diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/i386/kernel/timers |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/i386/kernel/timers')
-rw-r--r-- | arch/i386/kernel/timers/Makefile | 9 | ||||
-rw-r--r-- | arch/i386/kernel/timers/common.c | 160 | ||||
-rw-r--r-- | arch/i386/kernel/timers/timer.c | 66 | ||||
-rw-r--r-- | arch/i386/kernel/timers/timer_cyclone.c | 259 | ||||
-rw-r--r-- | arch/i386/kernel/timers/timer_hpet.c | 191 | ||||
-rw-r--r-- | arch/i386/kernel/timers/timer_none.c | 39 | ||||
-rw-r--r-- | arch/i386/kernel/timers/timer_pit.c | 206 | ||||
-rw-r--r-- | arch/i386/kernel/timers/timer_pm.c | 258 | ||||
-rw-r--r-- | arch/i386/kernel/timers/timer_tsc.c | 560 |
9 files changed, 1748 insertions, 0 deletions
diff --git a/arch/i386/kernel/timers/Makefile b/arch/i386/kernel/timers/Makefile new file mode 100644 index 000000000000..8fa12be658dd --- /dev/null +++ b/arch/i386/kernel/timers/Makefile | |||
@@ -0,0 +1,9 @@ | |||
1 | # | ||
2 | # Makefile for x86 timers | ||
3 | # | ||
4 | |||
5 | obj-y := timer.o timer_none.o timer_tsc.o timer_pit.o common.o | ||
6 | |||
7 | obj-$(CONFIG_X86_CYCLONE_TIMER) += timer_cyclone.o | ||
8 | obj-$(CONFIG_HPET_TIMER) += timer_hpet.o | ||
9 | obj-$(CONFIG_X86_PM_TIMER) += timer_pm.o | ||
diff --git a/arch/i386/kernel/timers/common.c b/arch/i386/kernel/timers/common.c new file mode 100644 index 000000000000..f7f90005e22e --- /dev/null +++ b/arch/i386/kernel/timers/common.c | |||
@@ -0,0 +1,160 @@ | |||
1 | /* | ||
2 | * Common functions used across the timers go here | ||
3 | */ | ||
4 | |||
5 | #include <linux/init.h> | ||
6 | #include <linux/timex.h> | ||
7 | #include <linux/errno.h> | ||
8 | #include <linux/jiffies.h> | ||
9 | |||
10 | #include <asm/io.h> | ||
11 | #include <asm/timer.h> | ||
12 | #include <asm/hpet.h> | ||
13 | |||
14 | #include "mach_timer.h" | ||
15 | |||
16 | /* ------ Calibrate the TSC ------- | ||
17 | * Return 2^32 * (1 / (TSC clocks per usec)) for do_fast_gettimeoffset(). | ||
18 | * Too much 64-bit arithmetic here to do this cleanly in C, and for | ||
19 | * accuracy's sake we want to keep the overhead on the CTC speaker (channel 2) | ||
20 | * output busy loop as low as possible. We avoid reading the CTC registers | ||
21 | * directly because of the awkward 8-bit access mechanism of the 82C54 | ||
22 | * device. | ||
23 | */ | ||
24 | |||
25 | #define CALIBRATE_TIME (5 * 1000020/HZ) | ||
26 | |||
27 | unsigned long __init calibrate_tsc(void) | ||
28 | { | ||
29 | mach_prepare_counter(); | ||
30 | |||
31 | { | ||
32 | unsigned long startlow, starthigh; | ||
33 | unsigned long endlow, endhigh; | ||
34 | unsigned long count; | ||
35 | |||
36 | rdtsc(startlow,starthigh); | ||
37 | mach_countup(&count); | ||
38 | rdtsc(endlow,endhigh); | ||
39 | |||
40 | |||
41 | /* Error: ECTCNEVERSET */ | ||
42 | if (count <= 1) | ||
43 | goto bad_ctc; | ||
44 | |||
45 | /* 64-bit subtract - gcc just messes up with long longs */ | ||
46 | __asm__("subl %2,%0\n\t" | ||
47 | "sbbl %3,%1" | ||
48 | :"=a" (endlow), "=d" (endhigh) | ||
49 | :"g" (startlow), "g" (starthigh), | ||
50 | "0" (endlow), "1" (endhigh)); | ||
51 | |||
52 | /* Error: ECPUTOOFAST */ | ||
53 | if (endhigh) | ||
54 | goto bad_ctc; | ||
55 | |||
56 | /* Error: ECPUTOOSLOW */ | ||
57 | if (endlow <= CALIBRATE_TIME) | ||
58 | goto bad_ctc; | ||
59 | |||
60 | __asm__("divl %2" | ||
61 | :"=a" (endlow), "=d" (endhigh) | ||
62 | :"r" (endlow), "0" (0), "1" (CALIBRATE_TIME)); | ||
63 | |||
64 | return endlow; | ||
65 | } | ||
66 | |||
67 | /* | ||
68 | * The CTC wasn't reliable: we got a hit on the very first read, | ||
69 | * or the CPU was so fast/slow that the quotient wouldn't fit in | ||
70 | * 32 bits.. | ||
71 | */ | ||
72 | bad_ctc: | ||
73 | return 0; | ||
74 | } | ||
75 | |||
76 | #ifdef CONFIG_HPET_TIMER | ||
77 | /* ------ Calibrate the TSC using HPET ------- | ||
78 | * Return 2^32 * (1 / (TSC clocks per usec)) for getting the CPU freq. | ||
79 | * Second output is parameter 1 (when non NULL) | ||
80 | * Set 2^32 * (1 / (tsc per HPET clk)) for delay_hpet(). | ||
81 | * calibrate_tsc() calibrates the processor TSC by comparing | ||
82 | * it to the HPET timer of known frequency. | ||
83 | * Too much 64-bit arithmetic here to do this cleanly in C | ||
84 | */ | ||
85 | #define CALIBRATE_CNT_HPET (5 * hpet_tick) | ||
86 | #define CALIBRATE_TIME_HPET (5 * KERNEL_TICK_USEC) | ||
87 | |||
88 | unsigned long __init calibrate_tsc_hpet(unsigned long *tsc_hpet_quotient_ptr) | ||
89 | { | ||
90 | unsigned long tsc_startlow, tsc_starthigh; | ||
91 | unsigned long tsc_endlow, tsc_endhigh; | ||
92 | unsigned long hpet_start, hpet_end; | ||
93 | unsigned long result, remain; | ||
94 | |||
95 | hpet_start = hpet_readl(HPET_COUNTER); | ||
96 | rdtsc(tsc_startlow, tsc_starthigh); | ||
97 | do { | ||
98 | hpet_end = hpet_readl(HPET_COUNTER); | ||
99 | } while ((hpet_end - hpet_start) < CALIBRATE_CNT_HPET); | ||
100 | rdtsc(tsc_endlow, tsc_endhigh); | ||
101 | |||
102 | /* 64-bit subtract - gcc just messes up with long longs */ | ||
103 | __asm__("subl %2,%0\n\t" | ||
104 | "sbbl %3,%1" | ||
105 | :"=a" (tsc_endlow), "=d" (tsc_endhigh) | ||
106 | :"g" (tsc_startlow), "g" (tsc_starthigh), | ||
107 | "0" (tsc_endlow), "1" (tsc_endhigh)); | ||
108 | |||
109 | /* Error: ECPUTOOFAST */ | ||
110 | if (tsc_endhigh) | ||
111 | goto bad_calibration; | ||
112 | |||
113 | /* Error: ECPUTOOSLOW */ | ||
114 | if (tsc_endlow <= CALIBRATE_TIME_HPET) | ||
115 | goto bad_calibration; | ||
116 | |||
117 | ASM_DIV64_REG(result, remain, tsc_endlow, 0, CALIBRATE_TIME_HPET); | ||
118 | if (remain > (tsc_endlow >> 1)) | ||
119 | result++; /* rounding the result */ | ||
120 | |||
121 | if (tsc_hpet_quotient_ptr) { | ||
122 | unsigned long tsc_hpet_quotient; | ||
123 | |||
124 | ASM_DIV64_REG(tsc_hpet_quotient, remain, tsc_endlow, 0, | ||
125 | CALIBRATE_CNT_HPET); | ||
126 | if (remain > (tsc_endlow >> 1)) | ||
127 | tsc_hpet_quotient++; /* rounding the result */ | ||
128 | *tsc_hpet_quotient_ptr = tsc_hpet_quotient; | ||
129 | } | ||
130 | |||
131 | return result; | ||
132 | bad_calibration: | ||
133 | /* | ||
134 | * the CPU was so fast/slow that the quotient wouldn't fit in | ||
135 | * 32 bits.. | ||
136 | */ | ||
137 | return 0; | ||
138 | } | ||
139 | #endif | ||
140 | |||
141 | /* calculate cpu_khz */ | ||
142 | void __init init_cpu_khz(void) | ||
143 | { | ||
144 | if (cpu_has_tsc) { | ||
145 | unsigned long tsc_quotient = calibrate_tsc(); | ||
146 | if (tsc_quotient) { | ||
147 | /* report CPU clock rate in Hz. | ||
148 | * The formula is (10^6 * 2^32) / (2^32 * 1 / (clocks/us)) = | ||
149 | * clock/second. Our precision is about 100 ppm. | ||
150 | */ | ||
151 | { unsigned long eax=0, edx=1000; | ||
152 | __asm__("divl %2" | ||
153 | :"=a" (cpu_khz), "=d" (edx) | ||
154 | :"r" (tsc_quotient), | ||
155 | "0" (eax), "1" (edx)); | ||
156 | printk("Detected %lu.%03lu MHz processor.\n", cpu_khz / 1000, cpu_khz % 1000); | ||
157 | } | ||
158 | } | ||
159 | } | ||
160 | } | ||
diff --git a/arch/i386/kernel/timers/timer.c b/arch/i386/kernel/timers/timer.c new file mode 100644 index 000000000000..a3d6a288088b --- /dev/null +++ b/arch/i386/kernel/timers/timer.c | |||
@@ -0,0 +1,66 @@ | |||
1 | #include <linux/init.h> | ||
2 | #include <linux/kernel.h> | ||
3 | #include <linux/string.h> | ||
4 | #include <asm/timer.h> | ||
5 | |||
6 | #ifdef CONFIG_HPET_TIMER | ||
7 | /* | ||
8 | * HPET memory read is slower than tsc reads, but is more dependable as it | ||
9 | * always runs at constant frequency and reduces complexity due to | ||
10 | * cpufreq. So, we prefer HPET timer to tsc based one. Also, we cannot use | ||
11 | * timer_pit when HPET is active. So, we default to timer_tsc. | ||
12 | */ | ||
13 | #endif | ||
14 | /* list of timers, ordered by preference, NULL terminated */ | ||
15 | static struct init_timer_opts* __initdata timers[] = { | ||
16 | #ifdef CONFIG_X86_CYCLONE_TIMER | ||
17 | &timer_cyclone_init, | ||
18 | #endif | ||
19 | #ifdef CONFIG_HPET_TIMER | ||
20 | &timer_hpet_init, | ||
21 | #endif | ||
22 | #ifdef CONFIG_X86_PM_TIMER | ||
23 | &timer_pmtmr_init, | ||
24 | #endif | ||
25 | &timer_tsc_init, | ||
26 | &timer_pit_init, | ||
27 | NULL, | ||
28 | }; | ||
29 | |||
30 | static char clock_override[10] __initdata; | ||
31 | |||
32 | static int __init clock_setup(char* str) | ||
33 | { | ||
34 | if (str) | ||
35 | strlcpy(clock_override, str, sizeof(clock_override)); | ||
36 | return 1; | ||
37 | } | ||
38 | __setup("clock=", clock_setup); | ||
39 | |||
40 | |||
41 | /* The chosen timesource has been found to be bad. | ||
42 | * Fall back to a known good timesource (the PIT) | ||
43 | */ | ||
44 | void clock_fallback(void) | ||
45 | { | ||
46 | cur_timer = &timer_pit; | ||
47 | } | ||
48 | |||
49 | /* iterates through the list of timers, returning the first | ||
50 | * one that initializes successfully. | ||
51 | */ | ||
52 | struct timer_opts* __init select_timer(void) | ||
53 | { | ||
54 | int i = 0; | ||
55 | |||
56 | /* find most preferred working timer */ | ||
57 | while (timers[i]) { | ||
58 | if (timers[i]->init) | ||
59 | if (timers[i]->init(clock_override) == 0) | ||
60 | return timers[i]->opts; | ||
61 | ++i; | ||
62 | } | ||
63 | |||
64 | panic("select_timer: Cannot find a suitable timer\n"); | ||
65 | return NULL; | ||
66 | } | ||
diff --git a/arch/i386/kernel/timers/timer_cyclone.c b/arch/i386/kernel/timers/timer_cyclone.c new file mode 100644 index 000000000000..f6f1206a11bb --- /dev/null +++ b/arch/i386/kernel/timers/timer_cyclone.c | |||
@@ -0,0 +1,259 @@ | |||
1 | /* Cyclone-timer: | ||
2 | * This code implements timer_ops for the cyclone counter found | ||
3 | * on IBM x440, x360, and other Summit based systems. | ||
4 | * | ||
5 | * Copyright (C) 2002 IBM, John Stultz (johnstul@us.ibm.com) | ||
6 | */ | ||
7 | |||
8 | |||
9 | #include <linux/spinlock.h> | ||
10 | #include <linux/init.h> | ||
11 | #include <linux/timex.h> | ||
12 | #include <linux/errno.h> | ||
13 | #include <linux/string.h> | ||
14 | #include <linux/jiffies.h> | ||
15 | |||
16 | #include <asm/timer.h> | ||
17 | #include <asm/io.h> | ||
18 | #include <asm/pgtable.h> | ||
19 | #include <asm/fixmap.h> | ||
20 | #include "io_ports.h" | ||
21 | |||
22 | extern spinlock_t i8253_lock; | ||
23 | |||
24 | /* Number of usecs that the last interrupt was delayed */ | ||
25 | static int delay_at_last_interrupt; | ||
26 | |||
27 | #define CYCLONE_CBAR_ADDR 0xFEB00CD0 | ||
28 | #define CYCLONE_PMCC_OFFSET 0x51A0 | ||
29 | #define CYCLONE_MPMC_OFFSET 0x51D0 | ||
30 | #define CYCLONE_MPCS_OFFSET 0x51A8 | ||
31 | #define CYCLONE_TIMER_FREQ 100000000 | ||
32 | #define CYCLONE_TIMER_MASK (((u64)1<<40)-1) /* 40 bit mask */ | ||
33 | int use_cyclone = 0; | ||
34 | |||
35 | static u32* volatile cyclone_timer; /* Cyclone MPMC0 register */ | ||
36 | static u32 last_cyclone_low; | ||
37 | static u32 last_cyclone_high; | ||
38 | static unsigned long long monotonic_base; | ||
39 | static seqlock_t monotonic_lock = SEQLOCK_UNLOCKED; | ||
40 | |||
41 | /* helper macro to atomically read both cyclone counter registers */ | ||
42 | #define read_cyclone_counter(low,high) \ | ||
43 | do{ \ | ||
44 | high = cyclone_timer[1]; low = cyclone_timer[0]; \ | ||
45 | } while (high != cyclone_timer[1]); | ||
46 | |||
47 | |||
48 | static void mark_offset_cyclone(void) | ||
49 | { | ||
50 | unsigned long lost, delay; | ||
51 | unsigned long delta = last_cyclone_low; | ||
52 | int count; | ||
53 | unsigned long long this_offset, last_offset; | ||
54 | |||
55 | write_seqlock(&monotonic_lock); | ||
56 | last_offset = ((unsigned long long)last_cyclone_high<<32)|last_cyclone_low; | ||
57 | |||
58 | spin_lock(&i8253_lock); | ||
59 | read_cyclone_counter(last_cyclone_low,last_cyclone_high); | ||
60 | |||
61 | /* read values for delay_at_last_interrupt */ | ||
62 | outb_p(0x00, 0x43); /* latch the count ASAP */ | ||
63 | |||
64 | count = inb_p(0x40); /* read the latched count */ | ||
65 | count |= inb(0x40) << 8; | ||
66 | |||
67 | /* | ||
68 | * VIA686a test code... reset the latch if count > max + 1 | ||
69 | * from timer_pit.c - cjb | ||
70 | */ | ||
71 | if (count > LATCH) { | ||
72 | outb_p(0x34, PIT_MODE); | ||
73 | outb_p(LATCH & 0xff, PIT_CH0); | ||
74 | outb(LATCH >> 8, PIT_CH0); | ||
75 | count = LATCH - 1; | ||
76 | } | ||
77 | spin_unlock(&i8253_lock); | ||
78 | |||
79 | /* lost tick compensation */ | ||
80 | delta = last_cyclone_low - delta; | ||
81 | delta /= (CYCLONE_TIMER_FREQ/1000000); | ||
82 | delta += delay_at_last_interrupt; | ||
83 | lost = delta/(1000000/HZ); | ||
84 | delay = delta%(1000000/HZ); | ||
85 | if (lost >= 2) | ||
86 | jiffies_64 += lost-1; | ||
87 | |||
88 | /* update the monotonic base value */ | ||
89 | this_offset = ((unsigned long long)last_cyclone_high<<32)|last_cyclone_low; | ||
90 | monotonic_base += (this_offset - last_offset) & CYCLONE_TIMER_MASK; | ||
91 | write_sequnlock(&monotonic_lock); | ||
92 | |||
93 | /* calculate delay_at_last_interrupt */ | ||
94 | count = ((LATCH-1) - count) * TICK_SIZE; | ||
95 | delay_at_last_interrupt = (count + LATCH/2) / LATCH; | ||
96 | |||
97 | |||
98 | /* catch corner case where tick rollover occured | ||
99 | * between cyclone and pit reads (as noted when | ||
100 | * usec delta is > 90% # of usecs/tick) | ||
101 | */ | ||
102 | if (lost && abs(delay - delay_at_last_interrupt) > (900000/HZ)) | ||
103 | jiffies_64++; | ||
104 | } | ||
105 | |||
106 | static unsigned long get_offset_cyclone(void) | ||
107 | { | ||
108 | u32 offset; | ||
109 | |||
110 | if(!cyclone_timer) | ||
111 | return delay_at_last_interrupt; | ||
112 | |||
113 | /* Read the cyclone timer */ | ||
114 | offset = cyclone_timer[0]; | ||
115 | |||
116 | /* .. relative to previous jiffy */ | ||
117 | offset = offset - last_cyclone_low; | ||
118 | |||
119 | /* convert cyclone ticks to microseconds */ | ||
120 | /* XXX slow, can we speed this up? */ | ||
121 | offset = offset/(CYCLONE_TIMER_FREQ/1000000); | ||
122 | |||
123 | /* our adjusted time offset in microseconds */ | ||
124 | return delay_at_last_interrupt + offset; | ||
125 | } | ||
126 | |||
127 | static unsigned long long monotonic_clock_cyclone(void) | ||
128 | { | ||
129 | u32 now_low, now_high; | ||
130 | unsigned long long last_offset, this_offset, base; | ||
131 | unsigned long long ret; | ||
132 | unsigned seq; | ||
133 | |||
134 | /* atomically read monotonic base & last_offset */ | ||
135 | do { | ||
136 | seq = read_seqbegin(&monotonic_lock); | ||
137 | last_offset = ((unsigned long long)last_cyclone_high<<32)|last_cyclone_low; | ||
138 | base = monotonic_base; | ||
139 | } while (read_seqretry(&monotonic_lock, seq)); | ||
140 | |||
141 | |||
142 | /* Read the cyclone counter */ | ||
143 | read_cyclone_counter(now_low,now_high); | ||
144 | this_offset = ((unsigned long long)now_high<<32)|now_low; | ||
145 | |||
146 | /* convert to nanoseconds */ | ||
147 | ret = base + ((this_offset - last_offset)&CYCLONE_TIMER_MASK); | ||
148 | return ret * (1000000000 / CYCLONE_TIMER_FREQ); | ||
149 | } | ||
150 | |||
151 | static int __init init_cyclone(char* override) | ||
152 | { | ||
153 | u32* reg; | ||
154 | u32 base; /* saved cyclone base address */ | ||
155 | u32 pageaddr; /* page that contains cyclone_timer register */ | ||
156 | u32 offset; /* offset from pageaddr to cyclone_timer register */ | ||
157 | int i; | ||
158 | |||
159 | /* check clock override */ | ||
160 | if (override[0] && strncmp(override,"cyclone",7)) | ||
161 | return -ENODEV; | ||
162 | |||
163 | /*make sure we're on a summit box*/ | ||
164 | if(!use_cyclone) return -ENODEV; | ||
165 | |||
166 | printk(KERN_INFO "Summit chipset: Starting Cyclone Counter.\n"); | ||
167 | |||
168 | /* find base address */ | ||
169 | pageaddr = (CYCLONE_CBAR_ADDR)&PAGE_MASK; | ||
170 | offset = (CYCLONE_CBAR_ADDR)&(~PAGE_MASK); | ||
171 | set_fixmap_nocache(FIX_CYCLONE_TIMER, pageaddr); | ||
172 | reg = (u32*)(fix_to_virt(FIX_CYCLONE_TIMER) + offset); | ||
173 | if(!reg){ | ||
174 | printk(KERN_ERR "Summit chipset: Could not find valid CBAR register.\n"); | ||
175 | return -ENODEV; | ||
176 | } | ||
177 | base = *reg; | ||
178 | if(!base){ | ||
179 | printk(KERN_ERR "Summit chipset: Could not find valid CBAR value.\n"); | ||
180 | return -ENODEV; | ||
181 | } | ||
182 | |||
183 | /* setup PMCC */ | ||
184 | pageaddr = (base + CYCLONE_PMCC_OFFSET)&PAGE_MASK; | ||
185 | offset = (base + CYCLONE_PMCC_OFFSET)&(~PAGE_MASK); | ||
186 | set_fixmap_nocache(FIX_CYCLONE_TIMER, pageaddr); | ||
187 | reg = (u32*)(fix_to_virt(FIX_CYCLONE_TIMER) + offset); | ||
188 | if(!reg){ | ||
189 | printk(KERN_ERR "Summit chipset: Could not find valid PMCC register.\n"); | ||
190 | return -ENODEV; | ||
191 | } | ||
192 | reg[0] = 0x00000001; | ||
193 | |||
194 | /* setup MPCS */ | ||
195 | pageaddr = (base + CYCLONE_MPCS_OFFSET)&PAGE_MASK; | ||
196 | offset = (base + CYCLONE_MPCS_OFFSET)&(~PAGE_MASK); | ||
197 | set_fixmap_nocache(FIX_CYCLONE_TIMER, pageaddr); | ||
198 | reg = (u32*)(fix_to_virt(FIX_CYCLONE_TIMER) + offset); | ||
199 | if(!reg){ | ||
200 | printk(KERN_ERR "Summit chipset: Could not find valid MPCS register.\n"); | ||
201 | return -ENODEV; | ||
202 | } | ||
203 | reg[0] = 0x00000001; | ||
204 | |||
205 | /* map in cyclone_timer */ | ||
206 | pageaddr = (base + CYCLONE_MPMC_OFFSET)&PAGE_MASK; | ||
207 | offset = (base + CYCLONE_MPMC_OFFSET)&(~PAGE_MASK); | ||
208 | set_fixmap_nocache(FIX_CYCLONE_TIMER, pageaddr); | ||
209 | cyclone_timer = (u32*)(fix_to_virt(FIX_CYCLONE_TIMER) + offset); | ||
210 | if(!cyclone_timer){ | ||
211 | printk(KERN_ERR "Summit chipset: Could not find valid MPMC register.\n"); | ||
212 | return -ENODEV; | ||
213 | } | ||
214 | |||
215 | /*quick test to make sure its ticking*/ | ||
216 | for(i=0; i<3; i++){ | ||
217 | u32 old = cyclone_timer[0]; | ||
218 | int stall = 100; | ||
219 | while(stall--) barrier(); | ||
220 | if(cyclone_timer[0] == old){ | ||
221 | printk(KERN_ERR "Summit chipset: Counter not counting! DISABLED\n"); | ||
222 | cyclone_timer = 0; | ||
223 | return -ENODEV; | ||
224 | } | ||
225 | } | ||
226 | |||
227 | init_cpu_khz(); | ||
228 | |||
229 | /* Everything looks good! */ | ||
230 | return 0; | ||
231 | } | ||
232 | |||
233 | |||
234 | static void delay_cyclone(unsigned long loops) | ||
235 | { | ||
236 | unsigned long bclock, now; | ||
237 | if(!cyclone_timer) | ||
238 | return; | ||
239 | bclock = cyclone_timer[0]; | ||
240 | do { | ||
241 | rep_nop(); | ||
242 | now = cyclone_timer[0]; | ||
243 | } while ((now-bclock) < loops); | ||
244 | } | ||
245 | /************************************************************/ | ||
246 | |||
247 | /* cyclone timer_opts struct */ | ||
248 | static struct timer_opts timer_cyclone = { | ||
249 | .name = "cyclone", | ||
250 | .mark_offset = mark_offset_cyclone, | ||
251 | .get_offset = get_offset_cyclone, | ||
252 | .monotonic_clock = monotonic_clock_cyclone, | ||
253 | .delay = delay_cyclone, | ||
254 | }; | ||
255 | |||
256 | struct init_timer_opts __initdata timer_cyclone_init = { | ||
257 | .init = init_cyclone, | ||
258 | .opts = &timer_cyclone, | ||
259 | }; | ||
diff --git a/arch/i386/kernel/timers/timer_hpet.c b/arch/i386/kernel/timers/timer_hpet.c new file mode 100644 index 000000000000..713134e71844 --- /dev/null +++ b/arch/i386/kernel/timers/timer_hpet.c | |||
@@ -0,0 +1,191 @@ | |||
1 | /* | ||
2 | * This code largely moved from arch/i386/kernel/time.c. | ||
3 | * See comments there for proper credits. | ||
4 | */ | ||
5 | |||
6 | #include <linux/spinlock.h> | ||
7 | #include <linux/init.h> | ||
8 | #include <linux/timex.h> | ||
9 | #include <linux/errno.h> | ||
10 | #include <linux/string.h> | ||
11 | #include <linux/jiffies.h> | ||
12 | |||
13 | #include <asm/timer.h> | ||
14 | #include <asm/io.h> | ||
15 | #include <asm/processor.h> | ||
16 | |||
17 | #include "io_ports.h" | ||
18 | #include "mach_timer.h" | ||
19 | #include <asm/hpet.h> | ||
20 | |||
21 | static unsigned long hpet_usec_quotient; /* convert hpet clks to usec */ | ||
22 | static unsigned long tsc_hpet_quotient; /* convert tsc to hpet clks */ | ||
23 | static unsigned long hpet_last; /* hpet counter value at last tick*/ | ||
24 | static unsigned long last_tsc_low; /* lsb 32 bits of Time Stamp Counter */ | ||
25 | static unsigned long last_tsc_high; /* msb 32 bits of Time Stamp Counter */ | ||
26 | static unsigned long long monotonic_base; | ||
27 | static seqlock_t monotonic_lock = SEQLOCK_UNLOCKED; | ||
28 | |||
29 | /* convert from cycles(64bits) => nanoseconds (64bits) | ||
30 | * basic equation: | ||
31 | * ns = cycles / (freq / ns_per_sec) | ||
32 | * ns = cycles * (ns_per_sec / freq) | ||
33 | * ns = cycles * (10^9 / (cpu_mhz * 10^6)) | ||
34 | * ns = cycles * (10^3 / cpu_mhz) | ||
35 | * | ||
36 | * Then we use scaling math (suggested by george@mvista.com) to get: | ||
37 | * ns = cycles * (10^3 * SC / cpu_mhz) / SC | ||
38 | * ns = cycles * cyc2ns_scale / SC | ||
39 | * | ||
40 | * And since SC is a constant power of two, we can convert the div | ||
41 | * into a shift. | ||
42 | * -johnstul@us.ibm.com "math is hard, lets go shopping!" | ||
43 | */ | ||
44 | static unsigned long cyc2ns_scale; | ||
45 | #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */ | ||
46 | |||
47 | static inline void set_cyc2ns_scale(unsigned long cpu_mhz) | ||
48 | { | ||
49 | cyc2ns_scale = (1000 << CYC2NS_SCALE_FACTOR)/cpu_mhz; | ||
50 | } | ||
51 | |||
52 | static inline unsigned long long cycles_2_ns(unsigned long long cyc) | ||
53 | { | ||
54 | return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR; | ||
55 | } | ||
56 | |||
57 | static unsigned long long monotonic_clock_hpet(void) | ||
58 | { | ||
59 | unsigned long long last_offset, this_offset, base; | ||
60 | unsigned seq; | ||
61 | |||
62 | /* atomically read monotonic base & last_offset */ | ||
63 | do { | ||
64 | seq = read_seqbegin(&monotonic_lock); | ||
65 | last_offset = ((unsigned long long)last_tsc_high<<32)|last_tsc_low; | ||
66 | base = monotonic_base; | ||
67 | } while (read_seqretry(&monotonic_lock, seq)); | ||
68 | |||
69 | /* Read the Time Stamp Counter */ | ||
70 | rdtscll(this_offset); | ||
71 | |||
72 | /* return the value in ns */ | ||
73 | return base + cycles_2_ns(this_offset - last_offset); | ||
74 | } | ||
75 | |||
76 | static unsigned long get_offset_hpet(void) | ||
77 | { | ||
78 | register unsigned long eax, edx; | ||
79 | |||
80 | eax = hpet_readl(HPET_COUNTER); | ||
81 | eax -= hpet_last; /* hpet delta */ | ||
82 | |||
83 | /* | ||
84 | * Time offset = (hpet delta) * ( usecs per HPET clock ) | ||
85 | * = (hpet delta) * ( usecs per tick / HPET clocks per tick) | ||
86 | * = (hpet delta) * ( hpet_usec_quotient ) / (2^32) | ||
87 | * | ||
88 | * Where, | ||
89 | * hpet_usec_quotient = (2^32 * usecs per tick)/HPET clocks per tick | ||
90 | * | ||
91 | * Using a mull instead of a divl saves some cycles in critical path. | ||
92 | */ | ||
93 | ASM_MUL64_REG(eax, edx, hpet_usec_quotient, eax); | ||
94 | |||
95 | /* our adjusted time offset in microseconds */ | ||
96 | return edx; | ||
97 | } | ||
98 | |||
99 | static void mark_offset_hpet(void) | ||
100 | { | ||
101 | unsigned long long this_offset, last_offset; | ||
102 | unsigned long offset; | ||
103 | |||
104 | write_seqlock(&monotonic_lock); | ||
105 | last_offset = ((unsigned long long)last_tsc_high<<32)|last_tsc_low; | ||
106 | rdtsc(last_tsc_low, last_tsc_high); | ||
107 | |||
108 | offset = hpet_readl(HPET_T0_CMP) - hpet_tick; | ||
109 | if (unlikely(((offset - hpet_last) > hpet_tick) && (hpet_last != 0))) { | ||
110 | int lost_ticks = (offset - hpet_last) / hpet_tick; | ||
111 | jiffies_64 += lost_ticks; | ||
112 | } | ||
113 | hpet_last = offset; | ||
114 | |||
115 | /* update the monotonic base value */ | ||
116 | this_offset = ((unsigned long long)last_tsc_high<<32)|last_tsc_low; | ||
117 | monotonic_base += cycles_2_ns(this_offset - last_offset); | ||
118 | write_sequnlock(&monotonic_lock); | ||
119 | } | ||
120 | |||
121 | static void delay_hpet(unsigned long loops) | ||
122 | { | ||
123 | unsigned long hpet_start, hpet_end; | ||
124 | unsigned long eax; | ||
125 | |||
126 | /* loops is the number of cpu cycles. Convert it to hpet clocks */ | ||
127 | ASM_MUL64_REG(eax, loops, tsc_hpet_quotient, loops); | ||
128 | |||
129 | hpet_start = hpet_readl(HPET_COUNTER); | ||
130 | do { | ||
131 | rep_nop(); | ||
132 | hpet_end = hpet_readl(HPET_COUNTER); | ||
133 | } while ((hpet_end - hpet_start) < (loops)); | ||
134 | } | ||
135 | |||
136 | static int __init init_hpet(char* override) | ||
137 | { | ||
138 | unsigned long result, remain; | ||
139 | |||
140 | /* check clock override */ | ||
141 | if (override[0] && strncmp(override,"hpet",4)) | ||
142 | return -ENODEV; | ||
143 | |||
144 | if (!is_hpet_enabled()) | ||
145 | return -ENODEV; | ||
146 | |||
147 | printk("Using HPET for gettimeofday\n"); | ||
148 | if (cpu_has_tsc) { | ||
149 | unsigned long tsc_quotient = calibrate_tsc_hpet(&tsc_hpet_quotient); | ||
150 | if (tsc_quotient) { | ||
151 | /* report CPU clock rate in Hz. | ||
152 | * The formula is (10^6 * 2^32) / (2^32 * 1 / (clocks/us)) = | ||
153 | * clock/second. Our precision is about 100 ppm. | ||
154 | */ | ||
155 | { unsigned long eax=0, edx=1000; | ||
156 | ASM_DIV64_REG(cpu_khz, edx, tsc_quotient, | ||
157 | eax, edx); | ||
158 | printk("Detected %lu.%03lu MHz processor.\n", | ||
159 | cpu_khz / 1000, cpu_khz % 1000); | ||
160 | } | ||
161 | set_cyc2ns_scale(cpu_khz/1000); | ||
162 | } | ||
163 | } | ||
164 | |||
165 | /* | ||
166 | * Math to calculate hpet to usec multiplier | ||
167 | * Look for the comments at get_offset_hpet() | ||
168 | */ | ||
169 | ASM_DIV64_REG(result, remain, hpet_tick, 0, KERNEL_TICK_USEC); | ||
170 | if (remain > (hpet_tick >> 1)) | ||
171 | result++; /* rounding the result */ | ||
172 | hpet_usec_quotient = result; | ||
173 | |||
174 | return 0; | ||
175 | } | ||
176 | |||
177 | /************************************************************/ | ||
178 | |||
179 | /* tsc timer_opts struct */ | ||
180 | static struct timer_opts timer_hpet = { | ||
181 | .name = "hpet", | ||
182 | .mark_offset = mark_offset_hpet, | ||
183 | .get_offset = get_offset_hpet, | ||
184 | .monotonic_clock = monotonic_clock_hpet, | ||
185 | .delay = delay_hpet, | ||
186 | }; | ||
187 | |||
188 | struct init_timer_opts __initdata timer_hpet_init = { | ||
189 | .init = init_hpet, | ||
190 | .opts = &timer_hpet, | ||
191 | }; | ||
diff --git a/arch/i386/kernel/timers/timer_none.c b/arch/i386/kernel/timers/timer_none.c new file mode 100644 index 000000000000..4ea2f414dbbd --- /dev/null +++ b/arch/i386/kernel/timers/timer_none.c | |||
@@ -0,0 +1,39 @@ | |||
1 | #include <linux/init.h> | ||
2 | #include <asm/timer.h> | ||
3 | |||
4 | static void mark_offset_none(void) | ||
5 | { | ||
6 | /* nothing needed */ | ||
7 | } | ||
8 | |||
9 | static unsigned long get_offset_none(void) | ||
10 | { | ||
11 | return 0; | ||
12 | } | ||
13 | |||
14 | static unsigned long long monotonic_clock_none(void) | ||
15 | { | ||
16 | return 0; | ||
17 | } | ||
18 | |||
19 | static void delay_none(unsigned long loops) | ||
20 | { | ||
21 | int d0; | ||
22 | __asm__ __volatile__( | ||
23 | "\tjmp 1f\n" | ||
24 | ".align 16\n" | ||
25 | "1:\tjmp 2f\n" | ||
26 | ".align 16\n" | ||
27 | "2:\tdecl %0\n\tjns 2b" | ||
28 | :"=&a" (d0) | ||
29 | :"0" (loops)); | ||
30 | } | ||
31 | |||
32 | /* none timer_opts struct */ | ||
33 | struct timer_opts timer_none = { | ||
34 | .name = "none", | ||
35 | .mark_offset = mark_offset_none, | ||
36 | .get_offset = get_offset_none, | ||
37 | .monotonic_clock = monotonic_clock_none, | ||
38 | .delay = delay_none, | ||
39 | }; | ||
diff --git a/arch/i386/kernel/timers/timer_pit.c b/arch/i386/kernel/timers/timer_pit.c new file mode 100644 index 000000000000..967d5453cd0e --- /dev/null +++ b/arch/i386/kernel/timers/timer_pit.c | |||
@@ -0,0 +1,206 @@ | |||
1 | /* | ||
2 | * This code largely moved from arch/i386/kernel/time.c. | ||
3 | * See comments there for proper credits. | ||
4 | */ | ||
5 | |||
6 | #include <linux/spinlock.h> | ||
7 | #include <linux/module.h> | ||
8 | #include <linux/device.h> | ||
9 | #include <linux/irq.h> | ||
10 | #include <linux/sysdev.h> | ||
11 | #include <linux/timex.h> | ||
12 | #include <asm/delay.h> | ||
13 | #include <asm/mpspec.h> | ||
14 | #include <asm/timer.h> | ||
15 | #include <asm/smp.h> | ||
16 | #include <asm/io.h> | ||
17 | #include <asm/arch_hooks.h> | ||
18 | |||
19 | extern spinlock_t i8259A_lock; | ||
20 | extern spinlock_t i8253_lock; | ||
21 | #include "do_timer.h" | ||
22 | #include "io_ports.h" | ||
23 | |||
24 | static int count_p; /* counter in get_offset_pit() */ | ||
25 | |||
26 | static int __init init_pit(char* override) | ||
27 | { | ||
28 | /* check clock override */ | ||
29 | if (override[0] && strncmp(override,"pit",3)) | ||
30 | printk(KERN_ERR "Warning: clock= override failed. Defaulting to PIT\n"); | ||
31 | |||
32 | count_p = LATCH; | ||
33 | return 0; | ||
34 | } | ||
35 | |||
36 | static void mark_offset_pit(void) | ||
37 | { | ||
38 | /* nothing needed */ | ||
39 | } | ||
40 | |||
41 | static unsigned long long monotonic_clock_pit(void) | ||
42 | { | ||
43 | return 0; | ||
44 | } | ||
45 | |||
46 | static void delay_pit(unsigned long loops) | ||
47 | { | ||
48 | int d0; | ||
49 | __asm__ __volatile__( | ||
50 | "\tjmp 1f\n" | ||
51 | ".align 16\n" | ||
52 | "1:\tjmp 2f\n" | ||
53 | ".align 16\n" | ||
54 | "2:\tdecl %0\n\tjns 2b" | ||
55 | :"=&a" (d0) | ||
56 | :"0" (loops)); | ||
57 | } | ||
58 | |||
59 | |||
60 | /* This function must be called with xtime_lock held. | ||
61 | * It was inspired by Steve McCanne's microtime-i386 for BSD. -- jrs | ||
62 | * | ||
63 | * However, the pc-audio speaker driver changes the divisor so that | ||
64 | * it gets interrupted rather more often - it loads 64 into the | ||
65 | * counter rather than 11932! This has an adverse impact on | ||
66 | * do_gettimeoffset() -- it stops working! What is also not | ||
67 | * good is that the interval that our timer function gets called | ||
68 | * is no longer 10.0002 ms, but 9.9767 ms. To get around this | ||
69 | * would require using a different timing source. Maybe someone | ||
70 | * could use the RTC - I know that this can interrupt at frequencies | ||
71 | * ranging from 8192Hz to 2Hz. If I had the energy, I'd somehow fix | ||
72 | * it so that at startup, the timer code in sched.c would select | ||
73 | * using either the RTC or the 8253 timer. The decision would be | ||
74 | * based on whether there was any other device around that needed | ||
75 | * to trample on the 8253. I'd set up the RTC to interrupt at 1024 Hz, | ||
76 | * and then do some jiggery to have a version of do_timer that | ||
77 | * advanced the clock by 1/1024 s. Every time that reached over 1/100 | ||
78 | * of a second, then do all the old code. If the time was kept correct | ||
79 | * then do_gettimeoffset could just return 0 - there is no low order | ||
80 | * divider that can be accessed. | ||
81 | * | ||
82 | * Ideally, you would be able to use the RTC for the speaker driver, | ||
83 | * but it appears that the speaker driver really needs interrupt more | ||
84 | * often than every 120 us or so. | ||
85 | * | ||
86 | * Anyway, this needs more thought.... pjsg (1993-08-28) | ||
87 | * | ||
88 | * If you are really that interested, you should be reading | ||
89 | * comp.protocols.time.ntp! | ||
90 | */ | ||
91 | |||
92 | static unsigned long get_offset_pit(void) | ||
93 | { | ||
94 | int count; | ||
95 | unsigned long flags; | ||
96 | static unsigned long jiffies_p = 0; | ||
97 | |||
98 | /* | ||
99 | * cache volatile jiffies temporarily; we have xtime_lock. | ||
100 | */ | ||
101 | unsigned long jiffies_t; | ||
102 | |||
103 | spin_lock_irqsave(&i8253_lock, flags); | ||
104 | /* timer count may underflow right here */ | ||
105 | outb_p(0x00, PIT_MODE); /* latch the count ASAP */ | ||
106 | |||
107 | count = inb_p(PIT_CH0); /* read the latched count */ | ||
108 | |||
109 | /* | ||
110 | * We do this guaranteed double memory access instead of a _p | ||
111 | * postfix in the previous port access. Wheee, hackady hack | ||
112 | */ | ||
113 | jiffies_t = jiffies; | ||
114 | |||
115 | count |= inb_p(PIT_CH0) << 8; | ||
116 | |||
117 | /* VIA686a test code... reset the latch if count > max + 1 */ | ||
118 | if (count > LATCH) { | ||
119 | outb_p(0x34, PIT_MODE); | ||
120 | outb_p(LATCH & 0xff, PIT_CH0); | ||
121 | outb(LATCH >> 8, PIT_CH0); | ||
122 | count = LATCH - 1; | ||
123 | } | ||
124 | |||
125 | /* | ||
126 | * avoiding timer inconsistencies (they are rare, but they happen)... | ||
127 | * there are two kinds of problems that must be avoided here: | ||
128 | * 1. the timer counter underflows | ||
129 | * 2. hardware problem with the timer, not giving us continuous time, | ||
130 | * the counter does small "jumps" upwards on some Pentium systems, | ||
131 | * (see c't 95/10 page 335 for Neptun bug.) | ||
132 | */ | ||
133 | |||
134 | if( jiffies_t == jiffies_p ) { | ||
135 | if( count > count_p ) { | ||
136 | /* the nutcase */ | ||
137 | count = do_timer_overflow(count); | ||
138 | } | ||
139 | } else | ||
140 | jiffies_p = jiffies_t; | ||
141 | |||
142 | count_p = count; | ||
143 | |||
144 | spin_unlock_irqrestore(&i8253_lock, flags); | ||
145 | |||
146 | count = ((LATCH-1) - count) * TICK_SIZE; | ||
147 | count = (count + LATCH/2) / LATCH; | ||
148 | |||
149 | return count; | ||
150 | } | ||
151 | |||
152 | |||
153 | /* tsc timer_opts struct */ | ||
154 | struct timer_opts timer_pit = { | ||
155 | .name = "pit", | ||
156 | .mark_offset = mark_offset_pit, | ||
157 | .get_offset = get_offset_pit, | ||
158 | .monotonic_clock = monotonic_clock_pit, | ||
159 | .delay = delay_pit, | ||
160 | }; | ||
161 | |||
162 | struct init_timer_opts __initdata timer_pit_init = { | ||
163 | .init = init_pit, | ||
164 | .opts = &timer_pit, | ||
165 | }; | ||
166 | |||
167 | void setup_pit_timer(void) | ||
168 | { | ||
169 | extern spinlock_t i8253_lock; | ||
170 | unsigned long flags; | ||
171 | |||
172 | spin_lock_irqsave(&i8253_lock, flags); | ||
173 | outb_p(0x34,PIT_MODE); /* binary, mode 2, LSB/MSB, ch 0 */ | ||
174 | udelay(10); | ||
175 | outb_p(LATCH & 0xff , PIT_CH0); /* LSB */ | ||
176 | udelay(10); | ||
177 | outb(LATCH >> 8 , PIT_CH0); /* MSB */ | ||
178 | spin_unlock_irqrestore(&i8253_lock, flags); | ||
179 | } | ||
180 | |||
181 | static int timer_resume(struct sys_device *dev) | ||
182 | { | ||
183 | setup_pit_timer(); | ||
184 | return 0; | ||
185 | } | ||
186 | |||
187 | static struct sysdev_class timer_sysclass = { | ||
188 | set_kset_name("timer_pit"), | ||
189 | .resume = timer_resume, | ||
190 | }; | ||
191 | |||
192 | static struct sys_device device_timer = { | ||
193 | .id = 0, | ||
194 | .cls = &timer_sysclass, | ||
195 | }; | ||
196 | |||
197 | static int __init init_timer_sysfs(void) | ||
198 | { | ||
199 | int error = sysdev_class_register(&timer_sysclass); | ||
200 | if (!error) | ||
201 | error = sysdev_register(&device_timer); | ||
202 | return error; | ||
203 | } | ||
204 | |||
205 | device_initcall(init_timer_sysfs); | ||
206 | |||
diff --git a/arch/i386/kernel/timers/timer_pm.c b/arch/i386/kernel/timers/timer_pm.c new file mode 100644 index 000000000000..d77f22030fe6 --- /dev/null +++ b/arch/i386/kernel/timers/timer_pm.c | |||
@@ -0,0 +1,258 @@ | |||
1 | /* | ||
2 | * (C) Dominik Brodowski <linux@brodo.de> 2003 | ||
3 | * | ||
4 | * Driver to use the Power Management Timer (PMTMR) available in some | ||
5 | * southbridges as primary timing source for the Linux kernel. | ||
6 | * | ||
7 | * Based on parts of linux/drivers/acpi/hardware/hwtimer.c, timer_pit.c, | ||
8 | * timer_hpet.c, and on Arjan van de Ven's implementation for 2.4. | ||
9 | * | ||
10 | * This file is licensed under the GPL v2. | ||
11 | */ | ||
12 | |||
13 | |||
14 | #include <linux/kernel.h> | ||
15 | #include <linux/module.h> | ||
16 | #include <linux/device.h> | ||
17 | #include <linux/init.h> | ||
18 | #include <asm/types.h> | ||
19 | #include <asm/timer.h> | ||
20 | #include <asm/smp.h> | ||
21 | #include <asm/io.h> | ||
22 | #include <asm/arch_hooks.h> | ||
23 | |||
24 | #include <linux/timex.h> | ||
25 | #include "mach_timer.h" | ||
26 | |||
27 | /* Number of PMTMR ticks expected during calibration run */ | ||
28 | #define PMTMR_TICKS_PER_SEC 3579545 | ||
29 | #define PMTMR_EXPECTED_RATE \ | ||
30 | ((CALIBRATE_LATCH * (PMTMR_TICKS_PER_SEC >> 10)) / (CLOCK_TICK_RATE>>10)) | ||
31 | |||
32 | |||
33 | /* The I/O port the PMTMR resides at. | ||
34 | * The location is detected during setup_arch(), | ||
35 | * in arch/i386/acpi/boot.c */ | ||
36 | u32 pmtmr_ioport = 0; | ||
37 | |||
38 | |||
39 | /* value of the Power timer at last timer interrupt */ | ||
40 | static u32 offset_tick; | ||
41 | static u32 offset_delay; | ||
42 | |||
43 | static unsigned long long monotonic_base; | ||
44 | static seqlock_t monotonic_lock = SEQLOCK_UNLOCKED; | ||
45 | |||
46 | #define ACPI_PM_MASK 0xFFFFFF /* limit it to 24 bits */ | ||
47 | |||
48 | /*helper function to safely read acpi pm timesource*/ | ||
49 | static inline u32 read_pmtmr(void) | ||
50 | { | ||
51 | u32 v1=0,v2=0,v3=0; | ||
52 | /* It has been reported that because of various broken | ||
53 | * chipsets (ICH4, PIIX4 and PIIX4E) where the ACPI PM time | ||
54 | * source is not latched, so you must read it multiple | ||
55 | * times to insure a safe value is read. | ||
56 | */ | ||
57 | do { | ||
58 | v1 = inl(pmtmr_ioport); | ||
59 | v2 = inl(pmtmr_ioport); | ||
60 | v3 = inl(pmtmr_ioport); | ||
61 | } while ((v1 > v2 && v1 < v3) || (v2 > v3 && v2 < v1) | ||
62 | || (v3 > v1 && v3 < v2)); | ||
63 | |||
64 | /* mask the output to 24 bits */ | ||
65 | return v2 & ACPI_PM_MASK; | ||
66 | } | ||
67 | |||
68 | |||
69 | /* | ||
70 | * Some boards have the PMTMR running way too fast. We check | ||
71 | * the PMTMR rate against PIT channel 2 to catch these cases. | ||
72 | */ | ||
73 | static int verify_pmtmr_rate(void) | ||
74 | { | ||
75 | u32 value1, value2; | ||
76 | unsigned long count, delta; | ||
77 | |||
78 | mach_prepare_counter(); | ||
79 | value1 = read_pmtmr(); | ||
80 | mach_countup(&count); | ||
81 | value2 = read_pmtmr(); | ||
82 | delta = (value2 - value1) & ACPI_PM_MASK; | ||
83 | |||
84 | /* Check that the PMTMR delta is within 5% of what we expect */ | ||
85 | if (delta < (PMTMR_EXPECTED_RATE * 19) / 20 || | ||
86 | delta > (PMTMR_EXPECTED_RATE * 21) / 20) { | ||
87 | printk(KERN_INFO "PM-Timer running at invalid rate: %lu%% of normal - aborting.\n", 100UL * delta / PMTMR_EXPECTED_RATE); | ||
88 | return -1; | ||
89 | } | ||
90 | |||
91 | return 0; | ||
92 | } | ||
93 | |||
94 | |||
95 | static int init_pmtmr(char* override) | ||
96 | { | ||
97 | u32 value1, value2; | ||
98 | unsigned int i; | ||
99 | |||
100 | if (override[0] && strncmp(override,"pmtmr",5)) | ||
101 | return -ENODEV; | ||
102 | |||
103 | if (!pmtmr_ioport) | ||
104 | return -ENODEV; | ||
105 | |||
106 | /* we use the TSC for delay_pmtmr, so make sure it exists */ | ||
107 | if (!cpu_has_tsc) | ||
108 | return -ENODEV; | ||
109 | |||
110 | /* "verify" this timing source */ | ||
111 | value1 = read_pmtmr(); | ||
112 | for (i = 0; i < 10000; i++) { | ||
113 | value2 = read_pmtmr(); | ||
114 | if (value2 == value1) | ||
115 | continue; | ||
116 | if (value2 > value1) | ||
117 | goto pm_good; | ||
118 | if ((value2 < value1) && ((value2) < 0xFFF)) | ||
119 | goto pm_good; | ||
120 | printk(KERN_INFO "PM-Timer had inconsistent results: 0x%#x, 0x%#x - aborting.\n", value1, value2); | ||
121 | return -EINVAL; | ||
122 | } | ||
123 | printk(KERN_INFO "PM-Timer had no reasonable result: 0x%#x - aborting.\n", value1); | ||
124 | return -ENODEV; | ||
125 | |||
126 | pm_good: | ||
127 | if (verify_pmtmr_rate() != 0) | ||
128 | return -ENODEV; | ||
129 | |||
130 | init_cpu_khz(); | ||
131 | return 0; | ||
132 | } | ||
133 | |||
134 | static inline u32 cyc2us(u32 cycles) | ||
135 | { | ||
136 | /* The Power Management Timer ticks at 3.579545 ticks per microsecond. | ||
137 | * 1 / PM_TIMER_FREQUENCY == 0.27936511 =~ 286/1024 [error: 0.024%] | ||
138 | * | ||
139 | * Even with HZ = 100, delta is at maximum 35796 ticks, so it can | ||
140 | * easily be multiplied with 286 (=0x11E) without having to fear | ||
141 | * u32 overflows. | ||
142 | */ | ||
143 | cycles *= 286; | ||
144 | return (cycles >> 10); | ||
145 | } | ||
146 | |||
147 | /* | ||
148 | * this gets called during each timer interrupt | ||
149 | * - Called while holding the writer xtime_lock | ||
150 | */ | ||
151 | static void mark_offset_pmtmr(void) | ||
152 | { | ||
153 | u32 lost, delta, last_offset; | ||
154 | static int first_run = 1; | ||
155 | last_offset = offset_tick; | ||
156 | |||
157 | write_seqlock(&monotonic_lock); | ||
158 | |||
159 | offset_tick = read_pmtmr(); | ||
160 | |||
161 | /* calculate tick interval */ | ||
162 | delta = (offset_tick - last_offset) & ACPI_PM_MASK; | ||
163 | |||
164 | /* convert to usecs */ | ||
165 | delta = cyc2us(delta); | ||
166 | |||
167 | /* update the monotonic base value */ | ||
168 | monotonic_base += delta * NSEC_PER_USEC; | ||
169 | write_sequnlock(&monotonic_lock); | ||
170 | |||
171 | /* convert to ticks */ | ||
172 | delta += offset_delay; | ||
173 | lost = delta / (USEC_PER_SEC / HZ); | ||
174 | offset_delay = delta % (USEC_PER_SEC / HZ); | ||
175 | |||
176 | |||
177 | /* compensate for lost ticks */ | ||
178 | if (lost >= 2) | ||
179 | jiffies_64 += lost - 1; | ||
180 | |||
181 | /* don't calculate delay for first run, | ||
182 | or if we've got less then a tick */ | ||
183 | if (first_run || (lost < 1)) { | ||
184 | first_run = 0; | ||
185 | offset_delay = 0; | ||
186 | } | ||
187 | } | ||
188 | |||
189 | |||
190 | static unsigned long long monotonic_clock_pmtmr(void) | ||
191 | { | ||
192 | u32 last_offset, this_offset; | ||
193 | unsigned long long base, ret; | ||
194 | unsigned seq; | ||
195 | |||
196 | |||
197 | /* atomically read monotonic base & last_offset */ | ||
198 | do { | ||
199 | seq = read_seqbegin(&monotonic_lock); | ||
200 | last_offset = offset_tick; | ||
201 | base = monotonic_base; | ||
202 | } while (read_seqretry(&monotonic_lock, seq)); | ||
203 | |||
204 | /* Read the pmtmr */ | ||
205 | this_offset = read_pmtmr(); | ||
206 | |||
207 | /* convert to nanoseconds */ | ||
208 | ret = (this_offset - last_offset) & ACPI_PM_MASK; | ||
209 | ret = base + (cyc2us(ret) * NSEC_PER_USEC); | ||
210 | return ret; | ||
211 | } | ||
212 | |||
213 | static void delay_pmtmr(unsigned long loops) | ||
214 | { | ||
215 | unsigned long bclock, now; | ||
216 | |||
217 | rdtscl(bclock); | ||
218 | do | ||
219 | { | ||
220 | rep_nop(); | ||
221 | rdtscl(now); | ||
222 | } while ((now-bclock) < loops); | ||
223 | } | ||
224 | |||
225 | |||
226 | /* | ||
227 | * get the offset (in microseconds) from the last call to mark_offset() | ||
228 | * - Called holding a reader xtime_lock | ||
229 | */ | ||
230 | static unsigned long get_offset_pmtmr(void) | ||
231 | { | ||
232 | u32 now, offset, delta = 0; | ||
233 | |||
234 | offset = offset_tick; | ||
235 | now = read_pmtmr(); | ||
236 | delta = (now - offset)&ACPI_PM_MASK; | ||
237 | |||
238 | return (unsigned long) offset_delay + cyc2us(delta); | ||
239 | } | ||
240 | |||
241 | |||
242 | /* acpi timer_opts struct */ | ||
243 | static struct timer_opts timer_pmtmr = { | ||
244 | .name = "pmtmr", | ||
245 | .mark_offset = mark_offset_pmtmr, | ||
246 | .get_offset = get_offset_pmtmr, | ||
247 | .monotonic_clock = monotonic_clock_pmtmr, | ||
248 | .delay = delay_pmtmr, | ||
249 | }; | ||
250 | |||
251 | struct init_timer_opts __initdata timer_pmtmr_init = { | ||
252 | .init = init_pmtmr, | ||
253 | .opts = &timer_pmtmr, | ||
254 | }; | ||
255 | |||
256 | MODULE_LICENSE("GPL"); | ||
257 | MODULE_AUTHOR("Dominik Brodowski <linux@brodo.de>"); | ||
258 | MODULE_DESCRIPTION("Power Management Timer (PMTMR) as primary timing source for x86"); | ||
diff --git a/arch/i386/kernel/timers/timer_tsc.c b/arch/i386/kernel/timers/timer_tsc.c new file mode 100644 index 000000000000..a685994e5c8e --- /dev/null +++ b/arch/i386/kernel/timers/timer_tsc.c | |||
@@ -0,0 +1,560 @@ | |||
1 | /* | ||
2 | * This code largely moved from arch/i386/kernel/time.c. | ||
3 | * See comments there for proper credits. | ||
4 | * | ||
5 | * 2004-06-25 Jesper Juhl | ||
6 | * moved mark_offset_tsc below cpufreq_delayed_get to avoid gcc 3.4 | ||
7 | * failing to inline. | ||
8 | */ | ||
9 | |||
10 | #include <linux/spinlock.h> | ||
11 | #include <linux/init.h> | ||
12 | #include <linux/timex.h> | ||
13 | #include <linux/errno.h> | ||
14 | #include <linux/cpufreq.h> | ||
15 | #include <linux/string.h> | ||
16 | #include <linux/jiffies.h> | ||
17 | |||
18 | #include <asm/timer.h> | ||
19 | #include <asm/io.h> | ||
20 | /* processor.h for distable_tsc flag */ | ||
21 | #include <asm/processor.h> | ||
22 | |||
23 | #include "io_ports.h" | ||
24 | #include "mach_timer.h" | ||
25 | |||
26 | #include <asm/hpet.h> | ||
27 | |||
28 | #ifdef CONFIG_HPET_TIMER | ||
29 | static unsigned long hpet_usec_quotient; | ||
30 | static unsigned long hpet_last; | ||
31 | static struct timer_opts timer_tsc; | ||
32 | #endif | ||
33 | |||
34 | static inline void cpufreq_delayed_get(void); | ||
35 | |||
36 | int tsc_disable __initdata = 0; | ||
37 | |||
38 | extern spinlock_t i8253_lock; | ||
39 | |||
40 | static int use_tsc; | ||
41 | /* Number of usecs that the last interrupt was delayed */ | ||
42 | static int delay_at_last_interrupt; | ||
43 | |||
44 | static unsigned long last_tsc_low; /* lsb 32 bits of Time Stamp Counter */ | ||
45 | static unsigned long last_tsc_high; /* msb 32 bits of Time Stamp Counter */ | ||
46 | static unsigned long long monotonic_base; | ||
47 | static seqlock_t monotonic_lock = SEQLOCK_UNLOCKED; | ||
48 | |||
49 | /* convert from cycles(64bits) => nanoseconds (64bits) | ||
50 | * basic equation: | ||
51 | * ns = cycles / (freq / ns_per_sec) | ||
52 | * ns = cycles * (ns_per_sec / freq) | ||
53 | * ns = cycles * (10^9 / (cpu_mhz * 10^6)) | ||
54 | * ns = cycles * (10^3 / cpu_mhz) | ||
55 | * | ||
56 | * Then we use scaling math (suggested by george@mvista.com) to get: | ||
57 | * ns = cycles * (10^3 * SC / cpu_mhz) / SC | ||
58 | * ns = cycles * cyc2ns_scale / SC | ||
59 | * | ||
60 | * And since SC is a constant power of two, we can convert the div | ||
61 | * into a shift. | ||
62 | * -johnstul@us.ibm.com "math is hard, lets go shopping!" | ||
63 | */ | ||
64 | static unsigned long cyc2ns_scale; | ||
65 | #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */ | ||
66 | |||
67 | static inline void set_cyc2ns_scale(unsigned long cpu_mhz) | ||
68 | { | ||
69 | cyc2ns_scale = (1000 << CYC2NS_SCALE_FACTOR)/cpu_mhz; | ||
70 | } | ||
71 | |||
72 | static inline unsigned long long cycles_2_ns(unsigned long long cyc) | ||
73 | { | ||
74 | return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR; | ||
75 | } | ||
76 | |||
77 | static int count2; /* counter for mark_offset_tsc() */ | ||
78 | |||
79 | /* Cached *multiplier* to convert TSC counts to microseconds. | ||
80 | * (see the equation below). | ||
81 | * Equal to 2^32 * (1 / (clocks per usec) ). | ||
82 | * Initialized in time_init. | ||
83 | */ | ||
84 | static unsigned long fast_gettimeoffset_quotient; | ||
85 | |||
86 | static unsigned long get_offset_tsc(void) | ||
87 | { | ||
88 | register unsigned long eax, edx; | ||
89 | |||
90 | /* Read the Time Stamp Counter */ | ||
91 | |||
92 | rdtsc(eax,edx); | ||
93 | |||
94 | /* .. relative to previous jiffy (32 bits is enough) */ | ||
95 | eax -= last_tsc_low; /* tsc_low delta */ | ||
96 | |||
97 | /* | ||
98 | * Time offset = (tsc_low delta) * fast_gettimeoffset_quotient | ||
99 | * = (tsc_low delta) * (usecs_per_clock) | ||
100 | * = (tsc_low delta) * (usecs_per_jiffy / clocks_per_jiffy) | ||
101 | * | ||
102 | * Using a mull instead of a divl saves up to 31 clock cycles | ||
103 | * in the critical path. | ||
104 | */ | ||
105 | |||
106 | __asm__("mull %2" | ||
107 | :"=a" (eax), "=d" (edx) | ||
108 | :"rm" (fast_gettimeoffset_quotient), | ||
109 | "0" (eax)); | ||
110 | |||
111 | /* our adjusted time offset in microseconds */ | ||
112 | return delay_at_last_interrupt + edx; | ||
113 | } | ||
114 | |||
115 | static unsigned long long monotonic_clock_tsc(void) | ||
116 | { | ||
117 | unsigned long long last_offset, this_offset, base; | ||
118 | unsigned seq; | ||
119 | |||
120 | /* atomically read monotonic base & last_offset */ | ||
121 | do { | ||
122 | seq = read_seqbegin(&monotonic_lock); | ||
123 | last_offset = ((unsigned long long)last_tsc_high<<32)|last_tsc_low; | ||
124 | base = monotonic_base; | ||
125 | } while (read_seqretry(&monotonic_lock, seq)); | ||
126 | |||
127 | /* Read the Time Stamp Counter */ | ||
128 | rdtscll(this_offset); | ||
129 | |||
130 | /* return the value in ns */ | ||
131 | return base + cycles_2_ns(this_offset - last_offset); | ||
132 | } | ||
133 | |||
134 | /* | ||
135 | * Scheduler clock - returns current time in nanosec units. | ||
136 | */ | ||
137 | unsigned long long sched_clock(void) | ||
138 | { | ||
139 | unsigned long long this_offset; | ||
140 | |||
141 | /* | ||
142 | * In the NUMA case we dont use the TSC as they are not | ||
143 | * synchronized across all CPUs. | ||
144 | */ | ||
145 | #ifndef CONFIG_NUMA | ||
146 | if (!use_tsc) | ||
147 | #endif | ||
148 | /* no locking but a rare wrong value is not a big deal */ | ||
149 | return jiffies_64 * (1000000000 / HZ); | ||
150 | |||
151 | /* Read the Time Stamp Counter */ | ||
152 | rdtscll(this_offset); | ||
153 | |||
154 | /* return the value in ns */ | ||
155 | return cycles_2_ns(this_offset); | ||
156 | } | ||
157 | |||
158 | static void delay_tsc(unsigned long loops) | ||
159 | { | ||
160 | unsigned long bclock, now; | ||
161 | |||
162 | rdtscl(bclock); | ||
163 | do | ||
164 | { | ||
165 | rep_nop(); | ||
166 | rdtscl(now); | ||
167 | } while ((now-bclock) < loops); | ||
168 | } | ||
169 | |||
170 | #ifdef CONFIG_HPET_TIMER | ||
171 | static void mark_offset_tsc_hpet(void) | ||
172 | { | ||
173 | unsigned long long this_offset, last_offset; | ||
174 | unsigned long offset, temp, hpet_current; | ||
175 | |||
176 | write_seqlock(&monotonic_lock); | ||
177 | last_offset = ((unsigned long long)last_tsc_high<<32)|last_tsc_low; | ||
178 | /* | ||
179 | * It is important that these two operations happen almost at | ||
180 | * the same time. We do the RDTSC stuff first, since it's | ||
181 | * faster. To avoid any inconsistencies, we need interrupts | ||
182 | * disabled locally. | ||
183 | */ | ||
184 | /* | ||
185 | * Interrupts are just disabled locally since the timer irq | ||
186 | * has the SA_INTERRUPT flag set. -arca | ||
187 | */ | ||
188 | /* read Pentium cycle counter */ | ||
189 | |||
190 | hpet_current = hpet_readl(HPET_COUNTER); | ||
191 | rdtsc(last_tsc_low, last_tsc_high); | ||
192 | |||
193 | /* lost tick compensation */ | ||
194 | offset = hpet_readl(HPET_T0_CMP) - hpet_tick; | ||
195 | if (unlikely(((offset - hpet_last) > hpet_tick) && (hpet_last != 0))) { | ||
196 | int lost_ticks = (offset - hpet_last) / hpet_tick; | ||
197 | jiffies_64 += lost_ticks; | ||
198 | } | ||
199 | hpet_last = hpet_current; | ||
200 | |||
201 | /* update the monotonic base value */ | ||
202 | this_offset = ((unsigned long long)last_tsc_high<<32)|last_tsc_low; | ||
203 | monotonic_base += cycles_2_ns(this_offset - last_offset); | ||
204 | write_sequnlock(&monotonic_lock); | ||
205 | |||
206 | /* calculate delay_at_last_interrupt */ | ||
207 | /* | ||
208 | * Time offset = (hpet delta) * ( usecs per HPET clock ) | ||
209 | * = (hpet delta) * ( usecs per tick / HPET clocks per tick) | ||
210 | * = (hpet delta) * ( hpet_usec_quotient ) / (2^32) | ||
211 | * Where, | ||
212 | * hpet_usec_quotient = (2^32 * usecs per tick)/HPET clocks per tick | ||
213 | */ | ||
214 | delay_at_last_interrupt = hpet_current - offset; | ||
215 | ASM_MUL64_REG(temp, delay_at_last_interrupt, | ||
216 | hpet_usec_quotient, delay_at_last_interrupt); | ||
217 | } | ||
218 | #endif | ||
219 | |||
220 | |||
221 | #ifdef CONFIG_CPU_FREQ | ||
222 | #include <linux/workqueue.h> | ||
223 | |||
224 | static unsigned int cpufreq_delayed_issched = 0; | ||
225 | static unsigned int cpufreq_init = 0; | ||
226 | static struct work_struct cpufreq_delayed_get_work; | ||
227 | |||
228 | static void handle_cpufreq_delayed_get(void *v) | ||
229 | { | ||
230 | unsigned int cpu; | ||
231 | for_each_online_cpu(cpu) { | ||
232 | cpufreq_get(cpu); | ||
233 | } | ||
234 | cpufreq_delayed_issched = 0; | ||
235 | } | ||
236 | |||
237 | /* if we notice lost ticks, schedule a call to cpufreq_get() as it tries | ||
238 | * to verify the CPU frequency the timing core thinks the CPU is running | ||
239 | * at is still correct. | ||
240 | */ | ||
241 | static inline void cpufreq_delayed_get(void) | ||
242 | { | ||
243 | if (cpufreq_init && !cpufreq_delayed_issched) { | ||
244 | cpufreq_delayed_issched = 1; | ||
245 | printk(KERN_DEBUG "Losing some ticks... checking if CPU frequency changed.\n"); | ||
246 | schedule_work(&cpufreq_delayed_get_work); | ||
247 | } | ||
248 | } | ||
249 | |||
250 | /* If the CPU frequency is scaled, TSC-based delays will need a different | ||
251 | * loops_per_jiffy value to function properly. | ||
252 | */ | ||
253 | |||
254 | static unsigned int ref_freq = 0; | ||
255 | static unsigned long loops_per_jiffy_ref = 0; | ||
256 | |||
257 | #ifndef CONFIG_SMP | ||
258 | static unsigned long fast_gettimeoffset_ref = 0; | ||
259 | static unsigned long cpu_khz_ref = 0; | ||
260 | #endif | ||
261 | |||
262 | static int | ||
263 | time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, | ||
264 | void *data) | ||
265 | { | ||
266 | struct cpufreq_freqs *freq = data; | ||
267 | |||
268 | if (val != CPUFREQ_RESUMECHANGE) | ||
269 | write_seqlock_irq(&xtime_lock); | ||
270 | if (!ref_freq) { | ||
271 | ref_freq = freq->old; | ||
272 | loops_per_jiffy_ref = cpu_data[freq->cpu].loops_per_jiffy; | ||
273 | #ifndef CONFIG_SMP | ||
274 | fast_gettimeoffset_ref = fast_gettimeoffset_quotient; | ||
275 | cpu_khz_ref = cpu_khz; | ||
276 | #endif | ||
277 | } | ||
278 | |||
279 | if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || | ||
280 | (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || | ||
281 | (val == CPUFREQ_RESUMECHANGE)) { | ||
282 | if (!(freq->flags & CPUFREQ_CONST_LOOPS)) | ||
283 | cpu_data[freq->cpu].loops_per_jiffy = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); | ||
284 | #ifndef CONFIG_SMP | ||
285 | if (cpu_khz) | ||
286 | cpu_khz = cpufreq_scale(cpu_khz_ref, ref_freq, freq->new); | ||
287 | if (use_tsc) { | ||
288 | if (!(freq->flags & CPUFREQ_CONST_LOOPS)) { | ||
289 | fast_gettimeoffset_quotient = cpufreq_scale(fast_gettimeoffset_ref, freq->new, ref_freq); | ||
290 | set_cyc2ns_scale(cpu_khz/1000); | ||
291 | } | ||
292 | } | ||
293 | #endif | ||
294 | } | ||
295 | |||
296 | if (val != CPUFREQ_RESUMECHANGE) | ||
297 | write_sequnlock_irq(&xtime_lock); | ||
298 | |||
299 | return 0; | ||
300 | } | ||
301 | |||
302 | static struct notifier_block time_cpufreq_notifier_block = { | ||
303 | .notifier_call = time_cpufreq_notifier | ||
304 | }; | ||
305 | |||
306 | |||
307 | static int __init cpufreq_tsc(void) | ||
308 | { | ||
309 | int ret; | ||
310 | INIT_WORK(&cpufreq_delayed_get_work, handle_cpufreq_delayed_get, NULL); | ||
311 | ret = cpufreq_register_notifier(&time_cpufreq_notifier_block, | ||
312 | CPUFREQ_TRANSITION_NOTIFIER); | ||
313 | if (!ret) | ||
314 | cpufreq_init = 1; | ||
315 | return ret; | ||
316 | } | ||
317 | core_initcall(cpufreq_tsc); | ||
318 | |||
319 | #else /* CONFIG_CPU_FREQ */ | ||
320 | static inline void cpufreq_delayed_get(void) { return; } | ||
321 | #endif | ||
322 | |||
323 | static void mark_offset_tsc(void) | ||
324 | { | ||
325 | unsigned long lost,delay; | ||
326 | unsigned long delta = last_tsc_low; | ||
327 | int count; | ||
328 | int countmp; | ||
329 | static int count1 = 0; | ||
330 | unsigned long long this_offset, last_offset; | ||
331 | static int lost_count = 0; | ||
332 | |||
333 | write_seqlock(&monotonic_lock); | ||
334 | last_offset = ((unsigned long long)last_tsc_high<<32)|last_tsc_low; | ||
335 | /* | ||
336 | * It is important that these two operations happen almost at | ||
337 | * the same time. We do the RDTSC stuff first, since it's | ||
338 | * faster. To avoid any inconsistencies, we need interrupts | ||
339 | * disabled locally. | ||
340 | */ | ||
341 | |||
342 | /* | ||
343 | * Interrupts are just disabled locally since the timer irq | ||
344 | * has the SA_INTERRUPT flag set. -arca | ||
345 | */ | ||
346 | |||
347 | /* read Pentium cycle counter */ | ||
348 | |||
349 | rdtsc(last_tsc_low, last_tsc_high); | ||
350 | |||
351 | spin_lock(&i8253_lock); | ||
352 | outb_p(0x00, PIT_MODE); /* latch the count ASAP */ | ||
353 | |||
354 | count = inb_p(PIT_CH0); /* read the latched count */ | ||
355 | count |= inb(PIT_CH0) << 8; | ||
356 | |||
357 | /* | ||
358 | * VIA686a test code... reset the latch if count > max + 1 | ||
359 | * from timer_pit.c - cjb | ||
360 | */ | ||
361 | if (count > LATCH) { | ||
362 | outb_p(0x34, PIT_MODE); | ||
363 | outb_p(LATCH & 0xff, PIT_CH0); | ||
364 | outb(LATCH >> 8, PIT_CH0); | ||
365 | count = LATCH - 1; | ||
366 | } | ||
367 | |||
368 | spin_unlock(&i8253_lock); | ||
369 | |||
370 | if (pit_latch_buggy) { | ||
371 | /* get center value of last 3 time lutch */ | ||
372 | if ((count2 >= count && count >= count1) | ||
373 | || (count1 >= count && count >= count2)) { | ||
374 | count2 = count1; count1 = count; | ||
375 | } else if ((count1 >= count2 && count2 >= count) | ||
376 | || (count >= count2 && count2 >= count1)) { | ||
377 | countmp = count;count = count2; | ||
378 | count2 = count1;count1 = countmp; | ||
379 | } else { | ||
380 | count2 = count1; count1 = count; count = count1; | ||
381 | } | ||
382 | } | ||
383 | |||
384 | /* lost tick compensation */ | ||
385 | delta = last_tsc_low - delta; | ||
386 | { | ||
387 | register unsigned long eax, edx; | ||
388 | eax = delta; | ||
389 | __asm__("mull %2" | ||
390 | :"=a" (eax), "=d" (edx) | ||
391 | :"rm" (fast_gettimeoffset_quotient), | ||
392 | "0" (eax)); | ||
393 | delta = edx; | ||
394 | } | ||
395 | delta += delay_at_last_interrupt; | ||
396 | lost = delta/(1000000/HZ); | ||
397 | delay = delta%(1000000/HZ); | ||
398 | if (lost >= 2) { | ||
399 | jiffies_64 += lost-1; | ||
400 | |||
401 | /* sanity check to ensure we're not always losing ticks */ | ||
402 | if (lost_count++ > 100) { | ||
403 | printk(KERN_WARNING "Losing too many ticks!\n"); | ||
404 | printk(KERN_WARNING "TSC cannot be used as a timesource. \n"); | ||
405 | printk(KERN_WARNING "Possible reasons for this are:\n"); | ||
406 | printk(KERN_WARNING " You're running with Speedstep,\n"); | ||
407 | printk(KERN_WARNING " You don't have DMA enabled for your hard disk (see hdparm),\n"); | ||
408 | printk(KERN_WARNING " Incorrect TSC synchronization on an SMP system (see dmesg).\n"); | ||
409 | printk(KERN_WARNING "Falling back to a sane timesource now.\n"); | ||
410 | |||
411 | clock_fallback(); | ||
412 | } | ||
413 | /* ... but give the TSC a fair chance */ | ||
414 | if (lost_count > 25) | ||
415 | cpufreq_delayed_get(); | ||
416 | } else | ||
417 | lost_count = 0; | ||
418 | /* update the monotonic base value */ | ||
419 | this_offset = ((unsigned long long)last_tsc_high<<32)|last_tsc_low; | ||
420 | monotonic_base += cycles_2_ns(this_offset - last_offset); | ||
421 | write_sequnlock(&monotonic_lock); | ||
422 | |||
423 | /* calculate delay_at_last_interrupt */ | ||
424 | count = ((LATCH-1) - count) * TICK_SIZE; | ||
425 | delay_at_last_interrupt = (count + LATCH/2) / LATCH; | ||
426 | |||
427 | /* catch corner case where tick rollover occured | ||
428 | * between tsc and pit reads (as noted when | ||
429 | * usec delta is > 90% # of usecs/tick) | ||
430 | */ | ||
431 | if (lost && abs(delay - delay_at_last_interrupt) > (900000/HZ)) | ||
432 | jiffies_64++; | ||
433 | } | ||
434 | |||
435 | static int __init init_tsc(char* override) | ||
436 | { | ||
437 | |||
438 | /* check clock override */ | ||
439 | if (override[0] && strncmp(override,"tsc",3)) { | ||
440 | #ifdef CONFIG_HPET_TIMER | ||
441 | if (is_hpet_enabled()) { | ||
442 | printk(KERN_ERR "Warning: clock= override failed. Defaulting to tsc\n"); | ||
443 | } else | ||
444 | #endif | ||
445 | { | ||
446 | return -ENODEV; | ||
447 | } | ||
448 | } | ||
449 | |||
450 | /* | ||
451 | * If we have APM enabled or the CPU clock speed is variable | ||
452 | * (CPU stops clock on HLT or slows clock to save power) | ||
453 | * then the TSC timestamps may diverge by up to 1 jiffy from | ||
454 | * 'real time' but nothing will break. | ||
455 | * The most frequent case is that the CPU is "woken" from a halt | ||
456 | * state by the timer interrupt itself, so we get 0 error. In the | ||
457 | * rare cases where a driver would "wake" the CPU and request a | ||
458 | * timestamp, the maximum error is < 1 jiffy. But timestamps are | ||
459 | * still perfectly ordered. | ||
460 | * Note that the TSC counter will be reset if APM suspends | ||
461 | * to disk; this won't break the kernel, though, 'cuz we're | ||
462 | * smart. See arch/i386/kernel/apm.c. | ||
463 | */ | ||
464 | /* | ||
465 | * Firstly we have to do a CPU check for chips with | ||
466 | * a potentially buggy TSC. At this point we haven't run | ||
467 | * the ident/bugs checks so we must run this hook as it | ||
468 | * may turn off the TSC flag. | ||
469 | * | ||
470 | * NOTE: this doesn't yet handle SMP 486 machines where only | ||
471 | * some CPU's have a TSC. Thats never worked and nobody has | ||
472 | * moaned if you have the only one in the world - you fix it! | ||
473 | */ | ||
474 | |||
475 | count2 = LATCH; /* initialize counter for mark_offset_tsc() */ | ||
476 | |||
477 | if (cpu_has_tsc) { | ||
478 | unsigned long tsc_quotient; | ||
479 | #ifdef CONFIG_HPET_TIMER | ||
480 | if (is_hpet_enabled()){ | ||
481 | unsigned long result, remain; | ||
482 | printk("Using TSC for gettimeofday\n"); | ||
483 | tsc_quotient = calibrate_tsc_hpet(NULL); | ||
484 | timer_tsc.mark_offset = &mark_offset_tsc_hpet; | ||
485 | /* | ||
486 | * Math to calculate hpet to usec multiplier | ||
487 | * Look for the comments at get_offset_tsc_hpet() | ||
488 | */ | ||
489 | ASM_DIV64_REG(result, remain, hpet_tick, | ||
490 | 0, KERNEL_TICK_USEC); | ||
491 | if (remain > (hpet_tick >> 1)) | ||
492 | result++; /* rounding the result */ | ||
493 | |||
494 | hpet_usec_quotient = result; | ||
495 | } else | ||
496 | #endif | ||
497 | { | ||
498 | tsc_quotient = calibrate_tsc(); | ||
499 | } | ||
500 | |||
501 | if (tsc_quotient) { | ||
502 | fast_gettimeoffset_quotient = tsc_quotient; | ||
503 | use_tsc = 1; | ||
504 | /* | ||
505 | * We could be more selective here I suspect | ||
506 | * and just enable this for the next intel chips ? | ||
507 | */ | ||
508 | /* report CPU clock rate in Hz. | ||
509 | * The formula is (10^6 * 2^32) / (2^32 * 1 / (clocks/us)) = | ||
510 | * clock/second. Our precision is about 100 ppm. | ||
511 | */ | ||
512 | { unsigned long eax=0, edx=1000; | ||
513 | __asm__("divl %2" | ||
514 | :"=a" (cpu_khz), "=d" (edx) | ||
515 | :"r" (tsc_quotient), | ||
516 | "0" (eax), "1" (edx)); | ||
517 | printk("Detected %lu.%03lu MHz processor.\n", cpu_khz / 1000, cpu_khz % 1000); | ||
518 | } | ||
519 | set_cyc2ns_scale(cpu_khz/1000); | ||
520 | return 0; | ||
521 | } | ||
522 | } | ||
523 | return -ENODEV; | ||
524 | } | ||
525 | |||
526 | #ifndef CONFIG_X86_TSC | ||
527 | /* disable flag for tsc. Takes effect by clearing the TSC cpu flag | ||
528 | * in cpu/common.c */ | ||
529 | static int __init tsc_setup(char *str) | ||
530 | { | ||
531 | tsc_disable = 1; | ||
532 | return 1; | ||
533 | } | ||
534 | #else | ||
535 | static int __init tsc_setup(char *str) | ||
536 | { | ||
537 | printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, " | ||
538 | "cannot disable TSC.\n"); | ||
539 | return 1; | ||
540 | } | ||
541 | #endif | ||
542 | __setup("notsc", tsc_setup); | ||
543 | |||
544 | |||
545 | |||
546 | /************************************************************/ | ||
547 | |||
548 | /* tsc timer_opts struct */ | ||
549 | static struct timer_opts timer_tsc = { | ||
550 | .name = "tsc", | ||
551 | .mark_offset = mark_offset_tsc, | ||
552 | .get_offset = get_offset_tsc, | ||
553 | .monotonic_clock = monotonic_clock_tsc, | ||
554 | .delay = delay_tsc, | ||
555 | }; | ||
556 | |||
557 | struct init_timer_opts __initdata timer_tsc_init = { | ||
558 | .init = init_tsc, | ||
559 | .opts = &timer_tsc, | ||
560 | }; | ||