aboutsummaryrefslogblamecommitdiffstats
path: root/kernel/futex.c
blob: c7130f86106c30a8c9970b425dad032d3885318e (plain) (tree)
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657








































                                                                             
                         






































































































































































































































































































































































































































































































































































































































                                                                               
                                  












































































































































                                                                            
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
#include <linux/signal.h>

#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)

/*
 * Futexes are matched on equal values of this key.
 * The key type depends on whether it's a shared or private mapping.
 * Don't rearrange members without looking at hash_futex().
 *
 * offset is aligned to a multiple of sizeof(u32) (== 4) by definition.
 * We set bit 0 to indicate if it's an inode-based key.
 */
union futex_key {
	struct {
		unsigned long pgoff;
		struct inode *inode;
		int offset;
	} shared;
	struct {
		unsigned long uaddr;
		struct mm_struct *mm;
		int offset;
	} private;
	struct {
		unsigned long word;
		void *ptr;
		int offset;
	} both;
};

/*
 * We use this hashed waitqueue instead of a normal wait_queue_t, so
 * we can wake only the relevant ones (hashed queues may be shared).
 *
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
 * It is considered woken when list_empty(&q->list) || q->lock_ptr == 0.
 * The order of wakup is always to make the first condition true, then
 * wake up q->waiters, then make the second condition true.
 */
struct futex_q {
	struct list_head list;
	wait_queue_head_t waiters;

	/* Which hash list lock to use. */
	spinlock_t *lock_ptr;

	/* Key which the futex is hashed on. */
	union futex_key key;

	/* For fd, sigio sent using these. */
	int fd;
	struct file *filp;
};

/*
 * Split the global futex_lock into every hash list lock.
 */
struct futex_hash_bucket {
       spinlock_t              lock;
       struct list_head       chain;
};

static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];

/* Futex-fs vfsmount entry: */
static struct vfsmount *futex_mnt;

/*
 * We hash on the keys returned from get_futex_key (see below).
 */
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
	u32 hash = jhash2((u32*)&key->both.word,
			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
			  key->both.offset);
	return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
}

/*
 * Return 1 if two futex_keys are equal, 0 otherwise.
 */
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
	return (key1->both.word == key2->both.word
		&& key1->both.ptr == key2->both.ptr
		&& key1->both.offset == key2->both.offset);
}

/*
 * Get parameters which are the keys for a futex.
 *
 * For shared mappings, it's (page->index, vma->vm_file->f_dentry->d_inode,
 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 * We can usually work out the index without swapping in the page.
 *
 * Returns: 0, or negative error code.
 * The key words are stored in *key on success.
 *
 * Should be called with &current->mm->mmap_sem but NOT any spinlocks.
 */
static int get_futex_key(unsigned long uaddr, union futex_key *key)
{
	struct mm_struct *mm = current->mm;
	struct vm_area_struct *vma;
	struct page *page;
	int err;

	/*
	 * The futex address must be "naturally" aligned.
	 */
	key->both.offset = uaddr % PAGE_SIZE;
	if (unlikely((key->both.offset % sizeof(u32)) != 0))
		return -EINVAL;
	uaddr -= key->both.offset;

	/*
	 * The futex is hashed differently depending on whether
	 * it's in a shared or private mapping.  So check vma first.
	 */
	vma = find_extend_vma(mm, uaddr);
	if (unlikely(!vma))
		return -EFAULT;

	/*
	 * Permissions.
	 */
	if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
		return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;

	/*
	 * Private mappings are handled in a simple way.
	 *
	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
	 * it's a read-only handle, it's expected that futexes attach to
	 * the object not the particular process.  Therefore we use
	 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
	 * mappings of _writable_ handles.
	 */
	if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
		key->private.mm = mm;
		key->private.uaddr = uaddr;
		return 0;
	}

	/*
	 * Linear file mappings are also simple.
	 */
	key->shared.inode = vma->vm_file->f_dentry->d_inode;
	key->both.offset++; /* Bit 0 of offset indicates inode-based key. */
	if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
		key->shared.pgoff = (((uaddr - vma->vm_start) >> PAGE_SHIFT)
				     + vma->vm_pgoff);
		return 0;
	}

	/*
	 * We could walk the page table to read the non-linear
	 * pte, and get the page index without fetching the page
	 * from swap.  But that's a lot of code to duplicate here
	 * for a rare case, so we simply fetch the page.
	 */

	/*
	 * Do a quick atomic lookup first - this is the fastpath.
	 */
	spin_lock(&current->mm->page_table_lock);
	page = follow_page(mm, uaddr, 0);
	if (likely(page != NULL)) {
		key->shared.pgoff =
			page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
		spin_unlock(&current->mm->page_table_lock);
		return 0;
	}
	spin_unlock(&current->mm->page_table_lock);

	/*
	 * Do it the general way.
	 */
	err = get_user_pages(current, mm, uaddr, 1, 0, 0, &page, NULL);
	if (err >= 0) {
		key->shared.pgoff =
			page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
		put_page(page);
		return 0;
	}
	return err;
}

/*
 * Take a reference to the resource addressed by a key.
 * Can be called while holding spinlocks.
 *
 * NOTE: mmap_sem MUST be held between get_futex_key() and calling this
 * function, if it is called at all.  mmap_sem keeps key->shared.inode valid.
 */
static inline void get_key_refs(union futex_key *key)
{
	if (key->both.ptr != 0) {
		if (key->both.offset & 1)
			atomic_inc(&key->shared.inode->i_count);
		else
			atomic_inc(&key->private.mm->mm_count);
	}
}

/*
 * Drop a reference to the resource addressed by a key.
 * The hash bucket spinlock must not be held.
 */
static void drop_key_refs(union futex_key *key)
{
	if (key->both.ptr != 0) {
		if (key->both.offset & 1)
			iput(key->shared.inode);
		else
			mmdrop(key->private.mm);
	}
}

static inline int get_futex_value_locked(int *dest, int __user *from)
{
	int ret;

	inc_preempt_count();
	ret = __copy_from_user_inatomic(dest, from, sizeof(int));
	dec_preempt_count();

	return ret ? -EFAULT : 0;
}

/*
 * The hash bucket lock must be held when this is called.
 * Afterwards, the futex_q must not be accessed.
 */
static void wake_futex(struct futex_q *q)
{
	list_del_init(&q->list);
	if (q->filp)
		send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
	/*
	 * The lock in wake_up_all() is a crucial memory barrier after the
	 * list_del_init() and also before assigning to q->lock_ptr.
	 */
	wake_up_all(&q->waiters);
	/*
	 * The waiting task can free the futex_q as soon as this is written,
	 * without taking any locks.  This must come last.
	 */
	q->lock_ptr = NULL;
}

/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
static int futex_wake(unsigned long uaddr, int nr_wake)
{
	union futex_key key;
	struct futex_hash_bucket *bh;
	struct list_head *head;
	struct futex_q *this, *next;
	int ret;

	down_read(&current->mm->mmap_sem);

	ret = get_futex_key(uaddr, &key);
	if (unlikely(ret != 0))
		goto out;

	bh = hash_futex(&key);
	spin_lock(&bh->lock);
	head = &bh->chain;

	list_for_each_entry_safe(this, next, head, list) {
		if (match_futex (&this->key, &key)) {
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

	spin_unlock(&bh->lock);
out:
	up_read(&current->mm->mmap_sem);
	return ret;
}

/*
 * Requeue all waiters hashed on one physical page to another
 * physical page.
 */
static int futex_requeue(unsigned long uaddr1, unsigned long uaddr2,
			 int nr_wake, int nr_requeue, int *valp)
{
	union futex_key key1, key2;
	struct futex_hash_bucket *bh1, *bh2;
	struct list_head *head1;
	struct futex_q *this, *next;
	int ret, drop_count = 0;

 retry:
	down_read(&current->mm->mmap_sem);

	ret = get_futex_key(uaddr1, &key1);
	if (unlikely(ret != 0))
		goto out;
	ret = get_futex_key(uaddr2, &key2);
	if (unlikely(ret != 0))
		goto out;

	bh1 = hash_futex(&key1);
	bh2 = hash_futex(&key2);

	if (bh1 < bh2)
		spin_lock(&bh1->lock);
	spin_lock(&bh2->lock);
	if (bh1 > bh2)
		spin_lock(&bh1->lock);

	if (likely(valp != NULL)) {
		int curval;

		ret = get_futex_value_locked(&curval, (int __user *)uaddr1);

		if (unlikely(ret)) {
			spin_unlock(&bh1->lock);
			if (bh1 != bh2)
				spin_unlock(&bh2->lock);

			/* If we would have faulted, release mmap_sem, fault
			 * it in and start all over again.
			 */
			up_read(&current->mm->mmap_sem);

			ret = get_user(curval, (int __user *)uaddr1);

			if (!ret)
				goto retry;

			return ret;
		}
		if (curval != *valp) {
			ret = -EAGAIN;
			goto out_unlock;
		}
	}

	head1 = &bh1->chain;
	list_for_each_entry_safe(this, next, head1, list) {
		if (!match_futex (&this->key, &key1))
			continue;
		if (++ret <= nr_wake) {
			wake_futex(this);
		} else {
			list_move_tail(&this->list, &bh2->chain);
			this->lock_ptr = &bh2->lock;
			this->key = key2;
			get_key_refs(&key2);
			drop_count++;

			if (ret - nr_wake >= nr_requeue)
				break;
			/* Make sure to stop if key1 == key2 */
			if (head1 == &bh2->chain && head1 != &next->list)
				head1 = &this->list;
		}
	}

out_unlock:
	spin_unlock(&bh1->lock);
	if (bh1 != bh2)
		spin_unlock(&bh2->lock);

	/* drop_key_refs() must be called outside the spinlocks. */
	while (--drop_count >= 0)
		drop_key_refs(&key1);

out:
	up_read(&current->mm->mmap_sem);
	return ret;
}

/* The key must be already stored in q->key. */
static inline struct futex_hash_bucket *
queue_lock(struct futex_q *q, int fd, struct file *filp)
{
	struct futex_hash_bucket *bh;

	q->fd = fd;
	q->filp = filp;

	init_waitqueue_head(&q->waiters);

	get_key_refs(&q->key);
	bh = hash_futex(&q->key);
	q->lock_ptr = &bh->lock;

	spin_lock(&bh->lock);
	return bh;
}

static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *bh)
{
	list_add_tail(&q->list, &bh->chain);
	spin_unlock(&bh->lock);
}

static inline void
queue_unlock(struct futex_q *q, struct futex_hash_bucket *bh)
{
	spin_unlock(&bh->lock);
	drop_key_refs(&q->key);
}

/*
 * queue_me and unqueue_me must be called as a pair, each
 * exactly once.  They are called with the hashed spinlock held.
 */

/* The key must be already stored in q->key. */
static void queue_me(struct futex_q *q, int fd, struct file *filp)
{
	struct futex_hash_bucket *bh;
	bh = queue_lock(q, fd, filp);
	__queue_me(q, bh);
}

/* Return 1 if we were still queued (ie. 0 means we were woken) */
static int unqueue_me(struct futex_q *q)
{
	int ret = 0;
	spinlock_t *lock_ptr;

	/* In the common case we don't take the spinlock, which is nice. */
 retry:
	lock_ptr = q->lock_ptr;
	if (lock_ptr != 0) {
		spin_lock(lock_ptr);
		/*
		 * q->lock_ptr can change between reading it and
		 * spin_lock(), causing us to take the wrong lock.  This
		 * corrects the race condition.
		 *
		 * Reasoning goes like this: if we have the wrong lock,
		 * q->lock_ptr must have changed (maybe several times)
		 * between reading it and the spin_lock().  It can
		 * change again after the spin_lock() but only if it was
		 * already changed before the spin_lock().  It cannot,
		 * however, change back to the original value.  Therefore
		 * we can detect whether we acquired the correct lock.
		 */
		if (unlikely(lock_ptr != q->lock_ptr)) {
			spin_unlock(lock_ptr);
			goto retry;
		}
		WARN_ON(list_empty(&q->list));
		list_del(&q->list);
		spin_unlock(lock_ptr);
		ret = 1;
	}

	drop_key_refs(&q->key);
	return ret;
}

static int futex_wait(unsigned long uaddr, int val, unsigned long time)
{
	DECLARE_WAITQUEUE(wait, current);
	int ret, curval;
	struct futex_q q;
	struct futex_hash_bucket *bh;

 retry:
	down_read(&current->mm->mmap_sem);

	ret = get_futex_key(uaddr, &q.key);
	if (unlikely(ret != 0))
		goto out_release_sem;

	bh = queue_lock(&q, -1, NULL);

	/*
	 * Access the page AFTER the futex is queued.
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
	 * any cond.  If we queued after testing *uaddr, that would open
	 * a race condition where we could block indefinitely with
	 * cond(var) false, which would violate the guarantee.
	 *
	 * A consequence is that futex_wait() can return zero and absorb
	 * a wakeup when *uaddr != val on entry to the syscall.  This is
	 * rare, but normal.
	 *
	 * We hold the mmap semaphore, so the mapping cannot have changed
	 * since we looked it up in get_futex_key.
	 */

	ret = get_futex_value_locked(&curval, (int __user *)uaddr);

	if (unlikely(ret)) {
		queue_unlock(&q, bh);

		/* If we would have faulted, release mmap_sem, fault it in and
		 * start all over again.
		 */
		up_read(&current->mm->mmap_sem);

		ret = get_user(curval, (int __user *)uaddr);

		if (!ret)
			goto retry;
		return ret;
	}
	if (curval != val) {
		ret = -EWOULDBLOCK;
		queue_unlock(&q, bh);
		goto out_release_sem;
	}

	/* Only actually queue if *uaddr contained val.  */
	__queue_me(&q, bh);

	/*
	 * Now the futex is queued and we have checked the data, we
	 * don't want to hold mmap_sem while we sleep.
	 */	
	up_read(&current->mm->mmap_sem);

	/*
	 * There might have been scheduling since the queue_me(), as we
	 * cannot hold a spinlock across the get_user() in case it
	 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
	 * queueing ourselves into the futex hash.  This code thus has to
	 * rely on the futex_wake() code removing us from hash when it
	 * wakes us up.
	 */

	/* add_wait_queue is the barrier after __set_current_state. */
	__set_current_state(TASK_INTERRUPTIBLE);
	add_wait_queue(&q.waiters, &wait);
	/*
	 * !list_empty() is safe here without any lock.
	 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
	 */
	if (likely(!list_empty(&q.list)))
		time = schedule_timeout(time);
	__set_current_state(TASK_RUNNING);

	/*
	 * NOTE: we don't remove ourselves from the waitqueue because
	 * we are the only user of it.
	 */

	/* If we were woken (and unqueued), we succeeded, whatever. */
	if (!unqueue_me(&q))
		return 0;
	if (time == 0)
		return -ETIMEDOUT;
	/* We expect signal_pending(current), but another thread may
	 * have handled it for us already. */
	return -EINTR;

 out_release_sem:
	up_read(&current->mm->mmap_sem);
	return ret;
}

static int futex_close(struct inode *inode, struct file *filp)
{
	struct futex_q *q = filp->private_data;

	unqueue_me(q);
	kfree(q);
	return 0;
}

/* This is one-shot: once it's gone off you need a new fd */
static unsigned int futex_poll(struct file *filp,
			       struct poll_table_struct *wait)
{
	struct futex_q *q = filp->private_data;
	int ret = 0;

	poll_wait(filp, &q->waiters, wait);

	/*
	 * list_empty() is safe here without any lock.
	 * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
	 */
	if (list_empty(&q->list))
		ret = POLLIN | POLLRDNORM;

	return ret;
}

static struct file_operations futex_fops = {
	.release	= futex_close,
	.poll		= futex_poll,
};

/*
 * Signal allows caller to avoid the race which would occur if they
 * set the sigio stuff up afterwards.
 */
static int futex_fd(unsigned long uaddr, int signal)
{
	struct futex_q *q;
	struct file *filp;
	int ret, err;

	ret = -EINVAL;
	if (!valid_signal(signal))
		goto out;

	ret = get_unused_fd();
	if (ret < 0)
		goto out;
	filp = get_empty_filp();
	if (!filp) {
		put_unused_fd(ret);
		ret = -ENFILE;
		goto out;
	}
	filp->f_op = &futex_fops;
	filp->f_vfsmnt = mntget(futex_mnt);
	filp->f_dentry = dget(futex_mnt->mnt_root);
	filp->f_mapping = filp->f_dentry->d_inode->i_mapping;

	if (signal) {
		int err;
		err = f_setown(filp, current->pid, 1);
		if (err < 0) {
			put_unused_fd(ret);
			put_filp(filp);
			ret = err;
			goto out;
		}
		filp->f_owner.signum = signal;
	}

	q = kmalloc(sizeof(*q), GFP_KERNEL);
	if (!q) {
		put_unused_fd(ret);
		put_filp(filp);
		ret = -ENOMEM;
		goto out;
	}

	down_read(&current->mm->mmap_sem);
	err = get_futex_key(uaddr, &q->key);

	if (unlikely(err != 0)) {
		up_read(&current->mm->mmap_sem);
		put_unused_fd(ret);
		put_filp(filp);
		kfree(q);
		return err;
	}

	/*
	 * queue_me() must be called before releasing mmap_sem, because
	 * key->shared.inode needs to be referenced while holding it.
	 */
	filp->private_data = q;

	queue_me(q, ret, filp);
	up_read(&current->mm->mmap_sem);

	/* Now we map fd to filp, so userspace can access it */
	fd_install(ret, filp);
out:
	return ret;
}

long do_futex(unsigned long uaddr, int op, int val, unsigned long timeout,
		unsigned long uaddr2, int val2, int val3)
{
	int ret;

	switch (op) {
	case FUTEX_WAIT:
		ret = futex_wait(uaddr, val, timeout);
		break;
	case FUTEX_WAKE:
		ret = futex_wake(uaddr, val);
		break;
	case FUTEX_FD:
		/* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
		ret = futex_fd(uaddr, val);
		break;
	case FUTEX_REQUEUE:
		ret = futex_requeue(uaddr, uaddr2, val, val2, NULL);
		break;
	case FUTEX_CMP_REQUEUE:
		ret = futex_requeue(uaddr, uaddr2, val, val2, &val3);
		break;
	default:
		ret = -ENOSYS;
	}
	return ret;
}


asmlinkage long sys_futex(u32 __user *uaddr, int op, int val,
			  struct timespec __user *utime, u32 __user *uaddr2,
			  int val3)
{
	struct timespec t;
	unsigned long timeout = MAX_SCHEDULE_TIMEOUT;
	int val2 = 0;

	if ((op == FUTEX_WAIT) && utime) {
		if (copy_from_user(&t, utime, sizeof(t)) != 0)
			return -EFAULT;
		timeout = timespec_to_jiffies(&t) + 1;
	}
	/*
	 * requeue parameter in 'utime' if op == FUTEX_REQUEUE.
	 */
	if (op >= FUTEX_REQUEUE)
		val2 = (int) (unsigned long) utime;

	return do_futex((unsigned long)uaddr, op, val, timeout,
			(unsigned long)uaddr2, val2, val3);
}

static struct super_block *
futexfs_get_sb(struct file_system_type *fs_type,
	       int flags, const char *dev_name, void *data)
{
	return get_sb_pseudo(fs_type, "futex", NULL, 0xBAD1DEA);
}

static struct file_system_type futex_fs_type = {
	.name		= "futexfs",
	.get_sb		= futexfs_get_sb,
	.kill_sb	= kill_anon_super,
};

static int __init init(void)
{
	unsigned int i;

	register_filesystem(&futex_fs_type);
	futex_mnt = kern_mount(&futex_fs_type);

	for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
		INIT_LIST_HEAD(&futex_queues[i].chain);
		spin_lock_init(&futex_queues[i].lock);
	}
	return 0;
}
__initcall(init);