diff options
author | Gregory Haskins <ghaskins@novell.com> | 2008-05-12 15:21:01 -0400 |
---|---|---|
committer | Ingo Molnar <mingo@elte.hu> | 2008-06-06 09:19:28 -0400 |
commit | 6e0534f278199f1e3dd1049b9bc19a7a5b87ada1 (patch) | |
tree | 25f4da14ec32927742db9f599ac779b4e83d1763 | |
parent | f333fdc9098b71e2687e4e9b6349fcb352960d66 (diff) |
sched: use a 2-d bitmap for searching lowest-pri CPU
The current code use a linear algorithm which causes scaling issues
on larger SMP machines. This patch replaces that algorithm with a
2-dimensional bitmap to reduce latencies in the wake-up path.
Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Acked-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
-rw-r--r-- | kernel/Makefile | 1 | ||||
-rw-r--r-- | kernel/sched.c | 7 | ||||
-rw-r--r-- | kernel/sched_cpupri.c | 174 | ||||
-rw-r--r-- | kernel/sched_cpupri.h | 36 | ||||
-rw-r--r-- | kernel/sched_rt.c | 98 |
5 files changed, 239 insertions, 77 deletions
diff --git a/kernel/Makefile b/kernel/Makefile index 1c9938addb9d..ecdd2d335639 100644 --- a/kernel/Makefile +++ b/kernel/Makefile | |||
@@ -69,6 +69,7 @@ obj-$(CONFIG_TASK_DELAY_ACCT) += delayacct.o | |||
69 | obj-$(CONFIG_TASKSTATS) += taskstats.o tsacct.o | 69 | obj-$(CONFIG_TASKSTATS) += taskstats.o tsacct.o |
70 | obj-$(CONFIG_MARKERS) += marker.o | 70 | obj-$(CONFIG_MARKERS) += marker.o |
71 | obj-$(CONFIG_LATENCYTOP) += latencytop.o | 71 | obj-$(CONFIG_LATENCYTOP) += latencytop.o |
72 | obj-$(CONFIG_SMP) += sched_cpupri.o | ||
72 | 73 | ||
73 | ifneq ($(CONFIG_SCHED_NO_NO_OMIT_FRAME_POINTER),y) | 74 | ifneq ($(CONFIG_SCHED_NO_NO_OMIT_FRAME_POINTER),y) |
74 | # According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is | 75 | # According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is |
diff --git a/kernel/sched.c b/kernel/sched.c index aa960b84b881..8a1257b65560 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
@@ -74,6 +74,8 @@ | |||
74 | #include <asm/tlb.h> | 74 | #include <asm/tlb.h> |
75 | #include <asm/irq_regs.h> | 75 | #include <asm/irq_regs.h> |
76 | 76 | ||
77 | #include "sched_cpupri.h" | ||
78 | |||
77 | /* | 79 | /* |
78 | * Convert user-nice values [ -20 ... 0 ... 19 ] | 80 | * Convert user-nice values [ -20 ... 0 ... 19 ] |
79 | * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], | 81 | * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], |
@@ -450,6 +452,9 @@ struct root_domain { | |||
450 | */ | 452 | */ |
451 | cpumask_t rto_mask; | 453 | cpumask_t rto_mask; |
452 | atomic_t rto_count; | 454 | atomic_t rto_count; |
455 | #ifdef CONFIG_SMP | ||
456 | struct cpupri cpupri; | ||
457 | #endif | ||
453 | }; | 458 | }; |
454 | 459 | ||
455 | /* | 460 | /* |
@@ -6392,6 +6397,8 @@ static void init_rootdomain(struct root_domain *rd) | |||
6392 | 6397 | ||
6393 | cpus_clear(rd->span); | 6398 | cpus_clear(rd->span); |
6394 | cpus_clear(rd->online); | 6399 | cpus_clear(rd->online); |
6400 | |||
6401 | cpupri_init(&rd->cpupri); | ||
6395 | } | 6402 | } |
6396 | 6403 | ||
6397 | static void init_defrootdomain(void) | 6404 | static void init_defrootdomain(void) |
diff --git a/kernel/sched_cpupri.c b/kernel/sched_cpupri.c new file mode 100644 index 000000000000..52154fefab7e --- /dev/null +++ b/kernel/sched_cpupri.c | |||
@@ -0,0 +1,174 @@ | |||
1 | /* | ||
2 | * kernel/sched_cpupri.c | ||
3 | * | ||
4 | * CPU priority management | ||
5 | * | ||
6 | * Copyright (C) 2007-2008 Novell | ||
7 | * | ||
8 | * Author: Gregory Haskins <ghaskins@novell.com> | ||
9 | * | ||
10 | * This code tracks the priority of each CPU so that global migration | ||
11 | * decisions are easy to calculate. Each CPU can be in a state as follows: | ||
12 | * | ||
13 | * (INVALID), IDLE, NORMAL, RT1, ... RT99 | ||
14 | * | ||
15 | * going from the lowest priority to the highest. CPUs in the INVALID state | ||
16 | * are not eligible for routing. The system maintains this state with | ||
17 | * a 2 dimensional bitmap (the first for priority class, the second for cpus | ||
18 | * in that class). Therefore a typical application without affinity | ||
19 | * restrictions can find a suitable CPU with O(1) complexity (e.g. two bit | ||
20 | * searches). For tasks with affinity restrictions, the algorithm has a | ||
21 | * worst case complexity of O(min(102, nr_domcpus)), though the scenario that | ||
22 | * yields the worst case search is fairly contrived. | ||
23 | * | ||
24 | * This program is free software; you can redistribute it and/or | ||
25 | * modify it under the terms of the GNU General Public License | ||
26 | * as published by the Free Software Foundation; version 2 | ||
27 | * of the License. | ||
28 | */ | ||
29 | |||
30 | #include "sched_cpupri.h" | ||
31 | |||
32 | /* Convert between a 140 based task->prio, and our 102 based cpupri */ | ||
33 | static int convert_prio(int prio) | ||
34 | { | ||
35 | int cpupri; | ||
36 | |||
37 | if (prio == CPUPRI_INVALID) | ||
38 | cpupri = CPUPRI_INVALID; | ||
39 | else if (prio == MAX_PRIO) | ||
40 | cpupri = CPUPRI_IDLE; | ||
41 | else if (prio >= MAX_RT_PRIO) | ||
42 | cpupri = CPUPRI_NORMAL; | ||
43 | else | ||
44 | cpupri = MAX_RT_PRIO - prio + 1; | ||
45 | |||
46 | return cpupri; | ||
47 | } | ||
48 | |||
49 | #define for_each_cpupri_active(array, idx) \ | ||
50 | for (idx = find_first_bit(array, CPUPRI_NR_PRIORITIES); \ | ||
51 | idx < CPUPRI_NR_PRIORITIES; \ | ||
52 | idx = find_next_bit(array, CPUPRI_NR_PRIORITIES, idx+1)) | ||
53 | |||
54 | /** | ||
55 | * cpupri_find - find the best (lowest-pri) CPU in the system | ||
56 | * @cp: The cpupri context | ||
57 | * @p: The task | ||
58 | * @lowest_mask: A mask to fill in with selected CPUs | ||
59 | * | ||
60 | * Note: This function returns the recommended CPUs as calculated during the | ||
61 | * current invokation. By the time the call returns, the CPUs may have in | ||
62 | * fact changed priorities any number of times. While not ideal, it is not | ||
63 | * an issue of correctness since the normal rebalancer logic will correct | ||
64 | * any discrepancies created by racing against the uncertainty of the current | ||
65 | * priority configuration. | ||
66 | * | ||
67 | * Returns: (int)bool - CPUs were found | ||
68 | */ | ||
69 | int cpupri_find(struct cpupri *cp, struct task_struct *p, | ||
70 | cpumask_t *lowest_mask) | ||
71 | { | ||
72 | int idx = 0; | ||
73 | int task_pri = convert_prio(p->prio); | ||
74 | |||
75 | for_each_cpupri_active(cp->pri_active, idx) { | ||
76 | struct cpupri_vec *vec = &cp->pri_to_cpu[idx]; | ||
77 | cpumask_t mask; | ||
78 | |||
79 | if (idx >= task_pri) | ||
80 | break; | ||
81 | |||
82 | cpus_and(mask, p->cpus_allowed, vec->mask); | ||
83 | |||
84 | if (cpus_empty(mask)) | ||
85 | continue; | ||
86 | |||
87 | *lowest_mask = mask; | ||
88 | return 1; | ||
89 | } | ||
90 | |||
91 | return 0; | ||
92 | } | ||
93 | |||
94 | /** | ||
95 | * cpupri_set - update the cpu priority setting | ||
96 | * @cp: The cpupri context | ||
97 | * @cpu: The target cpu | ||
98 | * @pri: The priority (INVALID-RT99) to assign to this CPU | ||
99 | * | ||
100 | * Note: Assumes cpu_rq(cpu)->lock is locked | ||
101 | * | ||
102 | * Returns: (void) | ||
103 | */ | ||
104 | void cpupri_set(struct cpupri *cp, int cpu, int newpri) | ||
105 | { | ||
106 | int *currpri = &cp->cpu_to_pri[cpu]; | ||
107 | int oldpri = *currpri; | ||
108 | unsigned long flags; | ||
109 | |||
110 | newpri = convert_prio(newpri); | ||
111 | |||
112 | BUG_ON(newpri >= CPUPRI_NR_PRIORITIES); | ||
113 | |||
114 | if (newpri == oldpri) | ||
115 | return; | ||
116 | |||
117 | /* | ||
118 | * If the cpu was currently mapped to a different value, we | ||
119 | * first need to unmap the old value | ||
120 | */ | ||
121 | if (likely(oldpri != CPUPRI_INVALID)) { | ||
122 | struct cpupri_vec *vec = &cp->pri_to_cpu[oldpri]; | ||
123 | |||
124 | spin_lock_irqsave(&vec->lock, flags); | ||
125 | |||
126 | vec->count--; | ||
127 | if (!vec->count) | ||
128 | clear_bit(oldpri, cp->pri_active); | ||
129 | cpu_clear(cpu, vec->mask); | ||
130 | |||
131 | spin_unlock_irqrestore(&vec->lock, flags); | ||
132 | } | ||
133 | |||
134 | if (likely(newpri != CPUPRI_INVALID)) { | ||
135 | struct cpupri_vec *vec = &cp->pri_to_cpu[newpri]; | ||
136 | |||
137 | spin_lock_irqsave(&vec->lock, flags); | ||
138 | |||
139 | cpu_set(cpu, vec->mask); | ||
140 | vec->count++; | ||
141 | if (vec->count == 1) | ||
142 | set_bit(newpri, cp->pri_active); | ||
143 | |||
144 | spin_unlock_irqrestore(&vec->lock, flags); | ||
145 | } | ||
146 | |||
147 | *currpri = newpri; | ||
148 | } | ||
149 | |||
150 | /** | ||
151 | * cpupri_init - initialize the cpupri structure | ||
152 | * @cp: The cpupri context | ||
153 | * | ||
154 | * Returns: (void) | ||
155 | */ | ||
156 | void cpupri_init(struct cpupri *cp) | ||
157 | { | ||
158 | int i; | ||
159 | |||
160 | memset(cp, 0, sizeof(*cp)); | ||
161 | |||
162 | for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) { | ||
163 | struct cpupri_vec *vec = &cp->pri_to_cpu[i]; | ||
164 | |||
165 | spin_lock_init(&vec->lock); | ||
166 | vec->count = 0; | ||
167 | cpus_clear(vec->mask); | ||
168 | } | ||
169 | |||
170 | for_each_possible_cpu(i) | ||
171 | cp->cpu_to_pri[i] = CPUPRI_INVALID; | ||
172 | } | ||
173 | |||
174 | |||
diff --git a/kernel/sched_cpupri.h b/kernel/sched_cpupri.h new file mode 100644 index 000000000000..0b6a3d110fac --- /dev/null +++ b/kernel/sched_cpupri.h | |||
@@ -0,0 +1,36 @@ | |||
1 | #ifndef _LINUX_CPUPRI_H | ||
2 | #define _LINUX_CPUPRI_H | ||
3 | |||
4 | #include <linux/sched.h> | ||
5 | |||
6 | #define CPUPRI_NR_PRIORITIES 2+MAX_RT_PRIO | ||
7 | #define CPUPRI_NR_PRI_WORDS CPUPRI_NR_PRIORITIES/BITS_PER_LONG | ||
8 | |||
9 | #define CPUPRI_INVALID -1 | ||
10 | #define CPUPRI_IDLE 0 | ||
11 | #define CPUPRI_NORMAL 1 | ||
12 | /* values 2-101 are RT priorities 0-99 */ | ||
13 | |||
14 | struct cpupri_vec { | ||
15 | spinlock_t lock; | ||
16 | int count; | ||
17 | cpumask_t mask; | ||
18 | }; | ||
19 | |||
20 | struct cpupri { | ||
21 | struct cpupri_vec pri_to_cpu[CPUPRI_NR_PRIORITIES]; | ||
22 | long pri_active[CPUPRI_NR_PRI_WORDS]; | ||
23 | int cpu_to_pri[NR_CPUS]; | ||
24 | }; | ||
25 | |||
26 | #ifdef CONFIG_SMP | ||
27 | int cpupri_find(struct cpupri *cp, | ||
28 | struct task_struct *p, cpumask_t *lowest_mask); | ||
29 | void cpupri_set(struct cpupri *cp, int cpu, int pri); | ||
30 | void cpupri_init(struct cpupri *cp); | ||
31 | #else | ||
32 | #define cpupri_set(cp, cpu, pri) do { } while (0) | ||
33 | #define cpupri_init() do { } while (0) | ||
34 | #endif | ||
35 | |||
36 | #endif /* _LINUX_CPUPRI_H */ | ||
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c index fefed39fafd8..44b06d75416e 100644 --- a/kernel/sched_rt.c +++ b/kernel/sched_rt.c | |||
@@ -391,8 +391,11 @@ void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |||
391 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); | 391 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); |
392 | rt_rq->rt_nr_running++; | 392 | rt_rq->rt_nr_running++; |
393 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 393 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
394 | if (rt_se_prio(rt_se) < rt_rq->highest_prio) | 394 | if (rt_se_prio(rt_se) < rt_rq->highest_prio) { |
395 | struct rq *rq = rq_of_rt_rq(rt_rq); | ||
395 | rt_rq->highest_prio = rt_se_prio(rt_se); | 396 | rt_rq->highest_prio = rt_se_prio(rt_se); |
397 | cpupri_set(&rq->rd->cpupri, rq->cpu, rt_se_prio(rt_se)); | ||
398 | } | ||
396 | #endif | 399 | #endif |
397 | #ifdef CONFIG_SMP | 400 | #ifdef CONFIG_SMP |
398 | if (rt_se->nr_cpus_allowed > 1) { | 401 | if (rt_se->nr_cpus_allowed > 1) { |
@@ -416,6 +419,10 @@ void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |||
416 | static inline | 419 | static inline |
417 | void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 420 | void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) |
418 | { | 421 | { |
422 | #ifdef CONFIG_SMP | ||
423 | int highest_prio = rt_rq->highest_prio; | ||
424 | #endif | ||
425 | |||
419 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); | 426 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); |
420 | WARN_ON(!rt_rq->rt_nr_running); | 427 | WARN_ON(!rt_rq->rt_nr_running); |
421 | rt_rq->rt_nr_running--; | 428 | rt_rq->rt_nr_running--; |
@@ -439,6 +446,11 @@ void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |||
439 | rq->rt.rt_nr_migratory--; | 446 | rq->rt.rt_nr_migratory--; |
440 | } | 447 | } |
441 | 448 | ||
449 | if (rt_rq->highest_prio != highest_prio) { | ||
450 | struct rq *rq = rq_of_rt_rq(rt_rq); | ||
451 | cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio); | ||
452 | } | ||
453 | |||
442 | update_rt_migration(rq_of_rt_rq(rt_rq)); | 454 | update_rt_migration(rq_of_rt_rq(rt_rq)); |
443 | #endif /* CONFIG_SMP */ | 455 | #endif /* CONFIG_SMP */ |
444 | #ifdef CONFIG_RT_GROUP_SCHED | 456 | #ifdef CONFIG_RT_GROUP_SCHED |
@@ -763,73 +775,6 @@ static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu) | |||
763 | 775 | ||
764 | static DEFINE_PER_CPU(cpumask_t, local_cpu_mask); | 776 | static DEFINE_PER_CPU(cpumask_t, local_cpu_mask); |
765 | 777 | ||
766 | static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask) | ||
767 | { | ||
768 | int lowest_prio = -1; | ||
769 | int lowest_cpu = -1; | ||
770 | int count = 0; | ||
771 | int cpu; | ||
772 | |||
773 | cpus_and(*lowest_mask, task_rq(task)->rd->online, task->cpus_allowed); | ||
774 | |||
775 | /* | ||
776 | * Scan each rq for the lowest prio. | ||
777 | */ | ||
778 | for_each_cpu_mask(cpu, *lowest_mask) { | ||
779 | struct rq *rq = cpu_rq(cpu); | ||
780 | |||
781 | /* We look for lowest RT prio or non-rt CPU */ | ||
782 | if (rq->rt.highest_prio >= MAX_RT_PRIO) { | ||
783 | /* | ||
784 | * if we already found a low RT queue | ||
785 | * and now we found this non-rt queue | ||
786 | * clear the mask and set our bit. | ||
787 | * Otherwise just return the queue as is | ||
788 | * and the count==1 will cause the algorithm | ||
789 | * to use the first bit found. | ||
790 | */ | ||
791 | if (lowest_cpu != -1) { | ||
792 | cpus_clear(*lowest_mask); | ||
793 | cpu_set(rq->cpu, *lowest_mask); | ||
794 | } | ||
795 | return 1; | ||
796 | } | ||
797 | |||
798 | /* no locking for now */ | ||
799 | if ((rq->rt.highest_prio > task->prio) | ||
800 | && (rq->rt.highest_prio >= lowest_prio)) { | ||
801 | if (rq->rt.highest_prio > lowest_prio) { | ||
802 | /* new low - clear old data */ | ||
803 | lowest_prio = rq->rt.highest_prio; | ||
804 | lowest_cpu = cpu; | ||
805 | count = 0; | ||
806 | } | ||
807 | count++; | ||
808 | } else | ||
809 | cpu_clear(cpu, *lowest_mask); | ||
810 | } | ||
811 | |||
812 | /* | ||
813 | * Clear out all the set bits that represent | ||
814 | * runqueues that were of higher prio than | ||
815 | * the lowest_prio. | ||
816 | */ | ||
817 | if (lowest_cpu > 0) { | ||
818 | /* | ||
819 | * Perhaps we could add another cpumask op to | ||
820 | * zero out bits. Like cpu_zero_bits(cpumask, nrbits); | ||
821 | * Then that could be optimized to use memset and such. | ||
822 | */ | ||
823 | for_each_cpu_mask(cpu, *lowest_mask) { | ||
824 | if (cpu >= lowest_cpu) | ||
825 | break; | ||
826 | cpu_clear(cpu, *lowest_mask); | ||
827 | } | ||
828 | } | ||
829 | |||
830 | return count; | ||
831 | } | ||
832 | |||
833 | static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask) | 778 | static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask) |
834 | { | 779 | { |
835 | int first; | 780 | int first; |
@@ -851,17 +796,12 @@ static int find_lowest_rq(struct task_struct *task) | |||
851 | cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask); | 796 | cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask); |
852 | int this_cpu = smp_processor_id(); | 797 | int this_cpu = smp_processor_id(); |
853 | int cpu = task_cpu(task); | 798 | int cpu = task_cpu(task); |
854 | int count = find_lowest_cpus(task, lowest_mask); | ||
855 | 799 | ||
856 | if (!count) | 800 | if (task->rt.nr_cpus_allowed == 1) |
857 | return -1; /* No targets found */ | 801 | return -1; /* No other targets possible */ |
858 | 802 | ||
859 | /* | 803 | if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) |
860 | * There is no sense in performing an optimal search if only one | 804 | return -1; /* No targets found */ |
861 | * target is found. | ||
862 | */ | ||
863 | if (count == 1) | ||
864 | return first_cpu(*lowest_mask); | ||
865 | 805 | ||
866 | /* | 806 | /* |
867 | * At this point we have built a mask of cpus representing the | 807 | * At this point we have built a mask of cpus representing the |
@@ -1218,6 +1158,8 @@ static void join_domain_rt(struct rq *rq) | |||
1218 | { | 1158 | { |
1219 | if (rq->rt.overloaded) | 1159 | if (rq->rt.overloaded) |
1220 | rt_set_overload(rq); | 1160 | rt_set_overload(rq); |
1161 | |||
1162 | cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio); | ||
1221 | } | 1163 | } |
1222 | 1164 | ||
1223 | /* Assumes rq->lock is held */ | 1165 | /* Assumes rq->lock is held */ |
@@ -1225,6 +1167,8 @@ static void leave_domain_rt(struct rq *rq) | |||
1225 | { | 1167 | { |
1226 | if (rq->rt.overloaded) | 1168 | if (rq->rt.overloaded) |
1227 | rt_clear_overload(rq); | 1169 | rt_clear_overload(rq); |
1170 | |||
1171 | cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); | ||
1228 | } | 1172 | } |
1229 | 1173 | ||
1230 | /* | 1174 | /* |