diff options
author | Dave Kleikamp <shaggy@austin.ibm.com> | 2005-07-28 10:03:36 -0400 |
---|---|---|
committer | Dave Kleikamp <shaggy@austin.ibm.com> | 2005-07-28 10:03:36 -0400 |
commit | da28c12089dfcfb8695b6b555cdb8e03dda2b690 (patch) | |
tree | b3ff509f21352ef053cb3d490cb13528090d32ac /arch/cris/arch-v32/drivers/axisflashmap.c | |
parent | 6de7dc2c4c713d037c19aa1e310d240f16973414 (diff) | |
parent | 577a4f8102d54b504cb22eb021b89e957e8df18f (diff) |
Merge with /home/shaggy/git/linus-clean/
/home/shaggy/git/linus-clean/
/home/shaggy/git/linus-clean/
Signed-off-by: Dave Kleikamp <shaggy@austin.ibm.com>
Diffstat (limited to 'arch/cris/arch-v32/drivers/axisflashmap.c')
-rw-r--r-- | arch/cris/arch-v32/drivers/axisflashmap.c | 455 |
1 files changed, 455 insertions, 0 deletions
diff --git a/arch/cris/arch-v32/drivers/axisflashmap.c b/arch/cris/arch-v32/drivers/axisflashmap.c new file mode 100644 index 000000000000..78ed52b1cdac --- /dev/null +++ b/arch/cris/arch-v32/drivers/axisflashmap.c | |||
@@ -0,0 +1,455 @@ | |||
1 | /* | ||
2 | * Physical mapping layer for MTD using the Axis partitiontable format | ||
3 | * | ||
4 | * Copyright (c) 2001, 2002, 2003 Axis Communications AB | ||
5 | * | ||
6 | * This file is under the GPL. | ||
7 | * | ||
8 | * First partition is always sector 0 regardless of if we find a partitiontable | ||
9 | * or not. In the start of the next sector, there can be a partitiontable that | ||
10 | * tells us what other partitions to define. If there isn't, we use a default | ||
11 | * partition split defined below. | ||
12 | * | ||
13 | * Copy of os/lx25/arch/cris/arch-v10/drivers/axisflashmap.c 1.5 | ||
14 | * with minor changes. | ||
15 | * | ||
16 | */ | ||
17 | |||
18 | #include <linux/module.h> | ||
19 | #include <linux/types.h> | ||
20 | #include <linux/kernel.h> | ||
21 | #include <linux/config.h> | ||
22 | #include <linux/init.h> | ||
23 | |||
24 | #include <linux/mtd/concat.h> | ||
25 | #include <linux/mtd/map.h> | ||
26 | #include <linux/mtd/mtd.h> | ||
27 | #include <linux/mtd/mtdram.h> | ||
28 | #include <linux/mtd/partitions.h> | ||
29 | |||
30 | #include <asm/arch/hwregs/config_defs.h> | ||
31 | #include <asm/axisflashmap.h> | ||
32 | #include <asm/mmu.h> | ||
33 | |||
34 | #define MEM_CSE0_SIZE (0x04000000) | ||
35 | #define MEM_CSE1_SIZE (0x04000000) | ||
36 | |||
37 | #define FLASH_UNCACHED_ADDR KSEG_E | ||
38 | #define FLASH_CACHED_ADDR KSEG_F | ||
39 | |||
40 | #if CONFIG_ETRAX_FLASH_BUSWIDTH==1 | ||
41 | #define flash_data __u8 | ||
42 | #elif CONFIG_ETRAX_FLASH_BUSWIDTH==2 | ||
43 | #define flash_data __u16 | ||
44 | #elif CONFIG_ETRAX_FLASH_BUSWIDTH==4 | ||
45 | #define flash_data __u16 | ||
46 | #endif | ||
47 | |||
48 | /* From head.S */ | ||
49 | extern unsigned long romfs_start, romfs_length, romfs_in_flash; | ||
50 | |||
51 | /* The master mtd for the entire flash. */ | ||
52 | struct mtd_info* axisflash_mtd = NULL; | ||
53 | |||
54 | /* Map driver functions. */ | ||
55 | |||
56 | static map_word flash_read(struct map_info *map, unsigned long ofs) | ||
57 | { | ||
58 | map_word tmp; | ||
59 | tmp.x[0] = *(flash_data *)(map->map_priv_1 + ofs); | ||
60 | return tmp; | ||
61 | } | ||
62 | |||
63 | static void flash_copy_from(struct map_info *map, void *to, | ||
64 | unsigned long from, ssize_t len) | ||
65 | { | ||
66 | memcpy(to, (void *)(map->map_priv_1 + from), len); | ||
67 | } | ||
68 | |||
69 | static void flash_write(struct map_info *map, map_word d, unsigned long adr) | ||
70 | { | ||
71 | *(flash_data *)(map->map_priv_1 + adr) = (flash_data)d.x[0]; | ||
72 | } | ||
73 | |||
74 | /* | ||
75 | * The map for chip select e0. | ||
76 | * | ||
77 | * We run into tricky coherence situations if we mix cached with uncached | ||
78 | * accesses to we only use the uncached version here. | ||
79 | * | ||
80 | * The size field is the total size where the flash chips may be mapped on the | ||
81 | * chip select. MTD probes should find all devices there and it does not matter | ||
82 | * if there are unmapped gaps or aliases (mirrors of flash devices). The MTD | ||
83 | * probes will ignore them. | ||
84 | * | ||
85 | * The start address in map_priv_1 is in virtual memory so we cannot use | ||
86 | * MEM_CSE0_START but must rely on that FLASH_UNCACHED_ADDR is the start | ||
87 | * address of cse0. | ||
88 | */ | ||
89 | static struct map_info map_cse0 = { | ||
90 | .name = "cse0", | ||
91 | .size = MEM_CSE0_SIZE, | ||
92 | .bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH, | ||
93 | .read = flash_read, | ||
94 | .copy_from = flash_copy_from, | ||
95 | .write = flash_write, | ||
96 | .map_priv_1 = FLASH_UNCACHED_ADDR | ||
97 | }; | ||
98 | |||
99 | /* | ||
100 | * The map for chip select e1. | ||
101 | * | ||
102 | * If there was a gap between cse0 and cse1, map_priv_1 would get the wrong | ||
103 | * address, but there isn't. | ||
104 | */ | ||
105 | static struct map_info map_cse1 = { | ||
106 | .name = "cse1", | ||
107 | .size = MEM_CSE1_SIZE, | ||
108 | .bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH, | ||
109 | .read = flash_read, | ||
110 | .copy_from = flash_copy_from, | ||
111 | .write = flash_write, | ||
112 | .map_priv_1 = FLASH_UNCACHED_ADDR + MEM_CSE0_SIZE | ||
113 | }; | ||
114 | |||
115 | /* If no partition-table was found, we use this default-set. */ | ||
116 | #define MAX_PARTITIONS 7 | ||
117 | #define NUM_DEFAULT_PARTITIONS 3 | ||
118 | |||
119 | /* | ||
120 | * Default flash size is 2MB. CONFIG_ETRAX_PTABLE_SECTOR is most likely the | ||
121 | * size of one flash block and "filesystem"-partition needs 5 blocks to be able | ||
122 | * to use JFFS. | ||
123 | */ | ||
124 | static struct mtd_partition axis_default_partitions[NUM_DEFAULT_PARTITIONS] = { | ||
125 | { | ||
126 | .name = "boot firmware", | ||
127 | .size = CONFIG_ETRAX_PTABLE_SECTOR, | ||
128 | .offset = 0 | ||
129 | }, | ||
130 | { | ||
131 | .name = "kernel", | ||
132 | .size = 0x200000 - (6 * CONFIG_ETRAX_PTABLE_SECTOR), | ||
133 | .offset = CONFIG_ETRAX_PTABLE_SECTOR | ||
134 | }, | ||
135 | { | ||
136 | .name = "filesystem", | ||
137 | .size = 5 * CONFIG_ETRAX_PTABLE_SECTOR, | ||
138 | .offset = 0x200000 - (5 * CONFIG_ETRAX_PTABLE_SECTOR) | ||
139 | } | ||
140 | }; | ||
141 | |||
142 | /* Initialize the ones normally used. */ | ||
143 | static struct mtd_partition axis_partitions[MAX_PARTITIONS] = { | ||
144 | { | ||
145 | .name = "part0", | ||
146 | .size = CONFIG_ETRAX_PTABLE_SECTOR, | ||
147 | .offset = 0 | ||
148 | }, | ||
149 | { | ||
150 | .name = "part1", | ||
151 | .size = 0, | ||
152 | .offset = 0 | ||
153 | }, | ||
154 | { | ||
155 | .name = "part2", | ||
156 | .size = 0, | ||
157 | .offset = 0 | ||
158 | }, | ||
159 | { | ||
160 | .name = "part3", | ||
161 | .size = 0, | ||
162 | .offset = 0 | ||
163 | }, | ||
164 | { | ||
165 | .name = "part4", | ||
166 | .size = 0, | ||
167 | .offset = 0 | ||
168 | }, | ||
169 | { | ||
170 | .name = "part5", | ||
171 | .size = 0, | ||
172 | .offset = 0 | ||
173 | }, | ||
174 | { | ||
175 | .name = "part6", | ||
176 | .size = 0, | ||
177 | .offset = 0 | ||
178 | }, | ||
179 | }; | ||
180 | |||
181 | /* | ||
182 | * Probe a chip select for AMD-compatible (JEDEC) or CFI-compatible flash | ||
183 | * chips in that order (because the amd_flash-driver is faster). | ||
184 | */ | ||
185 | static struct mtd_info *probe_cs(struct map_info *map_cs) | ||
186 | { | ||
187 | struct mtd_info *mtd_cs = NULL; | ||
188 | |||
189 | printk(KERN_INFO | ||
190 | "%s: Probing a 0x%08lx bytes large window at 0x%08lx.\n", | ||
191 | map_cs->name, map_cs->size, map_cs->map_priv_1); | ||
192 | |||
193 | #ifdef CONFIG_MTD_AMDSTD | ||
194 | mtd_cs = do_map_probe("amd_flash", map_cs); | ||
195 | #endif | ||
196 | #ifdef CONFIG_MTD_CFI | ||
197 | if (!mtd_cs) { | ||
198 | mtd_cs = do_map_probe("cfi_probe", map_cs); | ||
199 | } | ||
200 | #endif | ||
201 | |||
202 | return mtd_cs; | ||
203 | } | ||
204 | |||
205 | /* | ||
206 | * Probe each chip select individually for flash chips. If there are chips on | ||
207 | * both cse0 and cse1, the mtd_info structs will be concatenated to one struct | ||
208 | * so that MTD partitions can cross chip boundries. | ||
209 | * | ||
210 | * The only known restriction to how you can mount your chips is that each | ||
211 | * chip select must hold similar flash chips. But you need external hardware | ||
212 | * to do that anyway and you can put totally different chips on cse0 and cse1 | ||
213 | * so it isn't really much of a restriction. | ||
214 | */ | ||
215 | extern struct mtd_info* __init crisv32_nand_flash_probe (void); | ||
216 | static struct mtd_info *flash_probe(void) | ||
217 | { | ||
218 | struct mtd_info *mtd_cse0; | ||
219 | struct mtd_info *mtd_cse1; | ||
220 | struct mtd_info *mtd_nand = NULL; | ||
221 | struct mtd_info *mtd_total; | ||
222 | struct mtd_info *mtds[3]; | ||
223 | int count = 0; | ||
224 | |||
225 | if ((mtd_cse0 = probe_cs(&map_cse0)) != NULL) | ||
226 | mtds[count++] = mtd_cse0; | ||
227 | if ((mtd_cse1 = probe_cs(&map_cse1)) != NULL) | ||
228 | mtds[count++] = mtd_cse1; | ||
229 | |||
230 | #ifdef CONFIG_ETRAX_NANDFLASH | ||
231 | if ((mtd_nand = crisv32_nand_flash_probe()) != NULL) | ||
232 | mtds[count++] = mtd_nand; | ||
233 | #endif | ||
234 | |||
235 | if (!mtd_cse0 && !mtd_cse1 && !mtd_nand) { | ||
236 | /* No chip found. */ | ||
237 | return NULL; | ||
238 | } | ||
239 | |||
240 | if (count > 1) { | ||
241 | #ifdef CONFIG_MTD_CONCAT | ||
242 | /* Since the concatenation layer adds a small overhead we | ||
243 | * could try to figure out if the chips in cse0 and cse1 are | ||
244 | * identical and reprobe the whole cse0+cse1 window. But since | ||
245 | * flash chips are slow, the overhead is relatively small. | ||
246 | * So we use the MTD concatenation layer instead of further | ||
247 | * complicating the probing procedure. | ||
248 | */ | ||
249 | mtd_total = mtd_concat_create(mtds, | ||
250 | count, | ||
251 | "cse0+cse1+nand"); | ||
252 | #else | ||
253 | printk(KERN_ERR "%s and %s: Cannot concatenate due to kernel " | ||
254 | "(mis)configuration!\n", map_cse0.name, map_cse1.name); | ||
255 | mtd_toal = NULL; | ||
256 | #endif | ||
257 | if (!mtd_total) { | ||
258 | printk(KERN_ERR "%s and %s: Concatenation failed!\n", | ||
259 | map_cse0.name, map_cse1.name); | ||
260 | |||
261 | /* The best we can do now is to only use what we found | ||
262 | * at cse0. | ||
263 | */ | ||
264 | mtd_total = mtd_cse0; | ||
265 | map_destroy(mtd_cse1); | ||
266 | } | ||
267 | } else { | ||
268 | mtd_total = mtd_cse0? mtd_cse0 : mtd_cse1 ? mtd_cse1 : mtd_nand; | ||
269 | |||
270 | } | ||
271 | |||
272 | return mtd_total; | ||
273 | } | ||
274 | |||
275 | extern unsigned long crisv32_nand_boot; | ||
276 | extern unsigned long crisv32_nand_cramfs_offset; | ||
277 | |||
278 | /* | ||
279 | * Probe the flash chip(s) and, if it succeeds, read the partition-table | ||
280 | * and register the partitions with MTD. | ||
281 | */ | ||
282 | static int __init init_axis_flash(void) | ||
283 | { | ||
284 | struct mtd_info *mymtd; | ||
285 | int err = 0; | ||
286 | int pidx = 0; | ||
287 | struct partitiontable_head *ptable_head = NULL; | ||
288 | struct partitiontable_entry *ptable; | ||
289 | int use_default_ptable = 1; /* Until proven otherwise. */ | ||
290 | const char *pmsg = KERN_INFO " /dev/flash%d at 0x%08x, size 0x%08x\n"; | ||
291 | static char page[512]; | ||
292 | size_t len; | ||
293 | |||
294 | #ifndef CONFIG_ETRAXFS_SIM | ||
295 | mymtd = flash_probe(); | ||
296 | mymtd->read(mymtd, CONFIG_ETRAX_PTABLE_SECTOR, 512, &len, page); | ||
297 | ptable_head = (struct partitiontable_head *)(page + PARTITION_TABLE_OFFSET); | ||
298 | |||
299 | if (!mymtd) { | ||
300 | /* There's no reason to use this module if no flash chip can | ||
301 | * be identified. Make sure that's understood. | ||
302 | */ | ||
303 | printk(KERN_INFO "axisflashmap: Found no flash chip.\n"); | ||
304 | } else { | ||
305 | printk(KERN_INFO "%s: 0x%08x bytes of flash memory.\n", | ||
306 | mymtd->name, mymtd->size); | ||
307 | axisflash_mtd = mymtd; | ||
308 | } | ||
309 | |||
310 | if (mymtd) { | ||
311 | mymtd->owner = THIS_MODULE; | ||
312 | } | ||
313 | pidx++; /* First partition is always set to the default. */ | ||
314 | |||
315 | if (ptable_head && (ptable_head->magic == PARTITION_TABLE_MAGIC) | ||
316 | && (ptable_head->size < | ||
317 | (MAX_PARTITIONS * sizeof(struct partitiontable_entry) + | ||
318 | PARTITIONTABLE_END_MARKER_SIZE)) | ||
319 | && (*(unsigned long*)((void*)ptable_head + sizeof(*ptable_head) + | ||
320 | ptable_head->size - | ||
321 | PARTITIONTABLE_END_MARKER_SIZE) | ||
322 | == PARTITIONTABLE_END_MARKER)) { | ||
323 | /* Looks like a start, sane length and end of a | ||
324 | * partition table, lets check csum etc. | ||
325 | */ | ||
326 | int ptable_ok = 0; | ||
327 | struct partitiontable_entry *max_addr = | ||
328 | (struct partitiontable_entry *) | ||
329 | ((unsigned long)ptable_head + sizeof(*ptable_head) + | ||
330 | ptable_head->size); | ||
331 | unsigned long offset = CONFIG_ETRAX_PTABLE_SECTOR; | ||
332 | unsigned char *p; | ||
333 | unsigned long csum = 0; | ||
334 | |||
335 | ptable = (struct partitiontable_entry *) | ||
336 | ((unsigned long)ptable_head + sizeof(*ptable_head)); | ||
337 | |||
338 | /* Lets be PARANOID, and check the checksum. */ | ||
339 | p = (unsigned char*) ptable; | ||
340 | |||
341 | while (p <= (unsigned char*)max_addr) { | ||
342 | csum += *p++; | ||
343 | csum += *p++; | ||
344 | csum += *p++; | ||
345 | csum += *p++; | ||
346 | } | ||
347 | ptable_ok = (csum == ptable_head->checksum); | ||
348 | |||
349 | /* Read the entries and use/show the info. */ | ||
350 | printk(KERN_INFO " Found a%s partition table at 0x%p-0x%p.\n", | ||
351 | (ptable_ok ? " valid" : "n invalid"), ptable_head, | ||
352 | max_addr); | ||
353 | |||
354 | /* We have found a working bootblock. Now read the | ||
355 | * partition table. Scan the table. It ends when | ||
356 | * there is 0xffffffff, that is, empty flash. | ||
357 | */ | ||
358 | while (ptable_ok | ||
359 | && ptable->offset != 0xffffffff | ||
360 | && ptable < max_addr | ||
361 | && pidx < MAX_PARTITIONS) { | ||
362 | |||
363 | axis_partitions[pidx].offset = offset + ptable->offset + (crisv32_nand_boot ? 16384 : 0); | ||
364 | axis_partitions[pidx].size = ptable->size; | ||
365 | |||
366 | printk(pmsg, pidx, axis_partitions[pidx].offset, | ||
367 | axis_partitions[pidx].size); | ||
368 | pidx++; | ||
369 | ptable++; | ||
370 | } | ||
371 | use_default_ptable = !ptable_ok; | ||
372 | } | ||
373 | |||
374 | if (romfs_in_flash) { | ||
375 | /* Add an overlapping device for the root partition (romfs). */ | ||
376 | |||
377 | axis_partitions[pidx].name = "romfs"; | ||
378 | if (crisv32_nand_boot) { | ||
379 | char* data = kmalloc(1024, GFP_KERNEL); | ||
380 | int len; | ||
381 | int offset = crisv32_nand_cramfs_offset & ~(1024-1); | ||
382 | char* tmp; | ||
383 | |||
384 | mymtd->read(mymtd, offset, 1024, &len, data); | ||
385 | tmp = &data[crisv32_nand_cramfs_offset % 512]; | ||
386 | axis_partitions[pidx].size = *(unsigned*)(tmp + 4); | ||
387 | axis_partitions[pidx].offset = crisv32_nand_cramfs_offset; | ||
388 | kfree(data); | ||
389 | } else { | ||
390 | axis_partitions[pidx].size = romfs_length; | ||
391 | axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR; | ||
392 | } | ||
393 | |||
394 | axis_partitions[pidx].mask_flags |= MTD_WRITEABLE; | ||
395 | |||
396 | printk(KERN_INFO | ||
397 | " Adding readonly flash partition for romfs image:\n"); | ||
398 | printk(pmsg, pidx, axis_partitions[pidx].offset, | ||
399 | axis_partitions[pidx].size); | ||
400 | pidx++; | ||
401 | } | ||
402 | |||
403 | if (mymtd) { | ||
404 | if (use_default_ptable) { | ||
405 | printk(KERN_INFO " Using default partition table.\n"); | ||
406 | err = add_mtd_partitions(mymtd, axis_default_partitions, | ||
407 | NUM_DEFAULT_PARTITIONS); | ||
408 | } else { | ||
409 | err = add_mtd_partitions(mymtd, axis_partitions, pidx); | ||
410 | } | ||
411 | |||
412 | if (err) { | ||
413 | panic("axisflashmap could not add MTD partitions!\n"); | ||
414 | } | ||
415 | } | ||
416 | /* CONFIG_EXTRAXFS_SIM */ | ||
417 | #endif | ||
418 | |||
419 | if (!romfs_in_flash) { | ||
420 | /* Create an RAM device for the root partition (romfs). */ | ||
421 | |||
422 | #if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || (CONFIG_MTDRAM_ABS_POS != 0) | ||
423 | /* No use trying to boot this kernel from RAM. Panic! */ | ||
424 | printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM " | ||
425 | "device due to kernel (mis)configuration!\n"); | ||
426 | panic("This kernel cannot boot from RAM!\n"); | ||
427 | #else | ||
428 | struct mtd_info *mtd_ram; | ||
429 | |||
430 | mtd_ram = (struct mtd_info *)kmalloc(sizeof(struct mtd_info), | ||
431 | GFP_KERNEL); | ||
432 | if (!mtd_ram) { | ||
433 | panic("axisflashmap couldn't allocate memory for " | ||
434 | "mtd_info!\n"); | ||
435 | } | ||
436 | |||
437 | printk(KERN_INFO " Adding RAM partition for romfs image:\n"); | ||
438 | printk(pmsg, pidx, romfs_start, romfs_length); | ||
439 | |||
440 | err = mtdram_init_device(mtd_ram, (void*)romfs_start, | ||
441 | romfs_length, "romfs"); | ||
442 | if (err) { | ||
443 | panic("axisflashmap could not initialize MTD RAM " | ||
444 | "device!\n"); | ||
445 | } | ||
446 | #endif | ||
447 | } | ||
448 | |||
449 | return err; | ||
450 | } | ||
451 | |||
452 | /* This adds the above to the kernels init-call chain. */ | ||
453 | module_init(init_axis_flash); | ||
454 | |||
455 | EXPORT_SYMBOL(axisflash_mtd); | ||