aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorBruce Allan <bruce.w.allan@intel.com>2008-04-29 12:16:05 -0400
committerJeff Garzik <jgarzik@redhat.com>2008-05-06 12:04:14 -0400
commit97ac8caee238d2a81c23661916f7acd3a22c85fe (patch)
tree52723d8582162e862c78fecb5da2d4d13f7a9579
parente284e5c6601cbb16e48854be26aa57a8fa844e35 (diff)
e1000e: Add support for BM PHYs on ICH9
This patch adds support for the BM PHY, a new PHY model being used on ICH9-based implementations. This new PHY exposes issues in the ICH9 silicon when receiving jumbo frames large enough to use more than a certain part of the Rx FIFO, and this unfortunately breaks packet split jumbo receives. For this reason we re-introduce (for affected adapters only) the jumbo single-skb receive routine back so that people who do wish to use jumbo frames on these ich9 platforms can do so. Part of this problem has to do with CPU sleep states and to make sure that all the wake up timings are correctly we force them with the recently merged pm_qos infrastructure written by Mark Gross. (See http://lkml.org/lkml/2007/10/4/400). To make code read a bit easier we introduce a _IS_ICH flag so that we don't need to do mac type checks over the code. Signed-off-by: Bruce Allan <bruce.w.allan@intel.com> Signed-off-by: Auke Kok <auke-jan.h.kok@intel.com> Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
-rw-r--r--drivers/net/e1000e/defines.h10
-rw-r--r--drivers/net/e1000e/e1000.h7
-rw-r--r--drivers/net/e1000e/ethtool.c39
-rw-r--r--drivers/net/e1000e/hw.h22
-rw-r--r--drivers/net/e1000e/ich8lan.c83
-rw-r--r--drivers/net/e1000e/netdev.c330
-rw-r--r--drivers/net/e1000e/phy.c278
7 files changed, 748 insertions, 21 deletions
diff --git a/drivers/net/e1000e/defines.h b/drivers/net/e1000e/defines.h
index 2a53875cddbf..f823b8ba5785 100644
--- a/drivers/net/e1000e/defines.h
+++ b/drivers/net/e1000e/defines.h
@@ -648,6 +648,8 @@
648#define IFE_E_PHY_ID 0x02A80330 648#define IFE_E_PHY_ID 0x02A80330
649#define IFE_PLUS_E_PHY_ID 0x02A80320 649#define IFE_PLUS_E_PHY_ID 0x02A80320
650#define IFE_C_E_PHY_ID 0x02A80310 650#define IFE_C_E_PHY_ID 0x02A80310
651#define BME1000_E_PHY_ID 0x01410CB0
652#define BME1000_E_PHY_ID_R2 0x01410CB1
651 653
652/* M88E1000 Specific Registers */ 654/* M88E1000 Specific Registers */
653#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */ 655#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */
@@ -701,6 +703,14 @@
701#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00 703#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00
702#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800 704#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800
703 705
706/* BME1000 PHY Specific Control Register */
707#define BME1000_PSCR_ENABLE_DOWNSHIFT 0x0800 /* 1 = enable downshift */
708
709
710#define PHY_PAGE_SHIFT 5
711#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
712 ((reg) & MAX_PHY_REG_ADDRESS))
713
704/* 714/*
705 * Bits... 715 * Bits...
706 * 15-5: page 716 * 15-5: page
diff --git a/drivers/net/e1000e/e1000.h b/drivers/net/e1000e/e1000.h
index 38bfd0d261fe..d3bc6f8101fa 100644
--- a/drivers/net/e1000e/e1000.h
+++ b/drivers/net/e1000e/e1000.h
@@ -127,7 +127,7 @@ struct e1000_buffer {
127 /* arrays of page information for packet split */ 127 /* arrays of page information for packet split */
128 struct e1000_ps_page *ps_pages; 128 struct e1000_ps_page *ps_pages;
129 }; 129 };
130 130 struct page *page;
131}; 131};
132 132
133struct e1000_ring { 133struct e1000_ring {
@@ -304,6 +304,7 @@ struct e1000_info {
304#define FLAG_HAS_CTRLEXT_ON_LOAD (1 << 5) 304#define FLAG_HAS_CTRLEXT_ON_LOAD (1 << 5)
305#define FLAG_HAS_SWSM_ON_LOAD (1 << 6) 305#define FLAG_HAS_SWSM_ON_LOAD (1 << 6)
306#define FLAG_HAS_JUMBO_FRAMES (1 << 7) 306#define FLAG_HAS_JUMBO_FRAMES (1 << 7)
307#define FLAG_IS_ICH (1 << 9)
307#define FLAG_HAS_SMART_POWER_DOWN (1 << 11) 308#define FLAG_HAS_SMART_POWER_DOWN (1 << 11)
308#define FLAG_IS_QUAD_PORT_A (1 << 12) 309#define FLAG_IS_QUAD_PORT_A (1 << 12)
309#define FLAG_IS_QUAD_PORT (1 << 13) 310#define FLAG_IS_QUAD_PORT (1 << 13)
@@ -386,6 +387,7 @@ extern void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
386 bool state); 387 bool state);
387extern void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw); 388extern void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw);
388extern void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw); 389extern void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw);
390extern void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw);
389 391
390extern s32 e1000e_check_for_copper_link(struct e1000_hw *hw); 392extern s32 e1000e_check_for_copper_link(struct e1000_hw *hw);
391extern s32 e1000e_check_for_fiber_link(struct e1000_hw *hw); 393extern s32 e1000e_check_for_fiber_link(struct e1000_hw *hw);
@@ -443,6 +445,9 @@ extern s32 e1000e_get_phy_info_m88(struct e1000_hw *hw);
443extern s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data); 445extern s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data);
444extern s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data); 446extern s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data);
445extern enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id); 447extern enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id);
448extern s32 e1000e_determine_phy_address(struct e1000_hw *hw);
449extern s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data);
450extern s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data);
446extern void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl); 451extern void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl);
447extern s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data); 452extern s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data);
448extern s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data); 453extern s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data);
diff --git a/drivers/net/e1000e/ethtool.c b/drivers/net/e1000e/ethtool.c
index ce045acce63e..2bb6da057c40 100644
--- a/drivers/net/e1000e/ethtool.c
+++ b/drivers/net/e1000e/ethtool.c
@@ -803,8 +803,7 @@ static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
803 /* restore previous status */ 803 /* restore previous status */
804 ew32(STATUS, before); 804 ew32(STATUS, before);
805 805
806 if ((mac->type != e1000_ich8lan) && 806 if (!(adapter->flags & FLAG_IS_ICH)) {
807 (mac->type != e1000_ich9lan)) {
808 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 807 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
809 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF); 808 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
810 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF); 809 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
@@ -824,15 +823,13 @@ static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
824 823
825 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000); 824 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
826 825
827 before = (((mac->type == e1000_ich8lan) || 826 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
828 (mac->type == e1000_ich9lan)) ? 0x06C3B33E : 0x06DFB3FE);
829 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB); 827 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
830 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000); 828 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
831 829
832 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF); 830 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
833 REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); 831 REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
834 if ((mac->type != e1000_ich8lan) && 832 if (!(adapter->flags & FLAG_IS_ICH))
835 (mac->type != e1000_ich9lan))
836 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF); 833 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
837 REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); 834 REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
838 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF); 835 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
@@ -911,9 +908,7 @@ static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
911 908
912 /* Test each interrupt */ 909 /* Test each interrupt */
913 for (i = 0; i < 10; i++) { 910 for (i = 0; i < 10; i++) {
914 911 if ((adapter->flags & FLAG_IS_ICH) && (i == 8))
915 if (((adapter->hw.mac.type == e1000_ich8lan) ||
916 (adapter->hw.mac.type == e1000_ich9lan)) && i == 8)
917 continue; 912 continue;
918 913
919 /* Interrupt to test */ 914 /* Interrupt to test */
@@ -1184,6 +1179,7 @@ static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1184 struct e1000_hw *hw = &adapter->hw; 1179 struct e1000_hw *hw = &adapter->hw;
1185 u32 ctrl_reg = 0; 1180 u32 ctrl_reg = 0;
1186 u32 stat_reg = 0; 1181 u32 stat_reg = 0;
1182 u16 phy_reg = 0;
1187 1183
1188 hw->mac.autoneg = 0; 1184 hw->mac.autoneg = 0;
1189 1185
@@ -1211,6 +1207,28 @@ static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1211 E1000_CTRL_SPD_100 |/* Force Speed to 100 */ 1207 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1212 E1000_CTRL_FD); /* Force Duplex to FULL */ 1208 E1000_CTRL_FD); /* Force Duplex to FULL */
1213 break; 1209 break;
1210 case e1000_phy_bm:
1211 /* Set Default MAC Interface speed to 1GB */
1212 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1213 phy_reg &= ~0x0007;
1214 phy_reg |= 0x006;
1215 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1216 /* Assert SW reset for above settings to take effect */
1217 e1000e_commit_phy(hw);
1218 mdelay(1);
1219 /* Force Full Duplex */
1220 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1221 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1222 /* Set Link Up (in force link) */
1223 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1224 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1225 /* Force Link */
1226 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1227 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1228 /* Set Early Link Enable */
1229 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1230 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1231 /* fall through */
1214 default: 1232 default:
1215 /* force 1000, set loopback */ 1233 /* force 1000, set loopback */
1216 e1e_wphy(hw, PHY_CONTROL, 0x4140); 1234 e1e_wphy(hw, PHY_CONTROL, 0x4140);
@@ -1224,8 +1242,7 @@ static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1224 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1242 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1225 E1000_CTRL_FD); /* Force Duplex to FULL */ 1243 E1000_CTRL_FD); /* Force Duplex to FULL */
1226 1244
1227 if ((adapter->hw.mac.type == e1000_ich8lan) || 1245 if (adapter->flags & FLAG_IS_ICH)
1228 (adapter->hw.mac.type == e1000_ich9lan))
1229 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */ 1246 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
1230 } 1247 }
1231 1248
diff --git a/drivers/net/e1000e/hw.h b/drivers/net/e1000e/hw.h
index a930e6d9cf02..74f263acb172 100644
--- a/drivers/net/e1000e/hw.h
+++ b/drivers/net/e1000e/hw.h
@@ -216,6 +216,21 @@ enum e1e_registers {
216#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health */ 216#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health */
217#define IGP02E1000_PHY_POWER_MGMT 0x19 /* Power Management */ 217#define IGP02E1000_PHY_POWER_MGMT 0x19 /* Power Management */
218#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* Page Select */ 218#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* Page Select */
219#define BM_PHY_PAGE_SELECT 22 /* Page Select for BM */
220#define IGP_PAGE_SHIFT 5
221#define PHY_REG_MASK 0x1F
222
223#define BM_WUC_PAGE 800
224#define BM_WUC_ADDRESS_OPCODE 0x11
225#define BM_WUC_DATA_OPCODE 0x12
226#define BM_WUC_ENABLE_PAGE 769
227#define BM_WUC_ENABLE_REG 17
228#define BM_WUC_ENABLE_BIT (1 << 2)
229#define BM_WUC_HOST_WU_BIT (1 << 4)
230
231#define BM_WUC PHY_REG(BM_WUC_PAGE, 1)
232#define BM_WUFC PHY_REG(BM_WUC_PAGE, 2)
233#define BM_WUS PHY_REG(BM_WUC_PAGE, 3)
219 234
220#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4 235#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4
221#define IGP01E1000_PHY_POLARITY_MASK 0x0078 236#define IGP01E1000_PHY_POLARITY_MASK 0x0078
@@ -331,10 +346,16 @@ enum e1e_registers {
331#define E1000_DEV_ID_ICH8_IFE_G 0x10C5 346#define E1000_DEV_ID_ICH8_IFE_G 0x10C5
332#define E1000_DEV_ID_ICH8_IGP_M 0x104D 347#define E1000_DEV_ID_ICH8_IGP_M 0x104D
333#define E1000_DEV_ID_ICH9_IGP_AMT 0x10BD 348#define E1000_DEV_ID_ICH9_IGP_AMT 0x10BD
349#define E1000_DEV_ID_ICH9_IGP_M_AMT 0x10F5
350#define E1000_DEV_ID_ICH9_IGP_M 0x10BF
351#define E1000_DEV_ID_ICH9_IGP_M_V 0x10CB
334#define E1000_DEV_ID_ICH9_IGP_C 0x294C 352#define E1000_DEV_ID_ICH9_IGP_C 0x294C
335#define E1000_DEV_ID_ICH9_IFE 0x10C0 353#define E1000_DEV_ID_ICH9_IFE 0x10C0
336#define E1000_DEV_ID_ICH9_IFE_GT 0x10C3 354#define E1000_DEV_ID_ICH9_IFE_GT 0x10C3
337#define E1000_DEV_ID_ICH9_IFE_G 0x10C2 355#define E1000_DEV_ID_ICH9_IFE_G 0x10C2
356#define E1000_DEV_ID_ICH10_R_BM_LM 0x10CC
357#define E1000_DEV_ID_ICH10_R_BM_LF 0x10CD
358#define E1000_DEV_ID_ICH10_R_BM_V 0x10CE
338 359
339#define E1000_FUNC_1 1 360#define E1000_FUNC_1 1
340 361
@@ -378,6 +399,7 @@ enum e1000_phy_type {
378 e1000_phy_gg82563, 399 e1000_phy_gg82563,
379 e1000_phy_igp_3, 400 e1000_phy_igp_3,
380 e1000_phy_ife, 401 e1000_phy_ife,
402 e1000_phy_bm,
381}; 403};
382 404
383enum e1000_bus_width { 405enum e1000_bus_width {
diff --git a/drivers/net/e1000e/ich8lan.c b/drivers/net/e1000e/ich8lan.c
index 768485dbb2c6..9e38452a738c 100644
--- a/drivers/net/e1000e/ich8lan.c
+++ b/drivers/net/e1000e/ich8lan.c
@@ -38,6 +38,12 @@
38 * 82566DM Gigabit Network Connection 38 * 82566DM Gigabit Network Connection
39 * 82566MC Gigabit Network Connection 39 * 82566MC Gigabit Network Connection
40 * 82566MM Gigabit Network Connection 40 * 82566MM Gigabit Network Connection
41 * 82567LM Gigabit Network Connection
42 * 82567LF Gigabit Network Connection
43 * 82567LM-2 Gigabit Network Connection
44 * 82567LF-2 Gigabit Network Connection
45 * 82567V-2 Gigabit Network Connection
46 * 82562GT-3 10/100 Network Connection
41 */ 47 */
42 48
43#include <linux/netdevice.h> 49#include <linux/netdevice.h>
@@ -198,6 +204,19 @@ static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
198 phy->addr = 1; 204 phy->addr = 1;
199 phy->reset_delay_us = 100; 205 phy->reset_delay_us = 100;
200 206
207 /*
208 * We may need to do this twice - once for IGP and if that fails,
209 * we'll set BM func pointers and try again
210 */
211 ret_val = e1000e_determine_phy_address(hw);
212 if (ret_val) {
213 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
214 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
215 ret_val = e1000e_determine_phy_address(hw);
216 if (ret_val)
217 return ret_val;
218 }
219
201 phy->id = 0; 220 phy->id = 0;
202 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) && 221 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
203 (i++ < 100)) { 222 (i++ < 100)) {
@@ -219,6 +238,13 @@ static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
219 phy->type = e1000_phy_ife; 238 phy->type = e1000_phy_ife;
220 phy->autoneg_mask = E1000_ALL_NOT_GIG; 239 phy->autoneg_mask = E1000_ALL_NOT_GIG;
221 break; 240 break;
241 case BME1000_E_PHY_ID:
242 phy->type = e1000_phy_bm;
243 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
244 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
245 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
246 hw->phy.ops.commit_phy = e1000e_phy_sw_reset;
247 break;
222 default: 248 default:
223 return -E1000_ERR_PHY; 249 return -E1000_ERR_PHY;
224 break; 250 break;
@@ -664,6 +690,7 @@ static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
664 return e1000_get_phy_info_ife_ich8lan(hw); 690 return e1000_get_phy_info_ife_ich8lan(hw);
665 break; 691 break;
666 case e1000_phy_igp_3: 692 case e1000_phy_igp_3:
693 case e1000_phy_bm:
667 return e1000e_get_phy_info_igp(hw); 694 return e1000e_get_phy_info_igp(hw);
668 break; 695 break;
669 default: 696 default:
@@ -728,7 +755,7 @@ static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
728 s32 ret_val = 0; 755 s32 ret_val = 0;
729 u16 data; 756 u16 data;
730 757
731 if (phy->type != e1000_phy_igp_3) 758 if (phy->type == e1000_phy_ife)
732 return ret_val; 759 return ret_val;
733 760
734 phy_ctrl = er32(PHY_CTRL); 761 phy_ctrl = er32(PHY_CTRL);
@@ -1918,8 +1945,35 @@ static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
1918 ret_val = e1000e_copper_link_setup_igp(hw); 1945 ret_val = e1000e_copper_link_setup_igp(hw);
1919 if (ret_val) 1946 if (ret_val)
1920 return ret_val; 1947 return ret_val;
1948 } else if (hw->phy.type == e1000_phy_bm) {
1949 ret_val = e1000e_copper_link_setup_m88(hw);
1950 if (ret_val)
1951 return ret_val;
1921 } 1952 }
1922 1953
1954 if (hw->phy.type == e1000_phy_ife) {
1955 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
1956 if (ret_val)
1957 return ret_val;
1958
1959 reg_data &= ~IFE_PMC_AUTO_MDIX;
1960
1961 switch (hw->phy.mdix) {
1962 case 1:
1963 reg_data &= ~IFE_PMC_FORCE_MDIX;
1964 break;
1965 case 2:
1966 reg_data |= IFE_PMC_FORCE_MDIX;
1967 break;
1968 case 0:
1969 default:
1970 reg_data |= IFE_PMC_AUTO_MDIX;
1971 break;
1972 }
1973 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
1974 if (ret_val)
1975 return ret_val;
1976 }
1923 return e1000e_setup_copper_link(hw); 1977 return e1000e_setup_copper_link(hw);
1924} 1978}
1925 1979
@@ -2127,6 +2181,31 @@ void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
2127} 2181}
2128 2182
2129/** 2183/**
2184 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
2185 * @hw: pointer to the HW structure
2186 *
2187 * During S0 to Sx transition, it is possible the link remains at gig
2188 * instead of negotiating to a lower speed. Before going to Sx, set
2189 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
2190 * to a lower speed.
2191 *
2192 * Should only be called for ICH9 devices.
2193 **/
2194void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
2195{
2196 u32 phy_ctrl;
2197
2198 if (hw->mac.type == e1000_ich9lan) {
2199 phy_ctrl = er32(PHY_CTRL);
2200 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
2201 E1000_PHY_CTRL_GBE_DISABLE;
2202 ew32(PHY_CTRL, phy_ctrl);
2203 }
2204
2205 return;
2206}
2207
2208/**
2130 * e1000_cleanup_led_ich8lan - Restore the default LED operation 2209 * e1000_cleanup_led_ich8lan - Restore the default LED operation
2131 * @hw: pointer to the HW structure 2210 * @hw: pointer to the HW structure
2132 * 2211 *
@@ -2247,6 +2326,7 @@ static struct e1000_nvm_operations ich8_nvm_ops = {
2247struct e1000_info e1000_ich8_info = { 2326struct e1000_info e1000_ich8_info = {
2248 .mac = e1000_ich8lan, 2327 .mac = e1000_ich8lan,
2249 .flags = FLAG_HAS_WOL 2328 .flags = FLAG_HAS_WOL
2329 | FLAG_IS_ICH
2250 | FLAG_RX_CSUM_ENABLED 2330 | FLAG_RX_CSUM_ENABLED
2251 | FLAG_HAS_CTRLEXT_ON_LOAD 2331 | FLAG_HAS_CTRLEXT_ON_LOAD
2252 | FLAG_HAS_AMT 2332 | FLAG_HAS_AMT
@@ -2262,6 +2342,7 @@ struct e1000_info e1000_ich8_info = {
2262struct e1000_info e1000_ich9_info = { 2342struct e1000_info e1000_ich9_info = {
2263 .mac = e1000_ich9lan, 2343 .mac = e1000_ich9lan,
2264 .flags = FLAG_HAS_JUMBO_FRAMES 2344 .flags = FLAG_HAS_JUMBO_FRAMES
2345 | FLAG_IS_ICH
2265 | FLAG_HAS_WOL 2346 | FLAG_HAS_WOL
2266 | FLAG_RX_CSUM_ENABLED 2347 | FLAG_RX_CSUM_ENABLED
2267 | FLAG_HAS_CTRLEXT_ON_LOAD 2348 | FLAG_HAS_CTRLEXT_ON_LOAD
diff --git a/drivers/net/e1000e/netdev.c b/drivers/net/e1000e/netdev.c
index 8991ab8911e2..8cbb40f3a506 100644
--- a/drivers/net/e1000e/netdev.c
+++ b/drivers/net/e1000e/netdev.c
@@ -43,10 +43,11 @@
43#include <linux/if_vlan.h> 43#include <linux/if_vlan.h>
44#include <linux/cpu.h> 44#include <linux/cpu.h>
45#include <linux/smp.h> 45#include <linux/smp.h>
46#include <linux/pm_qos_params.h>
46 47
47#include "e1000.h" 48#include "e1000.h"
48 49
49#define DRV_VERSION "0.2.1" 50#define DRV_VERSION "0.3.3.3-k2"
50char e1000e_driver_name[] = "e1000e"; 51char e1000e_driver_name[] = "e1000e";
51const char e1000e_driver_version[] = DRV_VERSION; 52const char e1000e_driver_version[] = DRV_VERSION;
52 53
@@ -341,6 +342,89 @@ no_buffers:
341} 342}
342 343
343/** 344/**
345 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
346 * @adapter: address of board private structure
347 * @rx_ring: pointer to receive ring structure
348 * @cleaned_count: number of buffers to allocate this pass
349 **/
350
351static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
352 int cleaned_count)
353{
354 struct net_device *netdev = adapter->netdev;
355 struct pci_dev *pdev = adapter->pdev;
356 struct e1000_rx_desc *rx_desc;
357 struct e1000_ring *rx_ring = adapter->rx_ring;
358 struct e1000_buffer *buffer_info;
359 struct sk_buff *skb;
360 unsigned int i;
361 unsigned int bufsz = 256 -
362 16 /* for skb_reserve */ -
363 NET_IP_ALIGN;
364
365 i = rx_ring->next_to_use;
366 buffer_info = &rx_ring->buffer_info[i];
367
368 while (cleaned_count--) {
369 skb = buffer_info->skb;
370 if (skb) {
371 skb_trim(skb, 0);
372 goto check_page;
373 }
374
375 skb = netdev_alloc_skb(netdev, bufsz);
376 if (unlikely(!skb)) {
377 /* Better luck next round */
378 adapter->alloc_rx_buff_failed++;
379 break;
380 }
381
382 /* Make buffer alignment 2 beyond a 16 byte boundary
383 * this will result in a 16 byte aligned IP header after
384 * the 14 byte MAC header is removed
385 */
386 skb_reserve(skb, NET_IP_ALIGN);
387
388 buffer_info->skb = skb;
389check_page:
390 /* allocate a new page if necessary */
391 if (!buffer_info->page) {
392 buffer_info->page = alloc_page(GFP_ATOMIC);
393 if (unlikely(!buffer_info->page)) {
394 adapter->alloc_rx_buff_failed++;
395 break;
396 }
397 }
398
399 if (!buffer_info->dma)
400 buffer_info->dma = pci_map_page(pdev,
401 buffer_info->page, 0,
402 PAGE_SIZE,
403 PCI_DMA_FROMDEVICE);
404
405 rx_desc = E1000_RX_DESC(*rx_ring, i);
406 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
407
408 if (unlikely(++i == rx_ring->count))
409 i = 0;
410 buffer_info = &rx_ring->buffer_info[i];
411 }
412
413 if (likely(rx_ring->next_to_use != i)) {
414 rx_ring->next_to_use = i;
415 if (unlikely(i-- == 0))
416 i = (rx_ring->count - 1);
417
418 /* Force memory writes to complete before letting h/w
419 * know there are new descriptors to fetch. (Only
420 * applicable for weak-ordered memory model archs,
421 * such as IA-64). */
422 wmb();
423 writel(i, adapter->hw.hw_addr + rx_ring->tail);
424 }
425}
426
427/**
344 * e1000_clean_rx_irq - Send received data up the network stack; legacy 428 * e1000_clean_rx_irq - Send received data up the network stack; legacy
345 * @adapter: board private structure 429 * @adapter: board private structure
346 * 430 *
@@ -783,6 +867,186 @@ next_desc:
783} 867}
784 868
785/** 869/**
870 * e1000_consume_page - helper function
871 **/
872static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
873 u16 length)
874{
875 bi->page = NULL;
876 skb->len += length;
877 skb->data_len += length;
878 skb->truesize += length;
879}
880
881/**
882 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
883 * @adapter: board private structure
884 *
885 * the return value indicates whether actual cleaning was done, there
886 * is no guarantee that everything was cleaned
887 **/
888
889static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
890 int *work_done, int work_to_do)
891{
892 struct net_device *netdev = adapter->netdev;
893 struct pci_dev *pdev = adapter->pdev;
894 struct e1000_ring *rx_ring = adapter->rx_ring;
895 struct e1000_rx_desc *rx_desc, *next_rxd;
896 struct e1000_buffer *buffer_info, *next_buffer;
897 u32 length;
898 unsigned int i;
899 int cleaned_count = 0;
900 bool cleaned = false;
901 unsigned int total_rx_bytes=0, total_rx_packets=0;
902
903 i = rx_ring->next_to_clean;
904 rx_desc = E1000_RX_DESC(*rx_ring, i);
905 buffer_info = &rx_ring->buffer_info[i];
906
907 while (rx_desc->status & E1000_RXD_STAT_DD) {
908 struct sk_buff *skb;
909 u8 status;
910
911 if (*work_done >= work_to_do)
912 break;
913 (*work_done)++;
914
915 status = rx_desc->status;
916 skb = buffer_info->skb;
917 buffer_info->skb = NULL;
918
919 ++i;
920 if (i == rx_ring->count)
921 i = 0;
922 next_rxd = E1000_RX_DESC(*rx_ring, i);
923 prefetch(next_rxd);
924
925 next_buffer = &rx_ring->buffer_info[i];
926
927 cleaned = true;
928 cleaned_count++;
929 pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
930 PCI_DMA_FROMDEVICE);
931 buffer_info->dma = 0;
932
933 length = le16_to_cpu(rx_desc->length);
934
935 /* errors is only valid for DD + EOP descriptors */
936 if (unlikely((status & E1000_RXD_STAT_EOP) &&
937 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
938 /* recycle both page and skb */
939 buffer_info->skb = skb;
940 /* an error means any chain goes out the window
941 * too */
942 if (rx_ring->rx_skb_top)
943 dev_kfree_skb(rx_ring->rx_skb_top);
944 rx_ring->rx_skb_top = NULL;
945 goto next_desc;
946 }
947
948#define rxtop rx_ring->rx_skb_top
949 if (!(status & E1000_RXD_STAT_EOP)) {
950 /* this descriptor is only the beginning (or middle) */
951 if (!rxtop) {
952 /* this is the beginning of a chain */
953 rxtop = skb;
954 skb_fill_page_desc(rxtop, 0, buffer_info->page,
955 0, length);
956 } else {
957 /* this is the middle of a chain */
958 skb_fill_page_desc(rxtop,
959 skb_shinfo(rxtop)->nr_frags,
960 buffer_info->page, 0, length);
961 /* re-use the skb, only consumed the page */
962 buffer_info->skb = skb;
963 }
964 e1000_consume_page(buffer_info, rxtop, length);
965 goto next_desc;
966 } else {
967 if (rxtop) {
968 /* end of the chain */
969 skb_fill_page_desc(rxtop,
970 skb_shinfo(rxtop)->nr_frags,
971 buffer_info->page, 0, length);
972 /* re-use the current skb, we only consumed the
973 * page */
974 buffer_info->skb = skb;
975 skb = rxtop;
976 rxtop = NULL;
977 e1000_consume_page(buffer_info, skb, length);
978 } else {
979 /* no chain, got EOP, this buf is the packet
980 * copybreak to save the put_page/alloc_page */
981 if (length <= copybreak &&
982 skb_tailroom(skb) >= length) {
983 u8 *vaddr;
984 vaddr = kmap_atomic(buffer_info->page,
985 KM_SKB_DATA_SOFTIRQ);
986 memcpy(skb_tail_pointer(skb), vaddr,
987 length);
988 kunmap_atomic(vaddr,
989 KM_SKB_DATA_SOFTIRQ);
990 /* re-use the page, so don't erase
991 * buffer_info->page */
992 skb_put(skb, length);
993 } else {
994 skb_fill_page_desc(skb, 0,
995 buffer_info->page, 0,
996 length);
997 e1000_consume_page(buffer_info, skb,
998 length);
999 }
1000 }
1001 }
1002
1003 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1004 e1000_rx_checksum(adapter,
1005 (u32)(status) |
1006 ((u32)(rx_desc->errors) << 24),
1007 le16_to_cpu(rx_desc->csum), skb);
1008
1009 /* probably a little skewed due to removing CRC */
1010 total_rx_bytes += skb->len;
1011 total_rx_packets++;
1012
1013 /* eth type trans needs skb->data to point to something */
1014 if (!pskb_may_pull(skb, ETH_HLEN)) {
1015 ndev_err(netdev, "pskb_may_pull failed.\n");
1016 dev_kfree_skb(skb);
1017 goto next_desc;
1018 }
1019
1020 e1000_receive_skb(adapter, netdev, skb, status,
1021 rx_desc->special);
1022
1023next_desc:
1024 rx_desc->status = 0;
1025
1026 /* return some buffers to hardware, one at a time is too slow */
1027 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1028 adapter->alloc_rx_buf(adapter, cleaned_count);
1029 cleaned_count = 0;
1030 }
1031
1032 /* use prefetched values */
1033 rx_desc = next_rxd;
1034 buffer_info = next_buffer;
1035 }
1036 rx_ring->next_to_clean = i;
1037
1038 cleaned_count = e1000_desc_unused(rx_ring);
1039 if (cleaned_count)
1040 adapter->alloc_rx_buf(adapter, cleaned_count);
1041
1042 adapter->total_rx_bytes += total_rx_bytes;
1043 adapter->total_rx_packets += total_rx_packets;
1044 adapter->net_stats.rx_bytes += total_rx_bytes;
1045 adapter->net_stats.rx_packets += total_rx_packets;
1046 return cleaned;
1047}
1048
1049/**
786 * e1000_clean_rx_ring - Free Rx Buffers per Queue 1050 * e1000_clean_rx_ring - Free Rx Buffers per Queue
787 * @adapter: board private structure 1051 * @adapter: board private structure
788 **/ 1052 **/
@@ -802,6 +1066,10 @@ static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
802 pci_unmap_single(pdev, buffer_info->dma, 1066 pci_unmap_single(pdev, buffer_info->dma,
803 adapter->rx_buffer_len, 1067 adapter->rx_buffer_len,
804 PCI_DMA_FROMDEVICE); 1068 PCI_DMA_FROMDEVICE);
1069 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1070 pci_unmap_page(pdev, buffer_info->dma,
1071 PAGE_SIZE,
1072 PCI_DMA_FROMDEVICE);
805 else if (adapter->clean_rx == e1000_clean_rx_irq_ps) 1073 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
806 pci_unmap_single(pdev, buffer_info->dma, 1074 pci_unmap_single(pdev, buffer_info->dma,
807 adapter->rx_ps_bsize0, 1075 adapter->rx_ps_bsize0,
@@ -809,6 +1077,11 @@ static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
809 buffer_info->dma = 0; 1077 buffer_info->dma = 0;
810 } 1078 }
811 1079
1080 if (buffer_info->page) {
1081 put_page(buffer_info->page);
1082 buffer_info->page = NULL;
1083 }
1084
812 if (buffer_info->skb) { 1085 if (buffer_info->skb) {
813 dev_kfree_skb(buffer_info->skb); 1086 dev_kfree_skb(buffer_info->skb);
814 buffer_info->skb = NULL; 1087 buffer_info->skb = NULL;
@@ -1755,10 +2028,12 @@ static void e1000_setup_rctl(struct e1000_adapter *adapter)
1755 * a lot of memory, since we allocate 3 pages at all times 2028 * a lot of memory, since we allocate 3 pages at all times
1756 * per packet. 2029 * per packet.
1757 */ 2030 */
1758 adapter->rx_ps_pages = 0;
1759 pages = PAGE_USE_COUNT(adapter->netdev->mtu); 2031 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1760 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE)) 2032 if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
2033 (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
1761 adapter->rx_ps_pages = pages; 2034 adapter->rx_ps_pages = pages;
2035 else
2036 adapter->rx_ps_pages = 0;
1762 2037
1763 if (adapter->rx_ps_pages) { 2038 if (adapter->rx_ps_pages) {
1764 /* Configure extra packet-split registers */ 2039 /* Configure extra packet-split registers */
@@ -1819,9 +2094,12 @@ static void e1000_configure_rx(struct e1000_adapter *adapter)
1819 sizeof(union e1000_rx_desc_packet_split); 2094 sizeof(union e1000_rx_desc_packet_split);
1820 adapter->clean_rx = e1000_clean_rx_irq_ps; 2095 adapter->clean_rx = e1000_clean_rx_irq_ps;
1821 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; 2096 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2097 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2098 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2099 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2100 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1822 } else { 2101 } else {
1823 rdlen = rx_ring->count * 2102 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
1824 sizeof(struct e1000_rx_desc);
1825 adapter->clean_rx = e1000_clean_rx_irq; 2103 adapter->clean_rx = e1000_clean_rx_irq;
1826 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; 2104 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1827 } 2105 }
@@ -1885,8 +2163,21 @@ static void e1000_configure_rx(struct e1000_adapter *adapter)
1885 * units), e.g. using jumbo frames when setting to E1000_ERT_2048 2163 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
1886 */ 2164 */
1887 if ((adapter->flags & FLAG_HAS_ERT) && 2165 if ((adapter->flags & FLAG_HAS_ERT) &&
1888 (adapter->netdev->mtu > ETH_DATA_LEN)) 2166 (adapter->netdev->mtu > ETH_DATA_LEN)) {
1889 ew32(ERT, E1000_ERT_2048); 2167 u32 rxdctl = er32(RXDCTL(0));
2168 ew32(RXDCTL(0), rxdctl | 0x3);
2169 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2170 /*
2171 * With jumbo frames and early-receive enabled, excessive
2172 * C4->C2 latencies result in dropped transactions.
2173 */
2174 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2175 e1000e_driver_name, 55);
2176 } else {
2177 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2178 e1000e_driver_name,
2179 PM_QOS_DEFAULT_VALUE);
2180 }
1890 2181
1891 /* Enable Receives */ 2182 /* Enable Receives */
1892 ew32(RCTL, rctl); 2183 ew32(RCTL, rctl);
@@ -2155,6 +2446,14 @@ void e1000e_reset(struct e1000_adapter *adapter)
2155 2446
2156 /* Allow time for pending master requests to run */ 2447 /* Allow time for pending master requests to run */
2157 mac->ops.reset_hw(hw); 2448 mac->ops.reset_hw(hw);
2449
2450 /*
2451 * For parts with AMT enabled, let the firmware know
2452 * that the network interface is in control
2453 */
2454 if ((adapter->flags & FLAG_HAS_AMT) && e1000e_check_mng_mode(hw))
2455 e1000_get_hw_control(adapter);
2456
2158 ew32(WUC, 0); 2457 ew32(WUC, 0);
2159 2458
2160 if (mac->ops.init_hw(hw)) 2459 if (mac->ops.init_hw(hw))
@@ -3469,6 +3768,8 @@ static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3469 * means we reserve 2 more, this pushes us to allocate from the next 3768 * means we reserve 2 more, this pushes us to allocate from the next
3470 * larger slab size. 3769 * larger slab size.
3471 * i.e. RXBUFFER_2048 --> size-4096 slab 3770 * i.e. RXBUFFER_2048 --> size-4096 slab
3771 * However with the new *_jumbo_rx* routines, jumbo receives will use
3772 * fragmented skbs
3472 */ 3773 */
3473 3774
3474 if (max_frame <= 256) 3775 if (max_frame <= 256)
@@ -3626,6 +3927,9 @@ static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
3626 ew32(CTRL_EXT, ctrl_ext); 3927 ew32(CTRL_EXT, ctrl_ext);
3627 } 3928 }
3628 3929
3930 if (adapter->flags & FLAG_IS_ICH)
3931 e1000e_disable_gig_wol_ich8lan(&adapter->hw);
3932
3629 /* Allow time for pending master requests to run */ 3933 /* Allow time for pending master requests to run */
3630 e1000e_disable_pcie_master(&adapter->hw); 3934 e1000e_disable_pcie_master(&adapter->hw);
3631 3935
@@ -4292,6 +4596,13 @@ static struct pci_device_id e1000_pci_tbl[] = {
4292 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan }, 4596 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
4293 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan }, 4597 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
4294 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan }, 4598 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
4599 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
4600 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
4601 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
4602
4603 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
4604 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
4605 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
4295 4606
4296 { } /* terminate list */ 4607 { } /* terminate list */
4297}; 4608};
@@ -4326,7 +4637,9 @@ static int __init e1000_init_module(void)
4326 printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n", 4637 printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n",
4327 e1000e_driver_name); 4638 e1000e_driver_name);
4328 ret = pci_register_driver(&e1000_driver); 4639 ret = pci_register_driver(&e1000_driver);
4329 4640 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name,
4641 PM_QOS_DEFAULT_VALUE);
4642
4330 return ret; 4643 return ret;
4331} 4644}
4332module_init(e1000_init_module); 4645module_init(e1000_init_module);
@@ -4340,6 +4653,7 @@ module_init(e1000_init_module);
4340static void __exit e1000_exit_module(void) 4653static void __exit e1000_exit_module(void)
4341{ 4654{
4342 pci_unregister_driver(&e1000_driver); 4655 pci_unregister_driver(&e1000_driver);
4656 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name);
4343} 4657}
4344module_exit(e1000_exit_module); 4658module_exit(e1000_exit_module);
4345 4659
diff --git a/drivers/net/e1000e/phy.c b/drivers/net/e1000e/phy.c
index e102332a6bee..b133dcf0e950 100644
--- a/drivers/net/e1000e/phy.c
+++ b/drivers/net/e1000e/phy.c
@@ -34,6 +34,9 @@ static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
34static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw); 34static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
35static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active); 35static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
36static s32 e1000_wait_autoneg(struct e1000_hw *hw); 36static s32 e1000_wait_autoneg(struct e1000_hw *hw);
37static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
38static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
39 u16 *data, bool read);
37 40
38/* Cable length tables */ 41/* Cable length tables */
39static const u16 e1000_m88_cable_length_table[] = 42static const u16 e1000_m88_cable_length_table[] =
@@ -465,6 +468,10 @@ s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
465 if (phy->disable_polarity_correction == 1) 468 if (phy->disable_polarity_correction == 1)
466 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; 469 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
467 470
471 /* Enable downshift on BM (disabled by default) */
472 if (phy->type == e1000_phy_bm)
473 phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
474
468 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 475 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
469 if (ret_val) 476 if (ret_val)
470 return ret_val; 477 return ret_val;
@@ -1776,6 +1783,10 @@ enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
1776 case IFE_C_E_PHY_ID: 1783 case IFE_C_E_PHY_ID:
1777 phy_type = e1000_phy_ife; 1784 phy_type = e1000_phy_ife;
1778 break; 1785 break;
1786 case BME1000_E_PHY_ID:
1787 case BME1000_E_PHY_ID_R2:
1788 phy_type = e1000_phy_bm;
1789 break;
1779 default: 1790 default:
1780 phy_type = e1000_phy_unknown; 1791 phy_type = e1000_phy_unknown;
1781 break; 1792 break;
@@ -1784,6 +1795,273 @@ enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
1784} 1795}
1785 1796
1786/** 1797/**
1798 * e1000e_determine_phy_address - Determines PHY address.
1799 * @hw: pointer to the HW structure
1800 *
1801 * This uses a trial and error method to loop through possible PHY
1802 * addresses. It tests each by reading the PHY ID registers and
1803 * checking for a match.
1804 **/
1805s32 e1000e_determine_phy_address(struct e1000_hw *hw)
1806{
1807 s32 ret_val = -E1000_ERR_PHY_TYPE;
1808 u32 phy_addr= 0;
1809 u32 i = 0;
1810 enum e1000_phy_type phy_type = e1000_phy_unknown;
1811
1812 do {
1813 for (phy_addr = 0; phy_addr < 4; phy_addr++) {
1814 hw->phy.addr = phy_addr;
1815 e1000e_get_phy_id(hw);
1816 phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
1817
1818 /*
1819 * If phy_type is valid, break - we found our
1820 * PHY address
1821 */
1822 if (phy_type != e1000_phy_unknown) {
1823 ret_val = 0;
1824 break;
1825 }
1826 }
1827 i++;
1828 } while ((ret_val != 0) && (i < 100));
1829
1830 return ret_val;
1831}
1832
1833/**
1834 * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
1835 * @page: page to access
1836 *
1837 * Returns the phy address for the page requested.
1838 **/
1839static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
1840{
1841 u32 phy_addr = 2;
1842
1843 if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
1844 phy_addr = 1;
1845
1846 return phy_addr;
1847}
1848
1849/**
1850 * e1000e_write_phy_reg_bm - Write BM PHY register
1851 * @hw: pointer to the HW structure
1852 * @offset: register offset to write to
1853 * @data: data to write at register offset
1854 *
1855 * Acquires semaphore, if necessary, then writes the data to PHY register
1856 * at the offset. Release any acquired semaphores before exiting.
1857 **/
1858s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
1859{
1860 s32 ret_val;
1861 u32 page_select = 0;
1862 u32 page = offset >> IGP_PAGE_SHIFT;
1863 u32 page_shift = 0;
1864
1865 /* Page 800 works differently than the rest so it has its own func */
1866 if (page == BM_WUC_PAGE) {
1867 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
1868 false);
1869 goto out;
1870 }
1871
1872 ret_val = hw->phy.ops.acquire_phy(hw);
1873 if (ret_val)
1874 goto out;
1875
1876 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
1877
1878 if (offset > MAX_PHY_MULTI_PAGE_REG) {
1879 /*
1880 * Page select is register 31 for phy address 1 and 22 for
1881 * phy address 2 and 3. Page select is shifted only for
1882 * phy address 1.
1883 */
1884 if (hw->phy.addr == 1) {
1885 page_shift = IGP_PAGE_SHIFT;
1886 page_select = IGP01E1000_PHY_PAGE_SELECT;
1887 } else {
1888 page_shift = 0;
1889 page_select = BM_PHY_PAGE_SELECT;
1890 }
1891
1892 /* Page is shifted left, PHY expects (page x 32) */
1893 ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
1894 (page << page_shift));
1895 if (ret_val) {
1896 hw->phy.ops.release_phy(hw);
1897 goto out;
1898 }
1899 }
1900
1901 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
1902 data);
1903
1904 hw->phy.ops.release_phy(hw);
1905
1906out:
1907 return ret_val;
1908}
1909
1910/**
1911 * e1000e_read_phy_reg_bm - Read BM PHY register
1912 * @hw: pointer to the HW structure
1913 * @offset: register offset to be read
1914 * @data: pointer to the read data
1915 *
1916 * Acquires semaphore, if necessary, then reads the PHY register at offset
1917 * and storing the retrieved information in data. Release any acquired
1918 * semaphores before exiting.
1919 **/
1920s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
1921{
1922 s32 ret_val;
1923 u32 page_select = 0;
1924 u32 page = offset >> IGP_PAGE_SHIFT;
1925 u32 page_shift = 0;
1926
1927 /* Page 800 works differently than the rest so it has its own func */
1928 if (page == BM_WUC_PAGE) {
1929 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
1930 true);
1931 goto out;
1932 }
1933
1934 ret_val = hw->phy.ops.acquire_phy(hw);
1935 if (ret_val)
1936 goto out;
1937
1938 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
1939
1940 if (offset > MAX_PHY_MULTI_PAGE_REG) {
1941 /*
1942 * Page select is register 31 for phy address 1 and 22 for
1943 * phy address 2 and 3. Page select is shifted only for
1944 * phy address 1.
1945 */
1946 if (hw->phy.addr == 1) {
1947 page_shift = IGP_PAGE_SHIFT;
1948 page_select = IGP01E1000_PHY_PAGE_SELECT;
1949 } else {
1950 page_shift = 0;
1951 page_select = BM_PHY_PAGE_SELECT;
1952 }
1953
1954 /* Page is shifted left, PHY expects (page x 32) */
1955 ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
1956 (page << page_shift));
1957 if (ret_val) {
1958 hw->phy.ops.release_phy(hw);
1959 goto out;
1960 }
1961 }
1962
1963 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
1964 data);
1965 hw->phy.ops.release_phy(hw);
1966
1967out:
1968 return ret_val;
1969}
1970
1971/**
1972 * e1000_access_phy_wakeup_reg_bm - Read BM PHY wakeup register
1973 * @hw: pointer to the HW structure
1974 * @offset: register offset to be read or written
1975 * @data: pointer to the data to read or write
1976 * @read: determines if operation is read or write
1977 *
1978 * Acquires semaphore, if necessary, then reads the PHY register at offset
1979 * and storing the retrieved information in data. Release any acquired
1980 * semaphores before exiting. Note that procedure to read the wakeup
1981 * registers are different. It works as such:
1982 * 1) Set page 769, register 17, bit 2 = 1
1983 * 2) Set page to 800 for host (801 if we were manageability)
1984 * 3) Write the address using the address opcode (0x11)
1985 * 4) Read or write the data using the data opcode (0x12)
1986 * 5) Restore 769_17.2 to its original value
1987 **/
1988static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
1989 u16 *data, bool read)
1990{
1991 s32 ret_val;
1992 u16 reg = ((u16)offset) & PHY_REG_MASK;
1993 u16 phy_reg = 0;
1994 u8 phy_acquired = 1;
1995
1996
1997 ret_val = hw->phy.ops.acquire_phy(hw);
1998 if (ret_val) {
1999 phy_acquired = 0;
2000 goto out;
2001 }
2002
2003 /* All operations in this function are phy address 1 */
2004 hw->phy.addr = 1;
2005
2006 /* Set page 769 */
2007 e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
2008 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
2009
2010 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
2011 if (ret_val)
2012 goto out;
2013
2014 /* First clear bit 4 to avoid a power state change */
2015 phy_reg &= ~(BM_WUC_HOST_WU_BIT);
2016 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2017 if (ret_val)
2018 goto out;
2019
2020 /* Write bit 2 = 1, and clear bit 4 to 769_17 */
2021 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG,
2022 phy_reg | BM_WUC_ENABLE_BIT);
2023 if (ret_val)
2024 goto out;
2025
2026 /* Select page 800 */
2027 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
2028 (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2029
2030 /* Write the page 800 offset value using opcode 0x11 */
2031 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2032 if (ret_val)
2033 goto out;
2034
2035 if (read) {
2036 /* Read the page 800 value using opcode 0x12 */
2037 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2038 data);
2039 } else {
2040 /* Read the page 800 value using opcode 0x12 */
2041 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2042 *data);
2043 }
2044
2045 if (ret_val)
2046 goto out;
2047
2048 /*
2049 * Restore 769_17.2 to its original value
2050 * Set page 769
2051 */
2052 e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
2053 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
2054
2055 /* Clear 769_17.2 */
2056 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2057
2058out:
2059 if (phy_acquired == 1)
2060 hw->phy.ops.release_phy(hw);
2061 return ret_val;
2062}
2063
2064/**
1787 * e1000e_commit_phy - Soft PHY reset 2065 * e1000e_commit_phy - Soft PHY reset
1788 * @hw: pointer to the HW structure 2066 * @hw: pointer to the HW structure
1789 * 2067 *