UL << 56);
1162 return 0;
1163 }
1164 }
1165 if (write_access)
1166 *ptr = *data;
1167 else
1168 *data = *ptr;
1169 return 0;
1170}
1171 850
1172static long 851static long
1173ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr) 852ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
@@ -2290,6 +1969,205 @@ static int fpregs_set(struct task_struct *target,
2290 kbuf, ubuf); 1969 kbuf, ubuf);
2291} 1970}
2292 1971
1972static int
1973access_uarea(struct task_struct *child, unsigned long addr,
1974 unsigned long *data, int write_access)
1975{
1976 unsigned int pos = -1; /* an invalid value */
1977 int ret;
1978 unsigned long *ptr, regnum;
1979
1980 if ((addr & 0x7) != 0) {
1981 dprintk("ptrace: unaligned register address 0x%lx\n", addr);
1982 return -1;
1983 }
1984 if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
1985 (addr >= PT_R7 + 8 && addr < PT_B1) ||
1986 (addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
1987 (addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
1988 dprintk("ptrace: rejecting access to register "
1989 "address 0x%lx\n", addr);
1990 return -1;
1991 }
1992
1993 switch (addr) {
1994 case PT_F32 ... (PT_F127 + 15):
1995 pos = addr - PT_F32 + ELF_FP_OFFSET(32);
1996 break;
1997 case PT_F2 ... (PT_F5 + 15):
1998 pos = addr - PT_F2 + ELF_FP_OFFSET(2);
1999 break;
2000 case PT_F10 ... (PT_F31 + 15):
2001 pos = addr - PT_F10 + ELF_FP_OFFSET(10);
2002 break;
2003 case PT_F6 ... (PT_F9 + 15):
2004 pos = addr - PT_F6 + ELF_FP_OFFSET(6);
2005 break;
2006 }
2007
2008 if (pos != -1) {
2009 if (write_access)
2010 ret = fpregs_set(child, NULL, pos,
2011 sizeof(unsigned long), data, NULL);
2012 else
2013 ret = fpregs_get(child, NULL, pos,
2014 sizeof(unsigned long), data, NULL);
2015 if (ret != 0)
2016 return -1;
2017 return 0;
2018 }
2019
2020 switch (addr) {
2021 case PT_NAT_BITS:
2022 pos = ELF_NAT_OFFSET;
2023 break;
2024 case PT_R4 ... PT_R7:
2025 pos = addr - PT_R4 + ELF_GR_OFFSET(4);
2026 break;
2027 case PT_B1 ... PT_B5:
2028 pos = addr - PT_B1 + ELF_BR_OFFSET(1);
2029 break;
2030 case PT_AR_EC:
2031 pos = ELF_AR_EC_OFFSET;
2032 break;
2033 case PT_AR_LC:
2034 pos = ELF_AR_LC_OFFSET;
2035 break;
2036 case PT_CR_IPSR:
2037 pos = ELF_CR_IPSR_OFFSET;
2038 break;
2039 case PT_CR_IIP:
2040 pos = ELF_CR_IIP_OFFSET;
2041 break;
2042 case PT_CFM:
2043 pos = ELF_CFM_OFFSET;
2044 break;
2045 case PT_AR_UNAT:
2046 pos = ELF_AR_UNAT_OFFSET;
2047 break;
2048 case PT_AR_PFS:
2049 pos = ELF_AR_PFS_OFFSET;
2050 break;
2051 case PT_AR_RSC:
2052 pos = ELF_AR_RSC_OFFSET;
2053 break;
2054 case PT_AR_RNAT:
2055 pos = ELF_AR_RNAT_OFFSET;
2056 break;
2057 case PT_AR_BSPSTORE:
2058 pos = ELF_AR_BSPSTORE_OFFSET;
2059 break;
2060 case PT_PR:
2061 pos = ELF_PR_OFFSET;
2062 break;
2063 case PT_B6:
2064 pos = ELF_BR_OFFSET(6);
2065 break;
2066 case PT_AR_BSP:
2067 pos = ELF_AR_BSP_OFFSET;
2068 break;
2069 case PT_R1 ... PT_R3:
2070 pos = addr - PT_R1 + ELF_GR_OFFSET(1);
2071 break;
2072 case PT_R12 ... PT_R15:
2073 pos = addr - PT_R12 + ELF_GR_OFFSET(12);
2074 break;
2075 case PT_R8 ... PT_R11:
2076 pos = addr - PT_R8 + ELF_GR_OFFSET(8);
2077 break;
2078 case PT_R16 ... PT_R31:
2079 pos = addr - PT_R16 + ELF_GR_OFFSET(16);
2080 break;
2081 case PT_AR_CCV:
2082 pos = ELF_AR_CCV_OFFSET;
2083 break;
2084 case PT_AR_FPSR:
2085 pos = ELF_AR_FPSR_OFFSET;
2086 break;
2087 case PT_B0:
2088 pos = ELF_BR_OFFSET(0);
2089 break;
2090 case PT_B7:
2091 pos = ELF_BR_OFFSET(7);
2092 break;
2093 case PT_AR_CSD:
2094 pos = ELF_AR_CSD_OFFSET;
2095 break;
2096 case PT_AR_SSD:
2097 pos = ELF_AR_SSD_OFFSET;
2098 break;
2099 }
2100
2101 if (pos != -1) {
2102 if (write_access)
2103 ret = gpregs_set(child, NULL, pos,
2104 sizeof(unsigned long), data, NULL);
2105 else
2106 ret = gpregs_get(child, NULL, pos,
2107 sizeof(unsigned long), data, NULL);
2108 if (ret != 0)
2109 return -1;
2110 return 0;
2111 }
2112
2113 /* access debug registers */
2114 if (addr >= PT_IBR) {
2115 regnum = (addr - PT_IBR) >> 3;
2116 ptr = &child->thread.ibr[0];
2117 } else {
2118 regnum = (addr - PT_DBR) >> 3;
2119 ptr = &child->thread.dbr[0];
2120 }
2121
2122 if (regnum >= 8) {
2123 dprintk("ptrace: rejecting access to register "
2124 "address 0x%lx\n", addr);
2125 return -1;
2126 }
2127#ifdef CONFIG_PERFMON
2128 /*
2129 * Check if debug registers are used by perfmon. This
2130 * test must be done once we know that we can do the
2131 * operation, i.e. the arguments are all valid, but
2132 * before we start modifying the state.
2133 *
2134 * Perfmon needs to keep a count of how many processes
2135 * are trying to modify the debug registers for system
2136 * wide monitoring sessions.
2137 *
2138 * We also include read access here, because they may
2139 * cause the PMU-installed debug register state
2140 * (dbr[], ibr[]) to be reset. The two arrays are also
2141 * used by perfmon, but we do not use
2142 * IA64_THREAD_DBG_VALID. The registers are restored
2143 * by the PMU context switch code.
2144 */
2145 if (pfm_use_debug_registers(child))
2146 return -1;
2147#endif
2148
2149 if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
2150 child->thread.flags |= IA64_THREAD_DBG_VALID;
2151 memset(child->thread.dbr, 0,
2152 sizeof(child->thread.dbr));
2153 memset(child->thread.ibr, 0,
2154 sizeof(child->thread.ibr));
2155 }
2156
2157 ptr += regnum;
2158
2159 if ((regnum & 1) && write_access) {
2160 /* don't let the user set kernel-level breakpoints: */
2161 *ptr = *data & ~(7UL << 56);
2162 return 0;
2163 }
2164 if (write_access)
2165 *ptr = *data;
2166 else
2167 *data = *ptr;
2168 return 0;
2169}
2170
2293static const struct user_regset native_regsets[] = { 2171static const struct user_regset native_regsets[] = {
2294 { 2172 {
2295 .core_note_type = NT_PRSTATUS, 2173 .core_note_type = NT_PRSTATUS,