aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorViresh Kumar <viresh.kumar@st.com>2012-04-09 23:32:35 -0400
committerArnd Bergmann <arnd@arndb.de>2012-05-12 15:19:23 -0400
commit55b8fd4f428501b0f35d62b8313311fd9863c188 (patch)
tree2c61fe9c307baa73048345adbb11e20e5eeb586e
parente12ff34402bd3a6cbeab0423012066874bb10f4b (diff)
SPEAr: clk: Add VCO-PLL Synthesizer clock
All SPEAr SoC's contain PLLs. Their Fout is derived based on following equations - In normal mode vco = (2 * M[15:8] * Fin)/N - In Dithered mode vco = (2 * M[15:0] * Fin)/(256 * N) pll_rate = vco/2^p vco and pll are very closely bound to each other, "vco needs to program: mode, m & n" and "pll needs to program p", both share common enable/disable logic and registers. This patch adds in support for this type of clock. Signed-off-by: Viresh Kumar <viresh.kumar@st.com> Reviewed-by: Mike Turquette <mturquette@linaro.org>
-rw-r--r--drivers/clk/Makefile3
-rw-r--r--drivers/clk/spear/Makefile5
-rw-r--r--drivers/clk/spear/clk-vco-pll.c363
-rw-r--r--drivers/clk/spear/clk.c36
-rw-r--r--drivers/clk/spear/clk.h58
5 files changed, 465 insertions, 0 deletions
diff --git a/drivers/clk/Makefile b/drivers/clk/Makefile
index 24aa7144811b..0f5e03d1ef5c 100644
--- a/drivers/clk/Makefile
+++ b/drivers/clk/Makefile
@@ -2,3 +2,6 @@
2obj-$(CONFIG_CLKDEV_LOOKUP) += clkdev.o 2obj-$(CONFIG_CLKDEV_LOOKUP) += clkdev.o
3obj-$(CONFIG_COMMON_CLK) += clk.o clk-fixed-rate.o clk-gate.o \ 3obj-$(CONFIG_COMMON_CLK) += clk.o clk-fixed-rate.o clk-gate.o \
4 clk-mux.o clk-divider.o clk-fixed-factor.o 4 clk-mux.o clk-divider.o clk-fixed-factor.o
5
6# SoCs specific
7obj-$(CONFIG_PLAT_SPEAR) += spear/
diff --git a/drivers/clk/spear/Makefile b/drivers/clk/spear/Makefile
new file mode 100644
index 000000000000..3fc2a3026cc1
--- /dev/null
+++ b/drivers/clk/spear/Makefile
@@ -0,0 +1,5 @@
1#
2# SPEAr Clock specific Makefile
3#
4
5obj-y += clk.o clk-vco-pll.o
diff --git a/drivers/clk/spear/clk-vco-pll.c b/drivers/clk/spear/clk-vco-pll.c
new file mode 100644
index 000000000000..dcd4bdf4b0d9
--- /dev/null
+++ b/drivers/clk/spear/clk-vco-pll.c
@@ -0,0 +1,363 @@
1/*
2 * Copyright (C) 2012 ST Microelectronics
3 * Viresh Kumar <viresh.kumar@st.com>
4 *
5 * This file is licensed under the terms of the GNU General Public
6 * License version 2. This program is licensed "as is" without any
7 * warranty of any kind, whether express or implied.
8 *
9 * VCO-PLL clock implementation
10 */
11
12#define pr_fmt(fmt) "clk-vco-pll: " fmt
13
14#include <linux/clk-provider.h>
15#include <linux/slab.h>
16#include <linux/io.h>
17#include <linux/err.h>
18#include "clk.h"
19
20/*
21 * DOC: VCO-PLL clock
22 *
23 * VCO and PLL rate are derived from following equations:
24 *
25 * In normal mode
26 * vco = (2 * M[15:8] * Fin)/N
27 *
28 * In Dithered mode
29 * vco = (2 * M[15:0] * Fin)/(256 * N)
30 *
31 * pll_rate = pll/2^p
32 *
33 * vco and pll are very closely bound to each other, "vco needs to program:
34 * mode, m & n" and "pll needs to program p", both share common enable/disable
35 * logic.
36 *
37 * clk_register_vco_pll() registers instances of both vco & pll.
38 * CLK_SET_RATE_PARENT flag is forced for pll, as it will always pass its
39 * set_rate to vco. A single rate table exists for both the clocks, which
40 * configures m, n and p.
41 */
42
43/* PLL_CTR register masks */
44#define PLL_MODE_NORMAL 0
45#define PLL_MODE_FRACTION 1
46#define PLL_MODE_DITH_DSM 2
47#define PLL_MODE_DITH_SSM 3
48#define PLL_MODE_MASK 3
49#define PLL_MODE_SHIFT 3
50#define PLL_ENABLE 2
51
52#define PLL_LOCK_SHIFT 0
53#define PLL_LOCK_MASK 1
54
55/* PLL FRQ register masks */
56#define PLL_NORM_FDBK_M_MASK 0xFF
57#define PLL_NORM_FDBK_M_SHIFT 24
58#define PLL_DITH_FDBK_M_MASK 0xFFFF
59#define PLL_DITH_FDBK_M_SHIFT 16
60#define PLL_DIV_P_MASK 0x7
61#define PLL_DIV_P_SHIFT 8
62#define PLL_DIV_N_MASK 0xFF
63#define PLL_DIV_N_SHIFT 0
64
65#define to_clk_vco(_hw) container_of(_hw, struct clk_vco, hw)
66#define to_clk_pll(_hw) container_of(_hw, struct clk_pll, hw)
67
68/* Calculates pll clk rate for specific value of mode, m, n and p */
69static unsigned long pll_calc_rate(struct pll_rate_tbl *rtbl,
70 unsigned long prate, int index, unsigned long *pll_rate)
71{
72 unsigned long rate = prate;
73 unsigned int mode;
74
75 mode = rtbl[index].mode ? 256 : 1;
76 rate = (((2 * rate / 10000) * rtbl[index].m) / (mode * rtbl[index].n));
77
78 if (pll_rate)
79 *pll_rate = (rate / (1 << rtbl[index].p)) * 10000;
80
81 return rate * 10000;
82}
83
84static long clk_pll_round_rate_index(struct clk_hw *hw, unsigned long drate,
85 unsigned long *prate, int *index)
86{
87 struct clk_pll *pll = to_clk_pll(hw);
88 unsigned long prev_rate, vco_prev_rate, rate = 0;
89 unsigned long vco_parent_rate =
90 __clk_get_rate(__clk_get_parent(__clk_get_parent(hw->clk)));
91
92 if (!prate) {
93 pr_err("%s: prate is must for pll clk\n", __func__);
94 return -EINVAL;
95 }
96
97 for (*index = 0; *index < pll->vco->rtbl_cnt; (*index)++) {
98 prev_rate = rate;
99 vco_prev_rate = *prate;
100 *prate = pll_calc_rate(pll->vco->rtbl, vco_parent_rate, *index,
101 &rate);
102 if (drate < rate) {
103 /* previous clock was best */
104 if (*index) {
105 rate = prev_rate;
106 *prate = vco_prev_rate;
107 (*index)--;
108 }
109 break;
110 }
111 }
112
113 return rate;
114}
115
116static long clk_pll_round_rate(struct clk_hw *hw, unsigned long drate,
117 unsigned long *prate)
118{
119 int unused;
120
121 return clk_pll_round_rate_index(hw, drate, prate, &unused);
122}
123
124static unsigned long clk_pll_recalc_rate(struct clk_hw *hw, unsigned long
125 parent_rate)
126{
127 struct clk_pll *pll = to_clk_pll(hw);
128 unsigned long flags = 0;
129 unsigned int p;
130
131 if (pll->vco->lock)
132 spin_lock_irqsave(pll->vco->lock, flags);
133
134 p = readl_relaxed(pll->vco->cfg_reg);
135
136 if (pll->vco->lock)
137 spin_unlock_irqrestore(pll->vco->lock, flags);
138
139 p = (p >> PLL_DIV_P_SHIFT) & PLL_DIV_P_MASK;
140
141 return parent_rate / (1 << p);
142}
143
144static int clk_pll_set_rate(struct clk_hw *hw, unsigned long drate,
145 unsigned long prate)
146{
147 struct clk_pll *pll = to_clk_pll(hw);
148 struct pll_rate_tbl *rtbl = pll->vco->rtbl;
149 unsigned long flags = 0, val;
150 int i;
151
152 clk_pll_round_rate_index(hw, drate, NULL, &i);
153
154 if (pll->vco->lock)
155 spin_lock_irqsave(pll->vco->lock, flags);
156
157 val = readl_relaxed(pll->vco->cfg_reg);
158 val &= ~(PLL_DIV_P_MASK << PLL_DIV_P_SHIFT);
159 val |= (rtbl[i].p & PLL_DIV_P_MASK) << PLL_DIV_P_SHIFT;
160 writel_relaxed(val, pll->vco->cfg_reg);
161
162 if (pll->vco->lock)
163 spin_unlock_irqrestore(pll->vco->lock, flags);
164
165 return 0;
166}
167
168static struct clk_ops clk_pll_ops = {
169 .recalc_rate = clk_pll_recalc_rate,
170 .round_rate = clk_pll_round_rate,
171 .set_rate = clk_pll_set_rate,
172};
173
174static inline unsigned long vco_calc_rate(struct clk_hw *hw,
175 unsigned long prate, int index)
176{
177 struct clk_vco *vco = to_clk_vco(hw);
178
179 return pll_calc_rate(vco->rtbl, prate, index, NULL);
180}
181
182static long clk_vco_round_rate(struct clk_hw *hw, unsigned long drate,
183 unsigned long *prate)
184{
185 struct clk_vco *vco = to_clk_vco(hw);
186 int unused;
187
188 return clk_round_rate_index(hw, drate, *prate, vco_calc_rate,
189 vco->rtbl_cnt, &unused);
190}
191
192static unsigned long clk_vco_recalc_rate(struct clk_hw *hw,
193 unsigned long parent_rate)
194{
195 struct clk_vco *vco = to_clk_vco(hw);
196 unsigned long flags = 0;
197 unsigned int num = 2, den = 0, val, mode = 0;
198
199 if (vco->lock)
200 spin_lock_irqsave(vco->lock, flags);
201
202 mode = (readl_relaxed(vco->mode_reg) >> PLL_MODE_SHIFT) & PLL_MODE_MASK;
203
204 val = readl_relaxed(vco->cfg_reg);
205
206 if (vco->lock)
207 spin_unlock_irqrestore(vco->lock, flags);
208
209 den = (val >> PLL_DIV_N_SHIFT) & PLL_DIV_N_MASK;
210
211 /* calculate numerator & denominator */
212 if (!mode) {
213 /* Normal mode */
214 num *= (val >> PLL_NORM_FDBK_M_SHIFT) & PLL_NORM_FDBK_M_MASK;
215 } else {
216 /* Dithered mode */
217 num *= (val >> PLL_DITH_FDBK_M_SHIFT) & PLL_DITH_FDBK_M_MASK;
218 den *= 256;
219 }
220
221 if (!den) {
222 WARN(1, "%s: denominator can't be zero\n", __func__);
223 return 0;
224 }
225
226 return (((parent_rate / 10000) * num) / den) * 10000;
227}
228
229/* Configures new clock rate of vco */
230static int clk_vco_set_rate(struct clk_hw *hw, unsigned long drate,
231 unsigned long prate)
232{
233 struct clk_vco *vco = to_clk_vco(hw);
234 struct pll_rate_tbl *rtbl = vco->rtbl;
235 unsigned long flags = 0, val;
236 int i;
237
238 clk_round_rate_index(hw, drate, prate, vco_calc_rate, vco->rtbl_cnt,
239 &i);
240
241 if (vco->lock)
242 spin_lock_irqsave(vco->lock, flags);
243
244 val = readl_relaxed(vco->mode_reg);
245 val &= ~(PLL_MODE_MASK << PLL_MODE_SHIFT);
246 val |= (rtbl[i].mode & PLL_MODE_MASK) << PLL_MODE_SHIFT;
247 writel_relaxed(val, vco->mode_reg);
248
249 val = readl_relaxed(vco->cfg_reg);
250 val &= ~(PLL_DIV_N_MASK << PLL_DIV_N_SHIFT);
251 val |= (rtbl[i].n & PLL_DIV_N_MASK) << PLL_DIV_N_SHIFT;
252
253 val &= ~(PLL_DITH_FDBK_M_MASK << PLL_DITH_FDBK_M_SHIFT);
254 if (rtbl[i].mode)
255 val |= (rtbl[i].m & PLL_DITH_FDBK_M_MASK) <<
256 PLL_DITH_FDBK_M_SHIFT;
257 else
258 val |= (rtbl[i].m & PLL_NORM_FDBK_M_MASK) <<
259 PLL_NORM_FDBK_M_SHIFT;
260
261 writel_relaxed(val, vco->cfg_reg);
262
263 if (vco->lock)
264 spin_unlock_irqrestore(vco->lock, flags);
265
266 return 0;
267}
268
269static struct clk_ops clk_vco_ops = {
270 .recalc_rate = clk_vco_recalc_rate,
271 .round_rate = clk_vco_round_rate,
272 .set_rate = clk_vco_set_rate,
273};
274
275struct clk *clk_register_vco_pll(const char *vco_name, const char *pll_name,
276 const char *vco_gate_name, const char *parent_name,
277 unsigned long flags, void __iomem *mode_reg, void __iomem
278 *cfg_reg, struct pll_rate_tbl *rtbl, u8 rtbl_cnt,
279 spinlock_t *lock, struct clk **pll_clk,
280 struct clk **vco_gate_clk)
281{
282 struct clk_vco *vco;
283 struct clk_pll *pll;
284 struct clk *vco_clk, *tpll_clk, *tvco_gate_clk;
285 struct clk_init_data vco_init, pll_init;
286 const char **vco_parent_name;
287
288 if (!vco_name || !pll_name || !parent_name || !mode_reg || !cfg_reg ||
289 !rtbl || !rtbl_cnt) {
290 pr_err("Invalid arguments passed");
291 return ERR_PTR(-EINVAL);
292 }
293
294 vco = kzalloc(sizeof(*vco), GFP_KERNEL);
295 if (!vco) {
296 pr_err("could not allocate vco clk\n");
297 return ERR_PTR(-ENOMEM);
298 }
299
300 pll = kzalloc(sizeof(*pll), GFP_KERNEL);
301 if (!pll) {
302 pr_err("could not allocate pll clk\n");
303 goto free_vco;
304 }
305
306 /* struct clk_vco assignments */
307 vco->mode_reg = mode_reg;
308 vco->cfg_reg = cfg_reg;
309 vco->rtbl = rtbl;
310 vco->rtbl_cnt = rtbl_cnt;
311 vco->lock = lock;
312 vco->hw.init = &vco_init;
313
314 pll->vco = vco;
315 pll->hw.init = &pll_init;
316
317 if (vco_gate_name) {
318 tvco_gate_clk = clk_register_gate(NULL, vco_gate_name,
319 parent_name, 0, mode_reg, PLL_ENABLE, 0, lock);
320 if (IS_ERR_OR_NULL(tvco_gate_clk))
321 goto free_pll;
322
323 if (vco_gate_clk)
324 *vco_gate_clk = tvco_gate_clk;
325 vco_parent_name = &vco_gate_name;
326 } else {
327 vco_parent_name = &parent_name;
328 }
329
330 vco_init.name = vco_name;
331 vco_init.ops = &clk_vco_ops;
332 vco_init.flags = flags;
333 vco_init.parent_names = vco_parent_name;
334 vco_init.num_parents = 1;
335
336 pll_init.name = pll_name;
337 pll_init.ops = &clk_pll_ops;
338 pll_init.flags = CLK_SET_RATE_PARENT;
339 pll_init.parent_names = &vco_name;
340 pll_init.num_parents = 1;
341
342 vco_clk = clk_register(NULL, &vco->hw);
343 if (IS_ERR_OR_NULL(vco_clk))
344 goto free_pll;
345
346 tpll_clk = clk_register(NULL, &pll->hw);
347 if (IS_ERR_OR_NULL(tpll_clk))
348 goto free_pll;
349
350 if (pll_clk)
351 *pll_clk = tpll_clk;
352
353 return vco_clk;
354
355free_pll:
356 kfree(pll);
357free_vco:
358 kfree(vco);
359
360 pr_err("Failed to register vco pll clock\n");
361
362 return ERR_PTR(-ENOMEM);
363}
diff --git a/drivers/clk/spear/clk.c b/drivers/clk/spear/clk.c
new file mode 100644
index 000000000000..376d4e5ff326
--- /dev/null
+++ b/drivers/clk/spear/clk.c
@@ -0,0 +1,36 @@
1/*
2 * Copyright (C) 2012 ST Microelectronics
3 * Viresh Kumar <viresh.kumar@st.com>
4 *
5 * This file is licensed under the terms of the GNU General Public
6 * License version 2. This program is licensed "as is" without any
7 * warranty of any kind, whether express or implied.
8 *
9 * SPEAr clk - Common routines
10 */
11
12#include <linux/clk-provider.h>
13#include <linux/types.h>
14#include "clk.h"
15
16long clk_round_rate_index(struct clk_hw *hw, unsigned long drate,
17 unsigned long parent_rate, clk_calc_rate calc_rate, u8 rtbl_cnt,
18 int *index)
19{
20 unsigned long prev_rate, rate = 0;
21
22 for (*index = 0; *index < rtbl_cnt; (*index)++) {
23 prev_rate = rate;
24 rate = calc_rate(hw, parent_rate, *index);
25 if (drate < rate) {
26 /* previous clock was best */
27 if (*index) {
28 rate = prev_rate;
29 (*index)--;
30 }
31 break;
32 }
33 }
34
35 return rate;
36}
diff --git a/drivers/clk/spear/clk.h b/drivers/clk/spear/clk.h
new file mode 100644
index 000000000000..9979b7f7e767
--- /dev/null
+++ b/drivers/clk/spear/clk.h
@@ -0,0 +1,58 @@
1/*
2 * Clock framework definitions for SPEAr platform
3 *
4 * Copyright (C) 2012 ST Microelectronics
5 * Viresh Kumar <viresh.kumar@st.com>
6 *
7 * This file is licensed under the terms of the GNU General Public
8 * License version 2. This program is licensed "as is" without any
9 * warranty of any kind, whether express or implied.
10 */
11
12#ifndef __SPEAR_CLK_H
13#define __SPEAR_CLK_H
14
15#include <linux/clk-provider.h>
16#include <linux/spinlock_types.h>
17#include <linux/types.h>
18
19/* VCO-PLL clk */
20struct pll_rate_tbl {
21 u8 mode;
22 u16 m;
23 u8 n;
24 u8 p;
25};
26
27struct clk_vco {
28 struct clk_hw hw;
29 void __iomem *mode_reg;
30 void __iomem *cfg_reg;
31 struct pll_rate_tbl *rtbl;
32 u8 rtbl_cnt;
33 spinlock_t *lock;
34};
35
36struct clk_pll {
37 struct clk_hw hw;
38 struct clk_vco *vco;
39 const char *parent[1];
40 spinlock_t *lock;
41};
42
43typedef unsigned long (*clk_calc_rate)(struct clk_hw *hw, unsigned long prate,
44 int index);
45
46/* clk register routines */
47struct clk *clk_register_vco_pll(const char *vco_name, const char *pll_name,
48 const char *vco_gate_name, const char *parent_name,
49 unsigned long flags, void __iomem *mode_reg, void __iomem
50 *cfg_reg, struct pll_rate_tbl *rtbl, u8 rtbl_cnt,
51 spinlock_t *lock, struct clk **pll_clk,
52 struct clk **vco_gate_clk);
53
54long clk_round_rate_index(struct clk_hw *hw, unsigned long drate,
55 unsigned long parent_rate, clk_calc_rate calc_rate, u8 rtbl_cnt,
56 int *index);
57
58#endif /* __SPEAR_CLK_H */
}, { "Compaq Netelligent 10/100 TX PCI UTP", TLAN_ADAPTER_ACTIVITY_LED, 0x83 }, { "Compaq Integrated NetFlex-3/P", TLAN_ADAPTER_NONE, 0x83 }, { "Compaq NetFlex-3/P", TLAN_ADAPTER_UNMANAGED_PHY | TLAN_ADAPTER_BIT_RATE_PHY, 0x83 }, { "Compaq NetFlex-3/P", TLAN_ADAPTER_NONE, 0x83 }, { "Compaq Netelligent Integrated 10/100 TX UTP", TLAN_ADAPTER_ACTIVITY_LED, 0x83 }, { "Compaq Netelligent Dual 10/100 TX PCI UTP", TLAN_ADAPTER_NONE, 0x83 }, { "Compaq Netelligent 10/100 TX Embedded UTP", TLAN_ADAPTER_NONE, 0x83 }, { "Olicom OC-2183/2185", TLAN_ADAPTER_USE_INTERN_10, 0x83 }, { "Olicom OC-2325", TLAN_ADAPTER_UNMANAGED_PHY, 0xF8 }, { "Olicom OC-2326", TLAN_ADAPTER_USE_INTERN_10, 0xF8 }, { "Compaq Netelligent 10/100 TX UTP", TLAN_ADAPTER_ACTIVITY_LED, 0x83 }, { "Compaq Netelligent 10 T/2 PCI UTP/Coax", TLAN_ADAPTER_NONE, 0x83 }, { "Compaq NetFlex-3/E", TLAN_ADAPTER_ACTIVITY_LED | /* EISA card */ TLAN_ADAPTER_UNMANAGED_PHY | TLAN_ADAPTER_BIT_RATE_PHY, 0x83 }, { "Compaq NetFlex-3/E", TLAN_ADAPTER_ACTIVITY_LED, 0x83 }, /* EISA card */ }; static DEFINE_PCI_DEVICE_TABLE(tlan_pci_tbl) = { { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_NETEL10, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_NETEL100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 }, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_NETFLEX3I, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2 }, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_THUNDER, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 3 }, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_NETFLEX3B, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 4 }, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_NETEL100PI, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 5 }, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_NETEL100D, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 6 }, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_NETEL100I, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 7 }, { PCI_VENDOR_ID_OLICOM, PCI_DEVICE_ID_OLICOM_OC2183, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 8 }, { PCI_VENDOR_ID_OLICOM, PCI_DEVICE_ID_OLICOM_OC2325, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 9 }, { PCI_VENDOR_ID_OLICOM, PCI_DEVICE_ID_OLICOM_OC2326, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 10 }, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_NETELLIGENT_10_100_WS_5100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 11 }, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_NETELLIGENT_10_T2, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 12 }, { 0,} }; MODULE_DEVICE_TABLE(pci, tlan_pci_tbl); static void TLan_EisaProbe( void ); static void TLan_Eisa_Cleanup( void ); static int TLan_Init( struct net_device * ); static int TLan_Open( struct net_device *dev ); static netdev_tx_t TLan_StartTx( struct sk_buff *, struct net_device *); static irqreturn_t TLan_HandleInterrupt( int, void *); static int TLan_Close( struct net_device *); static struct net_device_stats *TLan_GetStats( struct net_device *); static void TLan_SetMulticastList( struct net_device *); static int TLan_ioctl( struct net_device *dev, struct ifreq *rq, int cmd); static int TLan_probe1( struct pci_dev *pdev, long ioaddr, int irq, int rev, const struct pci_device_id *ent); static void TLan_tx_timeout( struct net_device *dev); static void TLan_tx_timeout_work(struct work_struct *work); static int tlan_init_one( struct pci_dev *pdev, const struct pci_device_id *ent); static u32 TLan_HandleTxEOF( struct net_device *, u16 ); static u32 TLan_HandleStatOverflow( struct net_device *, u16 ); static u32 TLan_HandleRxEOF( struct net_device *, u16 ); static u32 TLan_HandleDummy( struct net_device *, u16 ); static u32 TLan_HandleTxEOC( struct net_device *, u16 ); static u32 TLan_HandleStatusCheck( struct net_device *, u16 ); static u32 TLan_HandleRxEOC( struct net_device *, u16 ); static void TLan_Timer( unsigned long ); static void TLan_ResetLists( struct net_device * ); static void TLan_FreeLists( struct net_device * ); static void TLan_PrintDio( u16 ); static void TLan_PrintList( TLanList *, char *, int ); static void TLan_ReadAndClearStats( struct net_device *, int ); static void TLan_ResetAdapter( struct net_device * ); static void TLan_FinishReset( struct net_device * ); static void TLan_SetMac( struct net_device *, int areg, char *mac ); static void TLan_PhyPrint( struct net_device * ); static void TLan_PhyDetect( struct net_device * ); static void TLan_PhyPowerDown( struct net_device * ); static void TLan_PhyPowerUp( struct net_device * ); static void TLan_PhyReset( struct net_device * ); static void TLan_PhyStartLink( struct net_device * ); static void TLan_PhyFinishAutoNeg( struct net_device * ); #ifdef MONITOR static void TLan_PhyMonitor( struct net_device * ); #endif /* static int TLan_PhyNop( struct net_device * ); static int TLan_PhyInternalCheck( struct net_device * ); static int TLan_PhyInternalService( struct net_device * ); static int TLan_PhyDp83840aCheck( struct net_device * ); */ static bool TLan_MiiReadReg( struct net_device *, u16, u16, u16 * ); static void TLan_MiiSendData( u16, u32, unsigned ); static void TLan_MiiSync( u16 ); static void TLan_MiiWriteReg( struct net_device *, u16, u16, u16 ); static void TLan_EeSendStart( u16 ); static int TLan_EeSendByte( u16, u8, int ); static void TLan_EeReceiveByte( u16, u8 *, int ); static int TLan_EeReadByte( struct net_device *, u8, u8 * ); static inline void TLan_StoreSKB( struct tlan_list_tag *tag, struct sk_buff *skb) { unsigned long addr = (unsigned long)skb; tag->buffer[9].address = addr; tag->buffer[8].address = upper_32_bits(addr); } static inline struct sk_buff * TLan_GetSKB( const struct tlan_list_tag *tag) { unsigned long addr; addr = tag->buffer[9].address; addr |= (tag->buffer[8].address << 16) << 16; return (struct sk_buff *) addr; } static TLanIntVectorFunc *TLanIntVector[TLAN_INT_NUMBER_OF_INTS] = { NULL, TLan_HandleTxEOF, TLan_HandleStatOverflow, TLan_HandleRxEOF, TLan_HandleDummy, TLan_HandleTxEOC, TLan_HandleStatusCheck, TLan_HandleRxEOC }; static inline void TLan_SetTimer( struct net_device *dev, u32 ticks, u32 type ) { TLanPrivateInfo *priv = netdev_priv(dev); unsigned long flags = 0; if (!in_irq()) spin_lock_irqsave(&priv->lock, flags); if ( priv->timer.function != NULL && priv->timerType != TLAN_TIMER_ACTIVITY ) { if (!in_irq()) spin_unlock_irqrestore(&priv->lock, flags); return; } priv->timer.function = &TLan_Timer; if (!in_irq()) spin_unlock_irqrestore(&priv->lock, flags); priv->timer.data = (unsigned long) dev; priv->timerSetAt = jiffies; priv->timerType = type; mod_timer(&priv->timer, jiffies + ticks); } /* TLan_SetTimer */ /***************************************************************************** ****************************************************************************** ThunderLAN Driver Primary Functions These functions are more or less common to all Linux network drivers. ****************************************************************************** *****************************************************************************/ /*************************************************************** * tlan_remove_one * * Returns: * Nothing * Parms: * None * * Goes through the TLanDevices list and frees the device * structs and memory associated with each device (lists * and buffers). It also ureserves the IO port regions * associated with this device. * **************************************************************/ static void __devexit tlan_remove_one( struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata( pdev ); TLanPrivateInfo *priv = netdev_priv(dev); unregister_netdev( dev ); if ( priv->dmaStorage ) { pci_free_consistent(priv->pciDev, priv->dmaSize, priv->dmaStorage, priv->dmaStorageDMA ); } #ifdef CONFIG_PCI pci_release_regions(pdev); #endif free_netdev( dev ); pci_set_drvdata( pdev, NULL ); } static struct pci_driver tlan_driver = { .name = "tlan", .id_table = tlan_pci_tbl, .probe = tlan_init_one, .remove = __devexit_p(tlan_remove_one), }; static int __init tlan_probe(void) { int rc = -ENODEV; printk(KERN_INFO "%s", tlan_banner); TLAN_DBG(TLAN_DEBUG_PROBE, "Starting PCI Probe....\n"); /* Use new style PCI probing. Now the kernel will do most of this for us */ rc = pci_register_driver(&tlan_driver); if (rc != 0) { printk(KERN_ERR "TLAN: Could not register pci driver.\n"); goto err_out_pci_free; } TLAN_DBG(TLAN_DEBUG_PROBE, "Starting EISA Probe....\n"); TLan_EisaProbe(); printk(KERN_INFO "TLAN: %d device%s installed, PCI: %d EISA: %d\n", TLanDevicesInstalled, TLanDevicesInstalled == 1 ? "" : "s", tlan_have_pci, tlan_have_eisa); if (TLanDevicesInstalled == 0) { rc = -ENODEV; goto err_out_pci_unreg; } return 0; err_out_pci_unreg: pci_unregister_driver(&tlan_driver); err_out_pci_free: return rc; } static int __devinit tlan_init_one( struct pci_dev *pdev, const struct pci_device_id *ent) { return TLan_probe1( pdev, -1, -1, 0, ent); } /* *************************************************************** * tlan_probe1 * * Returns: * 0 on success, error code on error * Parms: * none * * The name is lower case to fit in with all the rest of * the netcard_probe names. This function looks for * another TLan based adapter, setting it up with the * allocated device struct if one is found. * tlan_probe has been ported to the new net API and * now allocates its own device structure. This function * is also used by modules. * **************************************************************/ static int __devinit TLan_probe1(struct pci_dev *pdev, long ioaddr, int irq, int rev, const struct pci_device_id *ent ) { struct net_device *dev; TLanPrivateInfo *priv; u16 device_id; int reg, rc = -ENODEV; #ifdef CONFIG_PCI if (pdev) { rc = pci_enable_device(pdev); if (rc) return rc; rc = pci_request_regions(pdev, TLanSignature); if (rc) { printk(KERN_ERR "TLAN: Could not reserve IO regions\n"); goto err_out; } } #endif /* CONFIG_PCI */ dev = alloc_etherdev(sizeof(TLanPrivateInfo)); if (dev == NULL) { printk(KERN_ERR "TLAN: Could not allocate memory for device.\n"); rc = -ENOMEM; goto err_out_regions; } SET_NETDEV_DEV(dev, &pdev->dev); priv = netdev_priv(dev); priv->pciDev = pdev; priv->dev = dev; /* Is this a PCI device? */ if (pdev) { u32 pci_io_base = 0; priv->adapter = &board_info[ent->driver_data]; rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); if (rc) { printk(KERN_ERR "TLAN: No suitable PCI mapping available.\n"); goto err_out_free_dev; } for ( reg= 0; reg <= 5; reg ++ ) { if (pci_resource_flags(pdev, reg) & IORESOURCE_IO) { pci_io_base = pci_resource_start(pdev, reg); TLAN_DBG( TLAN_DEBUG_GNRL, "IO mapping is available at %x.\n", pci_io_base); break; } } if (!pci_io_base) { printk(KERN_ERR "TLAN: No IO mappings available\n"); rc = -EIO; goto err_out_free_dev; } dev->base_addr = pci_io_base; dev->irq = pdev->irq; priv->adapterRev = pdev->revision; pci_set_master(pdev); pci_set_drvdata(pdev, dev); } else { /* EISA card */ /* This is a hack. We need to know which board structure * is suited for this adapter */ device_id = inw(ioaddr + EISA_ID2); priv->is_eisa = 1; if (device_id == 0x20F1) { priv->adapter = &board_info[13]; /* NetFlex-3/E */ priv->adapterRev = 23; /* TLAN 2.3 */ } else { priv->adapter = &board_info[14]; priv->adapterRev = 10; /* TLAN 1.0 */ } dev->base_addr = ioaddr; dev->irq = irq; } /* Kernel parameters */ if (dev->mem_start) { priv->aui = dev->mem_start & 0x01; priv->duplex = ((dev->mem_start & 0x06) == 0x06) ? 0 : (dev->mem_start & 0x06) >> 1; priv->speed = ((dev->mem_start & 0x18) == 0x18) ? 0 : (dev->mem_start & 0x18) >> 3; if (priv->speed == 0x1) { priv->speed = TLAN_SPEED_10; } else if (priv->speed == 0x2) { priv->speed = TLAN_SPEED_100; } debug = priv->debug = dev->mem_end; } else { priv->aui = aui[boards_found]; priv->speed = speed[boards_found]; priv->duplex = duplex[boards_found]; priv->debug = debug; } /* This will be used when we get an adapter error from * within our irq handler */ INIT_WORK(&priv->tlan_tqueue, TLan_tx_timeout_work); spin_lock_init(&priv->lock); rc = TLan_Init(dev); if (rc) { printk(KERN_ERR "TLAN: Could not set up device.\n"); goto err_out_free_dev; } rc = register_netdev(dev); if (rc) { printk(KERN_ERR "TLAN: Could not register device.\n"); goto err_out_uninit; } TLanDevicesInstalled++; boards_found++; /* pdev is NULL if this is an EISA device */ if (pdev) tlan_have_pci++; else { priv->nextDevice = TLan_Eisa_Devices; TLan_Eisa_Devices = dev; tlan_have_eisa++; } printk(KERN_INFO "TLAN: %s irq=%2d, io=%04x, %s, Rev. %d\n", dev->name, (int) dev->irq, (int) dev->base_addr, priv->adapter->deviceLabel, priv->adapterRev); return 0; err_out_uninit: pci_free_consistent(priv->pciDev, priv->dmaSize, priv->dmaStorage, priv->dmaStorageDMA ); err_out_free_dev: free_netdev(dev); err_out_regions: #ifdef CONFIG_PCI if (pdev) pci_release_regions(pdev); #endif err_out: if (pdev) pci_disable_device(pdev); return rc; } static void TLan_Eisa_Cleanup(void) { struct net_device *dev; TLanPrivateInfo *priv; while( tlan_have_eisa ) { dev = TLan_Eisa_Devices; priv = netdev_priv(dev); if (priv->dmaStorage) { pci_free_consistent(priv->pciDev, priv->dmaSize, priv->dmaStorage, priv->dmaStorageDMA ); } release_region( dev->base_addr, 0x10); unregister_netdev( dev ); TLan_Eisa_Devices = priv->nextDevice; free_netdev( dev ); tlan_have_eisa--; } } static void __exit tlan_exit(void) { pci_unregister_driver(&tlan_driver); if (tlan_have_eisa) TLan_Eisa_Cleanup(); } /* Module loading/unloading */ module_init(tlan_probe); module_exit(tlan_exit); /************************************************************** * TLan_EisaProbe * * Returns: 0 on success, 1 otherwise * * Parms: None * * * This functions probes for EISA devices and calls * TLan_probe1 when one is found. * *************************************************************/ static void __init TLan_EisaProbe (void) { long ioaddr; int rc = -ENODEV; int irq; u16 device_id; if (!EISA_bus) { TLAN_DBG(TLAN_DEBUG_PROBE, "No EISA bus present\n"); return; } /* Loop through all slots of the EISA bus */ for (ioaddr = 0x1000; ioaddr < 0x9000; ioaddr += 0x1000) { TLAN_DBG(TLAN_DEBUG_PROBE,"EISA_ID 0x%4x: 0x%4x\n", (int) ioaddr + 0xC80, inw(ioaddr + EISA_ID)); TLAN_DBG(TLAN_DEBUG_PROBE,"EISA_ID 0x%4x: 0x%4x\n", (int) ioaddr + 0xC82, inw(ioaddr + EISA_ID2)); TLAN_DBG(TLAN_DEBUG_PROBE, "Probing for EISA adapter at IO: 0x%4x : ", (int) ioaddr); if (request_region(ioaddr, 0x10, TLanSignature) == NULL) goto out; if (inw(ioaddr + EISA_ID) != 0x110E) { release_region(ioaddr, 0x10); goto out; } device_id = inw(ioaddr + EISA_ID2); if (device_id != 0x20F1 && device_id != 0x40F1) { release_region (ioaddr, 0x10); goto out; } if (inb(ioaddr + EISA_CR) != 0x1) { /* Check if adapter is enabled */ release_region (ioaddr, 0x10); goto out2; } if (debug == 0x10) printk("Found one\n"); /* Get irq from board */ switch (inb(ioaddr + 0xCC0)) { case(0x10): irq=5; break; case(0x20): irq=9; break; case(0x40): irq=10; break; case(0x80): irq=11; break; default: goto out; } /* Setup the newly found eisa adapter */ rc = TLan_probe1( NULL, ioaddr, irq, 12, NULL); continue; out: if (debug == 0x10) printk("None found\n"); continue; out2: if (debug == 0x10) printk("Card found but it is not enabled, skipping\n"); continue; } } /* TLan_EisaProbe */ #ifdef CONFIG_NET_POLL_CONTROLLER static void TLan_Poll(struct net_device *dev) { disable_irq(dev->irq); TLan_HandleInterrupt(dev->irq, dev); enable_irq(dev->irq); } #endif static const struct net_device_ops TLan_netdev_ops = { .ndo_open = TLan_Open, .ndo_stop = TLan_Close, .ndo_start_xmit = TLan_StartTx, .ndo_tx_timeout = TLan_tx_timeout, .ndo_get_stats = TLan_GetStats, .ndo_set_multicast_list = TLan_SetMulticastList, .ndo_do_ioctl = TLan_ioctl, .ndo_change_mtu = eth_change_mtu, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = TLan_Poll, #endif }; /*************************************************************** * TLan_Init * * Returns: * 0 on success, error code otherwise. * Parms: * dev The structure of the device to be * init'ed. * * This function completes the initialization of the * device structure and driver. It reserves the IO * addresses, allocates memory for the lists and bounce * buffers, retrieves the MAC address from the eeprom * and assignes the device's methods. * **************************************************************/ static int TLan_Init( struct net_device *dev ) { int dma_size; int err; int i; TLanPrivateInfo *priv; priv = netdev_priv(dev); dma_size = ( TLAN_NUM_RX_LISTS + TLAN_NUM_TX_LISTS ) * ( sizeof(TLanList) ); priv->dmaStorage = pci_alloc_consistent(priv->pciDev, dma_size, &priv->dmaStorageDMA); priv->dmaSize = dma_size; if ( priv->dmaStorage == NULL ) { printk(KERN_ERR "TLAN: Could not allocate lists and buffers for %s.\n", dev->name ); return -ENOMEM; } memset( priv->dmaStorage, 0, dma_size ); priv->rxList = (TLanList *) ALIGN((unsigned long)priv->dmaStorage, 8); priv->rxListDMA = ALIGN(priv->dmaStorageDMA, 8); priv->txList = priv->rxList + TLAN_NUM_RX_LISTS; priv->txListDMA = priv->rxListDMA + sizeof(TLanList) * TLAN_NUM_RX_LISTS; err = 0; for ( i = 0; i < 6 ; i++ ) err |= TLan_EeReadByte( dev, (u8) priv->adapter->addrOfs + i, (u8 *) &dev->dev_addr[i] ); if ( err ) { printk(KERN_ERR "TLAN: %s: Error reading MAC from eeprom: %d\n", dev->name, err ); } dev->addr_len = 6; netif_carrier_off(dev); /* Device methods */ dev->netdev_ops = &TLan_netdev_ops; dev->watchdog_timeo = TX_TIMEOUT; return 0; } /* TLan_Init */ /*************************************************************** * TLan_Open * * Returns: * 0 on success, error code otherwise. * Parms: * dev Structure of device to be opened. * * This routine puts the driver and TLAN adapter in a * state where it is ready to send and receive packets. * It allocates the IRQ, resets and brings the adapter * out of reset, and allows interrupts. It also delays * the startup for autonegotiation or sends a Rx GO * command to the adapter, as appropriate. * **************************************************************/ static int TLan_Open( struct net_device *dev ) { TLanPrivateInfo *priv = netdev_priv(dev); int err; priv->tlanRev = TLan_DioRead8( dev->base_addr, TLAN_DEF_REVISION ); err = request_irq( dev->irq, TLan_HandleInterrupt, IRQF_SHARED, dev->name, dev ); if ( err ) { pr_err("TLAN: Cannot open %s because IRQ %d is already in use.\n", dev->name, dev->irq ); return err; } init_timer(&priv->timer); netif_start_queue(dev); /* NOTE: It might not be necessary to read the stats before a reset if you don't care what the values are. */ TLan_ResetLists( dev ); TLan_ReadAndClearStats( dev, TLAN_IGNORE ); TLan_ResetAdapter( dev ); TLAN_DBG( TLAN_DEBUG_GNRL, "%s: Opened. TLAN Chip Rev: %x\n", dev->name, priv->tlanRev ); return 0; } /* TLan_Open */ /************************************************************** * TLan_ioctl * * Returns: * 0 on success, error code otherwise * Params: * dev structure of device to receive ioctl. * * rq ifreq structure to hold userspace data. * * cmd ioctl command. * * *************************************************************/ static int TLan_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { TLanPrivateInfo *priv = netdev_priv(dev); struct mii_ioctl_data *data = if_mii(rq); u32 phy = priv->phy[priv->phyNum]; if (!priv->phyOnline) return -EAGAIN; switch(cmd) { case SIOCGMIIPHY: /* Get address of MII PHY in use. */ data->phy_id = phy; case SIOCGMIIREG: /* Read MII PHY register. */ TLan_MiiReadReg(dev, data->phy_id & 0x1f, data->reg_num & 0x1f, &data->val_out); return 0; case SIOCSMIIREG: /* Write MII PHY register. */ TLan_MiiWriteReg(dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in); return 0; default: return -EOPNOTSUPP; } } /* tlan_ioctl */ /*************************************************************** * TLan_tx_timeout * * Returns: nothing * * Params: * dev structure of device which timed out * during transmit. * **************************************************************/ static void TLan_tx_timeout(struct net_device *dev) { TLAN_DBG( TLAN_DEBUG_GNRL, "%s: Transmit timed out.\n", dev->name); /* Ok so we timed out, lets see what we can do about it...*/ TLan_FreeLists( dev ); TLan_ResetLists( dev ); TLan_ReadAndClearStats( dev, TLAN_IGNORE ); TLan_ResetAdapter( dev ); dev->trans_start = jiffies; netif_wake_queue( dev ); } /*************************************************************** * TLan_tx_timeout_work * * Returns: nothing * * Params: * work work item of device which timed out * **************************************************************/ static void TLan_tx_timeout_work(struct work_struct *work) { TLanPrivateInfo *priv = container_of(work, TLanPrivateInfo, tlan_tqueue); TLan_tx_timeout(priv->dev); } /*************************************************************** * TLan_StartTx * * Returns: * 0 on success, non-zero on failure. * Parms: * skb A pointer to the sk_buff containing the * frame to be sent. * dev The device to send the data on. * * This function adds a frame to the Tx list to be sent * ASAP. First it verifies that the adapter is ready and * there is room in the queue. Then it sets up the next * available list, copies the frame to the corresponding * buffer. If the adapter Tx channel is idle, it gives * the adapter a Tx Go command on the list, otherwise it * sets the forward address of the previous list to point * to this one. Then it frees the sk_buff. * **************************************************************/ static netdev_tx_t TLan_StartTx( struct sk_buff *skb, struct net_device *dev ) { TLanPrivateInfo *priv = netdev_priv(dev); dma_addr_t tail_list_phys; TLanList *tail_list; unsigned long flags; unsigned int txlen; if ( ! priv->phyOnline ) { TLAN_DBG( TLAN_DEBUG_TX, "TRANSMIT: %s PHY is not ready\n", dev->name ); dev_kfree_skb_any(skb); return NETDEV_TX_OK; } if (skb_padto(skb, TLAN_MIN_FRAME_SIZE)) return NETDEV_TX_OK; txlen = max(skb->len, (unsigned int)TLAN_MIN_FRAME_SIZE); tail_list = priv->txList + priv->txTail; tail_list_phys = priv->txListDMA + sizeof(TLanList) * priv->txTail; if ( tail_list->cStat != TLAN_CSTAT_UNUSED ) { TLAN_DBG( TLAN_DEBUG_TX, "TRANSMIT: %s is busy (Head=%d Tail=%d)\n", dev->name, priv->txHead, priv->txTail ); netif_stop_queue(dev); priv->txBusyCount++; return NETDEV_TX_BUSY; } tail_list->forward = 0; tail_list->buffer[0].address = pci_map_single(priv->pciDev, skb->data, txlen, PCI_DMA_TODEVICE); TLan_StoreSKB(tail_list, skb); tail_list->frameSize = (u16) txlen; tail_list->buffer[0].count = TLAN_LAST_BUFFER | (u32) txlen; tail_list->buffer[1].count = 0; tail_list->buffer[1].address = 0; spin_lock_irqsave(&priv->lock, flags); tail_list->cStat = TLAN_CSTAT_READY; if ( ! priv->txInProgress ) { priv->txInProgress = 1; TLAN_DBG( TLAN_DEBUG_TX, "TRANSMIT: Starting TX on buffer %d\n", priv->txTail ); outl( tail_list_phys, dev->base_addr + TLAN_CH_PARM ); outl( TLAN_HC_GO, dev->base_addr + TLAN_HOST_CMD ); } else { TLAN_DBG( TLAN_DEBUG_TX, "TRANSMIT: Adding buffer %d to TX channel\n", priv->txTail ); if ( priv->txTail == 0 ) { ( priv->txList + ( TLAN_NUM_TX_LISTS - 1 ) )->forward = tail_list_phys; } else { ( priv->txList + ( priv->txTail - 1 ) )->forward = tail_list_phys; } } spin_unlock_irqrestore(&priv->lock, flags); CIRC_INC( priv->txTail, TLAN_NUM_TX_LISTS ); dev->trans_start = jiffies; return NETDEV_TX_OK; } /* TLan_StartTx */ /*************************************************************** * TLan_HandleInterrupt * * Returns: * Nothing * Parms: * irq The line on which the interrupt * occurred. * dev_id A pointer to the device assigned to * this irq line. * * This function handles an interrupt generated by its * assigned TLAN adapter. The function deactivates * interrupts on its adapter, records the type of * interrupt, executes the appropriate subhandler, and * acknowdges the interrupt to the adapter (thus * re-enabling adapter interrupts. * **************************************************************/ static irqreturn_t TLan_HandleInterrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; TLanPrivateInfo *priv = netdev_priv(dev); u16 host_int; u16 type; spin_lock(&priv->lock); host_int = inw( dev->base_addr + TLAN_HOST_INT ); type = ( host_int & TLAN_HI_IT_MASK ) >> 2; if ( type ) { u32 ack; u32 host_cmd; outw( host_int, dev->base_addr + TLAN_HOST_INT ); ack = TLanIntVector[type]( dev, host_int ); if ( ack ) { host_cmd = TLAN_HC_ACK | ack | ( type << 18 ); outl( host_cmd, dev->base_addr + TLAN_HOST_CMD ); } } spin_unlock(&priv->lock); return IRQ_RETVAL(type); } /* TLan_HandleInterrupts */ /*************************************************************** * TLan_Close * * Returns: * An error code. * Parms: * dev The device structure of the device to * close. * * This function shuts down the adapter. It records any * stats, puts the adapter into reset state, deactivates * its time as needed, and frees the irq it is using. * **************************************************************/ static int TLan_Close(struct net_device *dev) { TLanPrivateInfo *priv = netdev_priv(dev); netif_stop_queue(dev); priv->neg_be_verbose = 0; TLan_ReadAndClearStats( dev, TLAN_RECORD ); outl( TLAN_HC_AD_RST, dev->base_addr + TLAN_HOST_CMD ); if ( priv->timer.function != NULL ) { del_timer_sync( &priv->timer ); priv->timer.function = NULL; } free_irq( dev->irq, dev ); TLan_FreeLists( dev ); TLAN_DBG( TLAN_DEBUG_GNRL, "Device %s closed.\n", dev->name ); return 0; } /* TLan_Close */ /*************************************************************** * TLan_GetStats * * Returns: * A pointer to the device's statistics structure. * Parms: * dev The device structure to return the * stats for. * * This function updates the devices statistics by reading * the TLAN chip's onboard registers. Then it returns the * address of the statistics structure. * **************************************************************/ static struct net_device_stats *TLan_GetStats( struct net_device *dev ) { TLanPrivateInfo *priv = netdev_priv(dev); int i; /* Should only read stats if open ? */ TLan_ReadAndClearStats( dev, TLAN_RECORD ); TLAN_DBG( TLAN_DEBUG_RX, "RECEIVE: %s EOC count = %d\n", dev->name, priv->rxEocCount ); TLAN_DBG( TLAN_DEBUG_TX, "TRANSMIT: %s Busy count = %d\n", dev->name, priv->txBusyCount ); if ( debug & TLAN_DEBUG_GNRL ) { TLan_PrintDio( dev->base_addr ); TLan_PhyPrint( dev ); } if ( debug & TLAN_DEBUG_LIST ) { for ( i = 0; i < TLAN_NUM_RX_LISTS; i++ ) TLan_PrintList( priv->rxList + i, "RX", i ); for ( i = 0; i < TLAN_NUM_TX_LISTS; i++ ) TLan_PrintList( priv->txList + i, "TX", i ); } return &dev->stats; } /* TLan_GetStats */ /*************************************************************** * TLan_SetMulticastList * * Returns: * Nothing * Parms: * dev The device structure to set the * multicast list for. * * This function sets the TLAN adaptor to various receive * modes. If the IFF_PROMISC flag is set, promiscuous * mode is acitviated. Otherwise, promiscuous mode is * turned off. If the IFF_ALLMULTI flag is set, then * the hash table is set to receive all group addresses. * Otherwise, the first three multicast addresses are * stored in AREG_1-3, and the rest are selected via the * hash table, as necessary. * **************************************************************/ static void TLan_SetMulticastList( struct net_device *dev ) { struct dev_mc_list *dmi; u32 hash1 = 0; u32 hash2 = 0; int i; u32 offset; u8 tmp; if ( dev->flags & IFF_PROMISC ) { tmp = TLan_DioRead8( dev->base_addr, TLAN_NET_CMD ); TLan_DioWrite8( dev->base_addr, TLAN_NET_CMD, tmp | TLAN_NET_CMD_CAF ); } else { tmp = TLan_DioRead8( dev->base_addr, TLAN_NET_CMD ); TLan_DioWrite8( dev->base_addr, TLAN_NET_CMD, tmp & ~TLAN_NET_CMD_CAF ); if ( dev->flags & IFF_ALLMULTI ) { for ( i = 0; i < 3; i++ ) TLan_SetMac( dev, i + 1, NULL ); TLan_DioWrite32( dev->base_addr, TLAN_HASH_1, 0xFFFFFFFF ); TLan_DioWrite32( dev->base_addr, TLAN_HASH_2, 0xFFFFFFFF ); } else { i = 0; netdev_for_each_mc_addr(dmi, dev) { if ( i < 3 ) { TLan_SetMac( dev, i + 1, (char *) &dmi->dmi_addr ); } else { offset = TLan_HashFunc( (u8 *) &dmi->dmi_addr ); if ( offset < 32 ) hash1 |= ( 1 << offset ); else hash2 |= ( 1 << ( offset - 32 ) ); } i++; } for ( ; i < 3; i++ ) TLan_SetMac( dev, i + 1, NULL ); TLan_DioWrite32( dev->base_addr, TLAN_HASH_1, hash1 ); TLan_DioWrite32( dev->base_addr, TLAN_HASH_2, hash2 ); } } } /* TLan_SetMulticastList */ /***************************************************************************** ****************************************************************************** ThunderLAN Driver Interrupt Vectors and Table Please see Chap. 4, "Interrupt Handling" of the "ThunderLAN Programmer's Guide" for more informations on handling interrupts generated by TLAN based adapters. ****************************************************************************** *****************************************************************************/ /*************************************************************** * TLan_HandleTxEOF * * Returns: * 1 * Parms: * dev Device assigned the IRQ that was * raised. * host_int The contents of the HOST_INT * port. * * This function handles Tx EOF interrupts which are raised * by the adapter when it has completed sending the * contents of a buffer. If detemines which list/buffer * was completed and resets it. If the buffer was the last * in the channel (EOC), then the function checks to see if * another buffer is ready to send, and if so, sends a Tx * Go command. Finally, the driver activates/continues the * activity LED. * **************************************************************/ static u32 TLan_HandleTxEOF( struct net_device *dev, u16 host_int ) { TLanPrivateInfo *priv = netdev_priv(dev); int eoc = 0; TLanList *head_list; dma_addr_t head_list_phys; u32 ack = 0; u16 tmpCStat; TLAN_DBG( TLAN_DEBUG_TX, "TRANSMIT: Handling TX EOF (Head=%d Tail=%d)\n", priv->txHead, priv->txTail ); head_list = priv->txList + priv->txHead; while (((tmpCStat = head_list->cStat ) & TLAN_CSTAT_FRM_CMP) && (ack < 255)) { struct sk_buff *skb = TLan_GetSKB(head_list); ack++; pci_unmap_single(priv->pciDev, head_list->buffer[0].address, max(skb->len, (unsigned int)TLAN_MIN_FRAME_SIZE), PCI_DMA_TODEVICE); dev_kfree_skb_any(skb); head_list->buffer[8].address = 0; head_list->buffer[9].address = 0; if ( tmpCStat & TLAN_CSTAT_EOC ) eoc = 1; dev->stats.tx_bytes += head_list->frameSize; head_list->cStat = TLAN_CSTAT_UNUSED; netif_start_queue(dev); CIRC_INC( priv->txHead, TLAN_NUM_TX_LISTS ); head_list = priv->txList + priv->txHead; } if (!ack) printk(KERN_INFO "TLAN: Received interrupt for uncompleted TX frame.\n"); if ( eoc ) { TLAN_DBG( TLAN_DEBUG_TX, "TRANSMIT: Handling TX EOC (Head=%d Tail=%d)\n", priv->txHead, priv->txTail ); head_list = priv->txList + priv->txHead; head_list_phys = priv->txListDMA + sizeof(TLanList) * priv->txHead; if ( ( head_list->cStat & TLAN_CSTAT_READY ) == TLAN_CSTAT_READY ) { outl(head_list_phys, dev->base_addr + TLAN_CH_PARM ); ack |= TLAN_HC_GO; } else { priv->txInProgress = 0; } } if ( priv->adapter->flags & TLAN_ADAPTER_ACTIVITY_LED ) { TLan_DioWrite8( dev->base_addr, TLAN_LED_REG, TLAN_LED_LINK | TLAN_LED_ACT ); if ( priv->timer.function == NULL ) { priv->timer.function = &TLan_Timer; priv->timer.data = (unsigned long) dev; priv->timer.expires = jiffies + TLAN_TIMER_ACT_DELAY; priv->timerSetAt = jiffies; priv->timerType = TLAN_TIMER_ACTIVITY; add_timer(&priv->timer); } else if ( priv->timerType == TLAN_TIMER_ACTIVITY ) { priv->timerSetAt = jiffies; } } return ack; } /* TLan_HandleTxEOF */ /*************************************************************** * TLan_HandleStatOverflow * * Returns: * 1 * Parms: * dev Device assigned the IRQ that was * raised. * host_int The contents of the HOST_INT * port. * * This function handles the Statistics Overflow interrupt * which means that one or more of the TLAN statistics * registers has reached 1/2 capacity and needs to be read. * **************************************************************/ static u32 TLan_HandleStatOverflow( struct net_device *dev, u16 host_int ) { TLan_ReadAndClearStats( dev, TLAN_RECORD ); return 1; } /* TLan_HandleStatOverflow */ /*************************************************************** * TLan_HandleRxEOF * * Returns: * 1 * Parms: * dev Device assigned the IRQ that was * raised. * host_int The contents of the HOST_INT * port. * * This function handles the Rx EOF interrupt which * indicates a frame has been received by the adapter from * the net and the frame has been transferred to memory. * The function determines the bounce buffer the frame has * been loaded into, creates a new sk_buff big enough to * hold the frame, and sends it to protocol stack. It * then resets the used buffer and appends it to the end * of the list. If the frame was the last in the Rx * channel (EOC), the function restarts the receive channel * by sending an Rx Go command to the adapter. Then it * activates/continues the activity LED. * **************************************************************/ static u32 TLan_HandleRxEOF( struct net_device *dev, u16 host_int ) { TLanPrivateInfo *priv = netdev_priv(dev); u32 ack = 0; int eoc = 0; TLanList *head_list; struct sk_buff *skb; TLanList *tail_list; u16 tmpCStat; dma_addr_t head_list_phys; TLAN_DBG( TLAN_DEBUG_RX, "RECEIVE: Handling RX EOF (Head=%d Tail=%d)\n", priv->rxHead, priv->rxTail ); head_list = priv->rxList + priv->rxHead; head_list_phys = priv->rxListDMA + sizeof(TLanList) * priv->rxHead; while (((tmpCStat = head_list->cStat) & TLAN_CSTAT_FRM_CMP) && (ack < 255)) { dma_addr_t frameDma = head_list->buffer[0].address; u32 frameSize = head_list->frameSize; struct sk_buff *new_skb; ack++; if (tmpCStat & TLAN_CSTAT_EOC) eoc = 1; new_skb = netdev_alloc_skb_ip_align(dev, TLAN_MAX_FRAME_SIZE + 5); if ( !new_skb ) goto drop_and_reuse; skb = TLan_GetSKB(head_list); pci_unmap_single(priv->pciDev, frameDma, TLAN_MAX_FRAME_SIZE, PCI_DMA_FROMDEVICE); skb_put( skb, frameSize ); dev->stats.rx_bytes += frameSize; skb->protocol = eth_type_trans( skb, dev ); netif_rx( skb ); head_list->buffer[0].address = pci_map_single(priv->pciDev, new_skb->data, TLAN_MAX_FRAME_SIZE, PCI_DMA_FROMDEVICE); TLan_StoreSKB(head_list, new_skb); drop_and_reuse: head_list->forward = 0; head_list->cStat = 0; tail_list = priv->rxList + priv->rxTail; tail_list->forward = head_list_phys; CIRC_INC( priv->rxHead, TLAN_NUM_RX_LISTS ); CIRC_INC( priv->rxTail, TLAN_NUM_RX_LISTS ); head_list = priv->rxList + priv->rxHead; head_list_phys = priv->rxListDMA + sizeof(TLanList) * priv->rxHead; } if (!ack) printk(KERN_INFO "TLAN: Received interrupt for uncompleted RX frame.\n"); if ( eoc ) { TLAN_DBG( TLAN_DEBUG_RX, "RECEIVE: Handling RX EOC (Head=%d Tail=%d)\n", priv->rxHead, priv->rxTail ); head_list = priv->rxList + priv->rxHead; head_list_phys = priv->rxListDMA + sizeof(TLanList) * priv->rxHead; outl(head_list_phys, dev->base_addr + TLAN_CH_PARM ); ack |= TLAN_HC_GO | TLAN_HC_RT; priv->rxEocCount++; } if ( priv->adapter->flags & TLAN_ADAPTER_ACTIVITY_LED ) { TLan_DioWrite8( dev->base_addr, TLAN_LED_REG, TLAN_LED_LINK | TLAN_LED_ACT ); if ( priv->timer.function == NULL ) { priv->timer.function = &TLan_Timer; priv->timer.data = (unsigned long) dev; priv->timer.expires = jiffies + TLAN_TIMER_ACT_DELAY; priv->timerSetAt = jiffies; priv->timerType = TLAN_TIMER_ACTIVITY; add_timer(&priv->timer); } else if ( priv->timerType == TLAN_TIMER_ACTIVITY ) { priv->timerSetAt = jiffies; } } return ack; } /* TLan_HandleRxEOF */ /*************************************************************** * TLan_HandleDummy * * Returns: * 1 * Parms: * dev Device assigned the IRQ that was * raised. * host_int The contents of the HOST_INT * port. * * This function handles the Dummy interrupt, which is * raised whenever a test interrupt is generated by setting * the Req_Int bit of HOST_CMD to 1. * **************************************************************/ static u32 TLan_HandleDummy( struct net_device *dev, u16 host_int ) { printk( "TLAN: Test interrupt on %s.\n", dev->name ); return 1; } /* TLan_HandleDummy */ /*************************************************************** * TLan_HandleTxEOC * * Returns: * 1 * Parms: * dev Device assigned the IRQ that was * raised. * host_int The contents of the HOST_INT * port. * * This driver is structured to determine EOC occurrences by * reading the CSTAT member of the list structure. Tx EOC * interrupts are disabled via the DIO INTDIS register. * However, TLAN chips before revision 3.0 didn't have this * functionality, so process EOC events if this is the * case. * **************************************************************/ static u32 TLan_HandleTxEOC( struct net_device *dev, u16 host_int ) { TLanPrivateInfo *priv = netdev_priv(dev); TLanList *head_list; dma_addr_t head_list_phys; u32 ack = 1; host_int = 0; if ( priv->tlanRev < 0x30 ) { TLAN_DBG( TLAN_DEBUG_TX, "TRANSMIT: Handling TX EOC (Head=%d Tail=%d) -- IRQ\n", priv->txHead, priv->txTail ); head_list = priv->txList + priv->txHead; head_list_phys = priv->txListDMA + sizeof(TLanList) * priv->txHead; if ( ( head_list->cStat & TLAN_CSTAT_READY ) == TLAN_CSTAT_READY ) { netif_stop_queue(dev); outl( head_list_phys, dev->base_addr + TLAN_CH_PARM ); ack |= TLAN_HC_GO; } else { priv->txInProgress = 0; } } return ack; } /* TLan_HandleTxEOC */ /*************************************************************** * TLan_HandleStatusCheck * * Returns: * 0 if Adapter check, 1 if Network Status check. * Parms: * dev Device assigned the IRQ that was * raised. * host_int The contents of the HOST_INT * port. * * This function handles Adapter Check/Network Status * interrupts generated by the adapter. It checks the * vector in the HOST_INT register to determine if it is * an Adapter Check interrupt. If so, it resets the * adapter. Otherwise it clears the status registers * and services the PHY. * **************************************************************/ static u32 TLan_HandleStatusCheck( struct net_device *dev, u16 host_int ) { TLanPrivateInfo *priv = netdev_priv(dev); u32 ack; u32 error; u8 net_sts; u32 phy; u16 tlphy_ctl; u16 tlphy_sts; ack = 1; if ( host_int & TLAN_HI_IV_MASK ) { netif_stop_queue( dev ); error = inl( dev->base_addr + TLAN_CH_PARM ); printk( "TLAN: %s: Adaptor Error = 0x%x\n", dev->name, error ); TLan_ReadAndClearStats( dev, TLAN_RECORD ); outl( TLAN_HC_AD_RST, dev->base_addr + TLAN_HOST_CMD ); schedule_work(&priv->tlan_tqueue); netif_wake_queue(dev); ack = 0; } else { TLAN_DBG( TLAN_DEBUG_GNRL, "%s: Status Check\n", dev->name ); phy = priv->phy[priv->phyNum]; net_sts = TLan_DioRead8( dev->base_addr, TLAN_NET_STS ); if ( net_sts ) { TLan_DioWrite8( dev->base_addr, TLAN_NET_STS, net_sts ); TLAN_DBG( TLAN_DEBUG_GNRL, "%s: Net_Sts = %x\n", dev->name, (unsigned) net_sts ); } if ( ( net_sts & TLAN_NET_STS_MIRQ ) && ( priv->phyNum == 0 ) ) { TLan_MiiReadReg( dev, phy, TLAN_TLPHY_STS, &tlphy_sts ); TLan_MiiReadReg( dev, phy, TLAN_TLPHY_CTL, &tlphy_ctl ); if ( ! ( tlphy_sts & TLAN_TS_POLOK ) && ! ( tlphy_ctl & TLAN_TC_SWAPOL ) ) { tlphy_ctl |= TLAN_TC_SWAPOL; TLan_MiiWriteReg( dev, phy, TLAN_TLPHY_CTL, tlphy_ctl); } else if ( ( tlphy_sts & TLAN_TS_POLOK ) && ( tlphy_ctl & TLAN_TC_SWAPOL ) ) { tlphy_ctl &= ~TLAN_TC_SWAPOL; TLan_MiiWriteReg( dev, phy, TLAN_TLPHY_CTL, tlphy_ctl); } if (debug) { TLan_PhyPrint( dev ); } } } return ack; } /* TLan_HandleStatusCheck */ /*************************************************************** * TLan_HandleRxEOC * * Returns: * 1 * Parms: * dev Device assigned the IRQ that was * raised. * host_int The contents of the HOST_INT * port. * * This driver is structured to determine EOC occurrences by * reading the CSTAT member of the list structure. Rx EOC * interrupts are disabled via the DIO INTDIS register. * However, TLAN chips before revision 3.0 didn't have this * CSTAT member or a INTDIS register, so if this chip is * pre-3.0, process EOC interrupts normally. * **************************************************************/ static u32 TLan_HandleRxEOC( struct net_device *dev, u16 host_int ) { TLanPrivateInfo *priv = netdev_priv(dev); dma_addr_t head_list_phys; u32 ack = 1; if ( priv->tlanRev < 0x30 ) { TLAN_DBG( TLAN_DEBUG_RX, "RECEIVE: Handling RX EOC (Head=%d Tail=%d) -- IRQ\n", priv->rxHead, priv->rxTail ); head_list_phys = priv->rxListDMA + sizeof(TLanList) * priv->rxHead; outl( head_list_phys, dev->base_addr + TLAN_CH_PARM ); ack |= TLAN_HC_GO | TLAN_HC_RT; priv->rxEocCount++; } return ack; } /* TLan_HandleRxEOC */ /***************************************************************************** ****************************************************************************** ThunderLAN Driver Timer Function ****************************************************************************** *****************************************************************************/ /*************************************************************** * TLan_Timer * * Returns: * Nothing * Parms: * data A value given to add timer when * add_timer was called. * * This function handles timed functionality for the * TLAN driver. The two current timer uses are for * delaying for autonegotionation and driving the ACT LED. * - Autonegotiation requires being allowed about * 2 1/2 seconds before attempting to transmit a * packet. It would be a very bad thing to hang * the kernel this long, so the driver doesn't * allow transmission 'til after this time, for * certain PHYs. It would be much nicer if all * PHYs were interrupt-capable like the internal * PHY. * - The ACT LED, which shows adapter activity, is * driven by the driver, and so must be left on * for a short period to power up the LED so it * can be seen. This delay can be changed by * changing the TLAN_TIMER_ACT_DELAY in tlan.h, * if desired. 100 ms produces a slightly * sluggish response. * **************************************************************/ static void TLan_Timer( unsigned long data ) { struct net_device *dev = (struct net_device *) data; TLanPrivateInfo *priv = netdev_priv(dev); u32 elapsed; unsigned long flags = 0; priv->timer.function = NULL; switch ( priv->timerType ) { #ifdef MONITOR case TLAN_TIMER_LINK_BEAT: TLan_PhyMonitor( dev ); break; #endif case TLAN_TIMER_PHY_PDOWN: TLan_PhyPowerDown( dev ); break; case TLAN_TIMER_PHY_PUP: TLan_PhyPowerUp( dev ); break; case TLAN_TIMER_PHY_RESET: TLan_PhyReset( dev ); break; case TLAN_TIMER_PHY_START_LINK: TLan_PhyStartLink( dev ); break; case TLAN_TIMER_PHY_FINISH_AN: TLan_PhyFinishAutoNeg( dev ); break; case TLAN_TIMER_FINISH_RESET: TLan_FinishReset( dev ); break; case TLAN_TIMER_ACTIVITY: spin_lock_irqsave(&priv->lock, flags); if ( priv->timer.function == NULL ) { elapsed = jiffies - priv->timerSetAt; if ( elapsed >= TLAN_TIMER_ACT_DELAY ) { TLan_DioWrite8( dev->base_addr, TLAN_LED_REG, TLAN_LED_LINK ); } else { priv->timer.function = &TLan_Timer; priv->timer.expires = priv->timerSetAt + TLAN_TIMER_ACT_DELAY; spin_unlock_irqrestore(&priv->lock, flags); add_timer( &priv->timer ); break; } } spin_unlock_irqrestore(&priv->lock, flags); break; default: break; } } /* TLan_Timer */ /***************************************************************************** ****************************************************************************** ThunderLAN Driver Adapter Related Routines ****************************************************************************** *****************************************************************************/ /*************************************************************** * TLan_ResetLists * * Returns: * Nothing * Parms: * dev The device structure with the list * stuctures to be reset. * * This routine sets the variables associated with managing * the TLAN lists to their initial values. * **************************************************************/ static void TLan_ResetLists( struct net_device *dev ) { TLanPrivateInfo *priv = netdev_priv(dev); int i; TLanList *list; dma_addr_t list_phys; struct sk_buff *skb; priv->txHead = 0; priv->txTail = 0; for ( i = 0; i < TLAN_NUM_TX_LISTS; i++ ) { list = priv->txList + i; list->cStat = TLAN_CSTAT_UNUSED; list->buffer[0].address = 0; list->buffer[2].count = 0; list->buffer[2].address = 0; list->buffer[8].address = 0; list->buffer[9].address = 0; } priv->rxHead = 0; priv->rxTail = TLAN_NUM_RX_LISTS - 1; for ( i = 0; i < TLAN_NUM_RX_LISTS; i++ ) { list = priv->rxList + i; list_phys = priv->rxListDMA + sizeof(TLanList) * i; list->cStat = TLAN_CSTAT_READY; list->frameSize = TLAN_MAX_FRAME_SIZE; list->buffer[0].count = TLAN_MAX_FRAME_SIZE | TLAN_LAST_BUFFER; skb = netdev_alloc_skb_ip_align(dev, TLAN_MAX_FRAME_SIZE + 5); if ( !skb ) { pr_err("TLAN: out of memory for received data.\n" ); break; } list->buffer[0].address = pci_map_single(priv->pciDev, skb->data, TLAN_MAX_FRAME_SIZE, PCI_DMA_FROMDEVICE); TLan_StoreSKB(list, skb); list->buffer[1].count = 0; list->buffer[1].address = 0; list->forward = list_phys + sizeof(TLanList); } /* in case ran out of memory early, clear bits */ while (i < TLAN_NUM_RX_LISTS) { TLan_StoreSKB(priv->rxList + i, NULL); ++i; } list->forward = 0; } /* TLan_ResetLists */ static void TLan_FreeLists( struct net_device *dev ) { TLanPrivateInfo *priv = netdev_priv(dev); int i; TLanList *list; struct sk_buff *skb; for ( i = 0; i < TLAN_NUM_TX_LISTS; i++ ) { list = priv->txList + i; skb = TLan_GetSKB(list); if ( skb ) { pci_unmap_single( priv->pciDev, list->buffer[0].address, max(skb->len, (unsigned int)TLAN_MIN_FRAME_SIZE), PCI_DMA_TODEVICE); dev_kfree_skb_any( skb ); list->buffer[8].address = 0; list->buffer[9].address = 0; } } for ( i = 0; i < TLAN_NUM_RX_LISTS; i++ ) { list = priv->rxList + i; skb = TLan_GetSKB(list); if ( skb ) { pci_unmap_single(priv->pciDev, list->buffer[0].address, TLAN_MAX_FRAME_SIZE, PCI_DMA_FROMDEVICE); dev_kfree_skb_any( skb ); list->buffer[8].address = 0; list->buffer[9].address = 0; } } } /* TLan_FreeLists */ /*************************************************************** * TLan_PrintDio * * Returns: * Nothing * Parms: * io_base Base IO port of the device of * which to print DIO registers. * * This function prints out all the internal (DIO) * registers of a TLAN chip. * **************************************************************/ static void TLan_PrintDio( u16 io_base ) { u32 data0, data1; int i; printk( "TLAN: Contents of internal registers for io base 0x%04hx.\n", io_base ); printk( "TLAN: Off. +0 +4\n" ); for ( i = 0; i < 0x4C; i+= 8 ) { data0 = TLan_DioRead32( io_base, i ); data1 = TLan_DioRead32( io_base, i + 0x4 ); printk( "TLAN: 0x%02x 0x%08x 0x%08x\n", i, data0, data1 ); } } /* TLan_PrintDio */ /*************************************************************** * TLan_PrintList * * Returns: * Nothing * Parms: * list A pointer to the TLanList structure to * be printed. * type A string to designate type of list, * "Rx" or "Tx". * num The index of the list. * * This function prints out the contents of the list * pointed to by the list parameter. * **************************************************************/ static void TLan_PrintList( TLanList *list, char *type, int num) { int i; printk( "TLAN: %s List %d at %p\n", type, num, list ); printk( "TLAN: Forward = 0x%08x\n", list->forward ); printk( "TLAN: CSTAT = 0x%04hx\n", list->cStat ); printk( "TLAN: Frame Size = 0x%04hx\n", list->frameSize ); /* for ( i = 0; i < 10; i++ ) { */ for ( i = 0; i < 2; i++ ) { printk( "TLAN: Buffer[%d].count, addr = 0x%08x, 0x%08x\n", i, list->buffer[i].count, list->buffer[i].address ); } } /* TLan_PrintList */ /*************************************************************** * TLan_ReadAndClearStats * * Returns: * Nothing * Parms: * dev Pointer to device structure of adapter * to which to read stats. * record Flag indicating whether to add * * This functions reads all the internal status registers * of the TLAN chip, which clears them as a side effect. * It then either adds the values to the device's status * struct, or discards them, depending on whether record * is TLAN_RECORD (!=0) or TLAN_IGNORE (==0). * **************************************************************/ static void TLan_ReadAndClearStats( struct net_device *dev, int record ) { u32 tx_good, tx_under; u32 rx_good, rx_over; u32 def_tx, crc, code; u32 multi_col, single_col; u32 excess_col, late_col, loss; outw( TLAN_GOOD_TX_FRMS, dev->base_addr + TLAN_DIO_ADR ); tx_good = inb( dev->base_addr + TLAN_DIO_DATA ); tx_good += inb( dev->base_addr + TLAN_DIO_DATA + 1 ) << 8; tx_good += inb( dev->base_addr + TLAN_DIO_DATA + 2 ) << 16; tx_under = inb( dev->base_addr + TLAN_DIO_DATA + 3 ); outw( TLAN_GOOD_RX_FRMS, dev->base_addr + TLAN_DIO_ADR ); rx_good = inb( dev->base_addr + TLAN_DIO_DATA ); rx_good += inb( dev->base_addr + TLAN_DIO_DATA + 1 ) << 8; rx_good += inb( dev->base_addr + TLAN_DIO_DATA + 2 ) << 16; rx_over = inb( dev->base_addr + TLAN_DIO_DATA + 3 ); outw( TLAN_DEFERRED_TX, dev->base_addr + TLAN_DIO_ADR ); def_tx = inb( dev->base_addr + TLAN_DIO_DATA ); def_tx += inb( dev->base_addr + TLAN_DIO_DATA + 1 ) << 8; crc = inb( dev->base_addr + TLAN_DIO_DATA + 2 ); code = inb( dev->base_addr + TLAN_DIO_DATA + 3 ); outw( TLAN_MULTICOL_FRMS, dev->base_addr + TLAN_DIO_ADR ); multi_col = inb( dev->base_addr + TLAN_DIO_DATA ); multi_col += inb( dev->base_addr + TLAN_DIO_DATA + 1 ) << 8; single_col = inb( dev->base_addr + TLAN_DIO_DATA + 2 ); single_col += inb( dev->base_addr + TLAN_DIO_DATA + 3 ) << 8; outw( TLAN_EXCESSCOL_FRMS, dev->base_addr + TLAN_DIO_ADR ); excess_col = inb( dev->base_addr + TLAN_DIO_DATA ); late_col = inb( dev->base_addr + TLAN_DIO_DATA + 1 ); loss = inb( dev->base_addr + TLAN_DIO_DATA + 2 ); if ( record ) { dev->stats.rx_packets += rx_good; dev->stats.rx_errors += rx_over + crc + code; dev->stats.tx_packets += tx_good; dev->stats.tx_errors += tx_under + loss; dev->stats.collisions += multi_col + single_col + excess_col + late_col; dev->stats.rx_over_errors += rx_over; dev->stats.rx_crc_errors += crc; dev->stats.rx_frame_errors += code; dev->stats.tx_aborted_errors += tx_under; dev->stats.tx_carrier_errors += loss; } } /* TLan_ReadAndClearStats */ /*************************************************************** * TLan_Reset * * Returns: * 0 * Parms: * dev Pointer to device structure of adapter * to be reset. * * This function resets the adapter and it's physical * device. See Chap. 3, pp. 9-10 of the "ThunderLAN * Programmer's Guide" for details. The routine tries to * implement what is detailed there, though adjustments * have been made. * **************************************************************/ static void TLan_ResetAdapter( struct net_device *dev ) { TLanPrivateInfo *priv = netdev_priv(dev); int i; u32 addr; u32 data; u8 data8; priv->tlanFullDuplex = false; priv->phyOnline=0; netif_carrier_off(dev); /* 1. Assert reset bit. */ data = inl(dev->base_addr + TLAN_HOST_CMD); data |= TLAN_HC_AD_RST; outl(data, dev->base_addr + TLAN_HOST_CMD); udelay(1000); /* 2. Turn off interrupts. ( Probably isn't necessary ) */ data = inl(dev->base_addr + TLAN_HOST_CMD); data |= TLAN_HC_INT_OFF; outl(data, dev->base_addr + TLAN_HOST_CMD); /* 3. Clear AREGs and HASHs. */ for ( i = TLAN_AREG_0; i <= TLAN_HASH_2; i += 4 ) { TLan_DioWrite32( dev->base_addr, (u16) i, 0 ); } /* 4. Setup NetConfig register. */ data = TLAN_NET_CFG_1FRAG | TLAN_NET_CFG_1CHAN | TLAN_NET_CFG_PHY_EN; TLan_DioWrite16( dev->base_addr, TLAN_NET_CONFIG, (u16) data ); /* 5. Load Ld_Tmr and Ld_Thr in HOST_CMD. */ outl( TLAN_HC_LD_TMR | 0x3f, dev->base_addr + TLAN_HOST_CMD ); outl( TLAN_HC_LD_THR | 0x9, dev->base_addr + TLAN_HOST_CMD ); /* 6. Unreset the MII by setting NMRST (in NetSio) to 1. */ outw( TLAN_NET_SIO, dev->base_addr + TLAN_DIO_ADR ); addr = dev->base_addr + TLAN_DIO_DATA + TLAN_NET_SIO; TLan_SetBit( TLAN_NET_SIO_NMRST, addr ); /* 7. Setup the remaining registers. */ if ( priv->tlanRev >= 0x30 ) { data8 = TLAN_ID_TX_EOC | TLAN_ID_RX_EOC; TLan_DioWrite8( dev->base_addr, TLAN_INT_DIS, data8 ); } TLan_PhyDetect( dev ); data = TLAN_NET_CFG_1FRAG | TLAN_NET_CFG_1CHAN; if ( priv->adapter->flags & TLAN_ADAPTER_BIT_RATE_PHY ) { data |= TLAN_NET_CFG_BIT; if ( priv->aui == 1 ) { TLan_DioWrite8( dev->base_addr, TLAN_ACOMMIT, 0x0a ); } else if ( priv->duplex == TLAN_DUPLEX_FULL ) { TLan_DioWrite8( dev->base_addr, TLAN_ACOMMIT, 0x00 ); priv->tlanFullDuplex = true; } else { TLan_DioWrite8( dev->base_addr, TLAN_ACOMMIT, 0x08 ); } } if ( priv->phyNum == 0 ) { data |= TLAN_NET_CFG_PHY_EN; } TLan_DioWrite16( dev->base_addr, TLAN_NET_CONFIG, (u16) data ); if ( priv->adapter->flags & TLAN_ADAPTER_UNMANAGED_PHY ) { TLan_FinishReset( dev ); } else { TLan_PhyPowerDown( dev ); } } /* TLan_ResetAdapter */ static void TLan_FinishReset( struct net_device *dev ) { TLanPrivateInfo *priv = netdev_priv(dev); u8 data; u32 phy; u8 sio; u16 status; u16 partner; u16 tlphy_ctl; u16 tlphy_par; u16 tlphy_id1, tlphy_id2; int i; phy = priv->phy[priv->phyNum]; data = TLAN_NET_CMD_NRESET | TLAN_NET_CMD_NWRAP; if ( priv->tlanFullDuplex ) { data |= TLAN_NET_CMD_DUPLEX; } TLan_DioWrite8( dev->base_addr, TLAN_NET_CMD, data ); data = TLAN_NET_MASK_MASK4 | TLAN_NET_MASK_MASK5; if ( priv->phyNum == 0 ) { data |= TLAN_NET_MASK_MASK7; } TLan_DioWrite8( dev->base_addr, TLAN_NET_MASK, data ); TLan_DioWrite16( dev->base_addr, TLAN_MAX_RX, ((1536)+7)&~7 ); TLan_MiiReadReg( dev, phy, MII_GEN_ID_HI, &tlphy_id1 ); TLan_MiiReadReg( dev, phy, MII_GEN_ID_LO, &tlphy_id2 ); if ( ( priv->adapter->flags & TLAN_ADAPTER_UNMANAGED_PHY ) || ( priv->aui ) ) { status = MII_GS_LINK; printk( "TLAN: %s: Link forced.\n", dev->name ); } else { TLan_MiiReadReg( dev, phy, MII_GEN_STS, &status ); udelay( 1000 ); TLan_MiiReadReg( dev, phy, MII_GEN_STS, &status ); if ( (status & MII_GS_LINK) && /* We only support link info on Nat.Sem. PHY's */ (tlphy_id1 == NAT_SEM_ID1) && (tlphy_id2 == NAT_SEM_ID2) ) { TLan_MiiReadReg( dev, phy, MII_AN_LPA, &partner ); TLan_MiiReadReg( dev, phy, TLAN_TLPHY_PAR, &tlphy_par ); printk( "TLAN: %s: Link active with ", dev->name ); if (!(tlphy_par & TLAN_PHY_AN_EN_STAT)) { printk( "forced 10%sMbps %s-Duplex\n", tlphy_par & TLAN_PHY_SPEED_100 ? "" : "0", tlphy_par & TLAN_PHY_DUPLEX_FULL ? "Full" : "Half"); } else { printk( "AutoNegotiation enabled, at 10%sMbps %s-Duplex\n", tlphy_par & TLAN_PHY_SPEED_100 ? "" : "0", tlphy_par & TLAN_PHY_DUPLEX_FULL ? "Full" : "Half"); printk("TLAN: Partner capability: "); for (i = 5; i <= 10; i++) if (partner & (1<<i)) printk("%s",media[i-5]); printk("\n"); } TLan_DioWrite8( dev->base_addr, TLAN_LED_REG, TLAN_LED_LINK ); #ifdef MONITOR /* We have link beat..for now anyway */ priv->link = 1; /*Enabling link beat monitoring */ TLan_SetTimer( dev, (10*HZ), TLAN_TIMER_LINK_BEAT ); #endif } else if (status & MII_GS_LINK) { printk( "TLAN: %s: Link active\n", dev->name ); TLan_DioWrite8( dev->base_addr, TLAN_LED_REG, TLAN_LED_LINK ); } } if ( priv->phyNum == 0 ) { TLan_MiiReadReg( dev, phy, TLAN_TLPHY_CTL, &tlphy_ctl ); tlphy_ctl |= TLAN_TC_INTEN; TLan_MiiWriteReg( dev, phy, TLAN_TLPHY_CTL, tlphy_ctl ); sio = TLan_DioRead8( dev->base_addr, TLAN_NET_SIO ); sio |= TLAN_NET_SIO_MINTEN; TLan_DioWrite8( dev->base_addr, TLAN_NET_SIO, sio ); } if ( status & MII_GS_LINK ) { TLan_SetMac( dev, 0, dev->dev_addr ); priv->phyOnline = 1; outb( ( TLAN_HC_INT_ON >> 8 ), dev->base_addr + TLAN_HOST_CMD + 1 ); if ( debug >= 1 && debug != TLAN_DEBUG_PROBE ) { outb( ( TLAN_HC_REQ_INT >> 8 ), dev->base_addr + TLAN_HOST_CMD + 1 ); } outl( priv->rxListDMA, dev->base_addr + TLAN_CH_PARM ); outl( TLAN_HC_GO | TLAN_HC_RT, dev->base_addr + TLAN_HOST_CMD ); netif_carrier_on(dev); } else { printk( "TLAN: %s: Link inactive, will retry in 10 secs...\n", dev->name ); TLan_SetTimer( dev, (10*HZ), TLAN_TIMER_FINISH_RESET ); return; } TLan_SetMulticastList(dev); } /* TLan_FinishReset */ /*************************************************************** * TLan_SetMac * * Returns: * Nothing * Parms: * dev Pointer to device structure of adapter * on which to change the AREG. * areg The AREG to set the address in (0 - 3). * mac A pointer to an array of chars. Each * element stores one byte of the address. * IE, it isn't in ascii. * * This function transfers a MAC address to one of the * TLAN AREGs (address registers). The TLAN chip locks * the register on writing to offset 0 and unlocks the * register after writing to offset 5. If NULL is passed * in mac, then the AREG is filled with 0's. * **************************************************************/ static void TLan_SetMac( struct net_device *dev, int areg, char *mac ) { int i; areg *= 6; if ( mac != NULL ) { for ( i = 0; i < 6; i++ ) TLan_DioWrite8( dev->base_addr, TLAN_AREG_0 + areg + i, mac[i] ); } else { for ( i = 0; i < 6; i++ ) TLan_DioWrite8( dev->base_addr, TLAN_AREG_0 + areg + i, 0 ); } } /* TLan_SetMac */ /***************************************************************************** ****************************************************************************** ThunderLAN Driver PHY Layer Routines ****************************************************************************** *****************************************************************************/ /********************************************************************* * TLan_PhyPrint * * Returns: * Nothing * Parms: * dev A pointer to the device structure of the * TLAN device having the PHYs to be detailed. * * This function prints the registers a PHY (aka transceiver). * ********************************************************************/ static void TLan_PhyPrint( struct net_device *dev ) { TLanPrivateInfo *priv = netdev_priv(dev); u16 i, data0, data1, data2, data3, phy; phy = priv->phy[priv->phyNum]; if ( priv->adapter->flags & TLAN_ADAPTER_UNMANAGED_PHY ) { printk( "TLAN: Device %s, Unmanaged PHY.\n", dev->name ); } else if ( phy <= TLAN_PHY_MAX_ADDR ) { printk( "TLAN: Device %s, PHY 0x%02x.\n", dev->name, phy ); printk( "TLAN: Off. +0 +1 +2 +3 \n" ); for ( i = 0; i < 0x20; i+= 4 ) { printk( "TLAN: 0x%02x", i ); TLan_MiiReadReg( dev, phy, i, &data0 ); printk( " 0x%04hx", data0 ); TLan_MiiReadReg( dev, phy, i + 1, &data1 ); printk( " 0x%04hx", data1 ); TLan_MiiReadReg( dev, phy, i + 2, &data2 ); printk( " 0x%04hx", data2 ); TLan_MiiReadReg( dev, phy, i + 3, &data3 ); printk( " 0x%04hx\n", data3 ); } } else { printk( "TLAN: Device %s, Invalid PHY.\n", dev->name ); } } /* TLan_PhyPrint */ /********************************************************************* * TLan_PhyDetect * * Returns: * Nothing * Parms: * dev A pointer to the device structure of the adapter * for which the PHY needs determined. * * So far I've found that adapters which have external PHYs * may also use the internal PHY for part of the functionality. * (eg, AUI/Thinnet). This function finds out if this TLAN * chip has an internal PHY, and then finds the first external * PHY (starting from address 0) if it exists). * ********************************************************************/ static void TLan_PhyDetect( struct net_device *dev ) { TLanPrivateInfo *priv = netdev_priv(dev); u16 control; u16 hi; u16 lo; u32 phy; if ( priv->adapter->flags & TLAN_ADAPTER_UNMANAGED_PHY ) { priv->phyNum = 0xFFFF; return; } TLan_MiiReadReg( dev, TLAN_PHY_MAX_ADDR, MII_GEN_ID_HI, &hi ); if ( hi != 0xFFFF ) { priv->phy[0] = TLAN_PHY_MAX_ADDR; } else { priv->phy[0] = TLAN_PHY_NONE; } priv->phy[1] = TLAN_PHY_NONE; for ( phy = 0; phy <= TLAN_PHY_MAX_ADDR; phy++ ) { TLan_MiiReadReg( dev, phy, MII_GEN_CTL, &control ); TLan_MiiReadReg( dev, phy, MII_GEN_ID_HI, &hi ); TLan_MiiReadReg( dev, phy, MII_GEN_ID_LO, &lo ); if ( ( control != 0xFFFF ) || ( hi != 0xFFFF ) || ( lo != 0xFFFF ) ) { TLAN_DBG( TLAN_DEBUG_GNRL, "PHY found at %02x %04x %04x %04x\n", phy, control, hi, lo ); if ( ( priv->phy[1] == TLAN_PHY_NONE ) && ( phy != TLAN_PHY_MAX_ADDR ) ) { priv->phy[1] = phy; } } } if ( priv->phy[1] != TLAN_PHY_NONE ) { priv->phyNum = 1; } else if ( priv->phy[0] != TLAN_PHY_NONE ) { priv->phyNum = 0; } else { printk( "TLAN: Cannot initialize device, no PHY was found!\n" ); } } /* TLan_PhyDetect */ static void TLan_PhyPowerDown( struct net_device *dev ) { TLanPrivateInfo *priv = netdev_priv(dev); u16 value; TLAN_DBG( TLAN_DEBUG_GNRL, "%s: Powering down PHY(s).\n", dev->name ); value = MII_GC_PDOWN | MII_GC_LOOPBK | MII_GC_ISOLATE; TLan_MiiSync( dev->base_addr ); TLan_MiiWriteReg( dev, priv->phy[priv->phyNum], MII_GEN_CTL, value ); if ( ( priv->phyNum == 0 ) && ( priv->phy[1] != TLAN_PHY_NONE ) && ( ! ( priv->adapter->flags & TLAN_ADAPTER_USE_INTERN_10 ) ) ) { TLan_MiiSync( dev->base_addr ); TLan_MiiWriteReg( dev, priv->phy[1], MII_GEN_CTL, value ); } /* Wait for 50 ms and powerup * This is abitrary. It is intended to make sure the * transceiver settles. */ TLan_SetTimer( dev, (HZ/20), TLAN_TIMER_PHY_PUP ); } /* TLan_PhyPowerDown */ static void TLan_PhyPowerUp( struct net_device *dev ) { TLanPrivateInfo *priv = netdev_priv(dev); u16 value; TLAN_DBG( TLAN_DEBUG_GNRL, "%s: Powering up PHY.\n", dev->name ); TLan_MiiSync( dev->base_addr ); value = MII_GC_LOOPBK; TLan_MiiWriteReg( dev, priv->phy[priv->phyNum], MII_GEN_CTL, value ); TLan_MiiSync(dev->base_addr); /* Wait for 500 ms and reset the * transceiver. The TLAN docs say both 50 ms and * 500 ms, so do the longer, just in case. */ TLan_SetTimer( dev, (HZ/20), TLAN_TIMER_PHY_RESET ); } /* TLan_PhyPowerUp */ static void TLan_PhyReset( struct net_device *dev ) { TLanPrivateInfo *priv = netdev_priv(dev); u16 phy; u16 value; phy = priv->phy[priv->phyNum]; TLAN_DBG( TLAN_DEBUG_GNRL, "%s: Reseting PHY.\n", dev->name ); TLan_MiiSync( dev->base_addr ); value = MII_GC_LOOPBK | MII_GC_RESET; TLan_MiiWriteReg( dev, phy, MII_GEN_CTL, value ); TLan_MiiReadReg( dev, phy, MII_GEN_CTL, &value ); while ( value & MII_GC_RESET ) { TLan_MiiReadReg( dev, phy, MII_GEN_CTL, &value ); } /* Wait for 500 ms and initialize. * I don't remember why I wait this long. * I've changed this to 50ms, as it seems long enough. */ TLan_SetTimer( dev, (HZ/20), TLAN_TIMER_PHY_START_LINK ); } /* TLan_PhyReset */ static void TLan_PhyStartLink( struct net_device *dev ) { TLanPrivateInfo *priv = netdev_priv(dev); u16 ability; u16 control; u16 data; u16 phy; u16 status; u16 tctl; phy = priv->phy[priv->phyNum]; TLAN_DBG( TLAN_DEBUG_GNRL, "%s: Trying to activate link.\n", dev->name ); TLan_MiiReadReg( dev, phy, MII_GEN_STS, &status ); TLan_MiiReadReg( dev, phy, MII_GEN_STS, &ability ); if ( ( status & MII_GS_AUTONEG ) && ( ! priv->aui ) ) { ability = status >> 11; if ( priv->speed == TLAN_SPEED_10 && priv->duplex == TLAN_DUPLEX_HALF) { TLan_MiiWriteReg( dev, phy, MII_GEN_CTL, 0x0000); } else if ( priv->speed == TLAN_SPEED_10 && priv->duplex == TLAN_DUPLEX_FULL) { priv->tlanFullDuplex = true; TLan_MiiWriteReg( dev, phy, MII_GEN_CTL, 0x0100); } else if ( priv->speed == TLAN_SPEED_100 && priv->duplex == TLAN_DUPLEX_HALF) { TLan_MiiWriteReg( dev, phy, MII_GEN_CTL, 0x2000); } else if ( priv->speed == TLAN_SPEED_100 && priv->duplex == TLAN_DUPLEX_FULL) { priv->tlanFullDuplex = true; TLan_MiiWriteReg( dev, phy, MII_GEN_CTL, 0x2100); } else { /* Set Auto-Neg advertisement */ TLan_MiiWriteReg( dev, phy, MII_AN_ADV, (ability << 5) | 1); /* Enablee Auto-Neg */ TLan_MiiWriteReg( dev, phy, MII_GEN_CTL, 0x1000 ); /* Restart Auto-Neg */ TLan_MiiWriteReg( dev, phy, MII_GEN_CTL, 0x1200 ); /* Wait for 4 sec for autonegotiation * to complete. The max spec time is less than this * but the card need additional time to start AN. * .5 sec should be plenty extra. */ printk( "TLAN: %s: Starting autonegotiation.\n", dev->name ); TLan_SetTimer( dev, (2*HZ), TLAN_TIMER_PHY_FINISH_AN ); return; } } if ( ( priv->aui ) && ( priv->phyNum != 0 ) ) { priv->phyNum = 0; data = TLAN_NET_CFG_1FRAG | TLAN_NET_CFG_1CHAN | TLAN_NET_CFG_PHY_EN; TLan_DioWrite16( dev->base_addr, TLAN_NET_CONFIG, data ); TLan_SetTimer( dev, (40*HZ/1000), TLAN_TIMER_PHY_PDOWN ); return; } else if ( priv->phyNum == 0 ) { control = 0; TLan_MiiReadReg( dev, phy, TLAN_TLPHY_CTL, &tctl ); if ( priv->aui ) { tctl |= TLAN_TC_AUISEL; } else { tctl &= ~TLAN_TC_AUISEL; if ( priv->duplex == TLAN_DUPLEX_FULL ) { control |= MII_GC_DUPLEX; priv->tlanFullDuplex = true; } if ( priv->speed == TLAN_SPEED_100 ) { control |= MII_GC_SPEEDSEL; } } TLan_MiiWriteReg( dev, phy, MII_GEN_CTL, control ); TLan_MiiWriteReg( dev, phy, TLAN_TLPHY_CTL, tctl ); } /* Wait for 2 sec to give the transceiver time * to establish link. */ TLan_SetTimer( dev, (4*HZ), TLAN_TIMER_FINISH_RESET ); } /* TLan_PhyStartLink */ static void TLan_PhyFinishAutoNeg( struct net_device *dev ) { TLanPrivateInfo *priv = netdev_priv(dev); u16 an_adv; u16 an_lpa; u16 data; u16 mode; u16 phy; u16 status; phy = priv->phy[priv->phyNum]; TLan_MiiReadReg( dev, phy, MII_GEN_STS, &status ); udelay( 1000 ); TLan_MiiReadReg( dev, phy, MII_GEN_STS, &status ); if ( ! ( status & MII_GS_AUTOCMPLT ) ) { /* Wait for 8 sec to give the process * more time. Perhaps we should fail after a while. */ if (!priv->neg_be_verbose++) { pr_info("TLAN: Giving autonegotiation more time.\n"); pr_info("TLAN: Please check that your adapter has\n"); pr_info("TLAN: been properly connected to a HUB or Switch.\n"); pr_info("TLAN: Trying to establish link in the background...\n"); } TLan_SetTimer( dev, (8*HZ), TLAN_TIMER_PHY_FINISH_AN ); return; } printk( "TLAN: %s: Autonegotiation complete.\n", dev->name ); TLan_MiiReadReg( dev, phy, MII_AN_ADV, &an_adv ); TLan_MiiReadReg( dev, phy, MII_AN_LPA, &an_lpa ); mode = an_adv & an_lpa & 0x03E0; if ( mode & 0x0100 ) { priv->tlanFullDuplex = true; } else if ( ! ( mode & 0x0080 ) && ( mode & 0x0040 ) ) { priv->tlanFullDuplex = true; } if ( ( ! ( mode & 0x0180 ) ) && ( priv->adapter->flags & TLAN_ADAPTER_USE_INTERN_10 ) && ( priv->phyNum != 0 ) ) { priv->phyNum = 0; data = TLAN_NET_CFG_1FRAG | TLAN_NET_CFG_1CHAN | TLAN_NET_CFG_PHY_EN; TLan_DioWrite16( dev->base_addr, TLAN_NET_CONFIG, data ); TLan_SetTimer( dev, (400*HZ/1000), TLAN_TIMER_PHY_PDOWN ); return; } if ( priv->phyNum == 0 ) { if ( ( priv->duplex == TLAN_DUPLEX_FULL ) || ( an_adv & an_lpa & 0x0040 ) ) { TLan_MiiWriteReg( dev, phy, MII_GEN_CTL, MII_GC_AUTOENB | MII_GC_DUPLEX ); pr_info("TLAN: Starting internal PHY with FULL-DUPLEX\n" ); } else { TLan_MiiWriteReg( dev, phy, MII_GEN_CTL, MII_GC_AUTOENB ); pr_info( "TLAN: Starting internal PHY with HALF-DUPLEX\n" ); } } /* Wait for 100 ms. No reason in partiticular. */ TLan_SetTimer( dev, (HZ/10), TLAN_TIMER_FINISH_RESET ); } /* TLan_PhyFinishAutoNeg */ #ifdef MONITOR /********************************************************************* * * TLan_phyMonitor * * Returns: * None * * Params: * dev The device structure of this device. * * * This function monitors PHY condition by reading the status * register via the MII bus. This can be used to give info * about link changes (up/down), and possible switch to alternate * media. * * ******************************************************************/ void TLan_PhyMonitor( struct net_device *dev ) { TLanPrivateInfo *priv = netdev_priv(dev); u16 phy; u16 phy_status; phy = priv->phy[priv->phyNum]; /* Get PHY status register */ TLan_MiiReadReg( dev, phy, MII_GEN_STS, &phy_status ); /* Check if link has been lost */ if (!(phy_status & MII_GS_LINK)) { if (priv->link) { priv->link = 0; printk(KERN_DEBUG "TLAN: %s has lost link\n", dev->name); netif_carrier_off(dev); TLan_SetTimer( dev, (2*HZ), TLAN_TIMER_LINK_BEAT ); return; } } /* Link restablished? */ if ((phy_status & MII_GS_LINK) && !priv->link) { priv->link = 1; printk(KERN_DEBUG "TLAN: %s has reestablished link\n", dev->name); netif_carrier_on(dev); } /* Setup a new monitor */ TLan_SetTimer( dev, (2*HZ), TLAN_TIMER_LINK_BEAT ); } #endif /* MONITOR */ /***************************************************************************** ****************************************************************************** ThunderLAN Driver MII Routines These routines are based on the information in Chap. 2 of the "ThunderLAN Programmer's Guide", pp. 15-24. ****************************************************************************** *****************************************************************************/ /*************************************************************** * TLan_MiiReadReg * * Returns: * false if ack received ok * true if no ack received or other error * * Parms: * dev The device structure containing * The io address and interrupt count * for this device. * phy The address of the PHY to be queried. * reg The register whose contents are to be * retrieved. * val A pointer to a variable to store the * retrieved value. * * This function uses the TLAN's MII bus to retrieve the contents * of a given register on a PHY. It sends the appropriate info * and then reads the 16-bit register value from the MII bus via * the TLAN SIO register. * **************************************************************/ static bool TLan_MiiReadReg( struct net_device *dev, u16 phy, u16 reg, u16 *val ) { u8 nack; u16 sio, tmp; u32 i; bool err; int minten; TLanPrivateInfo *priv = netdev_priv(dev); unsigned long flags = 0; err = false; outw(TLAN_NET_SIO, dev->base_addr + TLAN_DIO_ADR); sio = dev->base_addr + TLAN_DIO_DATA + TLAN_NET_SIO; if (!in_irq()) spin_lock_irqsave(&priv->lock, flags); TLan_MiiSync(dev->base_addr); minten = TLan_GetBit( TLAN_NET_SIO_MINTEN, sio ); if ( minten ) TLan_ClearBit(TLAN_NET_SIO_MINTEN, sio); TLan_MiiSendData( dev->base_addr, 0x1, 2 ); /* Start ( 01b ) */ TLan_MiiSendData( dev->base_addr, 0x2, 2 ); /* Read ( 10b ) */ TLan_MiiSendData( dev->base_addr, phy, 5 ); /* Device # */ TLan_MiiSendData( dev->base_addr, reg, 5 ); /* Register # */ TLan_ClearBit(TLAN_NET_SIO_MTXEN, sio); /* Change direction */ TLan_ClearBit(TLAN_NET_SIO_MCLK, sio); /* Clock Idle bit */ TLan_SetBit(TLAN_NET_SIO_MCLK, sio); TLan_ClearBit(TLAN_NET_SIO_MCLK, sio); /* Wait 300ns */ nack = TLan_GetBit(TLAN_NET_SIO_MDATA, sio); /* Check for ACK */ TLan_SetBit(TLAN_NET_SIO_MCLK, sio); /* Finish ACK */ if (nack) { /* No ACK, so fake it */ for (i = 0; i < 16; i++) { TLan_ClearBit(TLAN_NET_SIO_MCLK, sio); TLan_SetBit(TLAN_NET_SIO_MCLK, sio); } tmp = 0xffff; err = true; } else { /* ACK, so read data */ for (tmp = 0, i = 0x8000; i; i >>= 1) { TLan_ClearBit(TLAN_NET_SIO_MCLK, sio); if (TLan_GetBit(TLAN_NET_SIO_MDATA, sio)) tmp |= i; TLan_SetBit(TLAN_NET_SIO_MCLK, sio); } } TLan_ClearBit(TLAN_NET_SIO_MCLK, sio); /* Idle cycle */ TLan_SetBit(TLAN_NET_SIO_MCLK, sio); if ( minten ) TLan_SetBit(TLAN_NET_SIO_MINTEN, sio); *val = tmp; if (!in_irq()) spin_unlock_irqrestore(&priv->lock, flags); return err; } /* TLan_MiiReadReg */ /*************************************************************** * TLan_MiiSendData * * Returns: * Nothing * Parms: * base_port The base IO port of the adapter in * question. * dev The address of the PHY to be queried. * data The value to be placed on the MII bus. * num_bits The number of bits in data that are to * be placed on the MII bus. * * This function sends on sequence of bits on the MII * configuration bus. * **************************************************************/ static void TLan_MiiSendData( u16 base_port, u32 data, unsigned num_bits ) { u16 sio; u32 i; if ( num_bits == 0 ) return; outw( TLAN_NET_SIO, base_port + TLAN_DIO_ADR ); sio = base_port + TLAN_DIO_DATA + TLAN_NET_SIO; TLan_SetBit( TLAN_NET_SIO_MTXEN, sio ); for ( i = ( 0x1 << ( num_bits - 1 ) ); i; i >>= 1 ) { TLan_ClearBit( TLAN_NET_SIO_MCLK, sio ); (void) TLan_GetBit( TLAN_NET_SIO_MCLK, sio ); if ( data & i ) TLan_SetBit( TLAN_NET_SIO_MDATA, sio ); else TLan_ClearBit( TLAN_NET_SIO_MDATA, sio ); TLan_SetBit( TLAN_NET_SIO_MCLK, sio ); (void) TLan_GetBit( TLAN_NET_SIO_MCLK, sio ); } } /* TLan_MiiSendData */ /*************************************************************** * TLan_MiiSync * * Returns: * Nothing * Parms: * base_port The base IO port of the adapter in * question. * * This functions syncs all PHYs in terms of the MII configuration * bus. * **************************************************************/ static void TLan_MiiSync( u16 base_port ) { int i; u16 sio; outw( TLAN_NET_SIO, base_port + TLAN_DIO_ADR ); sio = base_port + TLAN_DIO_DATA + TLAN_NET_SIO; TLan_ClearBit( TLAN_NET_SIO_MTXEN, sio ); for ( i = 0; i < 32; i++ ) { TLan_ClearBit( TLAN_NET_SIO_MCLK, sio ); TLan_SetBit( TLAN_NET_SIO_MCLK, sio ); } } /* TLan_MiiSync */ /*************************************************************** * TLan_MiiWriteReg * * Returns: * Nothing * Parms: * dev The device structure for the device * to write to. * phy The address of the PHY to be written to. * reg The register whose contents are to be * written. * val The value to be written to the register. * * This function uses the TLAN's MII bus to write the contents of a * given register on a PHY. It sends the appropriate info and then * writes the 16-bit register value from the MII configuration bus * via the TLAN SIO register. * **************************************************************/ static void TLan_MiiWriteReg( struct net_device *dev, u16 phy, u16 reg, u16 val ) { u16 sio; int minten; unsigned long flags = 0; TLanPrivateInfo *priv = netdev_priv(dev); outw(TLAN_NET_SIO, dev->base_addr + TLAN_DIO_ADR); sio = dev->base_addr + TLAN_DIO_DATA + TLAN_NET_SIO; if (!in_irq()) spin_lock_irqsave(&priv->lock, flags); TLan_MiiSync( dev->base_addr ); minten = TLan_GetBit( TLAN_NET_SIO_MINTEN, sio ); if ( minten ) TLan_ClearBit( TLAN_NET_SIO_MINTEN, sio ); TLan_MiiSendData( dev->base_addr, 0x1, 2 ); /* Start ( 01b ) */ TLan_MiiSendData( dev->base_addr, 0x1, 2 ); /* Write ( 01b ) */ TLan_MiiSendData( dev->base_addr, phy, 5 ); /* Device # */ TLan_MiiSendData( dev->base_addr, reg, 5 ); /* Register # */ TLan_MiiSendData( dev->base_addr, 0x2, 2 ); /* Send ACK */ TLan_MiiSendData( dev->base_addr, val, 16 ); /* Send Data */ TLan_ClearBit( TLAN_NET_SIO_MCLK, sio ); /* Idle cycle */ TLan_SetBit( TLAN_NET_SIO_MCLK, sio ); if ( minten ) TLan_SetBit( TLAN_NET_SIO_MINTEN, sio ); if (!in_irq()) spin_unlock_irqrestore(&priv->lock, flags); } /* TLan_MiiWriteReg */ /***************************************************************************** ****************************************************************************** ThunderLAN Driver Eeprom routines The Compaq Netelligent 10 and 10/100 cards use a Microchip 24C02A EEPROM. These functions are based on information in Microchip's data sheet. I don't know how well this functions will work with other EEPROMs. ****************************************************************************** *****************************************************************************/ /*************************************************************** * TLan_EeSendStart * * Returns: * Nothing * Parms: * io_base The IO port base address for the * TLAN device with the EEPROM to * use. * * This function sends a start cycle to an EEPROM attached * to a TLAN chip. * **************************************************************/ static void TLan_EeSendStart( u16 io_base ) { u16 sio; outw( TLAN_NET_SIO, io_base + TLAN_DIO_ADR ); sio = io_base + TLAN_DIO_DATA + TLAN_NET_SIO; TLan_SetBit( TLAN_NET_SIO_ECLOK, sio ); TLan_SetBit( TLAN_NET_SIO_EDATA, sio ); TLan_SetBit( TLAN_NET_SIO_ETXEN, sio ); TLan_ClearBit( TLAN_NET_SIO_EDATA, sio ); TLan_ClearBit( TLAN_NET_SIO_ECLOK, sio ); } /* TLan_EeSendStart */ /*************************************************************** * TLan_EeSendByte * * Returns: * If the correct ack was received, 0, otherwise 1 * Parms: io_base The IO port base address for the * TLAN device with the EEPROM to * use. * data The 8 bits of information to * send to the EEPROM. * stop If TLAN_EEPROM_STOP is passed, a * stop cycle is sent after the * byte is sent after the ack is * read. * * This function sends a byte on the serial EEPROM line, * driving the clock to send each bit. The function then * reverses transmission direction and reads an acknowledge * bit. * **************************************************************/ static int TLan_EeSendByte( u16 io_base, u8 data, int stop ) { int err; u8 place; u16 sio; outw( TLAN_NET_SIO, io_base + TLAN_DIO_ADR ); sio = io_base + TLAN_DIO_DATA + TLAN_NET_SIO; /* Assume clock is low, tx is enabled; */ for ( place = 0x80; place != 0; place >>= 1 ) { if ( place & data ) TLan_SetBit( TLAN_NET_SIO_EDATA, sio ); else TLan_ClearBit( TLAN_NET_SIO_EDATA, sio ); TLan_SetBit( TLAN_NET_SIO_ECLOK, sio ); TLan_ClearBit( TLAN_NET_SIO_ECLOK, sio ); } TLan_ClearBit( TLAN_NET_SIO_ETXEN, sio ); TLan_SetBit( TLAN_NET_SIO_ECLOK, sio ); err = TLan_GetBit( TLAN_NET_SIO_EDATA, sio ); TLan_ClearBit( TLAN_NET_SIO_ECLOK, sio ); TLan_SetBit( TLAN_NET_SIO_ETXEN, sio ); if ( ( ! err ) && stop ) { /* STOP, raise data while clock is high */ TLan_ClearBit( TLAN_NET_SIO_EDATA, sio ); TLan_SetBit( TLAN_NET_SIO_ECLOK, sio ); TLan_SetBit( TLAN_NET_SIO_EDATA, sio ); } return ( err ); } /* TLan_EeSendByte */ /*************************************************************** * TLan_EeReceiveByte * * Returns: * Nothing * Parms: * io_base The IO port base address for the * TLAN device with the EEPROM to * use. * data An address to a char to hold the * data sent from the EEPROM. * stop If TLAN_EEPROM_STOP is passed, a * stop cycle is sent after the * byte is received, and no ack is * sent. * * This function receives 8 bits of data from the EEPROM * over the serial link. It then sends and ack bit, or no * ack and a stop bit. This function is used to retrieve * data after the address of a byte in the EEPROM has been * sent. * **************************************************************/ static void TLan_EeReceiveByte( u16 io_base, u8 *data, int stop ) { u8 place; u16 sio; outw( TLAN_NET_SIO, io_base + TLAN_DIO_ADR ); sio = io_base + TLAN_DIO_DATA + TLAN_NET_SIO; *data = 0; /* Assume clock is low, tx is enabled; */ TLan_ClearBit( TLAN_NET_SIO_ETXEN, sio ); for ( place = 0x80; place; place >>= 1 ) { TLan_SetBit( TLAN_NET_SIO_ECLOK, sio ); if ( TLan_GetBit( TLAN_NET_SIO_EDATA, sio ) ) *data |= place; TLan_ClearBit( TLAN_NET_SIO_ECLOK, sio ); } TLan_SetBit( TLAN_NET_SIO_ETXEN, sio ); if ( ! stop ) { TLan_ClearBit( TLAN_NET_SIO_EDATA, sio ); /* Ack = 0 */ TLan_SetBit( TLAN_NET_SIO_ECLOK, sio ); TLan_ClearBit( TLAN_NET_SIO_ECLOK, sio ); } else { TLan_SetBit( TLAN_NET_SIO_EDATA, sio ); /* No ack = 1 (?) */ TLan_SetBit( TLAN_NET_SIO_ECLOK, sio ); TLan_ClearBit( TLAN_NET_SIO_ECLOK, sio ); /* STOP, raise data while clock is high */ TLan_ClearBit( TLAN_NET_SIO_EDATA, sio ); TLan_SetBit( TLAN_NET_SIO_ECLOK, sio ); TLan_SetBit( TLAN_NET_SIO_EDATA, sio ); } } /* TLan_EeReceiveByte */ /*************************************************************** * TLan_EeReadByte * * Returns: * No error = 0, else, the stage at which the error * occurred. * Parms: * io_base The IO port base address for the * TLAN device with the EEPROM to * use. * ee_addr The address of the byte in the * EEPROM whose contents are to be * retrieved. * data An address to a char to hold the * data obtained from the EEPROM. * * This function reads a byte of information from an byte * cell in the EEPROM. * **************************************************************/ static int TLan_EeReadByte( struct net_device *dev, u8 ee_addr, u8 *data ) { int err; TLanPrivateInfo *priv = netdev_priv(dev); unsigned long flags = 0; int ret=0; spin_lock_irqsave(&priv->lock, flags); TLan_EeSendStart( dev->base_addr ); err = TLan_EeSendByte( dev->base_addr, 0xA0, TLAN_EEPROM_ACK ); if (err) { ret=1; goto fail; } err = TLan_EeSendByte( dev->base_addr, ee_addr, TLAN_EEPROM_ACK ); if (err) { ret=2; goto fail; } TLan_EeSendStart( dev->base_addr ); err = TLan_EeSendByte( dev->base_addr, 0xA1, TLAN_EEPROM_ACK ); if (err) { ret=3; goto fail; } TLan_EeReceiveByte( dev->base_addr, data, TLAN_EEPROM_STOP ); fail: spin_unlock_irqrestore(&priv->lock, flags); return ret; } /* TLan_EeReadByte */