diff options
author | Glenn Elliott <gelliott@cs.unc.edu> | 2012-03-04 19:47:13 -0500 |
---|---|---|
committer | Glenn Elliott <gelliott@cs.unc.edu> | 2012-03-04 19:47:13 -0500 |
commit | c71c03bda1e86c9d5198c5d83f712e695c4f2a1e (patch) | |
tree | ecb166cb3e2b7e2adb3b5e292245fefd23381ac8 /arch/x86/mm/numa_64.c | |
parent | ea53c912f8a86a8567697115b6a0d8152beee5c8 (diff) | |
parent | 6a00f206debf8a5c8899055726ad127dbeeed098 (diff) |
Merge branch 'mpi-master' into wip-k-fmlpwip-k-fmlp
Conflicts:
litmus/sched_cedf.c
Diffstat (limited to 'arch/x86/mm/numa_64.c')
-rw-r--r-- | arch/x86/mm/numa_64.c | 882 |
1 files changed, 3 insertions, 879 deletions
diff --git a/arch/x86/mm/numa_64.c b/arch/x86/mm/numa_64.c index a7bcc23ef96c..dd27f401f0a0 100644 --- a/arch/x86/mm/numa_64.c +++ b/arch/x86/mm/numa_64.c | |||
@@ -2,697 +2,13 @@ | |||
2 | * Generic VM initialization for x86-64 NUMA setups. | 2 | * Generic VM initialization for x86-64 NUMA setups. |
3 | * Copyright 2002,2003 Andi Kleen, SuSE Labs. | 3 | * Copyright 2002,2003 Andi Kleen, SuSE Labs. |
4 | */ | 4 | */ |
5 | #include <linux/kernel.h> | ||
6 | #include <linux/mm.h> | ||
7 | #include <linux/string.h> | ||
8 | #include <linux/init.h> | ||
9 | #include <linux/bootmem.h> | 5 | #include <linux/bootmem.h> |
10 | #include <linux/mmzone.h> | ||
11 | #include <linux/ctype.h> | ||
12 | #include <linux/module.h> | ||
13 | #include <linux/nodemask.h> | ||
14 | #include <linux/sched.h> | ||
15 | 6 | ||
16 | #include <asm/e820.h> | 7 | #include "numa_internal.h" |
17 | #include <asm/proto.h> | ||
18 | #include <asm/dma.h> | ||
19 | #include <asm/numa.h> | ||
20 | #include <asm/acpi.h> | ||
21 | #include <asm/k8.h> | ||
22 | 8 | ||
23 | struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; | 9 | void __init initmem_init(void) |
24 | EXPORT_SYMBOL(node_data); | ||
25 | |||
26 | struct memnode memnode; | ||
27 | |||
28 | s16 apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = { | ||
29 | [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE | ||
30 | }; | ||
31 | |||
32 | int numa_off __initdata; | ||
33 | static unsigned long __initdata nodemap_addr; | ||
34 | static unsigned long __initdata nodemap_size; | ||
35 | |||
36 | /* | ||
37 | * Map cpu index to node index | ||
38 | */ | ||
39 | DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE); | ||
40 | EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map); | ||
41 | |||
42 | /* | ||
43 | * Given a shift value, try to populate memnodemap[] | ||
44 | * Returns : | ||
45 | * 1 if OK | ||
46 | * 0 if memnodmap[] too small (of shift too small) | ||
47 | * -1 if node overlap or lost ram (shift too big) | ||
48 | */ | ||
49 | static int __init populate_memnodemap(const struct bootnode *nodes, | ||
50 | int numnodes, int shift, int *nodeids) | ||
51 | { | ||
52 | unsigned long addr, end; | ||
53 | int i, res = -1; | ||
54 | |||
55 | memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize); | ||
56 | for (i = 0; i < numnodes; i++) { | ||
57 | addr = nodes[i].start; | ||
58 | end = nodes[i].end; | ||
59 | if (addr >= end) | ||
60 | continue; | ||
61 | if ((end >> shift) >= memnodemapsize) | ||
62 | return 0; | ||
63 | do { | ||
64 | if (memnodemap[addr >> shift] != NUMA_NO_NODE) | ||
65 | return -1; | ||
66 | |||
67 | if (!nodeids) | ||
68 | memnodemap[addr >> shift] = i; | ||
69 | else | ||
70 | memnodemap[addr >> shift] = nodeids[i]; | ||
71 | |||
72 | addr += (1UL << shift); | ||
73 | } while (addr < end); | ||
74 | res = 1; | ||
75 | } | ||
76 | return res; | ||
77 | } | ||
78 | |||
79 | static int __init allocate_cachealigned_memnodemap(void) | ||
80 | { | ||
81 | unsigned long addr; | ||
82 | |||
83 | memnodemap = memnode.embedded_map; | ||
84 | if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map)) | ||
85 | return 0; | ||
86 | |||
87 | addr = 0x8000; | ||
88 | nodemap_size = roundup(sizeof(s16) * memnodemapsize, L1_CACHE_BYTES); | ||
89 | nodemap_addr = find_e820_area(addr, max_pfn<<PAGE_SHIFT, | ||
90 | nodemap_size, L1_CACHE_BYTES); | ||
91 | if (nodemap_addr == -1UL) { | ||
92 | printk(KERN_ERR | ||
93 | "NUMA: Unable to allocate Memory to Node hash map\n"); | ||
94 | nodemap_addr = nodemap_size = 0; | ||
95 | return -1; | ||
96 | } | ||
97 | memnodemap = phys_to_virt(nodemap_addr); | ||
98 | reserve_early(nodemap_addr, nodemap_addr + nodemap_size, "MEMNODEMAP"); | ||
99 | |||
100 | printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n", | ||
101 | nodemap_addr, nodemap_addr + nodemap_size); | ||
102 | return 0; | ||
103 | } | ||
104 | |||
105 | /* | ||
106 | * The LSB of all start and end addresses in the node map is the value of the | ||
107 | * maximum possible shift. | ||
108 | */ | ||
109 | static int __init extract_lsb_from_nodes(const struct bootnode *nodes, | ||
110 | int numnodes) | ||
111 | { | ||
112 | int i, nodes_used = 0; | ||
113 | unsigned long start, end; | ||
114 | unsigned long bitfield = 0, memtop = 0; | ||
115 | |||
116 | for (i = 0; i < numnodes; i++) { | ||
117 | start = nodes[i].start; | ||
118 | end = nodes[i].end; | ||
119 | if (start >= end) | ||
120 | continue; | ||
121 | bitfield |= start; | ||
122 | nodes_used++; | ||
123 | if (end > memtop) | ||
124 | memtop = end; | ||
125 | } | ||
126 | if (nodes_used <= 1) | ||
127 | i = 63; | ||
128 | else | ||
129 | i = find_first_bit(&bitfield, sizeof(unsigned long)*8); | ||
130 | memnodemapsize = (memtop >> i)+1; | ||
131 | return i; | ||
132 | } | ||
133 | |||
134 | int __init compute_hash_shift(struct bootnode *nodes, int numnodes, | ||
135 | int *nodeids) | ||
136 | { | ||
137 | int shift; | ||
138 | |||
139 | shift = extract_lsb_from_nodes(nodes, numnodes); | ||
140 | if (allocate_cachealigned_memnodemap()) | ||
141 | return -1; | ||
142 | printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n", | ||
143 | shift); | ||
144 | |||
145 | if (populate_memnodemap(nodes, numnodes, shift, nodeids) != 1) { | ||
146 | printk(KERN_INFO "Your memory is not aligned you need to " | ||
147 | "rebuild your kernel with a bigger NODEMAPSIZE " | ||
148 | "shift=%d\n", shift); | ||
149 | return -1; | ||
150 | } | ||
151 | return shift; | ||
152 | } | ||
153 | |||
154 | int __meminit __early_pfn_to_nid(unsigned long pfn) | ||
155 | { | ||
156 | return phys_to_nid(pfn << PAGE_SHIFT); | ||
157 | } | ||
158 | |||
159 | static void * __init early_node_mem(int nodeid, unsigned long start, | ||
160 | unsigned long end, unsigned long size, | ||
161 | unsigned long align) | ||
162 | { | ||
163 | unsigned long mem; | ||
164 | |||
165 | /* | ||
166 | * put it on high as possible | ||
167 | * something will go with NODE_DATA | ||
168 | */ | ||
169 | if (start < (MAX_DMA_PFN<<PAGE_SHIFT)) | ||
170 | start = MAX_DMA_PFN<<PAGE_SHIFT; | ||
171 | if (start < (MAX_DMA32_PFN<<PAGE_SHIFT) && | ||
172 | end > (MAX_DMA32_PFN<<PAGE_SHIFT)) | ||
173 | start = MAX_DMA32_PFN<<PAGE_SHIFT; | ||
174 | mem = find_e820_area(start, end, size, align); | ||
175 | if (mem != -1L) | ||
176 | return __va(mem); | ||
177 | |||
178 | /* extend the search scope */ | ||
179 | end = max_pfn_mapped << PAGE_SHIFT; | ||
180 | if (end > (MAX_DMA32_PFN<<PAGE_SHIFT)) | ||
181 | start = MAX_DMA32_PFN<<PAGE_SHIFT; | ||
182 | else | ||
183 | start = MAX_DMA_PFN<<PAGE_SHIFT; | ||
184 | mem = find_e820_area(start, end, size, align); | ||
185 | if (mem != -1L) | ||
186 | return __va(mem); | ||
187 | |||
188 | printk(KERN_ERR "Cannot find %lu bytes in node %d\n", | ||
189 | size, nodeid); | ||
190 | |||
191 | return NULL; | ||
192 | } | ||
193 | |||
194 | /* Initialize bootmem allocator for a node */ | ||
195 | void __init | ||
196 | setup_node_bootmem(int nodeid, unsigned long start, unsigned long end) | ||
197 | { | ||
198 | unsigned long start_pfn, last_pfn, nodedata_phys; | ||
199 | const int pgdat_size = roundup(sizeof(pg_data_t), PAGE_SIZE); | ||
200 | int nid; | ||
201 | #ifndef CONFIG_NO_BOOTMEM | ||
202 | unsigned long bootmap_start, bootmap_pages, bootmap_size; | ||
203 | void *bootmap; | ||
204 | #endif | ||
205 | |||
206 | if (!end) | ||
207 | return; | ||
208 | |||
209 | /* | ||
210 | * Don't confuse VM with a node that doesn't have the | ||
211 | * minimum amount of memory: | ||
212 | */ | ||
213 | if (end && (end - start) < NODE_MIN_SIZE) | ||
214 | return; | ||
215 | |||
216 | start = roundup(start, ZONE_ALIGN); | ||
217 | |||
218 | printk(KERN_INFO "Initmem setup node %d %016lx-%016lx\n", nodeid, | ||
219 | start, end); | ||
220 | |||
221 | start_pfn = start >> PAGE_SHIFT; | ||
222 | last_pfn = end >> PAGE_SHIFT; | ||
223 | |||
224 | node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size, | ||
225 | SMP_CACHE_BYTES); | ||
226 | if (node_data[nodeid] == NULL) | ||
227 | return; | ||
228 | nodedata_phys = __pa(node_data[nodeid]); | ||
229 | reserve_early(nodedata_phys, nodedata_phys + pgdat_size, "NODE_DATA"); | ||
230 | printk(KERN_INFO " NODE_DATA [%016lx - %016lx]\n", nodedata_phys, | ||
231 | nodedata_phys + pgdat_size - 1); | ||
232 | nid = phys_to_nid(nodedata_phys); | ||
233 | if (nid != nodeid) | ||
234 | printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nodeid, nid); | ||
235 | |||
236 | memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t)); | ||
237 | NODE_DATA(nodeid)->node_id = nodeid; | ||
238 | NODE_DATA(nodeid)->node_start_pfn = start_pfn; | ||
239 | NODE_DATA(nodeid)->node_spanned_pages = last_pfn - start_pfn; | ||
240 | |||
241 | #ifndef CONFIG_NO_BOOTMEM | ||
242 | NODE_DATA(nodeid)->bdata = &bootmem_node_data[nodeid]; | ||
243 | |||
244 | /* | ||
245 | * Find a place for the bootmem map | ||
246 | * nodedata_phys could be on other nodes by alloc_bootmem, | ||
247 | * so need to sure bootmap_start not to be small, otherwise | ||
248 | * early_node_mem will get that with find_e820_area instead | ||
249 | * of alloc_bootmem, that could clash with reserved range | ||
250 | */ | ||
251 | bootmap_pages = bootmem_bootmap_pages(last_pfn - start_pfn); | ||
252 | bootmap_start = roundup(nodedata_phys + pgdat_size, PAGE_SIZE); | ||
253 | /* | ||
254 | * SMP_CACHE_BYTES could be enough, but init_bootmem_node like | ||
255 | * to use that to align to PAGE_SIZE | ||
256 | */ | ||
257 | bootmap = early_node_mem(nodeid, bootmap_start, end, | ||
258 | bootmap_pages<<PAGE_SHIFT, PAGE_SIZE); | ||
259 | if (bootmap == NULL) { | ||
260 | free_early(nodedata_phys, nodedata_phys + pgdat_size); | ||
261 | node_data[nodeid] = NULL; | ||
262 | return; | ||
263 | } | ||
264 | bootmap_start = __pa(bootmap); | ||
265 | reserve_early(bootmap_start, bootmap_start+(bootmap_pages<<PAGE_SHIFT), | ||
266 | "BOOTMAP"); | ||
267 | |||
268 | bootmap_size = init_bootmem_node(NODE_DATA(nodeid), | ||
269 | bootmap_start >> PAGE_SHIFT, | ||
270 | start_pfn, last_pfn); | ||
271 | |||
272 | printk(KERN_INFO " bootmap [%016lx - %016lx] pages %lx\n", | ||
273 | bootmap_start, bootmap_start + bootmap_size - 1, | ||
274 | bootmap_pages); | ||
275 | nid = phys_to_nid(bootmap_start); | ||
276 | if (nid != nodeid) | ||
277 | printk(KERN_INFO " bootmap(%d) on node %d\n", nodeid, nid); | ||
278 | |||
279 | free_bootmem_with_active_regions(nodeid, end); | ||
280 | #endif | ||
281 | |||
282 | node_set_online(nodeid); | ||
283 | } | ||
284 | |||
285 | /* | ||
286 | * There are unfortunately some poorly designed mainboards around that | ||
287 | * only connect memory to a single CPU. This breaks the 1:1 cpu->node | ||
288 | * mapping. To avoid this fill in the mapping for all possible CPUs, | ||
289 | * as the number of CPUs is not known yet. We round robin the existing | ||
290 | * nodes. | ||
291 | */ | ||
292 | void __init numa_init_array(void) | ||
293 | { | ||
294 | int rr, i; | ||
295 | |||
296 | rr = first_node(node_online_map); | ||
297 | for (i = 0; i < nr_cpu_ids; i++) { | ||
298 | if (early_cpu_to_node(i) != NUMA_NO_NODE) | ||
299 | continue; | ||
300 | numa_set_node(i, rr); | ||
301 | rr = next_node(rr, node_online_map); | ||
302 | if (rr == MAX_NUMNODES) | ||
303 | rr = first_node(node_online_map); | ||
304 | } | ||
305 | } | ||
306 | |||
307 | #ifdef CONFIG_NUMA_EMU | ||
308 | /* Numa emulation */ | ||
309 | static struct bootnode nodes[MAX_NUMNODES] __initdata; | ||
310 | static struct bootnode physnodes[MAX_NUMNODES] __initdata; | ||
311 | static char *cmdline __initdata; | ||
312 | |||
313 | static int __init setup_physnodes(unsigned long start, unsigned long end, | ||
314 | int acpi, int k8) | ||
315 | { | ||
316 | int nr_nodes = 0; | ||
317 | int ret = 0; | ||
318 | int i; | ||
319 | |||
320 | #ifdef CONFIG_ACPI_NUMA | ||
321 | if (acpi) | ||
322 | nr_nodes = acpi_get_nodes(physnodes); | ||
323 | #endif | ||
324 | #ifdef CONFIG_K8_NUMA | ||
325 | if (k8) | ||
326 | nr_nodes = k8_get_nodes(physnodes); | ||
327 | #endif | ||
328 | /* | ||
329 | * Basic sanity checking on the physical node map: there may be errors | ||
330 | * if the SRAT or K8 incorrectly reported the topology or the mem= | ||
331 | * kernel parameter is used. | ||
332 | */ | ||
333 | for (i = 0; i < nr_nodes; i++) { | ||
334 | if (physnodes[i].start == physnodes[i].end) | ||
335 | continue; | ||
336 | if (physnodes[i].start > end) { | ||
337 | physnodes[i].end = physnodes[i].start; | ||
338 | continue; | ||
339 | } | ||
340 | if (physnodes[i].end < start) { | ||
341 | physnodes[i].start = physnodes[i].end; | ||
342 | continue; | ||
343 | } | ||
344 | if (physnodes[i].start < start) | ||
345 | physnodes[i].start = start; | ||
346 | if (physnodes[i].end > end) | ||
347 | physnodes[i].end = end; | ||
348 | } | ||
349 | |||
350 | /* | ||
351 | * Remove all nodes that have no memory or were truncated because of the | ||
352 | * limited address range. | ||
353 | */ | ||
354 | for (i = 0; i < nr_nodes; i++) { | ||
355 | if (physnodes[i].start == physnodes[i].end) | ||
356 | continue; | ||
357 | physnodes[ret].start = physnodes[i].start; | ||
358 | physnodes[ret].end = physnodes[i].end; | ||
359 | ret++; | ||
360 | } | ||
361 | |||
362 | /* | ||
363 | * If no physical topology was detected, a single node is faked to cover | ||
364 | * the entire address space. | ||
365 | */ | ||
366 | if (!ret) { | ||
367 | physnodes[ret].start = start; | ||
368 | physnodes[ret].end = end; | ||
369 | ret = 1; | ||
370 | } | ||
371 | return ret; | ||
372 | } | ||
373 | |||
374 | /* | ||
375 | * Setups up nid to range from addr to addr + size. If the end | ||
376 | * boundary is greater than max_addr, then max_addr is used instead. | ||
377 | * The return value is 0 if there is additional memory left for | ||
378 | * allocation past addr and -1 otherwise. addr is adjusted to be at | ||
379 | * the end of the node. | ||
380 | */ | ||
381 | static int __init setup_node_range(int nid, u64 *addr, u64 size, u64 max_addr) | ||
382 | { | ||
383 | int ret = 0; | ||
384 | nodes[nid].start = *addr; | ||
385 | *addr += size; | ||
386 | if (*addr >= max_addr) { | ||
387 | *addr = max_addr; | ||
388 | ret = -1; | ||
389 | } | ||
390 | nodes[nid].end = *addr; | ||
391 | node_set(nid, node_possible_map); | ||
392 | printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid, | ||
393 | nodes[nid].start, nodes[nid].end, | ||
394 | (nodes[nid].end - nodes[nid].start) >> 20); | ||
395 | return ret; | ||
396 | } | ||
397 | |||
398 | /* | ||
399 | * Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr | ||
400 | * to max_addr. The return value is the number of nodes allocated. | ||
401 | */ | ||
402 | static int __init split_nodes_interleave(u64 addr, u64 max_addr, | ||
403 | int nr_phys_nodes, int nr_nodes) | ||
404 | { | 10 | { |
405 | nodemask_t physnode_mask = NODE_MASK_NONE; | 11 | x86_numa_init(); |
406 | u64 size; | ||
407 | int big; | ||
408 | int ret = 0; | ||
409 | int i; | ||
410 | |||
411 | if (nr_nodes <= 0) | ||
412 | return -1; | ||
413 | if (nr_nodes > MAX_NUMNODES) { | ||
414 | pr_info("numa=fake=%d too large, reducing to %d\n", | ||
415 | nr_nodes, MAX_NUMNODES); | ||
416 | nr_nodes = MAX_NUMNODES; | ||
417 | } | ||
418 | |||
419 | size = (max_addr - addr - e820_hole_size(addr, max_addr)) / nr_nodes; | ||
420 | /* | ||
421 | * Calculate the number of big nodes that can be allocated as a result | ||
422 | * of consolidating the remainder. | ||
423 | */ | ||
424 | big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) / | ||
425 | FAKE_NODE_MIN_SIZE; | ||
426 | |||
427 | size &= FAKE_NODE_MIN_HASH_MASK; | ||
428 | if (!size) { | ||
429 | pr_err("Not enough memory for each node. " | ||
430 | "NUMA emulation disabled.\n"); | ||
431 | return -1; | ||
432 | } | ||
433 | |||
434 | for (i = 0; i < nr_phys_nodes; i++) | ||
435 | if (physnodes[i].start != physnodes[i].end) | ||
436 | node_set(i, physnode_mask); | ||
437 | |||
438 | /* | ||
439 | * Continue to fill physical nodes with fake nodes until there is no | ||
440 | * memory left on any of them. | ||
441 | */ | ||
442 | while (nodes_weight(physnode_mask)) { | ||
443 | for_each_node_mask(i, physnode_mask) { | ||
444 | u64 end = physnodes[i].start + size; | ||
445 | u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN); | ||
446 | |||
447 | if (ret < big) | ||
448 | end += FAKE_NODE_MIN_SIZE; | ||
449 | |||
450 | /* | ||
451 | * Continue to add memory to this fake node if its | ||
452 | * non-reserved memory is less than the per-node size. | ||
453 | */ | ||
454 | while (end - physnodes[i].start - | ||
455 | e820_hole_size(physnodes[i].start, end) < size) { | ||
456 | end += FAKE_NODE_MIN_SIZE; | ||
457 | if (end > physnodes[i].end) { | ||
458 | end = physnodes[i].end; | ||
459 | break; | ||
460 | } | ||
461 | } | ||
462 | |||
463 | /* | ||
464 | * If there won't be at least FAKE_NODE_MIN_SIZE of | ||
465 | * non-reserved memory in ZONE_DMA32 for the next node, | ||
466 | * this one must extend to the boundary. | ||
467 | */ | ||
468 | if (end < dma32_end && dma32_end - end - | ||
469 | e820_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE) | ||
470 | end = dma32_end; | ||
471 | |||
472 | /* | ||
473 | * If there won't be enough non-reserved memory for the | ||
474 | * next node, this one must extend to the end of the | ||
475 | * physical node. | ||
476 | */ | ||
477 | if (physnodes[i].end - end - | ||
478 | e820_hole_size(end, physnodes[i].end) < size) | ||
479 | end = physnodes[i].end; | ||
480 | |||
481 | /* | ||
482 | * Avoid allocating more nodes than requested, which can | ||
483 | * happen as a result of rounding down each node's size | ||
484 | * to FAKE_NODE_MIN_SIZE. | ||
485 | */ | ||
486 | if (nodes_weight(physnode_mask) + ret >= nr_nodes) | ||
487 | end = physnodes[i].end; | ||
488 | |||
489 | if (setup_node_range(ret++, &physnodes[i].start, | ||
490 | end - physnodes[i].start, | ||
491 | physnodes[i].end) < 0) | ||
492 | node_clear(i, physnode_mask); | ||
493 | } | ||
494 | } | ||
495 | return ret; | ||
496 | } | ||
497 | |||
498 | /* | ||
499 | * Returns the end address of a node so that there is at least `size' amount of | ||
500 | * non-reserved memory or `max_addr' is reached. | ||
501 | */ | ||
502 | static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size) | ||
503 | { | ||
504 | u64 end = start + size; | ||
505 | |||
506 | while (end - start - e820_hole_size(start, end) < size) { | ||
507 | end += FAKE_NODE_MIN_SIZE; | ||
508 | if (end > max_addr) { | ||
509 | end = max_addr; | ||
510 | break; | ||
511 | } | ||
512 | } | ||
513 | return end; | ||
514 | } | ||
515 | |||
516 | /* | ||
517 | * Sets up fake nodes of `size' interleaved over physical nodes ranging from | ||
518 | * `addr' to `max_addr'. The return value is the number of nodes allocated. | ||
519 | */ | ||
520 | static int __init split_nodes_size_interleave(u64 addr, u64 max_addr, u64 size) | ||
521 | { | ||
522 | nodemask_t physnode_mask = NODE_MASK_NONE; | ||
523 | u64 min_size; | ||
524 | int ret = 0; | ||
525 | int i; | ||
526 | |||
527 | if (!size) | ||
528 | return -1; | ||
529 | /* | ||
530 | * The limit on emulated nodes is MAX_NUMNODES, so the size per node is | ||
531 | * increased accordingly if the requested size is too small. This | ||
532 | * creates a uniform distribution of node sizes across the entire | ||
533 | * machine (but not necessarily over physical nodes). | ||
534 | */ | ||
535 | min_size = (max_addr - addr - e820_hole_size(addr, max_addr)) / | ||
536 | MAX_NUMNODES; | ||
537 | min_size = max(min_size, FAKE_NODE_MIN_SIZE); | ||
538 | if ((min_size & FAKE_NODE_MIN_HASH_MASK) < min_size) | ||
539 | min_size = (min_size + FAKE_NODE_MIN_SIZE) & | ||
540 | FAKE_NODE_MIN_HASH_MASK; | ||
541 | if (size < min_size) { | ||
542 | pr_err("Fake node size %LuMB too small, increasing to %LuMB\n", | ||
543 | size >> 20, min_size >> 20); | ||
544 | size = min_size; | ||
545 | } | ||
546 | size &= FAKE_NODE_MIN_HASH_MASK; | ||
547 | |||
548 | for (i = 0; i < MAX_NUMNODES; i++) | ||
549 | if (physnodes[i].start != physnodes[i].end) | ||
550 | node_set(i, physnode_mask); | ||
551 | /* | ||
552 | * Fill physical nodes with fake nodes of size until there is no memory | ||
553 | * left on any of them. | ||
554 | */ | ||
555 | while (nodes_weight(physnode_mask)) { | ||
556 | for_each_node_mask(i, physnode_mask) { | ||
557 | u64 dma32_end = MAX_DMA32_PFN << PAGE_SHIFT; | ||
558 | u64 end; | ||
559 | |||
560 | end = find_end_of_node(physnodes[i].start, | ||
561 | physnodes[i].end, size); | ||
562 | /* | ||
563 | * If there won't be at least FAKE_NODE_MIN_SIZE of | ||
564 | * non-reserved memory in ZONE_DMA32 for the next node, | ||
565 | * this one must extend to the boundary. | ||
566 | */ | ||
567 | if (end < dma32_end && dma32_end - end - | ||
568 | e820_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE) | ||
569 | end = dma32_end; | ||
570 | |||
571 | /* | ||
572 | * If there won't be enough non-reserved memory for the | ||
573 | * next node, this one must extend to the end of the | ||
574 | * physical node. | ||
575 | */ | ||
576 | if (physnodes[i].end - end - | ||
577 | e820_hole_size(end, physnodes[i].end) < size) | ||
578 | end = physnodes[i].end; | ||
579 | |||
580 | /* | ||
581 | * Setup the fake node that will be allocated as bootmem | ||
582 | * later. If setup_node_range() returns non-zero, there | ||
583 | * is no more memory available on this physical node. | ||
584 | */ | ||
585 | if (setup_node_range(ret++, &physnodes[i].start, | ||
586 | end - physnodes[i].start, | ||
587 | physnodes[i].end) < 0) | ||
588 | node_clear(i, physnode_mask); | ||
589 | } | ||
590 | } | ||
591 | return ret; | ||
592 | } | ||
593 | |||
594 | /* | ||
595 | * Sets up the system RAM area from start_pfn to last_pfn according to the | ||
596 | * numa=fake command-line option. | ||
597 | */ | ||
598 | static int __init numa_emulation(unsigned long start_pfn, | ||
599 | unsigned long last_pfn, int acpi, int k8) | ||
600 | { | ||
601 | u64 addr = start_pfn << PAGE_SHIFT; | ||
602 | u64 max_addr = last_pfn << PAGE_SHIFT; | ||
603 | int num_phys_nodes; | ||
604 | int num_nodes; | ||
605 | int i; | ||
606 | |||
607 | num_phys_nodes = setup_physnodes(addr, max_addr, acpi, k8); | ||
608 | /* | ||
609 | * If the numa=fake command-line contains a 'M' or 'G', it represents | ||
610 | * the fixed node size. Otherwise, if it is just a single number N, | ||
611 | * split the system RAM into N fake nodes. | ||
612 | */ | ||
613 | if (strchr(cmdline, 'M') || strchr(cmdline, 'G')) { | ||
614 | u64 size; | ||
615 | |||
616 | size = memparse(cmdline, &cmdline); | ||
617 | num_nodes = split_nodes_size_interleave(addr, max_addr, size); | ||
618 | } else { | ||
619 | unsigned long n; | ||
620 | |||
621 | n = simple_strtoul(cmdline, NULL, 0); | ||
622 | num_nodes = split_nodes_interleave(addr, max_addr, num_phys_nodes, n); | ||
623 | } | ||
624 | |||
625 | if (num_nodes < 0) | ||
626 | return num_nodes; | ||
627 | memnode_shift = compute_hash_shift(nodes, num_nodes, NULL); | ||
628 | if (memnode_shift < 0) { | ||
629 | memnode_shift = 0; | ||
630 | printk(KERN_ERR "No NUMA hash function found. NUMA emulation " | ||
631 | "disabled.\n"); | ||
632 | return -1; | ||
633 | } | ||
634 | |||
635 | /* | ||
636 | * We need to vacate all active ranges that may have been registered for | ||
637 | * the e820 memory map. | ||
638 | */ | ||
639 | remove_all_active_ranges(); | ||
640 | for_each_node_mask(i, node_possible_map) { | ||
641 | e820_register_active_regions(i, nodes[i].start >> PAGE_SHIFT, | ||
642 | nodes[i].end >> PAGE_SHIFT); | ||
643 | setup_node_bootmem(i, nodes[i].start, nodes[i].end); | ||
644 | } | ||
645 | acpi_fake_nodes(nodes, num_nodes); | ||
646 | numa_init_array(); | ||
647 | return 0; | ||
648 | } | ||
649 | #endif /* CONFIG_NUMA_EMU */ | ||
650 | |||
651 | void __init initmem_init(unsigned long start_pfn, unsigned long last_pfn, | ||
652 | int acpi, int k8) | ||
653 | { | ||
654 | int i; | ||
655 | |||
656 | nodes_clear(node_possible_map); | ||
657 | nodes_clear(node_online_map); | ||
658 | |||
659 | #ifdef CONFIG_NUMA_EMU | ||
660 | if (cmdline && !numa_emulation(start_pfn, last_pfn, acpi, k8)) | ||
661 | return; | ||
662 | nodes_clear(node_possible_map); | ||
663 | nodes_clear(node_online_map); | ||
664 | #endif | ||
665 | |||
666 | #ifdef CONFIG_ACPI_NUMA | ||
667 | if (!numa_off && acpi && !acpi_scan_nodes(start_pfn << PAGE_SHIFT, | ||
668 | last_pfn << PAGE_SHIFT)) | ||
669 | return; | ||
670 | nodes_clear(node_possible_map); | ||
671 | nodes_clear(node_online_map); | ||
672 | #endif | ||
673 | |||
674 | #ifdef CONFIG_K8_NUMA | ||
675 | if (!numa_off && k8 && !k8_scan_nodes()) | ||
676 | return; | ||
677 | nodes_clear(node_possible_map); | ||
678 | nodes_clear(node_online_map); | ||
679 | #endif | ||
680 | printk(KERN_INFO "%s\n", | ||
681 | numa_off ? "NUMA turned off" : "No NUMA configuration found"); | ||
682 | |||
683 | printk(KERN_INFO "Faking a node at %016lx-%016lx\n", | ||
684 | start_pfn << PAGE_SHIFT, | ||
685 | last_pfn << PAGE_SHIFT); | ||
686 | /* setup dummy node covering all memory */ | ||
687 | memnode_shift = 63; | ||
688 | memnodemap = memnode.embedded_map; | ||
689 | memnodemap[0] = 0; | ||
690 | node_set_online(0); | ||
691 | node_set(0, node_possible_map); | ||
692 | for (i = 0; i < nr_cpu_ids; i++) | ||
693 | numa_set_node(i, 0); | ||
694 | e820_register_active_regions(0, start_pfn, last_pfn); | ||
695 | setup_node_bootmem(0, start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT); | ||
696 | } | 12 | } |
697 | 13 | ||
698 | unsigned long __init numa_free_all_bootmem(void) | 14 | unsigned long __init numa_free_all_bootmem(void) |
@@ -703,199 +19,7 @@ unsigned long __init numa_free_all_bootmem(void) | |||
703 | for_each_online_node(i) | 19 | for_each_online_node(i) |
704 | pages += free_all_bootmem_node(NODE_DATA(i)); | 20 | pages += free_all_bootmem_node(NODE_DATA(i)); |
705 | 21 | ||
706 | #ifdef CONFIG_NO_BOOTMEM | ||
707 | pages += free_all_memory_core_early(MAX_NUMNODES); | 22 | pages += free_all_memory_core_early(MAX_NUMNODES); |
708 | #endif | ||
709 | 23 | ||
710 | return pages; | 24 | return pages; |
711 | } | 25 | } |
712 | |||
713 | static __init int numa_setup(char *opt) | ||
714 | { | ||
715 | if (!opt) | ||
716 | return -EINVAL; | ||
717 | if (!strncmp(opt, "off", 3)) | ||
718 | numa_off = 1; | ||
719 | #ifdef CONFIG_NUMA_EMU | ||
720 | if (!strncmp(opt, "fake=", 5)) | ||
721 | cmdline = opt + 5; | ||
722 | #endif | ||
723 | #ifdef CONFIG_ACPI_NUMA | ||
724 | if (!strncmp(opt, "noacpi", 6)) | ||
725 | acpi_numa = -1; | ||
726 | #endif | ||
727 | return 0; | ||
728 | } | ||
729 | early_param("numa", numa_setup); | ||
730 | |||
731 | #ifdef CONFIG_NUMA | ||
732 | |||
733 | static __init int find_near_online_node(int node) | ||
734 | { | ||
735 | int n, val; | ||
736 | int min_val = INT_MAX; | ||
737 | int best_node = -1; | ||
738 | |||
739 | for_each_online_node(n) { | ||
740 | val = node_distance(node, n); | ||
741 | |||
742 | if (val < min_val) { | ||
743 | min_val = val; | ||
744 | best_node = n; | ||
745 | } | ||
746 | } | ||
747 | |||
748 | return best_node; | ||
749 | } | ||
750 | |||
751 | /* | ||
752 | * Setup early cpu_to_node. | ||
753 | * | ||
754 | * Populate cpu_to_node[] only if x86_cpu_to_apicid[], | ||
755 | * and apicid_to_node[] tables have valid entries for a CPU. | ||
756 | * This means we skip cpu_to_node[] initialisation for NUMA | ||
757 | * emulation and faking node case (when running a kernel compiled | ||
758 | * for NUMA on a non NUMA box), which is OK as cpu_to_node[] | ||
759 | * is already initialized in a round robin manner at numa_init_array, | ||
760 | * prior to this call, and this initialization is good enough | ||
761 | * for the fake NUMA cases. | ||
762 | * | ||
763 | * Called before the per_cpu areas are setup. | ||
764 | */ | ||
765 | void __init init_cpu_to_node(void) | ||
766 | { | ||
767 | int cpu; | ||
768 | u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid); | ||
769 | |||
770 | BUG_ON(cpu_to_apicid == NULL); | ||
771 | |||
772 | for_each_possible_cpu(cpu) { | ||
773 | int node; | ||
774 | u16 apicid = cpu_to_apicid[cpu]; | ||
775 | |||
776 | if (apicid == BAD_APICID) | ||
777 | continue; | ||
778 | node = apicid_to_node[apicid]; | ||
779 | if (node == NUMA_NO_NODE) | ||
780 | continue; | ||
781 | if (!node_online(node)) | ||
782 | node = find_near_online_node(node); | ||
783 | numa_set_node(cpu, node); | ||
784 | } | ||
785 | } | ||
786 | #endif | ||
787 | |||
788 | |||
789 | void __cpuinit numa_set_node(int cpu, int node) | ||
790 | { | ||
791 | int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map); | ||
792 | |||
793 | /* early setting, no percpu area yet */ | ||
794 | if (cpu_to_node_map) { | ||
795 | cpu_to_node_map[cpu] = node; | ||
796 | return; | ||
797 | } | ||
798 | |||
799 | #ifdef CONFIG_DEBUG_PER_CPU_MAPS | ||
800 | if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) { | ||
801 | printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu); | ||
802 | dump_stack(); | ||
803 | return; | ||
804 | } | ||
805 | #endif | ||
806 | per_cpu(x86_cpu_to_node_map, cpu) = node; | ||
807 | |||
808 | if (node != NUMA_NO_NODE) | ||
809 | set_cpu_numa_node(cpu, node); | ||
810 | } | ||
811 | |||
812 | void __cpuinit numa_clear_node(int cpu) | ||
813 | { | ||
814 | numa_set_node(cpu, NUMA_NO_NODE); | ||
815 | } | ||
816 | |||
817 | #ifndef CONFIG_DEBUG_PER_CPU_MAPS | ||
818 | |||
819 | void __cpuinit numa_add_cpu(int cpu) | ||
820 | { | ||
821 | cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); | ||
822 | } | ||
823 | |||
824 | void __cpuinit numa_remove_cpu(int cpu) | ||
825 | { | ||
826 | cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); | ||
827 | } | ||
828 | |||
829 | #else /* CONFIG_DEBUG_PER_CPU_MAPS */ | ||
830 | |||
831 | /* | ||
832 | * --------- debug versions of the numa functions --------- | ||
833 | */ | ||
834 | static void __cpuinit numa_set_cpumask(int cpu, int enable) | ||
835 | { | ||
836 | int node = early_cpu_to_node(cpu); | ||
837 | struct cpumask *mask; | ||
838 | char buf[64]; | ||
839 | |||
840 | mask = node_to_cpumask_map[node]; | ||
841 | if (mask == NULL) { | ||
842 | printk(KERN_ERR "node_to_cpumask_map[%i] NULL\n", node); | ||
843 | dump_stack(); | ||
844 | return; | ||
845 | } | ||
846 | |||
847 | if (enable) | ||
848 | cpumask_set_cpu(cpu, mask); | ||
849 | else | ||
850 | cpumask_clear_cpu(cpu, mask); | ||
851 | |||
852 | cpulist_scnprintf(buf, sizeof(buf), mask); | ||
853 | printk(KERN_DEBUG "%s cpu %d node %d: mask now %s\n", | ||
854 | enable ? "numa_add_cpu" : "numa_remove_cpu", cpu, node, buf); | ||
855 | } | ||
856 | |||
857 | void __cpuinit numa_add_cpu(int cpu) | ||
858 | { | ||
859 | numa_set_cpumask(cpu, 1); | ||
860 | } | ||
861 | |||
862 | void __cpuinit numa_remove_cpu(int cpu) | ||
863 | { | ||
864 | numa_set_cpumask(cpu, 0); | ||
865 | } | ||
866 | |||
867 | int __cpu_to_node(int cpu) | ||
868 | { | ||
869 | if (early_per_cpu_ptr(x86_cpu_to_node_map)) { | ||
870 | printk(KERN_WARNING | ||
871 | "cpu_to_node(%d): usage too early!\n", cpu); | ||
872 | dump_stack(); | ||
873 | return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; | ||
874 | } | ||
875 | return per_cpu(x86_cpu_to_node_map, cpu); | ||
876 | } | ||
877 | EXPORT_SYMBOL(__cpu_to_node); | ||
878 | |||
879 | /* | ||
880 | * Same function as cpu_to_node() but used if called before the | ||
881 | * per_cpu areas are setup. | ||
882 | */ | ||
883 | int early_cpu_to_node(int cpu) | ||
884 | { | ||
885 | if (early_per_cpu_ptr(x86_cpu_to_node_map)) | ||
886 | return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; | ||
887 | |||
888 | if (!cpu_possible(cpu)) { | ||
889 | printk(KERN_WARNING | ||
890 | "early_cpu_to_node(%d): no per_cpu area!\n", cpu); | ||
891 | dump_stack(); | ||
892 | return NUMA_NO_NODE; | ||
893 | } | ||
894 | return per_cpu(x86_cpu_to_node_map, cpu); | ||
895 | } | ||
896 | |||
897 | /* | ||
898 | * --------- end of debug versions of the numa functions --------- | ||
899 | */ | ||
900 | |||
901 | #endif /* CONFIG_DEBUG_PER_CPU_MAPS */ | ||