/*
* Memory Migration functionality - linux/mm/migration.c
*
* Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
*
* Page migration was first developed in the context of the memory hotplug
* project. The main authors of the migration code are:
*
* IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
* Hirokazu Takahashi <taka@valinux.co.jp>
* Dave Hansen <haveblue@us.ibm.com>
* Christoph Lameter <clameter@sgi.com>
*/
#include <linux/migrate.h>
#include <linux/module.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/buffer_head.h>
#include <linux/mm_inline.h>
#include <linux/pagevec.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/swapops.h>
#include "internal.h"
/* The maximum number of pages to take off the LRU for migration */
#define MIGRATE_CHUNK_SIZE 256
#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
/*
* Isolate one page from the LRU lists. If successful put it onto
* the indicated list with elevated page count.
*
* Result:
* -EBUSY: page not on LRU list
* 0: page removed from LRU list and added to the specified list.
*/
int isolate_lru_page(struct page *page, struct list_head *pagelist)
{
int ret = -EBUSY;
if (PageLRU(page)) {
struct zone *zone = page_zone(page);
spin_lock_irq(&zone->lru_lock);
if (PageLRU(page)) {
ret = 0;
get_page(page);
ClearPageLRU(page);
if (PageActive(page))
del_page_from_active_list(zone, page);
else
del_page_from_inactive_list(zone, page);
list_add_tail(&page->lru, pagelist);
}
spin_unlock_irq(&zone->lru_lock);
}
return ret;
}
/*
* migrate_prep() needs to be called after we have compiled the list of pages
* to be migrated using isolate_lru_page() but before we begin a series of calls
* to migrate_pages().
*/
int migrate_prep(void)
{
/* Must have swap device for migration */
if (nr_swap_pages <= 0)
return -ENODEV;
/*
* Clear the LRU lists so pages can be isolated.
* Note that pages may be moved off the LRU after we have
* drained them. Those pages will fail to migrate like other
* pages that may be busy.
*/
lru_add_drain_all();
return 0;
}
static inline void move_to_lru(struct page *page)
{
list_del(&page->lru);
if (PageActive(page)) {
/*
* lru_cache_add_active checks that
* the PG_active bit is off.
*/
ClearPageActive(page);
lru_cache_add_active(page);
} else {
lru_cache_add(page);
}
put_page(page);
}
/*
* Add isolated pages on the list back to the LRU.
*
* returns the number of pages put back.
*/
int putback_lru_pages(struct list_head *l)
{
struct page *page;
struct page *page2;
int count = 0;
list_for_each_entry_safe(page, page2, l, lru) {
move_to_lru(page);
count++;
}
return count;
}
/*
* Non migratable page
*/
int fail_migrate_page(struct page *newpage, struct page *page)
{
return -EIO;
}
EXPORT_SYMBOL(fail_migrate_page);
/*
* swapout a single page
* page is locked upon entry, unlocked on exit
*/
static int swap_page(struct page *page)
{
struct address_space *mapping = page_mapping(page);
if (page_mapped(page) && mapping)
if (try_to_unmap(page, 1) != SWAP_SUCCESS)
goto unlock_retry;
if (PageDirty(page)) {
/* Page is dirty, try to write it out here */
switch(pageout(page, mapping)) {
case PAGE_KEEP:
case PAGE_ACTIVATE:
goto unlock_retry;
case PAGE_SUCCESS:
goto retry;
case PAGE_CLEAN:
; /* try to free the page below */
}
}
if (PagePrivate(page)) {
if (!try_to_release_page(page, GFP_KERNEL) ||
(!mapping && page_count(page) == 1))
goto unlock_retry;
}
if (remove_mapping(mapping, page)) {
/* Success */
unlock_page(page);
return 0;
}
unlock_retry:
unlock_page(page);
retry:
return -EAGAIN;
}
/*
* Remove references for a page and establish the new page with the correct
* basic settings to be able to stop accesses to the page.
*/
int migrate_page_remove_references(struct page *newpage,
struct page *page, int nr_refs)
{
struct address_space *mapping = page_mapping(page);
struct page **radix_pointer;
/*
* Avoid doing any of the following work if the page count
* indicates that the page is in use or truncate has removed
* the page.
*/
if (!mapping || page_mapcount(page) + nr_refs != page_count(page))
return -EAGAIN;
/*
* Establish swap ptes for anonymous pages or destroy pte
* maps for files.
*
* In order to reestablish file backed mappings the fault handlers
* will take the radix tree_lock which may then be used to stop
* processses from accessing this page until the new page is ready.
*
* A process accessing via a swap pte (an anonymous page) will take a
* page_lock on the old page which will block the process until the
* migration attempt is complete. At that time the PageSwapCache bit
* will be examined. If the page was migrated then the PageSwapCache
* bit will be clear and the operation to retrieve the page will be
* retried which will find the new page in the radix tree. Then a new
* direct mapping may be generated based on the radix tree contents.
*
* If the page was not migrated then the PageSwapCache bit
* is still set and the operation may continue.
*/
if (try_to_unmap(page, 1) == SWAP_FAIL)
/* A vma has VM_LOCKED set -> permanent failure */
return -EPERM;
/*
* Give up if we were unable to remove all mappings.
*/
if (page_mapcount(page))
return -EAGAIN;
write_lock_irq(&mapping->tree_lock);
radix_pointer = (struct page **)radix_tree_lookup_slot(
&mapping->page_tree,
page_index(page));
if (!page_mapping(page) || page_count(page) != nr_refs ||
*radix_pointer != page) {
write_unlock_irq(&mapping->tree_lock);
return -EAGAIN;
}
/*
* Now we know that no one else is looking at the page.
*
* Certain minimal information about a page must be available
* in order for other subsystems to properly handle the page if they
* find it through the radix tree update before we are finished
* copying the page.
*/
get_page(newpage);
newpage->index = page->index;
newpage->mapping = page->mapping;
if (PageSwapCache(page)) {
SetPageSwapCache(newpage);
set_page_private(newpage, page_private(page));
}
*radix_pointer = newpage;
__put_page(page);
write_unlock_irq(&mapping->tree_lock);
return 0;
}
EXPORT_SYMBOL(migrate_page_remove_references);
/*
* Copy the page to its new location
*/
void migrate_page_copy(struct page *newpage, struct page *page)
{
copy_highpage(newpage, page);
if (PageError(page))
SetPageError(newpage);
if (PageReferenced(page))
SetPageReferenced(newpage);
if (PageUptodate(page))
SetPageUptodate(newpage);
if (PageActive(page))
SetPageActive(newpage);
if (PageChecked(page))
SetPageChecked(newpage);
if (PageMappedToDisk(page))
SetPageMappedToDisk(newpage);
if (PageDirty(page)) {
clear_page_dirty_for_io(page);
set_page_dirty(newpage);
}
ClearPageSwapCache(page);
ClearPageActive(page);
ClearPagePrivate(page);
set_page_private(page, 0);
page->mapping = NULL;
/*
* If any waiters have accumulated on the new page then
* wake them up.
*/
if (PageWriteback(newpage))
end_page_writeback(newpage);
}
EXPORT_SYMBOL(migrate_page_copy);
/*
* Common logic to directly migrate a single page suitable for
* pages that do not use PagePrivate.
*
* Pages are locked upon entry and exit.
*/
int migrate_page(struct page *newpage, struct page *page)
{
int rc;
BUG_ON(PageWriteback(page)); /* Writeback must be complete */
rc = migrate_page_remove_references(newpage, page, 2);
if (rc)
return rc;
migrate_page_copy(newpage, page);
/*
* Remove auxiliary swap entries and replace
* them with real ptes.
*
* Note that a real pte entry will allow processes that are not
* waiting on the page lock to use the new page via the page tables
* before the new page is unlocked.
*/
remove_from_swap(newpage);
return 0;
}
EXPORT_SYMBOL(migrate_page);
/*
* migrate_pages
*
* Two lists are passed to this function. The first list
* contains the pages isolated from the LRU to be migrated.
* The second list contains new pages that the pages isolated
* can be moved to. If the second list is NULL then all
* pages are swapped out.
*
* The function returns after 10 attempts or if no pages
* are movable anymore because to has become empty
* or no retryable pages exist anymore.
*
* Return: Number of pages not migrated when "to" ran empty.
*/
int migrate_pages(struct list_head *from, struct list_head *to,
struct list_head *moved, struct list_head *failed)
{
int retry;
int nr_failed = 0;
int pass = 0;
struct page *page;
struct page *page2;
int swapwrite = current->flags & PF_SWAPWRITE;
int rc;
if (!swapwrite)
current->flags |= PF_SWAPWRITE;
redo:
retry = 0;
list_for_each_entry_safe(page, page2, from, lru) {
struct page *newpage = NULL;
struct address_space *mapping;
cond_resched();
rc = 0;
if (page_count(page) == 1)
/* page was freed from under us. So we are done. */
goto next;
if (to && list_empty(to))
break;
/*
* Skip locked pages during the first two passes to give the
* functions holding the lock time to release the page. Later we
* use lock_page() to have a higher chance of acquiring the
* lock.
*/
rc = -EAGAIN;
if (pass > 2)
lock_page(page);
else
if (TestSetPageLocked(page))
goto next;
/*
* Only wait on writeback if we have already done a pass where
* we we may have triggered writeouts for lots of pages.
*/
if (pass > 0) {
wait_on_page_writeback(page);
} else {
if (PageWriteback(page))
goto unlock_page;
}
/*
* Anonymous pages must have swap cache references otherwise
* the information contained in the page maps cannot be
* preserved.
*/
if (PageAnon(page) && !PageSwapCache(page)) {
if (!add_to_swap(page, GFP_KERNEL)) {
rc = -ENOMEM;
goto unlock_page;
}
}
if (!to) {
rc = swap_page(page);
goto next;
}
newpage = lru_to_page(to);
lock_page(newpage);
/*
* Pages are properly locked and writeback is complete.
* Try to migrate the page.
*/
mapping = page_mapping(page);
if (!mapping)
goto unlock_both;
if (mapping->a_ops->migratepage) {
/*
* Most pages have a mapping and most filesystems
* should provide a migration function. Anonymous
* pages are part of swap space which also has its
* own migration function. This is the most common
* path for page migration.
*/
rc = mapping->a_ops->migratepage(newpage, page);
goto unlock_both;
}
/* Make sure the dirty bit is up to date */
if (try_to_unmap(page, 1) == SWAP_FAIL) {
rc = -EPERM;
goto unlock_both;
}
if (page_mapcount(page)) {
rc = -EAGAIN;
goto unlock_both;
}
/*
* Default handling if a filesystem does not provide
* a migration function. We can only migrate clean
* pages so try to write out any dirty pages first.
*/
if (PageDirty(page)) {
switch (pageout(page, mapping)) {
case PAGE_KEEP:
case PAGE_ACTIVATE:
goto unlock_both;
case PAGE_SUCCESS:
unlock_page(newpage);
goto next;
case PAGE_CLEAN:
; /* try to migrate the page below */
}
}
/*
* Buffers are managed in a filesystem specific way.
* We must have no buffers or drop them.
*/
if (!page_has_buffers(page) ||
try_to_release_page(page, GFP_KERNEL)) {
rc = migrate_page(newpage, page);
goto unlock_both;
}
/*
* On early passes with mapped pages simply
* retry. There may be a lock held for some
* buffers that may go away. Later
* swap them out.
*/
if (pass > 4) {
/*
* Persistently unable to drop buffers..... As a
* measure of last resort we fall back to
* swap_page().
*/
unlock_page(newpage);
newpage = NULL;
rc = swap_page(page);
goto next;
}
unlock_both:
unlock_page(newpage);
unlock_page:
unlock_page(page);
next:
if (rc == -EAGAIN) {
retry++;
} else if (rc) {
/* Permanent failure */
list_move(&page->lru, failed);
nr_failed++;
} else {
if (newpage) {
/* Successful migration. Return page to LRU */
move_to_lru(newpage);
}
list_move(&page->lru, moved);
}
}
if (retry && pass++ < 10)
goto redo;
if (!swapwrite)
current->flags &= ~PF_SWAPWRITE;
return nr_failed + retry;
}
/*
* Migration function for pages with buffers. This function can only be used
* if the underlying filesystem guarantees that no other references to "page"
* exist.
*/
int buffer_migrate_page(struct page *newpage, struct page *page)
{
struct address_space *mapping = page->mapping;
struct buffer_head *bh, *head;
int rc;
if (!mapping)
return -EAGAIN;
if (!page_has_buffers(page))
return migrate_page(newpage, page);
head = page_buffers(page);
rc = migrate_page_remove_references(newpage, page, 3);
if (rc)
return rc;
bh = head;
do {
get_bh(bh);
lock_buffer(bh);
bh = bh->b_this_page;
} while (bh != head);
ClearPagePrivate(page);
set_page_private(newpage, page_private(page));
set_page_private(page, 0);
put_page(page);
get_page(newpage);
bh = head;
do {
set_bh_page(bh, newpage, bh_offset(bh));
bh = bh->b_this_page;
} while (bh != head);
SetPagePrivate(newpage);
migrate_page_copy(newpage, page);
bh = head;
do {
unlock_buffer(bh);
put_bh(bh);
bh = bh->b_this_page;
} while (bh != head);
return 0;
}
EXPORT_SYMBOL(buffer_migrate_page);
/*
* Migrate the list 'pagelist' of pages to a certain destination.
*
* Specify destination with either non-NULL vma or dest_node >= 0
* Return the number of pages not migrated or error code
*/
int migrate_pages_to(struct list_head *pagelist,
struct vm_area_struct *vma, int dest)
{
LIST_HEAD(newlist);
LIST_HEAD(moved);
LIST_HEAD(failed);
int err = 0;
unsigned long offset = 0;
int nr_pages;
struct page *page;
struct list_head *p;
redo:
nr_pages = 0;
list_for_each(p, pagelist) {
if (vma) {
/*
* The address passed to alloc_page_vma is used to
* generate the proper interleave behavior. We fake
* the address here by an increasing offset in order
* to get the proper distribution of pages.
*
* No decision has been made as to which page
* a certain old page is moved to so we cannot
* specify the correct address.
*/
page = alloc_page_vma(GFP_HIGHUSER, vma,
offset + vma->vm_start);
offset += PAGE_SIZE;
}
else
page = alloc_pages_node(dest, GFP_HIGHUSER, 0);
if (!page) {
err = -ENOMEM;
goto out;
}
list_add_tail(&page->lru, &newlist);
nr_pages++;
if (nr_pages > MIGRATE_CHUNK_SIZE)
break;
}
err = migrate_pages(pagelist, &newlist, &moved, &failed);
putback_lru_pages(&moved); /* Call release pages instead ?? */
if (err >= 0 && list_empty(&newlist) && !list_empty(pagelist))
goto redo;
out:
/* Return leftover allocated pages */
while (!list_empty(&newlist)) {
page = list_entry(newlist.next, struct page, lru);
list_del(&page->lru);
__free_page(page);
}
list_splice(&failed, pagelist);
if (err < 0)
return err;
/* Calculate number of leftover pages */
nr_pages = 0;
list_for_each(p, pagelist)
nr_pages++;
return nr_pages;
}