aboutsummaryrefslogblamecommitdiffstats
path: root/tools/perf/bench/numa.c
blob: ebfa163b80b568af4d2708b1ff3b1980ea16e2b6 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122














































































































































































































































































































































































































































                                                                                                                                             
                                     





                               
                         






























































                                                                                               





                                                                                                  






































                                                                                                                
                 



















                                                                    
                                      





                                
                         

















































                                                                                        





                                                                                                    





























                                                                                                                 
                 










































































































































































































































































































































































































































































                                                                                                                        
                                                               













































                                                                                                                    
                                                                                             





































































































































































































                                                                                                   

                                                              
































































































































































































































                                                                                              



                                              
                                                    
















                                                                       



































































































                                                                                            
                                                          

























                                                                              
/*
 * numa.c
 *
 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
 */

#include "../perf.h"
#include "../builtin.h"
#include "../util/util.h"
#include "../util/parse-options.h"

#include "bench.h"

#include <errno.h>
#include <sched.h>
#include <stdio.h>
#include <assert.h>
#include <malloc.h>
#include <signal.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <pthread.h>
#include <sys/mman.h>
#include <sys/time.h>
#include <sys/wait.h>
#include <sys/prctl.h>
#include <sys/types.h>

#include <numa.h>
#include <numaif.h>

/*
 * Regular printout to the terminal, supressed if -q is specified:
 */
#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)

/*
 * Debug printf:
 */
#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)

struct thread_data {
	int			curr_cpu;
	cpu_set_t		bind_cpumask;
	int			bind_node;
	u8			*process_data;
	int			process_nr;
	int			thread_nr;
	int			task_nr;
	unsigned int		loops_done;
	u64			val;
	u64			runtime_ns;
	pthread_mutex_t		*process_lock;
};

/* Parameters set by options: */

struct params {
	/* Startup synchronization: */
	bool			serialize_startup;

	/* Task hierarchy: */
	int			nr_proc;
	int			nr_threads;

	/* Working set sizes: */
	const char		*mb_global_str;
	const char		*mb_proc_str;
	const char		*mb_proc_locked_str;
	const char		*mb_thread_str;

	double			mb_global;
	double			mb_proc;
	double			mb_proc_locked;
	double			mb_thread;

	/* Access patterns to the working set: */
	bool			data_reads;
	bool			data_writes;
	bool			data_backwards;
	bool			data_zero_memset;
	bool			data_rand_walk;
	u32			nr_loops;
	u32			nr_secs;
	u32			sleep_usecs;

	/* Working set initialization: */
	bool			init_zero;
	bool			init_random;
	bool			init_cpu0;

	/* Misc options: */
	int			show_details;
	int			run_all;
	int			thp;

	long			bytes_global;
	long			bytes_process;
	long			bytes_process_locked;
	long			bytes_thread;

	int			nr_tasks;
	bool			show_quiet;

	bool			show_convergence;
	bool			measure_convergence;

	int			perturb_secs;
	int			nr_cpus;
	int			nr_nodes;

	/* Affinity options -C and -N: */
	char			*cpu_list_str;
	char			*node_list_str;
};


/* Global, read-writable area, accessible to all processes and threads: */

struct global_info {
	u8			*data;

	pthread_mutex_t		startup_mutex;
	int			nr_tasks_started;

	pthread_mutex_t		startup_done_mutex;

	pthread_mutex_t		start_work_mutex;
	int			nr_tasks_working;

	pthread_mutex_t		stop_work_mutex;
	u64			bytes_done;

	struct thread_data	*threads;

	/* Convergence latency measurement: */
	bool			all_converged;
	bool			stop_work;

	int			print_once;

	struct params		p;
};

static struct global_info	*g = NULL;

static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);

struct params p0;

static const struct option options[] = {
	OPT_INTEGER('p', "nr_proc"	, &p0.nr_proc,		"number of processes"),
	OPT_INTEGER('t', "nr_threads"	, &p0.nr_threads,	"number of threads per process"),

	OPT_STRING('G', "mb_global"	, &p0.mb_global_str,	"MB", "global  memory (MBs)"),
	OPT_STRING('P', "mb_proc"	, &p0.mb_proc_str,	"MB", "process memory (MBs)"),
	OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
	OPT_STRING('T', "mb_thread"	, &p0.mb_thread_str,	"MB", "thread  memory (MBs)"),

	OPT_UINTEGER('l', "nr_loops"	, &p0.nr_loops,		"max number of loops to run"),
	OPT_UINTEGER('s', "nr_secs"	, &p0.nr_secs,		"max number of seconds to run"),
	OPT_UINTEGER('u', "usleep"	, &p0.sleep_usecs,	"usecs to sleep per loop iteration"),

	OPT_BOOLEAN('R', "data_reads"	, &p0.data_reads,	"access the data via writes (can be mixed with -W)"),
	OPT_BOOLEAN('W', "data_writes"	, &p0.data_writes,	"access the data via writes (can be mixed with -R)"),
	OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,	"access the data backwards as well"),
	OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
	OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,	"access the data with random (32bit LFSR) walk"),


	OPT_BOOLEAN('z', "init_zero"	, &p0.init_zero,	"bzero the initial allocations"),
	OPT_BOOLEAN('I', "init_random"	, &p0.init_random,	"randomize the contents of the initial allocations"),
	OPT_BOOLEAN('0', "init_cpu0"	, &p0.init_cpu0,	"do the initial allocations on CPU#0"),
	OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,	"perturb thread 0/0 every X secs, to test convergence stability"),

	OPT_INCR   ('d', "show_details"	, &p0.show_details,	"Show details"),
	OPT_INCR   ('a', "all"		, &p0.run_all,		"Run all tests in the suite"),
	OPT_INTEGER('H', "thp"		, &p0.thp,		"MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
	OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"),
	OPT_BOOLEAN('m', "measure_convergence",	&p0.measure_convergence, "measure convergence latency"),
	OPT_BOOLEAN('q', "quiet"	, &p0.show_quiet,	"bzero the initial allocations"),
	OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),

	/* Special option string parsing callbacks: */
        OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
			"bind the first N tasks to these specific cpus (the rest is unbound)",
			parse_cpus_opt),
        OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
			"bind the first N tasks to these specific memory nodes (the rest is unbound)",
			parse_nodes_opt),
	OPT_END()
};

static const char * const bench_numa_usage[] = {
	"perf bench numa <options>",
	NULL
};

static const char * const numa_usage[] = {
	"perf bench numa mem [<options>]",
	NULL
};

static cpu_set_t bind_to_cpu(int target_cpu)
{
	cpu_set_t orig_mask, mask;
	int ret;

	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
	BUG_ON(ret);

	CPU_ZERO(&mask);

	if (target_cpu == -1) {
		int cpu;

		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
			CPU_SET(cpu, &mask);
	} else {
		BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
		CPU_SET(target_cpu, &mask);
	}

	ret = sched_setaffinity(0, sizeof(mask), &mask);
	BUG_ON(ret);

	return orig_mask;
}

static cpu_set_t bind_to_node(int target_node)
{
	int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes;
	cpu_set_t orig_mask, mask;
	int cpu;
	int ret;

	BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus);
	BUG_ON(!cpus_per_node);

	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
	BUG_ON(ret);

	CPU_ZERO(&mask);

	if (target_node == -1) {
		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
			CPU_SET(cpu, &mask);
	} else {
		int cpu_start = (target_node + 0) * cpus_per_node;
		int cpu_stop  = (target_node + 1) * cpus_per_node;

		BUG_ON(cpu_stop > g->p.nr_cpus);

		for (cpu = cpu_start; cpu < cpu_stop; cpu++)
			CPU_SET(cpu, &mask);
	}

	ret = sched_setaffinity(0, sizeof(mask), &mask);
	BUG_ON(ret);

	return orig_mask;
}

static void bind_to_cpumask(cpu_set_t mask)
{
	int ret;

	ret = sched_setaffinity(0, sizeof(mask), &mask);
	BUG_ON(ret);
}

static void mempol_restore(void)
{
	int ret;

	ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);

	BUG_ON(ret);
}

static void bind_to_memnode(int node)
{
	unsigned long nodemask;
	int ret;

	if (node == -1)
		return;

	BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask));
	nodemask = 1L << node;

	ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
	dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);

	BUG_ON(ret);
}

#define HPSIZE (2*1024*1024)

#define set_taskname(fmt...)				\
do {							\
	char name[20];					\
							\
	snprintf(name, 20, fmt);			\
	prctl(PR_SET_NAME, name);			\
} while (0)

static u8 *alloc_data(ssize_t bytes0, int map_flags,
		      int init_zero, int init_cpu0, int thp, int init_random)
{
	cpu_set_t orig_mask;
	ssize_t bytes;
	u8 *buf;
	int ret;

	if (!bytes0)
		return NULL;

	/* Allocate and initialize all memory on CPU#0: */
	if (init_cpu0) {
		orig_mask = bind_to_node(0);
		bind_to_memnode(0);
	}

	bytes = bytes0 + HPSIZE;

	buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
	BUG_ON(buf == (void *)-1);

	if (map_flags == MAP_PRIVATE) {
		if (thp > 0) {
			ret = madvise(buf, bytes, MADV_HUGEPAGE);
			if (ret && !g->print_once) {
				g->print_once = 1;
				printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
			}
		}
		if (thp < 0) {
			ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
			if (ret && !g->print_once) {
				g->print_once = 1;
				printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
			}
		}
	}

	if (init_zero) {
		bzero(buf, bytes);
	} else {
		/* Initialize random contents, different in each word: */
		if (init_random) {
			u64 *wbuf = (void *)buf;
			long off = rand();
			long i;

			for (i = 0; i < bytes/8; i++)
				wbuf[i] = i + off;
		}
	}

	/* Align to 2MB boundary: */
	buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));

	/* Restore affinity: */
	if (init_cpu0) {
		bind_to_cpumask(orig_mask);
		mempol_restore();
	}

	return buf;
}

static void free_data(void *data, ssize_t bytes)
{
	int ret;

	if (!data)
		return;

	ret = munmap(data, bytes);
	BUG_ON(ret);
}

/*
 * Create a shared memory buffer that can be shared between processes, zeroed:
 */
static void * zalloc_shared_data(ssize_t bytes)
{
	return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
}

/*
 * Create a shared memory buffer that can be shared between processes:
 */
static void * setup_shared_data(ssize_t bytes)
{
	return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
}

/*
 * Allocate process-local memory - this will either be shared between
 * threads of this process, or only be accessed by this thread:
 */
static void * setup_private_data(ssize_t bytes)
{
	return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
}

/*
 * Return a process-shared (global) mutex:
 */
static void init_global_mutex(pthread_mutex_t *mutex)
{
	pthread_mutexattr_t attr;

	pthread_mutexattr_init(&attr);
	pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
	pthread_mutex_init(mutex, &attr);
}

static int parse_cpu_list(const char *arg)
{
	p0.cpu_list_str = strdup(arg);

	dprintf("got CPU list: {%s}\n", p0.cpu_list_str);

	return 0;
}

static int parse_setup_cpu_list(void)
{
	struct thread_data *td;
	char *str0, *str;
	int t;

	if (!g->p.cpu_list_str)
		return 0;

	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);

	str0 = str = strdup(g->p.cpu_list_str);
	t = 0;

	BUG_ON(!str);

	tprintf("# binding tasks to CPUs:\n");
	tprintf("#  ");

	while (true) {
		int bind_cpu, bind_cpu_0, bind_cpu_1;
		char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
		int bind_len;
		int step;
		int mul;

		tok = strsep(&str, ",");
		if (!tok)
			break;

		tok_end = strstr(tok, "-");

		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
		if (!tok_end) {
			/* Single CPU specified: */
			bind_cpu_0 = bind_cpu_1 = atol(tok);
		} else {
			/* CPU range specified (for example: "5-11"): */
			bind_cpu_0 = atol(tok);
			bind_cpu_1 = atol(tok_end + 1);
		}

		step = 1;
		tok_step = strstr(tok, "#");
		if (tok_step) {
			step = atol(tok_step + 1);
			BUG_ON(step <= 0 || step >= g->p.nr_cpus);
		}

		/*
		 * Mask length.
		 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
		 * where the _4 means the next 4 CPUs are allowed.
		 */
		bind_len = 1;
		tok_len = strstr(tok, "_");
		if (tok_len) {
			bind_len = atol(tok_len + 1);
			BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
		}

		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
		mul = 1;
		tok_mul = strstr(tok, "x");
		if (tok_mul) {
			mul = atol(tok_mul + 1);
			BUG_ON(mul <= 0);
		}

		dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);

		if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
			printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
			return -1;
		}

		BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
		BUG_ON(bind_cpu_0 > bind_cpu_1);

		for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
			int i;

			for (i = 0; i < mul; i++) {
				int cpu;

				if (t >= g->p.nr_tasks) {
					printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
					goto out;
				}
				td = g->threads + t;

				if (t)
					tprintf(",");
				if (bind_len > 1) {
					tprintf("%2d/%d", bind_cpu, bind_len);
				} else {
					tprintf("%2d", bind_cpu);
				}

				CPU_ZERO(&td->bind_cpumask);
				for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
					BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
					CPU_SET(cpu, &td->bind_cpumask);
				}
				t++;
			}
		}
	}
out:

	tprintf("\n");

	if (t < g->p.nr_tasks)
		printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);

	free(str0);
	return 0;
}

static int parse_cpus_opt(const struct option *opt __maybe_unused,
			  const char *arg, int unset __maybe_unused)
{
	if (!arg)
		return -1;

	return parse_cpu_list(arg);
}

static int parse_node_list(const char *arg)
{
	p0.node_list_str = strdup(arg);

	dprintf("got NODE list: {%s}\n", p0.node_list_str);

	return 0;
}

static int parse_setup_node_list(void)
{
	struct thread_data *td;
	char *str0, *str;
	int t;

	if (!g->p.node_list_str)
		return 0;

	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);

	str0 = str = strdup(g->p.node_list_str);
	t = 0;

	BUG_ON(!str);

	tprintf("# binding tasks to NODEs:\n");
	tprintf("# ");

	while (true) {
		int bind_node, bind_node_0, bind_node_1;
		char *tok, *tok_end, *tok_step, *tok_mul;
		int step;
		int mul;

		tok = strsep(&str, ",");
		if (!tok)
			break;

		tok_end = strstr(tok, "-");

		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
		if (!tok_end) {
			/* Single NODE specified: */
			bind_node_0 = bind_node_1 = atol(tok);
		} else {
			/* NODE range specified (for example: "5-11"): */
			bind_node_0 = atol(tok);
			bind_node_1 = atol(tok_end + 1);
		}

		step = 1;
		tok_step = strstr(tok, "#");
		if (tok_step) {
			step = atol(tok_step + 1);
			BUG_ON(step <= 0 || step >= g->p.nr_nodes);
		}

		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
		mul = 1;
		tok_mul = strstr(tok, "x");
		if (tok_mul) {
			mul = atol(tok_mul + 1);
			BUG_ON(mul <= 0);
		}

		dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);

		if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
			printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
			return -1;
		}

		BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
		BUG_ON(bind_node_0 > bind_node_1);

		for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
			int i;

			for (i = 0; i < mul; i++) {
				if (t >= g->p.nr_tasks) {
					printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
					goto out;
				}
				td = g->threads + t;

				if (!t)
					tprintf(" %2d", bind_node);
				else
					tprintf(",%2d", bind_node);

				td->bind_node = bind_node;
				t++;
			}
		}
	}
out:

	tprintf("\n");

	if (t < g->p.nr_tasks)
		printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);

	free(str0);
	return 0;
}

static int parse_nodes_opt(const struct option *opt __maybe_unused,
			  const char *arg, int unset __maybe_unused)
{
	if (!arg)
		return -1;

	return parse_node_list(arg);

	return 0;
}

#define BIT(x) (1ul << x)

static inline uint32_t lfsr_32(uint32_t lfsr)
{
	const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
	return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
}

/*
 * Make sure there's real data dependency to RAM (when read
 * accesses are enabled), so the compiler, the CPU and the
 * kernel (KSM, zero page, etc.) cannot optimize away RAM
 * accesses:
 */
static inline u64 access_data(u64 *data __attribute__((unused)), u64 val)
{
	if (g->p.data_reads)
		val += *data;
	if (g->p.data_writes)
		*data = val + 1;
	return val;
}

/*
 * The worker process does two types of work, a forwards going
 * loop and a backwards going loop.
 *
 * We do this so that on multiprocessor systems we do not create
 * a 'train' of processing, with highly synchronized processes,
 * skewing the whole benchmark.
 */
static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
{
	long words = bytes/sizeof(u64);
	u64 *data = (void *)__data;
	long chunk_0, chunk_1;
	u64 *d0, *d, *d1;
	long off;
	long i;

	BUG_ON(!data && words);
	BUG_ON(data && !words);

	if (!data)
		return val;

	/* Very simple memset() work variant: */
	if (g->p.data_zero_memset && !g->p.data_rand_walk) {
		bzero(data, bytes);
		return val;
	}

	/* Spread out by PID/TID nr and by loop nr: */
	chunk_0 = words/nr_max;
	chunk_1 = words/g->p.nr_loops;
	off = nr*chunk_0 + loop*chunk_1;

	while (off >= words)
		off -= words;

	if (g->p.data_rand_walk) {
		u32 lfsr = nr + loop + val;
		int j;

		for (i = 0; i < words/1024; i++) {
			long start, end;

			lfsr = lfsr_32(lfsr);

			start = lfsr % words;
			end = min(start + 1024, words-1);

			if (g->p.data_zero_memset) {
				bzero(data + start, (end-start) * sizeof(u64));
			} else {
				for (j = start; j < end; j++)
					val = access_data(data + j, val);
			}
		}
	} else if (!g->p.data_backwards || (nr + loop) & 1) {

		d0 = data + off;
		d  = data + off + 1;
		d1 = data + words;

		/* Process data forwards: */
		for (;;) {
			if (unlikely(d >= d1))
				d = data;
			if (unlikely(d == d0))
				break;

			val = access_data(d, val);

			d++;
		}
	} else {
		/* Process data backwards: */

		d0 = data + off;
		d  = data + off - 1;
		d1 = data + words;

		/* Process data forwards: */
		for (;;) {
			if (unlikely(d < data))
				d = data + words-1;
			if (unlikely(d == d0))
				break;

			val = access_data(d, val);

			d--;
		}
	}

	return val;
}

static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
{
	unsigned int cpu;

	cpu = sched_getcpu();

	g->threads[task_nr].curr_cpu = cpu;
	prctl(0, bytes_worked);
}

#define MAX_NR_NODES	64

/*
 * Count the number of nodes a process's threads
 * are spread out on.
 *
 * A count of 1 means that the process is compressed
 * to a single node. A count of g->p.nr_nodes means it's
 * spread out on the whole system.
 */
static int count_process_nodes(int process_nr)
{
	char node_present[MAX_NR_NODES] = { 0, };
	int nodes;
	int n, t;

	for (t = 0; t < g->p.nr_threads; t++) {
		struct thread_data *td;
		int task_nr;
		int node;

		task_nr = process_nr*g->p.nr_threads + t;
		td = g->threads + task_nr;

		node = numa_node_of_cpu(td->curr_cpu);
		node_present[node] = 1;
	}

	nodes = 0;

	for (n = 0; n < MAX_NR_NODES; n++)
		nodes += node_present[n];

	return nodes;
}

/*
 * Count the number of distinct process-threads a node contains.
 *
 * A count of 1 means that the node contains only a single
 * process. If all nodes on the system contain at most one
 * process then we are well-converged.
 */
static int count_node_processes(int node)
{
	int processes = 0;
	int t, p;

	for (p = 0; p < g->p.nr_proc; p++) {
		for (t = 0; t < g->p.nr_threads; t++) {
			struct thread_data *td;
			int task_nr;
			int n;

			task_nr = p*g->p.nr_threads + t;
			td = g->threads + task_nr;

			n = numa_node_of_cpu(td->curr_cpu);
			if (n == node) {
				processes++;
				break;
			}
		}
	}

	return processes;
}

static void calc_convergence_compression(int *strong)
{
	unsigned int nodes_min, nodes_max;
	int p;

	nodes_min = -1;
	nodes_max =  0;

	for (p = 0; p < g->p.nr_proc; p++) {
		unsigned int nodes = count_process_nodes(p);

		nodes_min = min(nodes, nodes_min);
		nodes_max = max(nodes, nodes_max);
	}

	/* Strong convergence: all threads compress on a single node: */
	if (nodes_min == 1 && nodes_max == 1) {
		*strong = 1;
	} else {
		*strong = 0;
		tprintf(" {%d-%d}", nodes_min, nodes_max);
	}
}

static void calc_convergence(double runtime_ns_max, double *convergence)
{
	unsigned int loops_done_min, loops_done_max;
	int process_groups;
	int nodes[MAX_NR_NODES];
	int distance;
	int nr_min;
	int nr_max;
	int strong;
	int sum;
	int nr;
	int node;
	int cpu;
	int t;

	if (!g->p.show_convergence && !g->p.measure_convergence)
		return;

	for (node = 0; node < g->p.nr_nodes; node++)
		nodes[node] = 0;

	loops_done_min = -1;
	loops_done_max = 0;

	for (t = 0; t < g->p.nr_tasks; t++) {
		struct thread_data *td = g->threads + t;
		unsigned int loops_done;

		cpu = td->curr_cpu;

		/* Not all threads have written it yet: */
		if (cpu < 0)
			continue;

		node = numa_node_of_cpu(cpu);

		nodes[node]++;

		loops_done = td->loops_done;
		loops_done_min = min(loops_done, loops_done_min);
		loops_done_max = max(loops_done, loops_done_max);
	}

	nr_max = 0;
	nr_min = g->p.nr_tasks;
	sum = 0;

	for (node = 0; node < g->p.nr_nodes; node++) {
		nr = nodes[node];
		nr_min = min(nr, nr_min);
		nr_max = max(nr, nr_max);
		sum += nr;
	}
	BUG_ON(nr_min > nr_max);

	BUG_ON(sum > g->p.nr_tasks);

	if (0 && (sum < g->p.nr_tasks))
		return;

	/*
	 * Count the number of distinct process groups present
	 * on nodes - when we are converged this will decrease
	 * to g->p.nr_proc:
	 */
	process_groups = 0;

	for (node = 0; node < g->p.nr_nodes; node++) {
		int processes = count_node_processes(node);

		nr = nodes[node];
		tprintf(" %2d/%-2d", nr, processes);

		process_groups += processes;
	}

	distance = nr_max - nr_min;

	tprintf(" [%2d/%-2d]", distance, process_groups);

	tprintf(" l:%3d-%-3d (%3d)",
		loops_done_min, loops_done_max, loops_done_max-loops_done_min);

	if (loops_done_min && loops_done_max) {
		double skew = 1.0 - (double)loops_done_min/loops_done_max;

		tprintf(" [%4.1f%%]", skew * 100.0);
	}

	calc_convergence_compression(&strong);

	if (strong && process_groups == g->p.nr_proc) {
		if (!*convergence) {
			*convergence = runtime_ns_max;
			tprintf(" (%6.1fs converged)\n", *convergence/1e9);
			if (g->p.measure_convergence) {
				g->all_converged = true;
				g->stop_work = true;
			}
		}
	} else {
		if (*convergence) {
			tprintf(" (%6.1fs de-converged)", runtime_ns_max/1e9);
			*convergence = 0;
		}
		tprintf("\n");
	}
}

static void show_summary(double runtime_ns_max, int l, double *convergence)
{
	tprintf("\r #  %5.1f%%  [%.1f mins]",
		(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max/1e9 / 60.0);

	calc_convergence(runtime_ns_max, convergence);

	if (g->p.show_details >= 0)
		fflush(stdout);
}

static void *worker_thread(void *__tdata)
{
	struct thread_data *td = __tdata;
	struct timeval start0, start, stop, diff;
	int process_nr = td->process_nr;
	int thread_nr = td->thread_nr;
	unsigned long last_perturbance;
	int task_nr = td->task_nr;
	int details = g->p.show_details;
	int first_task, last_task;
	double convergence = 0;
	u64 val = td->val;
	double runtime_ns_max;
	u8 *global_data;
	u8 *process_data;
	u8 *thread_data;
	u64 bytes_done;
	long work_done;
	u32 l;

	bind_to_cpumask(td->bind_cpumask);
	bind_to_memnode(td->bind_node);

	set_taskname("thread %d/%d", process_nr, thread_nr);

	global_data = g->data;
	process_data = td->process_data;
	thread_data = setup_private_data(g->p.bytes_thread);

	bytes_done = 0;

	last_task = 0;
	if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
		last_task = 1;

	first_task = 0;
	if (process_nr == 0 && thread_nr == 0)
		first_task = 1;

	if (details >= 2) {
		printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
			process_nr, thread_nr, global_data, process_data, thread_data);
	}

	if (g->p.serialize_startup) {
		pthread_mutex_lock(&g->startup_mutex);
		g->nr_tasks_started++;
		pthread_mutex_unlock(&g->startup_mutex);

		/* Here we will wait for the main process to start us all at once: */
		pthread_mutex_lock(&g->start_work_mutex);
		g->nr_tasks_working++;

		/* Last one wake the main process: */
		if (g->nr_tasks_working == g->p.nr_tasks)
			pthread_mutex_unlock(&g->startup_done_mutex);

		pthread_mutex_unlock(&g->start_work_mutex);
	}

	gettimeofday(&start0, NULL);

	start = stop = start0;
	last_perturbance = start.tv_sec;

	for (l = 0; l < g->p.nr_loops; l++) {
		start = stop;

		if (g->stop_work)
			break;

		val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,	l, val);
		val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,	l, val);
		val += do_work(thread_data,  g->p.bytes_thread,  0,          1,		l, val);

		if (g->p.sleep_usecs) {
			pthread_mutex_lock(td->process_lock);
			usleep(g->p.sleep_usecs);
			pthread_mutex_unlock(td->process_lock);
		}
		/*
		 * Amount of work to be done under a process-global lock:
		 */
		if (g->p.bytes_process_locked) {
			pthread_mutex_lock(td->process_lock);
			val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,	l, val);
			pthread_mutex_unlock(td->process_lock);
		}

		work_done = g->p.bytes_global + g->p.bytes_process +
			    g->p.bytes_process_locked + g->p.bytes_thread;

		update_curr_cpu(task_nr, work_done);
		bytes_done += work_done;

		if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
			continue;

		td->loops_done = l;

		gettimeofday(&stop, NULL);

		/* Check whether our max runtime timed out: */
		if (g->p.nr_secs) {
			timersub(&stop, &start0, &diff);
			if ((u32)diff.tv_sec >= g->p.nr_secs) {
				g->stop_work = true;
				break;
			}
		}

		/* Update the summary at most once per second: */
		if (start.tv_sec == stop.tv_sec)
			continue;

		/*
		 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
		 * by migrating to CPU#0:
		 */
		if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
			cpu_set_t orig_mask;
			int target_cpu;
			int this_cpu;

			last_perturbance = stop.tv_sec;

			/*
			 * Depending on where we are running, move into
			 * the other half of the system, to create some
			 * real disturbance:
			 */
			this_cpu = g->threads[task_nr].curr_cpu;
			if (this_cpu < g->p.nr_cpus/2)
				target_cpu = g->p.nr_cpus-1;
			else
				target_cpu = 0;

			orig_mask = bind_to_cpu(target_cpu);

			/* Here we are running on the target CPU already */
			if (details >= 1)
				printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);

			bind_to_cpumask(orig_mask);
		}

		if (details >= 3) {
			timersub(&stop, &start, &diff);
			runtime_ns_max = diff.tv_sec * 1000000000;
			runtime_ns_max += diff.tv_usec * 1000;

			if (details >= 0) {
				printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
					process_nr, thread_nr, runtime_ns_max / bytes_done, val);
			}
			fflush(stdout);
		}
		if (!last_task)
			continue;

		timersub(&stop, &start0, &diff);
		runtime_ns_max = diff.tv_sec * 1000000000ULL;
		runtime_ns_max += diff.tv_usec * 1000ULL;

		show_summary(runtime_ns_max, l, &convergence);
	}

	gettimeofday(&stop, NULL);
	timersub(&stop, &start0, &diff);
	td->runtime_ns = diff.tv_sec * 1000000000ULL;
	td->runtime_ns += diff.tv_usec * 1000ULL;

	free_data(thread_data, g->p.bytes_thread);

	pthread_mutex_lock(&g->stop_work_mutex);
	g->bytes_done += bytes_done;
	pthread_mutex_unlock(&g->stop_work_mutex);

	return NULL;
}

/*
 * A worker process starts a couple of threads:
 */
static void worker_process(int process_nr)
{
	pthread_mutex_t process_lock;
	struct thread_data *td;
	pthread_t *pthreads;
	u8 *process_data;
	int task_nr;
	int ret;
	int t;

	pthread_mutex_init(&process_lock, NULL);
	set_taskname("process %d", process_nr);

	/*
	 * Pick up the memory policy and the CPU binding of our first thread,
	 * so that we initialize memory accordingly:
	 */
	task_nr = process_nr*g->p.nr_threads;
	td = g->threads + task_nr;

	bind_to_memnode(td->bind_node);
	bind_to_cpumask(td->bind_cpumask);

	pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
	process_data = setup_private_data(g->p.bytes_process);

	if (g->p.show_details >= 3) {
		printf(" # process %2d global mem: %p, process mem: %p\n",
			process_nr, g->data, process_data);
	}

	for (t = 0; t < g->p.nr_threads; t++) {
		task_nr = process_nr*g->p.nr_threads + t;
		td = g->threads + task_nr;

		td->process_data = process_data;
		td->process_nr   = process_nr;
		td->thread_nr    = t;
		td->task_nr	 = task_nr;
		td->val          = rand();
		td->curr_cpu	 = -1;
		td->process_lock = &process_lock;

		ret = pthread_create(pthreads + t, NULL, worker_thread, td);
		BUG_ON(ret);
	}

	for (t = 0; t < g->p.nr_threads; t++) {
                ret = pthread_join(pthreads[t], NULL);
		BUG_ON(ret);
	}

	free_data(process_data, g->p.bytes_process);
	free(pthreads);
}

static void print_summary(void)
{
	if (g->p.show_details < 0)
		return;

	printf("\n ###\n");
	printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
		g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus);
	printf(" #      %5dx %5ldMB global  shared mem operations\n",
			g->p.nr_loops, g->p.bytes_global/1024/1024);
	printf(" #      %5dx %5ldMB process shared mem operations\n",
			g->p.nr_loops, g->p.bytes_process/1024/1024);
	printf(" #      %5dx %5ldMB thread  local  mem operations\n",
			g->p.nr_loops, g->p.bytes_thread/1024/1024);

	printf(" ###\n");

	printf("\n ###\n"); fflush(stdout);
}

static void init_thread_data(void)
{
	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
	int t;

	g->threads = zalloc_shared_data(size);

	for (t = 0; t < g->p.nr_tasks; t++) {
		struct thread_data *td = g->threads + t;
		int cpu;

		/* Allow all nodes by default: */
		td->bind_node = -1;

		/* Allow all CPUs by default: */
		CPU_ZERO(&td->bind_cpumask);
		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
			CPU_SET(cpu, &td->bind_cpumask);
	}
}

static void deinit_thread_data(void)
{
	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;

	free_data(g->threads, size);
}

static int init(void)
{
	g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);

	/* Copy over options: */
	g->p = p0;

	g->p.nr_cpus = numa_num_configured_cpus();

	g->p.nr_nodes = numa_max_node() + 1;

	/* char array in count_process_nodes(): */
	BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);

	if (g->p.show_quiet && !g->p.show_details)
		g->p.show_details = -1;

	/* Some memory should be specified: */
	if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
		return -1;

	if (g->p.mb_global_str) {
		g->p.mb_global = atof(g->p.mb_global_str);
		BUG_ON(g->p.mb_global < 0);
	}

	if (g->p.mb_proc_str) {
		g->p.mb_proc = atof(g->p.mb_proc_str);
		BUG_ON(g->p.mb_proc < 0);
	}

	if (g->p.mb_proc_locked_str) {
		g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
		BUG_ON(g->p.mb_proc_locked < 0);
		BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
	}

	if (g->p.mb_thread_str) {
		g->p.mb_thread = atof(g->p.mb_thread_str);
		BUG_ON(g->p.mb_thread < 0);
	}

	BUG_ON(g->p.nr_threads <= 0);
	BUG_ON(g->p.nr_proc <= 0);

	g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;

	g->p.bytes_global		= g->p.mb_global	*1024L*1024L;
	g->p.bytes_process		= g->p.mb_proc		*1024L*1024L;
	g->p.bytes_process_locked	= g->p.mb_proc_locked	*1024L*1024L;
	g->p.bytes_thread		= g->p.mb_thread	*1024L*1024L;

	g->data = setup_shared_data(g->p.bytes_global);

	/* Startup serialization: */
	init_global_mutex(&g->start_work_mutex);
	init_global_mutex(&g->startup_mutex);
	init_global_mutex(&g->startup_done_mutex);
	init_global_mutex(&g->stop_work_mutex);

	init_thread_data();

	tprintf("#\n");
	if (parse_setup_cpu_list() || parse_setup_node_list())
		return -1;
	tprintf("#\n");

	print_summary();

	return 0;
}

static void deinit(void)
{
	free_data(g->data, g->p.bytes_global);
	g->data = NULL;

	deinit_thread_data();

	free_data(g, sizeof(*g));
	g = NULL;
}

/*
 * Print a short or long result, depending on the verbosity setting:
 */
static void print_res(const char *name, double val,
		      const char *txt_unit, const char *txt_short, const char *txt_long)
{
	if (!name)
		name = "main,";

	if (g->p.show_quiet)
		printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
	else
		printf(" %14.3f %s\n", val, txt_long);
}

static int __bench_numa(const char *name)
{
	struct timeval start, stop, diff;
	u64 runtime_ns_min, runtime_ns_sum;
	pid_t *pids, pid, wpid;
	double delta_runtime;
	double runtime_avg;
	double runtime_sec_max;
	double runtime_sec_min;
	int wait_stat;
	double bytes;
	int i, t;

	if (init())
		return -1;

	pids = zalloc(g->p.nr_proc * sizeof(*pids));
	pid = -1;

	/* All threads try to acquire it, this way we can wait for them to start up: */
	pthread_mutex_lock(&g->start_work_mutex);

	if (g->p.serialize_startup) {
		tprintf(" #\n");
		tprintf(" # Startup synchronization: ..."); fflush(stdout);
	}

	gettimeofday(&start, NULL);

	for (i = 0; i < g->p.nr_proc; i++) {
		pid = fork();
		dprintf(" # process %2d: PID %d\n", i, pid);

		BUG_ON(pid < 0);
		if (!pid) {
			/* Child process: */
			worker_process(i);

			exit(0);
		}
		pids[i] = pid;

	}
	/* Wait for all the threads to start up: */
	while (g->nr_tasks_started != g->p.nr_tasks)
		usleep(1000);

	BUG_ON(g->nr_tasks_started != g->p.nr_tasks);

	if (g->p.serialize_startup) {
		double startup_sec;

		pthread_mutex_lock(&g->startup_done_mutex);

		/* This will start all threads: */
		pthread_mutex_unlock(&g->start_work_mutex);

		/* This mutex is locked - the last started thread will wake us: */
		pthread_mutex_lock(&g->startup_done_mutex);

		gettimeofday(&stop, NULL);

		timersub(&stop, &start, &diff);

		startup_sec = diff.tv_sec * 1000000000.0;
		startup_sec += diff.tv_usec * 1000.0;
		startup_sec /= 1e9;

		tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
		tprintf(" #\n");

		start = stop;
		pthread_mutex_unlock(&g->startup_done_mutex);
	} else {
		gettimeofday(&start, NULL);
	}

	/* Parent process: */


	for (i = 0; i < g->p.nr_proc; i++) {
		wpid = waitpid(pids[i], &wait_stat, 0);
		BUG_ON(wpid < 0);
		BUG_ON(!WIFEXITED(wait_stat));

	}

	runtime_ns_sum = 0;
	runtime_ns_min = -1LL;

	for (t = 0; t < g->p.nr_tasks; t++) {
		u64 thread_runtime_ns = g->threads[t].runtime_ns;

		runtime_ns_sum += thread_runtime_ns;
		runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
	}

	gettimeofday(&stop, NULL);
	timersub(&stop, &start, &diff);

	BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);

	tprintf("\n ###\n");
	tprintf("\n");

	runtime_sec_max = diff.tv_sec * 1000000000.0;
	runtime_sec_max += diff.tv_usec * 1000.0;
	runtime_sec_max /= 1e9;

	runtime_sec_min = runtime_ns_min/1e9;

	bytes = g->bytes_done;
	runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / 1e9;

	if (g->p.measure_convergence) {
		print_res(name, runtime_sec_max,
			"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
	}

	print_res(name, runtime_sec_max,
		"secs,", "runtime-max/thread",	"secs slowest (max) thread-runtime");

	print_res(name, runtime_sec_min,
		"secs,", "runtime-min/thread",	"secs fastest (min) thread-runtime");

	print_res(name, runtime_avg,
		"secs,", "runtime-avg/thread",	"secs average thread-runtime");

	delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
	print_res(name, delta_runtime / runtime_sec_max * 100.0,
		"%,", "spread-runtime/thread",	"% difference between max/avg runtime");

	print_res(name, bytes / g->p.nr_tasks / 1e9,
		"GB,", "data/thread",		"GB data processed, per thread");

	print_res(name, bytes / 1e9,
		"GB,", "data-total",		"GB data processed, total");

	print_res(name, runtime_sec_max * 1e9 / (bytes / g->p.nr_tasks),
		"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");

	print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
		"GB/sec,", "thread-speed",	"GB/sec/thread speed");

	print_res(name, bytes / runtime_sec_max / 1e9,
		"GB/sec,", "total-speed",	"GB/sec total speed");

	free(pids);

	deinit();

	return 0;
}

#define MAX_ARGS 50

static int command_size(const char **argv)
{
	int size = 0;

	while (*argv) {
		size++;
		argv++;
	}

	BUG_ON(size >= MAX_ARGS);

	return size;
}

static void init_params(struct params *p, const char *name, int argc, const char **argv)
{
	int i;

	printf("\n # Running %s \"perf bench numa", name);

	for (i = 0; i < argc; i++)
		printf(" %s", argv[i]);

	printf("\"\n");

	memset(p, 0, sizeof(*p));

	/* Initialize nonzero defaults: */

	p->serialize_startup		= 1;
	p->data_reads			= true;
	p->data_writes			= true;
	p->data_backwards		= true;
	p->data_rand_walk		= true;
	p->nr_loops			= -1;
	p->init_random			= true;
	p->mb_global_str		= "1";
	p->nr_proc			= 1;
	p->nr_threads			= 1;
	p->nr_secs			= 5;
	p->run_all			= argc == 1;
}

static int run_bench_numa(const char *name, const char **argv)
{
	int argc = command_size(argv);

	init_params(&p0, name, argc, argv);
	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
	if (argc)
		goto err;

	if (__bench_numa(name))
		goto err;

	return 0;

err:
	return -1;
}

#define OPT_BW_RAM		"-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
#define OPT_BW_RAM_NOTHP	OPT_BW_RAM,		"--thp", "-1"

#define OPT_CONV		"-s", "100", "-zZ0qcm", "--thp", " 1"
#define OPT_CONV_NOTHP		OPT_CONV,		"--thp", "-1"

#define OPT_BW			"-s",  "20", "-zZ0q",   "--thp", " 1"
#define OPT_BW_NOTHP		OPT_BW,			"--thp", "-1"

/*
 * The built-in test-suite executed by "perf bench numa -a".
 *
 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
 */
static const char *tests[][MAX_ARGS] = {
   /* Basic single-stream NUMA bandwidth measurements: */
   { "RAM-bw-local,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
   { "RAM-bw-local-NOTHP,",
			  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
   { "RAM-bw-remote,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
			  "-C" ,   "0", "-M",   "1", OPT_BW_RAM },

   /* 2-stream NUMA bandwidth measurements: */
   { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
			   "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
   { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
		 	   "-C", "0,2", "-M", "1x2", OPT_BW_RAM },

   /* Cross-stream NUMA bandwidth measurement: */
   { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
		 	   "-C", "0,8", "-M", "1,0", OPT_BW_RAM },

   /* Convergence latency measurements: */
   { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
   { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
   { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
   { " 2x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
   { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
   { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
   { " 4x4-convergence-NOTHP,",
			  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
   { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
   { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
   { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
   { " 8x4-convergence-NOTHP,",
			  "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
   { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
   { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
   { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
   { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
   { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },

   /* Various NUMA process/thread layout bandwidth measurements: */
   { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
   { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
   { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
   { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
   { " 8x1-bw-process-NOTHP,",
			  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
   { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },

   { " 4x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
   { " 8x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
   { "16x1-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
   { "32x1-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },

   { " 2x3-bw-thread,",	  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
   { " 4x4-bw-thread,",	  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
   { " 4x6-bw-thread,",	  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
   { " 4x8-bw-thread,",	  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
   { " 4x8-bw-thread-NOTHP,",
			  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
   { " 3x3-bw-thread,",	  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
   { " 5x5-bw-thread,",	  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },

   { "2x16-bw-thread,",   "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
   { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },

   { "numa02-bw,",	  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
   { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
   { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
   { "numa01-bw-thread-NOTHP,",
			  "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
};

static int bench_all(void)
{
	int nr = ARRAY_SIZE(tests);
	int ret;
	int i;

	ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
	BUG_ON(ret < 0);

	for (i = 0; i < nr; i++) {
		run_bench_numa(tests[i][0], tests[i] + 1);
	}

	printf("\n");

	return 0;
}

int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused)
{
	init_params(&p0, "main,", argc, argv);
	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
	if (argc)
		goto err;

	if (p0.run_all)
		return bench_all();

	if (__bench_numa(NULL))
		goto err;

	return 0;

err:
	usage_with_options(numa_usage, options);
	return -1;
}