diff options
author | Michael Halcrow <mhalcrow@google.com> | 2015-04-12 00:56:17 -0400 |
---|---|---|
committer | Theodore Ts'o <tytso@mit.edu> | 2015-04-12 00:56:17 -0400 |
commit | d5d0e8c7203a41c01ba05f4e053e16a94ce3c2e1 (patch) | |
tree | 0d14b2319e623a924126ca4cd7da5cca09030f34 | |
parent | c9c7429c2e486f375bddd0c338cc3ad366123717 (diff) |
ext4 crypto: filename encryption facilities
Signed-off-by: Uday Savagaonkar <savagaon@google.com>
Signed-off-by: Ildar Muslukhov <ildarm@google.com>
Signed-off-by: Michael Halcrow <mhalcrow@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
-rw-r--r-- | fs/ext4/Makefile | 3 | ||||
-rw-r--r-- | fs/ext4/crypto_fname.c | 709 | ||||
-rw-r--r-- | fs/ext4/crypto_policy.c | 7 | ||||
-rw-r--r-- | fs/ext4/ext4.h | 41 | ||||
-rw-r--r-- | fs/ext4/ext4_crypto.h | 20 |
5 files changed, 779 insertions, 1 deletions
diff --git a/fs/ext4/Makefile b/fs/ext4/Makefile index 4e5af21f1050..75285ea9aa05 100644 --- a/fs/ext4/Makefile +++ b/fs/ext4/Makefile | |||
@@ -12,4 +12,5 @@ ext4-y := balloc.o bitmap.o dir.o file.o fsync.o ialloc.o inode.o page-io.o \ | |||
12 | 12 | ||
13 | ext4-$(CONFIG_EXT4_FS_POSIX_ACL) += acl.o | 13 | ext4-$(CONFIG_EXT4_FS_POSIX_ACL) += acl.o |
14 | ext4-$(CONFIG_EXT4_FS_SECURITY) += xattr_security.o | 14 | ext4-$(CONFIG_EXT4_FS_SECURITY) += xattr_security.o |
15 | ext4-$(CONFIG_EXT4_FS_ENCRYPTION) += crypto_policy.o crypto.o crypto_key.o | 15 | ext4-$(CONFIG_EXT4_FS_ENCRYPTION) += crypto_policy.o crypto.o \ |
16 | crypto_key.o crypto_fname.o | ||
diff --git a/fs/ext4/crypto_fname.c b/fs/ext4/crypto_fname.c new file mode 100644 index 000000000000..ca2f5948c1ac --- /dev/null +++ b/fs/ext4/crypto_fname.c | |||
@@ -0,0 +1,709 @@ | |||
1 | /* | ||
2 | * linux/fs/ext4/crypto_fname.c | ||
3 | * | ||
4 | * Copyright (C) 2015, Google, Inc. | ||
5 | * | ||
6 | * This contains functions for filename crypto management in ext4 | ||
7 | * | ||
8 | * Written by Uday Savagaonkar, 2014. | ||
9 | * | ||
10 | * This has not yet undergone a rigorous security audit. | ||
11 | * | ||
12 | */ | ||
13 | |||
14 | #include <crypto/hash.h> | ||
15 | #include <crypto/sha.h> | ||
16 | #include <keys/encrypted-type.h> | ||
17 | #include <keys/user-type.h> | ||
18 | #include <linux/crypto.h> | ||
19 | #include <linux/gfp.h> | ||
20 | #include <linux/kernel.h> | ||
21 | #include <linux/key.h> | ||
22 | #include <linux/key.h> | ||
23 | #include <linux/list.h> | ||
24 | #include <linux/mempool.h> | ||
25 | #include <linux/random.h> | ||
26 | #include <linux/scatterlist.h> | ||
27 | #include <linux/spinlock_types.h> | ||
28 | |||
29 | #include "ext4.h" | ||
30 | #include "ext4_crypto.h" | ||
31 | #include "xattr.h" | ||
32 | |||
33 | /** | ||
34 | * ext4_dir_crypt_complete() - | ||
35 | */ | ||
36 | static void ext4_dir_crypt_complete(struct crypto_async_request *req, int res) | ||
37 | { | ||
38 | struct ext4_completion_result *ecr = req->data; | ||
39 | |||
40 | if (res == -EINPROGRESS) | ||
41 | return; | ||
42 | ecr->res = res; | ||
43 | complete(&ecr->completion); | ||
44 | } | ||
45 | |||
46 | bool ext4_valid_filenames_enc_mode(uint32_t mode) | ||
47 | { | ||
48 | return (mode == EXT4_ENCRYPTION_MODE_AES_256_CTS); | ||
49 | } | ||
50 | |||
51 | /** | ||
52 | * ext4_fname_encrypt() - | ||
53 | * | ||
54 | * This function encrypts the input filename, and returns the length of the | ||
55 | * ciphertext. Errors are returned as negative numbers. We trust the caller to | ||
56 | * allocate sufficient memory to oname string. | ||
57 | */ | ||
58 | static int ext4_fname_encrypt(struct ext4_fname_crypto_ctx *ctx, | ||
59 | const struct qstr *iname, | ||
60 | struct ext4_str *oname) | ||
61 | { | ||
62 | u32 ciphertext_len; | ||
63 | struct ablkcipher_request *req = NULL; | ||
64 | DECLARE_EXT4_COMPLETION_RESULT(ecr); | ||
65 | struct crypto_ablkcipher *tfm = ctx->ctfm; | ||
66 | int res = 0; | ||
67 | char iv[EXT4_CRYPTO_BLOCK_SIZE]; | ||
68 | struct scatterlist sg[1]; | ||
69 | char *workbuf; | ||
70 | |||
71 | if (iname->len <= 0 || iname->len > ctx->lim) | ||
72 | return -EIO; | ||
73 | |||
74 | ciphertext_len = (iname->len < EXT4_CRYPTO_BLOCK_SIZE) ? | ||
75 | EXT4_CRYPTO_BLOCK_SIZE : iname->len; | ||
76 | ciphertext_len = (ciphertext_len > ctx->lim) | ||
77 | ? ctx->lim : ciphertext_len; | ||
78 | |||
79 | /* Allocate request */ | ||
80 | req = ablkcipher_request_alloc(tfm, GFP_NOFS); | ||
81 | if (!req) { | ||
82 | printk_ratelimited( | ||
83 | KERN_ERR "%s: crypto_request_alloc() failed\n", __func__); | ||
84 | return -ENOMEM; | ||
85 | } | ||
86 | ablkcipher_request_set_callback(req, | ||
87 | CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, | ||
88 | ext4_dir_crypt_complete, &ecr); | ||
89 | |||
90 | /* Map the workpage */ | ||
91 | workbuf = kmap(ctx->workpage); | ||
92 | |||
93 | /* Copy the input */ | ||
94 | memcpy(workbuf, iname->name, iname->len); | ||
95 | if (iname->len < ciphertext_len) | ||
96 | memset(workbuf + iname->len, 0, ciphertext_len - iname->len); | ||
97 | |||
98 | /* Initialize IV */ | ||
99 | memset(iv, 0, EXT4_CRYPTO_BLOCK_SIZE); | ||
100 | |||
101 | /* Create encryption request */ | ||
102 | sg_init_table(sg, 1); | ||
103 | sg_set_page(sg, ctx->workpage, PAGE_SIZE, 0); | ||
104 | ablkcipher_request_set_crypt(req, sg, sg, iname->len, iv); | ||
105 | res = crypto_ablkcipher_encrypt(req); | ||
106 | if (res == -EINPROGRESS || res == -EBUSY) { | ||
107 | BUG_ON(req->base.data != &ecr); | ||
108 | wait_for_completion(&ecr.completion); | ||
109 | res = ecr.res; | ||
110 | } | ||
111 | if (res >= 0) { | ||
112 | /* Copy the result to output */ | ||
113 | memcpy(oname->name, workbuf, ciphertext_len); | ||
114 | res = ciphertext_len; | ||
115 | } | ||
116 | kunmap(ctx->workpage); | ||
117 | ablkcipher_request_free(req); | ||
118 | if (res < 0) { | ||
119 | printk_ratelimited( | ||
120 | KERN_ERR "%s: Error (error code %d)\n", __func__, res); | ||
121 | } | ||
122 | oname->len = ciphertext_len; | ||
123 | return res; | ||
124 | } | ||
125 | |||
126 | /* | ||
127 | * ext4_fname_decrypt() | ||
128 | * This function decrypts the input filename, and returns | ||
129 | * the length of the plaintext. | ||
130 | * Errors are returned as negative numbers. | ||
131 | * We trust the caller to allocate sufficient memory to oname string. | ||
132 | */ | ||
133 | static int ext4_fname_decrypt(struct ext4_fname_crypto_ctx *ctx, | ||
134 | const struct ext4_str *iname, | ||
135 | struct ext4_str *oname) | ||
136 | { | ||
137 | struct ext4_str tmp_in[2], tmp_out[1]; | ||
138 | struct ablkcipher_request *req = NULL; | ||
139 | DECLARE_EXT4_COMPLETION_RESULT(ecr); | ||
140 | struct scatterlist sg[1]; | ||
141 | struct crypto_ablkcipher *tfm = ctx->ctfm; | ||
142 | int res = 0; | ||
143 | char iv[EXT4_CRYPTO_BLOCK_SIZE]; | ||
144 | char *workbuf; | ||
145 | |||
146 | if (iname->len <= 0 || iname->len > ctx->lim) | ||
147 | return -EIO; | ||
148 | |||
149 | tmp_in[0].name = iname->name; | ||
150 | tmp_in[0].len = iname->len; | ||
151 | tmp_out[0].name = oname->name; | ||
152 | |||
153 | /* Allocate request */ | ||
154 | req = ablkcipher_request_alloc(tfm, GFP_NOFS); | ||
155 | if (!req) { | ||
156 | printk_ratelimited( | ||
157 | KERN_ERR "%s: crypto_request_alloc() failed\n", __func__); | ||
158 | return -ENOMEM; | ||
159 | } | ||
160 | ablkcipher_request_set_callback(req, | ||
161 | CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, | ||
162 | ext4_dir_crypt_complete, &ecr); | ||
163 | |||
164 | /* Map the workpage */ | ||
165 | workbuf = kmap(ctx->workpage); | ||
166 | |||
167 | /* Copy the input */ | ||
168 | memcpy(workbuf, iname->name, iname->len); | ||
169 | |||
170 | /* Initialize IV */ | ||
171 | memset(iv, 0, EXT4_CRYPTO_BLOCK_SIZE); | ||
172 | |||
173 | /* Create encryption request */ | ||
174 | sg_init_table(sg, 1); | ||
175 | sg_set_page(sg, ctx->workpage, PAGE_SIZE, 0); | ||
176 | ablkcipher_request_set_crypt(req, sg, sg, iname->len, iv); | ||
177 | res = crypto_ablkcipher_decrypt(req); | ||
178 | if (res == -EINPROGRESS || res == -EBUSY) { | ||
179 | BUG_ON(req->base.data != &ecr); | ||
180 | wait_for_completion(&ecr.completion); | ||
181 | res = ecr.res; | ||
182 | } | ||
183 | if (res >= 0) { | ||
184 | /* Copy the result to output */ | ||
185 | memcpy(oname->name, workbuf, iname->len); | ||
186 | res = iname->len; | ||
187 | } | ||
188 | kunmap(ctx->workpage); | ||
189 | ablkcipher_request_free(req); | ||
190 | if (res < 0) { | ||
191 | printk_ratelimited( | ||
192 | KERN_ERR "%s: Error in ext4_fname_encrypt (error code %d)\n", | ||
193 | __func__, res); | ||
194 | return res; | ||
195 | } | ||
196 | |||
197 | oname->len = strnlen(oname->name, iname->len); | ||
198 | return oname->len; | ||
199 | } | ||
200 | |||
201 | /** | ||
202 | * ext4_fname_encode_digest() - | ||
203 | * | ||
204 | * Encodes the input digest using characters from the set [a-zA-Z0-9_+]. | ||
205 | * The encoded string is roughly 4/3 times the size of the input string. | ||
206 | */ | ||
207 | int ext4_fname_encode_digest(char *dst, char *src, u32 len) | ||
208 | { | ||
209 | static const char *lookup_table = | ||
210 | "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_+"; | ||
211 | u32 current_chunk, num_chunks, i; | ||
212 | char tmp_buf[3]; | ||
213 | u32 c0, c1, c2, c3; | ||
214 | |||
215 | current_chunk = 0; | ||
216 | num_chunks = len/3; | ||
217 | for (i = 0; i < num_chunks; i++) { | ||
218 | c0 = src[3*i] & 0x3f; | ||
219 | c1 = (((src[3*i]>>6)&0x3) | ((src[3*i+1] & 0xf)<<2)) & 0x3f; | ||
220 | c2 = (((src[3*i+1]>>4)&0xf) | ((src[3*i+2] & 0x3)<<4)) & 0x3f; | ||
221 | c3 = (src[3*i+2]>>2) & 0x3f; | ||
222 | dst[4*i] = lookup_table[c0]; | ||
223 | dst[4*i+1] = lookup_table[c1]; | ||
224 | dst[4*i+2] = lookup_table[c2]; | ||
225 | dst[4*i+3] = lookup_table[c3]; | ||
226 | } | ||
227 | if (i*3 < len) { | ||
228 | memset(tmp_buf, 0, 3); | ||
229 | memcpy(tmp_buf, &src[3*i], len-3*i); | ||
230 | c0 = tmp_buf[0] & 0x3f; | ||
231 | c1 = (((tmp_buf[0]>>6)&0x3) | ((tmp_buf[1] & 0xf)<<2)) & 0x3f; | ||
232 | c2 = (((tmp_buf[1]>>4)&0xf) | ((tmp_buf[2] & 0x3)<<4)) & 0x3f; | ||
233 | c3 = (tmp_buf[2]>>2) & 0x3f; | ||
234 | dst[4*i] = lookup_table[c0]; | ||
235 | dst[4*i+1] = lookup_table[c1]; | ||
236 | dst[4*i+2] = lookup_table[c2]; | ||
237 | dst[4*i+3] = lookup_table[c3]; | ||
238 | i++; | ||
239 | } | ||
240 | return (i * 4); | ||
241 | } | ||
242 | |||
243 | /** | ||
244 | * ext4_fname_hash() - | ||
245 | * | ||
246 | * This function computes the hash of the input filename, and sets the output | ||
247 | * buffer to the *encoded* digest. It returns the length of the digest as its | ||
248 | * return value. Errors are returned as negative numbers. We trust the caller | ||
249 | * to allocate sufficient memory to oname string. | ||
250 | */ | ||
251 | static int ext4_fname_hash(struct ext4_fname_crypto_ctx *ctx, | ||
252 | const struct ext4_str *iname, | ||
253 | struct ext4_str *oname) | ||
254 | { | ||
255 | struct scatterlist sg; | ||
256 | struct hash_desc desc = { | ||
257 | .tfm = (struct crypto_hash *)ctx->htfm, | ||
258 | .flags = CRYPTO_TFM_REQ_MAY_SLEEP | ||
259 | }; | ||
260 | int res = 0; | ||
261 | |||
262 | if (iname->len <= EXT4_FNAME_CRYPTO_DIGEST_SIZE) { | ||
263 | res = ext4_fname_encode_digest(oname->name, iname->name, | ||
264 | iname->len); | ||
265 | oname->len = res; | ||
266 | return res; | ||
267 | } | ||
268 | |||
269 | sg_init_one(&sg, iname->name, iname->len); | ||
270 | res = crypto_hash_init(&desc); | ||
271 | if (res) { | ||
272 | printk(KERN_ERR | ||
273 | "%s: Error initializing crypto hash; res = [%d]\n", | ||
274 | __func__, res); | ||
275 | goto out; | ||
276 | } | ||
277 | res = crypto_hash_update(&desc, &sg, iname->len); | ||
278 | if (res) { | ||
279 | printk(KERN_ERR | ||
280 | "%s: Error updating crypto hash; res = [%d]\n", | ||
281 | __func__, res); | ||
282 | goto out; | ||
283 | } | ||
284 | res = crypto_hash_final(&desc, | ||
285 | &oname->name[EXT4_FNAME_CRYPTO_DIGEST_SIZE]); | ||
286 | if (res) { | ||
287 | printk(KERN_ERR | ||
288 | "%s: Error finalizing crypto hash; res = [%d]\n", | ||
289 | __func__, res); | ||
290 | goto out; | ||
291 | } | ||
292 | /* Encode the digest as a printable string--this will increase the | ||
293 | * size of the digest */ | ||
294 | oname->name[0] = 'I'; | ||
295 | res = ext4_fname_encode_digest(oname->name+1, | ||
296 | &oname->name[EXT4_FNAME_CRYPTO_DIGEST_SIZE], | ||
297 | EXT4_FNAME_CRYPTO_DIGEST_SIZE) + 1; | ||
298 | oname->len = res; | ||
299 | out: | ||
300 | return res; | ||
301 | } | ||
302 | |||
303 | /** | ||
304 | * ext4_free_fname_crypto_ctx() - | ||
305 | * | ||
306 | * Frees up a crypto context. | ||
307 | */ | ||
308 | void ext4_free_fname_crypto_ctx(struct ext4_fname_crypto_ctx *ctx) | ||
309 | { | ||
310 | if (ctx == NULL || IS_ERR(ctx)) | ||
311 | return; | ||
312 | |||
313 | if (ctx->ctfm && !IS_ERR(ctx->ctfm)) | ||
314 | crypto_free_ablkcipher(ctx->ctfm); | ||
315 | if (ctx->htfm && !IS_ERR(ctx->htfm)) | ||
316 | crypto_free_hash(ctx->htfm); | ||
317 | if (ctx->workpage && !IS_ERR(ctx->workpage)) | ||
318 | __free_page(ctx->workpage); | ||
319 | kfree(ctx); | ||
320 | } | ||
321 | |||
322 | /** | ||
323 | * ext4_put_fname_crypto_ctx() - | ||
324 | * | ||
325 | * Return: The crypto context onto free list. If the free list is above a | ||
326 | * threshold, completely frees up the context, and returns the memory. | ||
327 | * | ||
328 | * TODO: Currently we directly free the crypto context. Eventually we should | ||
329 | * add code it to return to free list. Such an approach will increase | ||
330 | * efficiency of directory lookup. | ||
331 | */ | ||
332 | void ext4_put_fname_crypto_ctx(struct ext4_fname_crypto_ctx **ctx) | ||
333 | { | ||
334 | if (*ctx == NULL || IS_ERR(*ctx)) | ||
335 | return; | ||
336 | ext4_free_fname_crypto_ctx(*ctx); | ||
337 | *ctx = NULL; | ||
338 | } | ||
339 | |||
340 | /** | ||
341 | * ext4_search_fname_crypto_ctx() - | ||
342 | */ | ||
343 | static struct ext4_fname_crypto_ctx *ext4_search_fname_crypto_ctx( | ||
344 | const struct ext4_encryption_key *key) | ||
345 | { | ||
346 | return NULL; | ||
347 | } | ||
348 | |||
349 | /** | ||
350 | * ext4_alloc_fname_crypto_ctx() - | ||
351 | */ | ||
352 | struct ext4_fname_crypto_ctx *ext4_alloc_fname_crypto_ctx( | ||
353 | const struct ext4_encryption_key *key) | ||
354 | { | ||
355 | struct ext4_fname_crypto_ctx *ctx; | ||
356 | |||
357 | ctx = kmalloc(sizeof(struct ext4_fname_crypto_ctx), GFP_NOFS); | ||
358 | if (ctx == NULL) | ||
359 | return ERR_PTR(-ENOMEM); | ||
360 | if (key->mode == EXT4_ENCRYPTION_MODE_INVALID) { | ||
361 | /* This will automatically set key mode to invalid | ||
362 | * As enum for ENCRYPTION_MODE_INVALID is zero */ | ||
363 | memset(&ctx->key, 0, sizeof(ctx->key)); | ||
364 | } else { | ||
365 | memcpy(&ctx->key, key, sizeof(struct ext4_encryption_key)); | ||
366 | } | ||
367 | ctx->has_valid_key = (EXT4_ENCRYPTION_MODE_INVALID == key->mode) | ||
368 | ? 0 : 1; | ||
369 | ctx->ctfm_key_is_ready = 0; | ||
370 | ctx->ctfm = NULL; | ||
371 | ctx->htfm = NULL; | ||
372 | ctx->workpage = NULL; | ||
373 | return ctx; | ||
374 | } | ||
375 | |||
376 | /** | ||
377 | * ext4_get_fname_crypto_ctx() - | ||
378 | * | ||
379 | * Allocates a free crypto context and initializes it to hold | ||
380 | * the crypto material for the inode. | ||
381 | * | ||
382 | * Return: NULL if not encrypted. Error value on error. Valid pointer otherwise. | ||
383 | */ | ||
384 | struct ext4_fname_crypto_ctx *ext4_get_fname_crypto_ctx( | ||
385 | struct inode *inode, u32 max_ciphertext_len) | ||
386 | { | ||
387 | struct ext4_fname_crypto_ctx *ctx; | ||
388 | struct ext4_inode_info *ei = EXT4_I(inode); | ||
389 | int res; | ||
390 | |||
391 | /* Check if the crypto policy is set on the inode */ | ||
392 | res = ext4_encrypted_inode(inode); | ||
393 | if (res == 0) | ||
394 | return NULL; | ||
395 | |||
396 | if (!ext4_has_encryption_key(inode)) | ||
397 | ext4_generate_encryption_key(inode); | ||
398 | |||
399 | /* Get a crypto context based on the key. | ||
400 | * A new context is allocated if no context matches the requested key. | ||
401 | */ | ||
402 | ctx = ext4_search_fname_crypto_ctx(&(ei->i_encryption_key)); | ||
403 | if (ctx == NULL) | ||
404 | ctx = ext4_alloc_fname_crypto_ctx(&(ei->i_encryption_key)); | ||
405 | if (IS_ERR(ctx)) | ||
406 | return ctx; | ||
407 | |||
408 | if (ctx->has_valid_key) { | ||
409 | if (ctx->key.mode != EXT4_ENCRYPTION_MODE_AES_256_CTS) { | ||
410 | printk_once(KERN_WARNING | ||
411 | "ext4: unsupported key mode %d\n", | ||
412 | ctx->key.mode); | ||
413 | return ERR_PTR(-ENOKEY); | ||
414 | } | ||
415 | |||
416 | /* As a first cut, we will allocate new tfm in every call. | ||
417 | * later, we will keep the tfm around, in case the key gets | ||
418 | * re-used */ | ||
419 | if (ctx->ctfm == NULL) { | ||
420 | ctx->ctfm = crypto_alloc_ablkcipher("cts(cbc(aes))", | ||
421 | 0, 0); | ||
422 | } | ||
423 | if (IS_ERR(ctx->ctfm)) { | ||
424 | res = PTR_ERR(ctx->ctfm); | ||
425 | printk( | ||
426 | KERN_DEBUG "%s: error (%d) allocating crypto tfm\n", | ||
427 | __func__, res); | ||
428 | ctx->ctfm = NULL; | ||
429 | ext4_put_fname_crypto_ctx(&ctx); | ||
430 | return ERR_PTR(res); | ||
431 | } | ||
432 | if (ctx->ctfm == NULL) { | ||
433 | printk( | ||
434 | KERN_DEBUG "%s: could not allocate crypto tfm\n", | ||
435 | __func__); | ||
436 | ext4_put_fname_crypto_ctx(&ctx); | ||
437 | return ERR_PTR(-ENOMEM); | ||
438 | } | ||
439 | if (ctx->workpage == NULL) | ||
440 | ctx->workpage = alloc_page(GFP_NOFS); | ||
441 | if (IS_ERR(ctx->workpage)) { | ||
442 | res = PTR_ERR(ctx->workpage); | ||
443 | printk( | ||
444 | KERN_DEBUG "%s: error (%d) allocating work page\n", | ||
445 | __func__, res); | ||
446 | ctx->workpage = NULL; | ||
447 | ext4_put_fname_crypto_ctx(&ctx); | ||
448 | return ERR_PTR(res); | ||
449 | } | ||
450 | if (ctx->workpage == NULL) { | ||
451 | printk( | ||
452 | KERN_DEBUG "%s: could not allocate work page\n", | ||
453 | __func__); | ||
454 | ext4_put_fname_crypto_ctx(&ctx); | ||
455 | return ERR_PTR(-ENOMEM); | ||
456 | } | ||
457 | ctx->lim = max_ciphertext_len; | ||
458 | crypto_ablkcipher_clear_flags(ctx->ctfm, ~0); | ||
459 | crypto_tfm_set_flags(crypto_ablkcipher_tfm(ctx->ctfm), | ||
460 | CRYPTO_TFM_REQ_WEAK_KEY); | ||
461 | |||
462 | /* If we are lucky, we will get a context that is already | ||
463 | * set up with the right key. Else, we will have to | ||
464 | * set the key */ | ||
465 | if (!ctx->ctfm_key_is_ready) { | ||
466 | /* Since our crypto objectives for filename encryption | ||
467 | * are pretty weak, | ||
468 | * we directly use the inode master key */ | ||
469 | res = crypto_ablkcipher_setkey(ctx->ctfm, | ||
470 | ctx->key.raw, ctx->key.size); | ||
471 | if (res) { | ||
472 | ext4_put_fname_crypto_ctx(&ctx); | ||
473 | return ERR_PTR(-EIO); | ||
474 | } | ||
475 | ctx->ctfm_key_is_ready = 1; | ||
476 | } else { | ||
477 | /* In the current implementation, key should never be | ||
478 | * marked "ready" for a context that has just been | ||
479 | * allocated. So we should never reach here */ | ||
480 | BUG(); | ||
481 | } | ||
482 | } | ||
483 | if (ctx->htfm == NULL) | ||
484 | ctx->htfm = crypto_alloc_hash("sha256", 0, CRYPTO_ALG_ASYNC); | ||
485 | if (IS_ERR(ctx->htfm)) { | ||
486 | res = PTR_ERR(ctx->htfm); | ||
487 | printk(KERN_DEBUG "%s: error (%d) allocating hash tfm\n", | ||
488 | __func__, res); | ||
489 | ctx->htfm = NULL; | ||
490 | ext4_put_fname_crypto_ctx(&ctx); | ||
491 | return ERR_PTR(res); | ||
492 | } | ||
493 | if (ctx->htfm == NULL) { | ||
494 | printk(KERN_DEBUG "%s: could not allocate hash tfm\n", | ||
495 | __func__); | ||
496 | ext4_put_fname_crypto_ctx(&ctx); | ||
497 | return ERR_PTR(-ENOMEM); | ||
498 | } | ||
499 | |||
500 | return ctx; | ||
501 | } | ||
502 | |||
503 | /** | ||
504 | * ext4_fname_crypto_round_up() - | ||
505 | * | ||
506 | * Return: The next multiple of block size | ||
507 | */ | ||
508 | u32 ext4_fname_crypto_round_up(u32 size, u32 blksize) | ||
509 | { | ||
510 | return ((size+blksize-1)/blksize)*blksize; | ||
511 | } | ||
512 | |||
513 | /** | ||
514 | * ext4_fname_crypto_namelen_on_disk() - | ||
515 | */ | ||
516 | int ext4_fname_crypto_namelen_on_disk(struct ext4_fname_crypto_ctx *ctx, | ||
517 | u32 namelen) | ||
518 | { | ||
519 | u32 ciphertext_len; | ||
520 | |||
521 | if (ctx == NULL) | ||
522 | return -EIO; | ||
523 | if (!(ctx->has_valid_key)) | ||
524 | return -EACCES; | ||
525 | ciphertext_len = (namelen < EXT4_CRYPTO_BLOCK_SIZE) ? | ||
526 | EXT4_CRYPTO_BLOCK_SIZE : namelen; | ||
527 | ciphertext_len = (ciphertext_len > ctx->lim) | ||
528 | ? ctx->lim : ciphertext_len; | ||
529 | return (int) ciphertext_len; | ||
530 | } | ||
531 | |||
532 | /** | ||
533 | * ext4_fname_crypto_alloc_obuff() - | ||
534 | * | ||
535 | * Allocates an output buffer that is sufficient for the crypto operation | ||
536 | * specified by the context and the direction. | ||
537 | */ | ||
538 | int ext4_fname_crypto_alloc_buffer(struct ext4_fname_crypto_ctx *ctx, | ||
539 | u32 ilen, struct ext4_str *crypto_str) | ||
540 | { | ||
541 | unsigned int olen; | ||
542 | |||
543 | if (!ctx) | ||
544 | return -EIO; | ||
545 | olen = ext4_fname_crypto_round_up(ilen, EXT4_CRYPTO_BLOCK_SIZE); | ||
546 | crypto_str->len = olen; | ||
547 | if (olen < EXT4_FNAME_CRYPTO_DIGEST_SIZE*2) | ||
548 | olen = EXT4_FNAME_CRYPTO_DIGEST_SIZE*2; | ||
549 | /* Allocated buffer can hold one more character to null-terminate the | ||
550 | * string */ | ||
551 | crypto_str->name = kmalloc(olen+1, GFP_NOFS); | ||
552 | if (!(crypto_str->name)) | ||
553 | return -ENOMEM; | ||
554 | return 0; | ||
555 | } | ||
556 | |||
557 | /** | ||
558 | * ext4_fname_crypto_free_buffer() - | ||
559 | * | ||
560 | * Frees the buffer allocated for crypto operation. | ||
561 | */ | ||
562 | void ext4_fname_crypto_free_buffer(struct ext4_str *crypto_str) | ||
563 | { | ||
564 | if (!crypto_str) | ||
565 | return; | ||
566 | kfree(crypto_str->name); | ||
567 | crypto_str->name = NULL; | ||
568 | } | ||
569 | |||
570 | /** | ||
571 | * ext4_fname_disk_to_usr() - converts a filename from disk space to user space | ||
572 | */ | ||
573 | int _ext4_fname_disk_to_usr(struct ext4_fname_crypto_ctx *ctx, | ||
574 | const struct ext4_str *iname, | ||
575 | struct ext4_str *oname) | ||
576 | { | ||
577 | if (ctx == NULL) | ||
578 | return -EIO; | ||
579 | if (iname->len < 3) { | ||
580 | /*Check for . and .. */ | ||
581 | if (iname->name[0] == '.' && iname->name[iname->len-1] == '.') { | ||
582 | oname->name[0] = '.'; | ||
583 | oname->name[iname->len-1] = '.'; | ||
584 | oname->len = iname->len; | ||
585 | return oname->len; | ||
586 | } | ||
587 | } | ||
588 | if (ctx->has_valid_key) | ||
589 | return ext4_fname_decrypt(ctx, iname, oname); | ||
590 | else | ||
591 | return ext4_fname_hash(ctx, iname, oname); | ||
592 | } | ||
593 | |||
594 | int ext4_fname_disk_to_usr(struct ext4_fname_crypto_ctx *ctx, | ||
595 | const struct ext4_dir_entry_2 *de, | ||
596 | struct ext4_str *oname) | ||
597 | { | ||
598 | struct ext4_str iname = {.name = (unsigned char *) de->name, | ||
599 | .len = de->name_len }; | ||
600 | |||
601 | return _ext4_fname_disk_to_usr(ctx, &iname, oname); | ||
602 | } | ||
603 | |||
604 | |||
605 | /** | ||
606 | * ext4_fname_usr_to_disk() - converts a filename from user space to disk space | ||
607 | */ | ||
608 | int ext4_fname_usr_to_disk(struct ext4_fname_crypto_ctx *ctx, | ||
609 | const struct qstr *iname, | ||
610 | struct ext4_str *oname) | ||
611 | { | ||
612 | int res; | ||
613 | |||
614 | if (ctx == NULL) | ||
615 | return -EIO; | ||
616 | if (iname->len < 3) { | ||
617 | /*Check for . and .. */ | ||
618 | if (iname->name[0] == '.' && | ||
619 | iname->name[iname->len-1] == '.') { | ||
620 | oname->name[0] = '.'; | ||
621 | oname->name[iname->len-1] = '.'; | ||
622 | oname->len = iname->len; | ||
623 | return oname->len; | ||
624 | } | ||
625 | } | ||
626 | if (ctx->has_valid_key) { | ||
627 | res = ext4_fname_encrypt(ctx, iname, oname); | ||
628 | return res; | ||
629 | } | ||
630 | /* Without a proper key, a user is not allowed to modify the filenames | ||
631 | * in a directory. Consequently, a user space name cannot be mapped to | ||
632 | * a disk-space name */ | ||
633 | return -EACCES; | ||
634 | } | ||
635 | |||
636 | /* | ||
637 | * Calculate the htree hash from a filename from user space | ||
638 | */ | ||
639 | int ext4_fname_usr_to_hash(struct ext4_fname_crypto_ctx *ctx, | ||
640 | const struct qstr *iname, | ||
641 | struct dx_hash_info *hinfo) | ||
642 | { | ||
643 | struct ext4_str tmp, tmp2; | ||
644 | int ret = 0; | ||
645 | |||
646 | if (!ctx || !ctx->has_valid_key || | ||
647 | ((iname->name[0] == '.') && | ||
648 | ((iname->len == 1) || | ||
649 | ((iname->name[1] == '.') && (iname->len == 2))))) { | ||
650 | ext4fs_dirhash(iname->name, iname->len, hinfo); | ||
651 | return 0; | ||
652 | } | ||
653 | |||
654 | /* First encrypt the plaintext name */ | ||
655 | ret = ext4_fname_crypto_alloc_buffer(ctx, iname->len, &tmp); | ||
656 | if (ret < 0) | ||
657 | return ret; | ||
658 | |||
659 | ret = ext4_fname_encrypt(ctx, iname, &tmp); | ||
660 | if (ret < 0) | ||
661 | goto out; | ||
662 | |||
663 | tmp2.len = (4 * ((EXT4_FNAME_CRYPTO_DIGEST_SIZE + 2) / 3)) + 1; | ||
664 | tmp2.name = kmalloc(tmp2.len + 1, GFP_KERNEL); | ||
665 | if (tmp2.name == NULL) { | ||
666 | ret = -ENOMEM; | ||
667 | goto out; | ||
668 | } | ||
669 | |||
670 | ret = ext4_fname_hash(ctx, &tmp, &tmp2); | ||
671 | if (ret > 0) | ||
672 | ext4fs_dirhash(tmp2.name, tmp2.len, hinfo); | ||
673 | ext4_fname_crypto_free_buffer(&tmp2); | ||
674 | out: | ||
675 | ext4_fname_crypto_free_buffer(&tmp); | ||
676 | return ret; | ||
677 | } | ||
678 | |||
679 | /** | ||
680 | * ext4_fname_disk_to_htree() - converts a filename from disk space to htree-access string | ||
681 | */ | ||
682 | int ext4_fname_disk_to_hash(struct ext4_fname_crypto_ctx *ctx, | ||
683 | const struct ext4_dir_entry_2 *de, | ||
684 | struct dx_hash_info *hinfo) | ||
685 | { | ||
686 | struct ext4_str iname = {.name = (unsigned char *) de->name, | ||
687 | .len = de->name_len}; | ||
688 | struct ext4_str tmp; | ||
689 | int ret; | ||
690 | |||
691 | if (!ctx || | ||
692 | ((iname.name[0] == '.') && | ||
693 | ((iname.len == 1) || | ||
694 | ((iname.name[1] == '.') && (iname.len == 2))))) { | ||
695 | ext4fs_dirhash(iname.name, iname.len, hinfo); | ||
696 | return 0; | ||
697 | } | ||
698 | |||
699 | tmp.len = (4 * ((EXT4_FNAME_CRYPTO_DIGEST_SIZE + 2) / 3)) + 1; | ||
700 | tmp.name = kmalloc(tmp.len + 1, GFP_KERNEL); | ||
701 | if (tmp.name == NULL) | ||
702 | return -ENOMEM; | ||
703 | |||
704 | ret = ext4_fname_hash(ctx, &iname, &tmp); | ||
705 | if (ret > 0) | ||
706 | ext4fs_dirhash(tmp.name, tmp.len, hinfo); | ||
707 | ext4_fname_crypto_free_buffer(&tmp); | ||
708 | return ret; | ||
709 | } | ||
diff --git a/fs/ext4/crypto_policy.c b/fs/ext4/crypto_policy.c index a4bf762b3ba9..749ed6e91e50 100644 --- a/fs/ext4/crypto_policy.c +++ b/fs/ext4/crypto_policy.c | |||
@@ -59,6 +59,13 @@ static int ext4_create_encryption_context_from_policy( | |||
59 | res = -EINVAL; | 59 | res = -EINVAL; |
60 | goto out; | 60 | goto out; |
61 | } | 61 | } |
62 | if (!ext4_valid_filenames_enc_mode(policy->filenames_encryption_mode)) { | ||
63 | printk(KERN_WARNING | ||
64 | "%s: Invalid filenames encryption mode %d\n", __func__, | ||
65 | policy->filenames_encryption_mode); | ||
66 | res = -EINVAL; | ||
67 | goto out; | ||
68 | } | ||
62 | ctx.contents_encryption_mode = policy->contents_encryption_mode; | 69 | ctx.contents_encryption_mode = policy->contents_encryption_mode; |
63 | ctx.filenames_encryption_mode = policy->filenames_encryption_mode; | 70 | ctx.filenames_encryption_mode = policy->filenames_encryption_mode; |
64 | BUILD_BUG_ON(sizeof(ctx.nonce) != EXT4_KEY_DERIVATION_NONCE_SIZE); | 71 | BUILD_BUG_ON(sizeof(ctx.nonce) != EXT4_KEY_DERIVATION_NONCE_SIZE); |
diff --git a/fs/ext4/ext4.h b/fs/ext4/ext4.h index 99a2d67f65b7..3462532b227f 100644 --- a/fs/ext4/ext4.h +++ b/fs/ext4/ext4.h | |||
@@ -2078,6 +2078,47 @@ static inline int ext4_sb_has_crypto(struct super_block *sb) | |||
2078 | } | 2078 | } |
2079 | #endif | 2079 | #endif |
2080 | 2080 | ||
2081 | /* crypto_fname.c */ | ||
2082 | bool ext4_valid_filenames_enc_mode(uint32_t mode); | ||
2083 | u32 ext4_fname_crypto_round_up(u32 size, u32 blksize); | ||
2084 | int ext4_fname_crypto_alloc_buffer(struct ext4_fname_crypto_ctx *ctx, | ||
2085 | u32 ilen, struct ext4_str *crypto_str); | ||
2086 | int _ext4_fname_disk_to_usr(struct ext4_fname_crypto_ctx *ctx, | ||
2087 | const struct ext4_str *iname, | ||
2088 | struct ext4_str *oname); | ||
2089 | int ext4_fname_disk_to_usr(struct ext4_fname_crypto_ctx *ctx, | ||
2090 | const struct ext4_dir_entry_2 *de, | ||
2091 | struct ext4_str *oname); | ||
2092 | int ext4_fname_usr_to_disk(struct ext4_fname_crypto_ctx *ctx, | ||
2093 | const struct qstr *iname, | ||
2094 | struct ext4_str *oname); | ||
2095 | int ext4_fname_usr_to_hash(struct ext4_fname_crypto_ctx *ctx, | ||
2096 | const struct qstr *iname, | ||
2097 | struct dx_hash_info *hinfo); | ||
2098 | int ext4_fname_disk_to_hash(struct ext4_fname_crypto_ctx *ctx, | ||
2099 | const struct ext4_dir_entry_2 *de, | ||
2100 | struct dx_hash_info *hinfo); | ||
2101 | int ext4_fname_crypto_namelen_on_disk(struct ext4_fname_crypto_ctx *ctx, | ||
2102 | u32 namelen); | ||
2103 | |||
2104 | #ifdef CONFIG_EXT4_FS_ENCRYPTION | ||
2105 | void ext4_put_fname_crypto_ctx(struct ext4_fname_crypto_ctx **ctx); | ||
2106 | struct ext4_fname_crypto_ctx *ext4_get_fname_crypto_ctx(struct inode *inode, | ||
2107 | u32 max_len); | ||
2108 | void ext4_fname_crypto_free_buffer(struct ext4_str *crypto_str); | ||
2109 | #else | ||
2110 | static inline | ||
2111 | void ext4_put_fname_crypto_ctx(struct ext4_fname_crypto_ctx **ctx) { } | ||
2112 | static inline | ||
2113 | struct ext4_fname_crypto_ctx *ext4_get_fname_crypto_ctx(struct inode *inode, | ||
2114 | u32 max_len) | ||
2115 | { | ||
2116 | return NULL; | ||
2117 | } | ||
2118 | static inline void ext4_fname_crypto_free_buffer(struct ext4_str *p) { } | ||
2119 | #endif | ||
2120 | |||
2121 | |||
2081 | /* crypto_key.c */ | 2122 | /* crypto_key.c */ |
2082 | int ext4_generate_encryption_key(struct inode *inode); | 2123 | int ext4_generate_encryption_key(struct inode *inode); |
2083 | 2124 | ||
diff --git a/fs/ext4/ext4_crypto.h b/fs/ext4/ext4_crypto.h index 6a7c0c06b2be..f7d46e8dc9d3 100644 --- a/fs/ext4/ext4_crypto.h +++ b/fs/ext4/ext4_crypto.h | |||
@@ -104,4 +104,24 @@ static inline int ext4_encryption_key_size(int mode) | |||
104 | return 0; | 104 | return 0; |
105 | } | 105 | } |
106 | 106 | ||
107 | #define EXT4_FNAME_NUM_SCATTER_ENTRIES 4 | ||
108 | #define EXT4_CRYPTO_BLOCK_SIZE 16 | ||
109 | #define EXT4_FNAME_CRYPTO_DIGEST_SIZE 32 | ||
110 | |||
111 | struct ext4_str { | ||
112 | unsigned char *name; | ||
113 | u32 len; | ||
114 | }; | ||
115 | |||
116 | struct ext4_fname_crypto_ctx { | ||
117 | u32 lim; | ||
118 | char tmp_buf[EXT4_CRYPTO_BLOCK_SIZE]; | ||
119 | struct crypto_ablkcipher *ctfm; | ||
120 | struct crypto_hash *htfm; | ||
121 | struct page *workpage; | ||
122 | struct ext4_encryption_key key; | ||
123 | unsigned has_valid_key : 1; | ||
124 | unsigned ctfm_key_is_ready : 1; | ||
125 | }; | ||
126 | |||
107 | #endif /* _EXT4_CRYPTO_H */ | 127 | #endif /* _EXT4_CRYPTO_H */ |