/*
* litmus/sched_global_plugin.c
*
* Implementation of the basic operations and architecture needed by
* G-EDF/G-FIFO/EDZL/AEDZL global schedulers.
*
* This version uses the simple approach and serializes all scheduling
* decisions by the use of a queue lock. This is probably not the
* best way to do it, but it should suffice for now.
*/
#include <linux/spinlock.h>
#include <linux/percpu.h>
#include <linux/sched.h>
#include <litmus/litmus.h>
#include <litmus/jobs.h>
#include <litmus/sched_global_plugin.h>
#include <litmus/sched_trace.h>
#include <litmus/preempt.h>
#include <linux/module.h>
/* Overview of Global operations.
*
* gbl_link_task_to_cpu(T, cpu) - Low-level operation to update the linkage
* structure (NOT the actually scheduled
* task). If there is another linked task To
* already it will set To->linked_on = NO_CPU
* (thereby removing its association with this
* CPU). However, it will not requeue the
* previously linked task (if any). It will set
* T's state to RT_F_RUNNING and check whether
* it is already running somewhere else. If T
* is scheduled somewhere else it will link
* it to that CPU instead (and pull the linked
* task to cpu). T may be NULL.
*
* gbl_unlink(T) - Unlink removes T from all scheduler data
* structures. If it is linked to some CPU it
* will link NULL to that CPU. If it is
* currently queued in the gsnedf queue it will
* be removed from the rt_domain. It is safe to
* call gbl_unlink(T) if T is not linked. T may not
* be NULL.
*
* gbl_requeue(T) - Requeue will insert T into the appropriate
* queue. If the system is in real-time mode and
* the T is released already, it will go into the
* ready queue. If the system is not in
* real-time mode is T, then T will go into the
* release queue. If T's release time is in the
* future, it will go into the release
* queue. That means that T's release time/job
* no/etc. has to be updated before requeu(T) is
* called. It is not safe to call gbl_requeue(T)
* when T is already queued. T may not be NULL.
*
* job_arrival(T) - This is the catch all function when T enters
* the system after either a suspension or at a
* job release. It will queue T (which means it
* is not safe to call job_arrival(T) if
* T is already queued) and then check whether a
* preemption is necessary. If a preemption is
* necessary it will update the linkage
* accordingly and cause scheduled to be called
* (either with an IPI or need_resched). It is
* safe to call job_arrival(T) if T's
* next job has not been actually released yet
* (releast time in the future). T will be put
* on the release queue in that case.
*
* job_completion(T) - Take care of everything that needs to be done
* to prepare T for its next release and place
* it in the right queue with
* job_arrival().
*
*
* When we now that T is linked to CPU then gbl_link_task_to_cpu(NULL, CPU) is
* equivalent to gbl_unlink(T). Note that if you unlink a task from a CPU none of
* the functions will automatically propagate pending task from the ready queue
* to a linked task. This is the job of the calling function (by means of
* __take_ready).
*/
/* Uncomment this if you want to see all scheduling decisions in the
* TRACE() log.
#define WANT_ALL_SCHED_EVENTS
*/
/* Macros to access the current active global plugin. These are
* a lot like C++'s 'this' pointer.
*/
struct sched_global_plugin* active_gbl_plugin;
#define active_gbl_domain (active_gbl_plugin->domain)
#define active_gbl_domain_lock (active_gbl_domain.ready_lock)
/*********************************************************************/
/* "Member" functions for both sched_plugin and sched_global_plugin. */
/* NOTE: These will automatically call down into "virtual" functions.*/
/*********************************************************************/
/* Priority-related functions */
int gbl_ready_order(struct bheap_node* a, struct bheap_node* b)
{
return active_gbl_plugin->prio_order(bheap2task(a), bheap2task(b));
}
int gbl_cpu_lower_prio(struct bheap_node *_a, struct bheap_node *_b)
{
cpu_entry_t *a, *b;
a = _a->value;
b = _b->value;
/* Note that a and b are inverted: we want the lowest-priority CPU at
* the top of the heap.
*/
return active_gbl_plugin->prio_order(b->linked, a->linked);
}
/* gbl_update_cpu_position - Move the cpu entry to the correct place to maintain
* order in the cpu queue. Caller must hold gbl_domain_lock.
*/
void gbl_update_cpu_position(cpu_entry_t *entry)
{
if (likely(bheap_node_in_heap(entry->hn)))
bheap_delete(gbl_cpu_lower_prio, &active_gbl_plugin->cpu_heap, entry->hn);
bheap_insert(gbl_cpu_lower_prio, &active_gbl_plugin->cpu_heap, entry->hn);
}
/* caller must hold gsnedf lock */
cpu_entry_t* lowest_prio_cpu(void)
{
struct bheap_node* hn;
hn = bheap_peek(gbl_cpu_lower_prio, &active_gbl_plugin->cpu_heap);
return hn->value;
}
/* link_task_to_cpu - Update the link of a CPU.
* Handles the case where the to-be-linked task is already
* scheduled on a different CPU.
*/
void gbl_link_task_to_cpu(struct task_struct* linked,
cpu_entry_t *entry)
{
cpu_entry_t *sched;
struct task_struct* tmp;
int on_cpu;
BUG_ON(linked && !is_realtime(linked));
/* Currently linked task is set to be unlinked. */
if (entry->linked) {
entry->linked->rt_param.linked_on = NO_CPU;
}
/* Link new task to CPU. */
if (linked) {
set_rt_flags(linked, RT_F_RUNNING);
/* handle task is already scheduled somewhere! */
on_cpu = linked->rt_param.scheduled_on;
if (on_cpu != NO_CPU) {
sched = active_gbl_plugin->cpus[on_cpu];
/* this should only happen if not linked already */
BUG_ON(sched->linked == linked);
/* If we are already scheduled on the CPU to which we
* wanted to link, we don't need to do the swap --
* we just link ourselves to the CPU and depend on
* the caller to get things right.
*/
if (entry != sched) {
TRACE_TASK(linked,
"already scheduled on %d, updating link.\n",
sched->cpu);
tmp = sched->linked;
linked->rt_param.linked_on = sched->cpu;
sched->linked = linked;
gbl_update_cpu_position(sched);
linked = tmp;
}
}
if (linked) /* might be NULL due to swap */
linked->rt_param.linked_on = entry->cpu;
}
entry->linked = linked;
#ifdef WANT_ALL_SCHED_EVENTS
if (linked)
TRACE_TASK(linked, "linked to %d.\n", entry->cpu);
else
TRACE("NULL linked to %d.\n", entry->cpu);
#endif
gbl_update_cpu_position(entry);
}
/* unlink - Make sure a task is not linked any longer to an entry
* where it was linked before. Must hold
* active_gbl_domain_lock.
*/
void gbl_unlink(struct task_struct* t)
{
cpu_entry_t *entry;
if (t->rt_param.linked_on != NO_CPU) {
/* unlink */
entry = active_gbl_plugin->cpus[t->rt_param.linked_on];
t->rt_param.linked_on = NO_CPU;
gbl_link_task_to_cpu(NULL, entry);
} else if (is_queued(t)) {
/* This is an interesting situation: t is scheduled,
* but was just recently unlinked. It cannot be
* linked anywhere else (because then it would have
* been relinked to this CPU), thus it must be in some
* queue. We must remove it from the list in this
* case.
*/
remove(&active_gbl_domain, t);
}
}
/* preempt - force a CPU to reschedule
*/
void gbl_preempt(cpu_entry_t *entry)
{
preempt_if_preemptable(entry->scheduled, entry->cpu);
}
/* requeue - Put an unlinked task into global domain.
* Caller must hold active_gbl_domain.
*/
void gbl_requeue(struct task_struct* task)
{
BUG_ON(!task);
/* sanity check before insertion */
BUG_ON(is_queued(task));
if (is_released(task, litmus_clock()))
active_gbl_plugin->add_ready(&active_gbl_domain, task);
else {
/* it has got to wait */
add_release(&active_gbl_domain, task);
}
}
/*
* update_queue_position - call after changing the priority of 'task'.
*/
void gbl_update_queue_position(struct task_struct *task)
{
/* We don't know whether task is in the ready queue. It should, but
* on a budget overrun it may already be in a release queue. Hence,
* calling unlink() is not possible since it assumes that the task is
* not in a release queue.
*/
/* Assumption: caller holds active_gbl_domain_lock */
int check_preempt = 0;
if (tsk_rt(task)->linked_on != NO_CPU) {
TRACE_TASK(task, "%s: linked on %d\n",
__FUNCTION__, tsk_rt(task)->linked_on);
/* Task is scheduled; need to re-order CPUs.
* We can't use heap_decrease() here since
* the cpu_heap is ordered in reverse direction, so
* it is actually an increase. */
bheap_delete(gbl_cpu_lower_prio, &active_gbl_plugin->cpu_heap,
active_gbl_plugin->cpus[tsk_rt(task)->linked_on]->hn);
bheap_insert(gbl_cpu_lower_prio, &active_gbl_plugin->cpu_heap,
active_gbl_plugin->cpus[tsk_rt(task)->linked_on]->hn);
} else {
/* task may be queued: first stop queue changes */
raw_spin_lock(&active_gbl_domain.release_lock);
if (is_queued(task)) {
TRACE_TASK(task, "%s: is queued\n",
__FUNCTION__);
/* We need to update the position
* of task in some heap. Note that this
* may be a release heap. */
check_preempt =
!bheap_decrease(gbl_ready_order,
tsk_rt(task)->heap_node);
} else {
/* Nothing to do: if it is not queued and not linked
* then it is currently being moved by other code
* (e.g., a timer interrupt handler) that will use the
* correct priority when enqueuing the task. */
TRACE_TASK(task, "%s: is NOT queued => Done.\n",
__FUNCTION__);
}
raw_spin_unlock(&active_gbl_domain.release_lock);
/* If task was enqueued in a release heap, then the following
* preemption check is pointless, but we can't easily detect
* that case. If you want to fix this, then consider that
* simply adding a state flag requires O(n) time to update when
* releasing n tasks, which conflicts with the goal to have
* O(log n) merges. */
if (check_preempt) {
/* heap_decrease() hit the top level of the heap: make
* sure preemption checks get the right task, not the
* potentially stale cache. */
bheap_uncache_min(gbl_ready_order,
&active_gbl_domain.ready_queue);
gbl_check_for_preemptions();
}
}
}
/* check for any necessary preemptions */
void gbl_check_for_preemptions(void)
{
struct task_struct *task;
cpu_entry_t* last;
for(last = lowest_prio_cpu();
active_gbl_plugin->preemption_needed(last->linked);
last = lowest_prio_cpu())
{
/* preemption necessary */
task = active_gbl_plugin->take_ready(&active_gbl_domain);
TRACE("check_for_preemptions: attempting to link task %d to %d\n",
task->pid, last->cpu);
if (last->linked)
gbl_requeue(last->linked);
gbl_link_task_to_cpu(task, last);
gbl_preempt(last);
}
}
void gbl_release_jobs(rt_domain_t* rt, struct bheap* tasks)
{
unsigned long flags;
raw_spin_lock_irqsave(&active_gbl_domain_lock, flags);
__merge_ready(rt, tasks);
gbl_check_for_preemptions();
raw_spin_unlock_irqrestore(&active_gbl_domain_lock, flags);
}
/* caller holds active_gbl_domain_lock */
void gbl_job_completion(struct task_struct *t, int forced)
{
BUG_ON(!t);
sched_trace_task_completion(t, forced);
TRACE_TASK(t, "job_completion().\n");
/* set flags */
set_rt_flags(t, RT_F_SLEEP);
/* prepare for next period */
prepare_for_next_period(t);
if (is_released(t, litmus_clock()))
sched_trace_task_release(t);
/* unlink */
gbl_unlink(t);
/* requeue
* But don't requeue a blocking task. */
if (is_running(t))
active_gbl_plugin->job_arrival(t);
}
/*********************************************************************/
/* These two functions can't use active_* defines since the 'litmus' */
/* pointer is undefined/invalid when these are called. Think of them */
/* as static member functions. */
/*********************************************************************/
void gbl_domain_init(struct sched_global_plugin* gbl_plugin,
check_resched_needed_t resched,
release_jobs_t release)
{
rt_domain_init(&gbl_plugin->domain, gbl_ready_order, resched, release);
}
long gbl_activate_plugin(void* plg)
{
struct sched_plugin* plugin = (struct sched_plugin*)plg;
int cpu;
cpu_entry_t *entry;
/* set the active global plugin */
active_gbl_plugin =
container_of(plugin,
struct sched_global_plugin,
plugin);
bheap_init(&active_gbl_plugin->cpu_heap);
#ifdef CONFIG_RELEASE_MASTER
active_gbl_domain.release_master = atomic_read(&release_master_cpu);
#endif
for_each_online_cpu(cpu) {
entry = active_gbl_plugin->cpus[cpu];
bheap_node_init(&entry->hn, entry);
entry->linked = NULL;
entry->scheduled = NULL;
#ifdef CONFIG_RELEASE_MASTER
if (cpu != active_gbl_domain.release_master) {
#endif
TRACE("Global Plugin: Initializing CPU #%d.\n", cpu);
gbl_update_cpu_position(entry);
#ifdef CONFIG_RELEASE_MASTER
} else {
TRACE("Global Plugin: CPU %d is release master.\n", cpu);
}
#endif
}
return 0;
}
/********************************************************************/
/* "Virtual" functions in both sched_plugin and sched_global_plugin */
/********************************************************************/
/* gbl_job_arrival: task is either resumed or released */
void gblv_job_arrival(struct task_struct* task)
{
BUG_ON(!task);
gbl_requeue(task);
gbl_check_for_preemptions();
}
int gblv_preemption_needed(struct task_struct *t)
{
/* we need the read lock for active_gbl_domain's ready_queue */
/* no need to preempt if there is nothing pending */
if (!__jobs_pending(&active_gbl_domain))
return 0;
/* we need to reschedule if t doesn't exist */
if (!t)
return 1;
/* NOTE: We cannot check for non-preemptibility since we
* don't know what address space we're currently in.
*/
/* make sure to get non-rt stuff out of the way */
return !is_realtime(t) || active_gbl_plugin->prio_order(__next_ready(&active_gbl_domain), t);
}
/* gbl_tick - this function is called for every local timer interrupt.
*
* checks whether the current task has expired and checks
* whether we need to preempt it if it has not expired
*/
void gblv_tick(struct task_struct* t)
{
if (is_realtime(t) && budget_enforced(t) && budget_exhausted(t)) {
if (!is_np(t)) {
/* np tasks will be preempted when they become
* preemptable again
*/
litmus_reschedule_local();
TRACE("gbl_scheduler_tick: "
"%d is preemptable "
" => FORCE_RESCHED\n", t->pid);
} else if (is_user_np(t)) {
TRACE("gbl_scheduler_tick: "
"%d is non-preemptable, "
"preemption delayed.\n", t->pid);
request_exit_np(t);
}
}
}
/* Getting schedule() right is a bit tricky. schedule() may not make any
* assumptions on the state of the current task since it may be called for a
* number of reasons. The reasons include a scheduler_tick() determined that it
* was necessary, because sys_exit_np() was called, because some Linux
* subsystem determined so, or even (in the worst case) because there is a bug
* hidden somewhere. Thus, we must take extreme care to determine what the
* current state is.
*
* The CPU could currently be scheduling a task (or not), be linked (or not).
*
* The following assertions for the scheduled task could hold:
*
* - !is_running(scheduled) // the job blocks
* - scheduled->timeslice == 0 // the job completed (forcefully)
* - get_rt_flag() == RT_F_SLEEP // the job completed (by syscall)
* - linked != scheduled // we need to reschedule (for any reason)
* - is_np(scheduled) // rescheduling must be delayed,
* sys_exit_np must be requested
*
* Any of these can occur together.
*/
struct task_struct* gblv_schedule(struct task_struct * prev)
{
cpu_entry_t* entry = active_gbl_plugin->cpus[smp_processor_id()];
int out_of_time, sleep, preempt, np, exists, blocks;
struct task_struct* next = NULL;
#ifdef CONFIG_RELEASE_MASTER
/* Bail out early if we are the release master.
* The release master never schedules any real-time tasks.
*/
if (active_gbl_domain.release_master == entry->cpu)
return NULL;
#endif
raw_spin_lock(&active_gbl_domain_lock);
/* sanity checking */
BUG_ON(entry->scheduled && entry->scheduled != prev);
BUG_ON(entry->scheduled && !is_realtime(prev));
BUG_ON(is_realtime(prev) && !entry->scheduled);
/* (0) Determine state */
exists = entry->scheduled != NULL;
blocks = exists && !is_running(entry->scheduled);
out_of_time = exists &&
budget_enforced(entry->scheduled) &&
budget_exhausted(entry->scheduled);
np = exists && is_np(entry->scheduled);
sleep = exists && get_rt_flags(entry->scheduled) == RT_F_SLEEP;
preempt = entry->scheduled != entry->linked;
#ifdef WANT_ALL_SCHED_EVENTS
TRACE_TASK(prev, "invoked gsnedf_schedule.\n");
#endif
if (exists)
TRACE_TASK(prev,
"blocks:%d out_of_time:%d np:%d sleep:%d preempt:%d "
"state:%d sig:%d\n",
blocks, out_of_time, np, sleep, preempt,
prev->state, signal_pending(prev));
if (entry->linked && preempt)
TRACE_TASK(prev, "will be preempted by %s/%d\n",
entry->linked->comm, entry->linked->pid);
/* If a task blocks we have no choice but to reschedule.
*/
if (blocks)
gbl_unlink(entry->scheduled);
/* Request a sys_exit_np() call if we would like to preempt but cannot.
* We need to make sure to update the link structure anyway in case
* that we are still linked. Multiple calls to request_exit_np() don't
* hurt.
*/
if (np && (out_of_time || preempt || sleep)) {
gbl_unlink(entry->scheduled);
request_exit_np(entry->scheduled);
}
/* Any task that is preemptable and either exhausts its execution
* budget or wants to sleep completes. We may have to reschedule after
* this. Don't do a job completion if we block (can't have timers running
* for blocked jobs). Preemption go first for the same reason.
*/
if (!np && (out_of_time || sleep) && !blocks && !preempt)
active_gbl_plugin->job_completion(entry->scheduled, !sleep);
/* Link pending task if we became unlinked.
*/
if (!entry->linked)
gbl_link_task_to_cpu(active_gbl_plugin->take_ready(&active_gbl_domain), entry);
/* The final scheduling decision. Do we need to switch for some reason?
* If linked is different from scheduled, then select linked as next.
*/
if ((!np || blocks) &&
entry->linked != entry->scheduled) {
/* Schedule a linked job? */
if (entry->linked) {
entry->linked->rt_param.scheduled_on = entry->cpu;
next = entry->linked;
}
if (entry->scheduled) {
/* not gonna be scheduled soon */
entry->scheduled->rt_param.scheduled_on = NO_CPU;
TRACE_TASK(entry->scheduled, "scheduled_on = NO_CPU\n");
}
} else
/* Only override Linux scheduler if we have a real-time task
* scheduled that needs to continue.
*/
if (exists)
next = prev;
sched_state_task_picked();
raw_spin_unlock(&active_gbl_domain_lock);
#ifdef WANT_ALL_SCHED_EVENTS
TRACE("active_gbl_domain_lock released, next=0x%p\n", next);
if (next)
TRACE_TASK(next, "scheduled at %llu\n", litmus_clock());
else if (exists && !next)
TRACE("becomes idle at %llu.\n", litmus_clock());
#endif
return next;
}
/* _finish_switch - we just finished the switch away from prev
*/
void gblv_finish_switch(struct task_struct *prev)
{
cpu_entry_t* entry = active_gbl_plugin->cpus[smp_processor_id()];
entry->scheduled = is_realtime(current) ? current : NULL;
#ifdef WANT_ALL_SCHED_EVENTS
TRACE_TASK(prev, "switched away from\n");
#endif
}
/* Prepare a task for running in RT mode
*/
void gblv_task_new(struct task_struct * t, int on_rq, int running)
{
unsigned long flags;
cpu_entry_t* entry;
TRACE("global plugin: task new %d\n", t->pid);
raw_spin_lock_irqsave(&active_gbl_domain_lock, flags);
/* setup job params */
release_at(t, litmus_clock());
if (running) {
entry = active_gbl_plugin->cpus[task_cpu(t)];
BUG_ON(entry->scheduled);
#ifdef CONFIG_RELEASE_MASTER
if (entry->cpu != active_gbl_domain.release_master) {
#endif
entry->scheduled = t;
tsk_rt(t)->scheduled_on = task_cpu(t);
#ifdef CONFIG_RELEASE_MASTER
} else {
/* do not schedule on release master */
gbl_preempt(entry); /* force resched */
tsk_rt(t)->scheduled_on = NO_CPU;
}
#endif
} else {
t->rt_param.scheduled_on = NO_CPU;
}
t->rt_param.linked_on = NO_CPU;
active_gbl_plugin->job_arrival(t);
raw_spin_unlock_irqrestore(&active_gbl_domain_lock, flags);
}
void gblv_task_wake_up(struct task_struct *task)
{
unsigned long flags;
lt_t now;
TRACE_TASK(task, "wake_up at %llu\n", litmus_clock());
raw_spin_lock_irqsave(&active_gbl_domain_lock, flags);
/* We need to take suspensions because of semaphores into
* account! If a job resumes after being suspended due to acquiring
* a semaphore, it should never be treated as a new job release.
*/
if (get_rt_flags(task) == RT_F_EXIT_SEM) {
set_rt_flags(task, RT_F_RUNNING);
} else {
now = litmus_clock();
if (is_tardy(task, now)) {
/* new sporadic release */
release_at(task, now);
sched_trace_task_release(task);
}
else {
if (task->rt.time_slice) {
/* came back in time before deadline
*/
set_rt_flags(task, RT_F_RUNNING);
}
}
}
active_gbl_plugin->job_arrival(task);
raw_spin_unlock_irqrestore(&active_gbl_domain_lock, flags);
}
void gblv_task_block(struct task_struct *t)
{
unsigned long flags;
TRACE_TASK(t, "block at %llu\n", litmus_clock());
/* unlink if necessary */
raw_spin_lock_irqsave(&active_gbl_domain_lock, flags);
gbl_unlink(t);
raw_spin_unlock_irqrestore(&active_gbl_domain_lock, flags);
BUG_ON(!is_realtime(t));
}
void gblv_task_exit(struct task_struct * t)
{
unsigned long flags;
/* unlink if necessary */
raw_spin_lock_irqsave(&active_gbl_domain_lock, flags);
gbl_unlink(t);
if (tsk_rt(t)->scheduled_on != NO_CPU) {
active_gbl_plugin->cpus[tsk_rt(t)->scheduled_on]->scheduled = NULL;
tsk_rt(t)->scheduled_on = NO_CPU;
}
raw_spin_unlock_irqrestore(&active_gbl_domain_lock, flags);
BUG_ON(!is_realtime(t));
TRACE_TASK(t, "RIP\n");
}
long gblv_admit_task(struct task_struct* tsk)
{
return 0;
}