aboutsummaryrefslogtreecommitdiffstats
path: root/arch/powerpc/platforms/iseries
diff options
context:
space:
mode:
authorStephen Rothwell <sfr@canb.auug.org.au>2005-09-27 04:44:42 -0400
committerStephen Rothwell <sfr@canb.auug.org.au>2005-09-27 04:44:42 -0400
commitc8b84976f86adcd10c221d398e1d0be2b778f3c8 (patch)
tree54924b199234c014ad6d70269e24c59041a69432 /arch/powerpc/platforms/iseries
parent2960eb661a82131b9492cdd1b6500a5f74ccc394 (diff)
powerpc: move iSeries_setup.[ch] and mf.c into platforms/iseries
iSeries_setup.c becomes setup.c iSeries_setup.h becomes setup.h mf.c retains its name Also moved iSeries_[gs]et_rtc_time and iSeries_get_boot_time into mf.c since they are just small wrappers around mf_ functions. Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Diffstat (limited to 'arch/powerpc/platforms/iseries')
-rw-r--r--arch/powerpc/platforms/iseries/Makefile2
-rw-r--r--arch/powerpc/platforms/iseries/mf.c1316
-rw-r--r--arch/powerpc/platforms/iseries/setup.c1006
-rw-r--r--arch/powerpc/platforms/iseries/setup.h24
4 files changed, 2347 insertions, 1 deletions
diff --git a/arch/powerpc/platforms/iseries/Makefile b/arch/powerpc/platforms/iseries/Makefile
index 095471d50d9f..f5e11907cab1 100644
--- a/arch/powerpc/platforms/iseries/Makefile
+++ b/arch/powerpc/platforms/iseries/Makefile
@@ -1 +1 @@
obj-$(CONFIG_PPC_ISERIES) += hvcall.o hvlpconfig.o lpardata.o obj-y += hvcall.o hvlpconfig.o lpardata.o setup.o mf.o
diff --git a/arch/powerpc/platforms/iseries/mf.c b/arch/powerpc/platforms/iseries/mf.c
new file mode 100644
index 000000000000..82f5abab9afa
--- /dev/null
+++ b/arch/powerpc/platforms/iseries/mf.c
@@ -0,0 +1,1316 @@
1/*
2 * Copyright (C) 2001 Troy D. Armstrong IBM Corporation
3 * Copyright (C) 2004-2005 Stephen Rothwell IBM Corporation
4 *
5 * This modules exists as an interface between a Linux secondary partition
6 * running on an iSeries and the primary partition's Virtual Service
7 * Processor (VSP) object. The VSP has final authority over powering on/off
8 * all partitions in the iSeries. It also provides miscellaneous low-level
9 * machine facility type operations.
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 */
26
27#include <linux/types.h>
28#include <linux/errno.h>
29#include <linux/kernel.h>
30#include <linux/init.h>
31#include <linux/completion.h>
32#include <linux/delay.h>
33#include <linux/dma-mapping.h>
34#include <linux/bcd.h>
35
36#include <asm/time.h>
37#include <asm/uaccess.h>
38#include <asm/paca.h>
39#include <asm/iSeries/vio.h>
40#include <asm/iSeries/mf.h>
41#include <asm/iSeries/HvLpConfig.h>
42#include <asm/iSeries/ItLpQueue.h>
43
44#include "setup.h"
45
46extern int piranha_simulator;
47
48/*
49 * This is the structure layout for the Machine Facilites LPAR event
50 * flows.
51 */
52struct vsp_cmd_data {
53 u64 token;
54 u16 cmd;
55 HvLpIndex lp_index;
56 u8 result_code;
57 u32 reserved;
58 union {
59 u64 state; /* GetStateOut */
60 u64 ipl_type; /* GetIplTypeOut, Function02SelectIplTypeIn */
61 u64 ipl_mode; /* GetIplModeOut, Function02SelectIplModeIn */
62 u64 page[4]; /* GetSrcHistoryIn */
63 u64 flag; /* GetAutoIplWhenPrimaryIplsOut,
64 SetAutoIplWhenPrimaryIplsIn,
65 WhiteButtonPowerOffIn,
66 Function08FastPowerOffIn,
67 IsSpcnRackPowerIncompleteOut */
68 struct {
69 u64 token;
70 u64 address_type;
71 u64 side;
72 u32 length;
73 u32 offset;
74 } kern; /* SetKernelImageIn, GetKernelImageIn,
75 SetKernelCmdLineIn, GetKernelCmdLineIn */
76 u32 length_out; /* GetKernelImageOut, GetKernelCmdLineOut */
77 u8 reserved[80];
78 } sub_data;
79};
80
81struct vsp_rsp_data {
82 struct completion com;
83 struct vsp_cmd_data *response;
84};
85
86struct alloc_data {
87 u16 size;
88 u16 type;
89 u32 count;
90 u16 reserved1;
91 u8 reserved2;
92 HvLpIndex target_lp;
93};
94
95struct ce_msg_data;
96
97typedef void (*ce_msg_comp_hdlr)(void *token, struct ce_msg_data *vsp_cmd_rsp);
98
99struct ce_msg_comp_data {
100 ce_msg_comp_hdlr handler;
101 void *token;
102};
103
104struct ce_msg_data {
105 u8 ce_msg[12];
106 char reserved[4];
107 struct ce_msg_comp_data *completion;
108};
109
110struct io_mf_lp_event {
111 struct HvLpEvent hp_lp_event;
112 u16 subtype_result_code;
113 u16 reserved1;
114 u32 reserved2;
115 union {
116 struct alloc_data alloc;
117 struct ce_msg_data ce_msg;
118 struct vsp_cmd_data vsp_cmd;
119 } data;
120};
121
122#define subtype_data(a, b, c, d) \
123 (((a) << 24) + ((b) << 16) + ((c) << 8) + (d))
124
125/*
126 * All outgoing event traffic is kept on a FIFO queue. The first
127 * pointer points to the one that is outstanding, and all new
128 * requests get stuck on the end. Also, we keep a certain number of
129 * preallocated pending events so that we can operate very early in
130 * the boot up sequence (before kmalloc is ready).
131 */
132struct pending_event {
133 struct pending_event *next;
134 struct io_mf_lp_event event;
135 MFCompleteHandler hdlr;
136 char dma_data[72];
137 unsigned dma_data_length;
138 unsigned remote_address;
139};
140static spinlock_t pending_event_spinlock;
141static struct pending_event *pending_event_head;
142static struct pending_event *pending_event_tail;
143static struct pending_event *pending_event_avail;
144static struct pending_event pending_event_prealloc[16];
145
146/*
147 * Put a pending event onto the available queue, so it can get reused.
148 * Attention! You must have the pending_event_spinlock before calling!
149 */
150static void free_pending_event(struct pending_event *ev)
151{
152 if (ev != NULL) {
153 ev->next = pending_event_avail;
154 pending_event_avail = ev;
155 }
156}
157
158/*
159 * Enqueue the outbound event onto the stack. If the queue was
160 * empty to begin with, we must also issue it via the Hypervisor
161 * interface. There is a section of code below that will touch
162 * the first stack pointer without the protection of the pending_event_spinlock.
163 * This is OK, because we know that nobody else will be modifying
164 * the first pointer when we do this.
165 */
166static int signal_event(struct pending_event *ev)
167{
168 int rc = 0;
169 unsigned long flags;
170 int go = 1;
171 struct pending_event *ev1;
172 HvLpEvent_Rc hv_rc;
173
174 /* enqueue the event */
175 if (ev != NULL) {
176 ev->next = NULL;
177 spin_lock_irqsave(&pending_event_spinlock, flags);
178 if (pending_event_head == NULL)
179 pending_event_head = ev;
180 else {
181 go = 0;
182 pending_event_tail->next = ev;
183 }
184 pending_event_tail = ev;
185 spin_unlock_irqrestore(&pending_event_spinlock, flags);
186 }
187
188 /* send the event */
189 while (go) {
190 go = 0;
191
192 /* any DMA data to send beforehand? */
193 if (pending_event_head->dma_data_length > 0)
194 HvCallEvent_dmaToSp(pending_event_head->dma_data,
195 pending_event_head->remote_address,
196 pending_event_head->dma_data_length,
197 HvLpDma_Direction_LocalToRemote);
198
199 hv_rc = HvCallEvent_signalLpEvent(
200 &pending_event_head->event.hp_lp_event);
201 if (hv_rc != HvLpEvent_Rc_Good) {
202 printk(KERN_ERR "mf.c: HvCallEvent_signalLpEvent() "
203 "failed with %d\n", (int)hv_rc);
204
205 spin_lock_irqsave(&pending_event_spinlock, flags);
206 ev1 = pending_event_head;
207 pending_event_head = pending_event_head->next;
208 if (pending_event_head != NULL)
209 go = 1;
210 spin_unlock_irqrestore(&pending_event_spinlock, flags);
211
212 if (ev1 == ev)
213 rc = -EIO;
214 else if (ev1->hdlr != NULL)
215 (*ev1->hdlr)((void *)ev1->event.hp_lp_event.xCorrelationToken, -EIO);
216
217 spin_lock_irqsave(&pending_event_spinlock, flags);
218 free_pending_event(ev1);
219 spin_unlock_irqrestore(&pending_event_spinlock, flags);
220 }
221 }
222
223 return rc;
224}
225
226/*
227 * Allocate a new pending_event structure, and initialize it.
228 */
229static struct pending_event *new_pending_event(void)
230{
231 struct pending_event *ev = NULL;
232 HvLpIndex primary_lp = HvLpConfig_getPrimaryLpIndex();
233 unsigned long flags;
234 struct HvLpEvent *hev;
235
236 spin_lock_irqsave(&pending_event_spinlock, flags);
237 if (pending_event_avail != NULL) {
238 ev = pending_event_avail;
239 pending_event_avail = pending_event_avail->next;
240 }
241 spin_unlock_irqrestore(&pending_event_spinlock, flags);
242 if (ev == NULL) {
243 ev = kmalloc(sizeof(struct pending_event), GFP_ATOMIC);
244 if (ev == NULL) {
245 printk(KERN_ERR "mf.c: unable to kmalloc %ld bytes\n",
246 sizeof(struct pending_event));
247 return NULL;
248 }
249 }
250 memset(ev, 0, sizeof(struct pending_event));
251 hev = &ev->event.hp_lp_event;
252 hev->xFlags.xValid = 1;
253 hev->xFlags.xAckType = HvLpEvent_AckType_ImmediateAck;
254 hev->xFlags.xAckInd = HvLpEvent_AckInd_DoAck;
255 hev->xFlags.xFunction = HvLpEvent_Function_Int;
256 hev->xType = HvLpEvent_Type_MachineFac;
257 hev->xSourceLp = HvLpConfig_getLpIndex();
258 hev->xTargetLp = primary_lp;
259 hev->xSizeMinus1 = sizeof(ev->event) - 1;
260 hev->xRc = HvLpEvent_Rc_Good;
261 hev->xSourceInstanceId = HvCallEvent_getSourceLpInstanceId(primary_lp,
262 HvLpEvent_Type_MachineFac);
263 hev->xTargetInstanceId = HvCallEvent_getTargetLpInstanceId(primary_lp,
264 HvLpEvent_Type_MachineFac);
265
266 return ev;
267}
268
269static int signal_vsp_instruction(struct vsp_cmd_data *vsp_cmd)
270{
271 struct pending_event *ev = new_pending_event();
272 int rc;
273 struct vsp_rsp_data response;
274
275 if (ev == NULL)
276 return -ENOMEM;
277
278 init_completion(&response.com);
279 response.response = vsp_cmd;
280 ev->event.hp_lp_event.xSubtype = 6;
281 ev->event.hp_lp_event.x.xSubtypeData =
282 subtype_data('M', 'F', 'V', 'I');
283 ev->event.data.vsp_cmd.token = (u64)&response;
284 ev->event.data.vsp_cmd.cmd = vsp_cmd->cmd;
285 ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
286 ev->event.data.vsp_cmd.result_code = 0xFF;
287 ev->event.data.vsp_cmd.reserved = 0;
288 memcpy(&(ev->event.data.vsp_cmd.sub_data),
289 &(vsp_cmd->sub_data), sizeof(vsp_cmd->sub_data));
290 mb();
291
292 rc = signal_event(ev);
293 if (rc == 0)
294 wait_for_completion(&response.com);
295 return rc;
296}
297
298
299/*
300 * Send a 12-byte CE message to the primary partition VSP object
301 */
302static int signal_ce_msg(char *ce_msg, struct ce_msg_comp_data *completion)
303{
304 struct pending_event *ev = new_pending_event();
305
306 if (ev == NULL)
307 return -ENOMEM;
308
309 ev->event.hp_lp_event.xSubtype = 0;
310 ev->event.hp_lp_event.x.xSubtypeData =
311 subtype_data('M', 'F', 'C', 'E');
312 memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
313 ev->event.data.ce_msg.completion = completion;
314 return signal_event(ev);
315}
316
317/*
318 * Send a 12-byte CE message (with no data) to the primary partition VSP object
319 */
320static int signal_ce_msg_simple(u8 ce_op, struct ce_msg_comp_data *completion)
321{
322 u8 ce_msg[12];
323
324 memset(ce_msg, 0, sizeof(ce_msg));
325 ce_msg[3] = ce_op;
326 return signal_ce_msg(ce_msg, completion);
327}
328
329/*
330 * Send a 12-byte CE message and DMA data to the primary partition VSP object
331 */
332static int dma_and_signal_ce_msg(char *ce_msg,
333 struct ce_msg_comp_data *completion, void *dma_data,
334 unsigned dma_data_length, unsigned remote_address)
335{
336 struct pending_event *ev = new_pending_event();
337
338 if (ev == NULL)
339 return -ENOMEM;
340
341 ev->event.hp_lp_event.xSubtype = 0;
342 ev->event.hp_lp_event.x.xSubtypeData =
343 subtype_data('M', 'F', 'C', 'E');
344 memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
345 ev->event.data.ce_msg.completion = completion;
346 memcpy(ev->dma_data, dma_data, dma_data_length);
347 ev->dma_data_length = dma_data_length;
348 ev->remote_address = remote_address;
349 return signal_event(ev);
350}
351
352/*
353 * Initiate a nice (hopefully) shutdown of Linux. We simply are
354 * going to try and send the init process a SIGINT signal. If
355 * this fails (why?), we'll simply force it off in a not-so-nice
356 * manner.
357 */
358static int shutdown(void)
359{
360 int rc = kill_proc(1, SIGINT, 1);
361
362 if (rc) {
363 printk(KERN_ALERT "mf.c: SIGINT to init failed (%d), "
364 "hard shutdown commencing\n", rc);
365 mf_power_off();
366 } else
367 printk(KERN_INFO "mf.c: init has been successfully notified "
368 "to proceed with shutdown\n");
369 return rc;
370}
371
372/*
373 * The primary partition VSP object is sending us a new
374 * event flow. Handle it...
375 */
376static void handle_int(struct io_mf_lp_event *event)
377{
378 struct ce_msg_data *ce_msg_data;
379 struct ce_msg_data *pce_msg_data;
380 unsigned long flags;
381 struct pending_event *pev;
382
383 /* ack the interrupt */
384 event->hp_lp_event.xRc = HvLpEvent_Rc_Good;
385 HvCallEvent_ackLpEvent(&event->hp_lp_event);
386
387 /* process interrupt */
388 switch (event->hp_lp_event.xSubtype) {
389 case 0: /* CE message */
390 ce_msg_data = &event->data.ce_msg;
391 switch (ce_msg_data->ce_msg[3]) {
392 case 0x5B: /* power control notification */
393 if ((ce_msg_data->ce_msg[5] & 0x20) != 0) {
394 printk(KERN_INFO "mf.c: Commencing partition shutdown\n");
395 if (shutdown() == 0)
396 signal_ce_msg_simple(0xDB, NULL);
397 }
398 break;
399 case 0xC0: /* get time */
400 spin_lock_irqsave(&pending_event_spinlock, flags);
401 pev = pending_event_head;
402 if (pev != NULL)
403 pending_event_head = pending_event_head->next;
404 spin_unlock_irqrestore(&pending_event_spinlock, flags);
405 if (pev == NULL)
406 break;
407 pce_msg_data = &pev->event.data.ce_msg;
408 if (pce_msg_data->ce_msg[3] != 0x40)
409 break;
410 if (pce_msg_data->completion != NULL) {
411 ce_msg_comp_hdlr handler =
412 pce_msg_data->completion->handler;
413 void *token = pce_msg_data->completion->token;
414
415 if (handler != NULL)
416 (*handler)(token, ce_msg_data);
417 }
418 spin_lock_irqsave(&pending_event_spinlock, flags);
419 free_pending_event(pev);
420 spin_unlock_irqrestore(&pending_event_spinlock, flags);
421 /* send next waiting event */
422 if (pending_event_head != NULL)
423 signal_event(NULL);
424 break;
425 }
426 break;
427 case 1: /* IT sys shutdown */
428 printk(KERN_INFO "mf.c: Commencing system shutdown\n");
429 shutdown();
430 break;
431 }
432}
433
434/*
435 * The primary partition VSP object is acknowledging the receipt
436 * of a flow we sent to them. If there are other flows queued
437 * up, we must send another one now...
438 */
439static void handle_ack(struct io_mf_lp_event *event)
440{
441 unsigned long flags;
442 struct pending_event *two = NULL;
443 unsigned long free_it = 0;
444 struct ce_msg_data *ce_msg_data;
445 struct ce_msg_data *pce_msg_data;
446 struct vsp_rsp_data *rsp;
447
448 /* handle current event */
449 if (pending_event_head == NULL) {
450 printk(KERN_ERR "mf.c: stack empty for receiving ack\n");
451 return;
452 }
453
454 switch (event->hp_lp_event.xSubtype) {
455 case 0: /* CE msg */
456 ce_msg_data = &event->data.ce_msg;
457 if (ce_msg_data->ce_msg[3] != 0x40) {
458 free_it = 1;
459 break;
460 }
461 if (ce_msg_data->ce_msg[2] == 0)
462 break;
463 free_it = 1;
464 pce_msg_data = &pending_event_head->event.data.ce_msg;
465 if (pce_msg_data->completion != NULL) {
466 ce_msg_comp_hdlr handler =
467 pce_msg_data->completion->handler;
468 void *token = pce_msg_data->completion->token;
469
470 if (handler != NULL)
471 (*handler)(token, ce_msg_data);
472 }
473 break;
474 case 4: /* allocate */
475 case 5: /* deallocate */
476 if (pending_event_head->hdlr != NULL)
477 (*pending_event_head->hdlr)((void *)event->hp_lp_event.xCorrelationToken, event->data.alloc.count);
478 free_it = 1;
479 break;
480 case 6:
481 free_it = 1;
482 rsp = (struct vsp_rsp_data *)event->data.vsp_cmd.token;
483 if (rsp == NULL) {
484 printk(KERN_ERR "mf.c: no rsp\n");
485 break;
486 }
487 if (rsp->response != NULL)
488 memcpy(rsp->response, &event->data.vsp_cmd,
489 sizeof(event->data.vsp_cmd));
490 complete(&rsp->com);
491 break;
492 }
493
494 /* remove from queue */
495 spin_lock_irqsave(&pending_event_spinlock, flags);
496 if ((pending_event_head != NULL) && (free_it == 1)) {
497 struct pending_event *oldHead = pending_event_head;
498
499 pending_event_head = pending_event_head->next;
500 two = pending_event_head;
501 free_pending_event(oldHead);
502 }
503 spin_unlock_irqrestore(&pending_event_spinlock, flags);
504
505 /* send next waiting event */
506 if (two != NULL)
507 signal_event(NULL);
508}
509
510/*
511 * This is the generic event handler we are registering with
512 * the Hypervisor. Ensure the flows are for us, and then
513 * parse it enough to know if it is an interrupt or an
514 * acknowledge.
515 */
516static void hv_handler(struct HvLpEvent *event, struct pt_regs *regs)
517{
518 if ((event != NULL) && (event->xType == HvLpEvent_Type_MachineFac)) {
519 switch(event->xFlags.xFunction) {
520 case HvLpEvent_Function_Ack:
521 handle_ack((struct io_mf_lp_event *)event);
522 break;
523 case HvLpEvent_Function_Int:
524 handle_int((struct io_mf_lp_event *)event);
525 break;
526 default:
527 printk(KERN_ERR "mf.c: non ack/int event received\n");
528 break;
529 }
530 } else
531 printk(KERN_ERR "mf.c: alien event received\n");
532}
533
534/*
535 * Global kernel interface to allocate and seed events into the
536 * Hypervisor.
537 */
538void mf_allocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
539 unsigned size, unsigned count, MFCompleteHandler hdlr,
540 void *user_token)
541{
542 struct pending_event *ev = new_pending_event();
543 int rc;
544
545 if (ev == NULL) {
546 rc = -ENOMEM;
547 } else {
548 ev->event.hp_lp_event.xSubtype = 4;
549 ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
550 ev->event.hp_lp_event.x.xSubtypeData =
551 subtype_data('M', 'F', 'M', 'A');
552 ev->event.data.alloc.target_lp = target_lp;
553 ev->event.data.alloc.type = type;
554 ev->event.data.alloc.size = size;
555 ev->event.data.alloc.count = count;
556 ev->hdlr = hdlr;
557 rc = signal_event(ev);
558 }
559 if ((rc != 0) && (hdlr != NULL))
560 (*hdlr)(user_token, rc);
561}
562EXPORT_SYMBOL(mf_allocate_lp_events);
563
564/*
565 * Global kernel interface to unseed and deallocate events already in
566 * Hypervisor.
567 */
568void mf_deallocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
569 unsigned count, MFCompleteHandler hdlr, void *user_token)
570{
571 struct pending_event *ev = new_pending_event();
572 int rc;
573
574 if (ev == NULL)
575 rc = -ENOMEM;
576 else {
577 ev->event.hp_lp_event.xSubtype = 5;
578 ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
579 ev->event.hp_lp_event.x.xSubtypeData =
580 subtype_data('M', 'F', 'M', 'D');
581 ev->event.data.alloc.target_lp = target_lp;
582 ev->event.data.alloc.type = type;
583 ev->event.data.alloc.count = count;
584 ev->hdlr = hdlr;
585 rc = signal_event(ev);
586 }
587 if ((rc != 0) && (hdlr != NULL))
588 (*hdlr)(user_token, rc);
589}
590EXPORT_SYMBOL(mf_deallocate_lp_events);
591
592/*
593 * Global kernel interface to tell the VSP object in the primary
594 * partition to power this partition off.
595 */
596void mf_power_off(void)
597{
598 printk(KERN_INFO "mf.c: Down it goes...\n");
599 signal_ce_msg_simple(0x4d, NULL);
600 for (;;)
601 ;
602}
603
604/*
605 * Global kernel interface to tell the VSP object in the primary
606 * partition to reboot this partition.
607 */
608void mf_reboot(void)
609{
610 printk(KERN_INFO "mf.c: Preparing to bounce...\n");
611 signal_ce_msg_simple(0x4e, NULL);
612 for (;;)
613 ;
614}
615
616/*
617 * Display a single word SRC onto the VSP control panel.
618 */
619void mf_display_src(u32 word)
620{
621 u8 ce[12];
622
623 memset(ce, 0, sizeof(ce));
624 ce[3] = 0x4a;
625 ce[7] = 0x01;
626 ce[8] = word >> 24;
627 ce[9] = word >> 16;
628 ce[10] = word >> 8;
629 ce[11] = word;
630 signal_ce_msg(ce, NULL);
631}
632
633/*
634 * Display a single word SRC of the form "PROGXXXX" on the VSP control panel.
635 */
636void mf_display_progress(u16 value)
637{
638 u8 ce[12];
639 u8 src[72];
640
641 memcpy(ce, "\x00\x00\x04\x4A\x00\x00\x00\x48\x00\x00\x00\x00", 12);
642 memcpy(src, "\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00"
643 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
644 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
645 "\x00\x00\x00\x00PROGxxxx ",
646 72);
647 src[6] = value >> 8;
648 src[7] = value & 255;
649 src[44] = "0123456789ABCDEF"[(value >> 12) & 15];
650 src[45] = "0123456789ABCDEF"[(value >> 8) & 15];
651 src[46] = "0123456789ABCDEF"[(value >> 4) & 15];
652 src[47] = "0123456789ABCDEF"[value & 15];
653 dma_and_signal_ce_msg(ce, NULL, src, sizeof(src), 9 * 64 * 1024);
654}
655
656/*
657 * Clear the VSP control panel. Used to "erase" an SRC that was
658 * previously displayed.
659 */
660void mf_clear_src(void)
661{
662 signal_ce_msg_simple(0x4b, NULL);
663}
664
665/*
666 * Initialization code here.
667 */
668void mf_init(void)
669{
670 int i;
671
672 /* initialize */
673 spin_lock_init(&pending_event_spinlock);
674 for (i = 0;
675 i < sizeof(pending_event_prealloc) / sizeof(*pending_event_prealloc);
676 ++i)
677 free_pending_event(&pending_event_prealloc[i]);
678 HvLpEvent_registerHandler(HvLpEvent_Type_MachineFac, &hv_handler);
679
680 /* virtual continue ack */
681 signal_ce_msg_simple(0x57, NULL);
682
683 /* initialization complete */
684 printk(KERN_NOTICE "mf.c: iSeries Linux LPAR Machine Facilities "
685 "initialized\n");
686}
687
688struct rtc_time_data {
689 struct completion com;
690 struct ce_msg_data ce_msg;
691 int rc;
692};
693
694static void get_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
695{
696 struct rtc_time_data *rtc = token;
697
698 memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
699 rtc->rc = 0;
700 complete(&rtc->com);
701}
702
703static int rtc_set_tm(int rc, u8 *ce_msg, struct rtc_time *tm)
704{
705 tm->tm_wday = 0;
706 tm->tm_yday = 0;
707 tm->tm_isdst = 0;
708 if (rc) {
709 tm->tm_sec = 0;
710 tm->tm_min = 0;
711 tm->tm_hour = 0;
712 tm->tm_mday = 15;
713 tm->tm_mon = 5;
714 tm->tm_year = 52;
715 return rc;
716 }
717
718 if ((ce_msg[2] == 0xa9) ||
719 (ce_msg[2] == 0xaf)) {
720 /* TOD clock is not set */
721 tm->tm_sec = 1;
722 tm->tm_min = 1;
723 tm->tm_hour = 1;
724 tm->tm_mday = 10;
725 tm->tm_mon = 8;
726 tm->tm_year = 71;
727 mf_set_rtc(tm);
728 }
729 {
730 u8 year = ce_msg[5];
731 u8 sec = ce_msg[6];
732 u8 min = ce_msg[7];
733 u8 hour = ce_msg[8];
734 u8 day = ce_msg[10];
735 u8 mon = ce_msg[11];
736
737 BCD_TO_BIN(sec);
738 BCD_TO_BIN(min);
739 BCD_TO_BIN(hour);
740 BCD_TO_BIN(day);
741 BCD_TO_BIN(mon);
742 BCD_TO_BIN(year);
743
744 if (year <= 69)
745 year += 100;
746
747 tm->tm_sec = sec;
748 tm->tm_min = min;
749 tm->tm_hour = hour;
750 tm->tm_mday = day;
751 tm->tm_mon = mon;
752 tm->tm_year = year;
753 }
754
755 return 0;
756}
757
758int mf_get_rtc(struct rtc_time *tm)
759{
760 struct ce_msg_comp_data ce_complete;
761 struct rtc_time_data rtc_data;
762 int rc;
763
764 memset(&ce_complete, 0, sizeof(ce_complete));
765 memset(&rtc_data, 0, sizeof(rtc_data));
766 init_completion(&rtc_data.com);
767 ce_complete.handler = &get_rtc_time_complete;
768 ce_complete.token = &rtc_data;
769 rc = signal_ce_msg_simple(0x40, &ce_complete);
770 if (rc)
771 return rc;
772 wait_for_completion(&rtc_data.com);
773 return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm);
774}
775
776struct boot_rtc_time_data {
777 int busy;
778 struct ce_msg_data ce_msg;
779 int rc;
780};
781
782static void get_boot_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
783{
784 struct boot_rtc_time_data *rtc = token;
785
786 memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
787 rtc->rc = 0;
788 rtc->busy = 0;
789}
790
791int mf_get_boot_rtc(struct rtc_time *tm)
792{
793 struct ce_msg_comp_data ce_complete;
794 struct boot_rtc_time_data rtc_data;
795 int rc;
796
797 memset(&ce_complete, 0, sizeof(ce_complete));
798 memset(&rtc_data, 0, sizeof(rtc_data));
799 rtc_data.busy = 1;
800 ce_complete.handler = &get_boot_rtc_time_complete;
801 ce_complete.token = &rtc_data;
802 rc = signal_ce_msg_simple(0x40, &ce_complete);
803 if (rc)
804 return rc;
805 /* We need to poll here as we are not yet taking interrupts */
806 while (rtc_data.busy) {
807 if (hvlpevent_is_pending())
808 process_hvlpevents(NULL);
809 }
810 return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm);
811}
812
813int mf_set_rtc(struct rtc_time *tm)
814{
815 char ce_time[12];
816 u8 day, mon, hour, min, sec, y1, y2;
817 unsigned year;
818
819 year = 1900 + tm->tm_year;
820 y1 = year / 100;
821 y2 = year % 100;
822
823 sec = tm->tm_sec;
824 min = tm->tm_min;
825 hour = tm->tm_hour;
826 day = tm->tm_mday;
827 mon = tm->tm_mon + 1;
828
829 BIN_TO_BCD(sec);
830 BIN_TO_BCD(min);
831 BIN_TO_BCD(hour);
832 BIN_TO_BCD(mon);
833 BIN_TO_BCD(day);
834 BIN_TO_BCD(y1);
835 BIN_TO_BCD(y2);
836
837 memset(ce_time, 0, sizeof(ce_time));
838 ce_time[3] = 0x41;
839 ce_time[4] = y1;
840 ce_time[5] = y2;
841 ce_time[6] = sec;
842 ce_time[7] = min;
843 ce_time[8] = hour;
844 ce_time[10] = day;
845 ce_time[11] = mon;
846
847 return signal_ce_msg(ce_time, NULL);
848}
849
850#ifdef CONFIG_PROC_FS
851
852static int proc_mf_dump_cmdline(char *page, char **start, off_t off,
853 int count, int *eof, void *data)
854{
855 int len;
856 char *p;
857 struct vsp_cmd_data vsp_cmd;
858 int rc;
859 dma_addr_t dma_addr;
860
861 /* The HV appears to return no more than 256 bytes of command line */
862 if (off >= 256)
863 return 0;
864 if ((off + count) > 256)
865 count = 256 - off;
866
867 dma_addr = dma_map_single(iSeries_vio_dev, page, off + count,
868 DMA_FROM_DEVICE);
869 if (dma_mapping_error(dma_addr))
870 return -ENOMEM;
871 memset(page, 0, off + count);
872 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
873 vsp_cmd.cmd = 33;
874 vsp_cmd.sub_data.kern.token = dma_addr;
875 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
876 vsp_cmd.sub_data.kern.side = (u64)data;
877 vsp_cmd.sub_data.kern.length = off + count;
878 mb();
879 rc = signal_vsp_instruction(&vsp_cmd);
880 dma_unmap_single(iSeries_vio_dev, dma_addr, off + count,
881 DMA_FROM_DEVICE);
882 if (rc)
883 return rc;
884 if (vsp_cmd.result_code != 0)
885 return -ENOMEM;
886 p = page;
887 len = 0;
888 while (len < (off + count)) {
889 if ((*p == '\0') || (*p == '\n')) {
890 if (*p == '\0')
891 *p = '\n';
892 p++;
893 len++;
894 *eof = 1;
895 break;
896 }
897 p++;
898 len++;
899 }
900
901 if (len < off) {
902 *eof = 1;
903 len = 0;
904 }
905 return len;
906}
907
908#if 0
909static int mf_getVmlinuxChunk(char *buffer, int *size, int offset, u64 side)
910{
911 struct vsp_cmd_data vsp_cmd;
912 int rc;
913 int len = *size;
914 dma_addr_t dma_addr;
915
916 dma_addr = dma_map_single(iSeries_vio_dev, buffer, len,
917 DMA_FROM_DEVICE);
918 memset(buffer, 0, len);
919 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
920 vsp_cmd.cmd = 32;
921 vsp_cmd.sub_data.kern.token = dma_addr;
922 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
923 vsp_cmd.sub_data.kern.side = side;
924 vsp_cmd.sub_data.kern.offset = offset;
925 vsp_cmd.sub_data.kern.length = len;
926 mb();
927 rc = signal_vsp_instruction(&vsp_cmd);
928 if (rc == 0) {
929 if (vsp_cmd.result_code == 0)
930 *size = vsp_cmd.sub_data.length_out;
931 else
932 rc = -ENOMEM;
933 }
934
935 dma_unmap_single(iSeries_vio_dev, dma_addr, len, DMA_FROM_DEVICE);
936
937 return rc;
938}
939
940static int proc_mf_dump_vmlinux(char *page, char **start, off_t off,
941 int count, int *eof, void *data)
942{
943 int sizeToGet = count;
944
945 if (!capable(CAP_SYS_ADMIN))
946 return -EACCES;
947
948 if (mf_getVmlinuxChunk(page, &sizeToGet, off, (u64)data) == 0) {
949 if (sizeToGet != 0) {
950 *start = page + off;
951 return sizeToGet;
952 }
953 *eof = 1;
954 return 0;
955 }
956 *eof = 1;
957 return 0;
958}
959#endif
960
961static int proc_mf_dump_side(char *page, char **start, off_t off,
962 int count, int *eof, void *data)
963{
964 int len;
965 char mf_current_side = ' ';
966 struct vsp_cmd_data vsp_cmd;
967
968 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
969 vsp_cmd.cmd = 2;
970 vsp_cmd.sub_data.ipl_type = 0;
971 mb();
972
973 if (signal_vsp_instruction(&vsp_cmd) == 0) {
974 if (vsp_cmd.result_code == 0) {
975 switch (vsp_cmd.sub_data.ipl_type) {
976 case 0: mf_current_side = 'A';
977 break;
978 case 1: mf_current_side = 'B';
979 break;
980 case 2: mf_current_side = 'C';
981 break;
982 default: mf_current_side = 'D';
983 break;
984 }
985 }
986 }
987
988 len = sprintf(page, "%c\n", mf_current_side);
989
990 if (len <= (off + count))
991 *eof = 1;
992 *start = page + off;
993 len -= off;
994 if (len > count)
995 len = count;
996 if (len < 0)
997 len = 0;
998 return len;
999}
1000
1001static int proc_mf_change_side(struct file *file, const char __user *buffer,
1002 unsigned long count, void *data)
1003{
1004 char side;
1005 u64 newSide;
1006 struct vsp_cmd_data vsp_cmd;
1007
1008 if (!capable(CAP_SYS_ADMIN))
1009 return -EACCES;
1010
1011 if (count == 0)
1012 return 0;
1013
1014 if (get_user(side, buffer))
1015 return -EFAULT;
1016
1017 switch (side) {
1018 case 'A': newSide = 0;
1019 break;
1020 case 'B': newSide = 1;
1021 break;
1022 case 'C': newSide = 2;
1023 break;
1024 case 'D': newSide = 3;
1025 break;
1026 default:
1027 printk(KERN_ERR "mf_proc.c: proc_mf_change_side: invalid side\n");
1028 return -EINVAL;
1029 }
1030
1031 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1032 vsp_cmd.sub_data.ipl_type = newSide;
1033 vsp_cmd.cmd = 10;
1034
1035 (void)signal_vsp_instruction(&vsp_cmd);
1036
1037 return count;
1038}
1039
1040#if 0
1041static void mf_getSrcHistory(char *buffer, int size)
1042{
1043 struct IplTypeReturnStuff return_stuff;
1044 struct pending_event *ev = new_pending_event();
1045 int rc = 0;
1046 char *pages[4];
1047
1048 pages[0] = kmalloc(4096, GFP_ATOMIC);
1049 pages[1] = kmalloc(4096, GFP_ATOMIC);
1050 pages[2] = kmalloc(4096, GFP_ATOMIC);
1051 pages[3] = kmalloc(4096, GFP_ATOMIC);
1052 if ((ev == NULL) || (pages[0] == NULL) || (pages[1] == NULL)
1053 || (pages[2] == NULL) || (pages[3] == NULL))
1054 return -ENOMEM;
1055
1056 return_stuff.xType = 0;
1057 return_stuff.xRc = 0;
1058 return_stuff.xDone = 0;
1059 ev->event.hp_lp_event.xSubtype = 6;
1060 ev->event.hp_lp_event.x.xSubtypeData =
1061 subtype_data('M', 'F', 'V', 'I');
1062 ev->event.data.vsp_cmd.xEvent = &return_stuff;
1063 ev->event.data.vsp_cmd.cmd = 4;
1064 ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
1065 ev->event.data.vsp_cmd.result_code = 0xFF;
1066 ev->event.data.vsp_cmd.reserved = 0;
1067 ev->event.data.vsp_cmd.sub_data.page[0] = ISERIES_HV_ADDR(pages[0]);
1068 ev->event.data.vsp_cmd.sub_data.page[1] = ISERIES_HV_ADDR(pages[1]);
1069 ev->event.data.vsp_cmd.sub_data.page[2] = ISERIES_HV_ADDR(pages[2]);
1070 ev->event.data.vsp_cmd.sub_data.page[3] = ISERIES_HV_ADDR(pages[3]);
1071 mb();
1072 if (signal_event(ev) != 0)
1073 return;
1074
1075 while (return_stuff.xDone != 1)
1076 udelay(10);
1077 if (return_stuff.xRc == 0)
1078 memcpy(buffer, pages[0], size);
1079 kfree(pages[0]);
1080 kfree(pages[1]);
1081 kfree(pages[2]);
1082 kfree(pages[3]);
1083}
1084#endif
1085
1086static int proc_mf_dump_src(char *page, char **start, off_t off,
1087 int count, int *eof, void *data)
1088{
1089#if 0
1090 int len;
1091
1092 mf_getSrcHistory(page, count);
1093 len = count;
1094 len -= off;
1095 if (len < count) {
1096 *eof = 1;
1097 if (len <= 0)
1098 return 0;
1099 } else
1100 len = count;
1101 *start = page + off;
1102 return len;
1103#else
1104 return 0;
1105#endif
1106}
1107
1108static int proc_mf_change_src(struct file *file, const char __user *buffer,
1109 unsigned long count, void *data)
1110{
1111 char stkbuf[10];
1112
1113 if (!capable(CAP_SYS_ADMIN))
1114 return -EACCES;
1115
1116 if ((count < 4) && (count != 1)) {
1117 printk(KERN_ERR "mf_proc: invalid src\n");
1118 return -EINVAL;
1119 }
1120
1121 if (count > (sizeof(stkbuf) - 1))
1122 count = sizeof(stkbuf) - 1;
1123 if (copy_from_user(stkbuf, buffer, count))
1124 return -EFAULT;
1125
1126 if ((count == 1) && (*stkbuf == '\0'))
1127 mf_clear_src();
1128 else
1129 mf_display_src(*(u32 *)stkbuf);
1130
1131 return count;
1132}
1133
1134static int proc_mf_change_cmdline(struct file *file, const char __user *buffer,
1135 unsigned long count, void *data)
1136{
1137 struct vsp_cmd_data vsp_cmd;
1138 dma_addr_t dma_addr;
1139 char *page;
1140 int ret = -EACCES;
1141
1142 if (!capable(CAP_SYS_ADMIN))
1143 goto out;
1144
1145 dma_addr = 0;
1146 page = dma_alloc_coherent(iSeries_vio_dev, count, &dma_addr,
1147 GFP_ATOMIC);
1148 ret = -ENOMEM;
1149 if (page == NULL)
1150 goto out;
1151
1152 ret = -EFAULT;
1153 if (copy_from_user(page, buffer, count))
1154 goto out_free;
1155
1156 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1157 vsp_cmd.cmd = 31;
1158 vsp_cmd.sub_data.kern.token = dma_addr;
1159 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
1160 vsp_cmd.sub_data.kern.side = (u64)data;
1161 vsp_cmd.sub_data.kern.length = count;
1162 mb();
1163 (void)signal_vsp_instruction(&vsp_cmd);
1164 ret = count;
1165
1166out_free:
1167 dma_free_coherent(iSeries_vio_dev, count, page, dma_addr);
1168out:
1169 return ret;
1170}
1171
1172static ssize_t proc_mf_change_vmlinux(struct file *file,
1173 const char __user *buf,
1174 size_t count, loff_t *ppos)
1175{
1176 struct proc_dir_entry *dp = PDE(file->f_dentry->d_inode);
1177 ssize_t rc;
1178 dma_addr_t dma_addr;
1179 char *page;
1180 struct vsp_cmd_data vsp_cmd;
1181
1182 rc = -EACCES;
1183 if (!capable(CAP_SYS_ADMIN))
1184 goto out;
1185
1186 dma_addr = 0;
1187 page = dma_alloc_coherent(iSeries_vio_dev, count, &dma_addr,
1188 GFP_ATOMIC);
1189 rc = -ENOMEM;
1190 if (page == NULL) {
1191 printk(KERN_ERR "mf.c: couldn't allocate memory to set vmlinux chunk\n");
1192 goto out;
1193 }
1194 rc = -EFAULT;
1195 if (copy_from_user(page, buf, count))
1196 goto out_free;
1197
1198 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1199 vsp_cmd.cmd = 30;
1200 vsp_cmd.sub_data.kern.token = dma_addr;
1201 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
1202 vsp_cmd.sub_data.kern.side = (u64)dp->data;
1203 vsp_cmd.sub_data.kern.offset = *ppos;
1204 vsp_cmd.sub_data.kern.length = count;
1205 mb();
1206 rc = signal_vsp_instruction(&vsp_cmd);
1207 if (rc)
1208 goto out_free;
1209 rc = -ENOMEM;
1210 if (vsp_cmd.result_code != 0)
1211 goto out_free;
1212
1213 *ppos += count;
1214 rc = count;
1215out_free:
1216 dma_free_coherent(iSeries_vio_dev, count, page, dma_addr);
1217out:
1218 return rc;
1219}
1220
1221static struct file_operations proc_vmlinux_operations = {
1222 .write = proc_mf_change_vmlinux,
1223};
1224
1225static int __init mf_proc_init(void)
1226{
1227 struct proc_dir_entry *mf_proc_root;
1228 struct proc_dir_entry *ent;
1229 struct proc_dir_entry *mf;
1230 char name[2];
1231 int i;
1232
1233 mf_proc_root = proc_mkdir("iSeries/mf", NULL);
1234 if (!mf_proc_root)
1235 return 1;
1236
1237 name[1] = '\0';
1238 for (i = 0; i < 4; i++) {
1239 name[0] = 'A' + i;
1240 mf = proc_mkdir(name, mf_proc_root);
1241 if (!mf)
1242 return 1;
1243
1244 ent = create_proc_entry("cmdline", S_IFREG|S_IRUSR|S_IWUSR, mf);
1245 if (!ent)
1246 return 1;
1247 ent->nlink = 1;
1248 ent->data = (void *)(long)i;
1249 ent->read_proc = proc_mf_dump_cmdline;
1250 ent->write_proc = proc_mf_change_cmdline;
1251
1252 if (i == 3) /* no vmlinux entry for 'D' */
1253 continue;
1254
1255 ent = create_proc_entry("vmlinux", S_IFREG|S_IWUSR, mf);
1256 if (!ent)
1257 return 1;
1258 ent->nlink = 1;
1259 ent->data = (void *)(long)i;
1260 ent->proc_fops = &proc_vmlinux_operations;
1261 }
1262
1263 ent = create_proc_entry("side", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root);
1264 if (!ent)
1265 return 1;
1266 ent->nlink = 1;
1267 ent->data = (void *)0;
1268 ent->read_proc = proc_mf_dump_side;
1269 ent->write_proc = proc_mf_change_side;
1270
1271 ent = create_proc_entry("src", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root);
1272 if (!ent)
1273 return 1;
1274 ent->nlink = 1;
1275 ent->data = (void *)0;
1276 ent->read_proc = proc_mf_dump_src;
1277 ent->write_proc = proc_mf_change_src;
1278
1279 return 0;
1280}
1281
1282__initcall(mf_proc_init);
1283
1284#endif /* CONFIG_PROC_FS */
1285
1286/*
1287 * Get the RTC from the virtual service processor
1288 * This requires flowing LpEvents to the primary partition
1289 */
1290void iSeries_get_rtc_time(struct rtc_time *rtc_tm)
1291{
1292 if (piranha_simulator)
1293 return;
1294
1295 mf_get_rtc(rtc_tm);
1296 rtc_tm->tm_mon--;
1297}
1298
1299/*
1300 * Set the RTC in the virtual service processor
1301 * This requires flowing LpEvents to the primary partition
1302 */
1303int iSeries_set_rtc_time(struct rtc_time *tm)
1304{
1305 mf_set_rtc(tm);
1306 return 0;
1307}
1308
1309void iSeries_get_boot_time(struct rtc_time *tm)
1310{
1311 if (piranha_simulator)
1312 return;
1313
1314 mf_get_boot_rtc(tm);
1315 tm->tm_mon -= 1;
1316}
diff --git a/arch/powerpc/platforms/iseries/setup.c b/arch/powerpc/platforms/iseries/setup.c
new file mode 100644
index 000000000000..ad78c8581a5a
--- /dev/null
+++ b/arch/powerpc/platforms/iseries/setup.c
@@ -0,0 +1,1006 @@
1/*
2 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
3 * Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
4 *
5 * Description:
6 * Architecture- / platform-specific boot-time initialization code for
7 * the IBM iSeries LPAR. Adapted from original code by Grant Erickson and
8 * code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
9 * <dan@net4x.com>.
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17#undef DEBUG
18
19#include <linux/config.h>
20#include <linux/init.h>
21#include <linux/threads.h>
22#include <linux/smp.h>
23#include <linux/param.h>
24#include <linux/string.h>
25#include <linux/initrd.h>
26#include <linux/seq_file.h>
27#include <linux/kdev_t.h>
28#include <linux/major.h>
29#include <linux/root_dev.h>
30
31#include <asm/processor.h>
32#include <asm/machdep.h>
33#include <asm/page.h>
34#include <asm/mmu.h>
35#include <asm/pgtable.h>
36#include <asm/mmu_context.h>
37#include <asm/cputable.h>
38#include <asm/sections.h>
39#include <asm/iommu.h>
40#include <asm/firmware.h>
41
42#include <asm/time.h>
43#include <asm/naca.h>
44#include <asm/paca.h>
45#include <asm/cache.h>
46#include <asm/sections.h>
47#include <asm/abs_addr.h>
48#include <asm/iSeries/HvCallHpt.h>
49#include <asm/iSeries/HvLpConfig.h>
50#include <asm/iSeries/HvCallEvent.h>
51#include <asm/iSeries/HvCallSm.h>
52#include <asm/iSeries/HvCallXm.h>
53#include <asm/iSeries/ItLpQueue.h>
54#include <asm/iSeries/IoHriMainStore.h>
55#include <asm/iSeries/mf.h>
56#include <asm/iSeries/HvLpEvent.h>
57#include <asm/iSeries/iSeries_irq.h>
58#include <asm/iSeries/IoHriProcessorVpd.h>
59#include <asm/iSeries/ItVpdAreas.h>
60#include <asm/iSeries/LparMap.h>
61
62#include "setup.h"
63
64extern void hvlog(char *fmt, ...);
65
66#ifdef DEBUG
67#define DBG(fmt...) hvlog(fmt)
68#else
69#define DBG(fmt...)
70#endif
71
72/* Function Prototypes */
73extern void ppcdbg_initialize(void);
74
75static void build_iSeries_Memory_Map(void);
76static int iseries_shared_idle(void);
77static int iseries_dedicated_idle(void);
78#ifdef CONFIG_PCI
79extern void iSeries_pci_final_fixup(void);
80#else
81static void iSeries_pci_final_fixup(void) { }
82#endif
83
84/* Global Variables */
85int piranha_simulator;
86
87extern int rd_size; /* Defined in drivers/block/rd.c */
88extern unsigned long klimit;
89extern unsigned long embedded_sysmap_start;
90extern unsigned long embedded_sysmap_end;
91
92extern unsigned long iSeries_recal_tb;
93extern unsigned long iSeries_recal_titan;
94
95static int mf_initialized;
96
97struct MemoryBlock {
98 unsigned long absStart;
99 unsigned long absEnd;
100 unsigned long logicalStart;
101 unsigned long logicalEnd;
102};
103
104/*
105 * Process the main store vpd to determine where the holes in memory are
106 * and return the number of physical blocks and fill in the array of
107 * block data.
108 */
109static unsigned long iSeries_process_Condor_mainstore_vpd(
110 struct MemoryBlock *mb_array, unsigned long max_entries)
111{
112 unsigned long holeFirstChunk, holeSizeChunks;
113 unsigned long numMemoryBlocks = 1;
114 struct IoHriMainStoreSegment4 *msVpd =
115 (struct IoHriMainStoreSegment4 *)xMsVpd;
116 unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
117 unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
118 unsigned long holeSize = holeEnd - holeStart;
119
120 printk("Mainstore_VPD: Condor\n");
121 /*
122 * Determine if absolute memory has any
123 * holes so that we can interpret the
124 * access map we get back from the hypervisor
125 * correctly.
126 */
127 mb_array[0].logicalStart = 0;
128 mb_array[0].logicalEnd = 0x100000000;
129 mb_array[0].absStart = 0;
130 mb_array[0].absEnd = 0x100000000;
131
132 if (holeSize) {
133 numMemoryBlocks = 2;
134 holeStart = holeStart & 0x000fffffffffffff;
135 holeStart = addr_to_chunk(holeStart);
136 holeFirstChunk = holeStart;
137 holeSize = addr_to_chunk(holeSize);
138 holeSizeChunks = holeSize;
139 printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
140 holeFirstChunk, holeSizeChunks );
141 mb_array[0].logicalEnd = holeFirstChunk;
142 mb_array[0].absEnd = holeFirstChunk;
143 mb_array[1].logicalStart = holeFirstChunk;
144 mb_array[1].logicalEnd = 0x100000000 - holeSizeChunks;
145 mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
146 mb_array[1].absEnd = 0x100000000;
147 }
148 return numMemoryBlocks;
149}
150
151#define MaxSegmentAreas 32
152#define MaxSegmentAdrRangeBlocks 128
153#define MaxAreaRangeBlocks 4
154
155static unsigned long iSeries_process_Regatta_mainstore_vpd(
156 struct MemoryBlock *mb_array, unsigned long max_entries)
157{
158 struct IoHriMainStoreSegment5 *msVpdP =
159 (struct IoHriMainStoreSegment5 *)xMsVpd;
160 unsigned long numSegmentBlocks = 0;
161 u32 existsBits = msVpdP->msAreaExists;
162 unsigned long area_num;
163
164 printk("Mainstore_VPD: Regatta\n");
165
166 for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
167 unsigned long numAreaBlocks;
168 struct IoHriMainStoreArea4 *currentArea;
169
170 if (existsBits & 0x80000000) {
171 unsigned long block_num;
172
173 currentArea = &msVpdP->msAreaArray[area_num];
174 numAreaBlocks = currentArea->numAdrRangeBlocks;
175 printk("ms_vpd: processing area %2ld blocks=%ld",
176 area_num, numAreaBlocks);
177 for (block_num = 0; block_num < numAreaBlocks;
178 ++block_num ) {
179 /* Process an address range block */
180 struct MemoryBlock tempBlock;
181 unsigned long i;
182
183 tempBlock.absStart =
184 (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
185 tempBlock.absEnd =
186 (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
187 tempBlock.logicalStart = 0;
188 tempBlock.logicalEnd = 0;
189 printk("\n block %ld absStart=%016lx absEnd=%016lx",
190 block_num, tempBlock.absStart,
191 tempBlock.absEnd);
192
193 for (i = 0; i < numSegmentBlocks; ++i) {
194 if (mb_array[i].absStart ==
195 tempBlock.absStart)
196 break;
197 }
198 if (i == numSegmentBlocks) {
199 if (numSegmentBlocks == max_entries)
200 panic("iSeries_process_mainstore_vpd: too many memory blocks");
201 mb_array[numSegmentBlocks] = tempBlock;
202 ++numSegmentBlocks;
203 } else
204 printk(" (duplicate)");
205 }
206 printk("\n");
207 }
208 existsBits <<= 1;
209 }
210 /* Now sort the blocks found into ascending sequence */
211 if (numSegmentBlocks > 1) {
212 unsigned long m, n;
213
214 for (m = 0; m < numSegmentBlocks - 1; ++m) {
215 for (n = numSegmentBlocks - 1; m < n; --n) {
216 if (mb_array[n].absStart <
217 mb_array[n-1].absStart) {
218 struct MemoryBlock tempBlock;
219
220 tempBlock = mb_array[n];
221 mb_array[n] = mb_array[n-1];
222 mb_array[n-1] = tempBlock;
223 }
224 }
225 }
226 }
227 /*
228 * Assign "logical" addresses to each block. These
229 * addresses correspond to the hypervisor "bitmap" space.
230 * Convert all addresses into units of 256K chunks.
231 */
232 {
233 unsigned long i, nextBitmapAddress;
234
235 printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
236 nextBitmapAddress = 0;
237 for (i = 0; i < numSegmentBlocks; ++i) {
238 unsigned long length = mb_array[i].absEnd -
239 mb_array[i].absStart;
240
241 mb_array[i].logicalStart = nextBitmapAddress;
242 mb_array[i].logicalEnd = nextBitmapAddress + length;
243 nextBitmapAddress += length;
244 printk(" Bitmap range: %016lx - %016lx\n"
245 " Absolute range: %016lx - %016lx\n",
246 mb_array[i].logicalStart,
247 mb_array[i].logicalEnd,
248 mb_array[i].absStart, mb_array[i].absEnd);
249 mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart &
250 0x000fffffffffffff);
251 mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd &
252 0x000fffffffffffff);
253 mb_array[i].logicalStart =
254 addr_to_chunk(mb_array[i].logicalStart);
255 mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd);
256 }
257 }
258
259 return numSegmentBlocks;
260}
261
262static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array,
263 unsigned long max_entries)
264{
265 unsigned long i;
266 unsigned long mem_blocks = 0;
267
268 if (cpu_has_feature(CPU_FTR_SLB))
269 mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array,
270 max_entries);
271 else
272 mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array,
273 max_entries);
274
275 printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks);
276 for (i = 0; i < mem_blocks; ++i) {
277 printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
278 " abs chunks %016lx - %016lx\n",
279 i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
280 mb_array[i].absStart, mb_array[i].absEnd);
281 }
282 return mem_blocks;
283}
284
285static void __init iSeries_get_cmdline(void)
286{
287 char *p, *q;
288
289 /* copy the command line parameter from the primary VSP */
290 HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256,
291 HvLpDma_Direction_RemoteToLocal);
292
293 p = cmd_line;
294 q = cmd_line + 255;
295 while(p < q) {
296 if (!*p || *p == '\n')
297 break;
298 ++p;
299 }
300 *p = 0;
301}
302
303static void __init iSeries_init_early(void)
304{
305 extern unsigned long memory_limit;
306
307 DBG(" -> iSeries_init_early()\n");
308
309 ppc64_firmware_features = FW_FEATURE_ISERIES;
310
311 ppcdbg_initialize();
312
313 ppc64_interrupt_controller = IC_ISERIES;
314
315#if defined(CONFIG_BLK_DEV_INITRD)
316 /*
317 * If the init RAM disk has been configured and there is
318 * a non-zero starting address for it, set it up
319 */
320 if (naca.xRamDisk) {
321 initrd_start = (unsigned long)__va(naca.xRamDisk);
322 initrd_end = initrd_start + naca.xRamDiskSize * PAGE_SIZE;
323 initrd_below_start_ok = 1; // ramdisk in kernel space
324 ROOT_DEV = Root_RAM0;
325 if (((rd_size * 1024) / PAGE_SIZE) < naca.xRamDiskSize)
326 rd_size = (naca.xRamDiskSize * PAGE_SIZE) / 1024;
327 } else
328#endif /* CONFIG_BLK_DEV_INITRD */
329 {
330 /* ROOT_DEV = MKDEV(VIODASD_MAJOR, 1); */
331 }
332
333 iSeries_recal_tb = get_tb();
334 iSeries_recal_titan = HvCallXm_loadTod();
335
336 /*
337 * Initialize the hash table management pointers
338 */
339 hpte_init_iSeries();
340
341 /*
342 * Initialize the DMA/TCE management
343 */
344 iommu_init_early_iSeries();
345
346 iSeries_get_cmdline();
347
348 /* Save unparsed command line copy for /proc/cmdline */
349 strlcpy(saved_command_line, cmd_line, COMMAND_LINE_SIZE);
350
351 /* Parse early parameters, in particular mem=x */
352 parse_early_param();
353
354 if (memory_limit) {
355 if (memory_limit < systemcfg->physicalMemorySize)
356 systemcfg->physicalMemorySize = memory_limit;
357 else {
358 printk("Ignoring mem=%lu >= ram_top.\n", memory_limit);
359 memory_limit = 0;
360 }
361 }
362
363 /* Initialize machine-dependency vectors */
364#ifdef CONFIG_SMP
365 smp_init_iSeries();
366#endif
367 if (itLpNaca.xPirEnvironMode == 0)
368 piranha_simulator = 1;
369
370 /* Associate Lp Event Queue 0 with processor 0 */
371 HvCallEvent_setLpEventQueueInterruptProc(0, 0);
372
373 mf_init();
374 mf_initialized = 1;
375 mb();
376
377 /* If we were passed an initrd, set the ROOT_DEV properly if the values
378 * look sensible. If not, clear initrd reference.
379 */
380#ifdef CONFIG_BLK_DEV_INITRD
381 if (initrd_start >= KERNELBASE && initrd_end >= KERNELBASE &&
382 initrd_end > initrd_start)
383 ROOT_DEV = Root_RAM0;
384 else
385 initrd_start = initrd_end = 0;
386#endif /* CONFIG_BLK_DEV_INITRD */
387
388 DBG(" <- iSeries_init_early()\n");
389}
390
391struct mschunks_map mschunks_map = {
392 /* XXX We don't use these, but Piranha might need them. */
393 .chunk_size = MSCHUNKS_CHUNK_SIZE,
394 .chunk_shift = MSCHUNKS_CHUNK_SHIFT,
395 .chunk_mask = MSCHUNKS_OFFSET_MASK,
396};
397EXPORT_SYMBOL(mschunks_map);
398
399void mschunks_alloc(unsigned long num_chunks)
400{
401 klimit = _ALIGN(klimit, sizeof(u32));
402 mschunks_map.mapping = (u32 *)klimit;
403 klimit += num_chunks * sizeof(u32);
404 mschunks_map.num_chunks = num_chunks;
405}
406
407/*
408 * The iSeries may have very large memories ( > 128 GB ) and a partition
409 * may get memory in "chunks" that may be anywhere in the 2**52 real
410 * address space. The chunks are 256K in size. To map this to the
411 * memory model Linux expects, the AS/400 specific code builds a
412 * translation table to translate what Linux thinks are "physical"
413 * addresses to the actual real addresses. This allows us to make
414 * it appear to Linux that we have contiguous memory starting at
415 * physical address zero while in fact this could be far from the truth.
416 * To avoid confusion, I'll let the words physical and/or real address
417 * apply to the Linux addresses while I'll use "absolute address" to
418 * refer to the actual hardware real address.
419 *
420 * build_iSeries_Memory_Map gets information from the Hypervisor and
421 * looks at the Main Store VPD to determine the absolute addresses
422 * of the memory that has been assigned to our partition and builds
423 * a table used to translate Linux's physical addresses to these
424 * absolute addresses. Absolute addresses are needed when
425 * communicating with the hypervisor (e.g. to build HPT entries)
426 */
427
428static void __init build_iSeries_Memory_Map(void)
429{
430 u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
431 u32 nextPhysChunk;
432 u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
433 u32 num_ptegs;
434 u32 totalChunks,moreChunks;
435 u32 currChunk, thisChunk, absChunk;
436 u32 currDword;
437 u32 chunkBit;
438 u64 map;
439 struct MemoryBlock mb[32];
440 unsigned long numMemoryBlocks, curBlock;
441
442 /* Chunk size on iSeries is 256K bytes */
443 totalChunks = (u32)HvLpConfig_getMsChunks();
444 mschunks_alloc(totalChunks);
445
446 /*
447 * Get absolute address of our load area
448 * and map it to physical address 0
449 * This guarantees that the loadarea ends up at physical 0
450 * otherwise, it might not be returned by PLIC as the first
451 * chunks
452 */
453
454 loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
455 loadAreaSize = itLpNaca.xLoadAreaChunks;
456
457 /*
458 * Only add the pages already mapped here.
459 * Otherwise we might add the hpt pages
460 * The rest of the pages of the load area
461 * aren't in the HPT yet and can still
462 * be assigned an arbitrary physical address
463 */
464 if ((loadAreaSize * 64) > HvPagesToMap)
465 loadAreaSize = HvPagesToMap / 64;
466
467 loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
468
469 /*
470 * TODO Do we need to do something if the HPT is in the 64MB load area?
471 * This would be required if the itLpNaca.xLoadAreaChunks includes
472 * the HPT size
473 */
474
475 printk("Mapping load area - physical addr = 0000000000000000\n"
476 " absolute addr = %016lx\n",
477 chunk_to_addr(loadAreaFirstChunk));
478 printk("Load area size %dK\n", loadAreaSize * 256);
479
480 for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk)
481 mschunks_map.mapping[nextPhysChunk] =
482 loadAreaFirstChunk + nextPhysChunk;
483
484 /*
485 * Get absolute address of our HPT and remember it so
486 * we won't map it to any physical address
487 */
488 hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
489 hptSizePages = (u32)HvCallHpt_getHptPages();
490 hptSizeChunks = hptSizePages >> (MSCHUNKS_CHUNK_SHIFT - PAGE_SHIFT);
491 hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
492
493 printk("HPT absolute addr = %016lx, size = %dK\n",
494 chunk_to_addr(hptFirstChunk), hptSizeChunks * 256);
495
496 /* Fill in the hashed page table hash mask */
497 num_ptegs = hptSizePages *
498 (PAGE_SIZE / (sizeof(hpte_t) * HPTES_PER_GROUP));
499 htab_hash_mask = num_ptegs - 1;
500
501 /*
502 * The actual hashed page table is in the hypervisor,
503 * we have no direct access
504 */
505 htab_address = NULL;
506
507 /*
508 * Determine if absolute memory has any
509 * holes so that we can interpret the
510 * access map we get back from the hypervisor
511 * correctly.
512 */
513 numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32);
514
515 /*
516 * Process the main store access map from the hypervisor
517 * to build up our physical -> absolute translation table
518 */
519 curBlock = 0;
520 currChunk = 0;
521 currDword = 0;
522 moreChunks = totalChunks;
523
524 while (moreChunks) {
525 map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex,
526 currDword);
527 thisChunk = currChunk;
528 while (map) {
529 chunkBit = map >> 63;
530 map <<= 1;
531 if (chunkBit) {
532 --moreChunks;
533 while (thisChunk >= mb[curBlock].logicalEnd) {
534 ++curBlock;
535 if (curBlock >= numMemoryBlocks)
536 panic("out of memory blocks");
537 }
538 if (thisChunk < mb[curBlock].logicalStart)
539 panic("memory block error");
540
541 absChunk = mb[curBlock].absStart +
542 (thisChunk - mb[curBlock].logicalStart);
543 if (((absChunk < hptFirstChunk) ||
544 (absChunk > hptLastChunk)) &&
545 ((absChunk < loadAreaFirstChunk) ||
546 (absChunk > loadAreaLastChunk))) {
547 mschunks_map.mapping[nextPhysChunk] =
548 absChunk;
549 ++nextPhysChunk;
550 }
551 }
552 ++thisChunk;
553 }
554 ++currDword;
555 currChunk += 64;
556 }
557
558 /*
559 * main store size (in chunks) is
560 * totalChunks - hptSizeChunks
561 * which should be equal to
562 * nextPhysChunk
563 */
564 systemcfg->physicalMemorySize = chunk_to_addr(nextPhysChunk);
565}
566
567/*
568 * Document me.
569 */
570static void __init iSeries_setup_arch(void)
571{
572 unsigned procIx = get_paca()->lppaca.dyn_hv_phys_proc_index;
573
574 if (get_paca()->lppaca.shared_proc) {
575 ppc_md.idle_loop = iseries_shared_idle;
576 printk(KERN_INFO "Using shared processor idle loop\n");
577 } else {
578 ppc_md.idle_loop = iseries_dedicated_idle;
579 printk(KERN_INFO "Using dedicated idle loop\n");
580 }
581
582 /* Setup the Lp Event Queue */
583 setup_hvlpevent_queue();
584
585 printk("Max logical processors = %d\n",
586 itVpdAreas.xSlicMaxLogicalProcs);
587 printk("Max physical processors = %d\n",
588 itVpdAreas.xSlicMaxPhysicalProcs);
589
590 systemcfg->processor = xIoHriProcessorVpd[procIx].xPVR;
591 printk("Processor version = %x\n", systemcfg->processor);
592}
593
594static void iSeries_get_cpuinfo(struct seq_file *m)
595{
596 seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n");
597}
598
599/*
600 * Document me.
601 * and Implement me.
602 */
603static int iSeries_get_irq(struct pt_regs *regs)
604{
605 /* -2 means ignore this interrupt */
606 return -2;
607}
608
609/*
610 * Document me.
611 */
612static void iSeries_restart(char *cmd)
613{
614 mf_reboot();
615}
616
617/*
618 * Document me.
619 */
620static void iSeries_power_off(void)
621{
622 mf_power_off();
623}
624
625/*
626 * Document me.
627 */
628static void iSeries_halt(void)
629{
630 mf_power_off();
631}
632
633static void __init iSeries_progress(char * st, unsigned short code)
634{
635 printk("Progress: [%04x] - %s\n", (unsigned)code, st);
636 if (!piranha_simulator && mf_initialized) {
637 if (code != 0xffff)
638 mf_display_progress(code);
639 else
640 mf_clear_src();
641 }
642}
643
644static void __init iSeries_fixup_klimit(void)
645{
646 /*
647 * Change klimit to take into account any ram disk
648 * that may be included
649 */
650 if (naca.xRamDisk)
651 klimit = KERNELBASE + (u64)naca.xRamDisk +
652 (naca.xRamDiskSize * PAGE_SIZE);
653 else {
654 /*
655 * No ram disk was included - check and see if there
656 * was an embedded system map. Change klimit to take
657 * into account any embedded system map
658 */
659 if (embedded_sysmap_end)
660 klimit = KERNELBASE + ((embedded_sysmap_end + 4095) &
661 0xfffffffffffff000);
662 }
663}
664
665static int __init iSeries_src_init(void)
666{
667 /* clear the progress line */
668 ppc_md.progress(" ", 0xffff);
669 return 0;
670}
671
672late_initcall(iSeries_src_init);
673
674static inline void process_iSeries_events(void)
675{
676 asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
677}
678
679static void yield_shared_processor(void)
680{
681 unsigned long tb;
682
683 HvCall_setEnabledInterrupts(HvCall_MaskIPI |
684 HvCall_MaskLpEvent |
685 HvCall_MaskLpProd |
686 HvCall_MaskTimeout);
687
688 tb = get_tb();
689 /* Compute future tb value when yield should expire */
690 HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy);
691
692 /*
693 * The decrementer stops during the yield. Force a fake decrementer
694 * here and let the timer_interrupt code sort out the actual time.
695 */
696 get_paca()->lppaca.int_dword.fields.decr_int = 1;
697 process_iSeries_events();
698}
699
700static int iseries_shared_idle(void)
701{
702 while (1) {
703 while (!need_resched() && !hvlpevent_is_pending()) {
704 local_irq_disable();
705 ppc64_runlatch_off();
706
707 /* Recheck with irqs off */
708 if (!need_resched() && !hvlpevent_is_pending())
709 yield_shared_processor();
710
711 HMT_medium();
712 local_irq_enable();
713 }
714
715 ppc64_runlatch_on();
716
717 if (hvlpevent_is_pending())
718 process_iSeries_events();
719
720 schedule();
721 }
722
723 return 0;
724}
725
726static int iseries_dedicated_idle(void)
727{
728 long oldval;
729
730 while (1) {
731 oldval = test_and_clear_thread_flag(TIF_NEED_RESCHED);
732
733 if (!oldval) {
734 set_thread_flag(TIF_POLLING_NRFLAG);
735
736 while (!need_resched()) {
737 ppc64_runlatch_off();
738 HMT_low();
739
740 if (hvlpevent_is_pending()) {
741 HMT_medium();
742 ppc64_runlatch_on();
743 process_iSeries_events();
744 }
745 }
746
747 HMT_medium();
748 clear_thread_flag(TIF_POLLING_NRFLAG);
749 } else {
750 set_need_resched();
751 }
752
753 ppc64_runlatch_on();
754 schedule();
755 }
756
757 return 0;
758}
759
760#ifndef CONFIG_PCI
761void __init iSeries_init_IRQ(void) { }
762#endif
763
764static int __init iseries_probe(int platform)
765{
766 return PLATFORM_ISERIES_LPAR == platform;
767}
768
769struct machdep_calls __initdata iseries_md = {
770 .setup_arch = iSeries_setup_arch,
771 .get_cpuinfo = iSeries_get_cpuinfo,
772 .init_IRQ = iSeries_init_IRQ,
773 .get_irq = iSeries_get_irq,
774 .init_early = iSeries_init_early,
775 .pcibios_fixup = iSeries_pci_final_fixup,
776 .restart = iSeries_restart,
777 .power_off = iSeries_power_off,
778 .halt = iSeries_halt,
779 .get_boot_time = iSeries_get_boot_time,
780 .set_rtc_time = iSeries_set_rtc_time,
781 .get_rtc_time = iSeries_get_rtc_time,
782 .calibrate_decr = generic_calibrate_decr,
783 .progress = iSeries_progress,
784 .probe = iseries_probe,
785 /* XXX Implement enable_pmcs for iSeries */
786};
787
788struct blob {
789 unsigned char data[PAGE_SIZE];
790 unsigned long next;
791};
792
793struct iseries_flat_dt {
794 struct boot_param_header header;
795 u64 reserve_map[2];
796 struct blob dt;
797 struct blob strings;
798};
799
800struct iseries_flat_dt iseries_dt;
801
802void dt_init(struct iseries_flat_dt *dt)
803{
804 dt->header.off_mem_rsvmap =
805 offsetof(struct iseries_flat_dt, reserve_map);
806 dt->header.off_dt_struct = offsetof(struct iseries_flat_dt, dt);
807 dt->header.off_dt_strings = offsetof(struct iseries_flat_dt, strings);
808 dt->header.totalsize = sizeof(struct iseries_flat_dt);
809 dt->header.dt_strings_size = sizeof(struct blob);
810
811 /* There is no notion of hardware cpu id on iSeries */
812 dt->header.boot_cpuid_phys = smp_processor_id();
813
814 dt->dt.next = (unsigned long)&dt->dt.data;
815 dt->strings.next = (unsigned long)&dt->strings.data;
816
817 dt->header.magic = OF_DT_HEADER;
818 dt->header.version = 0x10;
819 dt->header.last_comp_version = 0x10;
820
821 dt->reserve_map[0] = 0;
822 dt->reserve_map[1] = 0;
823}
824
825void dt_check_blob(struct blob *b)
826{
827 if (b->next >= (unsigned long)&b->next) {
828 DBG("Ran out of space in flat device tree blob!\n");
829 BUG();
830 }
831}
832
833void dt_push_u32(struct iseries_flat_dt *dt, u32 value)
834{
835 *((u32*)dt->dt.next) = value;
836 dt->dt.next += sizeof(u32);
837
838 dt_check_blob(&dt->dt);
839}
840
841void dt_push_u64(struct iseries_flat_dt *dt, u64 value)
842{
843 *((u64*)dt->dt.next) = value;
844 dt->dt.next += sizeof(u64);
845
846 dt_check_blob(&dt->dt);
847}
848
849unsigned long dt_push_bytes(struct blob *blob, char *data, int len)
850{
851 unsigned long start = blob->next - (unsigned long)blob->data;
852
853 memcpy((char *)blob->next, data, len);
854 blob->next = _ALIGN(blob->next + len, 4);
855
856 dt_check_blob(blob);
857
858 return start;
859}
860
861void dt_start_node(struct iseries_flat_dt *dt, char *name)
862{
863 dt_push_u32(dt, OF_DT_BEGIN_NODE);
864 dt_push_bytes(&dt->dt, name, strlen(name) + 1);
865}
866
867#define dt_end_node(dt) dt_push_u32(dt, OF_DT_END_NODE)
868
869void dt_prop(struct iseries_flat_dt *dt, char *name, char *data, int len)
870{
871 unsigned long offset;
872
873 dt_push_u32(dt, OF_DT_PROP);
874
875 /* Length of the data */
876 dt_push_u32(dt, len);
877
878 /* Put the property name in the string blob. */
879 offset = dt_push_bytes(&dt->strings, name, strlen(name) + 1);
880
881 /* The offset of the properties name in the string blob. */
882 dt_push_u32(dt, (u32)offset);
883
884 /* The actual data. */
885 dt_push_bytes(&dt->dt, data, len);
886}
887
888void dt_prop_str(struct iseries_flat_dt *dt, char *name, char *data)
889{
890 dt_prop(dt, name, data, strlen(data) + 1); /* + 1 for NULL */
891}
892
893void dt_prop_u32(struct iseries_flat_dt *dt, char *name, u32 data)
894{
895 dt_prop(dt, name, (char *)&data, sizeof(u32));
896}
897
898void dt_prop_u64(struct iseries_flat_dt *dt, char *name, u64 data)
899{
900 dt_prop(dt, name, (char *)&data, sizeof(u64));
901}
902
903void dt_prop_u64_list(struct iseries_flat_dt *dt, char *name, u64 *data, int n)
904{
905 dt_prop(dt, name, (char *)data, sizeof(u64) * n);
906}
907
908void dt_prop_empty(struct iseries_flat_dt *dt, char *name)
909{
910 dt_prop(dt, name, NULL, 0);
911}
912
913void dt_cpus(struct iseries_flat_dt *dt)
914{
915 unsigned char buf[32];
916 unsigned char *p;
917 unsigned int i, index;
918 struct IoHriProcessorVpd *d;
919
920 /* yuck */
921 snprintf(buf, 32, "PowerPC,%s", cur_cpu_spec->cpu_name);
922 p = strchr(buf, ' ');
923 if (!p) p = buf + strlen(buf);
924
925 dt_start_node(dt, "cpus");
926 dt_prop_u32(dt, "#address-cells", 1);
927 dt_prop_u32(dt, "#size-cells", 0);
928
929 for (i = 0; i < NR_CPUS; i++) {
930 if (paca[i].lppaca.dyn_proc_status >= 2)
931 continue;
932
933 snprintf(p, 32 - (p - buf), "@%d", i);
934 dt_start_node(dt, buf);
935
936 dt_prop_str(dt, "device_type", "cpu");
937
938 index = paca[i].lppaca.dyn_hv_phys_proc_index;
939 d = &xIoHriProcessorVpd[index];
940
941 dt_prop_u32(dt, "i-cache-size", d->xInstCacheSize * 1024);
942 dt_prop_u32(dt, "i-cache-line-size", d->xInstCacheOperandSize);
943
944 dt_prop_u32(dt, "d-cache-size", d->xDataL1CacheSizeKB * 1024);
945 dt_prop_u32(dt, "d-cache-line-size", d->xDataCacheOperandSize);
946
947 /* magic conversions to Hz copied from old code */
948 dt_prop_u32(dt, "clock-frequency",
949 ((1UL << 34) * 1000000) / d->xProcFreq);
950 dt_prop_u32(dt, "timebase-frequency",
951 ((1UL << 32) * 1000000) / d->xTimeBaseFreq);
952
953 dt_prop_u32(dt, "reg", i);
954
955 dt_end_node(dt);
956 }
957
958 dt_end_node(dt);
959}
960
961void build_flat_dt(struct iseries_flat_dt *dt)
962{
963 u64 tmp[2];
964
965 dt_init(dt);
966
967 dt_start_node(dt, "");
968
969 dt_prop_u32(dt, "#address-cells", 2);
970 dt_prop_u32(dt, "#size-cells", 2);
971
972 /* /memory */
973 dt_start_node(dt, "memory@0");
974 dt_prop_str(dt, "name", "memory");
975 dt_prop_str(dt, "device_type", "memory");
976 tmp[0] = 0;
977 tmp[1] = systemcfg->physicalMemorySize;
978 dt_prop_u64_list(dt, "reg", tmp, 2);
979 dt_end_node(dt);
980
981 /* /chosen */
982 dt_start_node(dt, "chosen");
983 dt_prop_u32(dt, "linux,platform", PLATFORM_ISERIES_LPAR);
984 dt_end_node(dt);
985
986 dt_cpus(dt);
987
988 dt_end_node(dt);
989
990 dt_push_u32(dt, OF_DT_END);
991}
992
993void * __init iSeries_early_setup(void)
994{
995 iSeries_fixup_klimit();
996
997 /*
998 * Initialize the table which translate Linux physical addresses to
999 * AS/400 absolute addresses
1000 */
1001 build_iSeries_Memory_Map();
1002
1003 build_flat_dt(&iseries_dt);
1004
1005 return (void *) __pa(&iseries_dt);
1006}
diff --git a/arch/powerpc/platforms/iseries/setup.h b/arch/powerpc/platforms/iseries/setup.h
new file mode 100644
index 000000000000..6da89ae991ce
--- /dev/null
+++ b/arch/powerpc/platforms/iseries/setup.h
@@ -0,0 +1,24 @@
1/*
2 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
3 * Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
4 *
5 * Description:
6 * Architecture- / platform-specific boot-time initialization code for
7 * the IBM AS/400 LPAR. Adapted from original code by Grant Erickson and
8 * code by Gary Thomas, Cort Dougan <cort@cs.nmt.edu>, and Dan Malek
9 * <dan@netx4.com>.
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17#ifndef __ISERIES_SETUP_H__
18#define __ISERIES_SETUP_H__
19
20extern void iSeries_get_boot_time(struct rtc_time *tm);
21extern int iSeries_set_rtc_time(struct rtc_time *tm);
22extern void iSeries_get_rtc_time(struct rtc_time *tm);
23
24#endif /* __ISERIES_SETUP_H__ */