/*
* litmus/sched_cedf.c
*
* Implementation of the C-EDF scheduling algorithm.
*
* This implementation is based on G-EDF:
* - CPUs are clustered around L2 or L3 caches.
* - Clusters topology is automatically detected (this is arch dependent
* and is working only on x86 at the moment --- and only with modern
* cpus that exports cpuid4 information)
* - The plugins _does not_ attempt to put tasks in the right cluster i.e.
* the programmer needs to be aware of the topology to place tasks
* in the desired cluster
* - default clustering is around L2 cache (cache index = 2)
* supported clusters are: L1 (private cache: pedf), L2, L3, ALL (all
* online_cpus are placed in a single cluster).
*
* For details on functions, take a look at sched_gsn_edf.c
*
* Currently, we do not support changes in the number of online cpus.
* If the num_online_cpus() dynamically changes, the plugin is broken.
*
* This version uses the simple approach and serializes all scheduling
* decisions by the use of a queue lock. This is probably not the
* best way to do it, but it should suffice for now.
*/
#include <linux/spinlock.h>
#include <linux/percpu.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/module.h>
#include <litmus/litmus.h>
#include <litmus/jobs.h>
#include <litmus/preempt.h>
#include <litmus/budget.h>
#include <litmus/sched_plugin.h>
#include <litmus/edf_common.h>
#include <litmus/sched_trace.h>
#include <litmus/clustered.h>
#include <litmus/bheap.h>
#include <litmus/binheap.h>
#include <litmus/trace.h>
#ifdef CONFIG_LITMUS_LOCKING
#include <litmus/kfmlp_lock.h>
#endif
#ifdef CONFIG_LITMUS_NESTED_LOCKING
#include <litmus/fifo_lock.h>
#include <litmus/prioq_lock.h>
#include <litmus/ikglp_lock.h>
#endif
#ifdef CONFIG_SCHED_CPU_AFFINITY
#include <litmus/affinity.h>
#endif
#ifdef CONFIG_REALTIME_AUX_TASKS
#include <litmus/aux_tasks.h>
#endif
/* to configure the cluster size */
#include <litmus/litmus_proc.h>
#ifdef CONFIG_SCHED_CPU_AFFINITY
#include <litmus/affinity.h>
#endif
#ifdef CONFIG_LITMUS_SOFTIRQD
#include <litmus/litmus_softirq.h>
#endif
#ifdef CONFIG_LITMUS_PAI_SOFTIRQD
#include <linux/interrupt.h>
#endif
#ifdef CONFIG_LITMUS_NVIDIA
#include <litmus/nvidia_info.h>
#endif
#if defined(CONFIG_LITMUS_AFFINITY_LOCKING) && defined(CONFIG_LITMUS_NVIDIA)
#include <litmus/gpu_affinity.h>
#endif
/* Reference configuration variable. Determines which cache level is used to
* group CPUs into clusters. GLOBAL_CLUSTER, which is the default, means that
* all CPUs form a single cluster (just like GSN-EDF).
*/
static enum cache_level cluster_config = GLOBAL_CLUSTER;
struct clusterdomain;
/* cpu_entry_t - maintain the linked and scheduled state
*
* A cpu also contains a pointer to the cedf_domain_t cluster
* that owns it (struct clusterdomain*)
*/
typedef struct {
int cpu;
struct clusterdomain* cluster; /* owning cluster */
struct task_struct* linked; /* only RT tasks */
struct task_struct* scheduled; /* only RT tasks */
atomic_t will_schedule; /* prevent unneeded IPIs */
struct binheap_node hn;
} cpu_entry_t;
/* one cpu_entry_t per CPU */
DEFINE_PER_CPU(cpu_entry_t, cedf_cpu_entries);
#define set_will_schedule() \
(atomic_set(&__get_cpu_var(cedf_cpu_entries).will_schedule, 1))
#define clear_will_schedule() \
(atomic_set(&__get_cpu_var(cedf_cpu_entries).will_schedule, 0))
#define test_will_schedule(cpu) \
(atomic_read(&per_cpu(cedf_cpu_entries, cpu).will_schedule))
/*
* In C-EDF there is a cedf domain _per_ cluster
* The number of clusters is dynamically determined accordingly to the
* total cpu number and the cluster size
*/
typedef struct clusterdomain {
/* rt_domain for this cluster */
rt_domain_t domain;
/* cpus in this cluster */
cpu_entry_t* *cpus;
/* map of this cluster cpus */
cpumask_var_t cpu_map;
/* the cpus queue themselves according to priority in here */
struct binheap cpu_heap;
#define cluster_lock domain.ready_lock
#ifdef CONFIG_LITMUS_PAI_SOFTIRQD
struct tasklet_head pending_tasklets;
#endif
#ifdef CONFIG_LITMUS_DGL_SUPPORT
raw_spinlock_t dgl_lock;
#endif
int top_m_size;
struct binheap top_m;
struct binheap not_top_m;
} cedf_domain_t;
/* a cedf_domain per cluster; allocation is done at init/activation time */
cedf_domain_t *cedf;
#define remote_cluster(cpu) ((cedf_domain_t *) per_cpu(cedf_cpu_entries, cpu).cluster)
#define task_cpu_cluster(task) remote_cluster(get_partition(task))
/* total number of cluster */
static int num_clusters;
/* we do not support cluster of different sizes */
static unsigned int cluster_size;
static int clusters_allocated = 0;
#if defined(CONFIG_LITMUS_NVIDIA) && defined(CONFIG_LITMUS_SOFTIRQD)
static int num_gpu_clusters;
static unsigned int gpu_cluster_size;
#endif
inline static struct task_struct* binheap_node_to_task(struct binheap_node *bn)
{
struct budget_tracker *bt = binheap_entry(bn, struct budget_tracker, top_m_node);
struct task_struct *t =
container_of(
container_of(bt, struct rt_param, budget),
struct task_struct,
rt_param);
return t;
}
static int cedf_max_heap_base_priority_order(struct binheap_node *a,
struct binheap_node *b)
{
struct task_struct* t_a = binheap_node_to_task(a);
struct task_struct* t_b = binheap_node_to_task(b);
return __edf_higher_prio(t_a, BASE, t_b, BASE);
}
static int cedf_min_heap_base_priority_order(struct binheap_node *a,
struct binheap_node *b)
{
struct task_struct* t_a = binheap_node_to_task(a);
struct task_struct* t_b = binheap_node_to_task(b);
return __edf_higher_prio(t_b, BASE, t_a, BASE);
}
static void cedf_track_in_top_m(struct task_struct *t)
{
/* cluster lock must be held */
cedf_domain_t *cluster = task_cpu_cluster(t);
struct budget_tracker *bt;
struct task_struct *mth_highest;
//BUG_ON(binheap_is_in_heap(&tsk_rt(t)->budget.top_m_node));
if (binheap_is_in_heap(&tsk_rt(t)->budget.top_m_node)) {
// TRACE_TASK(t, "apparently already being tracked. top-m?: %s\n",
// (bt_flag_is_set(t, BTF_IS_TOP_M)) ? "Yes":"No");
return;
}
/* TODO: do cluster_size-1 if release master is in this cluster */
if (cluster->top_m_size < cluster_size) {
// TRACE_TASK(t, "unconditionally adding task to top-m.\n");
binheap_add(&tsk_rt(t)->budget.top_m_node, &cluster->top_m,
struct budget_tracker, top_m_node);
++cluster->top_m_size;
bt_flag_set(t, BTF_IS_TOP_M);
budget_state_machine(t,on_enter_top_m);
return;
}
BUG_ON(binheap_empty(&cluster->top_m));
bt = binheap_top_entry(&cluster->top_m, struct budget_tracker, top_m_node);
mth_highest =
container_of(
container_of(bt, struct rt_param, budget),
struct task_struct,
rt_param);
if (__edf_higher_prio(t, BASE, mth_highest, BASE)) {
// TRACE_TASK(t, "adding to top-m (evicting %s/%d)\n",
// mth_highest->comm, mth_highest->pid);
binheap_delete_root(&cluster->top_m, struct budget_tracker, top_m_node);
INIT_BINHEAP_NODE(&tsk_rt(mth_highest)->budget.top_m_node);
binheap_add(&tsk_rt(mth_highest)->budget.top_m_node,
&cluster->not_top_m,
struct budget_tracker, top_m_node);
budget_state_machine(mth_highest,on_exit_top_m);
bt_flag_clear(mth_highest, BTF_IS_TOP_M);
binheap_add(&tsk_rt(t)->budget.top_m_node, &cluster->top_m,
struct budget_tracker, top_m_node);
bt_flag_set(t, BTF_IS_TOP_M);
budget_state_machine(t,on_enter_top_m);
}
else {
// TRACE_TASK(t, "adding to not-top-m\n");
binheap_add(&tsk_rt(t)->budget.top_m_node,
&cluster->not_top_m,
struct budget_tracker, top_m_node);
}
}
static void cedf_untrack_in_top_m(struct task_struct *t)
{
/* cluster lock must be held */
cedf_domain_t *cluster = task_cpu_cluster(t);
if (!binheap_is_in_heap(&tsk_rt(t)->budget.top_m_node)) {
// TRACE_TASK(t, "is not being tracked\n"); /* BUG() on this case? */
return;
}
if (bt_flag_is_set(t, BTF_IS_TOP_M)) {
// TRACE_TASK(t, "removing task from top-m\n");
/* delete t's entry */
binheap_delete(&tsk_rt(t)->budget.top_m_node, &cluster->top_m);
budget_state_machine(t,on_exit_top_m);
bt_flag_clear(t, BTF_IS_TOP_M);
/* move a task over from the overflow heap */
if(!binheap_empty(&cluster->not_top_m)) {
struct budget_tracker *bt =
binheap_top_entry(&cluster->not_top_m, struct budget_tracker, top_m_node);
struct task_struct *to_move =
container_of(
container_of(bt, struct rt_param, budget),
struct task_struct,
rt_param);
// TRACE_TASK(to_move, "being promoted to top-m\n");
binheap_delete_root(&cluster->not_top_m, struct budget_tracker, top_m_node);
INIT_BINHEAP_NODE(&tsk_rt(to_move)->budget.top_m_node);
binheap_add(&tsk_rt(to_move)->budget.top_m_node,
&cluster->top_m,
struct budget_tracker, top_m_node);
bt_flag_set(to_move, BTF_IS_TOP_M);
budget_state_machine(to_move,on_enter_top_m);
}
else {
--cluster->top_m_size;
}
}
else {
// TRACE_TASK(t, "removing task from not-top-m\n");
binheap_delete(&tsk_rt(t)->budget.top_m_node, &cluster->not_top_m);
}
}
#ifdef CONFIG_LITMUS_DGL_SUPPORT
static raw_spinlock_t* cedf_get_dgl_spinlock(struct task_struct *t)
{
cedf_domain_t *cluster = task_cpu_cluster(t);
return(&cluster->dgl_lock);
}
#endif
/* Uncomment WANT_ALL_SCHED_EVENTS if you want to see all scheduling
* decisions in the TRACE() log; uncomment VERBOSE_INIT for verbose
* information during the initialization of the plugin (e.g., topology)
#define WANT_ALL_SCHED_EVENTS
*/
#define VERBOSE_INIT
static int cpu_lower_prio(struct binheap_node *_a, struct binheap_node *_b)
{
cpu_entry_t *a = binheap_entry(_a, cpu_entry_t, hn);
cpu_entry_t *b = binheap_entry(_b, cpu_entry_t, hn);
/* Note that a and b are inverted: we want the lowest-priority CPU at
* the top of the heap.
*/
return edf_higher_prio(b->linked, a->linked);
}
/* update_cpu_position - Move the cpu entry to the correct place to maintain
* order in the cpu queue. Caller must hold cedf lock.
*/
static void update_cpu_position(cpu_entry_t *entry)
{
cedf_domain_t *cluster = entry->cluster;
if (likely(binheap_is_in_heap(&entry->hn))) {
binheap_delete(&entry->hn, &cluster->cpu_heap);
}
binheap_add(&entry->hn, &cluster->cpu_heap, cpu_entry_t, hn);
}
/* caller must hold cedf lock */
static cpu_entry_t* lowest_prio_cpu(cedf_domain_t *cluster)
{
return binheap_top_entry(&cluster->cpu_heap, cpu_entry_t, hn);
}
static noinline void unlink(struct task_struct* t);
/* link_task_to_cpu - Update the link of a CPU.
* Handles the case where the to-be-linked task is already
* scheduled on a different CPU.
*/
static noinline void link_task_to_cpu(struct task_struct* linked,
cpu_entry_t *entry)
{
cpu_entry_t *sched;
struct task_struct* tmp;
int on_cpu;
BUG_ON(linked && !is_realtime(linked));
/* Currently linked task is set to be unlinked. */
if (entry->linked) {
entry->linked->rt_param.linked_on = NO_CPU;
#ifdef CONFIG_LITMUS_LOCKING
if (tsk_rt(entry->linked)->inh_task)
clear_inh_task_linkback(entry->linked, tsk_rt(entry->linked)->inh_task);
#endif
}
/* Link new task to CPU. */
if (linked) {
/* handle task is already scheduled somewhere! */
on_cpu = linked->rt_param.scheduled_on;
if (on_cpu != NO_CPU) {
sched = &per_cpu(cedf_cpu_entries, on_cpu);
BUG_ON(sched->linked == linked);
/* If we are already scheduled on the CPU to which we
* wanted to link, we don't need to do the swap --
* we just link ourselves to the CPU and depend on
* the caller to get things right.
*/
if (entry != sched) {
TRACE_TASK(linked,
"already scheduled on %d, updating link.\n",
sched->cpu);
tmp = sched->linked;
linked->rt_param.linked_on = sched->cpu;
sched->linked = linked;
update_cpu_position(sched);
linked = tmp;
}
}
if (linked) { /* might be NULL due to swap */
linked->rt_param.linked_on = entry->cpu;
#ifdef CONFIG_LITMUS_LOCKING
if (tsk_rt(linked)->inh_task)
set_inh_task_linkback(linked, tsk_rt(linked)->inh_task);
#endif
}
}
entry->linked = linked;
#ifdef WANT_ALL_SCHED_EVENTS
if (linked)
TRACE_TASK(linked, "linked to %d.\n", entry->cpu);
else
TRACE("NULL linked to %d.\n", entry->cpu);
#endif
update_cpu_position(entry);
}
/* unlink - Make sure a task is not linked any longer to an entry
* where it was linked before. Must hold cluster_lock.
*/
static noinline void unlink(struct task_struct* t)
{
if (t->rt_param.linked_on != NO_CPU) {
/* unlink */
cpu_entry_t *entry = &per_cpu(cedf_cpu_entries, t->rt_param.linked_on);
t->rt_param.linked_on = NO_CPU;
link_task_to_cpu(NULL, entry);
} else if (is_queued(t)) {
/* This is an interesting situation: t is scheduled,
* but was just recently unlinked. It cannot be
* linked anywhere else (because then it would have
* been relinked to this CPU), thus it must be in some
* queue. We must remove it from the list in this
* case.
*
* in C-EDF case is should be somewhere in the queue for
* its domain, therefore and we can get the domain using
* task_cpu_cluster
*/
remove(&(task_cpu_cluster(t))->domain, t);
}
}
/* preempt - force a CPU to reschedule
*/
static void preempt(cpu_entry_t *entry)
{
preempt_if_preemptable(entry->scheduled, entry->cpu);
}
/* requeue - Put an unlinked task into gsn-edf domain.
* Caller must hold cluster_lock.
*/
static noinline void requeue(struct task_struct* task)
{
cedf_domain_t *cluster = task_cpu_cluster(task);
BUG_ON(!task);
/* sanity check before insertion */
BUG_ON(is_queued(task));
if (is_early_releasing(task) || is_released(task, litmus_clock()) ||
tsk_rt(task)->job_params.is_backlogged_job) {
#ifdef CONFIG_REALTIME_AUX_TASKS
if (unlikely(tsk_rt(task)->is_aux_task && task->state != TASK_RUNNING && !tsk_rt(task)->aux_ready)) {
/* aux_task probably transitioned to real-time while it was blocked */
TRACE_CUR("aux task %s/%d is not ready!\n", task->comm, task->pid);
tsk_rt(task)->aux_ready = 1; /* allow this to only happen once per aux task */
}
else
#endif
__add_ready(&cluster->domain, task);
}
else {
TRACE_TASK(task, "not requeueing not-yet-released job\n");
}
}
#ifdef CONFIG_SCHED_CPU_AFFINITY
static cpu_entry_t* cedf_get_nearest_available_cpu(
cedf_domain_t *cluster, cpu_entry_t *start)
{
cpu_entry_t *affinity;
get_nearest_available_cpu(affinity, start, cedf_cpu_entries,
#ifdef CONFIG_RELEASE_MASTER
cluster->domain.release_master
#else
NO_CPU
#endif
);
/* make sure CPU is in our cluster */
if (affinity && cpu_isset(affinity->cpu, *cluster->cpu_map))
return(affinity);
else
return(NULL);
}
#endif
/* check for any necessary preemptions */
static void check_for_preemptions(cedf_domain_t *cluster)
{
struct task_struct *task;
cpu_entry_t *last;
for(last = lowest_prio_cpu(cluster);
edf_preemption_needed(&cluster->domain, last->linked);
last = lowest_prio_cpu(cluster)) {
/* preemption necessary */
task = __take_ready(&cluster->domain);
TRACE("check_for_preemptions: attempting to link task %d to %d\n",
task->pid, last->cpu);
#ifdef CONFIG_SCHED_CPU_AFFINITY
{
cpu_entry_t *affinity =
cedf_get_nearest_available_cpu(cluster,
&per_cpu(cedf_cpu_entries, task_cpu(task)));
if(affinity)
last = affinity;
else if(should_requeue_preempted_job(last->linked))
requeue(last->linked);
}
#else
if (should_requeue_preempted_job(last->linked))
requeue(last->linked);
#endif
link_task_to_cpu(task, last);
preempt(last);
}
}
/* cedf_job_arrival: task is either resumed or released */
static noinline void cedf_job_arrival(struct task_struct* task)
{
cedf_domain_t *cluster = task_cpu_cluster(task);
BUG_ON(!task);
requeue(task);
check_for_preemptions(cluster);
}
static void cedf_track_on_release(struct bheap_node* n, void* dummy)
{
struct task_struct* t = bheap2task(n);
// TRACE_TASK(t, "released\n");
cedf_track_in_top_m(t);
}
static void cedf_release_jobs(rt_domain_t* rt, struct bheap* tasks)
{
cedf_domain_t* cluster = container_of(rt, cedf_domain_t, domain);
unsigned long flags;
raw_readyq_lock_irqsave(&cluster->cluster_lock, flags);
bheap_for_each(tasks, cedf_track_on_release, NULL);
__merge_ready(&cluster->domain, tasks);
check_for_preemptions(cluster);
raw_readyq_unlock_irqrestore(&cluster->cluster_lock, flags);
}
/* caller holds cluster_lock */
static noinline void job_completion(struct task_struct *t, int forced)
{
int do_release = 0;
int do_backlogged_job = 0;
lt_t now;
BUG_ON(!t);
now = litmus_clock();
/* DO BACKLOG TRACKING */
/* job completed with budget remaining */
if (get_release_policy(t) != SPORADIC) {
/* only jobs we know that will call sleep_next_job() can use backlogging */
if (!forced) {
/* was it a backlogged job that completed? */
if (tsk_rt(t)->job_params.is_backlogged_job) {
BUG_ON(!get_backlog(t));
--get_backlog(t);
TRACE_TASK(t, "completed backlogged job\n");
}
}
else {
/* budget was exhausted - force early release */
if (get_backlog(t) == 0) {
TRACE_TASK(t, "first late job\n");
++get_backlog(t);
}
++get_backlog(t);
TRACE_TASK(t, "adding backlogged job\n");
}
do_backlogged_job = has_backlog(t);
TRACE_TASK(t, "number of backlogged jobs: %u\n",
get_backlog(t));
}
/* SETUP FOR THE NEXT JOB */
sched_trace_task_completion(t, forced);
TRACE_TASK(t, "job_completion() at %llu (forced = %d).\n", now, forced);
/* set flags */
tsk_rt(t)->completed = 0;
if (unlikely(!forced && do_backlogged_job)) {
/* Don't advance deadline/refresh budget. Use the remaining budget for
* the backlogged job.
*
* NOTE: Allowing backlogged jobs comsume remaining budget may affect
* blocking bound analysis.
*/
}
else {
cedf_untrack_in_top_m(t);
prepare_for_next_period(t);
do_release = (is_early_releasing(t) || is_released(t, now));
if (do_backlogged_job) {
TRACE_TASK(t, "refreshing budget with early "
"release for backlogged job.\n");
}
if (do_release || do_backlogged_job) {
/* log here to capture overheads */
sched_trace_task_release(t);
}
}
unlink(t);
/* release or arm next job */
if (is_running(t)) {
/* is our next job a backlogged job? */
if (do_backlogged_job) {
TRACE_TASK(t, "next job is a backlogged job.\n");
tsk_rt(t)->job_params.is_backlogged_job = 1;
}
else {
TRACE_TASK(t, "next job is a regular job.\n");
tsk_rt(t)->job_params.is_backlogged_job = 0;
}
if (do_release || do_backlogged_job) {
cedf_track_in_top_m(t);
cedf_job_arrival(t);
}
else {
add_release(&task_cpu_cluster(t)->domain, t);
}
}
else {
BUG_ON(!forced);
/* budget was refreshed and job early released */
TRACE_TASK(t, "job exhausted budget while sleeping\n");
cedf_track_in_top_m(t);
}
}
static enum hrtimer_restart cedf_simple_on_exhausted(struct task_struct *t, int in_schedule)
{
/* Assumption: t is scheduled on the CPU executing this callback */
if (in_schedule) {
BUG_ON(tsk_rt(t)->scheduled_on != smp_processor_id());
if (budget_precisely_tracked(t) && cancel_enforcement_timer(t) < 0) {
TRACE_TASK(t, "raced with timer. deffering to timer.\n");
goto out;
}
}
if (budget_signalled(t) && !bt_flag_is_set(t, BTF_SIG_BUDGET_SENT)) {
/* signal exhaustion */
send_sigbudget(t); /* will set BTF_SIG_BUDGET_SENT */
}
if (budget_enforced(t) && !bt_flag_test_and_set(t, BTF_BUDGET_EXHAUSTED)) {
if (likely(!is_np(t))) {
/* np tasks will be preempted when they become
* preemptable again
*/
if (!in_schedule) {
TRACE_TASK(t, "is preemptable => FORCE_RESCHED\n");
litmus_reschedule_local();
set_will_schedule();
}
} else if (is_user_np(t)) {
TRACE_TASK(t, "is non-preemptable, preemption delayed.\n");
request_exit_np(t);
}
}
out:
return HRTIMER_NORESTART;
}
static enum hrtimer_restart cedf_simple_io_on_exhausted(struct task_struct *t, int in_schedule)
{
enum hrtimer_restart restart = HRTIMER_NORESTART;
if (in_schedule) {
BUG_ON(tsk_rt(t)->scheduled_on != smp_processor_id());
if (budget_precisely_tracked(t) && cancel_enforcement_timer(t) == -1) {
TRACE_TASK(t, "raced with timer. deffering to timer.\n");
goto out;
}
}
/* t may or may not be scheduled */
if (budget_signalled(t) && !bt_flag_is_set(t, BTF_SIG_BUDGET_SENT)) {
/* signal exhaustion */
/* Tasks should block SIG_BUDGET if they cannot gracefully respond to
* the signal while suspended. SIG_BUDGET is an rt-signal, so it will
* be queued and received when SIG_BUDGET is unblocked */
send_sigbudget(t); /* will set BTF_SIG_BUDGET_SENT */
}
if (budget_enforced(t) && !bt_flag_is_set(t, BTF_BUDGET_EXHAUSTED)) {
int cpu = (tsk_rt(t)->linked_on != NO_CPU) ?
tsk_rt(t)->linked_on : tsk_rt(t)->scheduled_on;
if (is_np(t) && is_user_np(t)) {
bt_flag_set(t, BTF_BUDGET_EXHAUSTED);
TRACE_TASK(t, "is non-preemptable, preemption delayed.\n");
request_exit_np(t);
}
/* where do we need to call resched? */
else if (cpu == smp_processor_id()) {
bt_flag_set(t, BTF_BUDGET_EXHAUSTED);
if (!in_schedule) {
TRACE_TASK(t, "is preemptable => FORCE_RESCHED\n");
litmus_reschedule_local();
set_will_schedule();
}
}
else if (cpu != NO_CPU) {
bt_flag_set(t, BTF_BUDGET_EXHAUSTED);
if (!in_schedule) {
TRACE_TASK(t, "is preemptable on remote cpu (%d) => FORCE_RESCHED\n", cpu);
litmus_reschedule(cpu);
}
}
else if (unlikely(tsk_rt(t)->blocked_lock)) {
/* we shouldn't be draining while waiting for litmus lock, but we
* could have raced with the budget timer (?). */
WARN_ON(1);
}
else {
lt_t remaining;
cedf_domain_t *cluster;
unsigned long flags;
BUG_ON(in_schedule);
cluster = task_cpu_cluster(t);
// 1) refresh budget through job completion
// 2) if holds locks, tell the locking protocol to re-eval priority
// 3) -- the LP must undo any inheritance relations if appropriate
/* force job completion */
TRACE_TASK(t, "blocked, postponing deadline\n");
/* Outermost lock of the cluster. Recursive lock calls are
* possible on this code path. This should be the _ONLY_
* scenario where recursive calls are made. */
#ifdef CONFIG_LITMUS_DGL_SUPPORT
/* Unfortunately, we _might_ need to grab the DGL lock, so we
* must grab it every time since it must be take before the
* cluster lock. */
raw_spin_lock_irqsave(&cluster->dgl_lock, flags);
raw_readyq_lock(&cluster->cluster_lock);
#else
raw_readyq_lock_irqsave(&cluster->cluster_lock, flags);
#endif
job_completion(t, 1); /* refreshes budget and pushes out deadline */
#ifdef CONFIG_LITMUS_LOCKING
{
int i;
/* any linked task that inherits from 't' needs to have their
* cpu-position re-evaluated. we have to do this in two passes.
* pass 1: remove nodes from heap s.t. heap is in known good state.
* pass 2: re-add nodes.
*
*/
for (i = find_first_bit(&tsk_rt(t)->used_linkback_slots, BITS_PER_BYTE*sizeof(&tsk_rt(t)->used_linkback_slots));
i < BITS_PER_LONG;
i = find_next_bit(&tsk_rt(t)->used_linkback_slots, BITS_PER_BYTE*sizeof(&tsk_rt(t)->used_linkback_slots), i+1))
{
struct task_struct *to_update = tsk_rt(t)->inh_task_linkbacks[i];
BUG_ON(!to_update);
if (tsk_rt(to_update)->linked_on != NO_CPU) {
cpu_entry_t *entry = &per_cpu(cedf_cpu_entries, tsk_rt(to_update)->linked_on);
BUG_ON(!binheap_is_in_heap(&entry->hn));
binheap_delete(&entry->hn, &cluster->cpu_heap);
}
}
for (i = find_first_bit(&tsk_rt(t)->used_linkback_slots, BITS_PER_BYTE*sizeof(&tsk_rt(t)->used_linkback_slots));
i < BITS_PER_LONG;
i = find_next_bit(&tsk_rt(t)->used_linkback_slots, BITS_PER_BYTE*sizeof(&tsk_rt(t)->used_linkback_slots), i+1))
{
struct task_struct *to_update = tsk_rt(t)->inh_task_linkbacks[i];
BUG_ON(!to_update);
if (tsk_rt(to_update)->linked_on != NO_CPU) {
cpu_entry_t *entry = &per_cpu(cedf_cpu_entries, tsk_rt(to_update)->linked_on);
binheap_add(&entry->hn, &cluster->cpu_heap, cpu_entry_t, hn);
}
}
}
/* Check our inheritance and propagate any changes forward. */
reevaluate_inheritance(t);
#endif
/* No need to recheck priority of AUX tasks. They will always
* inherit from 't' if they are enabled. Their prio change was
* captured by the cpu-heap operations above. */
#ifdef CONFIG_LITMUS_NVIDIA
/* Re-eval priority of GPU interrupt threads. */
if(tsk_rt(t)->held_gpus && !tsk_rt(t)->hide_from_gpu)
gpu_owner_decrease_priority(t);
#endif
#ifdef CONFIG_LITMUS_LOCKING
/* double-check that everything is okay */
check_for_preemptions(cluster);
#endif
/* should be the outermost unlock call */
#ifdef CONFIG_LITMUS_DGL_SUPPORT
raw_readyq_unlock(&cluster->cluster_lock);
raw_spin_unlock_irqrestore(&cluster->dgl_lock, flags);
#else
raw_readyq_unlock_irqrestore(&cluster->cluster_lock, flags);
#endif
/* we need to set up the budget timer since we're within the callback. */
hrtimer_forward_now(&get_budget_timer(t).timer.timer,
ns_to_ktime(budget_remaining(t)));
remaining = hrtimer_get_expires_ns(&get_budget_timer(t).timer.timer);
TRACE_TASK(t, "rearmed timer to %ld\n", remaining);
restart = HRTIMER_RESTART;
}
}
out:
return restart;
}
#ifdef CONFIG_LITMUS_LOCKING
static void __cedf_trigger_vunlock(struct task_struct *t)
{
TRACE_TASK(t, "triggering virtual unlock of lock %d\n",
tsk_rt(t)->outermost_lock->ident);
tsk_rt(t)->outermost_lock->ops->omlp_virtual_unlock(tsk_rt(t)->outermost_lock, t);
}
static void cedf_trigger_vunlock(struct task_struct *t)
{
cedf_domain_t *cluster = task_cpu_cluster(t);
#ifdef CONFIG_LITMUS_DGL_SUPPORT
unsigned long flags;
/* Unfortunately, we _might_ need to grab the DGL lock, so we
* must grab it every time since it must be take before the
* cluster lock. */
raw_spin_lock_irqsave(&cluster->dgl_lock, flags);
#endif
__cedf_trigger_vunlock(t);
#ifdef CONFIG_LITMUS_DGL_SUPPORT
raw_spin_unlock_irqrestore(&cluster->dgl_lock, flags);
#endif
}
#endif
static enum hrtimer_restart cedf_sobliv_on_exhausted(struct task_struct *t, int in_schedule)
{
enum hrtimer_restart restart = HRTIMER_NORESTART;
if (in_schedule) {
BUG_ON(tsk_rt(t)->scheduled_on != smp_processor_id());
if (budget_precisely_tracked(t) && cancel_enforcement_timer(t) == -1) {
TRACE_TASK(t, "raced with timer. deffering to timer.\n");
goto out;
}
}
/* t may or may not be scheduled */
if (budget_signalled(t) && !bt_flag_is_set(t, BTF_SIG_BUDGET_SENT)) {
/* signal exhaustion */
/* Tasks should block SIG_BUDGET if they cannot gracefully respond to
* the signal while suspended. SIG_BUDGET is an rt-signal, so it will
* be queued and received when SIG_BUDGET is unblocked */
send_sigbudget(t); /* will set BTF_SIG_BUDGET_SENT */
}
if (budget_enforced(t) && !bt_flag_is_set(t, BTF_BUDGET_EXHAUSTED)) {
int cpu = (tsk_rt(t)->linked_on != NO_CPU) ?
tsk_rt(t)->linked_on : tsk_rt(t)->scheduled_on;
#ifdef CONFIG_LITMUS_LOCKING
/* if 't' running, trigger a virtual unlock of outermost held lock
* if supported. Case where 't' not running handled later in function.
*/
if (cpu != NO_CPU &&
tsk_rt(t)->outermost_lock &&
tsk_rt(t)->outermost_lock->ops->is_omlp_family)
cedf_trigger_vunlock(t);
#endif
if (is_np(t) && is_user_np(t)) {
TRACE_TASK(t, "is non-preemptable, preemption delayed.\n");
bt_flag_set(t, BTF_BUDGET_EXHAUSTED);
request_exit_np(t);
}
/* where do we need to call resched? */
else if (cpu == smp_processor_id()) {
bt_flag_set(t, BTF_BUDGET_EXHAUSTED);
if (!in_schedule) {
TRACE_TASK(t, "is preemptable => FORCE_RESCHED\n");
litmus_reschedule_local();
set_will_schedule();
}
}
else if (cpu != NO_CPU) {
bt_flag_set(t, BTF_BUDGET_EXHAUSTED);
if (!in_schedule) {
litmus_reschedule(cpu);
TRACE_TASK(t, "is preemptable on remote cpu (%d) => FORCE_RESCHED\n", cpu);
}
}
else {
lt_t remaining;
cedf_domain_t *cluster;
unsigned long flags;
BUG_ON(in_schedule);
cluster = task_cpu_cluster(t);
// 1) refresh budget through job completion
// 2) if holds locks, tell the locking protocol to re-eval priority
// 3) -- the LP must undo any inheritance relations if appropriate
/* force job completion */
TRACE_TASK(t, "blocked, postponing deadline\n");
/* Outermost lock of the cluster. Recursive lock calls are
* possible on this code path. This should be the _ONLY_
* scenario where recursive calls are made. */
#ifdef CONFIG_LITMUS_DGL_SUPPORT
/* Unfortunately, we _might_ need to grab the DGL lock, so we
* must grab it every time since it must be take before the
* cluster lock. */
raw_spin_lock_irqsave(&cluster->dgl_lock, flags);
raw_readyq_lock(&cluster->cluster_lock);
#else
raw_readyq_lock_irqsave(&cluster->cluster_lock, flags);
#endif
job_completion(t, 1); /* refreshes budget and pushes out deadline */
#ifdef CONFIG_LITMUS_LOCKING
{
int i;
/* any linked task that inherits from 't' needs to have their
* cpu-position re-evaluated. we have to do this in two passes.
* pass 1: remove nodes from heap s.t. heap is in known good state.
* pass 2: re-add nodes.
*
*/
for (i = find_first_bit(&tsk_rt(t)->used_linkback_slots, BITS_PER_BYTE*sizeof(&tsk_rt(t)->used_linkback_slots));
i < BITS_PER_LONG;
i = find_next_bit(&tsk_rt(t)->used_linkback_slots, BITS_PER_BYTE*sizeof(&tsk_rt(t)->used_linkback_slots), i+1))
{
struct task_struct *to_update = tsk_rt(t)->inh_task_linkbacks[i];
BUG_ON(!to_update);
if (tsk_rt(to_update)->linked_on != NO_CPU) {
cpu_entry_t *entry = &per_cpu(cedf_cpu_entries, tsk_rt(to_update)->linked_on);
BUG_ON(!binheap_is_in_heap(&entry->hn));
binheap_delete(&entry->hn, &cluster->cpu_heap);
}
}
for (i = find_first_bit(&tsk_rt(t)->used_linkback_slots, BITS_PER_BYTE*sizeof(&tsk_rt(t)->used_linkback_slots));
i < BITS_PER_LONG;
i = find_next_bit(&tsk_rt(t)->used_linkback_slots, BITS_PER_BYTE*sizeof(&tsk_rt(t)->used_linkback_slots), i+1))
{
struct task_struct *to_update = tsk_rt(t)->inh_task_linkbacks[i];
BUG_ON(!to_update);
if (tsk_rt(to_update)->linked_on != NO_CPU) {
cpu_entry_t *entry = &per_cpu(cedf_cpu_entries, tsk_rt(to_update)->linked_on);
binheap_add(&entry->hn, &cluster->cpu_heap, cpu_entry_t, hn);
}
}
}
/* Check our inheritance and propagate any changes forward. */
reevaluate_inheritance(t);
if (tsk_rt(t)->outermost_lock && tsk_rt(t)->outermost_lock->ops->is_omlp_family)
__cedf_trigger_vunlock(t);
#endif
/* No need to recheck priority of AUX tasks. They will always
* inherit from 't' if they are enabled. Their prio change was
* captured by the cpu-heap operations above. */
#ifdef CONFIG_LITMUS_NVIDIA
/* Re-eval priority of GPU interrupt threads. */
if(tsk_rt(t)->held_gpus && !tsk_rt(t)->hide_from_gpu)
gpu_owner_decrease_priority(t);
#endif
#ifdef CONFIG_LITMUS_LOCKING
/* double-check that everything is okay */
check_for_preemptions(cluster);
#endif
/* should be the outermost unlock call */
#ifdef CONFIG_LITMUS_DGL_SUPPORT
raw_readyq_unlock(&cluster->cluster_lock);
raw_spin_unlock_irqrestore(&cluster->dgl_lock, flags);
#else
raw_readyq_unlock_irqrestore(&cluster->cluster_lock, flags);
#endif
/* we need to set up the budget timer since we're within the callback. */
if (bt_flag_is_set(t, BTF_IS_TOP_M)) {
hrtimer_forward_now(&get_budget_timer(t).timer.timer,
ns_to_ktime(budget_remaining(t)));
remaining = hrtimer_get_expires_ns(&get_budget_timer(t).timer.timer);
TRACE_TASK(t, "rearmed timer to %ld\n", remaining);
restart = HRTIMER_RESTART;
}
}
}
out:
return restart;
}
/* cedf_tick - this function is called for every local timer
* interrupt.
*
* checks whether the current task has expired and checks
* whether we need to preempt it if it has not expired
*/
static void cedf_tick(struct task_struct* t)
{
if (is_realtime(t) &&
tsk_rt(t)->budget.ops && budget_quantum_tracked(t) &&
budget_exhausted(t)) {
TRACE_TASK(t, "budget exhausted\n");
budget_state_machine2(t,on_exhausted,!IN_SCHEDULE);
}
}
#ifdef CONFIG_LITMUS_PAI_SOFTIRQD
static void __do_lit_tasklet(struct tasklet_struct* tasklet, unsigned long flushed)
{
if (!atomic_read(&tasklet->count)) {
if(tasklet->owner) {
sched_trace_tasklet_begin(tasklet->owner);
}
if (!test_and_clear_bit(TASKLET_STATE_SCHED, &tasklet->state))
{
BUG();
}
TRACE("%s: Invoking tasklet with owner pid = %d (flushed = %d).\n",
__FUNCTION__,
(tasklet->owner) ? tasklet->owner->pid : 0,
(tasklet->owner) ? 0 : 1);
tasklet->func(tasklet->data);
tasklet_unlock(tasklet);
if(tasklet->owner) {
sched_trace_tasklet_end(tasklet->owner, flushed);
}
}
else {
BUG();
}
}
static void do_lit_tasklets(cedf_domain_t* cluster, struct task_struct* sched_task)
{
int work_to_do = 1;
struct tasklet_struct *tasklet = NULL;
unsigned long flags;
while(work_to_do) {
TS_NV_SCHED_BOTISR_START;
raw_readyq_lock_irqsave(&cluster->cluster_lock, flags);
if(cluster->pending_tasklets.head != NULL) {
// remove tasklet at head.
struct tasklet_struct *prev = NULL;
tasklet = cluster->pending_tasklets.head;
// find a tasklet with prio to execute; skip ones where
// sched_task has a higher priority.
// We use the '!edf' test instead of swaping function arguments since
// both sched_task and owner could be NULL. In this case, we want to
// still execute the tasklet.
while(tasklet && !edf_higher_prio(tasklet->owner, sched_task)) {
prev = tasklet;
tasklet = tasklet->next;
}
if(tasklet) { // found something to execuite
// remove the tasklet from the queue
if(prev) {
prev->next = tasklet->next;
if(prev->next == NULL) {
TRACE("%s: Tasklet for %d is the last element in tasklet queue.\n", __FUNCTION__, tasklet->owner->pid);
cluster->pending_tasklets.tail = &(prev);
}
}
else {
cluster->pending_tasklets.head = tasklet->next;
if(tasklet->next == NULL) {
TRACE("%s: Tasklet for %d is the last element in tasklet queue.\n", __FUNCTION__, tasklet->owner->pid);
cluster->pending_tasklets.tail = &(cluster->pending_tasklets.head);
}
}
}
else {
TRACE("%s: No tasklets with eligible priority.\n", __FUNCTION__);
}
}
else {
TRACE("%s: Tasklet queue is empty.\n", __FUNCTION__);
}
raw_readyq_unlock_irqrestore(&cluster->cluster_lock, flags);
if(tasklet) {
__do_lit_tasklet(tasklet, 0ul);
tasklet = NULL;
}
else {
work_to_do = 0;
}
TS_NV_SCHED_BOTISR_END;
}
}
static void __add_pai_tasklet(struct tasklet_struct* tasklet, cedf_domain_t* cluster)
{
struct tasklet_struct* step;
tasklet->next = NULL; // make sure there are no old values floating around
step = cluster->pending_tasklets.head;
if(step == NULL) {
TRACE("%s: tasklet queue empty. inserting tasklet for %d at head.\n", __FUNCTION__, tasklet->owner->pid);
// insert at tail.
*(cluster->pending_tasklets.tail) = tasklet;
cluster->pending_tasklets.tail = &(tasklet->next);
}
else if((*(cluster->pending_tasklets.tail) != NULL) &&
edf_higher_prio((*(cluster->pending_tasklets.tail))->owner, tasklet->owner)) {
// insert at tail.
TRACE("%s: tasklet belongs at end. inserting tasklet for %d at tail.\n", __FUNCTION__, tasklet->owner->pid);
*(cluster->pending_tasklets.tail) = tasklet;
cluster->pending_tasklets.tail = &(tasklet->next);
}
else {
// insert the tasklet somewhere in the middle.
TRACE("%s: tasklet belongs somewhere in the middle.\n", __FUNCTION__);
while(step->next && edf_higher_prio(step->next->owner, tasklet->owner)) {
step = step->next;
}
// insert tasklet right before step->next.
TRACE("%s: inserting tasklet for %d between %d and %d.\n", __FUNCTION__,
tasklet->owner->pid,
(step->owner) ?
step->owner->pid :
-1,
(step->next) ?
((step->next->owner) ?
step->next->owner->pid :
-1) :
-1);
tasklet->next = step->next;
step->next = tasklet;
// patch up the head if needed.
if(cluster->pending_tasklets.head == step)
{
TRACE("%s: %d is the new tasklet queue head.\n", __FUNCTION__, tasklet->owner->pid);
cluster->pending_tasklets.head = tasklet;
}
}
}
static void cedf_run_tasklets(struct task_struct* sched_task)
{
cedf_domain_t* cluster;
preempt_disable();
cluster = (is_realtime(sched_task)) ?
task_cpu_cluster(sched_task) :
remote_cluster(smp_processor_id());
if(cluster && cluster->pending_tasklets.head != NULL) {
TRACE("%s: There are tasklets to process.\n", __FUNCTION__);
do_lit_tasklets(cluster, sched_task);
}
preempt_enable_no_resched();
}
static int cedf_enqueue_pai_tasklet(struct tasklet_struct* tasklet)
{
#if 0
cedf_domain_t *cluster = NULL;
cpu_entry_t *targetCPU = NULL;
int thisCPU;
int runLocal = 0;
int runNow = 0;
unsigned long flags;
if(unlikely((tasklet->owner == NULL) || !is_realtime(tasklet->owner)))
{
TRACE("%s: No owner associated with this tasklet!\n", __FUNCTION__);
return 0;
}
cluster = task_cpu_cluster(tasklet->owner);
raw_readyq_lock_irqsave(&cluster->cluster_lock, flags);
thisCPU = smp_processor_id();
#ifdef CONFIG_SCHED_CPU_AFFINITY
{
cpu_entry_t* affinity = NULL;
// use this CPU if it is in our cluster and isn't running any RT work.
if(cpu_isset(thisCPU, *cluster->cpu_map) && (__get_cpu_var(cedf_cpu_entries).linked == NULL)) {
affinity = &(__get_cpu_var(cedf_cpu_entries));
}
else {
// this CPU is busy or shouldn't run tasklet in this cluster.
// look for available near by CPUs.
// NOTE: Affinity towards owner and not this CPU. Is this right?
affinity =
cedf_get_nearest_available_cpu(cluster,
&per_cpu(cedf_cpu_entries, task_cpu(tasklet->owner)));
}
targetCPU = affinity;
}
#endif
if (targetCPU == NULL) {
targetCPU = lowest_prio_cpu(cluster);
}
if (edf_higher_prio(tasklet->owner, targetCPU->linked)) {
if (thisCPU == targetCPU->cpu) {
TRACE("%s: Run tasklet locally (and now).\n", __FUNCTION__);
runLocal = 1;
runNow = 1;
}
else {
TRACE("%s: Run tasklet remotely (and now).\n", __FUNCTION__);
runLocal = 0;
runNow = 1;
}
}
else {
runLocal = 0;
runNow = 0;
}
if(!runLocal) {
// enqueue the tasklet
__add_pai_tasklet(tasklet, cluster);
}
raw_readyq_unlock_irqrestore(&cluster->cluster_lock, flags);
if (runLocal /*&& runNow */) { // runNow == 1 is implied
TRACE("%s: Running tasklet on CPU where it was received.\n", __FUNCTION__);
__do_lit_tasklet(tasklet, 0ul);
}
else if (runNow /*&& !runLocal */) { // runLocal == 0 is implied
TRACE("%s: Triggering CPU %d to run tasklet.\n", __FUNCTION__, targetCPU->cpu);
preempt(targetCPU); // need to be protected by cluster_lock?
}
else {
TRACE("%s: Scheduling of tasklet was deferred.\n", __FUNCTION__);
}
#else
TRACE("%s: Running tasklet on CPU where it was received.\n", __FUNCTION__);
__do_lit_tasklet(tasklet, 0ul);
#endif
return(1); // success
}
static void cedf_change_prio_pai_tasklet(struct task_struct *old_prio,
struct task_struct *new_prio)
{
struct tasklet_struct* step;
unsigned long flags;
cedf_domain_t *cluster;
struct task_struct *probe;
// identify the cluster by the assignment of these tasks. one should
// be non-NULL.
probe = (old_prio) ? old_prio : new_prio;
if(probe) {
cluster = task_cpu_cluster(probe);
if(cluster->pending_tasklets.head != NULL) {
raw_readyq_lock_irqsave(&cluster->cluster_lock, flags);
for(step = cluster->pending_tasklets.head; step != NULL; step = step->next) {
if(step->owner == old_prio) {
TRACE("%s: Found tasklet to change: %d\n", __FUNCTION__, step->owner->pid);
step->owner = new_prio;
}
}
raw_readyq_unlock_irqrestore(&cluster->cluster_lock, flags);
}
}
else {
TRACE("%s: Both priorities were NULL\n");
}
}
#endif // PAI
#ifdef CONFIG_LITMUS_LOCKING
static int __increase_priority_inheritance(struct task_struct* t, struct task_struct* prio_inh);
#endif
/* Getting schedule() right is a bit tricky. schedule() may not make any
* assumptions on the state of the current task since it may be called for a
* number of reasons. The reasons include a scheduler_tick() determined that it
* was necessary, because sys_exit_np() was called, because some Linux
* subsystem determined so, or even (in the worst case) because there is a bug
* hidden somewhere. Thus, we must take extreme care to determine what the
* current state is.
*
* The CPU could currently be scheduling a task (or not), be linked (or not).
*
* The following assertions for the scheduled task could hold:
*
* - !is_running(scheduled) // the job blocks
* - scheduled->timeslice == 0 // the job completed (forcefully)
* - is_completed() // the job completed (by syscall)
* - linked != scheduled // we need to reschedule (for any reason)
* - is_np(scheduled) // rescheduling must be delayed,
* sys_exit_np must be requested
*
* Any of these can occur together.
*/
static struct task_struct* cedf_schedule(struct task_struct * prev)
{
cpu_entry_t* entry = &__get_cpu_var(cedf_cpu_entries);
cedf_domain_t *cluster = entry->cluster;
int out_of_time, sleep, preempt, np, exists, blocks;
struct task_struct* next = NULL;
#ifdef CONFIG_LITMUS_NESTED_LOCKING
int recheck_inheritance;
#endif
#ifdef CONFIG_RELEASE_MASTER
/* Bail out early if we are the release master.
* The release master never schedules any real-time tasks.
*/
if (unlikely(cluster->domain.release_master == entry->cpu)) {
sched_state_task_picked();
return NULL;
}
#endif
/* Detect and handle budget exhaustion if it hasn't already been done.
* Do this before acquring any locks. */
if (prev && is_realtime(prev) &&
budget_exhausted(prev) &&
!is_completed(prev) && /* don't bother with jobs on their way out */
((budget_enforced(prev) && !bt_flag_is_set(prev, BTF_BUDGET_EXHAUSTED)) ||
(budget_signalled(prev) && !bt_flag_is_set(prev, BTF_SIG_BUDGET_SENT))) ) {
TRACE_TASK(prev, "handling exhaustion in schedule() at %llu\n", litmus_clock());
budget_state_machine2(prev,on_exhausted,IN_SCHEDULE);
}
#ifdef CONFIG_LITMUS_NESTED_LOCKING
/* prevent updates to inheritance relations while we work with 'prev' */
/* recheck inheritance if the task holds locks, is running, and will
* have its deadline pushed out by job_completion() */
recheck_inheritance =
prev &&
is_realtime(prev) &&
holds_locks(prev) &&
!is_np(prev) &&
!is_completed(prev) &&
is_running(prev) &&
budget_enforced(prev) &&
bt_flag_is_set(prev, BTF_BUDGET_EXHAUSTED);
if (recheck_inheritance) {
#ifdef CONFIG_LITMUS_DGL_SUPPORT
raw_spin_lock(&cluster->dgl_lock);
#endif
raw_spin_lock(&tsk_rt(prev)->hp_blocked_tasks_lock);
}
#endif
raw_readyq_lock(&cluster->cluster_lock);
clear_will_schedule();
/* sanity checking */
BUG_ON(entry->scheduled && entry->scheduled != prev);
BUG_ON(entry->scheduled && !is_realtime(prev));
BUG_ON(is_realtime(prev) && !entry->scheduled);
/* (0) Determine state */
exists = entry->scheduled != NULL;
blocks = exists && !is_running(entry->scheduled);
out_of_time = exists &&
budget_enforced(entry->scheduled) &&
bt_flag_is_set(entry->scheduled, BTF_BUDGET_EXHAUSTED);
np = exists && is_np(entry->scheduled);
sleep = exists && is_completed(entry->scheduled);
preempt = entry->scheduled != entry->linked;
#ifdef WANT_ALL_SCHED_EVENTS
TRACE_TASK(prev, "invoked cedf_schedule.\n");
#endif
if (exists) {
TRACE_TASK(prev,
"blocks:%d out_of_time:%d np:%d completed:%d preempt:%d "
"state:%d sig:%d\n",
blocks, out_of_time, np, sleep, preempt,
prev->state, signal_pending(prev));
}
if (entry->linked && preempt)
TRACE_TASK(prev, "will be preempted by %s/%d\n",
entry->linked->comm, entry->linked->pid);
#ifdef CONFIG_REALTIME_AUX_TASKS
if (tsk_rt(prev)->is_aux_task &&
(prev->state == TASK_INTERRUPTIBLE) &&
!blocks) {
TRACE_TASK(prev, "Deferring descheduling of aux task %s/%d.\n",
prev->comm, prev->pid);
next = prev; /* allow prev to continue. */
goto out_set_state;
}
#endif
/* Do budget stuff */
if (blocks) {
if (likely(!bt_flag_is_set(prev, BTF_WAITING_FOR_RELEASE)))
budget_state_machine(prev,on_blocked);
else {
/* waiting for release. 'exit' the scheduler. */
cedf_untrack_in_top_m(prev);
budget_state_machine(prev,on_exit);
}
}
else if (sleep)
budget_state_machine(prev,on_sleep);
else if (preempt)
budget_state_machine(prev,on_preempt);
/* If a task blocks we have no choice but to reschedule.
*/
if (blocks)
unlink(entry->scheduled);
#if defined(CONFIG_LITMUS_NVIDIA) && defined(CONFIG_LITMUS_AFFINITY_LOCKING)
if(exists && is_realtime(entry->scheduled) && tsk_rt(entry->scheduled)->held_gpus) {
if(!blocks || tsk_rt(entry->scheduled)->suspend_gpu_tracker_on_block) {
// don't track preemptions or locking protocol suspensions.
TRACE_TASK(entry->scheduled, "stopping GPU tracker.\n");
stop_gpu_tracker(entry->scheduled);
}
else if(blocks && !tsk_rt(entry->scheduled)->suspend_gpu_tracker_on_block) {
TRACE_TASK(entry->scheduled, "GPU tracker remains on during suspension.\n");
}
}
#endif
/* Request a sys_exit_np() call if we would like to preempt but cannot.
* We need to make sure to update the link structure anyway in case
* that we are still linked. Multiple calls to request_exit_np() don't
* hurt.
*/
if (np && (out_of_time || preempt || sleep)) {
unlink(entry->scheduled);
request_exit_np(entry->scheduled);
}
/* Any task that is preemptable and either exhausts its execution
* budget or wants to sleep completes. We may have to reschedule after
* this. Don't do a job completion if we block (can't have timers running
* for blocked jobs).
*/
if (!np && (out_of_time || sleep) && !blocks) {
job_completion(entry->scheduled, !sleep);
#ifdef CONFIG_LITMUS_NESTED_LOCKING
/* check if job completion enables an inheritance relation. no need to
* recheck if task already inherits a priority since job_completion()
* will not enable a higher-prio relation */
if (unlikely(recheck_inheritance && !tsk_rt(entry->scheduled)->inh_task)) {
struct task_struct *hp_blocked;
TRACE_TASK(entry->scheduled, "rechecking inheritance.\n");
hp_blocked = top_priority(&tsk_rt(entry->scheduled)->hp_blocked_tasks);
/* hp_blocked_tasks_lock is held */
if (edf_higher_prio(hp_blocked, entry->scheduled))
__increase_priority_inheritance(entry->scheduled, effective_priority(hp_blocked));
}
#endif
}
/* Link pending task if we became unlinked.
*/
if (!entry->linked)
link_task_to_cpu(__take_ready(&cluster->domain), entry);
/* The final scheduling decision. Do we need to switch for some reason?
* If linked is different from scheduled, then select linked as next.
*/
if ((!np || blocks) &&
entry->linked != entry->scheduled) {
/* Schedule a linked job? */
if (entry->linked) {
entry->linked->rt_param.scheduled_on = entry->cpu;
next = entry->linked;
}
if (entry->scheduled) {
/* not gonna be scheduled soon */
entry->scheduled->rt_param.scheduled_on = NO_CPU;
TRACE_TASK(entry->scheduled, "scheduled_on = NO_CPU\n");
}
}
else {
/* Only override Linux scheduler if we have a real-time task
* scheduled that needs to continue.
*/
if (exists) {
next = prev;
}
}
#ifdef CONFIG_REALTIME_AUX_TASKS
out_set_state:
#endif
sched_state_task_picked();
raw_readyq_unlock(&cluster->cluster_lock);
#ifdef CONFIG_LITMUS_NESTED_LOCKING
if (recheck_inheritance) {
raw_spin_unlock(&tsk_rt(prev)->hp_blocked_tasks_lock);
#ifdef CONFIG_LITMUS_DGL_SUPPORT
raw_spin_unlock(&cluster->dgl_lock);
#endif
}
#endif
#ifdef WANT_ALL_SCHED_EVENTS
TRACE("cluster_lock released, next=0x%p\n", next);
if (next)
TRACE_TASK(next, "scheduled at %llu\n", litmus_clock());
else if (exists && !next)
TRACE("becomes idle at %llu.\n", litmus_clock());
#endif
return next;
}
/* _finish_switch - we just finished the switch away from prev
*/
static void cedf_finish_switch(struct task_struct *prev)
{
cpu_entry_t* entry = &__get_cpu_var(cedf_cpu_entries);
entry->scheduled = is_realtime(current) ? current : NULL;
#ifdef WANT_ALL_SCHED_EVENTS
TRACE_TASK(prev, "switched away from\n");
#endif
}
/* Prepare a task for running in RT mode
*/
static void cedf_task_new(struct task_struct * t, int on_rq, int running)
{
unsigned long flags;
cpu_entry_t* entry;
cedf_domain_t* cluster;
TRACE("c-edf: task new %d (param running = %d, is_running = %d)\n", t->pid, running, is_running(t));
/* the cluster doesn't change even if t is running */
cluster = task_cpu_cluster(t);
raw_readyq_lock_irqsave(&cluster->cluster_lock, flags);
/* setup job params */
release_at(t, litmus_clock());
t->rt_param.linked_on = NO_CPU;
if (running) {
entry = &per_cpu(cedf_cpu_entries, task_cpu(t));
BUG_ON(entry->scheduled);
#ifdef CONFIG_RELEASE_MASTER
if (entry->cpu != cluster->domain.release_master) {
#endif
entry->scheduled = t;
tsk_rt(t)->scheduled_on = task_cpu(t);
#ifdef CONFIG_RELEASE_MASTER
} else {
/* do not schedule on release master */
preempt(entry); /* force resched */
tsk_rt(t)->scheduled_on = NO_CPU;
}
#endif
} else {
t->rt_param.scheduled_on = NO_CPU;
}
if (is_running(t)) {
cedf_track_in_top_m(t);
cedf_job_arrival(t);
}
raw_readyq_unlock_irqrestore(&cluster->cluster_lock, flags);
}
static void cedf_task_wake_up(struct task_struct *t)
{
unsigned long flags;
cedf_domain_t *cluster;
lt_t now;
cluster = task_cpu_cluster(t);
raw_readyq_lock_irqsave(&cluster->cluster_lock, flags);
now = litmus_clock();
TRACE_TASK(t, "wake_up at %llu\n", now);
if (is_sporadic(t) && is_tardy(t, now)) {
release_at(t, now);
sched_trace_task_release(t);
}
else {
/* periodic task model. don't force job to end.
* rely on user to say when jobs complete or when budget expires. */
tsk_rt(t)->completed = 0;
}
#ifdef CONFIG_REALTIME_AUX_TASKS
if (tsk_rt(t)->has_aux_tasks && !tsk_rt(t)->hide_from_aux_tasks) {
TRACE_CUR("%s/%d is ready so aux tasks may not inherit.\n", t->comm, t->pid);
disable_aux_task_owner(t);
}
#endif
#ifdef CONFIG_LITMUS_NVIDIA
if (tsk_rt(t)->held_gpus && !tsk_rt(t)->hide_from_gpu) {
TRACE_CUR("%s/%d is ready so gpu klmirqd tasks may not inherit.\n", t->comm, t->pid);
disable_gpu_owner(t);
}
#endif
budget_state_machine(t,on_wakeup);
cedf_job_arrival(t);
raw_readyq_unlock_irqrestore(&cluster->cluster_lock, flags);
}
static void cedf_task_block(struct task_struct *t)
{
unsigned long flags;
cedf_domain_t *cluster;
TRACE_TASK(t, "block at %llu\n", litmus_clock());
cluster = task_cpu_cluster(t);
/* unlink if necessary */
raw_readyq_lock_irqsave(&cluster->cluster_lock, flags);
unlink(t);
#ifdef CONFIG_REALTIME_AUX_TASKS
if (tsk_rt(t)->has_aux_tasks && !tsk_rt(t)->hide_from_aux_tasks) {
TRACE_CUR("%s/%d is blocked so aux tasks may inherit.\n", t->comm, t->pid);
enable_aux_task_owner(t);
}
#endif
#ifdef CONFIG_LITMUS_NVIDIA
if (tsk_rt(t)->held_gpus && !tsk_rt(t)->hide_from_gpu) {
TRACE_CUR("%s/%d is blocked so klmirqd threads may inherit.\n", t->comm, t->pid);
enable_gpu_owner(t);
}
#endif
raw_readyq_unlock_irqrestore(&cluster->cluster_lock, flags);
BUG_ON(!is_realtime(t));
}
static void cedf_task_exit(struct task_struct * t)
{
unsigned long flags;
cedf_domain_t *cluster = task_cpu_cluster(t);
#ifdef CONFIG_LITMUS_PAI_SOFTIRQD
cedf_change_prio_pai_tasklet(t, NULL);
#endif
/* unlink if necessary */
raw_readyq_lock_irqsave(&cluster->cluster_lock, flags);
if (tsk_rt(t)->inh_task) {
WARN_ON(1);
clear_inh_task_linkback(t, tsk_rt(t)->inh_task);
}
/* disable budget enforcement */
cedf_untrack_in_top_m(t);
budget_state_machine(t,on_exit);
#ifdef CONFIG_REALTIME_AUX_TASKS
/* make sure we clean up on our way out */
if (unlikely(tsk_rt(t)->is_aux_task))
exit_aux_task(t);
else if(tsk_rt(t)->has_aux_tasks)
disable_aux_task_owner(t);
#endif
#ifdef CONFIG_LITMUS_NVIDIA
/* make sure we clean up on our way out */
if(tsk_rt(t)->held_gpus)
disable_gpu_owner(t);
#endif
unlink(t);
if (tsk_rt(t)->scheduled_on != NO_CPU) {
cpu_entry_t *cpu;
cpu = &per_cpu(cedf_cpu_entries, tsk_rt(t)->scheduled_on);
cpu->scheduled = NULL;
tsk_rt(t)->scheduled_on = NO_CPU;
}
raw_readyq_unlock_irqrestore(&cluster->cluster_lock, flags);
BUG_ON(!is_realtime(t));
TRACE_TASK(t, "RIP\n");
}
static struct budget_tracker_ops cedf_drain_simple_ops =
{
.on_scheduled = simple_on_scheduled,
.on_blocked = simple_on_blocked,
.on_preempt = simple_on_preempt,
.on_sleep = simple_on_sleep,
.on_exit = simple_on_exit,
.on_wakeup = NULL,
.on_inherit = NULL,
.on_disinherit = NULL,
.on_enter_top_m = NULL,
.on_exit_top_m = NULL,
.on_exhausted = cedf_simple_on_exhausted,
};
static struct budget_tracker_ops cedf_drain_simple_io_ops =
{
.on_scheduled = simple_io_on_scheduled,
.on_blocked = simple_io_on_blocked,
.on_preempt = simple_io_on_preempt,
.on_sleep = simple_io_on_sleep,
.on_exit = simple_io_on_exit,
.on_wakeup = simple_io_on_wakeup,
.on_inherit = NULL,
.on_disinherit = NULL,
.on_enter_top_m = NULL,
.on_exit_top_m = NULL,
.on_exhausted = cedf_simple_io_on_exhausted,
};
static struct budget_tracker_ops cedf_drain_sobliv_ops =
{
.on_scheduled = NULL,
.on_preempt = NULL,
.on_sleep = NULL,
.on_blocked = sobliv_on_blocked,
.on_wakeup = sobliv_on_wakeup,
.on_exit = sobliv_on_exit,
.on_inherit = sobliv_on_inherit,
.on_disinherit = sobliv_on_disinherit,
.on_enter_top_m = sobliv_on_enter_top_m,
.on_exit_top_m = sobliv_on_exit_top_m,
.on_exhausted = cedf_sobliv_on_exhausted,
};
static long cedf_admit_task(struct task_struct* tsk)
{
struct budget_tracker_ops* ops = NULL;
if (remote_cluster(task_cpu(tsk)) != task_cpu_cluster(tsk)) {
// printk("rejected admit: incorrect cluster.\n");
// return -EINVAL;
}
if (budget_enforced(tsk) || budget_signalled(tsk)) {
switch(get_drain_policy(tsk)) {
case DRAIN_SIMPLE:
ops = &cedf_drain_simple_ops;
break;
case DRAIN_SIMPLE_IO:
ops = &cedf_drain_simple_io_ops;
break;
case DRAIN_SOBLIV:
/* budget_policy and budget_signal_policy cannot be quantum-based */
if (!budget_quantum_tracked(tsk) && budget_precisely_tracked(tsk)) {
ops = &cedf_drain_sobliv_ops;
}
else {
printk("rejected admit: QUANTUM_ENFORCEMENT and QUANTUM_SIGNALS is "
"unsupported with DRAIN_SOBLIV.\n");
return -EINVAL;
}
break;
default:
printk("rejected admit: Unsupported budget draining mode.\n");
return -EINVAL;
}
}
/* always init the budget tracker, even if we're not using timers */
init_budget_tracker(&tsk_rt(tsk)->budget, ops);
#ifdef CONFIG_LITMUS_NESTED_LOCKING
INIT_BINHEAP_HANDLE(&tsk_rt(tsk)->hp_blocked_tasks,
edf_max_heap_base_priority_order);
#endif
return 0;
}
#ifdef CONFIG_LITMUS_LOCKING
#include <litmus/fdso.h>
/* called with IRQs off */
static int __increase_priority_inheritance(struct task_struct* t,
struct task_struct* prio_inh)
{
int success = 1;
int linked_on;
int check_preempt = 0;
cedf_domain_t* cluster;
struct task_struct* old_prio_inh = tsk_rt(t)->inh_task;
if (prio_inh && prio_inh == effective_priority(t)) {
/* relationship already established. */
TRACE_TASK(t, "already has effective priority of %s/%d\n",
prio_inh->comm, prio_inh->pid);
goto out;
}
if (prio_inh && (effective_priority(prio_inh) != prio_inh)) {
TRACE_TASK(t, "Inheriting from %s/%d instead of the eff_prio = %s/%d!\n",
prio_inh->comm, prio_inh->pid,
effective_priority(prio_inh)->comm,
effective_priority(prio_inh)->pid);
#ifndef CONFIG_LITMUS_NESTED_LOCKING
/* Tasks should only inherit the base priority of a task.
If 't' inherits a priority, then tsk_rt(t)->inh_task should
be passed to this function instead. This includes transitive
inheritance relations (tsk_rt(tsk_rt(...)->inh_task)->inh_task). */
BUG();
#else
/* Not a bug with nested locking since inheritance propagation is
not atomic. */
/* TODO: Is the following 'helping' short-cut safe?
prio_inh = effective_priority(prio_inh);
*/
#endif
}
cluster = task_cpu_cluster(t);
#if 0
if (prio_inh && task_cpu_cluster(prio_inh) != cluster) {
WARN_ONCE(1, "Illegal to inherit between clusters. " \
"target (%s/%d) on cluster w/ CPU %d and " \
"inh_prio (%s/%d) on w/ CPU %d\n", \
t->comm, t->pid, cluster->cpus[0]->cpu, \
prio_inh->comm, prio_inh->pid, \
task_cpu_cluster(prio_inh)->cpus[0]->cpu);
return 1;
}
#endif
#ifdef CONFIG_LITMUS_NESTED_LOCKING
/* this sanity check allows for weaker locking in protocols */
/* TODO (klmirqd): Skip this check if 't' is a proxy thread (???) */
if(__edf_higher_prio(prio_inh, BASE, t, EFFECTIVE)) {
#endif
sched_trace_eff_prio_change(t, prio_inh);
/* clear out old inheritance relation */
if (old_prio_inh) {
budget_state_machine_chgprio(t,old_prio_inh,on_disinherit);
clear_inh_task_linkback(t, old_prio_inh);
}
TRACE_TASK(t, "inherits priority from %s/%d\n",
prio_inh->comm, prio_inh->pid);
tsk_rt(t)->inh_task = prio_inh;
/* update inheritance relation */
if (prio_inh)
budget_state_machine_chgprio(t,prio_inh,on_inherit);
linked_on = tsk_rt(t)->linked_on;
/* If it is scheduled, then we need to reorder the CPU heap. */
if (linked_on != NO_CPU) {
TRACE_TASK(t, "%s: linked on %d\n",
__FUNCTION__, linked_on);
/* Holder is scheduled; need to re-order CPUs.
* We can't use heap_decrease() here since
* the cpu_heap is ordered in reverse direction, so
* it is actually an increase. */
binheap_delete(&per_cpu(cedf_cpu_entries, linked_on).hn,
&cluster->cpu_heap);
binheap_add(&per_cpu(cedf_cpu_entries, linked_on).hn,
&cluster->cpu_heap, cpu_entry_t, hn);
/* tell prio_inh that we're __running__ with its priority */
set_inh_task_linkback(t, prio_inh);
}
else {
/* holder may be queued: first stop queue changes */
raw_spin_lock(&cluster->domain.release_lock);
if (is_queued(t)) {
TRACE_TASK(t, "%s: is queued\n",
__FUNCTION__);
/* We need to update the position of holder in some
* heap. Note that this could be a release heap if we
* budget enforcement is used and this job overran. */
check_preempt =
!bheap_decrease(edf_ready_order, tsk_rt(t)->heap_node);
} else {
/* Nothing to do: if it is not queued and not linked
* then it is either sleeping or currently being moved
* by other code (e.g., a timer interrupt handler) that
* will use the correct priority when enqueuing the
* task. */
TRACE_TASK(t, "%s: is NOT queued => Done.\n",
__FUNCTION__);
}
raw_spin_unlock(&cluster->domain.release_lock);
#ifdef CONFIG_REALTIME_AUX_TASKS
/* propagate to aux tasks */
if (tsk_rt(t)->has_aux_tasks) {
aux_task_owner_increase_priority(t);
}
#endif
#ifdef CONFIG_LITMUS_NVIDIA
/* propagate to gpu klmirqd */
if (tsk_rt(t)->held_gpus) {
gpu_owner_increase_priority(t);
}
#endif
/* If holder was enqueued in a release heap, then the following
* preemption check is pointless, but we can't easily detect
* that case. If you want to fix this, then consider that
* simply adding a state flag requires O(n) time to update when
* releasing n tasks, which conflicts with the goal to have
* O(log n) merges. */
if (check_preempt) {
/* heap_decrease() hit the top level of the heap: make
* sure preemption checks get the right task, not the
* potentially stale cache. */
bheap_uncache_min(edf_ready_order,
&cluster->domain.ready_queue);
check_for_preemptions(cluster);
}
}
#ifdef CONFIG_LITMUS_NESTED_LOCKING
}
else {
/* Occurance is okay under two scenarios:
* 1. Fine-grain nested locks (no compiled DGL support): Concurrent
* updates are chasing each other through the wait-for chain.
* 2. Budget exhausion caused the HP waiter to loose its priority, but
* the lock structure hasn't yet been updated (but soon will be).
*/
TRACE_TASK(t, "Spurious invalid priority increase. "
"Inheritance request: %s/%d [eff_prio = %s/%d] to inherit from %s/%d"
"Occurance is likely okay: probably due to (hopefully safe) concurrent priority updates.\n",
t->comm, t->pid,
effective_priority(t)->comm, effective_priority(t)->pid,
(prio_inh) ? prio_inh->comm : "null",
(prio_inh) ? prio_inh->pid : 0);
WARN_ON(!prio_inh);
success = 0;
}
#endif
out:
return success;
}
/* called with IRQs off */
static void increase_priority_inheritance(struct task_struct* t, struct task_struct* prio_inh)
{
cedf_domain_t* cluster = task_cpu_cluster(t);
raw_readyq_lock(&cluster->cluster_lock);
TRACE_TASK(t, "to inherit from %s/%d\n", prio_inh->comm, prio_inh->pid);
__increase_priority_inheritance(t, prio_inh);
raw_readyq_unlock(&cluster->cluster_lock);
#if defined(CONFIG_LITMUS_PAI_SOFTIRQD) && defined(CONFIG_LITMUS_NVIDIA)
if(tsk_rt(t)->held_gpus) {
int i;
for(i = find_first_bit(&tsk_rt(t)->held_gpus, BITS_PER_BYTE*sizeof(tsk_rt(t)->held_gpus));
i < NV_DEVICE_NUM;
i = find_next_bit(&tsk_rt(t)->held_gpus, BITS_PER_BYTE*sizeof(tsk_rt(t)->held_gpus), i+1)) {
pai_check_priority_increase(t, i);
}
}
#endif
}
/* called with IRQs off */
static int __decrease_priority_inheritance(struct task_struct* t,
struct task_struct* prio_inh,
int budget_tiggered)
{
cedf_domain_t* cluster;
int success = 1;
struct task_struct* old_prio_inh = tsk_rt(t)->inh_task;
if (prio_inh == old_prio_inh) {
/* relationship already established. */
TRACE_TASK(t, "already inherits priority from %s/%d\n",
(prio_inh) ? prio_inh->comm : "(null)",
(prio_inh) ? prio_inh->pid : 0);
goto out;
}
if (prio_inh && (effective_priority(prio_inh) != prio_inh)) {
TRACE_TASK(t, "Inheriting from %s/%d instead of the eff_prio = %s/%d!\n",
prio_inh->comm, prio_inh->pid,
effective_priority(prio_inh)->comm,
effective_priority(prio_inh)->pid);
#ifndef CONFIG_LITMUS_NESTED_LOCKING
/* Tasks should only inherit the base priority of a task.
If 't' inherits a priority, then tsk_rt(t)->inh_task should
be passed to this function instead. This includes transitive
inheritance relations (tsk_rt(tsk_rt(...)->inh_task)->inh_task). */
BUG();
#else
/* Not a bug with nested locking since inheritance propagation is
not atomic. */
/* TODO: Is the following 'helping' short-cut safe?
prio_inh = effective_priority(prio_inh);
*/
#endif
}
cluster = task_cpu_cluster(t);
#if 0
if (prio_inh && task_cpu_cluster(prio_inh) != cluster) {
WARN_ONCE(1, "Illegal to inherit between clusters. " \
"target (%s/%d) on cluster w/ CPU %d and " \
"inh_prio (%s/%d) on w/ CPU %d\n", \
t->comm, t->pid, cluster->cpus[0]->cpu, \
prio_inh->comm, prio_inh->pid, \
task_cpu_cluster(prio_inh)->cpus[0]->cpu);
return 1;
}
#endif
#ifdef CONFIG_LITMUS_NESTED_LOCKING
if(budget_tiggered || __edf_higher_prio(t, EFFECTIVE, prio_inh, BASE)) {
#endif
sched_trace_eff_prio_change(t, prio_inh);
if (budget_tiggered) {
BUG_ON(!old_prio_inh);
TRACE_TASK(t, "budget-triggered 'decrease' in priority. "
"%s/%d's budget should have just been exhuasted.\n",
old_prio_inh->comm, old_prio_inh->pid);
}
/* clear out old inheritance relation */
if (old_prio_inh) {
budget_state_machine_chgprio(t,old_prio_inh,on_disinherit);
clear_inh_task_linkback(t, old_prio_inh);
}
/* A job only stops inheriting a priority when it releases a
* resource. Thus we can make the following assumption.*/
if(prio_inh)
TRACE_TASK(t, "EFFECTIVE priority decreased to %s/%d\n",
prio_inh->comm, prio_inh->pid);
else
TRACE_TASK(t, "base priority restored.\n");
/* set up new inheritance relation */
tsk_rt(t)->inh_task = prio_inh;
if (prio_inh)
budget_state_machine_chgprio(t,prio_inh,on_inherit);
if(tsk_rt(t)->scheduled_on != NO_CPU) {
TRACE_TASK(t, "is scheduled.\n");
/* link back to new inheritance */
if (prio_inh)
set_inh_task_linkback(t, prio_inh);
/* Check if rescheduling is necessary. We can't use heap_decrease()
* since the priority was effectively lowered. */
unlink(t);
cedf_job_arrival(t);
}
else {
/* task is queued */
raw_spin_lock(&cluster->domain.release_lock);
if (is_queued(t)) {
TRACE_TASK(t, "is queued.\n");
BUG_ON(
!is_released(t, litmus_clock()) &&
!tsk_rt(t)->job_params.is_backlogged_job &&
!is_early_releasing(t));
unlink(t);
cedf_job_arrival(t);
}
else {
TRACE_TASK(t, "is not in scheduler. Probably on wait queue somewhere.\n");
}
raw_spin_unlock(&cluster->domain.release_lock);
}
#ifdef CONFIG_REALTIME_AUX_TASKS
/* propagate to aux tasks */
if (tsk_rt(t)->has_aux_tasks)
aux_task_owner_decrease_priority(t);
#endif
#ifdef CONFIG_LITMUS_NVIDIA
/* propagate to gpu */
if (tsk_rt(t)->held_gpus)
gpu_owner_decrease_priority(t);
#endif
#ifdef CONFIG_LITMUS_NESTED_LOCKING
}
else {
TRACE_TASK(t, "Spurious invalid priority decrease. "
"Inheritance request: %s/%d [eff_prio = %s/%d] to inherit from %s/%d\n"
"Occurance is likely okay: probably due to (hopefully safe) concurrent priority updates.\n",
t->comm, t->pid,
effective_priority(t)->comm, effective_priority(t)->pid,
(prio_inh) ? prio_inh->comm : "null",
(prio_inh) ? prio_inh->pid : 0);
success = 0;
}
#endif
out:
return success;
}
static void decrease_priority_inheritance(struct task_struct* t,
struct task_struct* prio_inh,
int budget_tiggered)
{
cedf_domain_t* cluster = task_cpu_cluster(t);
raw_readyq_lock(&cluster->cluster_lock);
TRACE_TASK(t, "to inherit from %s/%d (decrease)\n",
(prio_inh) ? prio_inh->comm : "null",
(prio_inh) ? prio_inh->pid : 0);
__decrease_priority_inheritance(t, prio_inh, budget_tiggered);
raw_readyq_unlock(&cluster->cluster_lock);
#if defined(CONFIG_LITMUS_PAI_SOFTIRQD) && defined(CONFIG_LITMUS_NVIDIA)
if(tsk_rt(t)->held_gpus) {
int i;
for(i = find_first_bit(&tsk_rt(t)->held_gpus, BITS_PER_BYTE*sizeof(tsk_rt(t)->held_gpus));
i < NV_DEVICE_NUM;
i = find_next_bit(&tsk_rt(t)->held_gpus, BITS_PER_BYTE*sizeof(tsk_rt(t)->held_gpus), i+1)) {
pai_check_priority_decrease(t, i);
}
}
#endif
}
#ifdef CONFIG_LITMUS_NESTED_LOCKING
/* called with IRQs off */
/* preconditions:
(1) The 'hp_blocked_tasks_lock' of task 't' is held.
(2) The lock 'to_unlock' is held.
*/
static void nested_increase_priority_inheritance(struct task_struct* t,
struct task_struct* prio_inh,
raw_spinlock_t *to_unlock,
unsigned long irqflags)
{
struct litmus_lock *blocked_lock = tsk_rt(t)->blocked_lock;
if(tsk_rt(t)->inh_task != prio_inh) { // shield redundent calls.
increase_priority_inheritance(t, prio_inh); // increase our prio.
}
/* note: cluster lock is not held continuously during propagation, so there
may be momentary inconsistencies while nested priority propagation 'chases'
other updates. */
raw_spin_unlock(&tsk_rt(t)->hp_blocked_tasks_lock); // unlock the t's heap.
if(blocked_lock) {
if(blocked_lock->ops->supports_nesting) {
TRACE_TASK(t, "Inheritor is blocked (...perhaps). Checking lock %d.\n",
blocked_lock->ident);
// beware: recursion
blocked_lock->ops->propagate_increase_inheritance(blocked_lock,
t, to_unlock,
irqflags);
}
else {
TRACE_TASK(t, "Inheritor is blocked on litmus lock (%d) that does not support nesting!\n",
blocked_lock->ident);
unlock_fine_irqrestore(to_unlock, irqflags);
}
}
else {
TRACE_TASK(t, "is not blocked on litmus lock. No propagation.\n");
unlock_fine_irqrestore(to_unlock, irqflags);
}
}
/* called with IRQs off */
/* preconditions:
(1) The 'hp_blocked_tasks_lock' of task 't' is held.
(2) The lock 'to_unlock' is held.
*/
static void nested_decrease_priority_inheritance(struct task_struct* t,
struct task_struct* prio_inh,
raw_spinlock_t *to_unlock,
unsigned long irqflags,
int budget_tiggered)
{
struct litmus_lock *blocked_lock = tsk_rt(t)->blocked_lock;
decrease_priority_inheritance(t, prio_inh, budget_tiggered);
raw_spin_unlock(&tsk_rt(t)->hp_blocked_tasks_lock); // unlock the t's heap.
if(blocked_lock) {
if(blocked_lock->ops->supports_nesting) {
TRACE_TASK(t, "Inheritor is blocked (...perhaps). Checking lock %d.\n",
blocked_lock->ident);
// beware: recursion
blocked_lock->ops->propagate_decrease_inheritance(blocked_lock, t,
to_unlock,
irqflags,
budget_tiggered);
}
else {
TRACE_TASK(t, "Inheritor is blocked on lock (%p) that does not support nesting!\n",
blocked_lock);
unlock_fine_irqrestore(to_unlock, irqflags);
}
}
else {
TRACE_TASK(t, "is not blocked. No propagation.\n");
unlock_fine_irqrestore(to_unlock, irqflags);
}
}
/* ******************** FIFO MUTEX ********************** */
static struct litmus_lock_ops cedf_fifo_mutex_lock_ops = {
.lock = fifo_mutex_lock,
.unlock = fifo_mutex_unlock,
.close = fifo_mutex_close,
.deallocate = fifo_mutex_free,
.budget_exhausted = fifo_mutex_budget_exhausted,
.propagate_increase_inheritance = fifo_mutex_propagate_increase_inheritance,
.propagate_decrease_inheritance = fifo_mutex_propagate_decrease_inheritance,
#ifdef CONFIG_LITMUS_DGL_SUPPORT
.dgl_lock = fifo_mutex_dgl_lock,
.is_owner = fifo_mutex_is_owner,
.get_owner = fifo_mutex_get_owner,
.enable_priority = fifo_mutex_enable_priority,
.dgl_can_quick_lock = NULL,
.dgl_quick_lock = NULL,
.supports_dgl = 1,
.requires_atomic_dgl = 0,
#endif
.supports_nesting = 1,
.supports_budget_exhaustion = 1,
.is_omlp_family = 0,
};
static struct litmus_lock* cedf_new_fifo_mutex(void)
{
return fifo_mutex_new(&cedf_fifo_mutex_lock_ops);
}
/* ******************** PRIOQ MUTEX ********************** */
static struct litmus_lock_ops cedf_prioq_mutex_lock_ops = {
.lock = prioq_mutex_lock,
.unlock = prioq_mutex_unlock,
.close = prioq_mutex_close,
.deallocate = prioq_mutex_free,
.budget_exhausted = prioq_mutex_budget_exhausted,
.propagate_increase_inheritance = prioq_mutex_propagate_increase_inheritance,
.propagate_decrease_inheritance = prioq_mutex_propagate_decrease_inheritance,
#ifdef CONFIG_LITMUS_DGL_SUPPORT
.dgl_lock = prioq_mutex_dgl_lock,
.is_owner = prioq_mutex_is_owner,
.get_owner = prioq_mutex_get_owner,
.enable_priority = prioq_mutex_enable_priority,
.dgl_can_quick_lock = prioq_mutex_dgl_can_quick_lock,
.dgl_quick_lock = prioq_mutex_dgl_quick_lock,
.supports_dgl = 1,
.requires_atomic_dgl = 1,
#endif
.supports_nesting = 1,
.supports_budget_exhaustion = 1,
.is_omlp_family = 0,
};
static struct litmus_lock* cedf_new_prioq_mutex(void)
{
return prioq_mutex_new(&cedf_prioq_mutex_lock_ops);
}
/* ******************** IKGLP ********************** */
static struct litmus_lock_ops cedf_ikglp_lock_ops = {
.lock = ikglp_lock,
.unlock = ikglp_unlock,
.close = ikglp_close,
.deallocate = ikglp_free,
.budget_exhausted = ikglp_budget_exhausted,
.omlp_virtual_unlock = ikglp_virtual_unlock,
// ikglp can only be an outer-most lock.
.propagate_increase_inheritance = NULL,
.propagate_decrease_inheritance = NULL,
#ifdef CONFIG_LITMUS_DGL_SUPPORT
.supports_dgl = 0,
.requires_atomic_dgl = 0,
#endif
.supports_nesting = 0,
.supports_budget_exhaustion = 1,
.is_omlp_family = 1,
};
static struct litmus_lock* cedf_new_ikglp(void* __user arg)
{
// assumes clusters of uniform size.
return ikglp_new(cluster_size, &cedf_ikglp_lock_ops, arg);
}
/* ******************** KFMLP support ********************** */
static struct litmus_lock_ops cedf_kfmlp_lock_ops = {
.lock = kfmlp_lock,
.unlock = kfmlp_unlock,
.close = kfmlp_close,
.deallocate = kfmlp_free,
// kfmlp can only be an outer-most lock.
.propagate_increase_inheritance = NULL,
.propagate_decrease_inheritance = NULL,
#ifdef CONFIG_LITMUS_DGL_SUPPORT
.supports_dgl = 0,
.requires_atomic_dgl = 0,
#endif
.supports_nesting = 0,
.supports_budget_exhaustion = 0,
.is_omlp_family = 0,
};
static struct litmus_lock* cedf_new_kfmlp(void* __user arg)
{
return kfmlp_new(&cedf_kfmlp_lock_ops, arg);
}
/* **** lock constructor **** */
static long cedf_allocate_lock(struct litmus_lock **lock, int type,
void* __user args)
{
int err;
switch (type) {
#ifdef CONFIG_LITMUS_NESTED_LOCKING
case FIFO_MUTEX:
*lock = cedf_new_fifo_mutex();
break;
case PRIOQ_MUTEX:
*lock = cedf_new_prioq_mutex();
break;
case IKGLP_SEM:
*lock = cedf_new_ikglp(args);
break;
#endif
case KFMLP_SEM:
*lock = cedf_new_kfmlp(args);
break;
default:
err = -ENXIO;
goto UNSUPPORTED_LOCK;
};
if (*lock)
err = 0;
else
err = -ENOMEM;
UNSUPPORTED_LOCK:
return err;
}
#endif // CONFIG_LITMUS_LOCKING
#ifdef CONFIG_LITMUS_AFFINITY_LOCKING
static struct affinity_observer_ops cedf_kfmlp_affinity_ops __attribute__ ((unused)) = {
.close = kfmlp_aff_obs_close,
.deallocate = kfmlp_aff_obs_free,
};
#ifdef CONFIG_LITMUS_NESTED_LOCKING
static struct affinity_observer_ops cedf_ikglp_affinity_ops __attribute__ ((unused)) = {
.close = ikglp_aff_obs_close,
.deallocate = ikglp_aff_obs_free,
};
#endif
static long cedf_allocate_affinity_observer(struct affinity_observer **aff_obs,
int type,
void* __user args)
{
int err;
switch (type) {
#ifdef CONFIG_LITMUS_NVIDIA
case KFMLP_SIMPLE_GPU_AFF_OBS:
*aff_obs = kfmlp_simple_gpu_aff_obs_new(&cedf_kfmlp_affinity_ops, args);
break;
case KFMLP_GPU_AFF_OBS:
*aff_obs = kfmlp_gpu_aff_obs_new(&cedf_kfmlp_affinity_ops, args);
break;
#ifdef CONFIG_LITMUS_NESTED_LOCKING
case IKGLP_SIMPLE_GPU_AFF_OBS:
*aff_obs = ikglp_simple_gpu_aff_obs_new(&cedf_ikglp_affinity_ops, args);
break;
case IKGLP_GPU_AFF_OBS:
*aff_obs = ikglp_gpu_aff_obs_new(&cedf_ikglp_affinity_ops, args);
break;
#endif
#endif
default:
err = -ENXIO;
goto UNSUPPORTED_AFF_OBS;
};
if (*aff_obs)
err = 0;
else
err = -ENOMEM;
UNSUPPORTED_AFF_OBS:
return err;
}
#endif
#endif // CONFIG_LITMUS_NESTED_LOCKING
#ifdef VERBOSE_INIT
static void print_cluster_topology(cpumask_var_t mask, int cpu)
{
int chk;
char buf[255];
chk = cpulist_scnprintf(buf, 254, mask);
buf[chk] = '\0';
printk(KERN_INFO "CPU = %d, shared cpu(s) = %s\n", cpu, buf);
}
#endif
static void cleanup_cedf(void)
{
int i;
if (clusters_allocated) {
for (i = 0; i < num_clusters; i++) {
kfree(cedf[i].cpus);
free_cpumask_var(cedf[i].cpu_map);
}
kfree(cedf);
}
}
#if defined(CONFIG_LITMUS_NVIDIA) && defined(CONFIG_LITMUS_SOFTIRQD)
static int cedf_map_gpu_to_cpu(int gpu)
{
int default_cpu;
int cpu_cluster = gpu / gpu_cluster_size;
/* bonham-specific hack for the fully partitioned case (both CPUs and GPUs partitioned) */
/* TODO: Make this aware of the NUMA topology generically */
if(num_clusters == 12 && num_gpu_clusters == 8) {
if(gpu >= 4) {
cpu_cluster += 2; // assign the GPU to a CPU on the same NUMA node
}
}
default_cpu = cedf[cpu_cluster].cpus[0]->cpu; // first CPU in given cluster
TRACE("CPU %d is default for GPU %d interrupt threads.\n", default_cpu, gpu);
return default_cpu;
}
#endif
static long cedf_activate_plugin(void)
{
int i, j, cpu, ccpu, cpu_count;
cpu_entry_t *entry;
cpumask_var_t mask;
int chk = 0;
/* de-allocate old clusters, if any */
cleanup_cedf();
printk(KERN_INFO "C-EDF: Activate Plugin, cluster configuration = %d\n",
cluster_config);
/* need to get cluster_size first */
if(!zalloc_cpumask_var(&mask, GFP_ATOMIC))
return -ENOMEM;
if (unlikely(cluster_config == GLOBAL_CLUSTER)) {
cluster_size = num_online_cpus();
} else {
chk = get_shared_cpu_map(mask, 0, cluster_config);
if (chk) {
/* if chk != 0 then it is the max allowed index */
printk(KERN_INFO "C-EDF: Cluster configuration = %d "
"is not supported on this hardware.\n",
cluster_config);
/* User should notice that the configuration failed, so
* let's bail out. */
return -EINVAL;
}
cluster_size = cpumask_weight(mask);
}
if ((num_online_cpus() % cluster_size) != 0) {
/* this can't be right, some cpus are left out */
printk(KERN_ERR "C-EDF: Trying to group %d cpus in %d!\n",
num_online_cpus(), cluster_size);
return -1;
}
num_clusters = num_online_cpus() / cluster_size;
printk(KERN_INFO "C-EDF: %d cluster(s) of size = %d\n",
num_clusters, cluster_size);
#if defined(CONFIG_LITMUS_NVIDIA) && defined(CONFIG_LITMUS_SOFTIRQD)
num_gpu_clusters = min(num_clusters, num_online_gpus());
gpu_cluster_size = num_online_gpus() / num_gpu_clusters;
if (((num_online_gpus() % gpu_cluster_size) != 0) ||
(num_gpu_clusters != num_clusters)) {
printk(KERN_WARNING "C-EDF: GPUs not uniformly distributed among CPU clusters.\n");
}
#endif
/* initialize clusters */
cedf = kmalloc(num_clusters * sizeof(cedf_domain_t), GFP_ATOMIC);
for (i = 0; i < num_clusters; i++) {
cedf[i].cpus = kmalloc(cluster_size * sizeof(cpu_entry_t),
GFP_ATOMIC);
INIT_BINHEAP_HANDLE(&(cedf[i].cpu_heap), cpu_lower_prio);
edf_domain_init(&(cedf[i].domain), NULL, cedf_release_jobs);
#ifdef CONFIG_LITMUS_PAI_SOFTIRQD
cedf[i].pending_tasklets.head = NULL;
cedf[i].pending_tasklets.tail = &(cedf[i].pending_tasklets.head);
#endif
if(!zalloc_cpumask_var(&cedf[i].cpu_map, GFP_ATOMIC))
return -ENOMEM;
#ifdef CONFIG_RELEASE_MASTER
cedf[i].domain.release_master = atomic_read(&release_master_cpu);
#endif
}
/* cycle through cluster and add cpus to them */
for (i = 0; i < num_clusters; i++) {
#ifdef CONFIG_LITMUS_DGL_SUPPORT
raw_spin_lock_init(&cedf[i].dgl_lock);
#endif
#ifdef RECURSIVE_READY_QUEUE_LOCK
cedf[i].recursive_depth = 0;
atomic_set(&cedf[i].owner_cpu, NO_CPU);
#endif
cedf[i].top_m_size = 0;
INIT_BINHEAP_HANDLE(&cedf[i].top_m, cedf_min_heap_base_priority_order);
INIT_BINHEAP_HANDLE(&cedf[i].not_top_m, cedf_max_heap_base_priority_order);
for_each_online_cpu(cpu) {
/* check if the cpu is already in a cluster */
for (j = 0; j < num_clusters; j++)
if (cpumask_test_cpu(cpu, cedf[j].cpu_map))
break;
/* if it is in a cluster go to next cpu */
if (j < num_clusters &&
cpumask_test_cpu(cpu, cedf[j].cpu_map))
continue;
/* this cpu isn't in any cluster */
/* get the shared cpus */
if (unlikely(cluster_config == GLOBAL_CLUSTER))
cpumask_copy(mask, cpu_online_mask);
else
get_shared_cpu_map(mask, cpu, cluster_config);
cpumask_copy(cedf[i].cpu_map, mask);
#ifdef VERBOSE_INIT
print_cluster_topology(mask, cpu);
#endif
/* add cpus to current cluster and init cpu_entry_t */
cpu_count = 0;
for_each_cpu(ccpu, cedf[i].cpu_map) {
entry = &per_cpu(cedf_cpu_entries, ccpu);
cedf[i].cpus[cpu_count] = entry;
memset(entry, 0, sizeof(*entry));
entry->cpu = ccpu;
entry->cluster = &cedf[i];
INIT_BINHEAP_NODE(&entry->hn);
mb();
++cpu_count;
#ifdef CONFIG_RELEASE_MASTER
/* only add CPUs that should schedule jobs */
if (entry->cpu != entry->cluster->domain.release_master)
#endif
update_cpu_position(entry);
}
/* done with this cluster */
break;
}
}
#ifdef CONFIG_LITMUS_SOFTIRQD
init_klmirqd();
#endif
#ifdef CONFIG_LITMUS_NVIDIA
init_nvidia_info();
#endif
free_cpumask_var(mask);
clusters_allocated = 1;
return 0;
}
/* Plugin object */
static struct sched_plugin cedf_plugin __cacheline_aligned_in_smp = {
.plugin_name = "C-EDF",
.finish_switch = cedf_finish_switch,
.tick = cedf_tick,
.task_new = cedf_task_new,
.complete_job = complete_job,
.task_exit = cedf_task_exit,
.schedule = cedf_schedule,
.task_wake_up = cedf_task_wake_up,
.task_block = cedf_task_block,
.admit_task = cedf_admit_task,
.activate_plugin = cedf_activate_plugin,
.compare = edf_higher_prio,
#ifdef CONFIG_LITMUS_LOCKING
.allocate_lock = cedf_allocate_lock,
.increase_prio = increase_priority_inheritance,
.decrease_prio = decrease_priority_inheritance,
.__increase_prio = __increase_priority_inheritance,
.__decrease_prio = __decrease_priority_inheritance,
#endif
#ifdef CONFIG_LITMUS_NESTED_LOCKING
.nested_increase_prio = nested_increase_priority_inheritance,
.nested_decrease_prio = nested_decrease_priority_inheritance,
.__compare = __edf_higher_prio,
#endif
#ifdef CONFIG_LITMUS_DGL_SUPPORT
.get_dgl_spinlock = cedf_get_dgl_spinlock,
#endif
#ifdef CONFIG_LITMUS_AFFINITY_LOCKING
.allocate_aff_obs = cedf_allocate_affinity_observer,
#endif
#ifdef CONFIG_LITMUS_PAI_SOFTIRQD
.enqueue_pai_tasklet = cedf_enqueue_pai_tasklet,
.change_prio_pai_tasklet = cedf_change_prio_pai_tasklet,
.run_tasklets = cedf_run_tasklets,
#endif
#if defined(CONFIG_LITMUS_NVIDIA) && defined(CONFIG_LITMUS_SOFTIRQD)
.map_gpu_to_cpu = cedf_map_gpu_to_cpu,
#endif
};
static struct proc_dir_entry *cluster_file = NULL, *cedf_dir = NULL;
static int __init init_cedf(void)
{
int err, fs;
err = register_sched_plugin(&cedf_plugin);
if (!err) {
fs = make_plugin_proc_dir(&cedf_plugin, &cedf_dir);
if (!fs)
cluster_file = create_cluster_file(cedf_dir, &cluster_config);
else
printk(KERN_ERR "Could not allocate C-EDF procfs dir.\n");
}
return err;
}
static void clean_cedf(void)
{
cleanup_cedf();
if (cluster_file)
remove_proc_entry("cluster", cedf_dir);
if (cedf_dir)
remove_plugin_proc_dir(&cedf_plugin);
}
module_init(init_cedf);
module_exit(clean_cedf);