/******************************************************************************
AudioScience HPI driver
Copyright (C) 1997-2010 AudioScience Inc. <support@audioscience.com>
This program is free software; you can redistribute it and/or modify
it under the terms of version 2 of the GNU General Public License as
published by the Free Software Foundation;
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
\file hpicmn.c
Common functions used by hpixxxx.c modules
(C) Copyright AudioScience Inc. 1998-2003
*******************************************************************************/
#define SOURCEFILE_NAME "hpicmn.c"
#include "hpi_internal.h"
#include "hpidebug.h"
#include "hpicmn.h"
struct hpi_adapters_list {
struct hpios_spinlock list_lock;
struct hpi_adapter_obj adapter[HPI_MAX_ADAPTERS];
u16 gw_num_adapters;
};
static struct hpi_adapters_list adapters;
/**
* Given an HPI Message that was sent out and a response that was received,
* validate that the response has the correct fields filled in,
* i.e ObjectType, Function etc
**/
u16 hpi_validate_response(struct hpi_message *phm, struct hpi_response *phr)
{
u16 error = 0;
if ((phr->type != HPI_TYPE_RESPONSE)
|| (phr->object != phm->object)
|| (phr->function != phm->function))
error = HPI_ERROR_INVALID_RESPONSE;
return error;
}
u16 hpi_add_adapter(struct hpi_adapter_obj *pao)
{
u16 retval = 0;
/*HPI_ASSERT(pao->wAdapterType); */
hpios_alistlock_lock(&adapters);
if (pao->index >= HPI_MAX_ADAPTERS) {
retval = HPI_ERROR_BAD_ADAPTER_NUMBER;
goto unlock;
}
if (adapters.adapter[pao->index].adapter_type) {
{
retval = HPI_DUPLICATE_ADAPTER_NUMBER;
goto unlock;
}
}
adapters.adapter[pao->index] = *pao;
hpios_dsplock_init(&adapters.adapter[pao->index]);
adapters.gw_num_adapters++;
unlock:
hpios_alistlock_un_lock(&adapters);
return retval;
}
void hpi_delete_adapter(struct hpi_adapter_obj *pao)
{
memset(pao, 0, sizeof(struct hpi_adapter_obj));
hpios_alistlock_lock(&adapters);
adapters.gw_num_adapters--; /* dec the number of adapters */
hpios_alistlock_un_lock(&adapters);
}
/**
* FindAdapter returns a pointer to the struct hpi_adapter_obj with
* index wAdapterIndex in an HPI_ADAPTERS_LIST structure.
*
*/
struct hpi_adapter_obj *hpi_find_adapter(u16 adapter_index)
{
struct hpi_adapter_obj *pao = NULL;
if (adapter_index >= HPI_MAX_ADAPTERS) {
HPI_DEBUG_LOG(VERBOSE, "find_adapter invalid index %d ",
adapter_index);
return NULL;
}
pao = &adapters.adapter[adapter_index];
if (pao->adapter_type != 0) {
/*
HPI_DEBUG_LOG(VERBOSE, "Found adapter index %d\n",
wAdapterIndex);
*/
return pao;
} else {
/*
HPI_DEBUG_LOG(VERBOSE, "No adapter index %d\n",
wAdapterIndex);
*/
return NULL;
}
}
/**
*
* wipe an HPI_ADAPTERS_LIST structure.
*
**/
static void wipe_adapter_list(void
)
{
memset(&adapters, 0, sizeof(adapters));
}
/**
* SubSysGetAdapters fills awAdapterList in an struct hpi_response structure
* with all adapters in the given HPI_ADAPTERS_LIST.
*
*/
static void subsys_get_adapters(struct hpi_response *phr)
{
/* fill in the response adapter array with the position */
/* identified by the adapter number/index of the adapters in */
/* this HPI */
/* i.e. if we have an A120 with it's jumper set to */
/* Adapter Number 2 then put an Adapter type A120 in the */
/* array in position 1 */
/* NOTE: AdapterNumber is 1..N, Index is 0..N-1 */
/* input: NONE */
/* output: wNumAdapters */
/* awAdapter[] */
/* */
short i;
struct hpi_adapter_obj *pao = NULL;
HPI_DEBUG_LOG(VERBOSE, "subsys_get_adapters\n");
/* for each adapter, place it's type in the position of the array */
/* corresponding to it's adapter number */
for (i = 0; i < adapters.gw_num_adapters; i++) {
pao = &adapters.adapter[i];
if (phr->u.s.aw_adapter_list[pao->index] != 0) {
phr->error = HPI_DUPLICATE_ADAPTER_NUMBER;
phr->specific_error = pao->index;
return;
}
phr->u.s.aw_adapter_list[pao->index] = pao->adapter_type;
}
phr->u.s.num_adapters = adapters.gw_num_adapters;
phr->error = 0; /* the function completed OK; */
}
static unsigned int control_cache_alloc_check(struct hpi_control_cache *pC)
{
unsigned int i;
int cached = 0;
if (!pC)
return 0;
if ((!pC->init) && (pC->p_cache != NULL) && (pC->control_count)
&& (pC->cache_size_in_bytes)
) {
u32 *p_master_cache;
pC->init = 1;
p_master_cache = (u32 *)pC->p_cache;
HPI_DEBUG_LOG(VERBOSE, "check %d controls\n",
pC->control_count);
for (i = 0; i < pC->control_count; i++) {
struct hpi_control_cache_info *info =
(struct hpi_control_cache_info *)
p_master_cache;
if (info->control_type) {
pC->p_info[i] = info;
cached++;
} else
pC->p_info[i] = NULL;
if (info->size_in32bit_words)
p_master_cache += info->size_in32bit_words;
else
p_master_cache +=
sizeof(struct
hpi_control_cache_single) /
sizeof(u32);
HPI_DEBUG_LOG(VERBOSE,
"cached %d, pinfo %p index %d type %d\n",
cached, pC->p_info[i], info->control_index,
info->control_type);
}
/*
We didn't find anything to cache, so try again later !
*/
if (!cached)
pC->init = 0;
}
return pC->init;
}
/** Find a control.
*/
static short find_control(struct hpi_message *phm,
struct hpi_control_cache *p_cache, struct hpi_control_cache_info **pI,
u16 *pw_control_index)
{
*pw_control_index = phm->obj_index;
if (!control_cache_alloc_check(p_cache)) {
HPI_DEBUG_LOG(VERBOSE,
"control_cache_alloc_check() failed. adap%d ci%d\n",
phm->adapter_index, *pw_control_index);
return 0;
}
*pI = p_cache->p_info[*pw_control_index];
if (!*pI) {
HPI_DEBUG_LOG(VERBOSE, "uncached adap %d, control %d\n",
phm->adapter_index, *pw_control_index);
return 0;
} else {
HPI_DEBUG_LOG(VERBOSE, "find_control() type %d\n",
(*pI)->control_type);
}
return 1;
}
/** Used by the kernel driver to figure out if a buffer needs mapping.
*/
short hpi_check_buffer_mapping(struct hpi_control_cache *p_cache,
struct hpi_message *phm, void **p, unsigned int *pN)
{
*pN = 0;
*p = NULL;
if ((phm->function == HPI_CONTROL_GET_STATE)
&& (phm->object == HPI_OBJ_CONTROLEX)
) {
u16 control_index;
struct hpi_control_cache_info *pI;
if (!find_control(phm, p_cache, &pI, &control_index))
return 0;
}
return 0;
}
/* allow unified treatment of several string fields within struct */
#define HPICMN_PAD_OFS_AND_SIZE(m) {\
offsetof(struct hpi_control_cache_pad, m), \
sizeof(((struct hpi_control_cache_pad *)(NULL))->m) }
struct pad_ofs_size {
unsigned int offset;
unsigned int field_size;
};
static struct pad_ofs_size pad_desc[] = {
HPICMN_PAD_OFS_AND_SIZE(c_channel), /* HPI_PAD_CHANNEL_NAME */
HPICMN_PAD_OFS_AND_SIZE(c_artist), /* HPI_PAD_ARTIST */
HPICMN_PAD_OFS_AND_SIZE(c_title), /* HPI_PAD_TITLE */
HPICMN_PAD_OFS_AND_SIZE(c_comment), /* HPI_PAD_COMMENT */
};
/** CheckControlCache checks the cache and fills the struct hpi_response
* accordingly. It returns one if a cache hit occurred, zero otherwise.
*/
short hpi_check_control_cache(struct hpi_control_cache *p_cache,
struct hpi_message *phm, struct hpi_response *phr)
{
short found = 1;
u16 control_index;
struct hpi_control_cache_info *pI;
struct hpi_control_cache_single *pC;
struct hpi_control_cache_pad *p_pad;
if (!find_control(phm, p_cache, &pI, &control_index))
return 0;
phr->error = 0;
/* pC is the default cached control strucure. May be cast to
something else in the following switch statement.
*/
pC = (struct hpi_control_cache_single *)pI;
p_pad = (struct hpi_control_cache_pad *)pI;
switch (pI->control_type) {
case HPI_CONTROL_METER:
if (phm->u.c.attribute == HPI_METER_PEAK) {
phr->u.c.an_log_value[0] = pC->u.p.an_log_peak[0];
phr->u.c.an_log_value[1] = pC->u.p.an_log_peak[1];
} else if (phm->u.c.attribute == HPI_METER_RMS) {
phr->u.c.an_log_value[0] = pC->u.p.an_logRMS[0];
phr->u.c.an_log_value[1] = pC->u.p.an_logRMS[1];
} else
found = 0;
break;
case HPI_CONTROL_VOLUME:
if (phm->u.c.attribute == HPI_VOLUME_GAIN) {
phr->u.c.an_log_value[0] = pC->u.v.an_log[0];
phr->u.c.an_log_value[1] = pC->u.v.an_log[1];
} else
found = 0;
break;
case HPI_CONTROL_MULTIPLEXER:
if (phm->u.c.attribute == HPI_MULTIPLEXER_SOURCE) {
phr->u.c.param1 = pC->u.x.source_node_type;
phr->u.c.param2 = pC->u.x.source_node_index;
} else {
found = 0;
}
break;
case HPI_CONTROL_CHANNEL_MODE:
if (phm->u.c.attribute == HPI_CHANNEL_MODE_MODE)
phr->u.c.param1 = pC->u.m.mode;
else
found = 0;
break;
case HPI_CONTROL_LEVEL:
if (phm->u.c.attribute == HPI_LEVEL_GAIN) {
phr->u.c.an_log_value[0] = pC->u.l.an_log[0];
phr->u.c.an_log_value[1] = pC->u.l.an_log[1];
} else
found = 0;
break;
case HPI_CONTROL_TUNER:
if (phm->u.c.attribute == HPI_TUNER_FREQ)
phr->u.c.param1 = pC->u.t.freq_ink_hz;
else if (phm->u.c.attribute == HPI_TUNER_BAND)
phr->u.c.param1 = pC->u.t.band;
else if ((phm->u.c.attribute == HPI_TUNER_LEVEL)
&& (phm->u.c.param1 == HPI_TUNER_LEVEL_AVERAGE))
if (pC->u.t.level == HPI_ERROR_ILLEGAL_CACHE_VALUE) {
phr->u.c.param1 = 0;
phr->error =
HPI_ERROR_INVALID_CONTROL_ATTRIBUTE;
} else
phr->u.c.param1 = pC->u.t.level;
else
found = 0;
break;
case HPI_CONTROL_AESEBU_RECEIVER:
if (phm->u.c.attribute == HPI_AESEBURX_ERRORSTATUS)
phr->u.c.param1 = pC->u.aes3rx.error_status;
else if (phm->u.c.attribute == HPI_AESEBURX_FORMAT)
phr->u.c.param1 = pC->u.aes3rx.source;
else
found = 0;
break;
case HPI_CONTROL_AESEBU_TRANSMITTER:
if (phm->u.c.attribute == HPI_AESEBUTX_FORMAT)
phr->u.c.param1 = pC->u.aes3tx.format;
else
found = 0;
break;
case HPI_CONTROL_TONEDETECTOR:
if (phm->u.c.attribute == HPI_TONEDETECTOR_STATE)
phr->u.c.param1 = pC->u.tone.state;
else
found = 0;
break;
case HPI_CONTROL_SILENCEDETECTOR:
if (phm->u.c.attribute == HPI_SILENCEDETECTOR_STATE) {
phr->u.c.param1 = pC->u.silence.state;
phr->u.c.param2 = pC->u.silence.count;
} else
found = 0;
break;
case HPI_CONTROL_MICROPHONE:
if (phm->u.c.attribute == HPI_MICROPHONE_PHANTOM_POWER)
phr->u.c.param1 = pC->u.phantom_power.state;
else
found = 0;
break;
case HPI_CONTROL_SAMPLECLOCK:
if (phm->u.c.attribute == HPI_SAMPLECLOCK_SOURCE)
phr->u.c.param1 = pC->u.clk.source;
else if (phm->u.c.attribute == HPI_SAMPLECLOCK_SOURCE_INDEX) {
if (pC->u.clk.source_index ==
HPI_ERROR_ILLEGAL_CACHE_VALUE) {
phr->u.c.param1 = 0;
phr->error =
HPI_ERROR_INVALID_CONTROL_ATTRIBUTE;
} else
phr->u.c.param1 = pC->u.clk.source_index;
} else if (phm->u.c.attribute == HPI_SAMPLECLOCK_SAMPLERATE)
phr->u.c.param1 = pC->u.clk.sample_rate;
else
found = 0;
break;
case HPI_CONTROL_PAD:
if (!(p_pad->field_valid_flags & (1 <<
HPI_CTL_ATTR_INDEX(phm->u.c.
attribute)))) {
phr->error = HPI_ERROR_INVALID_CONTROL_ATTRIBUTE;
break;
}
if (phm->u.c.attribute == HPI_PAD_PROGRAM_ID)
phr->u.c.param1 = p_pad->pI;
else if (phm->u.c.attribute == HPI_PAD_PROGRAM_TYPE)
phr->u.c.param1 = p_pad->pTY;
else {
unsigned int index =
HPI_CTL_ATTR_INDEX(phm->u.c.attribute) - 1;
unsigned int offset = phm->u.c.param1;
unsigned int pad_string_len, field_size;
char *pad_string;
unsigned int tocopy;
HPI_DEBUG_LOG(VERBOSE, "PADS HPI_PADS_ %d\n",
phm->u.c.attribute);
if (index > ARRAY_SIZE(pad_desc) - 1) {
phr->error =
HPI_ERROR_INVALID_CONTROL_ATTRIBUTE;
break;
}
pad_string = ((char *)p_pad) + pad_desc[index].offset;
field_size = pad_desc[index].field_size;
/* Ensure null terminator */
pad_string[field_size - 1] = 0;
pad_string_len = strlen(pad_string) + 1;
if (offset > pad_string_len) {
phr->error = HPI_ERROR_INVALID_CONTROL_VALUE;
break;
}
tocopy = pad_string_len - offset;
if (tocopy > sizeof(phr->u.cu.chars8.sz_data))
tocopy = sizeof(phr->u.cu.chars8.sz_data);
HPI_DEBUG_LOG(VERBOSE,
"PADS memcpy(%d), offset %d \n", tocopy,
offset);
memcpy(phr->u.cu.chars8.sz_data, &pad_string[offset],
tocopy);
phr->u.cu.chars8.remaining_chars =
pad_string_len - offset - tocopy;
}
break;
default:
found = 0;
break;
}
if (found)
HPI_DEBUG_LOG(VERBOSE,
"cached adap %d, ctl %d, type %d, attr %d\n",
phm->adapter_index, pI->control_index,
pI->control_type, phm->u.c.attribute);
else
HPI_DEBUG_LOG(VERBOSE,
"uncached adap %d, ctl %d, ctl type %d\n",
phm->adapter_index, pI->control_index,
pI->control_type);
if (found)
phr->size =
sizeof(struct hpi_response_header) +
sizeof(struct hpi_control_res);
return found;
}
/** Updates the cache with Set values.
Only update if no error.
Volume and Level return the limited values in the response, so use these
Multiplexer does so use sent values
*/
void hpi_sync_control_cache(struct hpi_control_cache *p_cache,
struct hpi_message *phm, struct hpi_response *phr)
{
u16 control_index;
struct hpi_control_cache_single *pC;
struct hpi_control_cache_info *pI;
if (phr->error)
return;
if (!find_control(phm, p_cache, &pI, &control_index))
return;
/* pC is the default cached control strucure.
May be cast to something else in the following switch statement.
*/
pC = (struct hpi_control_cache_single *)pI;
switch (pI->control_type) {
case HPI_CONTROL_VOLUME:
if (phm->u.c.attribute == HPI_VOLUME_GAIN) {
pC->u.v.an_log[0] = phr->u.c.an_log_value[0];
pC->u.v.an_log[1] = phr->u.c.an_log_value[1];
}
break;
case HPI_CONTROL_MULTIPLEXER:
/* mux does not return its setting on Set command. */
if (phm->u.c.attribute == HPI_MULTIPLEXER_SOURCE) {
pC->u.x.source_node_type = (u16)phm->u.c.param1;
pC->u.x.source_node_index = (u16)phm->u.c.param2;
}
break;
case HPI_CONTROL_CHANNEL_MODE:
/* mode does not return its setting on Set command. */
if (phm->u.c.attribute == HPI_CHANNEL_MODE_MODE)
pC->u.m.mode = (u16)phm->u.c.param1;
break;
case HPI_CONTROL_LEVEL:
if (phm->u.c.attribute == HPI_LEVEL_GAIN) {
pC->u.v.an_log[0] = phr->u.c.an_log_value[0];
pC->u.v.an_log[1] = phr->u.c.an_log_value[1];
}
break;
case HPI_CONTROL_MICROPHONE:
if (phm->u.c.attribute == HPI_MICROPHONE_PHANTOM_POWER)
pC->u.phantom_power.state = (u16)phm->u.c.param1;
break;
case HPI_CONTROL_AESEBU_TRANSMITTER:
if (phm->u.c.attribute == HPI_AESEBUTX_FORMAT)
pC->u.aes3tx.format = phm->u.c.param1;
break;
case HPI_CONTROL_AESEBU_RECEIVER:
if (phm->u.c.attribute == HPI_AESEBURX_FORMAT)
pC->u.aes3rx.source = phm->u.c.param1;
break;
case HPI_CONTROL_SAMPLECLOCK:
if (phm->u.c.attribute == HPI_SAMPLECLOCK_SOURCE)
pC->u.clk.source = (u16)phm->u.c.param1;
else if (phm->u.c.attribute == HPI_SAMPLECLOCK_SOURCE_INDEX)
pC->u.clk.source_index = (u16)phm->u.c.param1;
else if (phm->u.c.attribute == HPI_SAMPLECLOCK_SAMPLERATE)
pC->u.clk.sample_rate = phm->u.c.param1;
break;
default:
break;
}
}
struct hpi_control_cache *hpi_alloc_control_cache(const u32
number_of_controls, const u32 size_in_bytes,
struct hpi_control_cache_info *pDSP_control_buffer)
{
struct hpi_control_cache *p_cache =
kmalloc(sizeof(*p_cache), GFP_KERNEL);
p_cache->cache_size_in_bytes = size_in_bytes;
p_cache->control_count = number_of_controls;
p_cache->p_cache =
(struct hpi_control_cache_single *)pDSP_control_buffer;
p_cache->init = 0;
p_cache->p_info =
kmalloc(sizeof(*p_cache->p_info) * p_cache->control_count,
GFP_KERNEL);
return p_cache;
}
void hpi_free_control_cache(struct hpi_control_cache *p_cache)
{
if (p_cache->init) {
kfree(p_cache->p_info);
p_cache->p_info = NULL;
p_cache->init = 0;
kfree(p_cache);
}
}
static void subsys_message(struct hpi_message *phm, struct hpi_response *phr)
{
switch (phm->function) {
case HPI_SUBSYS_OPEN:
case HPI_SUBSYS_CLOSE:
case HPI_SUBSYS_DRIVER_UNLOAD:
phr->error = 0;
break;
case HPI_SUBSYS_DRIVER_LOAD:
wipe_adapter_list();
hpios_alistlock_init(&adapters);
phr->error = 0;
break;
case HPI_SUBSYS_GET_INFO:
subsys_get_adapters(phr);
break;
case HPI_SUBSYS_CREATE_ADAPTER:
case HPI_SUBSYS_DELETE_ADAPTER:
phr->error = 0;
break;
default:
phr->error = HPI_ERROR_INVALID_FUNC;
break;
}
}
void HPI_COMMON(struct hpi_message *phm, struct hpi_response *phr)
{
switch (phm->type) {
case HPI_TYPE_MESSAGE:
switch (phm->object) {
case HPI_OBJ_SUBSYSTEM:
subsys_message(phm, phr);
break;
}
break;
default:
phr->error = HPI_ERROR_INVALID_TYPE;
break;
}
}