aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorAlan Stern <stern@rowland.harvard.edu>2008-11-06 02:42:48 -0500
committerJens Axboe <jens.axboe@oracle.com>2008-11-06 02:42:48 -0500
commit9c133c469d38043d5aadaa03f2fb840d88d1cf4f (patch)
treec9af63f0c25efc7454fc3f46b362c80056977341
parent89f97496e81d2112b5e41416fe3020688c443818 (diff)
Add round_jiffies_up and related routines
This patch (as1158b) adds round_jiffies_up() and friends. These routines work like the analogous round_jiffies() functions, except that they will never round down. The new routines will be useful for timeouts where we don't care exactly when the timer expires, provided it doesn't expire too soon. Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
-rw-r--r--include/linux/timer.h5
-rw-r--r--kernel/timer.c129
2 files changed, 104 insertions, 30 deletions
diff --git a/include/linux/timer.h b/include/linux/timer.h
index d4ba79248a27..daf9685b861c 100644
--- a/include/linux/timer.h
+++ b/include/linux/timer.h
@@ -186,4 +186,9 @@ unsigned long __round_jiffies_relative(unsigned long j, int cpu);
186unsigned long round_jiffies(unsigned long j); 186unsigned long round_jiffies(unsigned long j);
187unsigned long round_jiffies_relative(unsigned long j); 187unsigned long round_jiffies_relative(unsigned long j);
188 188
189unsigned long __round_jiffies_up(unsigned long j, int cpu);
190unsigned long __round_jiffies_up_relative(unsigned long j, int cpu);
191unsigned long round_jiffies_up(unsigned long j);
192unsigned long round_jiffies_up_relative(unsigned long j);
193
189#endif 194#endif
diff --git a/kernel/timer.c b/kernel/timer.c
index 56becf373c58..dbd50fabe4c7 100644
--- a/kernel/timer.c
+++ b/kernel/timer.c
@@ -112,27 +112,8 @@ timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
112 tbase_get_deferrable(timer->base)); 112 tbase_get_deferrable(timer->base));
113} 113}
114 114
115/** 115static unsigned long round_jiffies_common(unsigned long j, int cpu,
116 * __round_jiffies - function to round jiffies to a full second 116 bool force_up)
117 * @j: the time in (absolute) jiffies that should be rounded
118 * @cpu: the processor number on which the timeout will happen
119 *
120 * __round_jiffies() rounds an absolute time in the future (in jiffies)
121 * up or down to (approximately) full seconds. This is useful for timers
122 * for which the exact time they fire does not matter too much, as long as
123 * they fire approximately every X seconds.
124 *
125 * By rounding these timers to whole seconds, all such timers will fire
126 * at the same time, rather than at various times spread out. The goal
127 * of this is to have the CPU wake up less, which saves power.
128 *
129 * The exact rounding is skewed for each processor to avoid all
130 * processors firing at the exact same time, which could lead
131 * to lock contention or spurious cache line bouncing.
132 *
133 * The return value is the rounded version of the @j parameter.
134 */
135unsigned long __round_jiffies(unsigned long j, int cpu)
136{ 117{
137 int rem; 118 int rem;
138 unsigned long original = j; 119 unsigned long original = j;
@@ -154,8 +135,9 @@ unsigned long __round_jiffies(unsigned long j, int cpu)
154 * due to delays of the timer irq, long irq off times etc etc) then 135 * due to delays of the timer irq, long irq off times etc etc) then
155 * we should round down to the whole second, not up. Use 1/4th second 136 * we should round down to the whole second, not up. Use 1/4th second
156 * as cutoff for this rounding as an extreme upper bound for this. 137 * as cutoff for this rounding as an extreme upper bound for this.
138 * But never round down if @force_up is set.
157 */ 139 */
158 if (rem < HZ/4) /* round down */ 140 if (rem < HZ/4 && !force_up) /* round down */
159 j = j - rem; 141 j = j - rem;
160 else /* round up */ 142 else /* round up */
161 j = j - rem + HZ; 143 j = j - rem + HZ;
@@ -167,6 +149,31 @@ unsigned long __round_jiffies(unsigned long j, int cpu)
167 return original; 149 return original;
168 return j; 150 return j;
169} 151}
152
153/**
154 * __round_jiffies - function to round jiffies to a full second
155 * @j: the time in (absolute) jiffies that should be rounded
156 * @cpu: the processor number on which the timeout will happen
157 *
158 * __round_jiffies() rounds an absolute time in the future (in jiffies)
159 * up or down to (approximately) full seconds. This is useful for timers
160 * for which the exact time they fire does not matter too much, as long as
161 * they fire approximately every X seconds.
162 *
163 * By rounding these timers to whole seconds, all such timers will fire
164 * at the same time, rather than at various times spread out. The goal
165 * of this is to have the CPU wake up less, which saves power.
166 *
167 * The exact rounding is skewed for each processor to avoid all
168 * processors firing at the exact same time, which could lead
169 * to lock contention or spurious cache line bouncing.
170 *
171 * The return value is the rounded version of the @j parameter.
172 */
173unsigned long __round_jiffies(unsigned long j, int cpu)
174{
175 return round_jiffies_common(j, cpu, false);
176}
170EXPORT_SYMBOL_GPL(__round_jiffies); 177EXPORT_SYMBOL_GPL(__round_jiffies);
171 178
172/** 179/**
@@ -191,13 +198,10 @@ EXPORT_SYMBOL_GPL(__round_jiffies);
191 */ 198 */
192unsigned long __round_jiffies_relative(unsigned long j, int cpu) 199unsigned long __round_jiffies_relative(unsigned long j, int cpu)
193{ 200{
194 /* 201 unsigned long j0 = jiffies;
195 * In theory the following code can skip a jiffy in case jiffies 202
196 * increments right between the addition and the later subtraction. 203 /* Use j0 because jiffies might change while we run */
197 * However since the entire point of this function is to use approximate 204 return round_jiffies_common(j + j0, cpu, false) - j0;
198 * timeouts, it's entirely ok to not handle that.
199 */
200 return __round_jiffies(j + jiffies, cpu) - jiffies;
201} 205}
202EXPORT_SYMBOL_GPL(__round_jiffies_relative); 206EXPORT_SYMBOL_GPL(__round_jiffies_relative);
203 207
@@ -218,7 +222,7 @@ EXPORT_SYMBOL_GPL(__round_jiffies_relative);
218 */ 222 */
219unsigned long round_jiffies(unsigned long j) 223unsigned long round_jiffies(unsigned long j)
220{ 224{
221 return __round_jiffies(j, raw_smp_processor_id()); 225 return round_jiffies_common(j, raw_smp_processor_id(), false);
222} 226}
223EXPORT_SYMBOL_GPL(round_jiffies); 227EXPORT_SYMBOL_GPL(round_jiffies);
224 228
@@ -243,6 +247,71 @@ unsigned long round_jiffies_relative(unsigned long j)
243} 247}
244EXPORT_SYMBOL_GPL(round_jiffies_relative); 248EXPORT_SYMBOL_GPL(round_jiffies_relative);
245 249
250/**
251 * __round_jiffies_up - function to round jiffies up to a full second
252 * @j: the time in (absolute) jiffies that should be rounded
253 * @cpu: the processor number on which the timeout will happen
254 *
255 * This is the same as __round_jiffies() except that it will never
256 * round down. This is useful for timeouts for which the exact time
257 * of firing does not matter too much, as long as they don't fire too
258 * early.
259 */
260unsigned long __round_jiffies_up(unsigned long j, int cpu)
261{
262 return round_jiffies_common(j, cpu, true);
263}
264EXPORT_SYMBOL_GPL(__round_jiffies_up);
265
266/**
267 * __round_jiffies_up_relative - function to round jiffies up to a full second
268 * @j: the time in (relative) jiffies that should be rounded
269 * @cpu: the processor number on which the timeout will happen
270 *
271 * This is the same as __round_jiffies_relative() except that it will never
272 * round down. This is useful for timeouts for which the exact time
273 * of firing does not matter too much, as long as they don't fire too
274 * early.
275 */
276unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
277{
278 unsigned long j0 = jiffies;
279
280 /* Use j0 because jiffies might change while we run */
281 return round_jiffies_common(j + j0, cpu, true) - j0;
282}
283EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
284
285/**
286 * round_jiffies_up - function to round jiffies up to a full second
287 * @j: the time in (absolute) jiffies that should be rounded
288 *
289 * This is the same as round_jiffies() except that it will never
290 * round down. This is useful for timeouts for which the exact time
291 * of firing does not matter too much, as long as they don't fire too
292 * early.
293 */
294unsigned long round_jiffies_up(unsigned long j)
295{
296 return round_jiffies_common(j, raw_smp_processor_id(), true);
297}
298EXPORT_SYMBOL_GPL(round_jiffies_up);
299
300/**
301 * round_jiffies_up_relative - function to round jiffies up to a full second
302 * @j: the time in (relative) jiffies that should be rounded
303 *
304 * This is the same as round_jiffies_relative() except that it will never
305 * round down. This is useful for timeouts for which the exact time
306 * of firing does not matter too much, as long as they don't fire too
307 * early.
308 */
309unsigned long round_jiffies_up_relative(unsigned long j)
310{
311 return __round_jiffies_up_relative(j, raw_smp_processor_id());
312}
313EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
314
246 315
247static inline void set_running_timer(struct tvec_base *base, 316static inline void set_running_timer(struct tvec_base *base,
248 struct timer_list *timer) 317 struct timer_list *timer)