/*
* litmus/sched_cfl_split.c
*
* Implementation of a clustered version of the C-FL scheduling algorithm,
* with job splitting.
*
* This implementation is based on C-FL-split:
* - CPUs are clustered around L2 or L3 caches.
* - Clusters topology is automatically detected (this is arch dependent
* and is working only on x86 at the moment --- and only with modern
* cpus that exports cpuid4 information)
* - The plugins _does not_ attempt to put tasks in the right cluster i.e.
* the programmer needs to be aware of the topology to place tasks
* in the desired cluster
* - default clustering is around L2 cache (cache index = 2)
* supported clusters are: L1 (private cache: pedf), L2, L3, ALL (all
* online_cpus are placed in a single cluster).
*
* For details on functions, take a look at sched_gsn_edf.c
*
* Currently, we do not support changes in the number of online cpus.
* If the num_online_cpus() dynamically changes, the plugin is broken.
*
* This version uses the simple approach and serializes all scheduling
* decisions by the use of a queue lock. This is probably not the
* best way to do it, but it should suffice for now.
*/
#include <linux/spinlock.h>
#include <linux/percpu.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <litmus/litmus.h>
#include <litmus/jobs.h>
#include <litmus/preempt.h>
#include <litmus/budget.h>
#include <litmus/sched_plugin.h>
#include <litmus/edf_split_common.h>
#include <litmus/sched_trace.h>
#include <litmus/clustered.h>
#include <litmus/bheap.h>
#ifdef CONFIG_SCHED_CPU_AFFINITY
#include <litmus/affinity.h>
#endif
#ifdef CONFIG_SCHED_PGM
#include <litmus/pgm.h>
#endif
/* to configure the cluster size */
#include <litmus/litmus_proc.h>
#include <linux/uaccess.h>
/* Reference configuration variable. Determines which cache level is used to
* group CPUs into clusters. GLOBAL_CLUSTER, which is the default, means that
* all CPUs form a single cluster (just like G-FL).
*/
static enum cache_level cluster_config = GLOBAL_CLUSTER;
struct clusterdomain;
/* cpu_entry_t - maintain the linked and scheduled state
*
* A cpu also contains a pointer to the cflsplit_domain_t cluster
* that owns it (struct clusterdomain*)
*/
typedef struct {
int cpu;
struct clusterdomain* cluster; /* owning cluster */
struct task_struct* linked; /* only RT tasks */
struct task_struct* scheduled; /* only RT tasks */
atomic_t will_schedule; /* prevent unneeded IPIs */
struct bheap_node* hn;
struct hrtimer split_timer;
int timer_armed;
} cpu_entry_t;
/* one cpu_entry_t per CPU */
DEFINE_PER_CPU(cpu_entry_t, cflsplit_cpu_entries);
#define set_will_schedule() \
(atomic_set(&__get_cpu_var(cflsplit_cpu_entries).will_schedule, 1))
#define clear_will_schedule() \
(atomic_set(&__get_cpu_var(cflsplit_cpu_entries).will_schedule, 0))
#define test_will_schedule(cpu) \
(atomic_read(&per_cpu(cflsplit_cpu_entries, cpu).will_schedule))
/*
* In C-FL-split there is a cflsplit domain _per_ cluster
* The number of clusters is dynamically determined accordingly to the
* total cpu number and the cluster size
*/
typedef struct clusterdomain {
/* rt_domain for this cluster */
rt_domain_t domain;
/* cpus in this cluster */
cpu_entry_t* *cpus;
/* map of this cluster cpus */
cpumask_var_t cpu_map;
/* the cpus queue themselves according to priority in here */
struct bheap_node *heap_node;
struct bheap cpu_heap;
/* lock for this cluster */
#define cluster_lock domain.ready_lock
} cflsplit_domain_t;
/* a cflsplit_domain per cluster; allocation is done at init/activation time */
cflsplit_domain_t *cflsplit;
#define remote_cluster(cpu) ((cflsplit_domain_t *) per_cpu(cflsplit_cpu_entries, cpu).cluster)
#define task_cpu_cluster(task) remote_cluster(get_partition(task))
/* Uncomment WANT_ALL_SCHED_EVENTS if you want to see all scheduling
* decisions in the TRACE() log; uncomment VERBOSE_INIT for verbose
* information during the initialization of the plugin (e.g., topology)
#define WANT_ALL_SCHED_EVENTS
*/
#define VERBOSE_INIT
inline static int get_slice_num(struct task_struct* t)
{
int basic = ((t->rt_param.job_params.exec_time *
t->rt_param.task_params.split) /
t->rt_param.task_params.exec_cost) + 1;
if (basic <= t->rt_param.task_params.split){
return basic;
}
else{
/*Since we don't police budget, just leave where it's at.*/
return t->rt_param.task_params.split;
}
}
/* Returns the appropriate subjob deadline.*/
inline static lt_t get_proper_deadline(struct task_struct* t)
{
unsigned int num_cpus = num_online_cpus();
return t->rt_param.job_params.release +
((t->rt_param.task_params.period * get_slice_num(t))
/ t->rt_param.task_params.split)
/* G-FL correction */
- (((num_cpus - 1) * t->rt_param.task_params.exec_cost)
/ (num_cpus * t->rt_param.task_params.split));
}
/* Tells us if the current deadline is too small.*/
inline static int needs_deadline_move(struct task_struct* t)
{
BUG_ON(get_proper_deadline(t) < t->rt_param.job_params.subjob_deadline);
return get_proper_deadline(t) != tsk_rt(t)->job_params.subjob_deadline;
}
/*Returns execution time until the next deadline move.
* 0 means the task has no more deadline moves
*/
inline static lt_t time_to_next_move(struct task_struct* t)
{
if (get_slice_num(t) == t->rt_param.task_params.split){
return 0;
}
/* +1 upper bounds ceiling, since integer division is floor*/
return ((get_slice_num(t) * t->rt_param.task_params.exec_cost)
/ t->rt_param.task_params.split) + 1
- t->rt_param.job_params.exec_time;
}
/* Timer stuff - similar to budget.c. */
static enum hrtimer_restart on_split_timeout(struct hrtimer *timer)
{
cpu_entry_t* st = container_of(timer,
cpu_entry_t,
split_timer);
unsigned long flags;
local_irq_save(flags);
TRACE("split timer fired: %llu\n", litmus_clock());
st->timer_armed = 0;
/* Activate scheduler */
litmus_reschedule_local();
local_irq_restore(flags);
return HRTIMER_NORESTART;
}
static void cancel_split_timer(cpu_entry_t* ce)
{
int ret;
TRACE("cancelling split time.\n");
/* Since interrupts are disabled and et->timer_armed is only
* modified locally, we do not need any locks.
*/
if (ce->timer_armed) {
ret = hrtimer_try_to_cancel(&ce->split_timer);
/* Should never be inactive. */
BUG_ON(ret == 0);
/* Should never be running concurrently.*/
BUG_ON(ret == -1);
ce->timer_armed = 0;
}
}
/* assumes called with IRQs off */
static void arm_split_timer(cpu_entry_t *ce,
struct task_struct* t)
{
lt_t when_to_fire;
lt_t time_to_move;
lt_t now = litmus_clock();
/* __hrtimer_start_range_ns() cancels the timer
* anyway, so we don't have to check whether it is still armed */
/*We won't do any new deadline moves if the budget has been exhausted*/
if (likely(!is_np(t) && (time_to_move = time_to_next_move(t)))) {
when_to_fire = now + time_to_move;
TRACE_TASK(t, "actually arming for %llu into the future\n",
time_to_move);
__hrtimer_start_range_ns(&ce->split_timer,
ns_to_ktime(when_to_fire),
0 /* delta */,
HRTIMER_MODE_ABS_PINNED,
0 /* no wakeup */);
ce->timer_armed = 1;
}
}
static int cpu_lower_prio(struct bheap_node *_a, struct bheap_node *_b)
{
cpu_entry_t *a, *b;
a = _a->value;
b = _b->value;
/* Note that a and b are inverted: we want the lowest-priority CPU at
* the top of the heap.
*/
return edf_split_higher_prio(b->linked, a->linked);
}
/* update_cpu_position - Move the cpu entry to the correct place to maintain
* order in the cpu queue. Caller must hold cflsplit lock.
*/
static void update_cpu_position(cpu_entry_t *entry)
{
cflsplit_domain_t *cluster = entry->cluster;
if (likely(bheap_node_in_heap(entry->hn)))
bheap_delete(cpu_lower_prio,
&cluster->cpu_heap,
entry->hn);
bheap_insert(cpu_lower_prio, &cluster->cpu_heap, entry->hn);
}
/* caller must hold cflsplit lock */
static cpu_entry_t* lowest_prio_cpu(cflsplit_domain_t *cluster)
{
struct bheap_node* hn;
hn = bheap_peek(cpu_lower_prio, &cluster->cpu_heap);
return hn->value;
}
/* link_task_to_cpu - Update the link of a CPU.
* Handles the case where the to-be-linked task is already
* scheduled on a different CPU.
*/
static noinline void link_task_to_cpu(struct task_struct* linked,
cpu_entry_t *entry)
{
cpu_entry_t *sched;
struct task_struct* tmp;
int on_cpu;
BUG_ON(linked && !is_realtime(linked));
/* Currently linked task is set to be unlinked. */
if (entry->linked) {
entry->linked->rt_param.linked_on = NO_CPU;
}
/* Link new task to CPU. */
if (linked) {
/* handle task is already scheduled somewhere! */
on_cpu = linked->rt_param.scheduled_on;
if (on_cpu != NO_CPU) {
sched = &per_cpu(cflsplit_cpu_entries, on_cpu);
/* this should only happen if not linked already */
BUG_ON(sched->linked == linked);
/* If we are already scheduled on the CPU to which we
* wanted to link, we don't need to do the swap --
* we just link ourselves to the CPU and depend on
* the caller to get things right.
*/
if (entry != sched) {
TRACE_TASK(linked,
"already scheduled on %d, updating link.\n",
sched->cpu);
tmp = sched->linked;
linked->rt_param.linked_on = sched->cpu;
sched->linked = linked;
update_cpu_position(sched);
linked = tmp;
}
}
if (linked) /* might be NULL due to swap */
linked->rt_param.linked_on = entry->cpu;
}
entry->linked = linked;
#ifdef WANT_ALL_SCHED_EVENTS
if (linked)
TRACE_TASK(linked, "linked to %d.\n", entry->cpu);
else
TRACE("NULL linked to %d.\n", entry->cpu);
#endif
update_cpu_position(entry);
}
/* unlink - Make sure a task is not linked any longer to an entry
* where it was linked before. Must hold cflsplit_lock.
*/
static noinline void unlink(struct task_struct* t)
{
cpu_entry_t *entry;
if (t->rt_param.linked_on != NO_CPU) {
/* unlink */
entry = &per_cpu(cflsplit_cpu_entries, t->rt_param.linked_on);
t->rt_param.linked_on = NO_CPU;
link_task_to_cpu(NULL, entry);
} else if (is_queued(t)) {
/* This is an interesting situation: t is scheduled,
* but was just recently unlinked. It cannot be
* linked anywhere else (because then it would have
* been relinked to this CPU), thus it must be in some
* queue. We must remove it from the list in this
* case.
*
* in C-FL-split case is should be somewhere in the queue for
* its domain, therefore and we can get the domain using
* task_cpu_cluster
*/
remove(&(task_cpu_cluster(t))->domain, t);
}
}
/* preempt - force a CPU to reschedule
*/
static void preempt(cpu_entry_t *entry)
{
preempt_if_preemptable(entry->scheduled, entry->cpu);
}
/* requeue - Put an unlinked task into gsn-edf domain.
* Caller must hold cflsplit_lock.
*/
static noinline void requeue(struct task_struct* task)
{
cflsplit_domain_t *cluster = task_cpu_cluster(task);
BUG_ON(!task);
/* sanity check before insertion */
BUG_ON(is_queued(task));
if (is_early_releasing(task) || is_released(task, litmus_clock()))
__add_ready(&cluster->domain, task);
else {
/* it has got to wait */
add_release(&cluster->domain, task);
}
}
#ifdef CONFIG_SCHED_CPU_AFFINITY
static cpu_entry_t* cflsplit_get_nearest_available_cpu(
cflsplit_domain_t *cluster, cpu_entry_t *start)
{
cpu_entry_t *affinity;
get_nearest_available_cpu(affinity, start, cflsplit_cpu_entries,
#ifdef CONFIG_RELEASE_MASTER
cluster->domain.release_master
#else
NO_CPU
#endif
);
/* make sure CPU is in our cluster */
if (affinity && cpu_isset(affinity->cpu, *cluster->cpu_map))
return(affinity);
else
return(NULL);
}
#endif
/* check for any necessary preemptions */
static void check_for_preemptions(cflsplit_domain_t *cluster)
{
struct task_struct *task;
cpu_entry_t *last;
for(last = lowest_prio_cpu(cluster);
edf_split_preemption_needed(&cluster->domain, last->linked);
last = lowest_prio_cpu(cluster)) {
/* preemption necessary */
task = __take_ready(&cluster->domain);
TRACE("check_for_preemptions: attempting to link task %d to %d\n",
task->pid, last->cpu);
#ifdef CONFIG_SCHED_CPU_AFFINITY
{
cpu_entry_t *affinity =
cflsplit_get_nearest_available_cpu(cluster,
&per_cpu(cflsplit_cpu_entries, task_cpu(task)));
if(affinity)
last = affinity;
else if(requeue_preempted_job(last->linked))
requeue(last->linked);
}
#else
if (requeue_preempted_job(last->linked))
requeue(last->linked);
#endif
link_task_to_cpu(task, last);
preempt(last);
}
}
/* cflsplit_job_arrival: task is either resumed or released */
static noinline void cflsplit_job_arrival(struct task_struct* task)
{
cflsplit_domain_t *cluster = task_cpu_cluster(task);
BUG_ON(!task);
requeue(task);
check_for_preemptions(cluster);
}
static void cflsplit_release_jobs(rt_domain_t* rt, struct bheap* tasks)
{
cflsplit_domain_t* cluster = container_of(rt, cflsplit_domain_t, domain);
unsigned long flags;
raw_spin_lock_irqsave(&cluster->cluster_lock, flags);
__merge_ready(&cluster->domain, tasks);
check_for_preemptions(cluster);
raw_spin_unlock_irqrestore(&cluster->cluster_lock, flags);
}
/* caller holds cflsplit_lock */
static noinline void job_completion(struct task_struct *t, int forced)
{
BUG_ON(!t);
sched_trace_task_completion(t, forced);
TRACE_TASK(t, "job_completion().\n");
/* set flags */
tsk_rt(t)->completed = 0;
/* prepare for next period */
prepare_for_next_period(t);
/* We now also set the subjob deadline to what it should be for
* scheduling priority.
*/
t->rt_param.job_params.subjob_deadline = get_proper_deadline(t);
if (is_early_releasing(t) || is_released(t, litmus_clock()))
sched_trace_task_release(t);
/* unlink */
unlink(t);
/* requeue
* But don't requeue a blocking task. */
if (is_running(t))
cflsplit_job_arrival(t);
}
static void move_deadline(struct task_struct *t)
{
tsk_rt(t)->job_params.subjob_deadline = get_proper_deadline(t);
/* Check if rescheduling needed with lower priority. */
unlink(t);
cflsplit_job_arrival(t);
}
/* cflsplit_tick - this function is called for every local timer
* interrupt.
*
* checks whether the current task has expired and checks
* whether we need to preempt it if it has not expired
*/
static void cflsplit_tick(struct task_struct* t)
{
if (is_realtime(t) && budget_enforced(t) && budget_exhausted(t)) {
if (!is_np(t)) {
/* np tasks will be preempted when they become
* preemptable again
*/
litmus_reschedule_local();
set_will_schedule();
TRACE("cflsplit_scheduler_tick: "
"%d is preemptable "
" => FORCE_RESCHED\n", t->pid);
} else if (is_user_np(t)) {
TRACE("cflsplit_scheduler_tick: "
"%d is non-preemptable, "
"preemption delayed.\n", t->pid);
request_exit_np(t);
}
}
}
/* Getting schedule() right is a bit tricky. schedule() may not make any
* assumptions on the state of the current task since it may be called for a
* number of reasons. The reasons include a scheduler_tick() determined that it
* was necessary, because sys_exit_np() was called, because some Linux
* subsystem determined so, or even (in the worst case) because there is a bug
* hidden somewhere. Thus, we must take extreme care to determine what the
* current state is.
*
* The CPU could currently be scheduling a task (or not), be linked (or not).
*
* The following assertions for the scheduled task could hold:
*
* - !is_running(scheduled) // the job blocks
* - scheduled->timeslice == 0 // the job completed (forcefully)
* - is_completed() // the job completed (by syscall)
* - linked != scheduled // we need to reschedule (for any reason)
* - is_np(scheduled) // rescheduling must be delayed,
* sys_exit_np must be requested
*
* Any of these can occur together.
*/
static struct task_struct* cflsplit_schedule(struct task_struct * prev)
{
cpu_entry_t* entry = &__get_cpu_var(cflsplit_cpu_entries);
cflsplit_domain_t *cluster = entry->cluster;
int out_of_time, sleep, preempt, np, exists, blocks, needs_move;
struct task_struct* next = NULL;
#ifdef CONFIG_RELEASE_MASTER
/* Bail out early if we are the release master.
* The release master never schedules any real-time tasks.
*/
if (unlikely(cluster->domain.release_master == entry->cpu)) {
sched_state_task_picked();
return NULL;
}
#endif
raw_spin_lock(&cluster->cluster_lock);
clear_will_schedule();
/* sanity checking */
BUG_ON(entry->scheduled && entry->scheduled != prev);
BUG_ON(entry->scheduled && !is_realtime(prev));
BUG_ON(is_realtime(prev) && !entry->scheduled);
/* (0) Determine state */
exists = entry->scheduled != NULL;
blocks = exists && !is_running(entry->scheduled);
out_of_time = exists &&
budget_enforced(entry->scheduled) &&
budget_exhausted(entry->scheduled);
needs_move = exists && needs_deadline_move(entry->scheduled);
np = exists && is_np(entry->scheduled);
sleep = exists && is_completed(entry->scheduled);
preempt = entry->scheduled != entry->linked;
#ifdef WANT_ALL_SCHED_EVENTS
TRACE_TASK(prev, "invoked cflsplit_schedule.\n");
#endif
if (exists)
TRACE_TASK(prev,
"blocks:%d out_of_time:%d needs_move: %d np:%d"
" sleep:%d preempt:%d state:%d sig:%d\n",
blocks, out_of_time, needs_move, np, sleep, preempt,
prev->state, signal_pending(prev));
if (entry->linked && preempt)
TRACE_TASK(prev, "will be preempted by %s/%d\n",
entry->linked->comm, entry->linked->pid);
#ifdef CONFIG_SCHED_PGM
if (exists) {
if (is_pgm_sending(entry->scheduled)) {
if (!is_pgm_satisfied(entry->scheduled)) {
if (!is_priority_boosted(entry->scheduled)) {
TRACE_TASK(entry->scheduled, "is sending PGM tokens and needs boosting.\n");
BUG_ON(is_pgm_satisfied(entry->scheduled));
/* We are either sending tokens or waiting for tokes.
If waiting: Boost priority so we'll be scheduled
immediately when needed tokens arrive.
If sending: Boost priority so no one (specifically, our
consumers) will preempt us while signalling the token
transmission.
*/
tsk_rt(entry->scheduled)->priority_boosted = 1;
tsk_rt(entry->scheduled)->boost_start_time = litmus_clock();
if (likely(!blocks)) {
unlink(entry->scheduled);
cflsplit_job_arrival(entry->scheduled);
}
}
}
else { /* sending is satisfied */
tsk_rt(entry->scheduled)->ctrl_page->pgm_sending = 0;
tsk_rt(entry->scheduled)->ctrl_page->pgm_satisfied = 0;
if (is_priority_boosted(entry->scheduled)) {
TRACE_TASK(entry->scheduled,
"is done sending PGM tokens must relinquish boosting.\n");
/* clear boosting */
tsk_rt(entry->scheduled)->priority_boosted = 0;
if(likely(!blocks)) {
/* recheck priority */
unlink(entry->scheduled);
cflsplit_job_arrival(entry->scheduled);
}
}
}
}
}
#endif
/* If a task blocks we have no choice but to reschedule.
*/
if (blocks)
unlink(entry->scheduled);
/* Request a sys_exit_np() call if we would like to preempt but cannot.
* We need to make sure to update the link structure anyway in case
* that we are still linked. Multiple calls to request_exit_np() don't
* hurt.
*
* Job deadline moves handled similarly
*/
if (np && (out_of_time || preempt || sleep)) {
unlink(entry->scheduled);
request_exit_np(entry->scheduled);
}
else if (np && needs_move) {
request_exit_np(entry->scheduled);
}
/* Any task that is preemptable and either exhausts its execution
* budget or wants to sleep completes. We may have to reschedule after
* this. Don't do a job completion if we block (can't have timers running
* for blocked jobs). Preemption go first for the same reason.
*/
if (!np && (out_of_time || sleep) && !blocks)
job_completion(entry->scheduled, !sleep);
else if (!np && needs_move && !blocks) {
move_deadline(entry->scheduled);
}
/* Link pending task if we became unlinked.
*/
if (!entry->linked)
link_task_to_cpu(__take_ready(&cluster->domain), entry);
/* The final scheduling decision. Do we need to switch for some reason?
* If linked is different from scheduled, then select linked as next.
*/
if ((!np || blocks) &&
entry->linked != entry->scheduled) {
/* Schedule a linked job? */
if (entry->linked) {
entry->linked->rt_param.scheduled_on = entry->cpu;
next = entry->linked;
}
if (entry->scheduled) {
/* not gonna be scheduled soon */
entry->scheduled->rt_param.scheduled_on = NO_CPU;
TRACE_TASK(entry->scheduled, "scheduled_on = NO_CPU\n");
}
} else {
/* Only override Linux scheduler if we have a real-time task
* scheduled that needs to continue.
*/
if (exists)
next = prev;
}
sched_state_task_picked();
raw_spin_unlock(&cluster->cluster_lock);
if (next) {
arm_split_timer(entry, next);
}
else if (entry->timer_armed) {
cancel_split_timer(entry);
}
#ifdef WANT_ALL_SCHED_EVENTS
TRACE("cflsplit_lock released, next=0x%p\n", next);
if (next)
TRACE_TASK(next, "scheduled at %llu\n", litmus_clock());
else if (exists && !next)
TRACE("becomes idle at %llu.\n", litmus_clock());
#endif
return next;
}
/* _finish_switch - we just finished the switch away from prev
*/
static void cflsplit_finish_switch(struct task_struct *prev)
{
cpu_entry_t* entry = &__get_cpu_var(cflsplit_cpu_entries);
entry->scheduled = is_realtime(current) ? current : NULL;
#ifdef WANT_ALL_SCHED_EVENTS
TRACE_TASK(prev, "switched away from\n");
#endif
}
static void cflsplit_release_at(struct task_struct *t, lt_t start)
{
release_at(t, start);
t->rt_param.job_params.subjob_deadline = get_proper_deadline(t);
}
/* Prepare a task for running in RT mode
*/
static void cflsplit_task_new(struct task_struct * t, int on_rq, int is_scheduled)
{
unsigned long flags;
cpu_entry_t* entry;
cflsplit_domain_t* cluster;
TRACE("gsn edf: task new %d\n", t->pid);
/* the cluster doesn't change even if t is scheduled */
cluster = task_cpu_cluster(t);
raw_spin_lock_irqsave(&cluster->cluster_lock, flags);
/* setup job params */
cflsplit_release_at(t, litmus_clock());
if (is_scheduled) {
entry = &per_cpu(cflsplit_cpu_entries, task_cpu(t));
BUG_ON(entry->scheduled);
#ifdef CONFIG_RELEASE_MASTER
if (entry->cpu != cluster->domain.release_master) {
#endif
entry->scheduled = t;
tsk_rt(t)->scheduled_on = task_cpu(t);
#ifdef CONFIG_RELEASE_MASTER
} else {
/* do not schedule on release master */
preempt(entry); /* force resched */
tsk_rt(t)->scheduled_on = NO_CPU;
}
#endif
} else {
t->rt_param.scheduled_on = NO_CPU;
}
t->rt_param.linked_on = NO_CPU;
if (is_running(t))
cflsplit_job_arrival(t);
raw_spin_unlock_irqrestore(&(cluster->cluster_lock), flags);
}
static void cflsplit_task_wake_up(struct task_struct *task)
{
unsigned long flags;
lt_t now;
cflsplit_domain_t *cluster;
TRACE_TASK(task, "wake_up at %llu\n", litmus_clock());
cluster = task_cpu_cluster(task);
raw_spin_lock_irqsave(&cluster->cluster_lock, flags);
now = litmus_clock();
if (is_sporadic(task) && is_tardy(task, now)) {
/* new sporadic release */
cflsplit_release_at(task, now);
sched_trace_task_release(task);
}
if (is_pgm_waiting(task)) {
/* shift out release/deadline, if needed */
setup_pgm_release(task);
}
cflsplit_job_arrival(task);
raw_spin_unlock_irqrestore(&cluster->cluster_lock, flags);
}
static void cflsplit_task_block(struct task_struct *t)
{
unsigned long flags;
cflsplit_domain_t *cluster;
TRACE_TASK(t, "block at %llu\n", litmus_clock());
cluster = task_cpu_cluster(t);
/* unlink if necessary */
raw_spin_lock_irqsave(&cluster->cluster_lock, flags);
unlink(t);
raw_spin_unlock_irqrestore(&cluster->cluster_lock, flags);
BUG_ON(!is_realtime(t));
}
static void cflsplit_task_exit(struct task_struct * t)
{
unsigned long flags;
cflsplit_domain_t *cluster = task_cpu_cluster(t);
/* unlink if necessary */
raw_spin_lock_irqsave(&cluster->cluster_lock, flags);
unlink(t);
if (tsk_rt(t)->scheduled_on != NO_CPU) {
cpu_entry_t *cpu;
cpu = &per_cpu(cflsplit_cpu_entries, tsk_rt(t)->scheduled_on);
cpu->scheduled = NULL;
tsk_rt(t)->scheduled_on = NO_CPU;
}
raw_spin_unlock_irqrestore(&cluster->cluster_lock, flags);
BUG_ON(!is_realtime(t));
TRACE_TASK(t, "RIP\n");
}
static long cflsplit_admit_task(struct task_struct* tsk)
{
return (remote_cluster(task_cpu(tsk)) == task_cpu_cluster(tsk)) ?
0 : -EINVAL;
}
/* total number of cluster */
static int num_clusters;
/* we do not support cluster of different sizes */
static unsigned int cluster_size;
#ifdef VERBOSE_INIT
static void print_cluster_topology(cpumask_var_t mask, int cpu)
{
int chk;
char buf[255];
chk = cpulist_scnprintf(buf, 254, mask);
buf[chk] = '\0';
printk(KERN_INFO "CPU = %d, shared cpu(s) = %s\n", cpu, buf);
}
#endif
static int clusters_allocated = 0;
static void cleanup_cflsplit(void)
{
int i;
if (clusters_allocated) {
for (i = 0; i < num_clusters; i++) {
kfree(cflsplit[i].cpus);
kfree(cflsplit[i].heap_node);
free_cpumask_var(cflsplit[i].cpu_map);
}
kfree(cflsplit);
}
}
static long cflsplit_activate_plugin(void)
{
int i, j, cpu, ccpu, cpu_count;
cpu_entry_t *entry;
cpumask_var_t mask;
int chk = 0;
/* de-allocate old clusters, if any */
cleanup_cflsplit();
printk(KERN_INFO "C-FL-split: Activate Plugin, cluster configuration = %d\n",
cluster_config);
/* need to get cluster_size first */
if(!zalloc_cpumask_var(&mask, GFP_ATOMIC))
return -ENOMEM;
if (unlikely(cluster_config == GLOBAL_CLUSTER)) {
cluster_size = num_online_cpus();
} else {
chk = get_shared_cpu_map(mask, 0, cluster_config);
if (chk) {
/* if chk != 0 then it is the max allowed index */
printk(KERN_INFO "C-FL-split: Cluster configuration = %d "
"is not supported on this hardware.\n",
cluster_config);
/* User should notice that the configuration failed, so
* let's bail out. */
return -EINVAL;
}
cluster_size = cpumask_weight(mask);
}
if ((num_online_cpus() % cluster_size) != 0) {
/* this can't be right, some cpus are left out */
printk(KERN_ERR "C-FL-split: Trying to group %d cpus in %d!\n",
num_online_cpus(), cluster_size);
return -1;
}
num_clusters = num_online_cpus() / cluster_size;
printk(KERN_INFO "C-FL-split: %d cluster(s) of size = %d\n",
num_clusters, cluster_size);
/* initialize clusters */
cflsplit = kmalloc(num_clusters * sizeof(cflsplit_domain_t), GFP_ATOMIC);
for (i = 0; i < num_clusters; i++) {
cflsplit[i].cpus = kmalloc(cluster_size * sizeof(cpu_entry_t),
GFP_ATOMIC);
cflsplit[i].heap_node = kmalloc(
cluster_size * sizeof(struct bheap_node),
GFP_ATOMIC);
bheap_init(&(cflsplit[i].cpu_heap));
edf_split_domain_init(&(cflsplit[i].domain), NULL,
cflsplit_release_jobs);
if(!zalloc_cpumask_var(&cflsplit[i].cpu_map, GFP_ATOMIC))
return -ENOMEM;
#ifdef CONFIG_RELEASE_MASTER
cflsplit[i].domain.release_master = atomic_read(&release_master_cpu);
#endif
}
/* cycle through cluster and add cpus to them */
for (i = 0; i < num_clusters; i++) {
for_each_online_cpu(cpu) {
/* check if the cpu is already in a cluster */
for (j = 0; j < num_clusters; j++)
if (cpumask_test_cpu(cpu, cflsplit[j].cpu_map))
break;
/* if it is in a cluster go to next cpu */
if (j < num_clusters &&
cpumask_test_cpu(cpu, cflsplit[j].cpu_map))
continue;
/* this cpu isn't in any cluster */
/* get the shared cpus */
if (unlikely(cluster_config == GLOBAL_CLUSTER))
cpumask_copy(mask, cpu_online_mask);
else
get_shared_cpu_map(mask, cpu, cluster_config);
cpumask_copy(cflsplit[i].cpu_map, mask);
#ifdef VERBOSE_INIT
print_cluster_topology(mask, cpu);
#endif
/* add cpus to current cluster and init cpu_entry_t */
cpu_count = 0;
for_each_cpu(ccpu, cflsplit[i].cpu_map) {
entry = &per_cpu(cflsplit_cpu_entries, ccpu);
cflsplit[i].cpus[cpu_count] = entry;
atomic_set(&entry->will_schedule, 0);
entry->cpu = ccpu;
entry->cluster = &cflsplit[i];
entry->hn = &(cflsplit[i].heap_node[cpu_count]);
hrtimer_init(&entry->split_timer,
CLOCK_MONOTONIC,
HRTIMER_MODE_ABS);
entry->split_timer.function = on_split_timeout;
bheap_node_init(&entry->hn, entry);
cpu_count++;
entry->linked = NULL;
entry->scheduled = NULL;
#ifdef CONFIG_RELEASE_MASTER
/* only add CPUs that should schedule jobs */
if (entry->cpu != entry->cluster->domain.release_master)
#endif
update_cpu_position(entry);
}
/* done with this cluster */
break;
}
}
free_cpumask_var(mask);
clusters_allocated = 1;
return 0;
}
/* Plugin object */
static struct sched_plugin cflsplit_plugin __cacheline_aligned_in_smp = {
.plugin_name = "C-FL-split",
.finish_switch = cflsplit_finish_switch,
.tick = cflsplit_tick,
.task_new = cflsplit_task_new,
.complete_job = complete_job,
.task_exit = cflsplit_task_exit,
.schedule = cflsplit_schedule,
.release_at = cflsplit_release_at,
.task_wake_up = cflsplit_task_wake_up,
.task_block = cflsplit_task_block,
.admit_task = cflsplit_admit_task,
.activate_plugin = cflsplit_activate_plugin,
};
static struct proc_dir_entry *cluster_file = NULL, *cflsplit_dir = NULL;
static int __init init_cflsplit(void)
{
int err, fs;
err = register_sched_plugin(&cflsplit_plugin);
if (!err) {
fs = make_plugin_proc_dir(&cflsplit_plugin, &cflsplit_dir);
if (!fs)
cluster_file = create_cluster_file(cflsplit_dir, &cluster_config);
else
printk(KERN_ERR "Could not allocate C-FL-split procfs dir.\n");
}
return err;
}
static void clean_cflsplit(void)
{
cleanup_cflsplit();
if (cluster_file)
remove_proc_entry("cluster", cflsplit_dir);
if (cflsplit_dir)
remove_plugin_proc_dir(&cflsplit_plugin);
}
module_init(init_cflsplit);
module_exit(clean_cflsplit);