/*
* Performance events:
*
* Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
* Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar
* Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra
*
* Data type definitions, declarations, prototypes.
*
* Started by: Thomas Gleixner and Ingo Molnar
*
* For licencing details see kernel-base/COPYING
*/
#ifndef _LINUX_PERF_EVENT_H
#define _LINUX_PERF_EVENT_H
#include <linux/types.h>
#include <linux/ioctl.h>
#include <asm/byteorder.h>
/*
* User-space ABI bits:
*/
/*
* attr.type
*/
enum perf_type_id {
PERF_TYPE_HARDWARE = 0,
PERF_TYPE_SOFTWARE = 1,
PERF_TYPE_TRACEPOINT = 2,
PERF_TYPE_HW_CACHE = 3,
PERF_TYPE_RAW = 4,
PERF_TYPE_BREAKPOINT = 5,
PERF_TYPE_MAX, /* non-ABI */
};
/*
* Generalized performance event event_id types, used by the
* attr.event_id parameter of the sys_perf_event_open()
* syscall:
*/
enum perf_hw_id {
/*
* Common hardware events, generalized by the kernel:
*/
PERF_COUNT_HW_CPU_CYCLES = 0,
PERF_COUNT_HW_INSTRUCTIONS = 1,
PERF_COUNT_HW_CACHE_REFERENCES = 2,
PERF_COUNT_HW_CACHE_MISSES = 3,
PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
PERF_COUNT_HW_BRANCH_MISSES = 5,
PERF_COUNT_HW_BUS_CYCLES = 6,
PERF_COUNT_HW_MAX, /* non-ABI */
};
/*
* Generalized hardware cache events:
*
* { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x
* { read, write, prefetch } x
* { accesses, misses }
*/
enum perf_hw_cache_id {
PERF_COUNT_HW_CACHE_L1D = 0,
PERF_COUNT_HW_CACHE_L1I = 1,
PERF_COUNT_HW_CACHE_LL = 2,
PERF_COUNT_HW_CACHE_DTLB = 3,
PERF_COUNT_HW_CACHE_ITLB = 4,
PERF_COUNT_HW_CACHE_BPU = 5,
PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
};
enum perf_hw_cache_op_id {
PERF_COUNT_HW_CACHE_OP_READ = 0,
PERF_COUNT_HW_CACHE_OP_WRITE = 1,
PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
};
enum perf_hw_cache_op_result_id {
PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
};
/*
* Special "software" events provided by the kernel, even if the hardware
* does not support performance events. These events measure various
* physical and sw events of the kernel (and allow the profiling of them as
* well):
*/
enum perf_sw_ids {
PERF_COUNT_SW_CPU_CLOCK = 0,
PERF_COUNT_SW_TASK_CLOCK = 1,
PERF_COUNT_SW_PAGE_FAULTS = 2,
PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
PERF_COUNT_SW_CPU_MIGRATIONS = 4,
PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
PERF_COUNT_SW_EMULATION_FAULTS = 8,
PERF_COUNT_SW_MAX, /* non-ABI */
};
/*
* Bits that can be set in attr.sample_type to request information
* in the overflow packets.
*/
enum perf_event_sample_format {
PERF_SAMPLE_IP = 1U << 0,
PERF_SAMPLE_TID = 1U << 1,
PERF_SAMPLE_TIME = 1U << 2,
PERF_SAMPLE_ADDR = 1U << 3,
PERF_SAMPLE_READ = 1U << 4,
PERF_SAMPLE_CALLCHAIN = 1U << 5,
PERF_SAMPLE_ID = 1U << 6,
PERF_SAMPLE_CPU = 1U << 7,
PERF_SAMPLE_PERIOD = 1U << 8,
PERF_SAMPLE_STREAM_ID = 1U << 9,
PERF_SAMPLE_RAW = 1U << 10,
PERF_SAMPLE_MAX = 1U << 11, /* non-ABI */
};
/*
* The format of the data returned by read() on a perf event fd,
* as specified by attr.read_format:
*
* struct read_format {
* { u64 value;
* { u64 time_enabled; } && PERF_FORMAT_ENABLED
* { u64 time_running; } && PERF_FORMAT_RUNNING
* { u64 id; } && PERF_FORMAT_ID
* } && !PERF_FORMAT_GROUP
*
* { u64 nr;
* { u64 time_enabled; } && PERF_FORMAT_ENABLED
* { u64 time_running; } && PERF_FORMAT_RUNNING
* { u64 value;
* { u64 id; } && PERF_FORMAT_ID
* } cntr[nr];
* } && PERF_FORMAT_GROUP
* };
*/
enum perf_event_read_format {
PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
PERF_FORMAT_ID = 1U << 2,
PERF_FORMAT_GROUP = 1U << 3,
PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
};
#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
/*
* Hardware event_id to monitor via a performance monitoring event:
*/
struct perf_event_attr {
/*
* Major type: hardware/software/tracepoint/etc.
*/
__u32 type;
/*
* Size of the attr structure, for fwd/bwd compat.
*/
__u32 size;
/*
* Type specific configuration information.
*/
__u64 config;
union {
__u64 sample_period;
__u64 sample_freq;
};
__u64 sample_type;
__u64 read_format;
__u64 disabled : 1, /* off by default */
inherit : 1, /* children inherit it */
pinned : 1, /* must always be on PMU */
exclusive : 1, /* only group on PMU */
exclude_user : 1, /* don't count user */
exclude_kernel : 1, /* ditto kernel */
exclude_hv : 1, /* ditto hypervisor */
exclude_idle : 1, /* don't count when idle */
mmap : 1, /* include mmap data */
comm : 1, /* include comm data */
freq : 1, /* use freq, not period */
inherit_stat : 1, /* per task counts */
enable_on_exec : 1, /* next exec enables */
task : 1, /* trace fork/exit */
watermark : 1, /* wakeup_watermark */
__reserved_1 : 49;
union {
__u32 wakeup_events; /* wakeup every n events */
__u32 wakeup_watermark; /* bytes before wakeup */
};
struct { /* Hardware breakpoint info */
__u64 bp_addr;
__u32 bp_type;
__u32 bp_len;
__u64 __bp_reserved_1;
__u64 __bp_reserved_2;
};
__u32 __reserved_2;
__u64 __reserved_3;
};
/*
* Ioctls that can be done on a perf event fd:
*/
#define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
#define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
#define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
#define PERF_EVENT_IOC_RESET _IO ('$', 3)
#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
enum perf_event_ioc_flags {
PERF_IOC_FLAG_GROUP = 1U << 0,
};
/*
* Structure of the page that can be mapped via mmap
*/
struct perf_event_mmap_page {
__u32 version; /* version number of this structure */
__u32 compat_version; /* lowest version this is compat with */
/*
* Bits needed to read the hw events in user-space.
*
* u32 seq;
* s64 count;
*
* do {
* seq = pc->lock;
*
* barrier()
* if (pc->index) {
* count = pmc_read(pc->index - 1);
* count += pc->offset;
* } else
* goto regular_read;
*
* barrier();
* } while (pc->lock != seq);
*
* NOTE: for obvious reason this only works on self-monitoring
* processes.
*/
__u32 lock; /* seqlock for synchronization */
__u32 index; /* hardware event identifier */
__s64 offset; /* add to hardware event value */
__u64 time_enabled; /* time event active */
__u64 time_running; /* time event on cpu */
/*
* Hole for extension of the self monitor capabilities
*/
__u64 __reserved[123]; /* align to 1k */
/*
* Control data for the mmap() data buffer.
*
* User-space reading the @data_head value should issue an rmb(), on
* SMP capable platforms, after reading this value -- see
* perf_event_wakeup().
*
* When the mapping is PROT_WRITE the @data_tail value should be
* written by userspace to reflect the last read data. In this case
* the kernel will not over-write unread data.
*/
__u64 data_head; /* head in the data section */
__u64 data_tail; /* user-space written tail */
};
#define PERF_RECORD_MISC_CPUMODE_MASK (3 << 0)
#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
#define PERF_RECORD_MISC_KERNEL (1 << 0)
#define PERF_RECORD_MISC_USER (2 << 0)
#define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
struct perf_event_header {
__u32 type;
__u16 misc;
__u16 size;
};
enum perf_event_type {
/*
* The MMAP events record the PROT_EXEC mappings so that we can
* correlate userspace IPs to code. They have the following structure:
*
* struct {
* struct perf_event_header header;
*
* u32 pid, tid;
* u64 addr;
* u64 len;
* u64 pgoff;
* char filename[];
* };
*/
PERF_RECORD_MMAP = 1,
/*
* struct {
* struct perf_event_header header;
* u64 id;
* u64 lost;
* };
*/
PERF_RECORD_LOST = 2,
/*
* struct {
* struct perf_event_header header;
*
* u32 pid, tid;
* char comm[];
* };
*/
PERF_RECORD_COMM = 3,
/*
* struct {
* struct perf_event_header header;
* u32 pid, ppid;
* u32 tid, ptid;
* u64 time;
* };
*/
PERF_RECORD_EXIT = 4,
/*
* struct {
* struct perf_event_header header;
* u64 time;
* u64 id;
* u64 stream_id;
* };
*/
PERF_RECORD_THROTTLE = 5,
PERF_RECORD_UNTHROTTLE = 6,
/*
* struct {
* struct perf_event_header header;
* u32 pid, ppid;
* u32 tid, ptid;
* u64 time;
* };
*/
PERF_RECORD_FORK = 7,
/*
* struct {
* struct perf_event_header header;
* u32 pid, tid;
*
* struct read_format values;
* };
*/
PERF_RECORD_READ = 8,
/*
* struct {
* struct perf_event_header header;
*
* { u64 ip; } && PERF_SAMPLE_IP
* { u32 pid, tid; } && PERF_SAMPLE_TID
* { u64 time; } && PERF_SAMPLE_TIME
* { u64 addr; } && PERF_SAMPLE_ADDR
* { u64 id; } && PERF_SAMPLE_ID
* { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
* { u32 cpu, res; } && PERF_SAMPLE_CPU
* { u64 period; } && PERF_SAMPLE_PERIOD
*
* { struct read_format values; } && PERF_SAMPLE_READ
*
* { u64 nr,
* u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
*
* #
* # The RAW record below is opaque data wrt the ABI
* #
* # That is, the ABI doesn't make any promises wrt to
* # the stability of its content, it may vary depending
* # on event, hardware, kernel version and phase of
* # the moon.
* #
* # In other words, PERF_SAMPLE_RAW contents are not an ABI.
* #
*
* { u32 size;
* char data[size];}&& PERF_SAMPLE_RAW
* };
*/
PERF_RECORD_SAMPLE = 9,
PERF_RECORD_MAX, /* non-ABI */
};
enum perf_callchain_context {
PERF_CONTEXT_HV = (__u64)-32,
PERF_CONTEXT_KERNEL = (__u64)-128,
PERF_CONTEXT_USER = (__u64)-512,
PERF_CONTEXT_GUEST = (__u64)-2048,
PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
PERF_CONTEXT_GUEST_USER = (__u64)-2560,
PERF_CONTEXT_MAX = (__u64)-4095,
};
#define PERF_FLAG_FD_NO_GROUP (1U << 0)
#define PERF_FLAG_FD_OUTPUT (1U << 1)
#ifdef __KERNEL__
/*
* Kernel-internal data types and definitions:
*/
#ifdef CONFIG_PERF_EVENTS
# include <asm/perf_event.h>
#endif
#ifdef CONFIG_HAVE_HW_BREAKPOINT
#include <asm/hw_breakpoint.h>
#endif
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/rculist.h>
#include <linux/rcupdate.h>
#include <linux/spinlock.h>
#include <linux/hrtimer.h>
#include <linux/fs.h>
#include <linux/pid_namespace.h>
#include <linux/workqueue.h>
#include <asm/atomic.h>
#define PERF_MAX_STACK_DEPTH 255
struct perf_callchain_entry {
__u64 nr;
__u64 ip[PERF_MAX_STACK_DEPTH];
};
struct perf_raw_record {
u32 size;
void *data;
};
struct task_struct;
/**
* struct hw_perf_event - performance event hardware details:
*/
struct hw_perf_event {
#ifdef CONFIG_PERF_EVENTS
union {
struct { /* hardware */
u64 config;
unsigned long config_base;
unsigned long event_base;
int idx;
};
struct { /* software */
s64 remaining;
struct hrtimer hrtimer;
};
#ifdef CONFIG_HAVE_HW_BREAKPOINT
union { /* breakpoint */
struct arch_hw_breakpoint info;
};
#endif
};
atomic64_t prev_count;
u64 sample_period;
u64 last_period;
atomic64_t period_left;
u64 interrupts;
u64 freq_count;
u64 freq_interrupts;
u64 freq_stamp;
#endif
};
struct perf_event;
/**
* struct pmu - generic performance monitoring unit
*/
struct pmu {
int (*enable) (struct perf_event *event);
void (*disable) (struct perf_event *event);
void (*read) (struct perf_event *event);
void (*unthrottle) (struct perf_event *event);
};
/**
* enum perf_event_active_state - the states of a event
*/
enum perf_event_active_state {
PERF_EVENT_STATE_ERROR = -2,
PERF_EVENT_STATE_OFF = -1,
PERF_EVENT_STATE_INACTIVE = 0,
PERF_EVENT_STATE_ACTIVE = 1,
};
struct file;
struct perf_mmap_data {
struct rcu_head rcu_head;
#ifdef CONFIG_PERF_USE_VMALLOC
struct work_struct work;
#endif
int data_order;
int nr_pages; /* nr of data pages */
int writable; /* are we writable */
int nr_locked; /* nr pages mlocked */
atomic_t poll; /* POLL_ for wakeups */
atomic_t events; /* event_id limit */
atomic_long_t head; /* write position */
atomic_long_t done_head; /* completed head */
atomic_t lock; /* concurrent writes */
atomic_t wakeup; /* needs a wakeup */
atomic_t lost; /* nr records lost */
long watermark; /* wakeup watermark */
struct perf_event_mmap_page *user_page;
void *data_pages[0];
};
struct perf_pending_entry {
struct perf_pending_entry *next;
void (*func)(struct perf_pending_entry *);
};
struct perf_sample_data;
typedef void (*perf_overflow_handler_t)(struct perf_event *, int,
struct perf_sample_data *,
struct pt_regs *regs);
/**
* struct perf_event - performance event kernel representation:
*/
struct perf_event {
#ifdef CONFIG_PERF_EVENTS
struct list_head group_entry;
struct list_head event_entry;
struct list_head sibling_list;
int nr_siblings;
struct perf_event *group_leader;
struct perf_event *output;
const struct pmu *pmu;
enum perf_event_active_state state;
atomic64_t count;
/*
* These are the total time in nanoseconds that the event
* has been enabled (i.e. eligible to run, and the task has
* been scheduled in, if this is a per-task event)
* and running (scheduled onto the CPU), respectively.
*
* They are computed from tstamp_enabled, tstamp_running and
* tstamp_stopped when the event is in INACTIVE or ACTIVE state.
*/
u64 total_time_enabled;
u64 total_time_running;
/*
* These are timestamps used for computing total_time_enabled
* and total_time_running when the event is in INACTIVE or
* ACTIVE state, measured in nanoseconds from an arbitrary point
* in time.
* tstamp_enabled: the notional time when the event was enabled
* tstamp_running: the notional time when the event was scheduled on
* tstamp_stopped: in INACTIVE state, the notional time when the
* event was scheduled off.
*/
u64 tstamp_enabled;
u64 tstamp_running;
u64 tstamp_stopped;
struct perf_event_attr attr;
struct hw_perf_event hw;
struct perf_event_context *ctx;
struct file *filp;
/*
* These accumulate total time (in nanoseconds) that children
* events have been enabled and running, respectively.
*/
atomic64_t child_total_time_enabled;
atomic64_t child_total_time_running;
/*
* Protect attach/detach and child_list:
*/
struct mutex child_mutex;
struct list_head child_list;
struct perf_event *parent;
int oncpu;
int cpu;
struct list_head owner_entry;
struct task_struct *owner;
/* mmap bits */
struct mutex mmap_mutex;
atomic_t mmap_count;
struct perf_mmap_data *data;
/* poll related */
wait_queue_head_t waitq;
struct fasync_struct *fasync;
/* delayed work for NMIs and such */
int pending_wakeup;
int pending_kill;
int pending_disable;
struct perf_pending_entry pending;
atomic_t event_limit;
void (*destroy)(struct perf_event *);
struct rcu_head rcu_head;
struct pid_namespace *ns;
u64 id;
perf_overflow_handler_t overflow_handler;
#ifdef CONFIG_EVENT_PROFILE
struct event_filter *filter;
#endif
#endif /* CONFIG_PERF_EVENTS */
};
/**
* struct perf_event_context - event context structure
*
* Used as a container for task events and CPU events as well:
*/
struct perf_event_context {
/*
* Protect the states of the events in the list,
* nr_active, and the list:
*/
spinlock_t lock;
/*
* Protect the list of events. Locking either mutex or lock
* is sufficient to ensure the list doesn't change; to change
* the list you need to lock both the mutex and the spinlock.
*/
struct mutex mutex;
struct list_head group_list;
struct list_head event_list;
int nr_events;
int nr_active;
int is_active;
int nr_stat;
atomic_t refcount;
struct task_struct *task;
/*
* Context clock, runs when context enabled.
*/
u64 time;
u64 timestamp;
/*
* These fields let us detect when two contexts have both
* been cloned (inherited) from a common ancestor.
*/
struct perf_event_context *parent_ctx;
u64 parent_gen;
u64 generation;
int pin_count;
struct rcu_head rcu_head;
};
/**
* struct perf_event_cpu_context - per cpu event context structure
*/
struct perf_cpu_context {
struct perf_event_context ctx;
struct perf_event_context *task_ctx;
int active_oncpu;
int max_pertask;
int exclusive;
/*
* Recursion avoidance:
*
* task, softirq, irq, nmi context
*/
int recursion[4];
};
struct perf_output_handle {
struct perf_event *event;
struct perf_mmap_data *data;
unsigned long head;
unsigned long offset;
int nmi;
int sample;
int locked;
};
#ifdef CONFIG_PERF_EVENTS
/*
* Set by architecture code:
*/
extern int perf_max_events;
extern const struct pmu *hw_perf_event_init(struct perf_event *event);
extern void perf_event_task_sched_in(struct task_struct *task, int cpu);
extern void perf_event_task_sched_out(struct task_struct *task,
struct task_struct *next, int cpu);
extern void perf_event_task_tick(struct task_struct *task, int cpu);
extern int perf_event_init_task(struct task_struct *child);
extern void perf_event_exit_task(struct task_struct *child);
extern void perf_event_free_task(struct task_struct *task);
extern void set_perf_event_pending(void);
extern void perf_event_do_pending(void);
extern void perf_event_print_debug(void);
extern void __perf_disable(void);
extern bool __perf_enable(void);
extern void perf_disable(void);
extern void perf_enable(void);
extern int perf_event_task_disable(void);
extern int perf_event_task_enable(void);
extern int hw_perf_group_sched_in(struct perf_event *group_leader,
struct perf_cpu_context *cpuctx,
struct perf_event_context *ctx, int cpu);
extern void perf_event_update_userpage(struct perf_event *event);
extern int perf_event_release_kernel(struct perf_event *event);
extern struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr,
int cpu,
pid_t pid,
perf_overflow_handler_t callback);
extern u64 perf_event_read_value(struct perf_event *event,
u64 *enabled, u64 *running);
struct perf_sample_data {
u64 type;
u64 ip;
struct {
u32 pid;
u32 tid;
} tid_entry;
u64 time;
u64 addr;
u64 id;
u64 stream_id;
struct {
u32 cpu;
u32 reserved;
} cpu_entry;
u64 period;
struct perf_callchain_entry *callchain;
struct perf_raw_record *raw;
};
extern void perf_output_sample(struct perf_output_handle *handle,
struct perf_event_header *header,
struct perf_sample_data *data,
struct perf_event *event);
extern void perf_prepare_sample(struct perf_event_header *header,
struct perf_sample_data *data,
struct perf_event *event,
struct pt_regs *regs);
extern int perf_event_overflow(struct perf_event *event, int nmi,
struct perf_sample_data *data,
struct pt_regs *regs);
/*
* Return 1 for a software event, 0 for a hardware event
*/
static inline int is_software_event(struct perf_event *event)
{
return (event->attr.type != PERF_TYPE_RAW) &&
(event->attr.type != PERF_TYPE_HARDWARE) &&
(event->attr.type != PERF_TYPE_HW_CACHE);
}
extern atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64);
static inline void
perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
{
if (atomic_read(&perf_swevent_enabled[event_id]))
__perf_sw_event(event_id, nr, nmi, regs, addr);
}
extern void __perf_event_mmap(struct vm_area_struct *vma);
static inline void perf_event_mmap(struct vm_area_struct *vma)
{
if (vma->vm_flags & VM_EXEC)
__perf_event_mmap(vma);
}
extern void perf_event_comm(struct task_struct *tsk);
extern void perf_event_fork(struct task_struct *tsk);
extern struct perf_callchain_entry *perf_callchain(struct pt_regs *regs);
extern int sysctl_perf_event_paranoid;
extern int sysctl_perf_event_mlock;
extern int sysctl_perf_event_sample_rate;
extern void perf_event_init(void);
extern void perf_tp_event(int event_id, u64 addr, u64 count,
void *record, int entry_size);
extern void perf_bp_event(struct perf_event *event, void *data);
#ifndef perf_misc_flags
#define perf_misc_flags(regs) (user_mode(regs) ? PERF_RECORD_MISC_USER : \
PERF_RECORD_MISC_KERNEL)
#define perf_instruction_pointer(regs) instruction_pointer(regs)
#endif
extern int perf_output_begin(struct perf_output_handle *handle,
struct perf_event *event, unsigned int size,
int nmi, int sample);
extern void perf_output_end(struct perf_output_handle *handle);
extern void perf_output_copy(struct perf_output_handle *handle,
const void *buf, unsigned int len);
extern int perf_swevent_get_recursion_context(void);
extern void perf_swevent_put_recursion_context(int rctx);
extern void perf_event_enable(struct perf_event *event);
extern void perf_event_disable(struct perf_event *event);
#else
static inline void
perf_event_task_sched_in(struct task_struct *task, int cpu) { }
static inline void
perf_event_task_sched_out(struct task_struct *task,
struct task_struct *next, int cpu) { }
static inline void
perf_event_task_tick(struct task_struct *task, int cpu) { }
static inline int perf_event_init_task(struct task_struct *child) { return 0; }
static inline void perf_event_exit_task(struct task_struct *child) { }
static inline void perf_event_free_task(struct task_struct *task) { }
static inline void perf_event_do_pending(void) { }
static inline void perf_event_print_debug(void) { }
static inline void perf_disable(void) { }
static inline void perf_enable(void) { }
static inline int perf_event_task_disable(void) { return -EINVAL; }
static inline int perf_event_task_enable(void) { return -EINVAL; }
static inline void
perf_sw_event(u32 event_id, u64 nr, int nmi,
struct pt_regs *regs, u64 addr) { }
static inline void
perf_bp_event(struct perf_event *event, void *data) { }
static inline void perf_event_mmap(struct vm_area_struct *vma) { }
static inline void perf_event_comm(struct task_struct *tsk) { }
static inline void perf_event_fork(struct task_struct *tsk) { }
static inline void perf_event_init(void) { }
static inline int perf_swevent_get_recursion_context(void) { return -1; }
static inline void perf_swevent_put_recursion_context(int rctx) { }
static inline void perf_event_enable(struct perf_event *event) { }
static inline void perf_event_disable(struct perf_event *event) { }
#endif
#define perf_output_put(handle, x) \
perf_output_copy((handle), &(x), sizeof(x))
#endif /* __KERNEL__ */
#endif /* _LINUX_PERF_EVENT_H */