aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorVaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>2010-10-06 04:36:59 -0400
committerBenjamin Herrenschmidt <benh@kernel.crashing.org>2010-11-28 23:48:19 -0500
commit99d86705253dcf728dbbec4d694a6764b6edb70c (patch)
treee4c68adab6448463a77141c1797671417f58242c
parent787d44caa5bca249d8781d21b626c417f1e3cfc4 (diff)
powerpc: Cleanup APIs for cpu/thread/core mappings
These APIs take logical cpu number as input Change cpu_first_thread_in_core() to cpu_first_thread_sibling() Change cpu_last_thread_in_core() to cpu_last_thread_sibling() These APIs convert core number (index) to logical cpu/thread numbers Add cpu_first_thread_of_core(int core) Changed cpu_thread_to_core() to cpu_core_index_of_thread(int cpu) The goal is to make 'threads_per_core' accessible to the pseries_energy module. Instead of making an API to read threads_per_core, this is a higher level wrapper function to convert from logical cpu number to core number. The current APIs cpu_first_thread_in_core() and cpu_last_thread_in_core() returns logical CPU number while cpu_thread_to_core() returns core number or index which is not a logical CPU number. The new APIs are now clearly named to distinguish 'core number' versus first and last 'logical cpu number' in that core. The new APIs cpu_{first,last}_thread_sibling() work on logical cpu numbers. While cpu_first_thread_of_core() and cpu_core_index_of_thread() work on core index. Example usage: (4 threads per core system) cpu_first_thread_sibling(5) = 4 cpu_last_thread_sibling(5) = 7 cpu_core_index_of_thread(5) = 1 cpu_first_thread_of_core(1) = 4 cpu_core_index_of_thread() is used in cpu_to_drc_index() in the module and cpu_first_thread_of_core() is used in drc_index_to_cpu() in the module. Make API changes to few callers. Export symbols for use in modules. Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
-rw-r--r--arch/powerpc/include/asm/cputhreads.h15
-rw-r--r--arch/powerpc/kernel/smp.c19
-rw-r--r--arch/powerpc/mm/mmu_context_nohash.c12
3 files changed, 31 insertions, 15 deletions
diff --git a/arch/powerpc/include/asm/cputhreads.h b/arch/powerpc/include/asm/cputhreads.h
index a8e18447c62b..f71bb4c118b4 100644
--- a/arch/powerpc/include/asm/cputhreads.h
+++ b/arch/powerpc/include/asm/cputhreads.h
@@ -61,22 +61,25 @@ static inline cpumask_t cpu_online_cores_map(void)
61 return cpu_thread_mask_to_cores(cpu_online_map); 61 return cpu_thread_mask_to_cores(cpu_online_map);
62} 62}
63 63
64static inline int cpu_thread_to_core(int cpu) 64#ifdef CONFIG_SMP
65{ 65int cpu_core_index_of_thread(int cpu);
66 return cpu >> threads_shift; 66int cpu_first_thread_of_core(int core);
67} 67#else
68static inline int cpu_core_index_of_thread(int cpu) { return cpu; }
69static inline int cpu_first_thread_of_core(int core) { return core; }
70#endif
68 71
69static inline int cpu_thread_in_core(int cpu) 72static inline int cpu_thread_in_core(int cpu)
70{ 73{
71 return cpu & (threads_per_core - 1); 74 return cpu & (threads_per_core - 1);
72} 75}
73 76
74static inline int cpu_first_thread_in_core(int cpu) 77static inline int cpu_first_thread_sibling(int cpu)
75{ 78{
76 return cpu & ~(threads_per_core - 1); 79 return cpu & ~(threads_per_core - 1);
77} 80}
78 81
79static inline int cpu_last_thread_in_core(int cpu) 82static inline int cpu_last_thread_sibling(int cpu)
80{ 83{
81 return cpu | (threads_per_core - 1); 84 return cpu | (threads_per_core - 1);
82} 85}
diff --git a/arch/powerpc/kernel/smp.c b/arch/powerpc/kernel/smp.c
index 68034bbf2e4f..981360509172 100644
--- a/arch/powerpc/kernel/smp.c
+++ b/arch/powerpc/kernel/smp.c
@@ -466,7 +466,20 @@ out:
466 return id; 466 return id;
467} 467}
468 468
469/* Must be called when no change can occur to cpu_present_mask, 469/* Helper routines for cpu to core mapping */
470int cpu_core_index_of_thread(int cpu)
471{
472 return cpu >> threads_shift;
473}
474EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
475
476int cpu_first_thread_of_core(int core)
477{
478 return core << threads_shift;
479}
480EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
481
482/* Must be called when no change can occur to cpu_present_map,
470 * i.e. during cpu online or offline. 483 * i.e. during cpu online or offline.
471 */ 484 */
472static struct device_node *cpu_to_l2cache(int cpu) 485static struct device_node *cpu_to_l2cache(int cpu)
@@ -514,7 +527,7 @@ int __devinit start_secondary(void *unused)
514 notify_cpu_starting(cpu); 527 notify_cpu_starting(cpu);
515 set_cpu_online(cpu, true); 528 set_cpu_online(cpu, true);
516 /* Update sibling maps */ 529 /* Update sibling maps */
517 base = cpu_first_thread_in_core(cpu); 530 base = cpu_first_thread_sibling(cpu);
518 for (i = 0; i < threads_per_core; i++) { 531 for (i = 0; i < threads_per_core; i++) {
519 if (cpu_is_offline(base + i)) 532 if (cpu_is_offline(base + i))
520 continue; 533 continue;
@@ -600,7 +613,7 @@ int __cpu_disable(void)
600 return err; 613 return err;
601 614
602 /* Update sibling maps */ 615 /* Update sibling maps */
603 base = cpu_first_thread_in_core(cpu); 616 base = cpu_first_thread_sibling(cpu);
604 for (i = 0; i < threads_per_core; i++) { 617 for (i = 0; i < threads_per_core; i++) {
605 cpumask_clear_cpu(cpu, cpu_sibling_mask(base + i)); 618 cpumask_clear_cpu(cpu, cpu_sibling_mask(base + i));
606 cpumask_clear_cpu(base + i, cpu_sibling_mask(cpu)); 619 cpumask_clear_cpu(base + i, cpu_sibling_mask(cpu));
diff --git a/arch/powerpc/mm/mmu_context_nohash.c b/arch/powerpc/mm/mmu_context_nohash.c
index 5ce99848d91e..c0aab52da3a5 100644
--- a/arch/powerpc/mm/mmu_context_nohash.c
+++ b/arch/powerpc/mm/mmu_context_nohash.c
@@ -111,8 +111,8 @@ static unsigned int steal_context_smp(unsigned int id)
111 * a core map instead but this will do for now. 111 * a core map instead but this will do for now.
112 */ 112 */
113 for_each_cpu(cpu, mm_cpumask(mm)) { 113 for_each_cpu(cpu, mm_cpumask(mm)) {
114 for (i = cpu_first_thread_in_core(cpu); 114 for (i = cpu_first_thread_sibling(cpu);
115 i <= cpu_last_thread_in_core(cpu); i++) 115 i <= cpu_last_thread_sibling(cpu); i++)
116 __set_bit(id, stale_map[i]); 116 __set_bit(id, stale_map[i]);
117 cpu = i - 1; 117 cpu = i - 1;
118 } 118 }
@@ -264,14 +264,14 @@ void switch_mmu_context(struct mm_struct *prev, struct mm_struct *next)
264 */ 264 */
265 if (test_bit(id, stale_map[cpu])) { 265 if (test_bit(id, stale_map[cpu])) {
266 pr_hardcont(" | stale flush %d [%d..%d]", 266 pr_hardcont(" | stale flush %d [%d..%d]",
267 id, cpu_first_thread_in_core(cpu), 267 id, cpu_first_thread_sibling(cpu),
268 cpu_last_thread_in_core(cpu)); 268 cpu_last_thread_sibling(cpu));
269 269
270 local_flush_tlb_mm(next); 270 local_flush_tlb_mm(next);
271 271
272 /* XXX This clear should ultimately be part of local_flush_tlb_mm */ 272 /* XXX This clear should ultimately be part of local_flush_tlb_mm */
273 for (i = cpu_first_thread_in_core(cpu); 273 for (i = cpu_first_thread_sibling(cpu);
274 i <= cpu_last_thread_in_core(cpu); i++) { 274 i <= cpu_last_thread_sibling(cpu); i++) {
275 __clear_bit(id, stale_map[i]); 275 __clear_bit(id, stale_map[i]);
276 } 276 }
277 } 277 }
l com">/* * Free up structures allocated by xfs_chash_init, at unmount time. */ void xfs_chash_free(xfs_mount_t *mp) { int i; for (i = 0; i < mp->m_chsize; i++) { spinlock_destroy(&mp->m_chash[i].ch_lock); } kmem_free(mp->m_chash, mp->m_chsize*sizeof(xfs_chash_t)); mp->m_chash = NULL; } /* * Try to move an inode to the front of its hash list if possible * (and if its not there already). Called right after obtaining * the list version number and then dropping the read_lock on the * hash list in question (which is done right after looking up the * inode in question...). */ STATIC void xfs_ihash_promote( xfs_ihash_t *ih, xfs_inode_t *ip, ulong version) { xfs_inode_t *iq; if ((ip->i_prevp != &ih->ih_next) && write_trylock(&ih->ih_lock)) { if (likely(version == ih->ih_version)) { /* remove from list */ if ((iq = ip->i_next)) { iq->i_prevp = ip->i_prevp; } *ip->i_prevp = iq; /* insert at list head */ iq = ih->ih_next; iq->i_prevp = &ip->i_next; ip->i_next = iq; ip->i_prevp = &ih->ih_next; ih->ih_next = ip; } write_unlock(&ih->ih_lock); } } /* * Look up an inode by number in the given file system. * The inode is looked up in the hash table for the file system * represented by the mount point parameter mp. Each bucket of * the hash table is guarded by an individual semaphore. * * If the inode is found in the hash table, its corresponding vnode * is obtained with a call to vn_get(). This call takes care of * coordination with the reclamation of the inode and vnode. Note * that the vmap structure is filled in while holding the hash lock. * This gives us the state of the inode/vnode when we found it and * is used for coordination in vn_get(). * * If it is not in core, read it in from the file system's device and * add the inode into the hash table. * * The inode is locked according to the value of the lock_flags parameter. * This flag parameter indicates how and if the inode's IO lock and inode lock * should be taken. * * mp -- the mount point structure for the current file system. It points * to the inode hash table. * tp -- a pointer to the current transaction if there is one. This is * simply passed through to the xfs_iread() call. * ino -- the number of the inode desired. This is the unique identifier * within the file system for the inode being requested. * lock_flags -- flags indicating how to lock the inode. See the comment * for xfs_ilock() for a list of valid values. * bno -- the block number starting the buffer containing the inode, * if known (as by bulkstat), else 0. */ STATIC int xfs_iget_core( bhv_vnode_t *vp, xfs_mount_t *mp, xfs_trans_t *tp, xfs_ino_t ino, uint flags, uint lock_flags, xfs_inode_t **ipp, xfs_daddr_t bno) { xfs_ihash_t *ih; xfs_inode_t *ip; xfs_inode_t *iq; bhv_vnode_t *inode_vp; ulong version; int error; /* REFERENCED */ xfs_chash_t *ch; xfs_chashlist_t *chl, *chlnew; SPLDECL(s); ih = XFS_IHASH(mp, ino); again: read_lock(&ih->ih_lock); for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) { if (ip->i_ino == ino) { /* * If INEW is set this inode is being set up * we need to pause and try again. */ if (xfs_iflags_test(ip, XFS_INEW)) { read_unlock(&ih->ih_lock); delay(1); XFS_STATS_INC(xs_ig_frecycle); goto again; } inode_vp = XFS_ITOV_NULL(ip); if (inode_vp == NULL) { /* * If IRECLAIM is set this inode is * on its way out of the system, * we need to pause and try again. */ if (xfs_iflags_test(ip, XFS_IRECLAIM)) { read_unlock(&ih->ih_lock); delay(1); XFS_STATS_INC(xs_ig_frecycle); goto again; } ASSERT(xfs_iflags_test(ip, XFS_IRECLAIMABLE)); /* * If lookup is racing with unlink, then we * should return an error immediately so we * don't remove it from the reclaim list and * potentially leak the inode. */ if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) { read_unlock(&ih->ih_lock); return ENOENT; } /* * There may be transactions sitting in the * incore log buffers or being flushed to disk * at this time. We can't clear the * XFS_IRECLAIMABLE flag until these * transactions have hit the disk, otherwise we * will void the guarantee the flag provides * xfs_iunpin() */ if (xfs_ipincount(ip)) { read_unlock(&ih->ih_lock); xfs_log_force(mp, 0, XFS_LOG_FORCE|XFS_LOG_SYNC); XFS_STATS_INC(xs_ig_frecycle); goto again; } vn_trace_exit(vp, "xfs_iget.alloc", (inst_t *)__return_address); XFS_STATS_INC(xs_ig_found); xfs_iflags_clear(ip, XFS_IRECLAIMABLE); version = ih->ih_version; read_unlock(&ih->ih_lock); xfs_ihash_promote(ih, ip, version); XFS_MOUNT_ILOCK(mp); list_del_init(&ip->i_reclaim); XFS_MOUNT_IUNLOCK(mp); goto finish_inode; } else if (vp != inode_vp) { struct inode *inode = vn_to_inode(inode_vp); /* The inode is being torn down, pause and * try again. */ if (inode->i_state & (I_FREEING | I_CLEAR)) { read_unlock(&ih->ih_lock); delay(1); XFS_STATS_INC(xs_ig_frecycle); goto again; } /* Chances are the other vnode (the one in the inode) is being torn * down right now, and we landed on top of it. Question is, what do * we do? Unhook the old inode and hook up the new one? */ cmn_err(CE_PANIC, "xfs_iget_core: ambiguous vns: vp/0x%p, invp/0x%p", inode_vp, vp); } /* * Inode cache hit: if ip is not at the front of * its hash chain, move it there now. * Do this with the lock held for update, but * do statistics after releasing the lock. */ version = ih->ih_version; read_unlock(&ih->ih_lock); xfs_ihash_promote(ih, ip, version); XFS_STATS_INC(xs_ig_found); finish_inode: if (ip->i_d.di_mode == 0) { if (!(flags & XFS_IGET_CREATE)) return ENOENT; xfs_iocore_inode_reinit(ip); } if (lock_flags != 0) xfs_ilock(ip, lock_flags); xfs_iflags_clear(ip, XFS_ISTALE); vn_trace_exit(vp, "xfs_iget.found", (inst_t *)__return_address); goto return_ip; } } /* * Inode cache miss: save the hash chain version stamp and unlock * the chain, so we don't deadlock in vn_alloc. */ XFS_STATS_INC(xs_ig_missed); version = ih->ih_version; read_unlock(&ih->ih_lock); /* * Read the disk inode attributes into a new inode structure and get * a new vnode for it. This should also initialize i_ino and i_mount. */ error = xfs_iread(mp, tp, ino, &ip, bno, (flags & XFS_IGET_BULKSTAT) ? XFS_IMAP_BULKSTAT : 0); if (error) return error; vn_trace_exit(vp, "xfs_iget.alloc", (inst_t *)__return_address); xfs_inode_lock_init(ip, vp); xfs_iocore_inode_init(ip); if (lock_flags) xfs_ilock(ip, lock_flags); if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) { xfs_idestroy(ip); return ENOENT; } /* * Put ip on its hash chain, unless someone else hashed a duplicate * after we released the hash lock. */ write_lock(&ih->ih_lock); if (ih->ih_version != version) { for (iq = ih->ih_next; iq != NULL; iq = iq->i_next) { if (iq->i_ino == ino) { write_unlock(&ih->ih_lock); xfs_idestroy(ip); XFS_STATS_INC(xs_ig_dup); goto again; } } } /* * These values _must_ be set before releasing ihlock! */ ip->i_hash = ih; if ((iq = ih->ih_next)) { iq->i_prevp = &ip->i_next; } ip->i_next = iq; ip->i_prevp = &ih->ih_next; ih->ih_next = ip; ip->i_udquot = ip->i_gdquot = NULL; ih->ih_version++; xfs_iflags_set(ip, XFS_INEW); write_unlock(&ih->ih_lock); /* * put ip on its cluster's hash chain */ ASSERT(ip->i_chash == NULL && ip->i_cprev == NULL && ip->i_cnext == NULL); chlnew = NULL; ch = XFS_CHASH(mp, ip->i_blkno); chlredo: s = mutex_spinlock(&ch->ch_lock); for (chl = ch->ch_list; chl != NULL; chl = chl->chl_next) { if (chl->chl_blkno == ip->i_blkno) { /* insert this inode into the doubly-linked list * where chl points */ if ((iq = chl->chl_ip)) { ip->i_cprev = iq->i_cprev; iq->i_cprev->i_cnext = ip; iq->i_cprev = ip; ip->i_cnext = iq; } else { ip->i_cnext = ip; ip->i_cprev = ip; } chl->chl_ip = ip; ip->i_chash = chl; break; } } /* no hash list found for this block; add a new hash list */ if (chl == NULL) { if (chlnew == NULL) { mutex_spinunlock(&ch->ch_lock, s); ASSERT(xfs_chashlist_zone != NULL); chlnew = (xfs_chashlist_t *) kmem_zone_alloc(xfs_chashlist_zone, KM_SLEEP); ASSERT(chlnew != NULL); goto chlredo; } else { ip->i_cnext = ip; ip->i_cprev = ip; ip->i_chash = chlnew; chlnew->chl_ip = ip; chlnew->chl_blkno = ip->i_blkno; if (ch->ch_list) ch->ch_list->chl_prev = chlnew; chlnew->chl_next = ch->ch_list; chlnew->chl_prev = NULL; ch->ch_list = chlnew; chlnew = NULL; } } else { if (chlnew != NULL) { kmem_zone_free(xfs_chashlist_zone, chlnew); } } mutex_spinunlock(&ch->ch_lock, s); /* * Link ip to its mount and thread it on the mount's inode list. */ XFS_MOUNT_ILOCK(mp); if ((iq = mp->m_inodes)) { ASSERT(iq->i_mprev->i_mnext == iq); ip->i_mprev = iq->i_mprev; iq->i_mprev->i_mnext = ip; iq->i_mprev = ip; ip->i_mnext = iq; } else { ip->i_mnext = ip; ip->i_mprev = ip; } mp->m_inodes = ip; XFS_MOUNT_IUNLOCK(mp); return_ip: ASSERT(ip->i_df.if_ext_max == XFS_IFORK_DSIZE(ip) / sizeof(xfs_bmbt_rec_t)); ASSERT(((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) != 0) == ((ip->i_iocore.io_flags & XFS_IOCORE_RT) != 0)); *ipp = ip; /* * If we have a real type for an on-disk inode, we can set ops(&unlock) * now. If it's a new inode being created, xfs_ialloc will handle it. */ bhv_vfs_init_vnode(XFS_MTOVFS(mp), vp, XFS_ITOBHV(ip), 1); return 0; } /* * The 'normal' internal xfs_iget, if needed it will * 'allocate', or 'get', the vnode. */ int xfs_iget( xfs_mount_t *mp, xfs_trans_t *tp, xfs_ino_t ino, uint flags, uint lock_flags, xfs_inode_t **ipp, xfs_daddr_t bno) { struct inode *inode; bhv_vnode_t *vp = NULL; int error; XFS_STATS_INC(xs_ig_attempts); retry: if ((inode = iget_locked(XFS_MTOVFS(mp)->vfs_super, ino))) { xfs_inode_t *ip; vp = vn_from_inode(inode); if (inode->i_state & I_NEW) { vn_initialize(inode); error = xfs_iget_core(vp, mp, tp, ino, flags, lock_flags, ipp, bno); if (error) { vn_mark_bad(vp); if (inode->i_state & I_NEW) unlock_new_inode(inode); iput(inode); } } else { /* * If the inode is not fully constructed due to * filehandle mismatches wait for the inode to go * away and try again. * * iget_locked will call __wait_on_freeing_inode * to wait for the inode to go away. */ if (is_bad_inode(inode) || ((ip = xfs_vtoi(vp)) == NULL)) { iput(inode); delay(1); goto retry; } if (lock_flags != 0) xfs_ilock(ip, lock_flags); XFS_STATS_INC(xs_ig_found); *ipp = ip; error = 0; } } else error = ENOMEM; /* If we got no inode we are out of memory */ return error; } /* * Do the setup for the various locks within the incore inode. */ void xfs_inode_lock_init( xfs_inode_t *ip, bhv_vnode_t *vp) { mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER, "xfsino", (long)vp->v_number); mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", vp->v_number); init_waitqueue_head(&ip->i_ipin_wait); atomic_set(&ip->i_pincount, 0); initnsema(&ip->i_flock, 1, "xfsfino"); } /* * Look for the inode corresponding to the given ino in the hash table. * If it is there and its i_transp pointer matches tp, return it. * Otherwise, return NULL. */ xfs_inode_t * xfs_inode_incore(xfs_mount_t *mp, xfs_ino_t ino, xfs_trans_t *tp) { xfs_ihash_t *ih; xfs_inode_t *ip; ulong version; ih = XFS_IHASH(mp, ino); read_lock(&ih->ih_lock); for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) { if (ip->i_ino == ino) { /* * If we find it and tp matches, return it. * Also move it to the front of the hash list * if we find it and it is not already there. * Otherwise break from the loop and return * NULL. */ if (ip->i_transp == tp) { version = ih->ih_version; read_unlock(&ih->ih_lock); xfs_ihash_promote(ih, ip, version); return (ip); } break; } } read_unlock(&ih->ih_lock); return (NULL); } /* * Decrement reference count of an inode structure and unlock it. * * ip -- the inode being released * lock_flags -- this parameter indicates the inode's locks to be * to be released. See the comment on xfs_iunlock() for a list * of valid values. */ void xfs_iput(xfs_inode_t *ip, uint lock_flags) { bhv_vnode_t *vp = XFS_ITOV(ip); vn_trace_entry(vp, "xfs_iput", (inst_t *)__return_address); xfs_iunlock(ip, lock_flags); VN_RELE(vp); } /* * Special iput for brand-new inodes that are still locked */ void xfs_iput_new(xfs_inode_t *ip, uint lock_flags) { bhv_vnode_t *vp = XFS_ITOV(ip); struct inode *inode = vn_to_inode(vp); vn_trace_entry(vp, "xfs_iput_new", (inst_t *)__return_address); if ((ip->i_d.di_mode == 0)) { ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE)); vn_mark_bad(vp); } if (inode->i_state & I_NEW) unlock_new_inode(inode); if (lock_flags) xfs_iunlock(ip, lock_flags); VN_RELE(vp); } /* * This routine embodies the part of the reclaim code that pulls * the inode from the inode hash table and the mount structure's * inode list. * This should only be called from xfs_reclaim(). */ void xfs_ireclaim(xfs_inode_t *ip) { bhv_vnode_t *vp; /* * Remove from old hash list and mount list. */ XFS_STATS_INC(xs_ig_reclaims); xfs_iextract(ip); /* * Here we do a spurious inode lock in order to coordinate with * xfs_sync(). This is because xfs_sync() references the inodes * in the mount list without taking references on the corresponding * vnodes. We make that OK here by ensuring that we wait until * the inode is unlocked in xfs_sync() before we go ahead and * free it. We get both the regular lock and the io lock because * the xfs_sync() code may need to drop the regular one but will * still hold the io lock. */ xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); /* * Release dquots (and their references) if any. An inode may escape * xfs_inactive and get here via vn_alloc->vn_reclaim path. */ XFS_QM_DQDETACH(ip->i_mount, ip); /* * Pull our behavior descriptor from the vnode chain. */ vp = XFS_ITOV_NULL(ip); if (vp) { vn_bhv_remove(VN_BHV_HEAD(vp), XFS_ITOBHV(ip)); } /* * Free all memory associated with the inode. */ xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); xfs_idestroy(ip); } /* * This routine removes an about-to-be-destroyed inode from * all of the lists in which it is located with the exception * of the behavior chain. */ void xfs_iextract( xfs_inode_t *ip) { xfs_ihash_t *ih; xfs_inode_t *iq; xfs_mount_t *mp; xfs_chash_t *ch; xfs_chashlist_t *chl, *chm; SPLDECL(s); ih = ip->i_hash; write_lock(&ih->ih_lock); if ((iq = ip->i_next)) { iq->i_prevp = ip->i_prevp; } *ip->i_prevp = iq; ih->ih_version++; write_unlock(&ih->ih_lock); /* * Remove from cluster hash list * 1) delete the chashlist if this is the last inode on the chashlist * 2) unchain from list of inodes * 3) point chashlist->chl_ip to 'chl_next' if to this inode. */ mp = ip->i_mount; ch = XFS_CHASH(mp, ip->i_blkno); s = mutex_spinlock(&ch->ch_lock); if (ip->i_cnext == ip) { /* Last inode on chashlist */ ASSERT(ip->i_cnext == ip && ip->i_cprev == ip); ASSERT(ip->i_chash != NULL); chm=NULL; chl = ip->i_chash; if (chl->chl_prev) chl->chl_prev->chl_next = chl->chl_next; else ch->ch_list = chl->chl_next; if (chl->chl_next) chl->chl_next->chl_prev = chl->chl_prev; kmem_zone_free(xfs_chashlist_zone, chl); } else { /* delete one inode from a non-empty list */ iq = ip->i_cnext; iq->i_cprev = ip->i_cprev; ip->i_cprev->i_cnext = iq; if (ip->i_chash->chl_ip == ip) { ip->i_chash->chl_ip = iq; } ip->i_chash = __return_address; ip->i_cprev = __return_address; ip->i_cnext = __return_address; } mutex_spinunlock(&ch->ch_lock, s); /* * Remove from mount's inode list. */ XFS_MOUNT_ILOCK(mp); ASSERT((ip->i_mnext != NULL) && (ip->i_mprev != NULL)); iq = ip->i_mnext; iq->i_mprev = ip->i_mprev; ip->i_mprev->i_mnext = iq; /* * Fix up the head pointer if it points to the inode being deleted. */ if (mp->m_inodes == ip) { if (ip == iq) { mp->m_inodes = NULL; } else { mp->m_inodes = iq; } } /* Deal with the deleted inodes list */ list_del_init(&ip->i_reclaim); mp->m_ireclaims++; XFS_MOUNT_IUNLOCK(mp); } /* * This is a wrapper routine around the xfs_ilock() routine * used to centralize some grungy code. It is used in places * that wish to lock the inode solely for reading the extents. * The reason these places can't just call xfs_ilock(SHARED) * is that the inode lock also guards to bringing in of the * extents from disk for a file in b-tree format. If the inode * is in b-tree format, then we need to lock the inode exclusively * until the extents are read in. Locking it exclusively all * the time would limit our parallelism unnecessarily, though. * What we do instead is check to see if the extents have been * read in yet, and only lock the inode exclusively if they * have not. * * The function returns a value which should be given to the * corresponding xfs_iunlock_map_shared(). This value is * the mode in which the lock was actually taken. */ uint xfs_ilock_map_shared( xfs_inode_t *ip) { uint lock_mode; if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) && ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) { lock_mode = XFS_ILOCK_EXCL; } else { lock_mode = XFS_ILOCK_SHARED; } xfs_ilock(ip, lock_mode); return lock_mode; } /* * This is simply the unlock routine to go with xfs_ilock_map_shared(). * All it does is call xfs_iunlock() with the given lock_mode. */ void xfs_iunlock_map_shared( xfs_inode_t *ip, unsigned int lock_mode) { xfs_iunlock(ip, lock_mode); } /* * The xfs inode contains 2 locks: a multi-reader lock called the * i_iolock and a multi-reader lock called the i_lock. This routine * allows either or both of the locks to be obtained. * * The 2 locks should always be ordered so that the IO lock is * obtained first in order to prevent deadlock. * * ip -- the inode being locked * lock_flags -- this parameter indicates the inode's locks * to be locked. It can be: * XFS_IOLOCK_SHARED, * XFS_IOLOCK_EXCL, * XFS_ILOCK_SHARED, * XFS_ILOCK_EXCL, * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED, * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL, * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED, * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL */ void xfs_ilock(xfs_inode_t *ip, uint lock_flags) { /* * You can't set both SHARED and EXCL for the same lock, * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, * and XFS_ILOCK_EXCL are valid values to set in lock_flags. */ ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); ASSERT((lock_flags & ~XFS_LOCK_MASK) == 0); if (lock_flags & XFS_IOLOCK_EXCL) { mrupdate(&ip->i_iolock); } else if (lock_flags & XFS_IOLOCK_SHARED) { mraccess(&ip->i_iolock); } if (lock_flags & XFS_ILOCK_EXCL) { mrupdate(&ip->i_lock); } else if (lock_flags & XFS_ILOCK_SHARED) { mraccess(&ip->i_lock); } xfs_ilock_trace(ip, 1, lock_flags, (inst_t *)__return_address); } /* * This is just like xfs_ilock(), except that the caller * is guaranteed not to sleep. It returns 1 if it gets * the requested locks and 0 otherwise. If the IO lock is * obtained but the inode lock cannot be, then the IO lock * is dropped before returning. * * ip -- the inode being locked * lock_flags -- this parameter indicates the inode's locks to be * to be locked. See the comment for xfs_ilock() for a list * of valid values. * */ int xfs_ilock_nowait(xfs_inode_t *ip, uint lock_flags) { int iolocked; int ilocked; /* * You can't set both SHARED and EXCL for the same lock, * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, * and XFS_ILOCK_EXCL are valid values to set in lock_flags. */ ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); ASSERT((lock_flags & ~XFS_LOCK_MASK) == 0); iolocked = 0; if (lock_flags & XFS_IOLOCK_EXCL) { iolocked = mrtryupdate(&ip->i_iolock); if (!iolocked) { return 0; } } else if (lock_flags & XFS_IOLOCK_SHARED) { iolocked = mrtryaccess(&ip->i_iolock); if (!iolocked) { return 0; } } if (lock_flags & XFS_ILOCK_EXCL) { ilocked = mrtryupdate(&ip->i_lock); if (!ilocked) { if (iolocked) { mrunlock(&ip->i_iolock); } return 0; } } else if (lock_flags & XFS_ILOCK_SHARED) { ilocked = mrtryaccess(&ip->i_lock); if (!ilocked) { if (iolocked) { mrunlock(&ip->i_iolock); } return 0; } } xfs_ilock_trace(ip, 2, lock_flags, (inst_t *)__return_address); return 1; } /* * xfs_iunlock() is used to drop the inode locks acquired with * xfs_ilock() and xfs_ilock_nowait(). The caller must pass * in the flags given to xfs_ilock() or xfs_ilock_nowait() so * that we know which locks to drop. * * ip -- the inode being unlocked * lock_flags -- this parameter indicates the inode's locks to be * to be unlocked. See the comment for xfs_ilock() for a list * of valid values for this parameter. * */ void xfs_iunlock(xfs_inode_t *ip, uint lock_flags) { /* * You can't set both SHARED and EXCL for the same lock, * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, * and XFS_ILOCK_EXCL are valid values to set in lock_flags. */ ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_IUNLOCK_NONOTIFY)) == 0); ASSERT(lock_flags != 0); if (lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) { ASSERT(!(lock_flags & XFS_IOLOCK_SHARED) || (ismrlocked(&ip->i_iolock, MR_ACCESS))); ASSERT(!(lock_flags & XFS_IOLOCK_EXCL) || (ismrlocked(&ip->i_iolock, MR_UPDATE))); mrunlock(&ip->i_iolock); } if (lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) { ASSERT(!(lock_flags & XFS_ILOCK_SHARED) || (ismrlocked(&ip->i_lock, MR_ACCESS))); ASSERT(!(lock_flags & XFS_ILOCK_EXCL) || (ismrlocked(&ip->i_lock, MR_UPDATE))); mrunlock(&ip->i_lock); /* * Let the AIL know that this item has been unlocked in case * it is in the AIL and anyone is waiting on it. Don't do * this if the caller has asked us not to. */ if (!(lock_flags & XFS_IUNLOCK_NONOTIFY) && ip->i_itemp != NULL) { xfs_trans_unlocked_item(ip->i_mount, (xfs_log_item_t*)(ip->i_itemp)); } } xfs_ilock_trace(ip, 3, lock_flags, (inst_t *)__return_address); } /* * give up write locks. the i/o lock cannot be held nested * if it is being demoted. */ void xfs_ilock_demote(xfs_inode_t *ip, uint lock_flags) { ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)); ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); if (lock_flags & XFS_ILOCK_EXCL) { ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE)); mrdemote(&ip->i_lock); } if (lock_flags & XFS_IOLOCK_EXCL) { ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE)); mrdemote(&ip->i_iolock); } } /* * The following three routines simply manage the i_flock * semaphore embedded in the inode. This semaphore synchronizes * processes attempting to flush the in-core inode back to disk. */ void xfs_iflock(xfs_inode_t *ip) { psema(&(ip->i_flock), PINOD|PLTWAIT); } int xfs_iflock_nowait(xfs_inode_t *ip) { return (cpsema(&(ip->i_flock))); } void xfs_ifunlock(xfs_inode_t *ip) { ASSERT(issemalocked(&(ip->i_flock))); vsema(&(ip->i_flock)); }