diff options
author | Jeremy Erickson <jerickso@cs.unc.edu> | 2012-08-30 14:50:14 -0400 |
---|---|---|
committer | Jeremy Erickson <jerickso@cs.unc.edu> | 2012-08-30 14:50:14 -0400 |
commit | 1583cb3ffb768cd93c1104ccc12562dd8eed7ba2 (patch) | |
tree | cf50e14012183653dbee706a45dd065b06be6007 | |
parent | 2d49efa8497aceda474122860b78e393838d2019 (diff) |
Initial support for C-FL with splitting
-rw-r--r-- | litmus/Makefile | 5 | ||||
-rw-r--r-- | litmus/sanitizegfl.pl | 11 | ||||
-rw-r--r-- | litmus/sched_cfl_split.c | 1027 |
3 files changed, 1041 insertions, 2 deletions
diff --git a/litmus/Makefile b/litmus/Makefile index 988cf7b6df89..b892f356f2be 100644 --- a/litmus/Makefile +++ b/litmus/Makefile | |||
@@ -11,7 +11,7 @@ obj-y = sched_plugin.o litmus.o \ | |||
11 | sync.o \ | 11 | sync.o \ |
12 | rt_domain.o \ | 12 | rt_domain.o \ |
13 | edf_common.o \ | 13 | edf_common.o \ |
14 | edf_split_common.o \ | 14 | edf_split_common.o \ |
15 | fdso.o \ | 15 | fdso.o \ |
16 | locking.o \ | 16 | locking.o \ |
17 | srp.o \ | 17 | srp.o \ |
@@ -19,7 +19,8 @@ obj-y = sched_plugin.o litmus.o \ | |||
19 | ctrldev.o \ | 19 | ctrldev.o \ |
20 | sched_gsn_edf.o \ | 20 | sched_gsn_edf.o \ |
21 | sched_gsn_edf_split.o \ | 21 | sched_gsn_edf_split.o \ |
22 | sched_gfl_split.o \ | 22 | sched_gfl_split.o \ |
23 | sched_cfl_split.o \ | ||
23 | sched_psn_edf.o | 24 | sched_psn_edf.o |
24 | 25 | ||
25 | obj-$(CONFIG_PLUGIN_CEDF) += sched_cedf.o | 26 | obj-$(CONFIG_PLUGIN_CEDF) += sched_cedf.o |
diff --git a/litmus/sanitizegfl.pl b/litmus/sanitizegfl.pl new file mode 100644 index 000000000000..aa28811ae46c --- /dev/null +++ b/litmus/sanitizegfl.pl | |||
@@ -0,0 +1,11 @@ | |||
1 | # A quick hack to allow diff to work between sched_gsn_edf.c and | ||
2 | # sched_gsn_edf_split.c | ||
3 | open INFILE, "<sched_gfl_split.c"; | ||
4 | open OUTFILE, ">sched_gfl_split_namechange.c"; | ||
5 | while (my $line = <INFILE>){ | ||
6 | $line =~ s/gflsplit/gsnedf/g; | ||
7 | $line =~ s/G-FL-split/GSN-EDF/g; | ||
8 | print OUTFILE $line; | ||
9 | } | ||
10 | close INFILE; | ||
11 | close OUTFILE; | ||
diff --git a/litmus/sched_cfl_split.c b/litmus/sched_cfl_split.c new file mode 100644 index 000000000000..6783b4c94366 --- /dev/null +++ b/litmus/sched_cfl_split.c | |||
@@ -0,0 +1,1027 @@ | |||
1 | /* | ||
2 | * litmus/sched_cfl_split.c | ||
3 | * | ||
4 | * Implementation of a clustered version of the G-FL scheduling algorithm, | ||
5 | * with job splitting. | ||
6 | * | ||
7 | * This implementation is based on G-FL-split: | ||
8 | * - CPUs are clustered around L2 or L3 caches. | ||
9 | * - Clusters topology is automatically detected (this is arch dependent | ||
10 | * and is working only on x86 at the moment --- and only with modern | ||
11 | * cpus that exports cpuid4 information) | ||
12 | * - The plugins _does not_ attempt to put tasks in the right cluster i.e. | ||
13 | * the programmer needs to be aware of the topology to place tasks | ||
14 | * in the desired cluster | ||
15 | * - default clustering is around L2 cache (cache index = 2) | ||
16 | * supported clusters are: L1 (private cache: pedf), L2, L3, ALL (all | ||
17 | * online_cpus are placed in a single cluster). | ||
18 | * | ||
19 | * For details on functions, take a look at sched_gsn_edf.c | ||
20 | * | ||
21 | * Currently, we do not support changes in the number of online cpus. | ||
22 | * If the num_online_cpus() dynamically changes, the plugin is broken. | ||
23 | * | ||
24 | * This version uses the simple approach and serializes all scheduling | ||
25 | * decisions by the use of a queue lock. This is probably not the | ||
26 | * best way to do it, but it should suffice for now. | ||
27 | */ | ||
28 | |||
29 | #include <linux/spinlock.h> | ||
30 | #include <linux/percpu.h> | ||
31 | #include <linux/sched.h> | ||
32 | #include <linux/slab.h> | ||
33 | |||
34 | #include <linux/module.h> | ||
35 | |||
36 | #include <litmus/litmus.h> | ||
37 | #include <litmus/jobs.h> | ||
38 | #include <litmus/preempt.h> | ||
39 | #include <litmus/sched_plugin.h> | ||
40 | #include <litmus/edf_split_common.h> | ||
41 | #include <litmus/sched_trace.h> | ||
42 | |||
43 | #include <litmus/clustered.h> | ||
44 | |||
45 | #include <litmus/bheap.h> | ||
46 | |||
47 | #ifdef CONFIG_SCHED_CPU_AFFINITY | ||
48 | #include <litmus/affinity.h> | ||
49 | #endif | ||
50 | |||
51 | /* to configure the cluster size */ | ||
52 | #include <litmus/litmus_proc.h> | ||
53 | #include <linux/uaccess.h> | ||
54 | |||
55 | /* Reference configuration variable. Determines which cache level is used to | ||
56 | * group CPUs into clusters. GLOBAL_CLUSTER, which is the default, means that | ||
57 | * all CPUs form a single cluster (just like G-FL). | ||
58 | */ | ||
59 | static enum cache_level cluster_config = GLOBAL_CLUSTER; | ||
60 | |||
61 | struct clusterdomain; | ||
62 | |||
63 | /* cpu_entry_t - maintain the linked and scheduled state | ||
64 | * | ||
65 | * A cpu also contains a pointer to the cflsplit_domain_t cluster | ||
66 | * that owns it (struct clusterdomain*) | ||
67 | */ | ||
68 | typedef struct { | ||
69 | int cpu; | ||
70 | struct clusterdomain* cluster; /* owning cluster */ | ||
71 | struct task_struct* linked; /* only RT tasks */ | ||
72 | struct task_struct* scheduled; /* only RT tasks */ | ||
73 | atomic_t will_schedule; /* prevent unneeded IPIs */ | ||
74 | struct bheap_node* hn; | ||
75 | struct hrtimer split_timer; | ||
76 | int timer_armed; | ||
77 | } cpu_entry_t; | ||
78 | |||
79 | /* one cpu_entry_t per CPU */ | ||
80 | DEFINE_PER_CPU(cpu_entry_t, cflsplit_cpu_entries); | ||
81 | |||
82 | #define set_will_schedule() \ | ||
83 | (atomic_set(&__get_cpu_var(cflsplit_cpu_entries).will_schedule, 1)) | ||
84 | #define clear_will_schedule() \ | ||
85 | (atomic_set(&__get_cpu_var(cflsplit_cpu_entries).will_schedule, 0)) | ||
86 | #define test_will_schedule(cpu) \ | ||
87 | (atomic_read(&per_cpu(cflsplit_cpu_entries, cpu).will_schedule)) | ||
88 | |||
89 | /* | ||
90 | * In C-FL-split there is a cflsplit domain _per_ cluster | ||
91 | * The number of clusters is dynamically determined accordingly to the | ||
92 | * total cpu number and the cluster size | ||
93 | */ | ||
94 | typedef struct clusterdomain { | ||
95 | /* rt_domain for this cluster */ | ||
96 | rt_domain_t domain; | ||
97 | /* cpus in this cluster */ | ||
98 | cpu_entry_t* *cpus; | ||
99 | /* map of this cluster cpus */ | ||
100 | cpumask_var_t cpu_map; | ||
101 | /* the cpus queue themselves according to priority in here */ | ||
102 | struct bheap_node *heap_node; | ||
103 | struct bheap cpu_heap; | ||
104 | /* lock for this cluster */ | ||
105 | #define cluster_lock domain.ready_lock | ||
106 | } cflsplit_domain_t; | ||
107 | |||
108 | /* a cflsplit_domain per cluster; allocation is done at init/activation time */ | ||
109 | cflsplit_domain_t *cflsplit; | ||
110 | |||
111 | #define remote_cluster(cpu) ((cflsplit_domain_t *) per_cpu(cflsplit_cpu_entries, cpu).cluster) | ||
112 | #define task_cpu_cluster(task) remote_cluster(get_partition(task)) | ||
113 | |||
114 | /* Uncomment WANT_ALL_SCHED_EVENTS if you want to see all scheduling | ||
115 | * decisions in the TRACE() log; uncomment VERBOSE_INIT for verbose | ||
116 | * information during the initialization of the plugin (e.g., topology) | ||
117 | #define WANT_ALL_SCHED_EVENTS | ||
118 | */ | ||
119 | #define VERBOSE_INIT | ||
120 | |||
121 | inline static int get_slice_num(struct task_struct* t) | ||
122 | { | ||
123 | int basic = ((t->rt_param.job_params.exec_time * | ||
124 | t->rt_param.task_params.split) / | ||
125 | t->rt_param.task_params.exec_cost) + 1; | ||
126 | if (basic <= t->rt_param.task_params.split){ | ||
127 | return basic; | ||
128 | } | ||
129 | else{ | ||
130 | /*Since we don't police budget, just leave where it's at.*/ | ||
131 | return t->rt_param.task_params.split; | ||
132 | } | ||
133 | } | ||
134 | |||
135 | /* Returns the appropriate subjob deadline.*/ | ||
136 | inline static lt_t get_proper_deadline(struct task_struct* t) | ||
137 | { | ||
138 | unsigned int num_cpus = num_online_cpus(); | ||
139 | return t->rt_param.job_params.release + | ||
140 | ((t->rt_param.task_params.period * get_slice_num(t)) | ||
141 | / t->rt_param.task_params.split) | ||
142 | /* G-FL correction */ | ||
143 | - (((num_cpus - 1) * t->rt_param.task_params.exec_cost) | ||
144 | / (num_cpus * t->rt_param.task_params.split)); | ||
145 | } | ||
146 | |||
147 | /* Tells us if the current deadline is too small.*/ | ||
148 | inline static int needs_deadline_move(struct task_struct* t) | ||
149 | { | ||
150 | BUG_ON(get_proper_deadline(t) < t->rt_param.job_params.subjob_deadline); | ||
151 | #ifdef CONFIG_LITMUS_LOCKING | ||
152 | return !is_in_crit_section(t) && | ||
153 | (get_proper_deadline(t) != | ||
154 | tsk_rt(t)->job_params.subjob_deadline); | ||
155 | #else | ||
156 | return get_proper_deadline(t) != tsk_rt(t)->job_params.subjob_deadline; | ||
157 | #endif | ||
158 | } | ||
159 | |||
160 | /*Returns execution time until the next deadline move. | ||
161 | * 0 means the task has no more deadline moves | ||
162 | */ | ||
163 | inline static lt_t time_to_next_move(struct task_struct* t) | ||
164 | { | ||
165 | if (get_slice_num(t) == t->rt_param.task_params.split){ | ||
166 | return 0; | ||
167 | } | ||
168 | /* +1 upper bounds ceiling, since integer division is floor*/ | ||
169 | return ((get_slice_num(t) * t->rt_param.task_params.exec_cost) | ||
170 | / t->rt_param.task_params.split) + 1 | ||
171 | - t->rt_param.job_params.exec_time; | ||
172 | } | ||
173 | |||
174 | /* Timer stuff - similar to budget.c. */ | ||
175 | static enum hrtimer_restart on_split_timeout(struct hrtimer *timer) | ||
176 | { | ||
177 | cpu_entry_t* st = container_of(timer, | ||
178 | cpu_entry_t, | ||
179 | split_timer); | ||
180 | |||
181 | unsigned long flags; | ||
182 | |||
183 | local_irq_save(flags); | ||
184 | TRACE("split timer fired.\n"); | ||
185 | st->timer_armed = 0; | ||
186 | /* Activate scheduler */ | ||
187 | litmus_reschedule_local(); | ||
188 | local_irq_restore(flags); | ||
189 | |||
190 | return HRTIMER_NORESTART; | ||
191 | } | ||
192 | |||
193 | static void cancel_split_timer(cpu_entry_t* ce) | ||
194 | { | ||
195 | int ret; | ||
196 | |||
197 | TRACE("cancelling split time.\n"); | ||
198 | |||
199 | /* Since interrupts are disabled and et->timer_armed is only | ||
200 | * modified locally, we do not need any locks. | ||
201 | */ | ||
202 | |||
203 | if (ce->timer_armed) { | ||
204 | ret = hrtimer_try_to_cancel(&ce->split_timer); | ||
205 | /* Should never be inactive. */ | ||
206 | BUG_ON(ret == 0); | ||
207 | /* Should never be running concurrently.*/ | ||
208 | BUG_ON(ret == -1); | ||
209 | |||
210 | ce->timer_armed = 0; | ||
211 | } | ||
212 | } | ||
213 | |||
214 | /* assumes called with IRQs off */ | ||
215 | static void arm_split_timer(cpu_entry_t *ce, | ||
216 | struct task_struct* t) | ||
217 | { | ||
218 | lt_t when_to_fire; | ||
219 | lt_t time_to_move; | ||
220 | TRACE_TASK(t, "arming split timer.\n"); | ||
221 | |||
222 | /* __hrtimer_start_range_ns() cancels the timer | ||
223 | * anyway, so we don't have to check whether it is still armed */ | ||
224 | |||
225 | /*We won't do any new deadline moves if the budget has been exhausted*/ | ||
226 | if (likely(!is_np(t) && (time_to_move = time_to_next_move(t)))) { | ||
227 | when_to_fire = litmus_clock() + time_to_move; | ||
228 | TRACE_TASK(t, "actually arming for %llu into the future\n", | ||
229 | time_to_move); | ||
230 | __hrtimer_start_range_ns(&ce->split_timer, | ||
231 | ns_to_ktime(when_to_fire), | ||
232 | 0 /* delta */, | ||
233 | HRTIMER_MODE_ABS_PINNED, | ||
234 | 0 /* no wakeup */); | ||
235 | ce->timer_armed = 1; | ||
236 | } | ||
237 | } | ||
238 | |||
239 | static int cpu_lower_prio(struct bheap_node *_a, struct bheap_node *_b) | ||
240 | { | ||
241 | cpu_entry_t *a, *b; | ||
242 | a = _a->value; | ||
243 | b = _b->value; | ||
244 | /* Note that a and b are inverted: we want the lowest-priority CPU at | ||
245 | * the top of the heap. | ||
246 | */ | ||
247 | return edf_split_higher_prio(b->linked, a->linked); | ||
248 | } | ||
249 | |||
250 | /* update_cpu_position - Move the cpu entry to the correct place to maintain | ||
251 | * order in the cpu queue. Caller must hold cflsplit lock. | ||
252 | */ | ||
253 | static void update_cpu_position(cpu_entry_t *entry) | ||
254 | { | ||
255 | cflsplit_domain_t *cluster = entry->cluster; | ||
256 | |||
257 | if (likely(bheap_node_in_heap(entry->hn))) | ||
258 | bheap_delete(cpu_lower_prio, | ||
259 | &cluster->cpu_heap, | ||
260 | entry->hn); | ||
261 | |||
262 | bheap_insert(cpu_lower_prio, &cluster->cpu_heap, entry->hn); | ||
263 | } | ||
264 | |||
265 | /* caller must hold cflsplit lock */ | ||
266 | static cpu_entry_t* lowest_prio_cpu(cflsplit_domain_t *cluster) | ||
267 | { | ||
268 | struct bheap_node* hn; | ||
269 | hn = bheap_peek(cpu_lower_prio, &cluster->cpu_heap); | ||
270 | return hn->value; | ||
271 | } | ||
272 | |||
273 | |||
274 | /* link_task_to_cpu - Update the link of a CPU. | ||
275 | * Handles the case where the to-be-linked task is already | ||
276 | * scheduled on a different CPU. | ||
277 | */ | ||
278 | static noinline void link_task_to_cpu(struct task_struct* linked, | ||
279 | cpu_entry_t *entry) | ||
280 | { | ||
281 | cpu_entry_t *sched; | ||
282 | struct task_struct* tmp; | ||
283 | int on_cpu; | ||
284 | |||
285 | BUG_ON(linked && !is_realtime(linked)); | ||
286 | |||
287 | /* Currently linked task is set to be unlinked. */ | ||
288 | if (entry->linked) { | ||
289 | entry->linked->rt_param.linked_on = NO_CPU; | ||
290 | } | ||
291 | |||
292 | /* Link new task to CPU. */ | ||
293 | if (linked) { | ||
294 | set_rt_flags(linked, RT_F_RUNNING); | ||
295 | /* handle task is already scheduled somewhere! */ | ||
296 | on_cpu = linked->rt_param.scheduled_on; | ||
297 | if (on_cpu != NO_CPU) { | ||
298 | sched = &per_cpu(cflsplit_cpu_entries, on_cpu); | ||
299 | /* this should only happen if not linked already */ | ||
300 | BUG_ON(sched->linked == linked); | ||
301 | |||
302 | /* If we are already scheduled on the CPU to which we | ||
303 | * wanted to link, we don't need to do the swap -- | ||
304 | * we just link ourselves to the CPU and depend on | ||
305 | * the caller to get things right. | ||
306 | */ | ||
307 | if (entry != sched) { | ||
308 | TRACE_TASK(linked, | ||
309 | "already scheduled on %d, updating link.\n", | ||
310 | sched->cpu); | ||
311 | tmp = sched->linked; | ||
312 | linked->rt_param.linked_on = sched->cpu; | ||
313 | sched->linked = linked; | ||
314 | update_cpu_position(sched); | ||
315 | linked = tmp; | ||
316 | } | ||
317 | } | ||
318 | if (linked) /* might be NULL due to swap */ | ||
319 | linked->rt_param.linked_on = entry->cpu; | ||
320 | } | ||
321 | entry->linked = linked; | ||
322 | #ifdef WANT_ALL_SCHED_EVENTS | ||
323 | if (linked) | ||
324 | TRACE_TASK(linked, "linked to %d.\n", entry->cpu); | ||
325 | else | ||
326 | TRACE("NULL linked to %d.\n", entry->cpu); | ||
327 | #endif | ||
328 | update_cpu_position(entry); | ||
329 | } | ||
330 | |||
331 | /* unlink - Make sure a task is not linked any longer to an entry | ||
332 | * where it was linked before. Must hold cflsplit_lock. | ||
333 | */ | ||
334 | static noinline void unlink(struct task_struct* t) | ||
335 | { | ||
336 | cpu_entry_t *entry; | ||
337 | |||
338 | if (t->rt_param.linked_on != NO_CPU) { | ||
339 | /* unlink */ | ||
340 | entry = &per_cpu(cflsplit_cpu_entries, t->rt_param.linked_on); | ||
341 | t->rt_param.linked_on = NO_CPU; | ||
342 | link_task_to_cpu(NULL, entry); | ||
343 | } else if (is_queued(t)) { | ||
344 | /* This is an interesting situation: t is scheduled, | ||
345 | * but was just recently unlinked. It cannot be | ||
346 | * linked anywhere else (because then it would have | ||
347 | * been relinked to this CPU), thus it must be in some | ||
348 | * queue. We must remove it from the list in this | ||
349 | * case. | ||
350 | * | ||
351 | * in C-FL-split case is should be somewhere in the queue for | ||
352 | * its domain, therefore and we can get the domain using | ||
353 | * task_cpu_cluster | ||
354 | */ | ||
355 | remove(&(task_cpu_cluster(t))->domain, t); | ||
356 | } | ||
357 | } | ||
358 | |||
359 | |||
360 | /* preempt - force a CPU to reschedule | ||
361 | */ | ||
362 | static void preempt(cpu_entry_t *entry) | ||
363 | { | ||
364 | preempt_if_preemptable(entry->scheduled, entry->cpu); | ||
365 | } | ||
366 | |||
367 | /* requeue - Put an unlinked task into gsn-edf domain. | ||
368 | * Caller must hold cflsplit_lock. | ||
369 | */ | ||
370 | static noinline void requeue(struct task_struct* task) | ||
371 | { | ||
372 | cflsplit_domain_t *cluster = task_cpu_cluster(task); | ||
373 | BUG_ON(!task); | ||
374 | /* sanity check before insertion */ | ||
375 | BUG_ON(is_queued(task)); | ||
376 | |||
377 | if (is_released(task, litmus_clock())) | ||
378 | __add_ready(&cluster->domain, task); | ||
379 | else { | ||
380 | /* it has got to wait */ | ||
381 | add_release(&cluster->domain, task); | ||
382 | } | ||
383 | } | ||
384 | |||
385 | #ifdef CONFIG_SCHED_CPU_AFFINITY | ||
386 | static cpu_entry_t* cflsplit_get_nearest_available_cpu( | ||
387 | cflsplit_domain_t *cluster, cpu_entry_t *start) | ||
388 | { | ||
389 | cpu_entry_t *affinity; | ||
390 | |||
391 | get_nearest_available_cpu(affinity, start, cflsplit_cpu_entries, | ||
392 | #ifdef CONFIG_RELEASE_MASTER | ||
393 | cluster->domain.release_master | ||
394 | #else | ||
395 | NO_CPU | ||
396 | #endif | ||
397 | ); | ||
398 | |||
399 | /* make sure CPU is in our cluster */ | ||
400 | if (affinity && cpu_isset(affinity->cpu, *cluster->cpu_map)) | ||
401 | return(affinity); | ||
402 | else | ||
403 | return(NULL); | ||
404 | } | ||
405 | #endif | ||
406 | |||
407 | |||
408 | /* check for any necessary preemptions */ | ||
409 | static void check_for_preemptions(cflsplit_domain_t *cluster) | ||
410 | { | ||
411 | struct task_struct *task; | ||
412 | cpu_entry_t *last; | ||
413 | |||
414 | for(last = lowest_prio_cpu(cluster); | ||
415 | edf_split_preemption_needed(&cluster->domain, last->linked); | ||
416 | last = lowest_prio_cpu(cluster)) { | ||
417 | /* preemption necessary */ | ||
418 | task = __take_ready(&cluster->domain); | ||
419 | TRACE("check_for_preemptions: attempting to link task %d to %d\n", | ||
420 | task->pid, last->cpu); | ||
421 | #ifdef CONFIG_SCHED_CPU_AFFINITY | ||
422 | { | ||
423 | cpu_entry_t *affinity = | ||
424 | cflsplit_get_nearest_available_cpu(cluster, | ||
425 | &per_cpu(cflsplit_cpu_entries, task_cpu(task))); | ||
426 | if(affinity) | ||
427 | last = affinity; | ||
428 | else if(last->linked) | ||
429 | requeue(last->linked); | ||
430 | } | ||
431 | #else | ||
432 | if (last->linked) | ||
433 | requeue(last->linked); | ||
434 | #endif | ||
435 | link_task_to_cpu(task, last); | ||
436 | preempt(last); | ||
437 | } | ||
438 | } | ||
439 | |||
440 | /* cflsplit_job_arrival: task is either resumed or released */ | ||
441 | static noinline void cflsplit_job_arrival(struct task_struct* task) | ||
442 | { | ||
443 | cflsplit_domain_t *cluster = task_cpu_cluster(task); | ||
444 | BUG_ON(!task); | ||
445 | |||
446 | requeue(task); | ||
447 | check_for_preemptions(cluster); | ||
448 | } | ||
449 | |||
450 | static void cflsplit_release_jobs(rt_domain_t* rt, struct bheap* tasks) | ||
451 | { | ||
452 | cflsplit_domain_t* cluster = container_of(rt, cflsplit_domain_t, domain); | ||
453 | unsigned long flags; | ||
454 | |||
455 | raw_spin_lock_irqsave(&cluster->cluster_lock, flags); | ||
456 | |||
457 | __merge_ready(&cluster->domain, tasks); | ||
458 | check_for_preemptions(cluster); | ||
459 | |||
460 | raw_spin_unlock_irqrestore(&cluster->cluster_lock, flags); | ||
461 | } | ||
462 | |||
463 | /* caller holds cflsplit_lock */ | ||
464 | static noinline void job_completion(struct task_struct *t, int forced) | ||
465 | { | ||
466 | BUG_ON(!t); | ||
467 | |||
468 | sched_trace_task_completion(t, forced); | ||
469 | |||
470 | TRACE_TASK(t, "job_completion().\n"); | ||
471 | |||
472 | /* set flags */ | ||
473 | set_rt_flags(t, RT_F_SLEEP); | ||
474 | /* prepare for next period */ | ||
475 | prepare_for_next_period(t); | ||
476 | /* We now also set the subjob deadline to what it should be for | ||
477 | * scheduling priority. | ||
478 | */ | ||
479 | t->rt_param.job_params.subjob_deadline = get_proper_deadline(t); | ||
480 | if (is_released(t, litmus_clock())) | ||
481 | sched_trace_task_release(t); | ||
482 | /* unlink */ | ||
483 | unlink(t); | ||
484 | /* requeue | ||
485 | * But don't requeue a blocking task. */ | ||
486 | if (is_running(t)) | ||
487 | cflsplit_job_arrival(t); | ||
488 | } | ||
489 | |||
490 | static void move_deadline(struct task_struct *t) | ||
491 | { | ||
492 | tsk_rt(t)->job_params.subjob_deadline = get_proper_deadline(t); | ||
493 | /* Check if rescheduling needed with lower priority. */ | ||
494 | unlink(t); | ||
495 | cflsplit_job_arrival(t); | ||
496 | } | ||
497 | |||
498 | /* cflsplit_tick - this function is called for every local timer | ||
499 | * interrupt. | ||
500 | * | ||
501 | * checks whether the current task has expired and checks | ||
502 | * whether we need to preempt it if it has not expired | ||
503 | */ | ||
504 | static void cflsplit_tick(struct task_struct* t) | ||
505 | { | ||
506 | if (is_realtime(t) && budget_enforced(t) && budget_exhausted(t)) { | ||
507 | if (!is_np(t)) { | ||
508 | /* np tasks will be preempted when they become | ||
509 | * preemptable again | ||
510 | */ | ||
511 | litmus_reschedule_local(); | ||
512 | set_will_schedule(); | ||
513 | TRACE("cflsplit_scheduler_tick: " | ||
514 | "%d is preemptable " | ||
515 | " => FORCE_RESCHED\n", t->pid); | ||
516 | } else if (is_user_np(t)) { | ||
517 | TRACE("cflsplit_scheduler_tick: " | ||
518 | "%d is non-preemptable, " | ||
519 | "preemption delayed.\n", t->pid); | ||
520 | request_exit_np(t); | ||
521 | } | ||
522 | } | ||
523 | } | ||
524 | |||
525 | /* Getting schedule() right is a bit tricky. schedule() may not make any | ||
526 | * assumptions on the state of the current task since it may be called for a | ||
527 | * number of reasons. The reasons include a scheduler_tick() determined that it | ||
528 | * was necessary, because sys_exit_np() was called, because some Linux | ||
529 | * subsystem determined so, or even (in the worst case) because there is a bug | ||
530 | * hidden somewhere. Thus, we must take extreme care to determine what the | ||
531 | * current state is. | ||
532 | * | ||
533 | * The CPU could currently be scheduling a task (or not), be linked (or not). | ||
534 | * | ||
535 | * The following assertions for the scheduled task could hold: | ||
536 | * | ||
537 | * - !is_running(scheduled) // the job blocks | ||
538 | * - scheduled->timeslice == 0 // the job completed (forcefully) | ||
539 | * - get_rt_flag() == RT_F_SLEEP // the job completed (by syscall) | ||
540 | * - linked != scheduled // we need to reschedule (for any reason) | ||
541 | * - is_np(scheduled) // rescheduling must be delayed, | ||
542 | * sys_exit_np must be requested | ||
543 | * | ||
544 | * Any of these can occur together. | ||
545 | */ | ||
546 | static struct task_struct* cflsplit_schedule(struct task_struct * prev) | ||
547 | { | ||
548 | cpu_entry_t* entry = &__get_cpu_var(cflsplit_cpu_entries); | ||
549 | cflsplit_domain_t *cluster = entry->cluster; | ||
550 | int out_of_time, sleep, preempt, np, exists, blocks, needs_move; | ||
551 | struct task_struct* next = NULL; | ||
552 | |||
553 | #ifdef CONFIG_RELEASE_MASTER | ||
554 | /* Bail out early if we are the release master. | ||
555 | * The release master never schedules any real-time tasks. | ||
556 | */ | ||
557 | if (unlikely(cluster->domain.release_master == entry->cpu)) { | ||
558 | sched_state_task_picked(); | ||
559 | return NULL; | ||
560 | } | ||
561 | #endif | ||
562 | |||
563 | raw_spin_lock(&cluster->cluster_lock); | ||
564 | clear_will_schedule(); | ||
565 | |||
566 | /* sanity checking */ | ||
567 | BUG_ON(entry->scheduled && entry->scheduled != prev); | ||
568 | BUG_ON(entry->scheduled && !is_realtime(prev)); | ||
569 | BUG_ON(is_realtime(prev) && !entry->scheduled); | ||
570 | |||
571 | /* (0) Determine state */ | ||
572 | exists = entry->scheduled != NULL; | ||
573 | blocks = exists && !is_running(entry->scheduled); | ||
574 | out_of_time = exists && | ||
575 | budget_enforced(entry->scheduled) && | ||
576 | budget_exhausted(entry->scheduled); | ||
577 | needs_move = exists && needs_deadline_move(entry->scheduled); | ||
578 | np = exists && is_np(entry->scheduled); | ||
579 | sleep = exists && get_rt_flags(entry->scheduled) == RT_F_SLEEP; | ||
580 | preempt = entry->scheduled != entry->linked; | ||
581 | |||
582 | #ifdef WANT_ALL_SCHED_EVENTS | ||
583 | TRACE_TASK(prev, "invoked cflsplit_schedule.\n"); | ||
584 | #endif | ||
585 | |||
586 | if (exists) | ||
587 | TRACE_TASK(prev, | ||
588 | "blocks:%d out_of_time:%d needs_move: %d np:%d" | ||
589 | " sleep:%d preempt:%d state:%d sig:%d\n", | ||
590 | blocks, out_of_time, needs_move, np, sleep, preempt, | ||
591 | prev->state, signal_pending(prev)); | ||
592 | if (entry->linked && preempt) | ||
593 | TRACE_TASK(prev, "will be preempted by %s/%d\n", | ||
594 | entry->linked->comm, entry->linked->pid); | ||
595 | |||
596 | |||
597 | /* If a task blocks we have no choice but to reschedule. | ||
598 | */ | ||
599 | if (blocks) | ||
600 | unlink(entry->scheduled); | ||
601 | |||
602 | /* Request a sys_exit_np() call if we would like to preempt but cannot. | ||
603 | * We need to make sure to update the link structure anyway in case | ||
604 | * that we are still linked. Multiple calls to request_exit_np() don't | ||
605 | * hurt. | ||
606 | * | ||
607 | * Job deadline moves handled similarly | ||
608 | */ | ||
609 | if (np && (out_of_time || preempt || sleep)) { | ||
610 | unlink(entry->scheduled); | ||
611 | request_exit_np(entry->scheduled); | ||
612 | } | ||
613 | else if (np && needs_move) { | ||
614 | move_deadline(entry->scheduled); | ||
615 | } | ||
616 | |||
617 | /* Any task that is preemptable and either exhausts its execution | ||
618 | * budget or wants to sleep completes. We may have to reschedule after | ||
619 | * this. Don't do a job completion if we block (can't have timers running | ||
620 | * for blocked jobs). Preemption go first for the same reason. | ||
621 | */ | ||
622 | if (!np && (out_of_time || sleep) && !blocks && !preempt) | ||
623 | job_completion(entry->scheduled, !sleep); | ||
624 | else if (!np && needs_move && !blocks && !preempt) { | ||
625 | move_deadline(entry->scheduled); | ||
626 | } | ||
627 | |||
628 | /* Link pending task if we became unlinked. | ||
629 | */ | ||
630 | if (!entry->linked) | ||
631 | link_task_to_cpu(__take_ready(&cluster->domain), entry); | ||
632 | |||
633 | /* The final scheduling decision. Do we need to switch for some reason? | ||
634 | * If linked is different from scheduled, then select linked as next. | ||
635 | */ | ||
636 | if ((!np || blocks) && | ||
637 | entry->linked != entry->scheduled) { | ||
638 | /* Schedule a linked job? */ | ||
639 | if (entry->linked) { | ||
640 | entry->linked->rt_param.scheduled_on = entry->cpu; | ||
641 | next = entry->linked; | ||
642 | } | ||
643 | if (entry->scheduled) { | ||
644 | /* not gonna be scheduled soon */ | ||
645 | entry->scheduled->rt_param.scheduled_on = NO_CPU; | ||
646 | TRACE_TASK(entry->scheduled, "scheduled_on = NO_CPU\n"); | ||
647 | } | ||
648 | } else | ||
649 | /* Only override Linux scheduler if we have a real-time task | ||
650 | * scheduled that needs to continue. | ||
651 | */ | ||
652 | if (exists) | ||
653 | next = prev; | ||
654 | |||
655 | sched_state_task_picked(); | ||
656 | raw_spin_unlock(&cluster->cluster_lock); | ||
657 | |||
658 | if (next) { | ||
659 | arm_split_timer(entry, next); | ||
660 | } | ||
661 | else if (entry->timer_armed) { | ||
662 | cancel_split_timer(entry); | ||
663 | } | ||
664 | |||
665 | #ifdef WANT_ALL_SCHED_EVENTS | ||
666 | TRACE("cflsplit_lock released, next=0x%p\n", next); | ||
667 | |||
668 | if (next) | ||
669 | TRACE_TASK(next, "scheduled at %llu\n", litmus_clock()); | ||
670 | else if (exists && !next) | ||
671 | TRACE("becomes idle at %llu.\n", litmus_clock()); | ||
672 | #endif | ||
673 | |||
674 | |||
675 | return next; | ||
676 | } | ||
677 | |||
678 | |||
679 | /* _finish_switch - we just finished the switch away from prev | ||
680 | */ | ||
681 | static void cflsplit_finish_switch(struct task_struct *prev) | ||
682 | { | ||
683 | cpu_entry_t* entry = &__get_cpu_var(cflsplit_cpu_entries); | ||
684 | |||
685 | entry->scheduled = is_realtime(current) ? current : NULL; | ||
686 | #ifdef WANT_ALL_SCHED_EVENTS | ||
687 | TRACE_TASK(prev, "switched away from\n"); | ||
688 | #endif | ||
689 | } | ||
690 | |||
691 | |||
692 | static void cflsplit_release_at(struct task_struct *t, lt_t start) | ||
693 | { | ||
694 | t->rt_param.job_params.deadline = start; | ||
695 | prepare_for_next_period(t); | ||
696 | t->rt_param.job_params.subjob_deadline = get_proper_deadline(t); | ||
697 | set_rt_flags(t, RT_F_RUNNING); | ||
698 | } | ||
699 | |||
700 | |||
701 | /* Prepare a task for running in RT mode | ||
702 | */ | ||
703 | static void cflsplit_task_new(struct task_struct * t, int on_rq, int running) | ||
704 | { | ||
705 | unsigned long flags; | ||
706 | cpu_entry_t* entry; | ||
707 | cflsplit_domain_t* cluster; | ||
708 | |||
709 | TRACE("gsn edf: task new %d\n", t->pid); | ||
710 | |||
711 | /* the cluster doesn't change even if t is running */ | ||
712 | cluster = task_cpu_cluster(t); | ||
713 | |||
714 | raw_spin_lock_irqsave(&cluster->cluster_lock, flags); | ||
715 | |||
716 | /* setup job params */ | ||
717 | cflsplit_release_at(t, litmus_clock()); | ||
718 | |||
719 | if (running) { | ||
720 | entry = &per_cpu(cflsplit_cpu_entries, task_cpu(t)); | ||
721 | BUG_ON(entry->scheduled); | ||
722 | |||
723 | #ifdef CONFIG_RELEASE_MASTER | ||
724 | if (entry->cpu != cluster->domain.release_master) { | ||
725 | #endif | ||
726 | entry->scheduled = t; | ||
727 | tsk_rt(t)->scheduled_on = task_cpu(t); | ||
728 | #ifdef CONFIG_RELEASE_MASTER | ||
729 | } else { | ||
730 | /* do not schedule on release master */ | ||
731 | preempt(entry); /* force resched */ | ||
732 | tsk_rt(t)->scheduled_on = NO_CPU; | ||
733 | } | ||
734 | #endif | ||
735 | } else { | ||
736 | t->rt_param.scheduled_on = NO_CPU; | ||
737 | } | ||
738 | t->rt_param.linked_on = NO_CPU; | ||
739 | |||
740 | cflsplit_job_arrival(t); | ||
741 | raw_spin_unlock_irqrestore(&(cluster->cluster_lock), flags); | ||
742 | } | ||
743 | |||
744 | static void cflsplit_task_wake_up(struct task_struct *task) | ||
745 | { | ||
746 | unsigned long flags; | ||
747 | lt_t now; | ||
748 | cflsplit_domain_t *cluster; | ||
749 | |||
750 | TRACE_TASK(task, "wake_up at %llu\n", litmus_clock()); | ||
751 | |||
752 | cluster = task_cpu_cluster(task); | ||
753 | |||
754 | raw_spin_lock_irqsave(&cluster->cluster_lock, flags); | ||
755 | /* We need to take suspensions because of semaphores into | ||
756 | * account! If a job resumes after being suspended due to acquiring | ||
757 | * a semaphore, it should never be treated as a new job release. | ||
758 | */ | ||
759 | if (get_rt_flags(task) == RT_F_EXIT_SEM) { | ||
760 | set_rt_flags(task, RT_F_RUNNING); | ||
761 | } else { | ||
762 | now = litmus_clock(); | ||
763 | if (is_tardy(task, now)) { | ||
764 | /* new sporadic release */ | ||
765 | cflsplit_release_at(task, now); | ||
766 | sched_trace_task_release(task); | ||
767 | } | ||
768 | else { | ||
769 | if (task->rt.time_slice) { | ||
770 | /* came back in time before deadline | ||
771 | */ | ||
772 | set_rt_flags(task, RT_F_RUNNING); | ||
773 | } | ||
774 | } | ||
775 | } | ||
776 | cflsplit_job_arrival(task); | ||
777 | raw_spin_unlock_irqrestore(&cluster->cluster_lock, flags); | ||
778 | } | ||
779 | |||
780 | static void cflsplit_task_block(struct task_struct *t) | ||
781 | { | ||
782 | unsigned long flags; | ||
783 | cflsplit_domain_t *cluster; | ||
784 | |||
785 | TRACE_TASK(t, "block at %llu\n", litmus_clock()); | ||
786 | |||
787 | cluster = task_cpu_cluster(t); | ||
788 | |||
789 | /* unlink if necessary */ | ||
790 | raw_spin_lock_irqsave(&cluster->cluster_lock, flags); | ||
791 | unlink(t); | ||
792 | raw_spin_unlock_irqrestore(&cluster->cluster_lock, flags); | ||
793 | |||
794 | BUG_ON(!is_realtime(t)); | ||
795 | } | ||
796 | |||
797 | |||
798 | static void cflsplit_task_exit(struct task_struct * t) | ||
799 | { | ||
800 | unsigned long flags; | ||
801 | cflsplit_domain_t *cluster = task_cpu_cluster(t); | ||
802 | |||
803 | /* unlink if necessary */ | ||
804 | raw_spin_lock_irqsave(&cluster->cluster_lock, flags); | ||
805 | unlink(t); | ||
806 | if (tsk_rt(t)->scheduled_on != NO_CPU) { | ||
807 | cpu_entry_t *cpu; | ||
808 | cpu = &per_cpu(cflsplit_cpu_entries, tsk_rt(t)->scheduled_on); | ||
809 | cpu->scheduled = NULL; | ||
810 | tsk_rt(t)->scheduled_on = NO_CPU; | ||
811 | } | ||
812 | raw_spin_unlock_irqrestore(&cluster->cluster_lock, flags); | ||
813 | |||
814 | BUG_ON(!is_realtime(t)); | ||
815 | TRACE_TASK(t, "RIP\n"); | ||
816 | } | ||
817 | |||
818 | static long cflsplit_admit_task(struct task_struct* tsk) | ||
819 | { | ||
820 | return task_cpu(tsk) == tsk->rt_param.task_params.cpu ? 0 : -EINVAL; | ||
821 | } | ||
822 | |||
823 | /* total number of cluster */ | ||
824 | static int num_clusters; | ||
825 | /* we do not support cluster of different sizes */ | ||
826 | static unsigned int cluster_size; | ||
827 | |||
828 | #ifdef VERBOSE_INIT | ||
829 | static void print_cluster_topology(cpumask_var_t mask, int cpu) | ||
830 | { | ||
831 | int chk; | ||
832 | char buf[255]; | ||
833 | |||
834 | chk = cpulist_scnprintf(buf, 254, mask); | ||
835 | buf[chk] = '\0'; | ||
836 | printk(KERN_INFO "CPU = %d, shared cpu(s) = %s\n", cpu, buf); | ||
837 | |||
838 | } | ||
839 | #endif | ||
840 | |||
841 | static int clusters_allocated = 0; | ||
842 | |||
843 | static void cleanup_cflsplit(void) | ||
844 | { | ||
845 | int i; | ||
846 | |||
847 | if (clusters_allocated) { | ||
848 | for (i = 0; i < num_clusters; i++) { | ||
849 | kfree(cflsplit[i].cpus); | ||
850 | kfree(cflsplit[i].heap_node); | ||
851 | free_cpumask_var(cflsplit[i].cpu_map); | ||
852 | } | ||
853 | |||
854 | kfree(cflsplit); | ||
855 | } | ||
856 | } | ||
857 | |||
858 | static long cflsplit_activate_plugin(void) | ||
859 | { | ||
860 | int i, j, cpu, ccpu, cpu_count; | ||
861 | cpu_entry_t *entry; | ||
862 | |||
863 | cpumask_var_t mask; | ||
864 | int chk = 0; | ||
865 | |||
866 | /* de-allocate old clusters, if any */ | ||
867 | cleanup_cflsplit(); | ||
868 | |||
869 | printk(KERN_INFO "C-FL-split: Activate Plugin, cluster configuration = %d\n", | ||
870 | cluster_config); | ||
871 | |||
872 | /* need to get cluster_size first */ | ||
873 | if(!zalloc_cpumask_var(&mask, GFP_ATOMIC)) | ||
874 | return -ENOMEM; | ||
875 | |||
876 | if (unlikely(cluster_config == GLOBAL_CLUSTER)) { | ||
877 | cluster_size = num_online_cpus(); | ||
878 | } else { | ||
879 | chk = get_shared_cpu_map(mask, 0, cluster_config); | ||
880 | if (chk) { | ||
881 | /* if chk != 0 then it is the max allowed index */ | ||
882 | printk(KERN_INFO "C-FL-split: Cluster configuration = %d " | ||
883 | "is not supported on this hardware.\n", | ||
884 | cluster_config); | ||
885 | /* User should notice that the configuration failed, so | ||
886 | * let's bail out. */ | ||
887 | return -EINVAL; | ||
888 | } | ||
889 | |||
890 | cluster_size = cpumask_weight(mask); | ||
891 | } | ||
892 | |||
893 | if ((num_online_cpus() % cluster_size) != 0) { | ||
894 | /* this can't be right, some cpus are left out */ | ||
895 | printk(KERN_ERR "C-FL-split: Trying to group %d cpus in %d!\n", | ||
896 | num_online_cpus(), cluster_size); | ||
897 | return -1; | ||
898 | } | ||
899 | |||
900 | num_clusters = num_online_cpus() / cluster_size; | ||
901 | printk(KERN_INFO "C-FL-split: %d cluster(s) of size = %d\n", | ||
902 | num_clusters, cluster_size); | ||
903 | |||
904 | /* initialize clusters */ | ||
905 | cflsplit = kmalloc(num_clusters * sizeof(cflsplit_domain_t), GFP_ATOMIC); | ||
906 | for (i = 0; i < num_clusters; i++) { | ||
907 | |||
908 | cflsplit[i].cpus = kmalloc(cluster_size * sizeof(cpu_entry_t), | ||
909 | GFP_ATOMIC); | ||
910 | cflsplit[i].heap_node = kmalloc( | ||
911 | cluster_size * sizeof(struct bheap_node), | ||
912 | GFP_ATOMIC); | ||
913 | bheap_init(&(cflsplit[i].cpu_heap)); | ||
914 | edf_split_domain_init(&(cflsplit[i].domain), NULL, | ||
915 | cflsplit_release_jobs); | ||
916 | |||
917 | if(!zalloc_cpumask_var(&cflsplit[i].cpu_map, GFP_ATOMIC)) | ||
918 | return -ENOMEM; | ||
919 | #ifdef CONFIG_RELEASE_MASTER | ||
920 | cflsplit[i].domain.release_master = atomic_read(&release_master_cpu); | ||
921 | #endif | ||
922 | } | ||
923 | |||
924 | /* cycle through cluster and add cpus to them */ | ||
925 | for (i = 0; i < num_clusters; i++) { | ||
926 | |||
927 | for_each_online_cpu(cpu) { | ||
928 | /* check if the cpu is already in a cluster */ | ||
929 | for (j = 0; j < num_clusters; j++) | ||
930 | if (cpumask_test_cpu(cpu, cflsplit[j].cpu_map)) | ||
931 | break; | ||
932 | /* if it is in a cluster go to next cpu */ | ||
933 | if (j < num_clusters && | ||
934 | cpumask_test_cpu(cpu, cflsplit[j].cpu_map)) | ||
935 | continue; | ||
936 | |||
937 | /* this cpu isn't in any cluster */ | ||
938 | /* get the shared cpus */ | ||
939 | if (unlikely(cluster_config == GLOBAL_CLUSTER)) | ||
940 | cpumask_copy(mask, cpu_online_mask); | ||
941 | else | ||
942 | get_shared_cpu_map(mask, cpu, cluster_config); | ||
943 | |||
944 | cpumask_copy(cflsplit[i].cpu_map, mask); | ||
945 | #ifdef VERBOSE_INIT | ||
946 | print_cluster_topology(mask, cpu); | ||
947 | #endif | ||
948 | /* add cpus to current cluster and init cpu_entry_t */ | ||
949 | cpu_count = 0; | ||
950 | for_each_cpu(ccpu, cflsplit[i].cpu_map) { | ||
951 | |||
952 | entry = &per_cpu(cflsplit_cpu_entries, ccpu); | ||
953 | cflsplit[i].cpus[cpu_count] = entry; | ||
954 | atomic_set(&entry->will_schedule, 0); | ||
955 | entry->cpu = ccpu; | ||
956 | entry->cluster = &cflsplit[i]; | ||
957 | entry->hn = &(cflsplit[i].heap_node[cpu_count]); | ||
958 | hrtimer_init(&entry->split_timer, | ||
959 | CLOCK_MONOTONIC, | ||
960 | HRTIMER_MODE_ABS); | ||
961 | entry->split_timer.function = on_split_timeout; | ||
962 | bheap_node_init(&entry->hn, entry); | ||
963 | |||
964 | cpu_count++; | ||
965 | |||
966 | entry->linked = NULL; | ||
967 | entry->scheduled = NULL; | ||
968 | #ifdef CONFIG_RELEASE_MASTER | ||
969 | /* only add CPUs that should schedule jobs */ | ||
970 | if (entry->cpu != entry->cluster->domain.release_master) | ||
971 | #endif | ||
972 | update_cpu_position(entry); | ||
973 | } | ||
974 | /* done with this cluster */ | ||
975 | break; | ||
976 | } | ||
977 | } | ||
978 | |||
979 | free_cpumask_var(mask); | ||
980 | clusters_allocated = 1; | ||
981 | return 0; | ||
982 | } | ||
983 | |||
984 | /* Plugin object */ | ||
985 | static struct sched_plugin cflsplit_plugin __cacheline_aligned_in_smp = { | ||
986 | .plugin_name = "C-FL-split", | ||
987 | .finish_switch = cflsplit_finish_switch, | ||
988 | .tick = cflsplit_tick, | ||
989 | .task_new = cflsplit_task_new, | ||
990 | .complete_job = complete_job, | ||
991 | .task_exit = cflsplit_task_exit, | ||
992 | .schedule = cflsplit_schedule, | ||
993 | .release_at = cflsplit_release_at, | ||
994 | .task_wake_up = cflsplit_task_wake_up, | ||
995 | .task_block = cflsplit_task_block, | ||
996 | .admit_task = cflsplit_admit_task, | ||
997 | .activate_plugin = cflsplit_activate_plugin, | ||
998 | }; | ||
999 | |||
1000 | static struct proc_dir_entry *cluster_file = NULL, *cflsplit_dir = NULL; | ||
1001 | |||
1002 | static int __init init_cflsplit(void) | ||
1003 | { | ||
1004 | int err, fs; | ||
1005 | |||
1006 | err = register_sched_plugin(&cflsplit_plugin); | ||
1007 | if (!err) { | ||
1008 | fs = make_plugin_proc_dir(&cflsplit_plugin, &cflsplit_dir); | ||
1009 | if (!fs) | ||
1010 | cluster_file = create_cluster_file(cflsplit_dir, &cluster_config); | ||
1011 | else | ||
1012 | printk(KERN_ERR "Could not allocate C-FL-split procfs dir.\n"); | ||
1013 | } | ||
1014 | return err; | ||
1015 | } | ||
1016 | |||
1017 | static void clean_cflsplit(void) | ||
1018 | { | ||
1019 | cleanup_cflsplit(); | ||
1020 | if (cluster_file) | ||
1021 | remove_proc_entry("cluster", cflsplit_dir); | ||
1022 | if (cflsplit_dir) | ||
1023 | remove_plugin_proc_dir(&cflsplit_plugin); | ||
1024 | } | ||
1025 | |||
1026 | module_init(init_cflsplit); | ||
1027 | module_exit(clean_cflsplit); | ||