/****************************************************************************/
/*
* esssolo1.c -- ESS Technology Solo1 (ES1946) audio driver.
*
* Copyright (C) 1998-2001, 2003 Thomas Sailer (t.sailer@alumni.ethz.ch)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Module command line parameters:
* none so far
*
* Supported devices:
* /dev/dsp standard /dev/dsp device, (mostly) OSS compatible
* /dev/mixer standard /dev/mixer device, (mostly) OSS compatible
* /dev/midi simple MIDI UART interface, no ioctl
*
* Revision history
* 10.11.1998 0.1 Initial release (without any hardware)
* 22.03.1999 0.2 cinfo.blocks should be reset after GETxPTR ioctl.
* reported by Johan Maes <joma@telindus.be>
* return EAGAIN instead of EBUSY when O_NONBLOCK
* read/write cannot be executed
* 07.04.1999 0.3 implemented the following ioctl's: SOUND_PCM_READ_RATE,
* SOUND_PCM_READ_CHANNELS, SOUND_PCM_READ_BITS;
* Alpha fixes reported by Peter Jones <pjones@redhat.com>
* 15.06.1999 0.4 Fix bad allocation bug.
* Thanks to Deti Fliegl <fliegl@in.tum.de>
* 28.06.1999 0.5 Add pci_set_master
* 12.08.1999 0.6 Fix MIDI UART crashing the driver
* Changed mixer semantics from OSS documented
* behaviour to OSS "code behaviour".
* Recording might actually work now.
* The real DDMA controller address register is at PCI config
* 0x60, while the register at 0x18 is used as a placeholder
* register for BIOS address allocation. This register
* is supposed to be copied into 0x60, according
* to the Solo1 datasheet. When I do that, I can access
* the DDMA registers except the mask bit, which
* is stuck at 1. When I copy the contents of 0x18 +0x10
* to the DDMA base register, everything seems to work.
* The fun part is that the Windows Solo1 driver doesn't
* seem to do these tricks.
* Bugs remaining: plops and clicks when starting/stopping playback
* 31.08.1999 0.7 add spin_lock_init
* replaced current->state = x with set_current_state(x)
* 03.09.1999 0.8 change read semantics for MIDI to match
* OSS more closely; remove possible wakeup race
* 07.10.1999 0.9 Fix initialization; complain if sequencer writes time out
* Revised resource grabbing for the FM synthesizer
* 28.10.1999 0.10 More waitqueue races fixed
* 09.12.1999 0.11 Work around stupid Alpha port issue (virt_to_bus(kmalloc(GFP_DMA)) > 16M)
* Disabling recording on Alpha
* 12.01.2000 0.12 Prevent some ioctl's from returning bad count values on underrun/overrun;
* Tim Janik's BSE (Bedevilled Sound Engine) found this
* Integrated (aka redid 8-)) APM support patch by Zach Brown
* 07.02.2000 0.13 Use pci_alloc_consistent and pci_register_driver
* 19.02.2000 0.14 Use pci_dma_supported to determine if recording should be disabled
* 13.03.2000 0.15 Reintroduce initialization of a couple of PCI config space registers
* 21.11.2000 0.16 Initialize dma buffers in poll, otherwise poll may return a bogus mask
* 12.12.2000 0.17 More dma buffer initializations, patch from
* Tjeerd Mulder <tjeerd.mulder@fujitsu-siemens.com>
* 31.01.2001 0.18 Register/Unregister gameport, original patch from
* Nathaniel Daw <daw@cs.cmu.edu>
* Fix SETTRIGGER non OSS API conformity
* 10.03.2001 provide abs function, prevent picking up a bogus kernel macro
* for abs. Bug report by Andrew Morton <andrewm@uow.edu.au>
* 15.05.2001 pci_enable_device moved, return values in probe cleaned
* up. Marcus Meissner <mm@caldera.de>
* 22.05.2001 0.19 more cleanups, changed PM to PCI 2.4 style, got rid
* of global list of devices, using pci device data.
* Marcus Meissner <mm@caldera.de>
* 03.01.2003 0.20 open_mode fixes from Georg Acher <acher@in.tum.de>
*/
/*****************************************************************************/
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/ioport.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/sound.h>
#include <linux/slab.h>
#include <linux/soundcard.h>
#include <linux/pci.h>
#include <linux/bitops.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <linux/spinlock.h>
#include <linux/smp_lock.h>
#include <linux/gameport.h>
#include <linux/wait.h>
#include <linux/dma-mapping.h>
#include <asm/io.h>
#include <asm/page.h>
#include <asm/uaccess.h>
#include "dm.h"
/* --------------------------------------------------------------------- */
#undef OSS_DOCUMENTED_MIXER_SEMANTICS
/* --------------------------------------------------------------------- */
#ifndef PCI_VENDOR_ID_ESS
#define PCI_VENDOR_ID_ESS 0x125d
#endif
#ifndef PCI_DEVICE_ID_ESS_SOLO1
#define PCI_DEVICE_ID_ESS_SOLO1 0x1969
#endif
#define SOLO1_MAGIC ((PCI_VENDOR_ID_ESS<<16)|PCI_DEVICE_ID_ESS_SOLO1)
#define DDMABASE_OFFSET 0 /* chip bug workaround kludge */
#define DDMABASE_EXTENT 16
#define IOBASE_EXTENT 16
#define SBBASE_EXTENT 16
#define VCBASE_EXTENT (DDMABASE_EXTENT+DDMABASE_OFFSET)
#define MPUBASE_EXTENT 4
#define GPBASE_EXTENT 4
#define GAMEPORT_EXTENT 4
#define FMSYNTH_EXTENT 4
/* MIDI buffer sizes */
#define MIDIINBUF 256
#define MIDIOUTBUF 256
#define FMODE_MIDI_SHIFT 3
#define FMODE_MIDI_READ (FMODE_READ << FMODE_MIDI_SHIFT)
#define FMODE_MIDI_WRITE (FMODE_WRITE << FMODE_MIDI_SHIFT)
#define FMODE_DMFM 0x10
static struct pci_driver solo1_driver;
/* --------------------------------------------------------------------- */
struct solo1_state {
/* magic */
unsigned int magic;
/* the corresponding pci_dev structure */
struct pci_dev *dev;
/* soundcore stuff */
int dev_audio;
int dev_mixer;
int dev_midi;
int dev_dmfm;
/* hardware resources */
unsigned long iobase, sbbase, vcbase, ddmabase, mpubase; /* long for SPARC */
unsigned int irq;
/* mixer registers */
struct {
unsigned short vol[10];
unsigned int recsrc;
unsigned int modcnt;
unsigned short micpreamp;
} mix;
/* wave stuff */
unsigned fmt;
unsigned channels;
unsigned rate;
unsigned char clkdiv;
unsigned ena;
spinlock_t lock;
struct semaphore open_sem;
mode_t open_mode;
wait_queue_head_t open_wait;
struct dmabuf {
void *rawbuf;
dma_addr_t dmaaddr;
unsigned buforder;
unsigned numfrag;
unsigned fragshift;
unsigned hwptr, swptr;
unsigned total_bytes;
int count;
unsigned error; /* over/underrun */
wait_queue_head_t wait;
/* redundant, but makes calculations easier */
unsigned fragsize;
unsigned dmasize;
unsigned fragsamples;
/* OSS stuff */
unsigned mapped:1;
unsigned ready:1;
unsigned endcleared:1;
unsigned enabled:1;
unsigned ossfragshift;
int ossmaxfrags;
unsigned subdivision;
} dma_dac, dma_adc;
/* midi stuff */
struct {
unsigned ird, iwr, icnt;
unsigned ord, owr, ocnt;
wait_queue_head_t iwait;
wait_queue_head_t owait;
struct timer_list timer;
unsigned char ibuf[MIDIINBUF];
unsigned char obuf[MIDIOUTBUF];
} midi;
struct gameport *gameport;
};
/* --------------------------------------------------------------------- */
static inline void write_seq(struct solo1_state *s, unsigned char data)
{
int i;
unsigned long flags;
/* the local_irq_save stunt is to send the data within the command window */
for (i = 0; i < 0xffff; i++) {
local_irq_save(flags);
if (!(inb(s->sbbase+0xc) & 0x80)) {
outb(data, s->sbbase+0xc);
local_irq_restore(flags);
return;
}
local_irq_restore(flags);
}
printk(KERN_ERR "esssolo1: write_seq timeout\n");
outb(data, s->sbbase+0xc);
}
static inline int read_seq(struct solo1_state *s, unsigned char *data)
{
int i;
if (!data)
return 0;
for (i = 0; i < 0xffff; i++)
if (inb(s->sbbase+0xe) & 0x80) {
*data = inb(s->sbbase+0xa);
return 1;
}
printk(KERN_ERR "esssolo1: read_seq timeout\n");
return 0;
}
static inline int reset_ctrl(struct solo1_state *s)
{
int i;
outb(3, s->sbbase+6); /* clear sequencer and FIFO */
udelay(10);
outb(0, s->sbbase+6);
for (i = 0; i < 0xffff; i++)
if (inb(s->sbbase+0xe) & 0x80)
if (inb(s->sbbase+0xa) == 0xaa) {
write_seq(s, 0xc6); /* enter enhanced mode */
return 1;
}
return 0;
}
static void write_ctrl(struct solo1_state *s, unsigned char reg, unsigned char data)
{
write_seq(s, reg);
write_seq(s, data);
}
#if 0 /* unused */
static unsigned char read_ctrl(struct solo1_state *s, unsigned char reg)
{
unsigned char r;
write_seq(s, 0xc0);
write_seq(s, reg);
read_seq(s, &r);
return r;
}
#endif /* unused */
static void write_mixer(struct solo1_state *s, unsigned char reg, unsigned char data)
{
outb(reg, s->sbbase+4);
outb(data, s->sbbase+5);
}
static unsigned char read_mixer(struct solo1_state *s, unsigned char reg)
{
outb(reg, s->sbbase+4);
return inb(s->sbbase+5);
}
/* --------------------------------------------------------------------- */
static inline unsigned ld2(unsigned int x)
{
unsigned r = 0;
if (x >= 0x10000) {
x >>= 16;
r += 16;
}
if (x >= 0x100) {
x >>= 8;
r += 8;
}
if (x >= 0x10) {
x >>= 4;
r += 4;
}
if (x >= 4) {
x >>= 2;
r += 2;
}
if (x >= 2)
r++;
return r;
}
/* --------------------------------------------------------------------- */
static inline void stop_dac(struct solo1_state *s)
{
unsigned long flags;
spin_lock_irqsave(&s->lock, flags);
s->ena &= ~FMODE_WRITE;
write_mixer(s, 0x78, 0x10);
spin_unlock_irqrestore(&s->lock, flags);
}
static void start_dac(struct solo1_state *s)
{
unsigned long flags;
spin_lock_irqsave(&s->lock, flags);
if (!(s->ena & FMODE_WRITE) && (s->dma_dac.mapped || s->dma_dac.count > 0) && s->dma_dac.ready) {
s->ena |= FMODE_WRITE;
write_mixer(s, 0x78, 0x12);
udelay(10);
write_mixer(s, 0x78, 0x13);
}
spin_unlock_irqrestore(&s->lock, flags);
}
static inline void stop_adc(struct solo1_state *s)
{
unsigned long flags;
spin_lock_irqsave(&s->lock, flags);
s->ena &= ~FMODE_READ;
write_ctrl(s, 0xb8, 0xe);
spin_unlock_irqrestore(&s->lock, flags);
}
static void start_adc(struct solo1_state *s)
{
unsigned long flags;
spin_lock_irqsave(&s->lock, flags);
if (!(s->ena & FMODE_READ) && (s->dma_adc.mapped || s->dma_adc.count < (signed)(s->dma_adc.dmasize - 2*s->dma_adc.fragsize))
&& s->dma_adc.ready) {
s->ena |= FMODE_READ;
write_ctrl(s, 0xb8, 0xf);
#if 0
printk(KERN_DEBUG "solo1: DMAbuffer: 0x%08lx\n", (long)s->dma_adc.rawbuf);
printk(KERN_DEBUG "solo1: DMA: mask: 0x%02x cnt: 0x%04x addr: 0x%08x stat: 0x%02x\n",
inb(s->ddmabase+0xf), inw(s->ddmabase+4), inl(s->ddmabase), inb(s->ddmabase+8));
#endif
outb(0, s->ddmabase+0xd); /* master reset */
outb(1, s->ddmabase+0xf); /* mask */
outb(0x54/*0x14*/, s->ddmabase+0xb); /* DMA_MODE_READ | DMA_MODE_AUTOINIT */
outl(virt_to_bus(s->dma_adc.rawbuf), s->ddmabase);
outw(s->dma_adc.dmasize-1, s->ddmabase+4);
outb(0, s->ddmabase+0xf);
}
spin_unlock_irqrestore(&s->lock, flags);
#if 0
printk(KERN_DEBUG "solo1: start DMA: reg B8: 0x%02x SBstat: 0x%02x\n"
KERN_DEBUG "solo1: DMA: stat: 0x%02x cnt: 0x%04x mask: 0x%02x\n",
read_ctrl(s, 0xb8), inb(s->sbbase+0xc),
inb(s->ddmabase+8), inw(s->ddmabase+4), inb(s->ddmabase+0xf));
printk(KERN_DEBUG "solo1: A1: 0x%02x A2: 0x%02x A4: 0x%02x A5: 0x%02x A8: 0x%02x\n"
KERN_DEBUG "solo1: B1: 0x%02x B2: 0x%02x B4: 0x%02x B7: 0x%02x B8: 0x%02x B9: 0x%02x\n",
read_ctrl(s, 0xa1), read_ctrl(s, 0xa2), read_ctrl(s, 0xa4), read_ctrl(s, 0xa5), read_ctrl(s, 0xa8),
read_ctrl(s, 0xb1), read_ctrl(s, 0xb2), read_ctrl(s, 0xb4), read_ctrl(s, 0xb7), read_ctrl(s, 0xb8),
read_ctrl(s, 0xb9));
#endif
}
/* --------------------------------------------------------------------- */
#define DMABUF_DEFAULTORDER (15-PAGE_SHIFT)
#define DMABUF_MINORDER 1
static inline void dealloc_dmabuf(struct solo1_state *s, struct dmabuf *db)
{
struct page *page, *pend;
if (db->rawbuf) {
/* undo marking the pages as reserved */
pend = virt_to_page(db->rawbuf + (PAGE_SIZE << db->buforder) - 1);
for (page = virt_to_page(db->rawbuf); page <= pend; page++)
ClearPageReserved(page);
pci_free_consistent(s->dev, PAGE_SIZE << db->buforder, db->rawbuf, db->dmaaddr);
}
db->rawbuf = NULL;
db->mapped = db->ready = 0;
}
static int prog_dmabuf(struct solo1_state *s, struct dmabuf *db)
{
int order;
unsigned bytespersec;
unsigned bufs, sample_shift = 0;
struct page *page, *pend;
db->hwptr = db->swptr = db->total_bytes = db->count = db->error = db->endcleared = 0;
if (!db->rawbuf) {
db->ready = db->mapped = 0;
for (order = DMABUF_DEFAULTORDER; order >= DMABUF_MINORDER; order--)
if ((db->rawbuf = pci_alloc_consistent(s->dev, PAGE_SIZE << order, &db->dmaaddr)))
break;
if (!db->rawbuf)
return -ENOMEM;
db->buforder = order;
/* now mark the pages as reserved; otherwise remap_pfn_range doesn't do what we want */
pend = virt_to_page(db->rawbuf + (PAGE_SIZE << db->buforder) - 1);
for (page = virt_to_page(db->rawbuf); page <= pend; page++)
SetPageReserved(page);
}
if (s->fmt & (AFMT_S16_LE | AFMT_U16_LE))
sample_shift++;
if (s->channels > 1)
sample_shift++;
bytespersec = s->rate << sample_shift;
bufs = PAGE_SIZE << db->buforder;
if (db->ossfragshift) {
if ((1000 << db->ossfragshift) < bytespersec)
db->fragshift = ld2(bytespersec/1000);
else
db->fragshift = db->ossfragshift;
} else {
db->fragshift = ld2(bytespersec/100/(db->subdivision ? db->subdivision : 1));
if (db->fragshift < 3)
db->fragshift = 3;
}
db->numfrag = bufs >> db->fragshift;
while (db->numfrag < 4 && db->fragshift > 3) {
db->fragshift--;
db->numfrag = bufs >> db->fragshift;
}
db->fragsize = 1 << db->fragshift;
if (db->ossmaxfrags >= 4 && db->ossmaxfrags < db->numfrag)
db->numfrag = db->ossmaxfrags;
db->fragsamples = db->fragsize >> sample_shift;
db->dmasize = db->numfrag << db->fragshift;
db->enabled = 1;
return 0;
}
static inline int prog_dmabuf_adc(struct solo1_state *s)
{
unsigned long va;
int c;
stop_adc(s);
/* check if PCI implementation supports 24bit busmaster DMA */
if (s->dev->dma_mask > 0xffffff)
return -EIO;
if ((c = prog_dmabuf(s, &s->dma_adc)))
return c;
va = s->dma_adc.dmaaddr;
if ((va & ~((1<<24)-1)))
panic("solo1: buffer above 16M boundary");
outb(0, s->ddmabase+0xd); /* clear */
outb(1, s->ddmabase+0xf); /* mask */
/*outb(0, s->ddmabase+8);*/ /* enable (enable is active low!) */
outb(0x54, s->ddmabase+0xb); /* DMA_MODE_READ | DMA_MODE_AUTOINIT */
outl(va, s->ddmabase);
outw(s->dma_adc.dmasize-1, s->ddmabase+4);
c = - s->dma_adc.fragsamples;
write_ctrl(s, 0xa4, c);
write_ctrl(s, 0xa5, c >> 8);
outb(0, s->ddmabase+0xf);
s->dma_adc.ready = 1;
return 0;
}
static inline int prog_dmabuf_dac(struct solo1_state *s)
{
unsigned long va;
int c;
stop_dac(s);
if ((c = prog_dmabuf(s, &s->dma_dac)))
return c;
memset(s->dma_dac.rawbuf, (s->fmt & (AFMT_U8 | AFMT_U16_LE)) ? 0 : 0x80, s->dma_dac.dmasize); /* almost correct for U16 */
va = s->dma_dac.dmaaddr;
if ((va ^ (va + s->dma_dac.dmasize - 1)) & ~((1<<20)-1))
panic("solo1: buffer crosses 1M boundary");
outl(va, s->iobase);
/* warning: s->dma_dac.dmasize & 0xffff must not be zero! i.e. this limits us to a 32k buffer */
outw(s->dma_dac.dmasize, s->iobase+4);
c = - s->dma_dac.fragsamples;
write_mixer(s, 0x74, c);
write_mixer(s, 0x76, c >> 8);
outb(0xa, s->iobase+6);
s->dma_dac.ready = 1;
return 0;
}
static inline void clear_advance(void *buf, unsigned bsize, unsigned bptr, unsigned len, unsigned char c)
{
if (bptr + len > bsize) {
unsigned x = bsize - bptr;
memset(((char *)buf) + bptr, c, x);
bptr = 0;
len -= x;
}
memset(((char *)buf) + bptr, c, len);
}
/* call with spinlock held! */
static void solo1_update_ptr(struct solo1_state *s)
{
int diff;
unsigned hwptr;
/* update ADC pointer */
if (s->ena & FMODE_READ) {
hwptr = (s->dma_adc.dmasize - 1 - inw(s->ddmabase+4)) % s->dma_adc.dmasize;
diff = (s->dma_adc.dmasize + hwptr - s->dma_adc.hwptr) % s->dma_adc.dmasize;
s->dma_adc.hwptr = hwptr;
s->dma_adc.total_bytes += diff;
s->dma_adc.count += diff;
#if 0
printk(KERN_DEBUG "solo1: rd: hwptr %u swptr %u dmasize %u count %u\n",
s->dma_adc.hwptr, s->dma_adc.swptr, s->dma_adc.dmasize, s->dma_adc.count);
#endif
if (s->dma_adc.mapped) {
if (s->dma_adc.count >= (signed)s->dma_adc.fragsize)
wake_up(&s->dma_adc.wait);
} else {
if (s->dma_adc.count > (signed)(s->dma_adc.dmasize - ((3 * s->dma_adc.fragsize) >> 1))) {
s->ena &= ~FMODE_READ;
write_ctrl(s, 0xb8, 0xe);
s->dma_adc.error++;
}
if (s->dma_adc.count > 0)
wake_up(&s->dma_adc.wait);
}
}
/* update DAC pointer */
if (s->ena & FMODE_WRITE) {
hwptr = (s->dma_dac.dmasize - inw(s->iobase+4)) % s->dma_dac.dmasize;
diff = (s->dma_dac.dmasize + hwptr - s->dma_dac.hwptr) % s->dma_dac.dmasize;
s->dma_dac.hwptr = hwptr;
s->dma_dac.total_bytes += diff;
#if 0
printk(KERN_DEBUG "solo1: wr: hwptr %u swptr %u dmasize %u count %u\n",
s->dma_dac.hwptr, s->dma_dac.swptr, s->dma_dac.dmasize, s->dma_dac.count);
#endif
if (s->dma_dac.mapped) {
s->dma_dac.count += diff;
if (s->dma_dac.count >= (signed)s->dma_dac.fragsize)
wake_up(&s->dma_dac.wait);
} else {
s->dma_dac.count -= diff;
if (s->dma_dac.count <= 0) {
s->ena &= ~FMODE_WRITE;
write_mixer(s, 0x78, 0x12);
s->dma_dac.error++;
} else if (s->dma_dac.count <= (signed)s->dma_dac.fragsize && !s->dma_dac.endcleared) {
clear_advance(s->dma_dac.rawbuf, s->dma_dac.dmasize, s->dma_dac.swptr,
s->dma_dac.fragsize, (s->fmt & (AFMT_U8 | AFMT_U16_LE)) ? 0 : 0x80);
s->dma_dac.endcleared = 1;
}
if (s->dma_dac.count < (signed)s->dma_dac.dmasize)
wake_up(&s->dma_dac.wait);
}
}
}
/* --------------------------------------------------------------------- */
static void prog_codec(struct solo1_state *s)
{
unsigned long flags;
int fdiv, filter;
unsigned char c;
reset_ctrl(s);
write_seq(s, 0xd3);
/* program sampling rates */
filter = s->rate * 9 / 20; /* Set filter roll-off to 90% of rate/2 */
fdiv = 256 - 7160000 / (filter * 82);
spin_lock_irqsave(&s->lock, flags);
write_ctrl(s, 0xa1, s->clkdiv);
write_ctrl(s, 0xa2, fdiv);
write_mixer(s, 0x70, s->clkdiv);
write_mixer(s, 0x72, fdiv);
/* program ADC parameters */
write_ctrl(s, 0xb8, 0xe);
write_ctrl(s, 0xb9, /*0x1*/0);
write_ctrl(s, 0xa8, (s->channels > 1) ? 0x11 : 0x12);
c = 0xd0;
if (s->fmt & (AFMT_S16_LE | AFMT_U16_LE))
c |= 0x04;
if (s->fmt & (AFMT_S16_LE | AFMT_S8))
c |= 0x20;
if (s->channels > 1)
c ^= 0x48;
write_ctrl(s, 0xb7, (c & 0x70) | 1);
write_ctrl(s, 0xb7, c);
write_ctrl(s, 0xb1, 0x50);
write_ctrl(s, 0xb2, 0x50);
/* program DAC parameters */
c = 0x40;
if (s->fmt & (AFMT_S16_LE | AFMT_U16_LE))
c |= 1;
if (s->fmt & (AFMT_S16_LE | AFMT_S8))
c |= 4;
if (s->channels > 1)
c |= 2;
write_mixer(s, 0x7a, c);
write_mixer(s, 0x78, 0x10);
s->ena = 0;
spin_unlock_irqrestore(&s->lock, flags);
}
/* --------------------------------------------------------------------- */
static const char invalid_magic[] = KERN_CRIT "solo1: invalid magic value\n";
#define VALIDATE_STATE(s) \
({ \
if (!(s) || (s)->magic != SOLO1_MAGIC) { \
printk(invalid_magic); \
return -ENXIO; \
} \
})
/* --------------------------------------------------------------------- */
static int mixer_ioctl(struct solo1_state *s, unsigned int cmd, unsigned long arg)
{
static const unsigned int mixer_src[8] = {
SOUND_MASK_MIC, SOUND_MASK_MIC, SOUND_MASK_CD, SOUND_MASK_VOLUME,
SOUND_MASK_MIC, 0, SOUND_MASK_LINE, 0
};
static const unsigned char mixtable1[SOUND_MIXER_NRDEVICES] = {
[SOUND_MIXER_PCM] = 1, /* voice */
[SOUND_MIXER_SYNTH] = 2, /* FM */
[SOUND_MIXER_CD] = 3, /* CD */
[SOUND_MIXER_LINE] = 4, /* Line */
[SOUND_MIXER_LINE1] = 5, /* AUX */
[SOUND_MIXER_MIC] = 6, /* Mic */
[SOUND_MIXER_LINE2] = 7, /* Mono in */
[SOUND_MIXER_SPEAKER] = 8, /* Speaker */
[SOUND_MIXER_RECLEV] = 9, /* Recording level */
[SOUND_MIXER_VOLUME] = 10 /* Master Volume */
};
static const unsigned char mixreg[] = {
0x7c, /* voice */
0x36, /* FM */
0x38, /* CD */
0x3e, /* Line */
0x3a, /* AUX */
0x1a, /* Mic */
0x6d /* Mono in */
};
unsigned char l, r, rl, rr, vidx;
int i, val;
int __user *p = (int __user *)arg;
VALIDATE_STATE(s);
if (cmd == SOUND_MIXER_PRIVATE1) {
/* enable/disable/query mixer preamp */
if (get_user(val, p))
return -EFAULT;
if (val != -1) {
val = val ? 0xff : 0xf7;
write_mixer(s, 0x7d, (read_mixer(s, 0x7d) | 0x08) & val);
}
val = (read_mixer(s, 0x7d) & 0x08) ? 1 : 0;
return put_user(val, p);
}
if (cmd == SOUND_MIXER_PRIVATE2) {
/* enable/disable/query spatializer */
if (get_user(val, p))
return -EFAULT;
if (val != -1) {
val &= 0x3f;
write_mixer(s, 0x52, val);
write_mixer(s, 0x50, val ? 0x08 : 0);
}
return put_user(read_mixer(s, 0x52), p);
}
if (cmd == SOUND_MIXER_INFO) {
mixer_info info;
strncpy(info.id, "Solo1", sizeof(info.id));
strncpy(info.name, "ESS Solo1", sizeof(info.name));
info.modify_counter = s->mix.modcnt;
if (copy_to_user((void __user *)arg, &info, sizeof(info)))
return -EFAULT;
return 0;
}
if (cmd == SOUND_OLD_MIXER_INFO) {
_old_mixer_info info;
strncpy(info.id, "Solo1", sizeof(info.id));
strncpy(info.name, "ESS Solo1", sizeof(info.name));
if (copy_to_user((void __user *)arg, &info, sizeof(info)))
return -EFAULT;
return 0;
}
if (cmd == OSS_GETVERSION)
return put_user(SOUND_VERSION, p);
if (_IOC_TYPE(cmd) != 'M' || _SIOC_SIZE(cmd) != sizeof(int))
return -EINVAL;
if (_SIOC_DIR(cmd) == _SIOC_READ) {
switch (_IOC_NR(cmd)) {
case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */
return put_user(mixer_src[read_mixer(s, 0x1c) & 7], p);
case SOUND_MIXER_DEVMASK: /* Arg contains a bit for each supported device */
return put_user(SOUND_MASK_PCM | SOUND_MASK_SYNTH | SOUND_MASK_CD |
SOUND_MASK_LINE | SOUND_MASK_LINE1 | SOUND_MASK_MIC |
SOUND_MASK_VOLUME | SOUND_MASK_LINE2 | SOUND_MASK_RECLEV |
SOUND_MASK_SPEAKER, p);
case SOUND_MIXER_RECMASK: /* Arg contains a bit for each supported recording source */
return put_user(SOUND_MASK_LINE | SOUND_MASK_MIC | SOUND_MASK_CD | SOUND_MASK_VOLUME, p);
case SOUND_MIXER_STEREODEVS: /* Mixer channels supporting stereo */
return put_user(SOUND_MASK_PCM | SOUND_MASK_SYNTH | SOUND_MASK_CD |
SOUND_MASK_LINE | SOUND_MASK_LINE1 | SOUND_MASK_MIC |
SOUND_MASK_VOLUME | SOUND_MASK_LINE2 | SOUND_MASK_RECLEV, p);
case SOUND_MIXER_CAPS:
return put_user(SOUND_CAP_EXCL_INPUT, p);
default:
i = _IOC_NR(cmd);
if (i >= SOUND_MIXER_NRDEVICES || !(vidx = mixtable1[i]))
return -EINVAL;
return put_user(s->mix.vol[vidx-1], p);
}
}
if (_SIOC_DIR(cmd) != (_SIOC_READ|_SIOC_WRITE))
return -EINVAL;
s->mix.modcnt++;
switch (_IOC_NR(cmd)) {
case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */
#if 0
{
static const unsigned char regs[] = {
0x1c, 0x1a, 0x36, 0x38, 0x3a, 0x3c, 0x3e, 0x60, 0x62, 0x6d, 0x7c
};
int i;
for (i = 0; i < sizeof(regs); i++)
printk(KERN_DEBUG "solo1: mixer reg 0x%02x: 0x%02x\n",
regs[i], read_mixer(s, regs[i]));
printk(KERN_DEBUG "solo1: ctrl reg 0x%02x: 0x%02x\n",
0xb4, read_ctrl(s, 0xb4));
}
#endif
if (get_user(val, p))
return -EFAULT;
i = hweight32(val);
if (i == 0)
return 0;
else if (i > 1)
val &= ~mixer_src[read_mixer(s, 0x1c) & 7];
for (i = 0; i < 8; i++) {
if (mixer_src[i] & val)
break;
}
if (i > 7)
return 0;
write_mixer(s, 0x1c, i);
return 0;
case SOUND_MIXER_VOLUME:
if (get_user(val, p))
return -EFAULT;
l = val & 0xff;
if (l > 100)
l = 100;
r = (val >> 8) & 0xff;
if (r > 100)
r = 100;
if (l < 6) {
rl = 0x40;
l = 0;
} else {
rl = (l * 2 - 11) / 3;
l = (rl * 3 + 11) / 2;
}
if (r < 6) {
rr = 0x40;
r = 0;
} else {
rr = (r * 2 - 11) / 3;
r = (rr * 3 + 11) / 2;
}
write_mixer(s, 0x60, rl);
write_mixer(s, 0x62, rr);
#ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
s->mix.vol[9] = ((unsigned int)r << 8) | l;
#else
s->mix.vol[9] = val;
#endif
return put_user(s->mix.vol[9], p);
case SOUND_MIXER_SPEAKER:
if (get_user(val, p))
return -EFAULT;
l = val & 0xff;
if (l > 100)
l = 100;
else if (l < 2)
l = 2;
rl = (l - 2) / 14;
l = rl * 14 + 2;
write_mixer(s, 0x3c, rl);
#ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
s->mix.vol[7] = l * 0x101;
#else
s->mix.vol[7] = val;
#endif
return put_user(s->mix.vol[7], p);
case SOUND_MIXER_RECLEV:
if (get_user(val, p))
return -EFAULT;
l = (val << 1) & 0x1fe;
if (l > 200)
l = 200;
else if (l < 5)
l = 5;
r = (val >> 7) & 0x1fe;
if (r > 200)
r = 200;
else if (r < 5)
r = 5;
rl = (l - 5) / 13;
rr = (r - 5) / 13;
r = (rl * 13 + 5) / 2;
l = (rr * 13 + 5) / 2;
write_ctrl(s, 0xb4, (rl << 4) | rr);
#ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
s->mix.vol[8] = ((unsigned int)r << 8) | l;
#else
s->mix.vol[8] = val;
#endif
return put_user(s->mix.vol[8], p);
default:
i = _IOC_NR(cmd);
if (i >= SOUND_MIXER_NRDEVICES || !(vidx = mixtable1[i]))
return -EINVAL;
if (get_user(val, p))
return -EFAULT;
l = (val << 1) & 0x1fe;
if (l > 200)
l = 200;
else if (l < 5)
l = 5;
r = (val >> 7) & 0x1fe;
if (r > 200)
r = 200;
else if (r < 5)
r = 5;
rl = (l - 5) / 13;
rr = (r - 5) / 13;
r = (rl * 13 + 5) / 2;
l = (rr * 13 + 5) / 2;
write_mixer(s, mixreg[vidx-1], (rl << 4) | rr);
#ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
s->mix.vol[vidx-1] = ((unsigned int)r << 8) | l;
#else
s->mix.vol[vidx-1] = val;
#endif
return put_user(s->mix.vol[vidx-1], p);
}
}
/* --------------------------------------------------------------------- */
static int solo1_open_mixdev(struct inode *inode, struct file *file)
{
unsigned int minor = iminor(inode);
struct solo1_state *s = NULL;
struct pci_dev *pci_dev = NULL;
while ((pci_dev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pci_dev)) != NULL) {
struct pci_driver *drvr;
drvr = pci_dev_driver (pci_dev);
if (drvr != &solo1_driver)
continue;
s = (struct solo1_state*)pci_get_drvdata(pci_dev);
if (!s)
continue;
if (s->dev_mixer == minor)
break;
}
if (!s)
return -ENODEV;
VALIDATE_STATE(s);
file->private_data = s;
return nonseekable_open(inode, file);
}
static int solo1_release_mixdev(struct inode *inode, struct file *file)
{
struct solo1_state *s = (struct solo1_state *)file->private_data;
VALIDATE_STATE(s);
return 0;
}
static int solo1_ioctl_mixdev(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
return mixer_ioctl((struct solo1_state *)file->private_data, cmd, arg);
}
static /*const*/ struct file_operations solo1_mixer_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.ioctl = solo1_ioctl_mixdev,
.open = solo1_open_mixdev,
.release = solo1_release_mixdev,
};
/* --------------------------------------------------------------------- */
static int drain_dac(struct solo1_state *s, int nonblock)
{
DECLARE_WAITQUEUE(wait, current);
unsigned long flags;
int count;
unsigned tmo;
if (s->dma_dac.mapped)
return 0;
add_wait_queue(&s->dma_dac.wait, &wait);
for (;;) {
set_current_state(TASK_INTERRUPTIBLE);
spin_lock_irqsave(&s->lock, flags);
count = s->dma_dac.count;
spin_unlock_irqrestore(&s->lock, flags);
if (count <= 0)
break;
if (signal_pending(current))
break;
if (nonblock) {
remove_wait_queue(&s->dma_dac.wait, &wait);
set_current_state(TASK_RUNNING);
return -EBUSY;
}
tmo = 3 * HZ * (count + s->dma_dac.fragsize) / 2 / s->rate;
if (s->fmt & (AFMT_S16_LE | AFMT_U16_LE))
tmo >>= 1;
if (s->channels > 1)
tmo >>= 1;
if (!schedule_timeout(tmo + 1))
printk(KERN_DEBUG "solo1: dma timed out??\n");
}
remove_wait_queue(&s->dma_dac.wait, &wait);
set_current_state(TASK_RUNNING);
if (signal_pending(current))
return -ERESTARTSYS;
return 0;
}
/* --------------------------------------------------------------------- */
static ssize_t solo1_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
{
struct solo1_state *s = (struct solo1_state *)file->private_data;
DECLARE_WAITQUEUE(wait, current);
ssize_t ret;
unsigned long flags;
unsigned swptr;
int cnt;
VALIDATE_STATE(s);
if (s->dma_adc.mapped)
return -ENXIO;
if (!s->dma_adc.ready && (ret = prog_dmabuf_adc(s)))
return ret;
if (!access_ok(VERIFY_WRITE, buffer, count))
return -EFAULT;
ret = 0;
add_wait_queue(&s->dma_adc.wait, &wait);
while (count > 0) {
spin_lock_irqsave(&s->lock, flags);
swptr = s->dma_adc.swptr;
cnt = s->dma_adc.dmasize-swptr;
if (s->dma_adc.count < cnt)
cnt = s->dma_adc.count;
if (cnt <= 0)
__set_current_state(TASK_INTERRUPTIBLE);
spin_unlock_irqrestore(&s->lock, flags);
if (cnt > count)
cnt = count;
#ifdef DEBUGREC
printk(KERN_DEBUG "solo1_read: reg B8: 0x%02x DMAstat: 0x%02x DMAcnt: 0x%04x SBstat: 0x%02x cnt: %u\n",
read_ctrl(s, 0xb8), inb(s->ddmabase+8), inw(s->ddmabase+4), inb(s->sbbase+0xc), cnt);
#endif
if (cnt <= 0) {
if (s->dma_adc.enabled)
start_adc(s);
#ifdef DEBUGREC
printk(KERN_DEBUG "solo1_read: regs: A1: 0x%02x A2: 0x%02x A4: 0x%02x A5: 0x%02x A8: 0x%02x\n"
KERN_DEBUG "solo1_read: regs: B1: 0x%02x B2: 0x%02x B7: 0x%02x B8: 0x%02x B9: 0x%02x\n"
KERN_DEBUG "solo1_read: DMA: addr: 0x%08x cnt: 0x%04x stat: 0x%02x mask: 0x%02x\n"
KERN_DEBUG "solo1_read: SBstat: 0x%02x cnt: %u\n",
read_ctrl(s, 0xa1), read_ctrl(s, 0xa2), read_ctrl(s, 0xa4), read_ctrl(s, 0xa5), read_ctrl(s, 0xa8),
read_ctrl(s, 0xb1), read_ctrl(s, 0xb2), read_ctrl(s, 0xb7), read_ctrl(s, 0xb8), read_ctrl(s, 0xb9),
inl(s->ddmabase), inw(s->ddmabase+4), inb(s->ddmabase+8), inb(s->ddmabase+15), inb(s->sbbase+0xc), cnt);
#endif
if (inb(s->ddmabase+15) & 1)
printk(KERN_ERR "solo1: cannot start recording, DDMA mask bit stuck at 1\n");
if (file->f_flags & O_NONBLOCK) {
if (!ret)
ret = -EAGAIN;
break;
}
schedule();
#ifdef DEBUGREC
printk(KERN_DEBUG "solo1_read: regs: A1: 0x%02x A2: 0x%02x A4: 0x%02x A5: 0x%02x A8: 0x%02x\n"
KERN_DEBUG "solo1_read: regs: B1: 0x%02x B2: 0x%02x B7: 0x%02x B8: 0x%02x B9: 0x%02x\n"
KERN_DEBUG "solo1_read: DMA: addr: 0x%08x cnt: 0x%04x stat: 0x%02x mask: 0x%02x\n"
KERN_DEBUG "solo1_read: SBstat: 0x%02x cnt: %u\n",
read_ctrl(s, 0xa1), read_ctrl(s, 0xa2), read_ctrl(s, 0xa4), read_ctrl(s, 0xa5), read_ctrl(s, 0xa8),
read_ctrl(s, 0xb1), read_ctrl(s, 0xb2), read_ctrl(s, 0xb7), read_ctrl(s, 0xb8), read_ctrl(s, 0xb9),
inl(s->ddmabase), inw(s->ddmabase+4), inb(s->ddmabase+8), inb(s->ddmabase+15), inb(s->sbbase+0xc), cnt);
#endif
if (signal_pending(current)) {
if (!ret)
ret = -ERESTARTSYS;
break;
}
continue;
}
if (copy_to_user(buffer, s->dma_adc.rawbuf + swptr, cnt)) {
if (!ret)
ret = -EFAULT;
break;
}
swptr = (swptr + cnt) % s->dma_adc.dmasize;
spin_lock_irqsave(&s->lock, flags);
s->dma_adc.swptr = swptr;
s->dma_adc.count -= cnt;
spin_unlock_irqrestore(&s->lock, flags);
count -= cnt;
buffer += cnt;
ret += cnt;
if (s->dma_adc.enabled)
start_adc(s);
#ifdef DEBUGREC
printk(KERN_DEBUG "solo1_read: reg B8: 0x%02x DMAstat: 0x%02x DMAcnt: 0x%04x SBstat: 0x%02x\n",
read_ctrl(s, 0xb8), inb(s->ddmabase+8), inw(s->ddmabase+4), inb(s->sbbase+0xc));
#endif
}
remove_wait_queue(&s->dma_adc.wait, &wait);
set_current_state(TASK_RUNNING);
return ret;
}
static ssize_t solo1_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos)
{
struct solo1_state *s = (struct solo1_state *)file->private_data;
DECLARE_WAITQUEUE(wait, current);
ssize_t ret;
unsigned long flags;
unsigned swptr;
int cnt;
VALIDATE_STATE(s);
if (s->dma_dac.mapped)
return -ENXIO;
if (!s->dma_dac.ready && (ret = prog_dmabuf_dac(s)))
return ret;
if (!access_ok(VERIFY_READ, buffer, count))
return -EFAULT;
#if 0
printk(KERN_DEBUG "solo1_write: reg 70: 0x%02x 71: 0x%02x 72: 0x%02x 74: 0x%02x 76: 0x%02x 78: 0x%02x 7A: 0x%02x\n"
KERN_DEBUG "solo1_write: DMA: addr: 0x%08x cnt: 0x%04x stat: 0x%02x SBstat: 0x%02x\n",
read_mixer(s, 0x70), read_mixer(s, 0x71), read_mixer(s, 0x72), read_mixer(s, 0x74), read_mixer(s, 0x76),
read_mixer(s, 0x78), read_mixer(s, 0x7a), inl(s->iobase), inw(s->iobase+4), inb(s->iobase+6), inb(s->sbbase+0xc));
printk(KERN_DEBUG "solo1_write: reg 78: 0x%02x reg 7A: 0x%02x DMAcnt: 0x%04x DMAstat: 0x%02x SBstat: 0x%02x\n",
read_mixer(s, 0x78), read_mixer(s, 0x7a), inw(s->iobase+4), inb(s->iobase+6), inb(s->sbbase+0xc));
#endif
ret = 0;
add_wait_queue(&s->dma_dac.wait, &wait);
while (count > 0) {
spin_lock_irqsave(&s->lock, flags);
if (s->dma_dac.count < 0) {
s->dma_dac.count = 0;
s->dma_dac.swptr = s->dma_dac.hwptr;
}
swptr = s->dma_dac.swptr;
cnt = s->dma_dac.dmasize-swptr;
if (s->dma_dac.count + cnt > s->dma_dac.dmasize)
cnt = s->dma_dac.dmasize - s->dma_dac.count;
if (cnt <= 0)
__set_current_state(TASK_INTERRUPTIBLE);
spin_unlock_irqrestore(&s->lock, flags);
if (cnt > count)
cnt = count;
if (cnt <= 0) {
if (s->dma_dac.enabled)
start_dac(s);
if (file->f_flags & O_NONBLOCK) {
if (!ret)
ret = -EAGAIN;
break;
}
schedule();
if (signal_pending(current)) {
if (!ret)
ret = -ERESTARTSYS;
break;
}
continue;
}
if (copy_from_user(s->dma_dac.rawbuf + swptr, buffer, cnt)) {
if (!ret)
ret = -EFAULT;
break;
}
swptr = (swptr + cnt) % s->dma_dac.dmasize;
spin_lock_irqsave(&s->lock, flags);
s->dma_dac.swptr = swptr;
s->dma_dac.count += cnt;
s->dma_dac.endcleared = 0;
spin_unlock_irqrestore(&s->lock, flags);
count -= cnt;
buffer += cnt;
ret += cnt;
if (s->dma_dac.enabled)
start_dac(s);
}
remove_wait_queue(&s->dma_dac.wait, &wait);
set_current_state(TASK_RUNNING);
return ret;
}
/* No kernel lock - we have our own spinlock */
static unsigned int solo1_poll(struct file *file, struct poll_table_struct *wait)
{
struct solo1_state *s = (struct solo1_state *)file->private_data;
unsigned long flags;
unsigned int mask = 0;
VALIDATE_STATE(s);
if (file->f_mode & FMODE_WRITE) {
if (!s->dma_dac.ready && prog_dmabuf_dac(s))
return 0;
poll_wait(file, &s->dma_dac.wait, wait);
}
if (file->f_mode & FMODE_READ) {
if (!s->dma_adc.ready && prog_dmabuf_adc(s))
return 0;
poll_wait(file, &s->dma_adc.wait, wait);
}
spin_lock_irqsave(&s->lock, flags);
solo1_update_ptr(s);
if (file->f_mode & FMODE_READ) {
if (s->dma_adc.mapped) {
if (s->dma_adc.count >= (signed)s->dma_adc.fragsize)
mask |= POLLIN | POLLRDNORM;
} else {
if (s->dma_adc.count > 0)
mask |= POLLIN | POLLRDNORM;
}
}
if (file->f_mode & FMODE_WRITE) {
if (s->dma_dac.mapped) {
if (s->dma_dac.count >= (signed)s->dma_dac.fragsize)
mask |= POLLOUT | POLLWRNORM;
} else {
if ((signed)s->dma_dac.dmasize > s->dma_dac.count)
mask |= POLLOUT | POLLWRNORM;
}
}
spin_unlock_irqrestore(&s->lock, flags);
return mask;
}
static int solo1_mmap(struct file *file, struct vm_area_struct *vma)
{
struct solo1_state *s = (struct solo1_state *)file->private_data;
struct dmabuf *db;
int ret = -EINVAL;
unsigned long size;
VALIDATE_STATE(s);
lock_kernel();
if (vma->vm_flags & VM_WRITE) {
if ((ret = prog_dmabuf_dac(s)) != 0)
goto out;
db = &s->dma_dac;
} else if (vma->vm_flags & VM_READ) {
if ((ret = prog_dmabuf_adc(s)) != 0)
goto out;
db = &s->dma_adc;
} else
goto out;
ret = -EINVAL;
if (vma->vm_pgoff != 0)
goto out;
size = vma->vm_end - vma->vm_start;
if (size > (PAGE_SIZE << db->buforder))
goto out;
ret = -EAGAIN;
if (remap_pfn_range(vma, vma->vm_start,
virt_to_phys(db->rawbuf) >> PAGE_SHIFT,
size, vma->vm_page_prot))
goto out;
db->mapped = 1;
ret = 0;
out:
unlock_kernel();
return ret;
}
static int solo1_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
struct solo1_state *s = (struct solo1_state *)file->private_data;
unsigned long flags;
audio_buf_info abinfo;
count_info cinfo;
int val, mapped, ret, count;
int div1, div2;
unsigned rate1, rate2;
void __user *argp = (void __user *)arg;
int __user *p = argp;
VALIDATE_STATE(s);
mapped = ((file->f_mode & FMODE_WRITE) && s->dma_dac.mapped) ||
((file->f_mode & FMODE_READ) && s->dma_adc.mapped);
switch (cmd) {
case OSS_GETVERSION:
return put_user(SOUND_VERSION, p);
case SNDCTL_DSP_SYNC:
if (file->f_mode & FMODE_WRITE)
return drain_dac(s, 0/*file->f_flags & O_NONBLOCK*/);
return 0;
case SNDCTL_DSP_SETDUPLEX:
return 0;
case SNDCTL_DSP_GETCAPS:
return put_user(DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER | DSP_CAP_MMAP, p);
case SNDCTL_DSP_RESET:
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
synchronize_irq(s->irq);
s->dma_dac.swptr = s->dma_dac.hwptr = s->dma_dac.count = s->dma_dac.total_bytes = 0;
}
if (file->f_mode & FMODE_READ) {
stop_adc(s);
synchronize_irq(s->irq);
s->dma_adc.swptr = s->dma_adc.hwptr = s->dma_adc.count = s->dma_adc.total_bytes = 0;
}
prog_codec(s);
return 0;
case SNDCTL_DSP_SPEED:
if (get_user(val, p))
return -EFAULT;
if (val >= 0) {
stop_adc(s);
stop_dac(s);
s->dma_adc.ready = s->dma_dac.ready = 0;
/* program sampling rates */
if (val > 48000)
val = 48000;
if (val < 6300)
val = 6300;
div1 = (768000 + val / 2) / val;
rate1 = (768000 + div1 / 2) / div1;
div1 = -div1;
div2 = (793800 + val / 2) / val;
rate2 = (793800 + div2 / 2) / div2;
div2 = (-div2) & 0x7f;
if (abs(val - rate2) < abs(val - rate1)) {
rate1 = rate2;
div1 = div2;
}
s->rate = rate1;
s->clkdiv = div1;
prog_codec(s);
}
return put_user(s->rate, p);
case SNDCTL_DSP_STEREO:
if (get_user(val, p))
return -EFAULT;
stop_adc(s);
stop_dac(s);
s->dma_adc.ready = s->dma_dac.ready = 0;
/* program channels */
s->channels = val ? 2 : 1;
prog_codec(s);
return 0;
case SNDCTL_DSP_CHANNELS:
if (get_user(val, p))
return -EFAULT;
if (val != 0) {
stop_adc(s);
stop_dac(s);
s->dma_adc.ready = s->dma_dac.ready = 0;
/* program channels */
s->channels = (val >= 2) ? 2 : 1;
prog_codec(s);
}
return put_user(s->channels, p);
case SNDCTL_DSP_GETFMTS: /* Returns a mask */
return put_user(AFMT_S16_LE|AFMT_U16_LE|AFMT_S8|AFMT_U8, p);
case SNDCTL_DSP_SETFMT: /* Selects ONE fmt*/
if (get_user(val, p))
return -EFAULT;
if (val != AFMT_QUERY) {
stop_adc(s);
stop_dac(s);
s->dma_adc.ready = s->dma_dac.ready = 0;
/* program format */
if (val != AFMT_S16_LE && val != AFMT_U16_LE &&
val != AFMT_S8 && val != AFMT_U8)
val = AFMT_U8;
s->fmt = val;
prog_codec(s);
}
return put_user(s->fmt, p);
case SNDCTL_DSP_POST:
return 0;
case SNDCTL_DSP_GETTRIGGER:
val = 0;
if (file->f_mode & s->ena & FMODE_READ)
val |= PCM_ENABLE_INPUT;
if (file->f_mode & s->ena & FMODE_WRITE)
val |= PCM_ENABLE_OUTPUT;
return put_user(val, p);
case SNDCTL_DSP_SETTRIGGER:
if (get_user(val, p))
return -EFAULT;
if (file->f_mode & FMODE_READ) {
if (val & PCM_ENABLE_INPUT) {
if (!s->dma_adc.ready && (ret = prog_dmabuf_adc(s)))
return ret;
s->dma_dac.enabled = 1;
start_adc(s);
if (inb(s->ddmabase+15) & 1)
printk(KERN_ERR "solo1: cannot start recording, DDMA mask bit stuck at 1\n");
} else {
s->dma_dac.enabled = 0;
stop_adc(s);
}
}
if (file->f_mode & FMODE_WRITE) {
if (val & PCM_ENABLE_OUTPUT) {
if (!s->dma_dac.ready && (ret = prog_dmabuf_dac(s)))
return ret;
s->dma_dac.enabled = 1;
start_dac(s);
} else {
s->dma_dac.enabled = 0;
stop_dac(s);
}
}
return 0;
case SNDCTL_DSP_GETOSPACE:
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
if (!s->dma_dac.ready && (val = prog_dmabuf_dac(s)) != 0)
return val;
spin_lock_irqsave(&s->lock, flags);
solo1_update_ptr(s);
abinfo.fragsize = s->dma_dac.fragsize;
count = s->dma_dac.count;
if (count < 0)
count = 0;
abinfo.bytes = s->dma_dac.dmasize - count;
abinfo.fragstotal = s->dma_dac.numfrag;
abinfo.fragments = abinfo.bytes >> s->dma_dac.fragshift;
spin_unlock_irqrestore(&s->lock, flags);
return copy_to_user(argp, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;
case SNDCTL_DSP_GETISPACE:
if (!(file->f_mode & FMODE_READ))
return -EINVAL;
if (!s->dma_adc.ready && (val = prog_dmabuf_adc(s)) != 0)
return val;
spin_lock_irqsave(&s->lock, flags);
solo1_update_ptr(s);
abinfo.fragsize = s->dma_adc.fragsize;
abinfo.bytes = s->dma_adc.count;
abinfo.fragstotal = s->dma_adc.numfrag;
abinfo.fragments = abinfo.bytes >> s->dma_adc.fragshift;
spin_unlock_irqrestore(&s->lock, flags);
return copy_to_user(argp, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;
case SNDCTL_DSP_NONBLOCK:
file->f_flags |= O_NONBLOCK;
return 0;
case SNDCTL_DSP_GETODELAY:
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
if (!s->dma_dac.ready && (val = prog_dmabuf_dac(s)) != 0)
return val;
spin_lock_irqsave(&s->lock, flags);
solo1_update_ptr(s);
count = s->dma_dac.count;
spin_unlock_irqrestore(&s->lock, flags);
if (count < 0)
count = 0;
return put_user(count, p);
case SNDCTL_DSP_GETIPTR:
if (!(file->f_mode & FMODE_READ))
return -EINVAL;
if (!s->dma_adc.ready && (val = prog_dmabuf_adc(s)) != 0)
return val;
spin_lock_irqsave(&s->lock, flags);
solo1_update_ptr(s);
cinfo.bytes = s->dma_adc.total_bytes;
cinfo.blocks = s->dma_adc.count >> s->dma_adc.fragshift;
cinfo.ptr = s->dma_adc.hwptr;
if (s->dma_adc.mapped)
s->dma_adc.count &= s->dma_adc.fragsize-1;
spin_unlock_irqrestore(&s->lock, flags);
if (copy_to_user(argp, &cinfo, sizeof(cinfo)))
return -EFAULT;
return 0;
case SNDCTL_DSP_GETOPTR:
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
if (!s->dma_dac.ready && (val = prog_dmabuf_dac(s)) != 0)
return val;
spin_lock_irqsave(&s->lock, flags);
solo1_update_ptr(s);
cinfo.bytes = s->dma_dac.total_bytes;
count = s->dma_dac.count;
if (count < 0)
count = 0;
cinfo.blocks = count >> s->dma_dac.fragshift;
cinfo.ptr = s->dma_dac.hwptr;
if (s->dma_dac.mapped)
s->dma_dac.count &= s->dma_dac.fragsize-1;
spin_unlock_irqrestore(&s->lock, flags);
#if 0
printk(KERN_DEBUG "esssolo1: GETOPTR: bytes %u blocks %u ptr %u, buforder %u numfrag %u fragshift %u\n"
KERN_DEBUG "esssolo1: swptr %u count %u fragsize %u dmasize %u fragsamples %u\n",
cinfo.bytes, cinfo.blocks, cinfo.ptr, s->dma_dac.buforder, s->dma_dac.numfrag, s->dma_dac.fragshift,
s->dma_dac.swptr, s->dma_dac.count, s->dma_dac.fragsize, s->dma_dac.dmasize, s->dma_dac.fragsamples);
#endif
if (copy_to_user(argp, &cinfo, sizeof(cinfo)))
return -EFAULT;
return 0;
case SNDCTL_DSP_GETBLKSIZE:
if (file->f_mode & FMODE_WRITE) {
if ((val = prog_dmabuf_dac(s)))
return val;
return put_user(s->dma_dac.fragsize, p);
}
if ((val = prog_dmabuf_adc(s)))
return val;
return put_user(s->dma_adc.fragsize, p);
case SNDCTL_DSP_SETFRAGMENT:
if (get_user(val, p))
return -EFAULT;
if (file->f_mode & FMODE_READ) {
s->dma_adc.ossfragshift = val & 0xffff;
s->dma_adc.ossmaxfrags = (val >> 16) & 0xffff;
if (s->dma_adc.ossfragshift < 4)
s->dma_adc.ossfragshift = 4;
if (s->dma_adc.ossfragshift > 15)
s->dma_adc.ossfragshift = 15;
if (s->dma_adc.ossmaxfrags < 4)
s->dma_adc.ossmaxfrags = 4;
}
if (file->f_mode & FMODE_WRITE) {
s->dma_dac.ossfragshift = val & 0xffff;
s->dma_dac.ossmaxfrags = (val >> 16) & 0xffff;
if (s->dma_dac.ossfragshift < 4)
s->dma_dac.ossfragshift = 4;
if (s->dma_dac.ossfragshift > 15)
s->dma_dac.ossfragshift = 15;
if (s->dma_dac.ossmaxfrags < 4)
s->dma_dac.ossmaxfrags = 4;
}
return 0;
case SNDCTL_DSP_SUBDIVIDE:
if ((file->f_mode & FMODE_READ && s->dma_adc.subdivision) ||
(file->f_mode & FMODE_WRITE && s->dma_dac.subdivision))
return -EINVAL;
if (get_user(val, p))
return -EFAULT;
if (val != 1 && val != 2 && val != 4)
return -EINVAL;
if (file->f_mode & FMODE_READ)
s->dma_adc.subdivision = val;
if (file->f_mode & FMODE_WRITE)
s->dma_dac.subdivision = val;
return 0;
case SOUND_PCM_READ_RATE:
return put_user(s->rate, p);
case SOUND_PCM_READ_CHANNELS:
return put_user(s->channels, p);
case SOUND_PCM_READ_BITS:
return put_user((s->fmt & (AFMT_S8|AFMT_U8)) ? 8 : 16, p);
case SOUND_PCM_WRITE_FILTER:
case SNDCTL_DSP_SETSYNCRO:
case SOUND_PCM_READ_FILTER:
return -EINVAL;
}
return mixer_ioctl(s, cmd, arg);
}
static int solo1_release(struct inode *inode, struct file *file)
{
struct solo1_state *s = (struct solo1_state *)file->private_data;
VALIDATE_STATE(s);
lock_kernel();
if (file->f_mode & FMODE_WRITE)
drain_dac(s, file->f_flags & O_NONBLOCK);
down(&s->open_sem);
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
outb(0, s->iobase+6); /* disable DMA */
dealloc_dmabuf(s, &s->dma_dac);
}
if (file->f_mode & FMODE_READ) {
stop_adc(s);
outb(1, s->ddmabase+0xf); /* mask DMA channel */
outb(0, s->ddmabase+0xd); /* DMA master clear */
dealloc_dmabuf(s, &s->dma_adc);
}
s->open_mode &= ~(FMODE_READ | FMODE_WRITE);
wake_up(&s->open_wait);
up(&s->open_sem);
unlock_kernel();
return 0;
}
static int solo1_open(struct inode *inode, struct file *file)
{
unsigned int minor = iminor(inode);
DECLARE_WAITQUEUE(wait, current);
struct solo1_state *s = NULL;
struct pci_dev *pci_dev = NULL;
while ((pci_dev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pci_dev)) != NULL) {
struct pci_driver *drvr;
drvr = pci_dev_driver(pci_dev);
if (drvr != &solo1_driver)
continue;
s = (struct solo1_state*)pci_get_drvdata(pci_dev);
if (!s)
continue;
if (!((s->dev_audio ^ minor) & ~0xf))
break;
}
if (!s)
return -ENODEV;
VALIDATE_STATE(s);
file->private_data = s;
/* wait for device to become free */
down(&s->open_sem);
while (s->open_mode & (FMODE_READ | FMODE_WRITE)) {
if (file->f_flags & O_NONBLOCK) {
up(&s->open_sem);
return -EBUSY;
}
add_wait_queue(&s->open_wait, &wait);
__set_current_state(TASK_INTERRUPTIBLE);
up(&s->open_sem);
schedule();
remove_wait_queue(&s->open_wait, &wait);
set_current_state(TASK_RUNNING);
if (signal_pending(current))
return -ERESTARTSYS;
down(&s->open_sem);
}
s->fmt = AFMT_U8;
s->channels = 1;
s->rate = 8000;
s->clkdiv = 96 | 0x80;
s->ena = 0;
s->dma_adc.ossfragshift = s->dma_adc.ossmaxfrags = s->dma_adc.subdivision = 0;
s->dma_adc.enabled = 1;
s->dma_dac.ossfragshift = s->dma_dac.ossmaxfrags = s->dma_dac.subdivision = 0;
s->dma_dac.enabled = 1;
s->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE);
up(&s->open_sem);
prog_codec(s);
return nonseekable_open(inode, file);
}
static /*const*/ struct file_operations solo1_audio_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.read = solo1_read,
.write = solo1_write,
.poll = solo1_poll,
.ioctl = solo1_ioctl,
.mmap = solo1_mmap,
.open = solo1_open,
.release = solo1_release,
};
/* --------------------------------------------------------------------- */
/* hold spinlock for the following! */
static void solo1_handle_midi(struct solo1_state *s)
{
unsigned char ch;
int wake;
if (!(s->mpubase))
return;
wake = 0;
while (!(inb(s->mpubase+1) & 0x80)) {
ch = inb(s->mpubase);
if (s->midi.icnt < MIDIINBUF) {
s->midi.ibuf[s->midi.iwr] = ch;
s->midi.iwr = (s->midi.iwr + 1) % MIDIINBUF;
s->midi.icnt++;
}
wake = 1;
}
if (wake)
wake_up(&s->midi.iwait);
wake = 0;
while (!(inb(s->mpubase+1) & 0x40) && s->midi.ocnt > 0) {
outb(s->midi.obuf[s->midi.ord], s->mpubase);
s->midi.ord = (s->midi.ord + 1) % MIDIOUTBUF;
s->midi.ocnt--;
if (s->midi.ocnt < MIDIOUTBUF-16)
wake = 1;
}
if (wake)
wake_up(&s->midi.owait);
}
static irqreturn_t solo1_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct solo1_state *s = (struct solo1_state *)dev_id;
unsigned int intsrc;
/* fastpath out, to ease interrupt sharing */
intsrc = inb(s->iobase+7); /* get interrupt source(s) */
if (!intsrc)
return IRQ_NONE;
(void)inb(s->sbbase+0xe); /* clear interrupt */
spin_lock(&s->lock);
/* clear audio interrupts first */
if (intsrc & 0x20)
write_mixer(s, 0x7a, read_mixer(s, 0x7a) & 0x7f);
solo1_update_ptr(s);
solo1_handle_midi(s);
spin_unlock(&s->lock);
return IRQ_HANDLED;
}
static void solo1_midi_timer(unsigned long data)
{
struct solo1_state *s = (struct solo1_state *)data;
unsigned long flags;
spin_lock_irqsave(&s->lock, flags);
solo1_handle_midi(s);
spin_unlock_irqrestore(&s->lock, flags);
s->midi.timer.expires = jiffies+1;
add_timer(&s->midi.timer);
}
/* --------------------------------------------------------------------- */
static ssize_t solo1_midi_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
{
struct solo1_state *s = (struct solo1_state *)file->private_data;
DECLARE_WAITQUEUE(wait, current);
ssize_t ret;
unsigned long flags;
unsigned ptr;
int cnt;
VALIDATE_STATE(s);
if (!access_ok(VERIFY_WRITE, buffer, count))
return -EFAULT;
if (count == 0)
return 0;
ret = 0;
add_wait_queue(&s->midi.iwait, &wait);
while (count > 0) {
spin_lock_irqsave(&s->lock, flags);
ptr = s->midi.ird;
cnt = MIDIINBUF - ptr;
if (s->midi.icnt < cnt)
cnt = s->midi.icnt;
if (cnt <= 0)
__set_current_state(TASK_INTERRUPTIBLE);
spin_unlock_irqrestore(&s->lock, flags);
if (cnt > count)
cnt = count;
if (cnt <= 0) {
if (file->f_flags & O_NONBLOCK) {
if (!ret)
ret = -EAGAIN;
break;
}
schedule();
if (signal_pending(current)) {
if (!ret)
ret = -ERESTARTSYS;
break;
}
continue;
}
if (copy_to_user(buffer, s->midi.ibuf + ptr, cnt)) {
if (!ret)
ret = -EFAULT;
break;
}
ptr = (ptr + cnt) % MIDIINBUF;
spin_lock_irqsave(&s->lock, flags);
s->midi.ird = ptr;
s->midi.icnt -= cnt;
spin_unlock_irqrestore(&s->lock, flags);
count -= cnt;
buffer += cnt;
ret += cnt;
break;
}
__set_current_state(TASK_RUNNING);
remove_wait_queue(&s->midi.iwait, &wait);
return ret;
}
static ssize_t solo1_midi_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos)
{
struct solo1_state *s = (struct solo1_state *)file->private_data;
DECLARE_WAITQUEUE(wait, current);
ssize_t ret;
unsigned long flags;
unsigned ptr;
int cnt;
VALIDATE_STATE(s);
if (!access_ok(VERIFY_READ, buffer, count))
return -EFAULT;
if (count == 0)
return 0;
ret = 0;
add_wait_queue(&s->midi.owait, &wait);
while (count > 0) {
spin_lock_irqsave(&s->lock, flags);
ptr = s->midi.owr;
cnt = MIDIOUTBUF - ptr;
if (s->midi.ocnt + cnt > MIDIOUTBUF)
cnt = MIDIOUTBUF - s->midi.ocnt;
if (cnt <= 0) {
__set_current_state(TASK_INTERRUPTIBLE);
solo1_handle_midi(s);
}
spin_unlock_irqrestore(&s->lock, flags);
if (cnt > count)
cnt = count;
if (cnt <= 0) {
if (file->f_flags & O_NONBLOCK) {
if (!ret)
ret = -EAGAIN;
break;
}
schedule();
if (signal_pending(current)) {
if (!ret)
ret = -ERESTARTSYS;
break;
}
continue;
}
if (copy_from_user(s->midi.obuf + ptr, buffer, cnt)) {
if (!ret)
ret = -EFAULT;
break;
}
ptr = (ptr + cnt) % MIDIOUTBUF;
spin_lock_irqsave(&s->lock, flags);
s->midi.owr = ptr;
s->midi.ocnt += cnt;
spin_unlock_irqrestore(&s->lock, flags);
count -= cnt;
buffer += cnt;
ret += cnt;
spin_lock_irqsave(&s->lock, flags);
solo1_handle_midi(s);
spin_unlock_irqrestore(&s->lock, flags);
}
__set_current_state(TASK_RUNNING);
remove_wait_queue(&s->midi.owait, &wait);
return ret;
}
/* No kernel lock - we have our own spinlock */
static unsigned int solo1_midi_poll(struct file *file, struct poll_table_struct *wait)
{
struct solo1_state *s = (struct solo1_state *)file->private_data;
unsigned long flags;
unsigned int mask = 0;
VALIDATE_STATE(s);
if (file->f_flags & FMODE_WRITE)
poll_wait(file, &s->midi.owait, wait);
if (file->f_flags & FMODE_READ)
poll_wait(file, &s->midi.iwait, wait);
spin_lock_irqsave(&s->lock, flags);
if (file->f_flags & FMODE_READ) {
if (s->midi.icnt > 0)
mask |= POLLIN | POLLRDNORM;
}
if (file->f_flags & FMODE_WRITE) {
if (s->midi.ocnt < MIDIOUTBUF)
mask |= POLLOUT | POLLWRNORM;
}
spin_unlock_irqrestore(&s->lock, flags);
return mask;
}
static int solo1_midi_open(struct inode *inode, struct file *file)
{
unsigned int minor = iminor(inode);
DECLARE_WAITQUEUE(wait, current);
unsigned long flags;
struct solo1_state *s = NULL;
struct pci_dev *pci_dev = NULL;
while ((pci_dev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pci_dev)) != NULL) {
struct pci_driver *drvr;
drvr = pci_dev_driver(pci_dev);
if (drvr != &solo1_driver)
continue;
s = (struct solo1_state*)pci_get_drvdata(pci_dev);
if (!s)
continue;
if (s->dev_midi == minor)
break;
}
if (!s)
return -ENODEV;
VALIDATE_STATE(s);
file->private_data = s;
/* wait for device to become free */
down(&s->open_sem);
while (s->open_mode & (file->f_mode << FMODE_MIDI_SHIFT)) {
if (file->f_flags & O_NONBLOCK) {
up(&s->open_sem);
return -EBUSY;
}
add_wait_queue(&s->open_wait, &wait);
__set_current_state(TASK_INTERRUPTIBLE);
up(&s->open_sem);
schedule();
remove_wait_queue(&s->open_wait, &wait);
set_current_state(TASK_RUNNING);
if (signal_pending(current))
return -ERESTARTSYS;
down(&s->open_sem);
}
spin_lock_irqsave(&s->lock, flags);
if (!(s->open_mode & (FMODE_MIDI_READ | FMODE_MIDI_WRITE))) {
s->midi.ird = s->midi.iwr = s->midi.icnt = 0;
s->midi.ord = s->midi.owr = s->midi.ocnt = 0;
outb(0xff, s->mpubase+1); /* reset command */
outb(0x3f, s->mpubase+1); /* uart command */
if (!(inb(s->mpubase+1) & 0x80))
inb(s->mpubase);
s->midi.ird = s->midi.iwr = s->midi.icnt = 0;
outb(0xb0, s->iobase + 7); /* enable A1, A2, MPU irq's */
init_timer(&s->midi.timer);
s->midi.timer.expires = jiffies+1;
s->midi.timer.data = (unsigned long)s;
s->midi.timer.function = solo1_midi_timer;
add_timer(&s->midi.timer);
}
if (file->f_mode & FMODE_READ) {
s->midi.ird = s->midi.iwr = s->midi.icnt = 0;
}
if (file->f_mode & FMODE_WRITE) {
s->midi.ord = s->midi.owr = s->midi.ocnt = 0;
}
spin_unlock_irqrestore(&s->lock, flags);
s->open_mode |= (file->f_mode << FMODE_MIDI_SHIFT) & (FMODE_MIDI_READ | FMODE_MIDI_WRITE);
up(&s->open_sem);
return nonseekable_open(inode, file);
}
static int solo1_midi_release(struct inode *inode, struct file *file)
{
struct solo1_state *s = (struct solo1_state *)file->private_data;
DECLARE_WAITQUEUE(wait, current);
unsigned long flags;
unsigned count, tmo;
VALIDATE_STATE(s);
lock_kernel();
if (file->f_mode & FMODE_WRITE) {
add_wait_queue(&s->midi.owait, &wait);
for (;;) {
__set_current_state(TASK_INTERRUPTIBLE);
spin_lock_irqsave(&s->lock, flags);
count = s->midi.ocnt;
spin_unlock_irqrestore(&s->lock, flags);
if (count <= 0)
break;
if (signal_pending(current))
break;
if (file->f_flags & O_NONBLOCK)
break;
tmo = (count * HZ) / 3100;
if (!schedule_timeout(tmo ? : 1) && tmo)
printk(KERN_DEBUG "solo1: midi timed out??\n");
}
remove_wait_queue(&s->midi.owait, &wait);
set_current_state(TASK_RUNNING);
}
down(&s->open_sem);
s->open_mode &= ~((file->f_mode << FMODE_MIDI_SHIFT) & (FMODE_MIDI_READ|FMODE_MIDI_WRITE));
spin_lock_irqsave(&s->lock, flags);
if (!(s->open_mode & (FMODE_MIDI_READ | FMODE_MIDI_WRITE))) {
outb(0x30, s->iobase + 7); /* enable A1, A2 irq's */
del_timer(&s->midi.timer);
}
spin_unlock_irqrestore(&s->lock, flags);
wake_up(&s->open_wait);
up(&s->open_sem);
unlock_kernel();
return 0;
}
static /*const*/ struct file_operations solo1_midi_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.read = solo1_midi_read,
.write = solo1_midi_write,
.poll = solo1_midi_poll,
.open = solo1_midi_open,
.release = solo1_midi_release,
};
/* --------------------------------------------------------------------- */
static int solo1_dmfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
static const unsigned char op_offset[18] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05,
0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15
};
struct solo1_state *s = (struct solo1_state *)file->private_data;
struct dm_fm_voice v;
struct dm_fm_note n;
struct dm_fm_params p;
unsigned int io;
unsigned int regb;
switch (cmd) {
case FM_IOCTL_RESET:
for (regb = 0xb0; regb < 0xb9; regb++) {
outb(regb, s->sbbase);
outb(0, s->sbbase+1);
outb(regb, s->sbbase+2);
outb(0, s->sbbase+3);
}
return 0;
case FM_IOCTL_PLAY_NOTE:
if (copy_from_user(&n, (void __user *)arg, sizeof(n)))
return -EFAULT;
if (n.voice >= 18)
return -EINVAL;
if (n.voice >= 9) {
regb = n.voice - 9;
io = s->sbbase+2;
} else {
regb = n.voice;
io = s->sbbase;
}
outb(0xa0 + regb, io);
outb(n.fnum & 0xff, io+1);
outb(0xb0 + regb, io);
outb(((n.fnum >> 8) & 3) | ((n.octave & 7) << 2) | ((n.key_on & 1) << 5), io+1);
return 0;
case FM_IOCTL_SET_VOICE:
if (copy_from_user(&v, (void __user *)arg, sizeof(v)))
return -EFAULT;
if (v.voice >= 18)
return -EINVAL;
regb = op_offset[v.voice];
io = s->sbbase + ((v.op & 1) << 1);
outb(0x20 + regb, io);
outb(((v.am & 1) << 7) | ((v.vibrato & 1) << 6) | ((v.do_sustain & 1) << 5) |
((v.kbd_scale & 1) << 4) | (v.harmonic & 0xf), io+1);
outb(0x40 + regb, io);
outb(((v.scale_level & 0x3) << 6) | (v.volume & 0x3f), io+1);
outb(0x60 + regb, io);
outb(((v.attack & 0xf) << 4) | (v.decay & 0xf), io+1);
outb(0x80 + regb, io);
outb(((v.sustain & 0xf) << 4) | (v.release & 0xf), io+1);
outb(0xe0 + regb, io);
outb(v.waveform & 0x7, io+1);
if (n.voice >= 9) {
regb = n.voice - 9;
io = s->sbbase+2;
} else {
regb = n.voice;
io = s->sbbase;
}
outb(0xc0 + regb, io);
outb(((v.right & 1) << 5) | ((v.left & 1) << 4) | ((v.feedback & 7) << 1) |
(v.connection & 1), io+1);
return 0;
case FM_IOCTL_SET_PARAMS:
if (copy_from_user(&p, (void __user *)arg, sizeof(p)))
return -EFAULT;
outb(0x08, s->sbbase);
outb((p.kbd_split & 1) << 6, s->sbbase+1);
outb(0xbd, s->sbbase);
outb(((p.am_depth & 1) << 7) | ((p.vib_depth & 1) << 6) | ((p.rhythm & 1) << 5) | ((p.bass & 1) << 4) |
((p.snare & 1) << 3) | ((p.tomtom & 1) << 2) | ((p.cymbal & 1) << 1) | (p.hihat & 1), s->sbbase+1);
return 0;
case FM_IOCTL_SET_OPL:
outb(4, s->sbbase+2);
outb(arg, s->sbbase+3);
return 0;
case FM_IOCTL_SET_MODE:
outb(5, s->sbbase+2);
outb(arg & 1, s->sbbase+3);
return 0;
default:
return -EINVAL;
}
}
static int solo1_dmfm_open(struct inode *inode, struct file *file)
{
unsigned int minor = iminor(inode);
DECLARE_WAITQUEUE(wait, current);
struct solo1_state *s = NULL;
struct pci_dev *pci_dev = NULL;
while ((pci_dev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pci_dev)) != NULL) {
struct pci_driver *drvr;
drvr = pci_dev_driver(pci_dev);
if (drvr != &solo1_driver)
continue;
s = (struct solo1_state*)pci_get_drvdata(pci_dev);
if (!s)
continue;
if (s->dev_dmfm == minor)
break;
}
if (!s)
return -ENODEV;
VALIDATE_STATE(s);
file->private_data = s;
/* wait for device to become free */
down(&s->open_sem);
while (s->open_mode & FMODE_DMFM) {
if (file->f_flags & O_NONBLOCK) {
up(&s->open_sem);
return -EBUSY;
}
add_wait_queue(&s->open_wait, &wait);
__set_current_state(TASK_INTERRUPTIBLE);
up(&s->open_sem);
schedule();
remove_wait_queue(&s->open_wait, &wait);
set_current_state(TASK_RUNNING);
if (signal_pending(current))
return -ERESTARTSYS;
down(&s->open_sem);
}
if (!request_region(s->sbbase, FMSYNTH_EXTENT, "ESS Solo1")) {
up(&s->open_sem);
printk(KERN_ERR "solo1: FM synth io ports in use, opl3 loaded?\n");
return -EBUSY;
}
/* init the stuff */
outb(1, s->sbbase);
outb(0x20, s->sbbase+1); /* enable waveforms */
outb(4, s->sbbase+2);
outb(0, s->sbbase+3); /* no 4op enabled */
outb(5, s->sbbase+2);
outb(1, s->sbbase+3); /* enable OPL3 */
s->open_mode |= FMODE_DMFM;
up(&s->open_sem);
return nonseekable_open(inode, file);
}
static int solo1_dmfm_release(struct inode *inode, struct file *file)
{
struct solo1_state *s = (struct solo1_state *)file->private_data;
unsigned int regb;
VALIDATE_STATE(s);
lock_kernel();
down(&s->open_sem);
s->open_mode &= ~FMODE_DMFM;
for (regb = 0xb0; regb < 0xb9; regb++) {
outb(regb, s->sbbase);
outb(0, s->sbbase+1);
outb(regb, s->sbbase+2);
outb(0, s->sbbase+3);
}
release_region(s->sbbase, FMSYNTH_EXTENT);
wake_up(&s->open_wait);
up(&s->open_sem);
unlock_kernel();
return 0;
}
static /*const*/ struct file_operations solo1_dmfm_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.ioctl = solo1_dmfm_ioctl,
.open = solo1_dmfm_open,
.release = solo1_dmfm_release,
};
/* --------------------------------------------------------------------- */
static struct initvol {
int mixch;
int vol;
} initvol[] __devinitdata = {
{ SOUND_MIXER_WRITE_VOLUME, 0x4040 },
{ SOUND_MIXER_WRITE_PCM, 0x4040 },
{ SOUND_MIXER_WRITE_SYNTH, 0x4040 },
{ SOUND_MIXER_WRITE_CD, 0x4040 },
{ SOUND_MIXER_WRITE_LINE, 0x4040 },
{ SOUND_MIXER_WRITE_LINE1, 0x4040 },
{ SOUND_MIXER_WRITE_LINE2, 0x4040 },
{ SOUND_MIXER_WRITE_RECLEV, 0x4040 },
{ SOUND_MIXER_WRITE_SPEAKER, 0x4040 },
{ SOUND_MIXER_WRITE_MIC, 0x4040 }
};
static int setup_solo1(struct solo1_state *s)
{
struct pci_dev *pcidev = s->dev;
mm_segment_t fs;
int i, val;
/* initialize DDMA base address */
printk(KERN_DEBUG "solo1: ddma base address: 0x%lx\n", s->ddmabase);
pci_write_config_word(pcidev, 0x60, (s->ddmabase & (~0xf)) | 1);
/* set DMA policy to DDMA, IRQ emulation off (CLKRUN disabled for now) */
pci_write_config_dword(pcidev, 0x50, 0);
/* disable legacy audio address decode */
pci_write_config_word(pcidev, 0x40, 0x907f);
/* initialize the chips */
if (!reset_ctrl(s)) {
printk(KERN_ERR "esssolo1: cannot reset controller\n");
return -1;
}
outb(0xb0, s->iobase+7); /* enable A1, A2, MPU irq's */
/* initialize mixer regs */
write_mixer(s, 0x7f, 0); /* disable music digital recording */
write_mixer(s, 0x7d, 0x0c); /* enable mic preamp, MONO_OUT is 2nd DAC right channel */
write_mixer(s, 0x64, 0x45); /* volume control */
write_mixer(s, 0x48, 0x10); /* enable music DAC/ES6xx interface */
write_mixer(s, 0x50, 0); /* disable spatializer */
write_mixer(s, 0x52, 0);
write_mixer(s, 0x14, 0); /* DAC1 minimum volume */
write_mixer(s, 0x71, 0x20); /* enable new 0xA1 reg format */
outb(0, s->ddmabase+0xd); /* DMA master clear */
outb(1, s->ddmabase+0xf); /* mask channel */
/*outb(0, s->ddmabase+0x8);*/ /* enable controller (enable is low active!!) */
pci_set_master(pcidev); /* enable bus mastering */
fs = get_fs();
set_fs(KERNEL_DS);
val = SOUND_MASK_LINE;
mixer_ioctl(s, SOUND_MIXER_WRITE_RECSRC, (unsigned long)&val);
for (i = 0; i < sizeof(initvol)/sizeof(initvol[0]); i++) {
val = initvol[i].vol;
mixer_ioctl(s, initvol[i].mixch, (unsigned long)&val);
}
val = 1; /* enable mic preamp */
mixer_ioctl(s, SOUND_MIXER_PRIVATE1, (unsigned long)&val);
set_fs(fs);
return 0;
}
static int
solo1_suspend(struct pci_dev *pci_dev, pm_message_t state) {
struct solo1_state *s = (struct solo1_state*)pci_get_drvdata(pci_dev);
if (!s)
return 1;
outb(0, s->iobase+6);
/* DMA master clear */
outb(0, s->ddmabase+0xd);
/* reset sequencer and FIFO */
outb(3, s->sbbase+6);
/* turn off DDMA controller address space */
pci_write_config_word(s->dev, 0x60, 0);
return 0;
}
static int
solo1_resume(struct pci_dev *pci_dev) {
struct solo1_state *s = (struct solo1_state*)pci_get_drvdata(pci_dev);
if (!s)
return 1;
setup_solo1(s);
return 0;
}
static int __devinit solo1_register_gameport(struct solo1_state *s, int io_port)
{
struct gameport *gp;
if (!request_region(io_port, GAMEPORT_EXTENT, "ESS Solo1")) {
printk(KERN_ERR "solo1: gameport io ports are in use\n");
return -EBUSY;
}
s->gameport = gp = gameport_allocate_port();
if (!gp) {
printk(KERN_ERR "solo1: can not allocate memory for gameport\n");
release_region(io_port, GAMEPORT_EXTENT);
return -ENOMEM;
}
gameport_set_name(gp, "ESS Solo1 Gameport");
gameport_set_phys(gp, "isa%04x/gameport0", io_port);
gp->dev.parent = &s->dev->dev;
gp->io = io_port;
gameport_register_port(gp);
return 0;
}
static int __devinit solo1_probe(struct pci_dev *pcidev, const struct pci_device_id *pciid)
{
struct solo1_state *s;
int gpio;
int ret;
if ((ret=pci_enable_device(pcidev)))
return ret;
if (!(pci_resource_flags(pcidev, 0) & IORESOURCE_IO) ||
!(pci_resource_flags(pcidev, 1) & IORESOURCE_IO) ||
!(pci_resource_flags(pcidev, 2) & IORESOURCE_IO) ||
!(pci_resource_flags(pcidev, 3) & IORESOURCE_IO))
return -ENODEV;
if (pcidev->irq == 0)
return -ENODEV;
/* Recording requires 24-bit DMA, so attempt to set dma mask
* to 24 bits first, then 32 bits (playback only) if that fails.
*/
if (pci_set_dma_mask(pcidev, 0x00ffffff) &&
pci_set_dma_mask(pcidev, DMA_32BIT_MASK)) {
printk(KERN_WARNING "solo1: architecture does not support 24bit or 32bit PCI busmaster DMA\n");
return -ENODEV;
}
if (!(s = kmalloc(sizeof(struct solo1_state), GFP_KERNEL))) {
printk(KERN_WARNING "solo1: out of memory\n");
return -ENOMEM;
}
memset(s, 0, sizeof(struct solo1_state));
init_waitqueue_head(&s->dma_adc.wait);
init_waitqueue_head(&s->dma_dac.wait);
init_waitqueue_head(&s->open_wait);
init_waitqueue_head(&s->midi.iwait);
init_waitqueue_head(&s->midi.owait);
init_MUTEX(&s->open_sem);
spin_lock_init(&s->lock);
s->magic = SOLO1_MAGIC;
s->dev = pcidev;
s->iobase = pci_resource_start(pcidev, 0);
s->sbbase = pci_resource_start(pcidev, 1);
s->vcbase = pci_resource_start(pcidev, 2);
s->ddmabase = s->vcbase + DDMABASE_OFFSET;
s->mpubase = pci_resource_start(pcidev, 3);
gpio = pci_resource_start(pcidev, 4);
s->irq = pcidev->irq;
ret = -EBUSY;
if (!request_region(s->iobase, IOBASE_EXTENT, "ESS Solo1")) {
printk(KERN_ERR "solo1: io ports in use\n");
goto err_region1;
}
if (!request_region(s->sbbase+FMSYNTH_EXTENT, SBBASE_EXTENT-FMSYNTH_EXTENT, "ESS Solo1")) {
printk(KERN_ERR "solo1: io ports in use\n");
goto err_region2;
}
if (!request_region(s->ddmabase, DDMABASE_EXTENT, "ESS Solo1")) {
printk(KERN_ERR "solo1: io ports in use\n");
goto err_region3;
}
if (!request_region(s->mpubase, MPUBASE_EXTENT, "ESS Solo1")) {
printk(KERN_ERR "solo1: io ports in use\n");
goto err_region4;
}
if ((ret=request_irq(s->irq,solo1_interrupt,SA_SHIRQ,"ESS Solo1",s))) {
printk(KERN_ERR "solo1: irq %u in use\n", s->irq);
goto err_irq;
}
/* register devices */
if ((s->dev_audio = register_sound_dsp(&solo1_audio_fops, -1)) < 0) {
ret = s->dev_audio;
goto err_dev1;
}
if ((s->dev_mixer = register_sound_mixer(&solo1_mixer_fops, -1)) < 0) {
ret = s->dev_mixer;
goto err_dev2;
}
if ((s->dev_midi = register_sound_midi(&solo1_midi_fops, -1)) < 0) {
ret = s->dev_midi;
goto err_dev3;
}
if ((s->dev_dmfm = register_sound_special(&solo1_dmfm_fops, 15 /* ?? */)) < 0) {
ret = s->dev_dmfm;
goto err_dev4;
}
if (setup_solo1(s)) {
ret = -EIO;
goto err;
}
/* register gameport */
solo1_register_gameport(s, gpio);
/* store it in the driver field */
pci_set_drvdata(pcidev, s);
return 0;
err:
unregister_sound_special(s->dev_dmfm);
err_dev4:
unregister_sound_midi(s->dev_midi);
err_dev3:
unregister_sound_mixer(s->dev_mixer);
err_dev2:
unregister_sound_dsp(s->dev_audio);
err_dev1:
printk(KERN_ERR "solo1: initialisation error\n");
free_irq(s->irq, s);
err_irq:
release_region(s->mpubase, MPUBASE_EXTENT);
err_region4:
release_region(s->ddmabase, DDMABASE_EXTENT);
err_region3:
release_region(s->sbbase+FMSYNTH_EXTENT, SBBASE_EXTENT-FMSYNTH_EXTENT);
err_region2:
release_region(s->iobase, IOBASE_EXTENT);
err_region1:
kfree(s);
return ret;
}
static void __devexit solo1_remove(struct pci_dev *dev)
{
struct solo1_state *s = pci_get_drvdata(dev);
if (!s)
return;
/* stop DMA controller */
outb(0, s->iobase+6);
outb(0, s->ddmabase+0xd); /* DMA master clear */
outb(3, s->sbbase+6); /* reset sequencer and FIFO */
synchronize_irq(s->irq);
pci_write_config_word(s->dev, 0x60, 0); /* turn off DDMA controller address space */
free_irq(s->irq, s);
if (s->gameport) {
int gpio = s->gameport->io;
gameport_unregister_port(s->gameport);
release_region(gpio, GAMEPORT_EXTENT);
}
release_region(s->iobase, IOBASE_EXTENT);
release_region(s->sbbase+FMSYNTH_EXTENT, SBBASE_EXTENT-FMSYNTH_EXTENT);
release_region(s->ddmabase, DDMABASE_EXTENT);
release_region(s->mpubase, MPUBASE_EXTENT);
unregister_sound_dsp(s->dev_audio);
unregister_sound_mixer(s->dev_mixer);
unregister_sound_midi(s->dev_midi);
unregister_sound_special(s->dev_dmfm);
kfree(s);
pci_set_drvdata(dev, NULL);
}
static struct pci_device_id id_table[] = {
{ PCI_VENDOR_ID_ESS, PCI_DEVICE_ID_ESS_SOLO1, PCI_ANY_ID, PCI_ANY_ID, 0, 0 },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, id_table);
static struct pci_driver solo1_driver = {
.name = "ESS Solo1",
.id_table = id_table,
.probe = solo1_probe,
.remove = __devexit_p(solo1_remove),
.suspend = solo1_suspend,
.resume = solo1_resume,
};
static int __init init_solo1(void)
{
printk(KERN_INFO "solo1: version v0.20 time " __TIME__ " " __DATE__ "\n");
return pci_register_driver(&solo1_driver);
}
/* --------------------------------------------------------------------- */
MODULE_AUTHOR("Thomas M. Sailer, sailer@ife.ee.ethz.ch, hb9jnx@hb9w.che.eu");
MODULE_DESCRIPTION("ESS Solo1 Driver");
MODULE_LICENSE("GPL");
static void __exit cleanup_solo1(void)
{
printk(KERN_INFO "solo1: unloading\n");
pci_unregister_driver(&solo1_driver);
}
/* --------------------------------------------------------------------- */
module_init(init_solo1);
module_exit(cleanup_solo1);