/*
* QLogic Fibre Channel HBA Driver
* Copyright (c) 2003-2005 QLogic Corporation
*
* See LICENSE.qla2xxx for copyright and licensing details.
*/
#include "qla_def.h"
#include <linux/delay.h>
#include <asm/uaccess.h>
static uint16_t qla2x00_nvram_request(scsi_qla_host_t *, uint32_t);
static void qla2x00_nv_deselect(scsi_qla_host_t *);
static void qla2x00_nv_write(scsi_qla_host_t *, uint16_t);
/*
* NVRAM support routines
*/
/**
* qla2x00_lock_nvram_access() -
* @ha: HA context
*/
void
qla2x00_lock_nvram_access(scsi_qla_host_t *ha)
{
uint16_t data;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
data = RD_REG_WORD(®->nvram);
while (data & NVR_BUSY) {
udelay(100);
data = RD_REG_WORD(®->nvram);
}
/* Lock resource */
WRT_REG_WORD(®->u.isp2300.host_semaphore, 0x1);
RD_REG_WORD(®->u.isp2300.host_semaphore);
udelay(5);
data = RD_REG_WORD(®->u.isp2300.host_semaphore);
while ((data & BIT_0) == 0) {
/* Lock failed */
udelay(100);
WRT_REG_WORD(®->u.isp2300.host_semaphore, 0x1);
RD_REG_WORD(®->u.isp2300.host_semaphore);
udelay(5);
data = RD_REG_WORD(®->u.isp2300.host_semaphore);
}
}
}
/**
* qla2x00_unlock_nvram_access() -
* @ha: HA context
*/
void
qla2x00_unlock_nvram_access(scsi_qla_host_t *ha)
{
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
WRT_REG_WORD(®->u.isp2300.host_semaphore, 0);
RD_REG_WORD(®->u.isp2300.host_semaphore);
}
}
/**
* qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
* request routine to get the word from NVRAM.
* @ha: HA context
* @addr: Address in NVRAM to read
*
* Returns the word read from nvram @addr.
*/
uint16_t
qla2x00_get_nvram_word(scsi_qla_host_t *ha, uint32_t addr)
{
uint16_t data;
uint32_t nv_cmd;
nv_cmd = addr << 16;
nv_cmd |= NV_READ_OP;
data = qla2x00_nvram_request(ha, nv_cmd);
return (data);
}
/**
* qla2x00_write_nvram_word() - Write NVRAM data.
* @ha: HA context
* @addr: Address in NVRAM to write
* @data: word to program
*/
void
qla2x00_write_nvram_word(scsi_qla_host_t *ha, uint32_t addr, uint16_t data)
{
int count;
uint16_t word;
uint32_t nv_cmd, wait_cnt;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
qla2x00_nv_write(ha, NVR_DATA_OUT);
qla2x00_nv_write(ha, 0);
qla2x00_nv_write(ha, 0);
for (word = 0; word < 8; word++)
qla2x00_nv_write(ha, NVR_DATA_OUT);
qla2x00_nv_deselect(ha);
/* Write data */
nv_cmd = (addr << 16) | NV_WRITE_OP;
nv_cmd |= data;
nv_cmd <<= 5;
for (count = 0; count < 27; count++) {
if (nv_cmd & BIT_31)
qla2x00_nv_write(ha, NVR_DATA_OUT);
else
qla2x00_nv_write(ha, 0);
nv_cmd <<= 1;
}
qla2x00_nv_deselect(ha);
/* Wait for NVRAM to become ready */
WRT_REG_WORD(®->nvram, NVR_SELECT);
RD_REG_WORD(®->nvram); /* PCI Posting. */
wait_cnt = NVR_WAIT_CNT;
do {
if (!--wait_cnt) {
DEBUG9_10(printk("%s(%ld): NVRAM didn't go ready...\n",
__func__, ha->host_no));
break;
}
NVRAM_DELAY();
word = RD_REG_WORD(®->nvram);
} while ((word & NVR_DATA_IN) == 0);
qla2x00_nv_deselect(ha);
/* Disable writes */
qla2x00_nv_write(ha, NVR_DATA_OUT);
for (count = 0; count < 10; count++)
qla2x00_nv_write(ha, 0);
qla2x00_nv_deselect(ha);
}
static int
qla2x00_write_nvram_word_tmo(scsi_qla_host_t *ha, uint32_t addr, uint16_t data,
uint32_t tmo)
{
int ret, count;
uint16_t word;
uint32_t nv_cmd;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
ret = QLA_SUCCESS;
qla2x00_nv_write(ha, NVR_DATA_OUT);
qla2x00_nv_write(ha, 0);
qla2x00_nv_write(ha, 0);
for (word = 0; word < 8; word++)
qla2x00_nv_write(ha, NVR_DATA_OUT);
qla2x00_nv_deselect(ha);
/* Write data */
nv_cmd = (addr << 16) | NV_WRITE_OP;
nv_cmd |= data;
nv_cmd <<= 5;
for (count = 0; count < 27; count++) {
if (nv_cmd & BIT_31)
qla2x00_nv_write(ha, NVR_DATA_OUT);
else
qla2x00_nv_write(ha, 0);
nv_cmd <<= 1;
}
qla2x00_nv_deselect(ha);
/* Wait for NVRAM to become ready */
WRT_REG_WORD(®->nvram, NVR_SELECT);
RD_REG_WORD(®->nvram); /* PCI Posting. */
do {
NVRAM_DELAY();
word = RD_REG_WORD(®->nvram);
if (!--tmo) {
ret = QLA_FUNCTION_FAILED;
break;
}
} while ((word & NVR_DATA_IN) == 0);
qla2x00_nv_deselect(ha);
/* Disable writes */
qla2x00_nv_write(ha, NVR_DATA_OUT);
for (count = 0; count < 10; count++)
qla2x00_nv_write(ha, 0);
qla2x00_nv_deselect(ha);
return ret;
}
/**
* qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
* NVRAM.
* @ha: HA context
* @nv_cmd: NVRAM command
*
* Bit definitions for NVRAM command:
*
* Bit 26 = start bit
* Bit 25, 24 = opcode
* Bit 23-16 = address
* Bit 15-0 = write data
*
* Returns the word read from nvram @addr.
*/
static uint16_t
qla2x00_nvram_request(scsi_qla_host_t *ha, uint32_t nv_cmd)
{
uint8_t cnt;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
uint16_t data = 0;
uint16_t reg_data;
/* Send command to NVRAM. */
nv_cmd <<= 5;
for (cnt = 0; cnt < 11; cnt++) {
if (nv_cmd & BIT_31)
qla2x00_nv_write(ha, NVR_DATA_OUT);
else
qla2x00_nv_write(ha, 0);
nv_cmd <<= 1;
}
/* Read data from NVRAM. */
for (cnt = 0; cnt < 16; cnt++) {
WRT_REG_WORD(®->nvram, NVR_SELECT | NVR_CLOCK);
RD_REG_WORD(®->nvram); /* PCI Posting. */
NVRAM_DELAY();
data <<= 1;
reg_data = RD_REG_WORD(®->nvram);
if (reg_data & NVR_DATA_IN)
data |= BIT_0;
WRT_REG_WORD(®->nvram, NVR_SELECT);
RD_REG_WORD(®->nvram); /* PCI Posting. */
NVRAM_DELAY();
}
/* Deselect chip. */
WRT_REG_WORD(®->nvram, NVR_DESELECT);
RD_REG_WORD(®->nvram); /* PCI Posting. */
NVRAM_DELAY();
return (data);
}
/**
* qla2x00_nv_write() - Clean NVRAM operations.
* @ha: HA context
*/
static void
qla2x00_nv_deselect(scsi_qla_host_t *ha)
{
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
WRT_REG_WORD(®->nvram, NVR_DESELECT);
RD_REG_WORD(®->nvram); /* PCI Posting. */
NVRAM_DELAY();
}
/**
* qla2x00_nv_write() - Prepare for NVRAM read/write operation.
* @ha: HA context
* @data: Serial interface selector
*/
static void
qla2x00_nv_write(scsi_qla_host_t *ha, uint16_t data)
{
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
WRT_REG_WORD(®->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
RD_REG_WORD(®->nvram); /* PCI Posting. */
NVRAM_DELAY();
WRT_REG_WORD(®->nvram, data | NVR_SELECT| NVR_CLOCK |
NVR_WRT_ENABLE);
RD_REG_WORD(®->nvram); /* PCI Posting. */
NVRAM_DELAY();
WRT_REG_WORD(®->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
RD_REG_WORD(®->nvram); /* PCI Posting. */
NVRAM_DELAY();
}
/**
* qla2x00_clear_nvram_protection() -
* @ha: HA context
*/
static int
qla2x00_clear_nvram_protection(scsi_qla_host_t *ha)
{
int ret, stat;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
uint32_t word, wait_cnt;
uint16_t wprot, wprot_old;
/* Clear NVRAM write protection. */
ret = QLA_FUNCTION_FAILED;
wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
__constant_cpu_to_le16(0x1234), 100000);
wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
if (stat != QLA_SUCCESS || wprot != 0x1234) {
/* Write enable. */
qla2x00_nv_write(ha, NVR_DATA_OUT);
qla2x00_nv_write(ha, 0);
qla2x00_nv_write(ha, 0);
for (word = 0; word < 8; word++)
qla2x00_nv_write(ha, NVR_DATA_OUT);
qla2x00_nv_deselect(ha);
/* Enable protection register. */
qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
qla2x00_nv_write(ha, NVR_PR_ENABLE);
qla2x00_nv_write(ha, NVR_PR_ENABLE);
for (word = 0; word < 8; word++)
qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
qla2x00_nv_deselect(ha);
/* Clear protection register (ffff is cleared). */
qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
for (word = 0; word < 8; word++)
qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
qla2x00_nv_deselect(ha);
/* Wait for NVRAM to become ready. */
WRT_REG_WORD(®->nvram, NVR_SELECT);
RD_REG_WORD(®->nvram); /* PCI Posting. */
wait_cnt = NVR_WAIT_CNT;
do {
if (!--wait_cnt) {
DEBUG9_10(printk("%s(%ld): NVRAM didn't go "
"ready...\n", __func__,
ha->host_no));
break;
}
NVRAM_DELAY();
word = RD_REG_WORD(®->nvram);
} while ((word & NVR_DATA_IN) == 0);
if (wait_cnt)
ret = QLA_SUCCESS;
} else
qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
return ret;
}
static void
qla2x00_set_nvram_protection(scsi_qla_host_t *ha, int stat)
{
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
uint32_t word, wait_cnt;
if (stat != QLA_SUCCESS)
return;
/* Set NVRAM write protection. */
/* Write enable. */
qla2x00_nv_write(ha, NVR_DATA_OUT);
qla2x00_nv_write(ha, 0);
qla2x00_nv_write(ha, 0);
for (word = 0; word < 8; word++)
qla2x00_nv_write(ha, NVR_DATA_OUT);
qla2x00_nv_deselect(ha);
/* Enable protection register. */
qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
qla2x00_nv_write(ha, NVR_PR_ENABLE);
qla2x00_nv_write(ha, NVR_PR_ENABLE);
for (word = 0; word < 8; word++)
qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
qla2x00_nv_deselect(ha);
/* Enable protection register. */
qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
qla2x00_nv_write(ha, NVR_PR_ENABLE);
qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
for (word = 0; word < 8; word++)
qla2x00_nv_write(ha, NVR_PR_ENABLE);
qla2x00_nv_deselect(ha);
/* Wait for NVRAM to become ready. */
WRT_REG_WORD(®->nvram, NVR_SELECT);
RD_REG_WORD(®->nvram); /* PCI Posting. */
wait_cnt = NVR_WAIT_CNT;
do {
if (!--wait_cnt) {
DEBUG9_10(printk("%s(%ld): NVRAM didn't go ready...\n",
__func__, ha->host_no));
break;
}
NVRAM_DELAY();
word = RD_REG_WORD(®->nvram);
} while ((word & NVR_DATA_IN) == 0);
}
/*****************************************************************************/
/* Flash Manipulation Routines */
/*****************************************************************************/
static inline uint32_t
flash_conf_to_access_addr(uint32_t faddr)
{
return FARX_ACCESS_FLASH_CONF | faddr;
}
static inline uint32_t
flash_data_to_access_addr(uint32_t faddr)
{
return FARX_ACCESS_FLASH_DATA | faddr;
}
static inline uint32_t
nvram_conf_to_access_addr(uint32_t naddr)
{
return FARX_ACCESS_NVRAM_CONF | naddr;
}
static inline uint32_t
nvram_data_to_access_addr(uint32_t naddr)
{
return FARX_ACCESS_NVRAM_DATA | naddr;
}
static uint32_t
qla24xx_read_flash_dword(scsi_qla_host_t *ha, uint32_t addr)
{
int rval;
uint32_t cnt, data;
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
WRT_REG_DWORD(®->flash_addr, addr & ~FARX_DATA_FLAG);
/* Wait for READ cycle to complete. */
rval = QLA_SUCCESS;
for (cnt = 3000;
(RD_REG_DWORD(®->flash_addr) & FARX_DATA_FLAG) == 0 &&
rval == QLA_SUCCESS; cnt--) {
if (cnt)
udelay(10);
else
rval = QLA_FUNCTION_TIMEOUT;
cond_resched();
}
/* TODO: What happens if we time out? */
data = 0xDEADDEAD;
if (rval == QLA_SUCCESS)
data = RD_REG_DWORD(®->flash_data);
return data;
}
uint32_t *
qla24xx_read_flash_data(scsi_qla_host_t *ha, uint32_t *dwptr, uint32_t faddr,
uint32_t dwords)
{
uint32_t i;
/* Dword reads to flash. */
for (i = 0; i < dwords; i++, faddr++)
dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
flash_data_to_access_addr(faddr)));
return dwptr;
}
static int
qla24xx_write_flash_dword(scsi_qla_host_t *ha, uint32_t addr, uint32_t data)
{
int rval;
uint32_t cnt;
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
WRT_REG_DWORD(®->flash_data, data);
RD_REG_DWORD(®->flash_data); /* PCI Posting. */
WRT_REG_DWORD(®->flash_addr, addr | FARX_DATA_FLAG);
/* Wait for Write cycle to complete. */
rval = QLA_SUCCESS;
for (cnt = 500000; (RD_REG_DWORD(®->flash_addr) & FARX_DATA_FLAG) &&
rval == QLA_SUCCESS; cnt--) {
if (cnt)
udelay(10);
else
rval = QLA_FUNCTION_TIMEOUT;
cond_resched();
}
return rval;
}
static void
qla24xx_get_flash_manufacturer(scsi_qla_host_t *ha, uint8_t *man_id,
uint8_t *flash_id)
{
uint32_t ids;
ids = qla24xx_read_flash_dword(ha, flash_data_to_access_addr(0xd03ab));
*man_id = LSB(ids);
*flash_id = MSB(ids);
/* Check if man_id and flash_id are valid. */
if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
/* Read information using 0x9f opcode
* Device ID, Mfg ID would be read in the format:
* <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
* Example: ATMEL 0x00 01 45 1F
* Extract MFG and Dev ID from last two bytes.
*/
ids = qla24xx_read_flash_dword(ha,
flash_data_to_access_addr(0xd009f));
*man_id = LSB(ids);
*flash_id = MSB(ids);
}
}
static int
qla24xx_write_flash_data(scsi_qla_host_t *ha, uint32_t *dwptr, uint32_t faddr,
uint32_t dwords)
{
int ret;
uint32_t liter;
uint32_t sec_mask, rest_addr, conf_addr, sec_end_mask;
uint32_t fdata, findex ;
uint8_t man_id, flash_id;
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
ret = QLA_SUCCESS;
qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
DEBUG9(printk("%s(%ld): Flash man_id=%d flash_id=%d\n", __func__,
ha->host_no, man_id, flash_id));
sec_end_mask = 0;
conf_addr = flash_conf_to_access_addr(0x03d8);
switch (man_id) {
case 0xbf: /* STT flash. */
rest_addr = 0x1fff;
sec_mask = 0x3e000;
if (flash_id == 0x80)
conf_addr = flash_conf_to_access_addr(0x0352);
break;
case 0x13: /* ST M25P80. */
rest_addr = 0x3fff;
sec_mask = 0x3c000;
break;
case 0x1f: // Atmel 26DF081A
rest_addr = 0x0fff;
sec_mask = 0xff000;
sec_end_mask = 0x003ff;
conf_addr = flash_conf_to_access_addr(0x0320);
break;
default:
/* Default to 64 kb sector size. */
rest_addr = 0x3fff;
sec_mask = 0x3c000;
break;
}
/* Enable flash write. */
WRT_REG_DWORD(®->ctrl_status,
RD_REG_DWORD(®->ctrl_status) | CSRX_FLASH_ENABLE);
RD_REG_DWORD(®->ctrl_status); /* PCI Posting. */
/* Disable flash write-protection. */
qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0);
/* Some flash parts need an additional zero-write to clear bits.*/
qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0);
do { /* Loop once to provide quick error exit. */
for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
if (man_id == 0x1f) {
findex = faddr << 2;
fdata = findex & sec_mask;
} else {
findex = faddr;
fdata = (findex & sec_mask) << 2;
}
/* Are we at the beginning of a sector? */
if ((findex & rest_addr) == 0) {
/*
* Do sector unprotect at 4K boundry for Atmel
* part.
*/
if (man_id == 0x1f)
qla24xx_write_flash_dword(ha,
flash_conf_to_access_addr(0x0339),
(fdata & 0xff00) | ((fdata << 16) &
0xff0000) | ((fdata >> 16) & 0xff));
ret = qla24xx_write_flash_dword(ha, conf_addr,
(fdata & 0xff00) |((fdata << 16) &
0xff0000) | ((fdata >> 16) & 0xff));
if (ret != QLA_SUCCESS) {
DEBUG9(printk("%s(%ld) Unable to flash "
"sector: address=%x.\n", __func__,
ha->host_no, faddr));
break;
}
}
ret = qla24xx_write_flash_dword(ha,
flash_data_to_access_addr(faddr),
cpu_to_le32(*dwptr));
if (ret != QLA_SUCCESS) {
DEBUG9(printk("%s(%ld) Unable to program flash "
"address=%x data=%x.\n", __func__,
ha->host_no, faddr, *dwptr));
break;
}
/* Do sector protect at 4K boundry for Atmel part. */
if (man_id == 0x1f &&
((faddr & sec_end_mask) == 0x3ff))
qla24xx_write_flash_dword(ha,
flash_conf_to_access_addr(0x0336),
(fdata & 0xff00) | ((fdata << 16) &
0xff0000) | ((fdata >> 16) & 0xff));
}
} while (0);
/* Enable flash write-protection. */
qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0x9c);
/* Disable flash write. */
WRT_REG_DWORD(®->ctrl_status,
RD_REG_DWORD(®->ctrl_status) & ~CSRX_FLASH_ENABLE);
RD_REG_DWORD(®->ctrl_status); /* PCI Posting. */
return ret;
}
uint8_t *
qla2x00_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
uint32_t bytes)
{
uint32_t i;
uint16_t *wptr;
/* Word reads to NVRAM via registers. */
wptr = (uint16_t *)buf;
qla2x00_lock_nvram_access(ha);
for (i = 0; i < bytes >> 1; i++, naddr++)
wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
naddr));
qla2x00_unlock_nvram_access(ha);
return buf;
}
uint8_t *
qla24xx_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
uint32_t bytes)
{
uint32_t i;
uint32_t *dwptr;
/* Dword reads to flash. */
dwptr = (uint32_t *)buf;
for (i = 0; i < bytes >> 2; i++, naddr++)
dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
nvram_data_to_access_addr(naddr)));
return buf;
}
int
qla2x00_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
uint32_t bytes)
{
int ret, stat;
uint32_t i;
uint16_t *wptr;
ret = QLA_SUCCESS;
qla2x00_lock_nvram_access(ha);
/* Disable NVRAM write-protection. */
stat = qla2x00_clear_nvram_protection(ha);
wptr = (uint16_t *)buf;
for (i = 0; i < bytes >> 1; i++, naddr++) {
qla2x00_write_nvram_word(ha, naddr,
cpu_to_le16(*wptr));
wptr++;
}
/* Enable NVRAM write-protection. */
qla2x00_set_nvram_protection(ha, stat);
qla2x00_unlock_nvram_access(ha);
return ret;
}
int
qla24xx_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
uint32_t bytes)
{
int ret;
uint32_t i;
uint32_t *dwptr;
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
ret = QLA_SUCCESS;
/* Enable flash write. */
WRT_REG_DWORD(®->ctrl_status,
RD_REG_DWORD(®->ctrl_status) | CSRX_FLASH_ENABLE);
RD_REG_DWORD(®->ctrl_status); /* PCI Posting. */
/* Disable NVRAM write-protection. */
qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
0);
qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
0);
/* Dword writes to flash. */
dwptr = (uint32_t *)buf;
for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
ret = qla24xx_write_flash_dword(ha,
nvram_data_to_access_addr(naddr),
cpu_to_le32(*dwptr));
if (ret != QLA_SUCCESS) {
DEBUG9(printk("%s(%ld) Unable to program "
"nvram address=%x data=%x.\n", __func__,
ha->host_no, naddr, *dwptr));
break;
}
}
/* Enable NVRAM write-protection. */
qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
0x8c);
/* Disable flash write. */
WRT_REG_DWORD(®->ctrl_status,
RD_REG_DWORD(®->ctrl_status) & ~CSRX_FLASH_ENABLE);
RD_REG_DWORD(®->ctrl_status); /* PCI Posting. */
return ret;
}
uint8_t *
qla25xx_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
uint32_t bytes)
{
uint32_t i;
uint32_t *dwptr;
/* Dword reads to flash. */
dwptr = (uint32_t *)buf;
for (i = 0; i < bytes >> 2; i++, naddr++)
dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
flash_data_to_access_addr(FA_VPD_NVRAM_ADDR | naddr)));
return buf;
}
int
qla25xx_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
uint32_t bytes)
{
return qla24xx_write_flash_data(ha, (uint32_t *)buf,
FA_VPD_NVRAM_ADDR | naddr, bytes >> 2);
}
static inline void
qla2x00_flip_colors(scsi_qla_host_t *ha, uint16_t *pflags)
{
if (IS_QLA2322(ha)) {
/* Flip all colors. */
if (ha->beacon_color_state == QLA_LED_ALL_ON) {
/* Turn off. */
ha->beacon_color_state = 0;
*pflags = GPIO_LED_ALL_OFF;
} else {
/* Turn on. */
ha->beacon_color_state = QLA_LED_ALL_ON;
*pflags = GPIO_LED_RGA_ON;
}
} else {
/* Flip green led only. */
if (ha->beacon_color_state == QLA_LED_GRN_ON) {
/* Turn off. */
ha->beacon_color_state = 0;
*pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
} else {
/* Turn on. */
ha->beacon_color_state = QLA_LED_GRN_ON;
*pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
}
}
}
void
qla2x00_beacon_blink(struct scsi_qla_host *ha)
{
uint16_t gpio_enable;
uint16_t gpio_data;
uint16_t led_color = 0;
unsigned long flags;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
if (ha->pio_address)
reg = (struct device_reg_2xxx __iomem *)ha->pio_address;
spin_lock_irqsave(&ha->hardware_lock, flags);
/* Save the Original GPIOE. */
if (ha->pio_address) {
gpio_enable = RD_REG_WORD_PIO(®->gpioe);
gpio_data = RD_REG_WORD_PIO(®->gpiod);
} else {
gpio_enable = RD_REG_WORD(®->gpioe);
gpio_data = RD_REG_WORD(®->gpiod);
}
/* Set the modified gpio_enable values */
gpio_enable |= GPIO_LED_MASK;
if (ha->pio_address) {
WRT_REG_WORD_PIO(®->gpioe, gpio_enable);
} else {
WRT_REG_WORD(®->gpioe, gpio_enable);
RD_REG_WORD(®->gpioe);
}
qla2x00_flip_colors(ha, &led_color);
/* Clear out any previously set LED color. */
gpio_data &= ~GPIO_LED_MASK;
/* Set the new input LED color to GPIOD. */
gpio_data |= led_color;
/* Set the modified gpio_data values */
if (ha->pio_address) {
WRT_REG_WORD_PIO(®->gpiod, gpio_data);
} else {
WRT_REG_WORD(®->gpiod, gpio_data);
RD_REG_WORD(®->gpiod);
}
spin_unlock_irqrestore(&ha->hardware_lock, flags);
}
int
qla2x00_beacon_on(struct scsi_qla_host *ha)
{
uint16_t gpio_enable;
uint16_t gpio_data;
unsigned long flags;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
qla_printk(KERN_WARNING, ha,
"Unable to update fw options (beacon on).\n");
return QLA_FUNCTION_FAILED;
}
if (ha->pio_address)
reg = (struct device_reg_2xxx __iomem *)ha->pio_address;
/* Turn off LEDs. */
spin_lock_irqsave(&ha->hardware_lock, flags);
if (ha->pio_address) {
gpio_enable = RD_REG_WORD_PIO(®->gpioe);
gpio_data = RD_REG_WORD_PIO(®->gpiod);
} else {
gpio_enable = RD_REG_WORD(®->gpioe);
gpio_data = RD_REG_WORD(®->gpiod);
}
gpio_enable |= GPIO_LED_MASK;
/* Set the modified gpio_enable values. */
if (ha->pio_address) {
WRT_REG_WORD_PIO(®->gpioe, gpio_enable);
} else {
WRT_REG_WORD(®->gpioe, gpio_enable);
RD_REG_WORD(®->gpioe);
}
/* Clear out previously set LED colour. */
gpio_data &= ~GPIO_LED_MASK;
if (ha->pio_address) {
WRT_REG_WORD_PIO(®->gpiod, gpio_data);
} else {
WRT_REG_WORD(®->gpiod, gpio_data);
RD_REG_WORD(®->gpiod);
}
spin_unlock_irqrestore(&ha->hardware_lock, flags);
/*
* Let the per HBA timer kick off the blinking process based on
* the following flags. No need to do anything else now.
*/
ha->beacon_blink_led = 1;
ha->beacon_color_state = 0;
return QLA_SUCCESS;
}
int
qla2x00_beacon_off(struct scsi_qla_host *ha)
{
int rval = QLA_SUCCESS;
ha->beacon_blink_led = 0;
/* Set the on flag so when it gets flipped it will be off. */
if (IS_QLA2322(ha))
ha->beacon_color_state = QLA_LED_ALL_ON;
else
ha->beacon_color_state = QLA_LED_GRN_ON;
ha->isp_ops->beacon_blink(ha); /* This turns green LED off */
ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
rval = qla2x00_set_fw_options(ha, ha->fw_options);
if (rval != QLA_SUCCESS)
qla_printk(KERN_WARNING, ha,
"Unable to update fw options (beacon off).\n");
return rval;
}
static inline void
qla24xx_flip_colors(scsi_qla_host_t *ha, uint16_t *pflags)
{
/* Flip all colors. */
if (ha->beacon_color_state == QLA_LED_ALL_ON) {
/* Turn off. */
ha->beacon_color_state = 0;
*pflags = 0;
} else {
/* Turn on. */
ha->beacon_color_state = QLA_LED_ALL_ON;
*pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
}
}
void
qla24xx_beacon_blink(struct scsi_qla_host *ha)
{
uint16_t led_color = 0;
uint32_t gpio_data;
unsigned long flags;
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
/* Save the Original GPIOD. */
spin_lock_irqsave(&ha->hardware_lock, flags);
gpio_data = RD_REG_DWORD(®->gpiod);
/* Enable the gpio_data reg for update. */
gpio_data |= GPDX_LED_UPDATE_MASK;
WRT_REG_DWORD(®->gpiod, gpio_data);
gpio_data = RD_REG_DWORD(®->gpiod);
/* Set the color bits. */
qla24xx_flip_colors(ha, &led_color);
/* Clear out any previously set LED color. */
gpio_data &= ~GPDX_LED_COLOR_MASK;
/* Set the new input LED color to GPIOD. */
gpio_data |= led_color;
/* Set the modified gpio_data values. */
WRT_REG_DWORD(®->gpiod, gpio_data);
gpio_data = RD_REG_DWORD(®->gpiod);
spin_unlock_irqrestore(&ha->hardware_lock, flags);
}
int
qla24xx_beacon_on(struct scsi_qla_host *ha)
{
uint32_t gpio_data;
unsigned long flags;
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
if (ha->beacon_blink_led == 0) {
/* Enable firmware for update */
ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;
if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS)
return QLA_FUNCTION_FAILED;
if (qla2x00_get_fw_options(ha, ha->fw_options) !=
QLA_SUCCESS) {
qla_printk(KERN_WARNING, ha,
"Unable to update fw options (beacon on).\n");
return QLA_FUNCTION_FAILED;
}
spin_lock_irqsave(&ha->hardware_lock, flags);
gpio_data = RD_REG_DWORD(®->gpiod);
/* Enable the gpio_data reg for update. */
gpio_data |= GPDX_LED_UPDATE_MASK;
WRT_REG_DWORD(®->gpiod, gpio_data);
RD_REG_DWORD(®->gpiod);
spin_unlock_irqrestore(&ha->hardware_lock, flags);
}
/* So all colors blink together. */
ha->beacon_color_state = 0;
/* Let the per HBA timer kick off the blinking process. */
ha->beacon_blink_led = 1;
return QLA_SUCCESS;
}
int
qla24xx_beacon_off(struct scsi_qla_host *ha)
{
uint32_t gpio_data;
unsigned long flags;
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
ha->beacon_blink_led = 0;
ha->beacon_color_state = QLA_LED_ALL_ON;
ha->isp_ops->beacon_blink(ha); /* Will flip to all off. */
/* Give control back to firmware. */
spin_lock_irqsave(&ha->hardware_lock, flags);
gpio_data = RD_REG_DWORD(®->gpiod);
/* Disable the gpio_data reg for update. */
gpio_data &= ~GPDX_LED_UPDATE_MASK;
WRT_REG_DWORD(®->gpiod, gpio_data);
RD_REG_DWORD(®->gpiod);
spin_unlock_irqrestore(&ha->hardware_lock, flags);
ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;
if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
qla_printk(KERN_WARNING, ha,
"Unable to update fw options (beacon off).\n");
return QLA_FUNCTION_FAILED;
}
if (qla2x00_get_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
qla_printk(KERN_WARNING, ha,
"Unable to get fw options (beacon off).\n");
return QLA_FUNCTION_FAILED;
}
return QLA_SUCCESS;
}
/*
* Flash support routines
*/
/**
* qla2x00_flash_enable() - Setup flash for reading and writing.
* @ha: HA context
*/
static void
qla2x00_flash_enable(scsi_qla_host_t *ha)
{
uint16_t data;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
data = RD_REG_WORD(®->ctrl_status);
data |= CSR_FLASH_ENABLE;
WRT_REG_WORD(®->ctrl_status, data);
RD_REG_WORD(®->ctrl_status); /* PCI Posting. */
}
/**
* qla2x00_flash_disable() - Disable flash and allow RISC to run.
* @ha: HA context
*/
static void
qla2x00_flash_disable(scsi_qla_host_t *ha)
{
uint16_t data;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
data = RD_REG_WORD(®->ctrl_status);
data &= ~(CSR_FLASH_ENABLE);
WRT_REG_WORD(®->ctrl_status, data);
RD_REG_WORD(®->ctrl_status); /* PCI Posting. */
}
/**
* qla2x00_read_flash_byte() - Reads a byte from flash
* @ha: HA context
* @addr: Address in flash to read
*
* A word is read from the chip, but, only the lower byte is valid.
*
* Returns the byte read from flash @addr.
*/
static uint8_t
qla2x00_read_flash_byte(scsi_qla_host_t *ha, uint32_t addr)
{
uint16_t data;
uint16_t bank_select;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
bank_select = RD_REG_WORD(®->ctrl_status);
if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
/* Specify 64K address range: */
/* clear out Module Select and Flash Address bits [19:16]. */
bank_select &= ~0xf8;
bank_select |= addr >> 12 & 0xf0;
bank_select |= CSR_FLASH_64K_BANK;
WRT_REG_WORD(®->ctrl_status, bank_select);
RD_REG_WORD(®->ctrl_status); /* PCI Posting. */
WRT_REG_WORD(®->flash_address, (uint16_t)addr);
data = RD_REG_WORD(®->flash_data);
return (uint8_t)data;
}
/* Setup bit 16 of flash address. */
if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
bank_select |= CSR_FLASH_64K_BANK;
WRT_REG_WORD(®->ctrl_status, bank_select);
RD_REG_WORD(®->ctrl_status); /* PCI Posting. */
} else if (((addr & BIT_16) == 0) &&
(bank_select & CSR_FLASH_64K_BANK)) {
bank_select &= ~(CSR_FLASH_64K_BANK);
WRT_REG_WORD(®->ctrl_status, bank_select);
RD_REG_WORD(®->ctrl_status); /* PCI Posting. */
}
/* Always perform IO mapped accesses to the FLASH registers. */
if (ha->pio_address) {
uint16_t data2;
reg = (struct device_reg_2xxx __iomem *)ha->pio_address;
WRT_REG_WORD_PIO(®->flash_address, (uint16_t)addr);
do {
data = RD_REG_WORD_PIO(®->flash_data);
barrier();
cpu_relax();
data2 = RD_REG_WORD_PIO(®->flash_data);
} while (data != data2);
} else {
WRT_REG_WORD(®->flash_address, (uint16_t)addr);
data = qla2x00_debounce_register(®->flash_data);
}
return (uint8_t)data;
}
/**
* qla2x00_write_flash_byte() - Write a byte to flash
* @ha: HA context
* @addr: Address in flash to write
* @data: Data to write
*/
static void
qla2x00_write_flash_byte(scsi_qla_host_t *ha, uint32_t addr, uint8_t data)
{
uint16_t bank_select;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
bank_select = RD_REG_WORD(®->ctrl_status);
if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
/* Specify 64K address range: */
/* clear out Module Select and Flash Address bits [19:16]. */
bank_select &= ~0xf8;
bank_select |= addr >> 12 & 0xf0;
bank_select |= CSR_FLASH_64K_BANK;
WRT_REG_WORD(®->ctrl_status, bank_select);
RD_REG_WORD(®->ctrl_status); /* PCI Posting. */
WRT_REG_WORD(®->flash_address, (uint16_t)addr);
RD_REG_WORD(®->ctrl_status); /* PCI Posting. */
WRT_REG_WORD(®->flash_data, (uint16_t)data);
RD_REG_WORD(®->ctrl_status); /* PCI Posting. */
return;
}
/* Setup bit 16 of flash address. */
if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
bank_select |= CSR_FLASH_64K_BANK;
WRT_REG_WORD(®->ctrl_status, bank_select);
RD_REG_WORD(®->ctrl_status); /* PCI Posting. */
} else if (((addr & BIT_16) == 0) &&
(bank_select & CSR_FLASH_64K_BANK)) {
bank_select &= ~(CSR_FLASH_64K_BANK);
WRT_REG_WORD(®->ctrl_status, bank_select);
RD_REG_WORD(®->ctrl_status); /* PCI Posting. */
}
/* Always perform IO mapped accesses to the FLASH registers. */
if (ha->pio_address) {
reg = (struct device_reg_2xxx __iomem *)ha->pio_address;
WRT_REG_WORD_PIO(®->flash_address, (uint16_t)addr);
WRT_REG_WORD_PIO(®->flash_data, (uint16_t)data);
} else {
WRT_REG_WORD(®->flash_address, (uint16_t)addr);
RD_REG_WORD(®->ctrl_status); /* PCI Posting. */
WRT_REG_WORD(®->flash_data, (uint16_t)data);
RD_REG_WORD(®->ctrl_status); /* PCI Posting. */
}
}
/**
* qla2x00_poll_flash() - Polls flash for completion.
* @ha: HA context
* @addr: Address in flash to poll
* @poll_data: Data to be polled
* @man_id: Flash manufacturer ID
* @flash_id: Flash ID
*
* This function polls the device until bit 7 of what is read matches data
* bit 7 or until data bit 5 becomes a 1. If that hapens, the flash ROM timed
* out (a fatal error). The flash book recommeds reading bit 7 again after
* reading bit 5 as a 1.
*
* Returns 0 on success, else non-zero.
*/
static int
qla2x00_poll_flash(scsi_qla_host_t *ha, uint32_t addr, uint8_t poll_data,
uint8_t man_id, uint8_t flash_id)
{
int status;
uint8_t flash_data;
uint32_t cnt;
status = 1;
/* Wait for 30 seconds for command to finish. */
poll_data &= BIT_7;
for (cnt = 3000000; cnt; cnt--) {
flash_data = qla2x00_read_flash_byte(ha, addr);
if ((flash_data & BIT_7) == poll_data) {
status = 0;
break;
}
if (man_id != 0x40 && man_id != 0xda) {
if ((flash_data & BIT_5) && cnt > 2)
cnt = 2;
}
udelay(10);
barrier();
cond_resched();
}
return status;
}
/**
* qla2x00_program_flash_address() - Programs a flash address
* @ha: HA context
* @addr: Address in flash to program
* @data: Data to be written in flash
* @man_id: Flash manufacturer ID
* @flash_id: Flash ID
*
* Returns 0 on success, else non-zero.
*/
static int
qla2x00_program_flash_address(scsi_qla_host_t *ha, uint32_t addr, uint8_t data,
uint8_t man_id, uint8_t flash_id)
{
/* Write Program Command Sequence. */
if (IS_OEM_001(ha)) {
qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
qla2x00_write_flash_byte(ha, 0x555, 0x55);
qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
qla2x00_write_flash_byte(ha, addr, data);
} else {
if (man_id == 0xda && flash_id == 0xc1) {
qla2x00_write_flash_byte(ha, addr, data);
if (addr & 0x7e)
return 0;
} else {
qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
qla2x00_write_flash_byte(ha, addr, data);
}
}
udelay(150);
/* Wait for write to complete. */
return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
}
/**
* qla2x00_erase_flash() - Erase the flash.
* @ha: HA context
* @man_id: Flash manufacturer ID
* @flash_id: Flash ID
*
* Returns 0 on success, else non-zero.
*/
static int
qla2x00_erase_flash(scsi_qla_host_t *ha, uint8_t man_id, uint8_t flash_id)
{
/* Individual Sector Erase Command Sequence */
if (IS_OEM_001(ha)) {
qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
qla2x00_write_flash_byte(ha, 0x555, 0x55);
qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
qla2x00_write_flash_byte(ha, 0x555, 0x55);
qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
} else {
qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
qla2x00_write_flash_byte(ha, 0x5555, 0x80);
qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
qla2x00_write_flash_byte(ha, 0x5555, 0x10);
}
udelay(150);
/* Wait for erase to complete. */
return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
}
/**
* qla2x00_erase_flash_sector() - Erase a flash sector.
* @ha: HA context
* @addr: Flash sector to erase
* @sec_mask: Sector address mask
* @man_id: Flash manufacturer ID
* @flash_id: Flash ID
*
* Returns 0 on success, else non-zero.
*/
static int
qla2x00_erase_flash_sector(scsi_qla_host_t *ha, uint32_t addr,
uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
{
/* Individual Sector Erase Command Sequence */
qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
qla2x00_write_flash_byte(ha, 0x5555, 0x80);
qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
if (man_id == 0x1f && flash_id == 0x13)
qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
else
qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
udelay(150);
/* Wait for erase to complete. */
return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
}
/**
* qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
* @man_id: Flash manufacturer ID
* @flash_id: Flash ID
*/
static void
qla2x00_get_flash_manufacturer(scsi_qla_host_t *ha, uint8_t *man_id,
uint8_t *flash_id)
{
qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
qla2x00_write_flash_byte(ha, 0x5555, 0x90);
*man_id = qla2x00_read_flash_byte(ha, 0x0000);
*flash_id = qla2x00_read_flash_byte(ha, 0x0001);
qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
}
static void
qla2x00_read_flash_data(scsi_qla_host_t *ha, uint8_t *tmp_buf, uint32_t saddr,
uint32_t length)
{
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
uint32_t midpoint, ilength;
uint8_t data;
midpoint = length / 2;
WRT_REG_WORD(®->nvram, 0);
RD_REG_WORD(®->nvram);
for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
if (ilength == midpoint) {
WRT_REG_WORD(®->nvram, NVR_SELECT);
RD_REG_WORD(®->nvram);
}
data = qla2x00_read_flash_byte(ha, saddr);
if (saddr % 100)
udelay(10);
*tmp_buf = data;
cond_resched();
}
}
static inline void
qla2x00_suspend_hba(struct scsi_qla_host *ha)
{
int cnt;
unsigned long flags;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
/* Suspend HBA. */
scsi_block_requests(ha->host);
ha->isp_ops->disable_intrs(ha);
set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
/* Pause RISC. */
spin_lock_irqsave(&ha->hardware_lock, flags);
WRT_REG_WORD(®->hccr, HCCR_PAUSE_RISC);
RD_REG_WORD(®->hccr);
if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
for (cnt = 0; cnt < 30000; cnt++) {
if ((RD_REG_WORD(®->hccr) & HCCR_RISC_PAUSE) != 0)
break;
udelay(100);
}
} else {
udelay(10);
}
spin_unlock_irqrestore(&ha->hardware_lock, flags);
}
static inline void
qla2x00_resume_hba(struct scsi_qla_host *ha)
{
/* Resume HBA. */
clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
set_bit(ISP_ABORT_NEEDED, &ha->dpc_flags);
qla2xxx_wake_dpc(ha);
qla2x00_wait_for_hba_online(ha);
scsi_unblock_requests(ha->host);
}
uint8_t *
qla2x00_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
uint32_t offset, uint32_t length)
{
uint32_t addr, midpoint;
uint8_t *data;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
/* Suspend HBA. */
qla2x00_suspend_hba(ha);
/* Go with read. */
midpoint = ha->optrom_size / 2;
qla2x00_flash_enable(ha);
WRT_REG_WORD(®->nvram, 0);
RD_REG_WORD(®->nvram); /* PCI Posting. */
for (addr = offset, data = buf; addr < length; addr++, data++) {
if (addr == midpoint) {
WRT_REG_WORD(®->nvram, NVR_SELECT);
RD_REG_WORD(®->nvram); /* PCI Posting. */
}
*data = qla2x00_read_flash_byte(ha, addr);
}
qla2x00_flash_disable(ha);
/* Resume HBA. */
qla2x00_resume_hba(ha);
return buf;
}
int
qla2x00_write_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
uint32_t offset, uint32_t length)
{
int rval;
uint8_t man_id, flash_id, sec_number, data;
uint16_t wd;
uint32_t addr, liter, sec_mask, rest_addr;
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
/* Suspend HBA. */
qla2x00_suspend_hba(ha);
rval = QLA_SUCCESS;
sec_number = 0;
/* Reset ISP chip. */
WRT_REG_WORD(®->ctrl_status, CSR_ISP_SOFT_RESET);
pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
/* Go with write. */
qla2x00_flash_enable(ha);
do { /* Loop once to provide quick error exit */
/* Structure of flash memory based on manufacturer */
if (IS_OEM_001(ha)) {
/* OEM variant with special flash part. */
man_id = flash_id = 0;
rest_addr = 0xffff;
sec_mask = 0x10000;
goto update_flash;
}
qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
switch (man_id) {
case 0x20: /* ST flash. */
if (flash_id == 0xd2 || flash_id == 0xe3) {
/*
* ST m29w008at part - 64kb sector size with
* 32kb,8kb,8kb,16kb sectors at memory address
* 0xf0000.
*/
rest_addr = 0xffff;
sec_mask = 0x10000;
break;
}
/*
* ST m29w010b part - 16kb sector size
* Default to 16kb sectors
*/
rest_addr = 0x3fff;
sec_mask = 0x1c000;
break;
case 0x40: /* Mostel flash. */
/* Mostel v29c51001 part - 512 byte sector size. */
rest_addr = 0x1ff;
sec_mask = 0x1fe00;
break;
case 0xbf: /* SST flash. */
/* SST39sf10 part - 4kb sector size. */
rest_addr = 0xfff;
sec_mask = 0x1f000;
break;
case 0xda: /* Winbond flash. */
/* Winbond W29EE011 part - 256 byte sector size. */
rest_addr = 0x7f;
sec_mask = 0x1ff80;
break;
case 0xc2: /* Macronix flash. */
/* 64k sector size. */
if (flash_id == 0x38 || flash_id == 0x4f) {
rest_addr = 0xffff;
sec_mask = 0x10000;
break;
}
/* Fall through... */
case 0x1f: /* Atmel flash. */
/* 512k sector size. */
if (flash_id == 0x13) {
rest_addr = 0x7fffffff;
sec_mask = 0x80000000;
break;
}
/* Fall through... */
case 0x01: /* AMD flash. */
if (flash_id == 0x38 || flash_id == 0x40 ||
flash_id == 0x4f) {
/* Am29LV081 part - 64kb sector size. */
/* Am29LV002BT part - 64kb sector size. */
rest_addr = 0xffff;
sec_mask = 0x10000;
break;
} else if (flash_id == 0x3e) {
/*
* Am29LV008b part - 64kb sector size with
* 32kb,8kb,8kb,16kb sector at memory address
* h0xf0000.
*/
rest_addr = 0xffff;
sec_mask = 0x10000;
break;
} else if (flash_id == 0x20 || flash_id == 0x6e) {
/*
* Am29LV010 part or AM29f010 - 16kb sector
* size.
*/
rest_addr = 0x3fff;
sec_mask = 0x1c000;
break;
} else if (flash_id == 0x6d) {
/* Am29LV001 part - 8kb sector size. */
rest_addr = 0x1fff;
sec_mask = 0x1e000;
break;
}
default:
/* Default to 16 kb sector size. */
rest_addr = 0x3fff;
sec_mask = 0x1c000;
break;
}
update_flash:
if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
if (qla2x00_erase_flash(ha, man_id, flash_id)) {
rval = QLA_FUNCTION_FAILED;
break;
}
}
for (addr = offset, liter = 0; liter < length; liter++,
addr++) {
data = buf[liter];
/* Are we at the beginning of a sector? */
if ((addr & rest_addr) == 0) {
if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
if (addr >= 0x10000UL) {
if (((addr >> 12) & 0xf0) &&
((man_id == 0x01 &&
flash_id == 0x3e) ||
(man_id == 0x20 &&
flash_id == 0xd2))) {
sec_number++;
if (sec_number == 1) {
rest_addr =
0x7fff;
sec_mask =
0x18000;
} else if (
sec_number == 2 ||
sec_number == 3) {
rest_addr =
0x1fff;
sec_mask =
0x1e000;
} else if (
sec_number == 4) {
rest_addr =
0x3fff;
sec_mask =
0x1c000;
}
}
}
} else if (addr == ha->optrom_size / 2) {
WRT_REG_WORD(®->nvram, NVR_SELECT);
RD_REG_WORD(®->nvram);
}
if (flash_id == 0xda && man_id == 0xc1) {
qla2x00_write_flash_byte(ha, 0x5555,
0xaa);
qla2x00_write_flash_byte(ha, 0x2aaa,
0x55);
qla2x00_write_flash_byte(ha, 0x5555,
0xa0);
} else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
/* Then erase it */
if (qla2x00_erase_flash_sector(ha,
addr, sec_mask, man_id,
flash_id)) {
rval = QLA_FUNCTION_FAILED;
break;
}
if (man_id == 0x01 && flash_id == 0x6d)
sec_number++;
}
}
if (man_id == 0x01 && flash_id == 0x6d) {
if (sec_number == 1 &&
addr == (rest_addr - 1)) {
rest_addr = 0x0fff;
sec_mask = 0x1f000;
} else if (sec_number == 3 && (addr & 0x7ffe)) {
rest_addr = 0x3fff;
sec_mask = 0x1c000;
}
}
if (qla2x00_program_flash_address(ha, addr, data,
man_id, flash_id)) {
rval = QLA_FUNCTION_FAILED;
break;
}
cond_resched();
}
} while (0);
qla2x00_flash_disable(ha);
/* Resume HBA. */
qla2x00_resume_hba(ha);
return rval;
}
uint8_t *
qla24xx_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
uint32_t offset, uint32_t length)
{
/* Suspend HBA. */
scsi_block_requests(ha->host);
ha->isp_ops->disable_intrs(ha);
set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
/* Go with read. */
qla24xx_read_flash_data(ha, (uint32_t *)buf, offset >> 2, length >> 2);
/* Resume HBA. */
clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
ha->isp_ops->enable_intrs(ha);
scsi_unblock_requests(ha->host);
return buf;
}
int
qla24xx_write_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
uint32_t offset, uint32_t length)
{
int rval;
/* Suspend HBA. */
scsi_block_requests(ha->host);
ha->isp_ops->disable_intrs(ha);
set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
/* Go with write. */
rval = qla24xx_write_flash_data(ha, (uint32_t *)buf, offset >> 2,
length >> 2);
/* Resume HBA -- RISC reset needed. */
clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
set_bit(ISP_ABORT_NEEDED, &ha->dpc_flags);
qla2xxx_wake_dpc(ha);
qla2x00_wait_for_hba_online(ha);
scsi_unblock_requests(ha->host);
return rval;
}
/**
* qla2x00_get_fcode_version() - Determine an FCODE image's version.
* @ha: HA context
* @pcids: Pointer to the FCODE PCI data structure
*
* The process of retrieving the FCODE version information is at best
* described as interesting.
*
* Within the first 100h bytes of the image an ASCII string is present
* which contains several pieces of information including the FCODE
* version. Unfortunately it seems the only reliable way to retrieve
* the version is by scanning for another sentinel within the string,
* the FCODE build date:
*
* ... 2.00.02 10/17/02 ...
*
* Returns QLA_SUCCESS on successful retrieval of version.
*/
static void
qla2x00_get_fcode_version(scsi_qla_host_t *ha, uint32_t pcids)
{
int ret = QLA_FUNCTION_FAILED;
uint32_t istart, iend, iter, vend;
uint8_t do_next, rbyte, *vbyte;
memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
/* Skip the PCI data structure. */
istart = pcids +
((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
qla2x00_read_flash_byte(ha, pcids + 0x0A));
iend = istart + 0x100;
do {
/* Scan for the sentinel date string...eeewww. */
do_next = 0;
iter = istart;
while ((iter < iend) && !do_next) {
iter++;
if (qla2x00_read_flash_byte(ha, iter) == '/') {
if (qla2x00_read_flash_byte(ha, iter + 2) ==
'/')
do_next++;
else if (qla2x00_read_flash_byte(ha,
iter + 3) == '/')
do_next++;
}
}
if (!do_next)
break;
/* Backtrack to previous ' ' (space). */
do_next = 0;
while ((iter > istart) && !do_next) {
iter--;
if (qla2x00_read_flash_byte(ha, iter) == ' ')
do_next++;
}
if (!do_next)
break;
/*
* Mark end of version tag, and find previous ' ' (space) or
* string length (recent FCODE images -- major hack ahead!!!).
*/
vend = iter - 1;
do_next = 0;
while ((iter > istart) && !do_next) {
iter--;
rbyte = qla2x00_read_flash_byte(ha, iter);
if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
do_next++;
}
if (!do_next)
break;
/* Mark beginning of version tag, and copy data. */
iter++;
if ((vend - iter) &&
((vend - iter) < sizeof(ha->fcode_revision))) {
vbyte = ha->fcode_revision;
while (iter <= vend) {
*vbyte++ = qla2x00_read_flash_byte(ha, iter);
iter++;
}
ret = QLA_SUCCESS;
}
} while (0);
if (ret != QLA_SUCCESS)
memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
}
int
qla2x00_get_flash_version(scsi_qla_host_t *ha, void *mbuf)
{
int ret = QLA_SUCCESS;
uint8_t code_type, last_image;
uint32_t pcihdr, pcids;
uint8_t *dbyte;
uint16_t *dcode;
if (!ha->pio_address || !mbuf)
return QLA_FUNCTION_FAILED;
memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
qla2x00_flash_enable(ha);
/* Begin with first PCI expansion ROM header. */
pcihdr = 0;
last_image = 1;
do {
/* Verify PCI expansion ROM header. */
if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
/* No signature */
DEBUG2(printk("scsi(%ld): No matching ROM "
"signature.\n", ha->host_no));
ret = QLA_FUNCTION_FAILED;
break;
}
/* Locate PCI data structure. */
pcids = pcihdr +
((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
qla2x00_read_flash_byte(ha, pcihdr + 0x18));
/* Validate signature of PCI data structure. */
if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
/* Incorrect header. */
DEBUG2(printk("%s(): PCI data struct not found "
"pcir_adr=%x.\n", __func__, pcids));
ret = QLA_FUNCTION_FAILED;
break;
}
/* Read version */
code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
switch (code_type) {
case ROM_CODE_TYPE_BIOS:
/* Intel x86, PC-AT compatible. */
ha->bios_revision[0] =
qla2x00_read_flash_byte(ha, pcids + 0x12);
ha->bios_revision[1] =
qla2x00_read_flash_byte(ha, pcids + 0x13);
DEBUG3(printk("%s(): read BIOS %d.%d.\n", __func__,
ha->bios_revision[1], ha->bios_revision[0]));
break;
case ROM_CODE_TYPE_FCODE:
/* Open Firmware standard for PCI (FCode). */
/* Eeeewww... */
qla2x00_get_fcode_version(ha, pcids);
break;
case ROM_CODE_TYPE_EFI:
/* Extensible Firmware Interface (EFI). */
ha->efi_revision[0] =
qla2x00_read_flash_byte(ha, pcids + 0x12);
ha->efi_revision[1] =
qla2x00_read_flash_byte(ha, pcids + 0x13);
DEBUG3(printk("%s(): read EFI %d.%d.\n", __func__,
ha->efi_revision[1], ha->efi_revision[0]));
break;
default:
DEBUG2(printk("%s(): Unrecognized code type %x at "
"pcids %x.\n", __func__, code_type, pcids));
break;
}
last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;
/* Locate next PCI expansion ROM. */
pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
} while (!last_image);
if (IS_QLA2322(ha)) {
/* Read firmware image information. */
memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
dbyte = mbuf;
memset(dbyte, 0, 8);
dcode = (uint16_t *)dbyte;
qla2x00_read_flash_data(ha, dbyte, FA_RISC_CODE_ADDR * 4 + 10,
8);
DEBUG3(printk("%s(%ld): dumping fw ver from flash:\n",
__func__, ha->host_no));
DEBUG3(qla2x00_dump_buffer((uint8_t *)dbyte, 8));
if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
dcode[2] == 0xffff && dcode[3] == 0xffff) ||
(dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
dcode[3] == 0)) {
DEBUG2(printk("%s(): Unrecognized fw revision at "
"%x.\n", __func__, FA_RISC_CODE_ADDR * 4));
} else {
/* values are in big endian */
ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
}
}
qla2x00_flash_disable(ha);
return ret;
}
int
qla24xx_get_flash_version(scsi_qla_host_t *ha, void *mbuf)
{
int ret = QLA_SUCCESS;
uint32_t pcihdr, pcids;
uint32_t *dcode;
uint8_t *bcode;
uint8_t code_type, last_image;
int i;
if (!mbuf)
return QLA_FUNCTION_FAILED;
memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
dcode = mbuf;
/* Begin with first PCI expansion ROM header. */
pcihdr = 0;
last_image = 1;
do {
/* Verify PCI expansion ROM header. */
qla24xx_read_flash_data(ha, dcode, pcihdr >> 2, 0x20);
bcode = mbuf + (pcihdr % 4);
if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
/* No signature */
DEBUG2(printk("scsi(%ld): No matching ROM "
"signature.\n", ha->host_no));
ret = QLA_FUNCTION_FAILED;
break;
}
/* Locate PCI data structure. */
pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
qla24xx_read_flash_data(ha, dcode, pcids >> 2, 0x20);
bcode = mbuf + (pcihdr % 4);
/* Validate signature of PCI data structure. */
if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
bcode[0x2] != 'I' || bcode[0x3] != 'R') {
/* Incorrect header. */
DEBUG2(printk("%s(): PCI data struct not found "
"pcir_adr=%x.\n", __func__, pcids));
ret = QLA_FUNCTION_FAILED;
break;
}
/* Read version */
code_type = bcode[0x14];
switch (code_type) {
case ROM_CODE_TYPE_BIOS:
/* Intel x86, PC-AT compatible. */
ha->bios_revision[0] = bcode[0x12];
ha->bios_revision[1] = bcode[0x13];
DEBUG3(printk("%s(): read BIOS %d.%d.\n", __func__,
ha->bios_revision[1], ha->bios_revision[0]));
break;
case ROM_CODE_TYPE_FCODE:
/* Open Firmware standard for PCI (FCode). */
ha->fcode_revision[0] = bcode[0x12];
ha->fcode_revision[1] = bcode[0x13];
DEBUG3(printk("%s(): read FCODE %d.%d.\n", __func__,
ha->fcode_revision[1], ha->fcode_revision[0]));
break;
case ROM_CODE_TYPE_EFI:
/* Extensible Firmware Interface (EFI). */
ha->efi_revision[0] = bcode[0x12];
ha->efi_revision[1] = bcode[0x13];
DEBUG3(printk("%s(): read EFI %d.%d.\n", __func__,
ha->efi_revision[1], ha->efi_revision[0]));
break;
default:
DEBUG2(printk("%s(): Unrecognized code type %x at "
"pcids %x.\n", __func__, code_type, pcids));
break;
}
last_image = bcode[0x15] & BIT_7;
/* Locate next PCI expansion ROM. */
pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
} while (!last_image);
/* Read firmware image information. */
memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
dcode = mbuf;
qla24xx_read_flash_data(ha, dcode, FA_RISC_CODE_ADDR + 4, 4);
for (i = 0; i < 4; i++)
dcode[i] = be32_to_cpu(dcode[i]);
if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
(dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
dcode[3] == 0)) {
DEBUG2(printk("%s(): Unrecognized fw version at %x.\n",
__func__, FA_RISC_CODE_ADDR));
} else {
ha->fw_revision[0] = dcode[0];
ha->fw_revision[1] = dcode[1];
ha->fw_revision[2] = dcode[2];
ha->fw_revision[3] = dcode[3];
}
return ret;
}