/*
* Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_bit.h"
#include "xfs_log.h"
#include "xfs_inum.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_dir2.h"
#include "xfs_alloc.h"
#include "xfs_dmapi.h"
#include "xfs_quota.h"
#include "xfs_mount.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_dir2_sf.h"
#include "xfs_attr_sf.h"
#include "xfs_dinode.h"
#include "xfs_inode.h"
#include "xfs_bmap.h"
#include "xfs_btree.h"
#include "xfs_ialloc.h"
#include "xfs_rtalloc.h"
#include "xfs_error.h"
#include "xfs_itable.h"
#include "xfs_rw.h"
#include "xfs_acl.h"
#include "xfs_attr.h"
#include "xfs_inode_item.h"
#include "xfs_buf_item.h"
#include "xfs_utils.h"
#include "xfs_iomap.h"
#include "xfs_vnodeops.h"
#include <linux/capability.h>
#include <linux/writeback.h>
#if defined(XFS_RW_TRACE)
void
xfs_rw_enter_trace(
int tag,
xfs_inode_t *ip,
void *data,
size_t segs,
loff_t offset,
int ioflags)
{
if (ip->i_rwtrace == NULL)
return;
ktrace_enter(ip->i_rwtrace,
(void *)(unsigned long)tag,
(void *)ip,
(void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
(void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
(void *)data,
(void *)((unsigned long)segs),
(void *)((unsigned long)((offset >> 32) & 0xffffffff)),
(void *)((unsigned long)(offset & 0xffffffff)),
(void *)((unsigned long)ioflags),
(void *)((unsigned long)((ip->i_new_size >> 32) & 0xffffffff)),
(void *)((unsigned long)(ip->i_new_size & 0xffffffff)),
(void *)((unsigned long)current_pid()),
(void *)NULL,
(void *)NULL,
(void *)NULL,
(void *)NULL);
}
void
xfs_inval_cached_trace(
xfs_inode_t *ip,
xfs_off_t offset,
xfs_off_t len,
xfs_off_t first,
xfs_off_t last)
{
if (ip->i_rwtrace == NULL)
return;
ktrace_enter(ip->i_rwtrace,
(void *)(__psint_t)XFS_INVAL_CACHED,
(void *)ip,
(void *)((unsigned long)((offset >> 32) & 0xffffffff)),
(void *)((unsigned long)(offset & 0xffffffff)),
(void *)((unsigned long)((len >> 32) & 0xffffffff)),
(void *)((unsigned long)(len & 0xffffffff)),
(void *)((unsigned long)((first >> 32) & 0xffffffff)),
(void *)((unsigned long)(first & 0xffffffff)),
(void *)((unsigned long)((last >> 32) & 0xffffffff)),
(void *)((unsigned long)(last & 0xffffffff)),
(void *)((unsigned long)current_pid()),
(void *)NULL,
(void *)NULL,
(void *)NULL,
(void *)NULL,
(void *)NULL);
}
#endif
/*
* xfs_iozero
*
* xfs_iozero clears the specified range of buffer supplied,
* and marks all the affected blocks as valid and modified. If
* an affected block is not allocated, it will be allocated. If
* an affected block is not completely overwritten, and is not
* valid before the operation, it will be read from disk before
* being partially zeroed.
*/
STATIC int
xfs_iozero(
struct xfs_inode *ip, /* inode */
loff_t pos, /* offset in file */
size_t count) /* size of data to zero */
{
struct page *page;
struct address_space *mapping;
int status;
mapping = ip->i_vnode->i_mapping;
do {
unsigned offset, bytes;
void *fsdata;
offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
bytes = PAGE_CACHE_SIZE - offset;
if (bytes > count)
bytes = count;
status = pagecache_write_begin(NULL, mapping, pos, bytes,
AOP_FLAG_UNINTERRUPTIBLE,
&page, &fsdata);
if (status)
break;
zero_user_page(page, offset, bytes, KM_USER0);
status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
page, fsdata);
WARN_ON(status <= 0); /* can't return less than zero! */
pos += bytes;
count -= bytes;
status = 0;
} while (count);
return (-status);
}
ssize_t /* bytes read, or (-) error */
xfs_read(
xfs_inode_t *ip,
struct kiocb *iocb,
const struct iovec *iovp,
unsigned int segs,
loff_t *offset,
int ioflags)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file->f_mapping->host;
bhv_vnode_t *vp = XFS_ITOV(ip);
xfs_mount_t *mp = ip->i_mount;
size_t size = 0;
ssize_t ret = 0;
xfs_fsize_t n;
unsigned long seg;
XFS_STATS_INC(xs_read_calls);
/* START copy & waste from filemap.c */
for (seg = 0; seg < segs; seg++) {
const struct iovec *iv = &iovp[seg];
/*
* If any segment has a negative length, or the cumulative
* length ever wraps negative then return -EINVAL.
*/
size += iv->iov_len;
if (unlikely((ssize_t)(size|iv->iov_len) < 0))
return XFS_ERROR(-EINVAL);
}
/* END copy & waste from filemap.c */
if (unlikely(ioflags & IO_ISDIRECT)) {
xfs_buftarg_t *target =
XFS_IS_REALTIME_INODE(ip) ?
mp->m_rtdev_targp : mp->m_ddev_targp;
if ((*offset & target->bt_smask) ||
(size & target->bt_smask)) {
if (*offset == ip->i_size) {
return (0);
}
return -XFS_ERROR(EINVAL);
}
}
n = XFS_MAXIOFFSET(mp) - *offset;
if ((n <= 0) || (size == 0))
return 0;
if (n < size)
size = n;
if (XFS_FORCED_SHUTDOWN(mp))
return -EIO;
if (unlikely(ioflags & IO_ISDIRECT))
mutex_lock(&inode->i_mutex);
xfs_ilock(ip, XFS_IOLOCK_SHARED);
if (DM_EVENT_ENABLED(ip, DM_EVENT_READ) && !(ioflags & IO_INVIS)) {
bhv_vrwlock_t locktype = VRWLOCK_READ;
int dmflags = FILP_DELAY_FLAG(file) | DM_SEM_FLAG_RD(ioflags);
ret = -XFS_SEND_DATA(mp, DM_EVENT_READ, vp, *offset, size,
dmflags, &locktype);
if (ret) {
xfs_iunlock(ip, XFS_IOLOCK_SHARED);
if (unlikely(ioflags & IO_ISDIRECT))
mutex_unlock(&inode->i_mutex);
return ret;
}
}
if (unlikely(ioflags & IO_ISDIRECT)) {
if (VN_CACHED(vp))
ret = xfs_flushinval_pages(ip, (*offset & PAGE_CACHE_MASK),
-1, FI_REMAPF_LOCKED);
mutex_unlock(&inode->i_mutex);
if (ret) {
xfs_iunlock(ip, XFS_IOLOCK_SHARED);
return ret;
}
}
xfs_rw_enter_trace(XFS_READ_ENTER, ip,
(void *)iovp, segs, *offset, ioflags);
iocb->ki_pos = *offset;
ret = generic_file_aio_read(iocb, iovp, segs, *offset);
if (ret == -EIOCBQUEUED && !(ioflags & IO_ISAIO))
ret = wait_on_sync_kiocb(iocb);
if (ret > 0)
XFS_STATS_ADD(xs_read_bytes, ret);
xfs_iunlock(ip, XFS_IOLOCK_SHARED);
return ret;
}
ssize_t
xfs_splice_read(
xfs_inode_t *ip,
struct file *infilp,
loff_t *ppos,
struct pipe_inode_info *pipe,
size_t count,
int flags,
int ioflags)
{
bhv_vnode_t *vp = XFS_ITOV(ip);
xfs_mount_t *mp = ip->i_mount;
ssize_t ret;
XFS_STATS_INC(xs_read_calls);
if (XFS_FORCED_SHUTDOWN(ip->i_mount))
return -EIO;
xfs_ilock(ip, XFS_IOLOCK_SHARED);
if (DM_EVENT_ENABLED(ip, DM_EVENT_READ) && !(ioflags & IO_INVIS)) {
bhv_vrwlock_t locktype = VRWLOCK_READ;
int error;
error = XFS_SEND_DATA(mp, DM_EVENT_READ, vp, *ppos, count,
FILP_DELAY_FLAG(infilp), &locktype);
if (error) {
xfs_iunlock(ip, XFS_IOLOCK_SHARED);
return -error;
}
}
xfs_rw_enter_trace(XFS_SPLICE_READ_ENTER, ip,
pipe, count, *ppos, ioflags);
ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
if (ret > 0)
XFS_STATS_ADD(xs_read_bytes, ret);
xfs_iunlock(ip, XFS_IOLOCK_SHARED);
return ret;
}
ssize_t
xfs_splice_write(
xfs_inode_t *ip,
struct pipe_inode_info *pipe,
struct file *outfilp,
loff_t *ppos,
size_t count,
int flags,
int ioflags)
{
bhv_vnode_t *vp = XFS_ITOV(ip);
xfs_mount_t *mp = ip->i_mount;
ssize_t ret;
struct inode *inode = outfilp->f_mapping->host;
xfs_fsize_t isize, new_size;
XFS_STATS_INC(xs_write_calls);
if (XFS_FORCED_SHUTDOWN(ip->i_mount))
return -EIO;
xfs_ilock(ip, XFS_IOLOCK_EXCL);
if (DM_EVENT_ENABLED(ip, DM_EVENT_WRITE) && !(ioflags & IO_INVIS)) {
bhv_vrwlock_t locktype = VRWLOCK_WRITE;
int error;
error = XFS_SEND_DATA(mp, DM_EVENT_WRITE, vp, *ppos, count,
FILP_DELAY_FLAG(outfilp), &locktype);
if (error) {
xfs_iunlock(ip, XFS_IOLOCK_EXCL);
return -error;
}
}
new_size = *ppos + count;
xfs_ilock(ip, XFS_ILOCK_EXCL);
if (new_size > ip->i_size)
ip->i_new_size = new_size;
xfs_iunlock(ip, XFS_ILOCK_EXCL);
xfs_rw_enter_trace(XFS_SPLICE_WRITE_ENTER, ip,
pipe, count, *ppos, ioflags);
ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
if (ret > 0)
XFS_STATS_ADD(xs_write_bytes, ret);
isize = i_size_read(inode);
if (unlikely(ret < 0 && ret != -EFAULT && *ppos > isize))
*ppos = isize;
if (*ppos > ip->i_size) {
xfs_ilock(ip, XFS_ILOCK_EXCL);
if (*ppos > ip->i_size)
ip->i_size = *ppos;
xfs_iunlock(ip, XFS_ILOCK_EXCL);
}
if (ip->i_new_size) {
xfs_ilock(ip, XFS_ILOCK_EXCL);
ip->i_new_size = 0;
if (ip->i_d.di_size > ip->i_size)
ip->i_d.di_size = ip->i_size;
xfs_iunlock(ip, XFS_ILOCK_EXCL);
}
xfs_iunlock(ip, XFS_IOLOCK_EXCL);
return ret;
}
/*
* This routine is called to handle zeroing any space in the last
* block of the file that is beyond the EOF. We do this since the
* size is being increased without writing anything to that block
* and we don't want anyone to read the garbage on the disk.
*/
STATIC int /* error (positive) */
xfs_zero_last_block(
xfs_inode_t *ip,
xfs_fsize_t offset,
xfs_fsize_t isize)
{
xfs_fileoff_t last_fsb;
xfs_mount_t *mp = ip->i_mount;
int nimaps;
int zero_offset;
int zero_len;
int error = 0;
xfs_bmbt_irec_t imap;
ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
zero_offset = XFS_B_FSB_OFFSET(mp, isize);
if (zero_offset == 0) {
/*
* There are no extra bytes in the last block on disk to
* zero, so return.
*/
return 0;
}
last_fsb = XFS_B_TO_FSBT(mp, isize);
nimaps = 1;
error = xfs_bmapi(NULL, ip, last_fsb, 1, 0, NULL, 0, &imap,
&nimaps, NULL, NULL);
if (error) {
return error;
}
ASSERT(nimaps > 0);
/*
* If the block underlying isize is just a hole, then there
* is nothing to zero.
*/
if (imap.br_startblock == HOLESTARTBLOCK) {
return 0;
}
/*
* Zero the part of the last block beyond the EOF, and write it
* out sync. We need to drop the ilock while we do this so we
* don't deadlock when the buffer cache calls back to us.
*/
xfs_iunlock(ip, XFS_ILOCK_EXCL| XFS_EXTSIZE_RD);
zero_len = mp->m_sb.sb_blocksize - zero_offset;
if (isize + zero_len > offset)
zero_len = offset - isize;
error = xfs_iozero(ip, isize, zero_len);
xfs_ilock(ip, XFS_ILOCK_EXCL|XFS_EXTSIZE_RD);
ASSERT(error >= 0);
return error;
}
/*
* Zero any on disk space between the current EOF and the new,
* larger EOF. This handles the normal case of zeroing the remainder
* of the last block in the file and the unusual case of zeroing blocks
* out beyond the size of the file. This second case only happens
* with fixed size extents and when the system crashes before the inode
* size was updated but after blocks were allocated. If fill is set,
* then any holes in the range are filled and zeroed. If not, the holes
* are left alone as holes.
*/
int /* error (positive) */
xfs_zero_eof(
xfs_inode_t *ip,
xfs_off_t offset, /* starting I/O offset */
xfs_fsize_t isize) /* current inode size */
{
xfs_mount_t *mp = ip->i_mount;
xfs_fileoff_t start_zero_fsb;
xfs_fileoff_t end_zero_fsb;
xfs_fileoff_t zero_count_fsb;
xfs_fileoff_t last_fsb;
xfs_fileoff_t zero_off;
xfs_fsize_t zero_len;
int nimaps;
int error = 0;
xfs_bmbt_irec_t imap;
ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE));
ASSERT(offset > isize);
/*
* First handle zeroing the block on which isize resides.
* We only zero a part of that block so it is handled specially.
*/
error = xfs_zero_last_block(ip, offset, isize);
if (error) {
ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE));
return error;
}
/*
* Calculate the range between the new size and the old
* where blocks needing to be zeroed may exist. To get the
* block where the last byte in the file currently resides,
* we need to subtract one from the size and truncate back
* to a block boundary. We subtract 1 in case the size is
* exactly on a block boundary.
*/
last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
if (last_fsb == end_zero_fsb) {
/*
* The size was only incremented on its last block.
* We took care of that above, so just return.
*/
return 0;
}
ASSERT(start_zero_fsb <= end_zero_fsb);
while (start_zero_fsb <= end_zero_fsb) {
nimaps = 1;
zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
error = xfs_bmapi(NULL, ip, start_zero_fsb, zero_count_fsb,
0, NULL, 0, &imap, &nimaps, NULL, NULL);
if (error) {
ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE));
return error;
}
ASSERT(nimaps > 0);
if (imap.br_state == XFS_EXT_UNWRITTEN ||
imap.br_startblock == HOLESTARTBLOCK) {
/*
* This loop handles initializing pages that were
* partially initialized by the code below this
* loop. It basically zeroes the part of the page
* that sits on a hole and sets the page as P_HOLE
* and calls remapf if it is a mapped file.
*/
start_zero_fsb = imap.br_startoff + imap.br_blockcount;
ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
continue;
}
/*
* There are blocks we need to zero.
* Drop the inode lock while we're doing the I/O.
* We'll still have the iolock to protect us.
*/
xfs_iunlock(ip, XFS_ILOCK_EXCL|XFS_EXTSIZE_RD);
zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
if ((zero_off + zero_len) > offset)
zero_len = offset - zero_off;
error = xfs_iozero(ip, zero_off, zero_len);
if (error) {
goto out_lock;
}
start_zero_fsb = imap.br_startoff + imap.br_blockcount;
ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
xfs_ilock(ip, XFS_ILOCK_EXCL|XFS_EXTSIZE_RD);
}
return 0;
out_lock:
xfs_ilock(ip, XFS_ILOCK_EXCL|XFS_EXTSIZE_RD);
ASSERT(error >= 0);
return error;
}
ssize_t /* bytes written, or (-) error */
xfs_write(
struct xfs_inode *xip,
struct kiocb *iocb,
const struct iovec *iovp,
unsigned int nsegs,
loff_t *offset,
int ioflags)
{
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
bhv_vnode_t *vp = XFS_ITOV(xip);
unsigned long segs = nsegs;
xfs_mount_t *mp;
ssize_t ret = 0, error = 0;
xfs_fsize_t isize, new_size;
int iolock;
int eventsent = 0;
bhv_vrwlock_t locktype;
size_t ocount = 0, count;
loff_t pos;
int need_i_mutex;
XFS_STATS_INC(xs_write_calls);
error = generic_segment_checks(iovp, &segs, &ocount, VERIFY_READ);
if (error)
return error;
count = ocount;
pos = *offset;
if (count == 0)
return 0;
mp = xip->i_mount;
xfs_wait_for_freeze(mp, SB_FREEZE_WRITE);
if (XFS_FORCED_SHUTDOWN(mp))
return -EIO;
relock:
if (ioflags & IO_ISDIRECT) {
iolock = XFS_IOLOCK_SHARED;
locktype = VRWLOCK_WRITE_DIRECT;
need_i_mutex = 0;
} else {
iolock = XFS_IOLOCK_EXCL;
locktype = VRWLOCK_WRITE;
need_i_mutex = 1;
mutex_lock(&inode->i_mutex);
}
xfs_ilock(xip, XFS_ILOCK_EXCL|iolock);
start:
error = -generic_write_checks(file, &pos, &count,
S_ISBLK(inode->i_mode));
if (error) {
xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock);
goto out_unlock_mutex;
}
if ((DM_EVENT_ENABLED(xip, DM_EVENT_WRITE) &&
!(ioflags & IO_INVIS) && !eventsent)) {
int dmflags = FILP_DELAY_FLAG(file);
if (need_i_mutex)
dmflags |= DM_FLAGS_IMUX;
xfs_iunlock(xip, XFS_ILOCK_EXCL);
error = XFS_SEND_DATA(xip->i_mount, DM_EVENT_WRITE, vp,
pos, count,
dmflags, &locktype);
if (error) {
goto out_unlock_internal;
}
xfs_ilock(xip, XFS_ILOCK_EXCL);
eventsent = 1;
/*
* The iolock was dropped and reacquired in XFS_SEND_DATA
* so we have to recheck the size when appending.
* We will only "goto start;" once, since having sent the
* event prevents another call to XFS_SEND_DATA, which is
* what allows the size to change in the first place.
*/
if ((file->f_flags & O_APPEND) && pos != xip->i_size)
goto start;
}
if (ioflags & IO_ISDIRECT) {
xfs_buftarg_t *target =
XFS_IS_REALTIME_INODE(xip) ?
mp->m_rtdev_targp : mp->m_ddev_targp;
if ((pos & target->bt_smask) || (count & target->bt_smask)) {
xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock);
return XFS_ERROR(-EINVAL);
}
if (!need_i_mutex && (VN_CACHED(vp) || pos > xip->i_size)) {
xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock);
iolock = XFS_IOLOCK_EXCL;
locktype = VRWLOCK_WRITE;
need_i_mutex = 1;
mutex_lock(&inode->i_mutex);
xfs_ilock(xip, XFS_ILOCK_EXCL|iolock);
goto start;
}
}
new_size = pos + count;
if (new_size > xip->i_size)
xip->i_new_size = new_size;
if (likely(!(ioflags & IO_INVIS))) {
file_update_time(file);
xfs_ichgtime_fast(xip, inode,
XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
}
/*
* If the offset is beyond the size of the file, we have a couple
* of things to do. First, if there is already space allocated
* we need to either create holes or zero the disk or ...
*
* If there is a page where the previous size lands, we need
* to zero it out up to the new size.
*/
if (pos > xip->i_size) {
error = xfs_zero_eof(xip, pos, xip->i_size);
if (error) {
xfs_iunlock(xip, XFS_ILOCK_EXCL);
goto out_unlock_internal;
}
}
xfs_iunlock(xip, XFS_ILOCK_EXCL);
/*
* If we're writing the file then make sure to clear the
* setuid and setgid bits if the process is not being run
* by root. This keeps people from modifying setuid and
* setgid binaries.
*/
if (((xip->i_d.di_mode & S_ISUID) ||
((xip->i_d.di_mode & (S_ISGID | S_IXGRP)) ==
(S_ISGID | S_IXGRP))) &&
!capable(CAP_FSETID)) {
error = xfs_write_clear_setuid(xip);
if (likely(!error))
error = -remove_suid(file->f_path.dentry);
if (unlikely(error)) {
goto out_unlock_internal;
}
}
retry:
/* We can write back this queue in page reclaim */
current->backing_dev_info = mapping->backing_dev_info;
if ((ioflags & IO_ISDIRECT)) {
if (VN_CACHED(vp)) {
WARN_ON(need_i_mutex == 0);
xfs_inval_cached_trace(xip, pos, -1,
(pos & PAGE_CACHE_MASK), -1);
error = xfs_flushinval_pages(xip,
(pos & PAGE_CACHE_MASK),
-1, FI_REMAPF_LOCKED);
if (error)
goto out_unlock_internal;
}
if (need_i_mutex) {
/* demote the lock now the cached pages are gone */
xfs_ilock_demote(xip, XFS_IOLOCK_EXCL);
mutex_unlock(&inode->i_mutex);
iolock = XFS_IOLOCK_SHARED;
locktype = VRWLOCK_WRITE_DIRECT;
need_i_mutex = 0;
}
xfs_rw_enter_trace(XFS_DIOWR_ENTER, xip, (void *)iovp, segs,
*offset, ioflags);
ret = generic_file_direct_write(iocb, iovp,
&segs, pos, offset, count, ocount);
/*
* direct-io write to a hole: fall through to buffered I/O
* for completing the rest of the request.
*/
if (ret >= 0 && ret != count) {
XFS_STATS_ADD(xs_write_bytes, ret);
pos += ret;
count -= ret;
ioflags &= ~IO_ISDIRECT;
xfs_iunlock(xip, iolock);
goto relock;
}
} else {
xfs_rw_enter_trace(XFS_WRITE_ENTER, xip, (void *)iovp, segs,
*offset, ioflags);
ret = generic_file_buffered_write(iocb, iovp, segs,
pos, offset, count, ret);
}
current->backing_dev_info = NULL;
if (ret == -EIOCBQUEUED && !(ioflags & IO_ISAIO))
ret = wait_on_sync_kiocb(iocb);
if (ret == -ENOSPC &&
DM_EVENT_ENABLED(xip, DM_EVENT_NOSPACE) && !(ioflags & IO_INVIS)) {
xfs_rwunlock(xip, locktype);
if (need_i_mutex)
mutex_unlock(&inode->i_mutex);
error = XFS_SEND_NAMESP(xip->i_mount, DM_EVENT_NOSPACE, vp,
DM_RIGHT_NULL, vp, DM_RIGHT_NULL, NULL, NULL,
0, 0, 0); /* Delay flag intentionally unused */
if (need_i_mutex)
mutex_lock(&inode->i_mutex);
xfs_rwlock(xip, locktype);
if (error)
goto out_unlock_internal;
pos = xip->i_size;
ret = 0;
goto retry;
}
isize = i_size_read(inode);
if (unlikely(ret < 0 && ret != -EFAULT && *offset > isize))
*offset = isize;
if (*offset > xip->i_size) {
xfs_ilock(xip, XFS_ILOCK_EXCL);
if (*offset > xip->i_size)
xip->i_size = *offset;
xfs_iunlock(xip, XFS_ILOCK_EXCL);
}
error = -ret;
if (ret <= 0)
goto out_unlock_internal;
XFS_STATS_ADD(xs_write_bytes, ret);
/* Handle various SYNC-type writes */
if ((file->f_flags & O_SYNC) || IS_SYNC(inode)) {
int error2;
xfs_rwunlock(xip, locktype);
if (need_i_mutex)
mutex_unlock(&inode->i_mutex);
error2 = sync_page_range(inode, mapping, pos, ret);
if (!error)
error = error2;
if (need_i_mutex)
mutex_lock(&inode->i_mutex);
xfs_rwlock(xip, locktype);
error2 = xfs_write_sync_logforce(mp, xip);
if (!error)
error = error2;
}
out_unlock_internal:
if (xip->i_new_size) {
xfs_ilock(xip, XFS_ILOCK_EXCL);
xip->i_new_size = 0;
/*
* If this was a direct or synchronous I/O that failed (such
* as ENOSPC) then part of the I/O may have been written to
* disk before the error occured. In this case the on-disk
* file size may have been adjusted beyond the in-memory file
* size and now needs to be truncated back.
*/
if (xip->i_d.di_size > xip->i_size)
xip->i_d.di_size = xip->i_size;
xfs_iunlock(xip, XFS_ILOCK_EXCL);
}
xfs_rwunlock(xip, locktype);
out_unlock_mutex:
if (need_i_mutex)
mutex_unlock(&inode->i_mutex);
return -error;
}
/*
* All xfs metadata buffers except log state machine buffers
* get this attached as their b_bdstrat callback function.
* This is so that we can catch a buffer
* after prematurely unpinning it to forcibly shutdown the filesystem.
*/
int
xfs_bdstrat_cb(struct xfs_buf *bp)
{
xfs_mount_t *mp;
mp = XFS_BUF_FSPRIVATE3(bp, xfs_mount_t *);
if (!XFS_FORCED_SHUTDOWN(mp)) {
xfs_buf_iorequest(bp);
return 0;
} else {
xfs_buftrace("XFS__BDSTRAT IOERROR", bp);
/*
* Metadata write that didn't get logged but
* written delayed anyway. These aren't associated
* with a transaction, and can be ignored.
*/
if (XFS_BUF_IODONE_FUNC(bp) == NULL &&
(XFS_BUF_ISREAD(bp)) == 0)
return (xfs_bioerror_relse(bp));
else
return (xfs_bioerror(bp));
}
}
/*
* Wrapper around bdstrat so that we can stop data
* from going to disk in case we are shutting down the filesystem.
* Typically user data goes thru this path; one of the exceptions
* is the superblock.
*/
int
xfsbdstrat(
struct xfs_mount *mp,
struct xfs_buf *bp)
{
ASSERT(mp);
if (!XFS_FORCED_SHUTDOWN(mp)) {
/* Grio redirection would go here
* if (XFS_BUF_IS_GRIO(bp)) {
*/
xfs_buf_iorequest(bp);
return 0;
}
xfs_buftrace("XFSBDSTRAT IOERROR", bp);
return (xfs_bioerror_relse(bp));
}
/*
* If the underlying (data/log/rt) device is readonly, there are some
* operations that cannot proceed.
*/
int
xfs_dev_is_read_only(
xfs_mount_t *mp,
char *message)
{
if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
xfs_readonly_buftarg(mp->m_logdev_targp) ||
(mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
cmn_err(CE_NOTE,
"XFS: %s required on read-only device.", message);
cmn_err(CE_NOTE,
"XFS: write access unavailable, cannot proceed.");
return EROFS;
}
return 0;
}