/*
* Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_types.h"
#include "xfs_bit.h"
#include "xfs_log.h"
#include "xfs_inum.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_mount.h"
#include "xfs_trans_priv.h"
#include "xfs_bmap_btree.h"
#include "xfs_dinode.h"
#include "xfs_inode.h"
#include "xfs_inode_item.h"
#include "xfs_error.h"
#include "xfs_trace.h"
kmem_zone_t *xfs_ili_zone; /* inode log item zone */
static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
{
return container_of(lip, struct xfs_inode_log_item, ili_item);
}
/*
* This returns the number of iovecs needed to log the given inode item.
*
* We need one iovec for the inode log format structure, one for the
* inode core, and possibly one for the inode data/extents/b-tree root
* and one for the inode attribute data/extents/b-tree root.
*/
STATIC uint
xfs_inode_item_size(
struct xfs_log_item *lip)
{
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
struct xfs_inode *ip = iip->ili_inode;
uint nvecs = 2;
/*
* Only log the data/extents/b-tree root if there is something
* left to log.
*/
iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
switch (ip->i_d.di_format) {
case XFS_DINODE_FMT_EXTENTS:
iip->ili_format.ilf_fields &=
~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
XFS_ILOG_DEV | XFS_ILOG_UUID);
if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) &&
(ip->i_d.di_nextents > 0) &&
(ip->i_df.if_bytes > 0)) {
ASSERT(ip->i_df.if_u1.if_extents != NULL);
nvecs++;
} else {
iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT;
}
break;
case XFS_DINODE_FMT_BTREE:
ASSERT(ip->i_df.if_ext_max ==
XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t));
iip->ili_format.ilf_fields &=
~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
XFS_ILOG_DEV | XFS_ILOG_UUID);
if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) &&
(ip->i_df.if_broot_bytes > 0)) {
ASSERT(ip->i_df.if_broot != NULL);
nvecs++;
} else {
ASSERT(!(iip->ili_format.ilf_fields &
XFS_ILOG_DBROOT));
#ifdef XFS_TRANS_DEBUG
if (iip->ili_root_size > 0) {
ASSERT(iip->ili_root_size ==
ip->i_df.if_broot_bytes);
ASSERT(memcmp(iip->ili_orig_root,
ip->i_df.if_broot,
iip->ili_root_size) == 0);
} else {
ASSERT(ip->i_df.if_broot_bytes == 0);
}
#endif
iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT;
}
break;
case XFS_DINODE_FMT_LOCAL:
iip->ili_format.ilf_fields &=
~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
XFS_ILOG_DEV | XFS_ILOG_UUID);
if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) &&
(ip->i_df.if_bytes > 0)) {
ASSERT(ip->i_df.if_u1.if_data != NULL);
ASSERT(ip->i_d.di_size > 0);
nvecs++;
} else {
iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA;
}
break;
case XFS_DINODE_FMT_DEV:
iip->ili_format.ilf_fields &=
~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
XFS_ILOG_DEXT | XFS_ILOG_UUID);
break;
case XFS_DINODE_FMT_UUID:
iip->ili_format.ilf_fields &=
~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
XFS_ILOG_DEXT | XFS_ILOG_DEV);
break;
default:
ASSERT(0);
break;
}
/*
* If there are no attributes associated with this file,
* then there cannot be anything more to log.
* Clear all attribute-related log flags.
*/
if (!XFS_IFORK_Q(ip)) {
iip->ili_format.ilf_fields &=
~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
return nvecs;
}
/*
* Log any necessary attribute data.
*/
switch (ip->i_d.di_aformat) {
case XFS_DINODE_FMT_EXTENTS:
iip->ili_format.ilf_fields &=
~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) &&
(ip->i_d.di_anextents > 0) &&
(ip->i_afp->if_bytes > 0)) {
ASSERT(ip->i_afp->if_u1.if_extents != NULL);
nvecs++;
} else {
iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT;
}
break;
case XFS_DINODE_FMT_BTREE:
iip->ili_format.ilf_fields &=
~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) &&
(ip->i_afp->if_broot_bytes > 0)) {
ASSERT(ip->i_afp->if_broot != NULL);
nvecs++;
} else {
iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT;
}
break;
case XFS_DINODE_FMT_LOCAL:
iip->ili_format.ilf_fields &=
~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) &&
(ip->i_afp->if_bytes > 0)) {
ASSERT(ip->i_afp->if_u1.if_data != NULL);
nvecs++;
} else {
iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA;
}
break;
default:
ASSERT(0);
break;
}
return nvecs;
}
/*
* xfs_inode_item_format_extents - convert in-core extents to on-disk form
*
* For either the data or attr fork in extent format, we need to endian convert
* the in-core extent as we place them into the on-disk inode. In this case, we
* need to do this conversion before we write the extents into the log. Because
* we don't have the disk inode to write into here, we allocate a buffer and
* format the extents into it via xfs_iextents_copy(). We free the buffer in
* the unlock routine after the copy for the log has been made.
*
* In the case of the data fork, the in-core and on-disk fork sizes can be
* different due to delayed allocation extents. We only log on-disk extents
* here, so always use the physical fork size to determine the size of the
* buffer we need to allocate.
*/
STATIC void
xfs_inode_item_format_extents(
struct xfs_inode *ip,
struct xfs_log_iovec *vecp,
int whichfork,
int type)
{
xfs_bmbt_rec_t *ext_buffer;
ext_buffer = kmem_alloc(XFS_IFORK_SIZE(ip, whichfork), KM_SLEEP);
if (whichfork == XFS_DATA_FORK)
ip->i_itemp->ili_extents_buf = ext_buffer;
else
ip->i_itemp->ili_aextents_buf = ext_buffer;
vecp->i_addr = ext_buffer;
vecp->i_len = xfs_iextents_copy(ip, ext_buffer, whichfork);
vecp->i_type = type;
}
/*
* This is called to fill in the vector of log iovecs for the
* given inode log item. It fills the first item with an inode
* log format structure, the second with the on-disk inode structure,
* and a possible third and/or fourth with the inode data/extents/b-tree
* root and inode attributes data/extents/b-tree root.
*/
STATIC void
xfs_inode_item_format(
struct xfs_log_item *lip,
struct xfs_log_iovec *vecp)
{
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
struct xfs_inode *ip = iip->ili_inode;
uint nvecs;
size_t data_bytes;
xfs_mount_t *mp;
vecp->i_addr = &iip->ili_format;
vecp->i_len = sizeof(xfs_inode_log_format_t);
vecp->i_type = XLOG_REG_TYPE_IFORMAT;
vecp++;
nvecs = 1;
/*
* Clear i_update_core if the timestamps (or any other
* non-transactional modification) need flushing/logging
* and we're about to log them with the rest of the core.
*
* This is the same logic as xfs_iflush() but this code can't
* run at the same time as xfs_iflush because we're in commit
* processing here and so we have the inode lock held in
* exclusive mode. Although it doesn't really matter
* for the timestamps if both routines were to grab the
* timestamps or not. That would be ok.
*
* We clear i_update_core before copying out the data.
* This is for coordination with our timestamp updates
* that don't hold the inode lock. They will always
* update the timestamps BEFORE setting i_update_core,
* so if we clear i_update_core after they set it we
* are guaranteed to see their updates to the timestamps
* either here. Likewise, if they set it after we clear it
* here, we'll see it either on the next commit of this
* inode or the next time the inode gets flushed via
* xfs_iflush(). This depends on strongly ordered memory
* semantics, but we have that. We use the SYNCHRONIZE
* macro to make sure that the compiler does not reorder
* the i_update_core access below the data copy below.
*/
if (ip->i_update_core) {
ip->i_update_core = 0;
SYNCHRONIZE();
}
/*
* Make sure to get the latest timestamps from the Linux inode.
*/
xfs_synchronize_times(ip);
vecp->i_addr = &ip->i_d;
vecp->i_len = sizeof(struct xfs_icdinode);
vecp->i_type = XLOG_REG_TYPE_ICORE;
vecp++;
nvecs++;
iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
/*
* If this is really an old format inode, then we need to
* log it as such. This means that we have to copy the link
* count from the new field to the old. We don't have to worry
* about the new fields, because nothing trusts them as long as
* the old inode version number is there. If the superblock already
* has a new version number, then we don't bother converting back.
*/
mp = ip->i_mount;
ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
if (ip->i_d.di_version == 1) {
if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
/*
* Convert it back.
*/
ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
ip->i_d.di_onlink = ip->i_d.di_nlink;
} else {
/*
* The superblock version has already been bumped,
* so just make the conversion to the new inode
* format permanent.
*/
ip->i_d.di_version = 2;
ip->i_d.di_onlink = 0;
memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
}
}
switch (ip->i_d.di_format) {
case XFS_DINODE_FMT_EXTENTS:
ASSERT(!(iip->ili_format.ilf_fields &
(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
XFS_ILOG_DEV | XFS_ILOG_UUID)));
if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) {
ASSERT(ip->i_df.if_bytes > 0);
ASSERT(ip->i_df.if_u1.if_extents != NULL);
ASSERT(ip->i_d.di_nextents > 0);
ASSERT(iip->ili_extents_buf == NULL);
ASSERT((ip->i_df.if_bytes /
(uint)sizeof(xfs_bmbt_rec_t)) > 0);
#ifdef XFS_NATIVE_HOST
if (ip->i_d.di_nextents == ip->i_df.if_bytes /
(uint)sizeof(xfs_bmbt_rec_t)) {
/*
* There are no delayed allocation
* extents, so just point to the
* real extents array.
*/
vecp->i_addr = ip->i_df.if_u1.if_extents;
vecp->i_len = ip->i_df.if_bytes;
vecp->i_type = XLOG_REG_TYPE_IEXT;
} else
#endif
{
xfs_inode_item_format_extents(ip, vecp,
XFS_DATA_FORK, XLOG_REG_TYPE_IEXT);
}
ASSERT(vecp->i_len <= ip->i_df.if_bytes);
iip->ili_format.ilf_dsize = vecp->i_len;
vecp++;
nvecs++;
}
break;
case XFS_DINODE_FMT_BTREE:
ASSERT(!(iip->ili_format.ilf_fields &
(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
XFS_ILOG_DEV | XFS_ILOG_UUID)));
if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) {
ASSERT(ip->i_df.if_broot_bytes > 0);
ASSERT(ip->i_df.if_broot != NULL);
vecp->i_addr = ip->i_df.if_broot;
vecp->i_len = ip->i_df.if_broot_bytes;
vecp->i_type = XLOG_REG_TYPE_IBROOT;
vecp++;
nvecs++;
iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
}
break;
case XFS_DINODE_FMT_LOCAL:
ASSERT(!(iip->ili_format.ilf_fields &
(XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
XFS_ILOG_DEV | XFS_ILOG_UUID)));
if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) {
ASSERT(ip->i_df.if_bytes > 0);
ASSERT(ip->i_df.if_u1.if_data != NULL);
ASSERT(ip->i_d.di_size > 0);
vecp->i_addr = ip->i_df.if_u1.if_data;
/*
* Round i_bytes up to a word boundary.
* The underlying memory is guaranteed to
* to be there by xfs_idata_realloc().
*/
data_bytes = roundup(ip->i_df.if_bytes, 4);
ASSERT((ip->i_df.if_real_bytes == 0) ||
(ip->i_df.if_real_bytes == data_bytes));
vecp->i_len = (int)data_bytes;
vecp->i_type = XLOG_REG_TYPE_ILOCAL;
vecp++;
nvecs++;
iip->ili_format.ilf_dsize = (unsigned)data_bytes;
}
break;
case XFS_DINODE_FMT_DEV:
ASSERT(!(iip->ili_format.ilf_fields &
(XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
XFS_ILOG_DDATA | XFS_ILOG_UUID)));
if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
iip->ili_format.ilf_u.ilfu_rdev =
ip->i_df.if_u2.if_rdev;
}
break;
case XFS_DINODE_FMT_UUID:
ASSERT(!(iip->ili_format.ilf_fields &
(XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
XFS_ILOG_DDATA | XFS_ILOG_DEV)));
if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
iip->ili_format.ilf_u.ilfu_uuid =
ip->i_df.if_u2.if_uuid;
}
break;
default:
ASSERT(0);
break;
}
/*
* If there are no attributes associated with the file,
* then we're done.
* Assert that no attribute-related log flags are set.
*/
if (!XFS_IFORK_Q(ip)) {
ASSERT(nvecs == lip->li_desc->lid_size);
iip->ili_format.ilf_size = nvecs;
ASSERT(!(iip->ili_format.ilf_fields &
(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
return;
}
switch (ip->i_d.di_aformat) {
case XFS_DINODE_FMT_EXTENTS:
ASSERT(!(iip->ili_format.ilf_fields &
(XFS_ILOG_ADATA | XFS_ILOG_ABROOT)));
if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) {
#ifdef DEBUG
int nrecs = ip->i_afp->if_bytes /
(uint)sizeof(xfs_bmbt_rec_t);
ASSERT(nrecs > 0);
ASSERT(nrecs == ip->i_d.di_anextents);
ASSERT(ip->i_afp->if_bytes > 0);
ASSERT(ip->i_afp->if_u1.if_extents != NULL);
ASSERT(ip->i_d.di_anextents > 0);
#endif
#ifdef XFS_NATIVE_HOST
/*
* There are not delayed allocation extents
* for attributes, so just point at the array.
*/
vecp->i_addr = ip->i_afp->if_u1.if_extents;
vecp->i_len = ip->i_afp->if_bytes;
vecp->i_type = XLOG_REG_TYPE_IATTR_EXT;
#else
ASSERT(iip->ili_aextents_buf == NULL);
xfs_inode_item_format_extents(ip, vecp,
XFS_ATTR_FORK, XLOG_REG_TYPE_IATTR_EXT);
#endif
iip->ili_format.ilf_asize = vecp->i_len;
vecp++;
nvecs++;
}
break;
case XFS_DINODE_FMT_BTREE:
ASSERT(!(iip->ili_format.ilf_fields &
(XFS_ILOG_ADATA | XFS_ILOG_AEXT)));
if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) {
ASSERT(ip->i_afp->if_broot_bytes > 0);
ASSERT(ip->i_afp->if_broot != NULL);
vecp->i_addr = ip->i_afp->if_broot;
vecp->i_len = ip->i_afp->if_broot_bytes;
vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT;
vecp++;
nvecs++;
iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
}
break;
case XFS_DINODE_FMT_LOCAL:
ASSERT(!(iip->ili_format.ilf_fields &
(XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) {
ASSERT(ip->i_afp->if_bytes > 0);
ASSERT(ip->i_afp->if_u1.if_data != NULL);
vecp->i_addr = ip->i_afp->if_u1.if_data;
/*
* Round i_bytes up to a word boundary.
* The underlying memory is guaranteed to
* to be there by xfs_idata_realloc().
*/
data_bytes = roundup(ip->i_afp->if_bytes, 4);
ASSERT((ip->i_afp->if_real_bytes == 0) ||
(ip->i_afp->if_real_bytes == data_bytes));
vecp->i_len = (int)data_bytes;
vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL;
vecp++;
nvecs++;
iip->ili_format.ilf_asize = (unsigned)data_bytes;
}
break;
default:
ASSERT(0);
break;
}
ASSERT(nvecs == lip->li_desc->lid_size);
iip->ili_format.ilf_size = nvecs;
}
/*
* This is called to pin the inode associated with the inode log
* item in memory so it cannot be written out.
*/
STATIC void
xfs_inode_item_pin(
struct xfs_log_item *lip)
{
struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
trace_xfs_inode_pin(ip, _RET_IP_);
atomic_inc(&ip->i_pincount);
}
/*
* This is called to unpin the inode associated with the inode log
* item which was previously pinned with a call to xfs_inode_item_pin().
*
* Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
*/
STATIC void
xfs_inode_item_unpin(
struct xfs_log_item *lip,
int remove)
{
struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
trace_xfs_inode_unpin(ip, _RET_IP_);
ASSERT(atomic_read(&ip->i_pincount) > 0);
if (atomic_dec_and_test(&ip->i_pincount))
wake_up(&ip->i_ipin_wait);
}
/*
* This is called to attempt to lock the inode associated with this
* inode log item, in preparation for the push routine which does the actual
* iflush. Don't sleep on the inode lock or the flush lock.
*
* If the flush lock is already held, indicating that the inode has
* been or is in the process of being flushed, then (ideally) we'd like to
* see if the inode's buffer is still incore, and if so give it a nudge.
* We delay doing so until the pushbuf routine, though, to avoid holding
* the AIL lock across a call to the blackhole which is the buffer cache.
* Also we don't want to sleep in any device strategy routines, which can happen
* if we do the subsequent bawrite in here.
*/
STATIC uint
xfs_inode_item_trylock(
struct xfs_log_item *lip)
{
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
struct xfs_inode *ip = iip->ili_inode;
if (xfs_ipincount(ip) > 0)
return XFS_ITEM_PINNED;
if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
return XFS_ITEM_LOCKED;
if (!xfs_iflock_nowait(ip)) {
/*
* inode has already been flushed to the backing buffer,
* leave it locked in shared mode, pushbuf routine will
* unlock it.
*/
return XFS_ITEM_PUSHBUF;
}
/* Stale items should force out the iclog */
if (ip->i_flags & XFS_ISTALE) {
xfs_ifunlock(ip);
/*
* we hold the AIL lock - notify the unlock routine of this
* so it doesn't try to get the lock again.
*/
xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
return XFS_ITEM_PINNED;
}
#ifdef DEBUG
if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
ASSERT(iip->ili_format.ilf_fields != 0);
ASSERT(iip->ili_logged == 0);
ASSERT(lip->li_flags & XFS_LI_IN_AIL);
}
#endif
return XFS_ITEM_SUCCESS;
}
/*
* Unlock the inode associated with the inode log item.
* Clear the fields of the inode and inode log item that
* are specific to the current transaction. If the
* hold flags is set, do not unlock the inode.
*/
STATIC void
xfs_inode_item_unlock(
struct xfs_log_item *lip)
{
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
struct xfs_inode *ip = iip->ili_inode;
unsigned short lock_flags;
ASSERT(iip->ili_inode->i_itemp != NULL);
ASSERT(xfs_isilocked(iip->ili_inode, XFS_ILOCK_EXCL));
/*
* Clear the transaction pointer in the inode.
*/
ip->i_transp = NULL;
/*
* If the inode needed a separate buffer with which to log
* its extents, then free it now.
*/
if (iip->ili_extents_buf != NULL) {
ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
ASSERT(ip->i_d.di_nextents > 0);
ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT);
ASSERT(ip->i_df.if_bytes > 0);
kmem_free(iip->ili_extents_buf);
iip->ili_extents_buf = NULL;
}
if (iip->ili_aextents_buf != NULL) {
ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
ASSERT(ip->i_d.di_anextents > 0);
ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT);
ASSERT(ip->i_afp->if_bytes > 0);
kmem_free(iip->ili_aextents_buf);
iip->ili_aextents_buf = NULL;
}
lock_flags = iip->ili_lock_flags;
iip->ili_lock_flags = 0;
if (lock_flags) {
xfs_iunlock(iip->ili_inode, lock_flags);
IRELE(iip->ili_inode);
}
}
/*
* This is called to find out where the oldest active copy of the inode log
* item in the on disk log resides now that the last log write of it completed
* at the given lsn. Since we always re-log all dirty data in an inode, the
* latest copy in the on disk log is the only one that matters. Therefore,
* simply return the given lsn.
*
* If the inode has been marked stale because the cluster is being freed, we
* don't want to (re-)insert this inode into the AIL. There is a race condition
* where the cluster buffer may be unpinned before the inode is inserted into
* the AIL during transaction committed processing. If the buffer is unpinned
* before the inode item has been committed and inserted, then it is possible
* for the buffer to be written and IO completes before the inode is inserted
* into the AIL. In that case, we'd be inserting a clean, stale inode into the
* AIL which will never get removed. It will, however, get reclaimed which
* triggers an assert in xfs_inode_free() complaining about freein an inode
* still in the AIL.
*
* To avoid this, just unpin the inode directly and return a LSN of -1 so the
* transaction committed code knows that it does not need to do any further
* processing on the item.
*/
STATIC xfs_lsn_t
xfs_inode_item_committed(
struct xfs_log_item *lip,
xfs_lsn_t lsn)
{
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
struct xfs_inode *ip = iip->ili_inode;
if (xfs_iflags_test(ip, XFS_ISTALE)) {
xfs_inode_item_unpin(lip, 0);
return -1;
}
return lsn;
}
/*
* This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
* failed to get the inode flush lock but did get the inode locked SHARED.
* Here we're trying to see if the inode buffer is incore, and if so whether it's
* marked delayed write. If that's the case, we'll promote it and that will
* allow the caller to write the buffer by triggering the xfsbufd to run.
*/
STATIC void
xfs_inode_item_pushbuf(
struct xfs_log_item *lip)
{
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
struct xfs_inode *ip = iip->ili_inode;
struct xfs_buf *bp;
ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
/*
* If a flush is not in progress anymore, chances are that the
* inode was taken off the AIL. So, just get out.
*/
if (completion_done(&ip->i_flush) ||
!(lip->li_flags & XFS_LI_IN_AIL)) {
xfs_iunlock(ip, XFS_ILOCK_SHARED);
return;
}
bp = xfs_incore(ip->i_mount->m_ddev_targp, iip->ili_format.ilf_blkno,
iip->ili_format.ilf_len, XBF_TRYLOCK);
xfs_iunlock(ip, XFS_ILOCK_SHARED);
if (!bp)
return;
if (XFS_BUF_ISDELAYWRITE(bp))
xfs_buf_delwri_promote(bp);
xfs_buf_relse(bp);
}
/*
* This is called to asynchronously write the inode associated with this
* inode log item out to disk. The inode will already have been locked by
* a successful call to xfs_inode_item_trylock().
*/
STATIC void
xfs_inode_item_push(
struct xfs_log_item *lip)
{
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
struct xfs_inode *ip = iip->ili_inode;
ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
ASSERT(!completion_done(&ip->i_flush));
/*
* Since we were able to lock the inode's flush lock and
* we found it on the AIL, the inode must be dirty. This
* is because the inode is removed from the AIL while still
* holding the flush lock in xfs_iflush_done(). Thus, if
* we found it in the AIL and were able to obtain the flush
* lock without sleeping, then there must not have been
* anyone in the process of flushing the inode.
*/
ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) ||
iip->ili_format.ilf_fields != 0);
/*
* Push the inode to it's backing buffer. This will not remove the
* inode from the AIL - a further push will be required to trigger a
* buffer push. However, this allows all the dirty inodes to be pushed
* to the buffer before it is pushed to disk. The buffer IO completion
* will pull the inode from the AIL, mark it clean and unlock the flush
* lock.
*/
(void) xfs_iflush(ip, SYNC_TRYLOCK);
xfs_iunlock(ip, XFS_ILOCK_SHARED);
}
/*
* XXX rcc - this one really has to do something. Probably needs
* to stamp in a new field in the incore inode.
*/
STATIC void
xfs_inode_item_committing(
struct xfs_log_item *lip,
xfs_lsn_t lsn)
{
INODE_ITEM(lip)->ili_last_lsn = lsn;
}
/*
* This is the ops vector shared by all buf log items.
*/
static struct xfs_item_ops xfs_inode_item_ops = {
.iop_size = xfs_inode_item_size,
.iop_format = xfs_inode_item_format,
.iop_pin = xfs_inode_item_pin,
.iop_unpin = xfs_inode_item_unpin,
.iop_trylock = xfs_inode_item_trylock,
.iop_unlock = xfs_inode_item_unlock,
.iop_committed = xfs_inode_item_committed,
.iop_push = xfs_inode_item_push,
.iop_pushbuf = xfs_inode_item_pushbuf,
.iop_committing = xfs_inode_item_committing
};
/*
* Initialize the inode log item for a newly allocated (in-core) inode.
*/
void
xfs_inode_item_init(
struct xfs_inode *ip,
struct xfs_mount *mp)
{
struct xfs_inode_log_item *iip;
ASSERT(ip->i_itemp == NULL);
iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
iip->ili_inode = ip;
xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
&xfs_inode_item_ops);
iip->ili_format.ilf_type = XFS_LI_INODE;
iip->ili_format.ilf_ino = ip->i_ino;
iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
iip->ili_format.ilf_len = ip->i_imap.im_len;
iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
}
/*
* Free the inode log item and any memory hanging off of it.
*/
void
xfs_inode_item_destroy(
xfs_inode_t *ip)
{
#ifdef XFS_TRANS_DEBUG
if (ip->i_itemp->ili_root_size != 0) {
kmem_free(ip->i_itemp->ili_orig_root);
}
#endif
kmem_zone_free(xfs_ili_zone, ip->i_itemp);
}
/*
* This is the inode flushing I/O completion routine. It is called
* from interrupt level when the buffer containing the inode is
* flushed to disk. It is responsible for removing the inode item
* from the AIL if it has not been re-logged, and unlocking the inode's
* flush lock.
*
* To reduce AIL lock traffic as much as possible, we scan the buffer log item
* list for other inodes that will run this function. We remove them from the
* buffer list so we can process all the inode IO completions in one AIL lock
* traversal.
*/
void
xfs_iflush_done(
struct xfs_buf *bp,
struct xfs_log_item *lip)
{
struct xfs_inode_log_item *iip;
struct xfs_log_item *blip;
struct xfs_log_item *next;
struct xfs_log_item *prev;
struct xfs_ail *ailp = lip->li_ailp;
int need_ail = 0;
/*
* Scan the buffer IO completions for other inodes being completed and
* attach them to the current inode log item.
*/
blip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
prev = NULL;
while (blip != NULL) {
if (lip->li_cb != xfs_iflush_done) {
prev = blip;
blip = blip->li_bio_list;
continue;
}
/* remove from list */
next = blip->li_bio_list;
if (!prev) {
XFS_BUF_SET_FSPRIVATE(bp, next);
} else {
prev->li_bio_list = next;
}
/* add to current list */
blip->li_bio_list = lip->li_bio_list;
lip->li_bio_list = blip;
/*
* while we have the item, do the unlocked check for needing
* the AIL lock.
*/
iip = INODE_ITEM(blip);
if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
need_ail++;
blip = next;
}
/* make sure we capture the state of the initial inode. */
iip = INODE_ITEM(lip);
if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
need_ail++;
/*
* We only want to pull the item from the AIL if it is
* actually there and its location in the log has not
* changed since we started the flush. Thus, we only bother
* if the ili_logged flag is set and the inode's lsn has not
* changed. First we check the lsn outside
* the lock since it's cheaper, and then we recheck while
* holding the lock before removing the inode from the AIL.
*/
if (need_ail) {
struct xfs_log_item *log_items[need_ail];
int i = 0;
spin_lock(&ailp->xa_lock);
for (blip = lip; blip; blip = blip->li_bio_list) {
iip = INODE_ITEM(blip);
if (iip->ili_logged &&
blip->li_lsn == iip->ili_flush_lsn) {
log_items[i++] = blip;
}
ASSERT(i <= need_ail);
}
/* xfs_trans_ail_delete_bulk() drops the AIL lock. */
xfs_trans_ail_delete_bulk(ailp, log_items, i);
}
/*
* clean up and unlock the flush lock now we are done. We can clear the
* ili_last_fields bits now that we know that the data corresponding to
* them is safely on disk.
*/
for (blip = lip; blip; blip = next) {
next = blip->li_bio_list;
blip->li_bio_list = NULL;
iip = INODE_ITEM(blip);
iip->ili_logged = 0;
iip->ili_last_fields = 0;
xfs_ifunlock(iip->ili_inode);
}
}
/*
* This is the inode flushing abort routine. It is called
* from xfs_iflush when the filesystem is shutting down to clean
* up the inode state.
* It is responsible for removing the inode item
* from the AIL if it has not been re-logged, and unlocking the inode's
* flush lock.
*/
void
xfs_iflush_abort(
xfs_inode_t *ip)
{
xfs_inode_log_item_t *iip = ip->i_itemp;
if (iip) {
struct xfs_ail *ailp = iip->ili_item.li_ailp;
if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
spin_lock(&ailp->xa_lock);
if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
/* xfs_trans_ail_delete() drops the AIL lock. */
xfs_trans_ail_delete(ailp, (xfs_log_item_t *)iip);
} else
spin_unlock(&ailp->xa_lock);
}
iip->ili_logged = 0;
/*
* Clear the ili_last_fields bits now that we know that the
* data corresponding to them is safely on disk.
*/
iip->ili_last_fields = 0;
/*
* Clear the inode logging fields so no more flushes are
* attempted.
*/
iip->ili_format.ilf_fields = 0;
}
/*
* Release the inode's flush lock since we're done with it.
*/
xfs_ifunlock(ip);
}
void
xfs_istale_done(
struct xfs_buf *bp,
struct xfs_log_item *lip)
{
xfs_iflush_abort(INODE_ITEM(lip)->ili_inode);
}
/*
* convert an xfs_inode_log_format struct from either 32 or 64 bit versions
* (which can have different field alignments) to the native version
*/
int
xfs_inode_item_format_convert(
xfs_log_iovec_t *buf,
xfs_inode_log_format_t *in_f)
{
if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
in_f->ilf_type = in_f32->ilf_type;
in_f->ilf_size = in_f32->ilf_size;
in_f->ilf_fields = in_f32->ilf_fields;
in_f->ilf_asize = in_f32->ilf_asize;
in_f->ilf_dsize = in_f32->ilf_dsize;
in_f->ilf_ino = in_f32->ilf_ino;
/* copy biggest field of ilf_u */
memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
in_f32->ilf_u.ilfu_uuid.__u_bits,
sizeof(uuid_t));
in_f->ilf_blkno = in_f32->ilf_blkno;
in_f->ilf_len = in_f32->ilf_len;
in_f->ilf_boffset = in_f32->ilf_boffset;
return 0;
} else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
in_f->ilf_type = in_f64->ilf_type;
in_f->ilf_size = in_f64->ilf_size;
in_f->ilf_fields = in_f64->ilf_fields;
in_f->ilf_asize = in_f64->ilf_asize;
in_f->ilf_dsize = in_f64->ilf_dsize;
in_f->ilf_ino = in_f64->ilf_ino;
/* copy biggest field of ilf_u */
memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
in_f64->ilf_u.ilfu_uuid.__u_bits,
sizeof(uuid_t));
in_f->ilf_blkno = in_f64->ilf_blkno;
in_f->ilf_len = in_f64->ilf_len;
in_f->ilf_boffset = in_f64->ilf_boffset;
return 0;
}
return EFSCORRUPTED;
}