aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorHugh Dickins <hughd@google.com>2012-06-15 20:55:50 -0400
committerLinus Torvalds <torvalds@linux-foundation.org>2012-06-16 00:48:14 -0400
commit9b15b817f3d62409290fd56fe3cbb076a931bb0a (patch)
tree5a53af90e835d4821df0f487e786f804eb5a493c
parenta2c2df8672f55195f101d9251117aa59e358d296 (diff)
swap: fix shmem swapping when more than 8 areas
Minchan Kim reports that when a system has many swap areas, and tmpfs swaps out to the ninth or more, shmem_getpage_gfp()'s attempts to read back the page cannot locate it, and the read fails with -ENOMEM. Whoops. Yes, I blindly followed read_swap_header()'s pte_to_swp_entry( swp_entry_to_pte()) technique for determining maximum usable swap offset, without stopping to realize that that actually depends upon the pte swap encoding shifting swap offset to the higher bits and truncating it there. Whereas our radix_tree swap encoding leaves offset in the lower bits: it's swap "type" (that is, index of swap area) that was truncated. Fix it by reducing the SWP_TYPE_SHIFT() in swapops.h, and removing the broken radix_to_swp_entry(swp_to_radix_entry()) from read_swap_header(). This does not reduce the usable size of a swap area any further, it leaves it as claimed when making the original commit: no change from 3.0 on x86_64, nor on i386 without PAE; but 3.0's 512GB is reduced to 128GB per swapfile on i386 with PAE. It's not a change I would have risked five years ago, but with x86_64 supported for ten years, I believe it's appropriate now. Hmm, and what if some architecture implements its swap pte with offset encoded below type? That would equally break the maximum usable swap offset check. Happily, they all follow the same tradition of encoding offset above type, but I'll prepare a check on that for next. Reported-and-Reviewed-and-Tested-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: stable@vger.kernel.org [3.1, 3.2, 3.3, 3.4] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-rw-r--r--include/linux/swapops.h8
-rw-r--r--mm/swapfile.c12
2 files changed, 9 insertions, 11 deletions
diff --git a/include/linux/swapops.h b/include/linux/swapops.h
index 792d16d9cbc7..47ead515c811 100644
--- a/include/linux/swapops.h
+++ b/include/linux/swapops.h
@@ -9,13 +9,15 @@
9 * get good packing density in that tree, so the index should be dense in 9 * get good packing density in that tree, so the index should be dense in
10 * the low-order bits. 10 * the low-order bits.
11 * 11 *
12 * We arrange the `type' and `offset' fields so that `type' is at the five 12 * We arrange the `type' and `offset' fields so that `type' is at the seven
13 * high-order bits of the swp_entry_t and `offset' is right-aligned in the 13 * high-order bits of the swp_entry_t and `offset' is right-aligned in the
14 * remaining bits. 14 * remaining bits. Although `type' itself needs only five bits, we allow for
15 * shmem/tmpfs to shift it all up a further two bits: see swp_to_radix_entry().
15 * 16 *
16 * swp_entry_t's are *never* stored anywhere in their arch-dependent format. 17 * swp_entry_t's are *never* stored anywhere in their arch-dependent format.
17 */ 18 */
18#define SWP_TYPE_SHIFT(e) (sizeof(e.val) * 8 - MAX_SWAPFILES_SHIFT) 19#define SWP_TYPE_SHIFT(e) ((sizeof(e.val) * 8) - \
20 (MAX_SWAPFILES_SHIFT + RADIX_TREE_EXCEPTIONAL_SHIFT))
19#define SWP_OFFSET_MASK(e) ((1UL << SWP_TYPE_SHIFT(e)) - 1) 21#define SWP_OFFSET_MASK(e) ((1UL << SWP_TYPE_SHIFT(e)) - 1)
20 22
21/* 23/*
diff --git a/mm/swapfile.c b/mm/swapfile.c
index de5bc51c4a66..71373d03fcee 100644
--- a/mm/swapfile.c
+++ b/mm/swapfile.c
@@ -1916,24 +1916,20 @@ static unsigned long read_swap_header(struct swap_info_struct *p,
1916 1916
1917 /* 1917 /*
1918 * Find out how many pages are allowed for a single swap 1918 * Find out how many pages are allowed for a single swap
1919 * device. There are three limiting factors: 1) the number 1919 * device. There are two limiting factors: 1) the number
1920 * of bits for the swap offset in the swp_entry_t type, and 1920 * of bits for the swap offset in the swp_entry_t type, and
1921 * 2) the number of bits in the swap pte as defined by the 1921 * 2) the number of bits in the swap pte as defined by the
1922 * the different architectures, and 3) the number of free bits 1922 * different architectures. In order to find the
1923 * in an exceptional radix_tree entry. In order to find the
1924 * largest possible bit mask, a swap entry with swap type 0 1923 * largest possible bit mask, a swap entry with swap type 0
1925 * and swap offset ~0UL is created, encoded to a swap pte, 1924 * and swap offset ~0UL is created, encoded to a swap pte,
1926 * decoded to a swp_entry_t again, and finally the swap 1925 * decoded to a swp_entry_t again, and finally the swap
1927 * offset is extracted. This will mask all the bits from 1926 * offset is extracted. This will mask all the bits from
1928 * the initial ~0UL mask that can't be encoded in either 1927 * the initial ~0UL mask that can't be encoded in either
1929 * the swp_entry_t or the architecture definition of a 1928 * the swp_entry_t or the architecture definition of a
1930 * swap pte. Then the same is done for a radix_tree entry. 1929 * swap pte.
1931 */ 1930 */
1932 maxpages = swp_offset(pte_to_swp_entry( 1931 maxpages = swp_offset(pte_to_swp_entry(
1933 swp_entry_to_pte(swp_entry(0, ~0UL)))); 1932 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
1934 maxpages = swp_offset(radix_to_swp_entry(
1935 swp_to_radix_entry(swp_entry(0, maxpages)))) + 1;
1936
1937 if (maxpages > swap_header->info.last_page) { 1933 if (maxpages > swap_header->info.last_page) {
1938 maxpages = swap_header->info.last_page + 1; 1934 maxpages = swap_header->info.last_page + 1;
1939 /* p->max is an unsigned int: don't overflow it */ 1935 /* p->max is an unsigned int: don't overflow it */