/*
* pdc_adma.c - Pacific Digital Corporation ADMA
*
* Maintained by: Mark Lord <mlord@pobox.com>
*
* Copyright 2005 Mark Lord
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
*
* libata documentation is available via 'make {ps|pdf}docs',
* as Documentation/DocBook/libata.*
*
*
* Supports ATA disks in single-packet ADMA mode.
* Uses PIO for everything else.
*
* TODO: Use ADMA transfers for ATAPI devices, when possible.
* This requires careful attention to a number of quirks of the chip.
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/device.h>
#include <scsi/scsi_host.h>
#include <asm/io.h>
#include <linux/libata.h>
#define DRV_NAME "pdc_adma"
#define DRV_VERSION "0.03"
/* macro to calculate base address for ATA regs */
#define ADMA_ATA_REGS(base,port_no) ((base) + ((port_no) * 0x40))
/* macro to calculate base address for ADMA regs */
#define ADMA_REGS(base,port_no) ((base) + 0x80 + ((port_no) * 0x20))
enum {
ADMA_PORTS = 2,
ADMA_CPB_BYTES = 40,
ADMA_PRD_BYTES = LIBATA_MAX_PRD * 16,
ADMA_PKT_BYTES = ADMA_CPB_BYTES + ADMA_PRD_BYTES,
ADMA_DMA_BOUNDARY = 0xffffffff,
/* global register offsets */
ADMA_MODE_LOCK = 0x00c7,
/* per-channel register offsets */
ADMA_CONTROL = 0x0000, /* ADMA control */
ADMA_STATUS = 0x0002, /* ADMA status */
ADMA_CPB_COUNT = 0x0004, /* CPB count */
ADMA_CPB_CURRENT = 0x000c, /* current CPB address */
ADMA_CPB_NEXT = 0x000c, /* next CPB address */
ADMA_CPB_LOOKUP = 0x0010, /* CPB lookup table */
ADMA_FIFO_IN = 0x0014, /* input FIFO threshold */
ADMA_FIFO_OUT = 0x0016, /* output FIFO threshold */
/* ADMA_CONTROL register bits */
aNIEN = (1 << 8), /* irq mask: 1==masked */
aGO = (1 << 7), /* packet trigger ("Go!") */
aRSTADM = (1 << 5), /* ADMA logic reset */
aPIOMD4 = 0x0003, /* PIO mode 4 */
/* ADMA_STATUS register bits */
aPSD = (1 << 6),
aUIRQ = (1 << 4),
aPERR = (1 << 0),
/* CPB bits */
cDONE = (1 << 0),
cVLD = (1 << 0),
cDAT = (1 << 2),
cIEN = (1 << 3),
/* PRD bits */
pORD = (1 << 4),
pDIRO = (1 << 5),
pEND = (1 << 7),
/* ATA register flags */
rIGN = (1 << 5),
rEND = (1 << 7),
/* ATA register addresses */
ADMA_REGS_CONTROL = 0x0e,
ADMA_REGS_SECTOR_COUNT = 0x12,
ADMA_REGS_LBA_LOW = 0x13,
ADMA_REGS_LBA_MID = 0x14,
ADMA_REGS_LBA_HIGH = 0x15,
ADMA_REGS_DEVICE = 0x16,
ADMA_REGS_COMMAND = 0x17,
/* PCI device IDs */
board_1841_idx = 0, /* ADMA 2-port controller */
};
typedef enum { adma_state_idle, adma_state_pkt, adma_state_mmio } adma_state_t;
struct adma_port_priv {
u8 *pkt;
dma_addr_t pkt_dma;
adma_state_t state;
};
static int adma_ata_init_one (struct pci_dev *pdev,
const struct pci_device_id *ent);
static irqreturn_t adma_intr (int irq, void *dev_instance,
struct pt_regs *regs);
static int adma_port_start(struct ata_port *ap);
static void adma_host_stop(struct ata_host_set *host_set);
static void adma_port_stop(struct ata_port *ap);
static void adma_phy_reset(struct ata_port *ap);
static void adma_qc_prep(struct ata_queued_cmd *qc);
static int adma_qc_issue(struct ata_queued_cmd *qc);
static int adma_check_atapi_dma(struct ata_queued_cmd *qc);
static void adma_bmdma_stop(struct ata_queued_cmd *qc);
static u8 adma_bmdma_status(struct ata_port *ap);
static void adma_irq_clear(struct ata_port *ap);
static void adma_eng_timeout(struct ata_port *ap);
static struct scsi_host_template adma_ata_sht = {
.module = THIS_MODULE,
.name = DRV_NAME,
.ioctl = ata_scsi_ioctl,
.queuecommand = ata_scsi_queuecmd,
.eh_strategy_handler = ata_scsi_error,
.can_queue = ATA_DEF_QUEUE,
.this_id = ATA_SHT_THIS_ID,
.sg_tablesize = LIBATA_MAX_PRD,
.max_sectors = ATA_MAX_SECTORS,
.cmd_per_lun = ATA_SHT_CMD_PER_LUN,
.emulated = ATA_SHT_EMULATED,
.use_clustering = ENABLE_CLUSTERING,
.proc_name = DRV_NAME,
.dma_boundary = ADMA_DMA_BOUNDARY,
.slave_configure = ata_scsi_slave_config,
.bios_param = ata_std_bios_param,
};
static const struct ata_port_operations adma_ata_ops = {
.port_disable = ata_port_disable,
.tf_load = ata_tf_load,
.tf_read = ata_tf_read,
.check_status = ata_check_status,
.check_atapi_dma = adma_check_atapi_dma,
.exec_command = ata_exec_command,
.dev_select = ata_std_dev_select,
.phy_reset = adma_phy_reset,
.qc_prep = adma_qc_prep,
.qc_issue = adma_qc_issue,
.eng_timeout = adma_eng_timeout,
.irq_handler = adma_intr,
.irq_clear = adma_irq_clear,
.port_start = adma_port_start,
.port_stop = adma_port_stop,
.host_stop = adma_host_stop,
.bmdma_stop = adma_bmdma_stop,
.bmdma_status = adma_bmdma_status,
};
static struct ata_port_info adma_port_info[] = {
/* board_1841_idx */
{
.sht = &adma_ata_sht,
.host_flags = ATA_FLAG_SLAVE_POSS | ATA_FLAG_SRST |
ATA_FLAG_NO_LEGACY | ATA_FLAG_MMIO,
.pio_mask = 0x10, /* pio4 */
.udma_mask = 0x1f, /* udma0-4 */
.port_ops = &adma_ata_ops,
},
};
static const struct pci_device_id adma_ata_pci_tbl[] = {
{ PCI_VENDOR_ID_PDC, 0x1841, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
board_1841_idx },
{ } /* terminate list */
};
static struct pci_driver adma_ata_pci_driver = {
.name = DRV_NAME,
.id_table = adma_ata_pci_tbl,
.probe = adma_ata_init_one,
.remove = ata_pci_remove_one,
};
static int adma_check_atapi_dma(struct ata_queued_cmd *qc)
{
return 1; /* ATAPI DMA not yet supported */
}
static void adma_bmdma_stop(struct ata_queued_cmd *qc)
{
/* nothing */
}
static u8 adma_bmdma_status(struct ata_port *ap)
{
return 0;
}
static void adma_irq_clear(struct ata_port *ap)
{
/* nothing */
}
static void adma_reset_engine(void __iomem *chan)
{
/* reset ADMA to idle state */
writew(aPIOMD4 | aNIEN | aRSTADM, chan + ADMA_CONTROL);
udelay(2);
writew(aPIOMD4, chan + ADMA_CONTROL);
udelay(2);
}
static void adma_reinit_engine(struct ata_port *ap)
{
struct adma_port_priv *pp = ap->private_data;
void __iomem *mmio_base = ap->host_set->mmio_base;
void __iomem *chan = ADMA_REGS(mmio_base, ap->port_no);
/* mask/clear ATA interrupts */
writeb(ATA_NIEN, (void __iomem *)ap->ioaddr.ctl_addr);
ata_check_status(ap);
/* reset the ADMA engine */
adma_reset_engine(chan);
/* set in-FIFO threshold to 0x100 */
writew(0x100, chan + ADMA_FIFO_IN);
/* set CPB pointer */
writel((u32)pp->pkt_dma, chan + ADMA_CPB_NEXT);
/* set out-FIFO threshold to 0x100 */
writew(0x100, chan + ADMA_FIFO_OUT);
/* set CPB count */
writew(1, chan + ADMA_CPB_COUNT);
/* read/discard ADMA status */
readb(chan + ADMA_STATUS);
}
static inline void adma_enter_reg_mode(struct ata_port *ap)
{
void __iomem *chan = ADMA_REGS(ap->host_set->mmio_base, ap->port_no);
writew(aPIOMD4, chan + ADMA_CONTROL);
readb(chan + ADMA_STATUS); /* flush */
}
static void adma_phy_reset(struct ata_port *ap)
{
struct adma_port_priv *pp = ap->private_data;
pp->state = adma_state_idle;
adma_reinit_engine(ap);
ata_port_probe(ap);
ata_bus_reset(ap);
}
static void adma_eng_timeout(struct ata_port *ap)
{
struct adma_port_priv *pp = ap->private_data;
if (pp->state != adma_state_idle) /* healthy paranoia */
pp->state = adma_state_mmio;
adma_reinit_engine(ap);
ata_eng_timeout(ap);
}
static int adma_fill_sg(struct ata_queued_cmd *qc)
{
struct scatterlist *sg;
struct ata_port *ap = qc->ap;
struct adma_port_priv *pp = ap->private_data;
u8 *buf = pp->pkt;
int i = (2 + buf[3]) * 8;
u8 pFLAGS = pORD | ((qc->tf.flags & ATA_TFLAG_WRITE) ? pDIRO : 0);
ata_for_each_sg(sg, qc) {
u32 addr;
u32 len;
addr = (u32)sg_dma_address(sg);
*(__le32 *)(buf + i) = cpu_to_le32(addr);
i += 4;
len = sg_dma_len(sg) >> 3;
*(__le32 *)(buf + i) = cpu_to_le32(len);
i += 4;
if (ata_sg_is_last(sg, qc))
pFLAGS |= pEND;
buf[i++] = pFLAGS;
buf[i++] = qc->dev->dma_mode & 0xf;
buf[i++] = 0; /* pPKLW */
buf[i++] = 0; /* reserved */
*(__le32 *)(buf + i)
= (pFLAGS & pEND) ? 0 : cpu_to_le32(pp->pkt_dma + i + 4);
i += 4;
VPRINTK("PRD[%u] = (0x%lX, 0x%X)\n", nelem,
(unsigned long)addr, len);
}
return i;
}
static void adma_qc_prep(struct ata_queued_cmd *qc)
{
struct adma_port_priv *pp = qc->ap->private_data;
u8 *buf = pp->pkt;
u32 pkt_dma = (u32)pp->pkt_dma;
int i = 0;
VPRINTK("ENTER\n");
adma_enter_reg_mode(qc->ap);
if (qc->tf.protocol != ATA_PROT_DMA) {
ata_qc_prep(qc);
return;
}
buf[i++] = 0; /* Response flags */
buf[i++] = 0; /* reserved */
buf[i++] = cVLD | cDAT | cIEN;
i++; /* cLEN, gets filled in below */
*(__le32 *)(buf+i) = cpu_to_le32(pkt_dma); /* cNCPB */
i += 4; /* cNCPB */
i += 4; /* cPRD, gets filled in below */
buf[i++] = 0; /* reserved */
buf[i++] = 0; /* reserved */
buf[i++] = 0; /* reserved */
buf[i++] = 0; /* reserved */
/* ATA registers; must be a multiple of 4 */
buf[i++] = qc->tf.device;
buf[i++] = ADMA_REGS_DEVICE;
if ((qc->tf.flags & ATA_TFLAG_LBA48)) {
buf[i++] = qc->tf.hob_nsect;
buf[i++] = ADMA_REGS_SECTOR_COUNT;
buf[i++] = qc->tf.hob_lbal;
buf[i++] = ADMA_REGS_LBA_LOW;
buf[i++] = qc->tf.hob_lbam;
buf[i++] = ADMA_REGS_LBA_MID;
buf[i++] = qc->tf.hob_lbah;
buf[i++] = ADMA_REGS_LBA_HIGH;
}
buf[i++] = qc->tf.nsect;
buf[i++] = ADMA_REGS_SECTOR_COUNT;
buf[i++] = qc->tf.lbal;
buf[i++] = ADMA_REGS_LBA_LOW;
buf[i++] = qc->tf.lbam;
buf[i++] = ADMA_REGS_LBA_MID;
buf[i++] = qc->tf.lbah;
buf[i++] = ADMA_REGS_LBA_HIGH;
buf[i++] = 0;
buf[i++] = ADMA_REGS_CONTROL;
buf[i++] = rIGN;
buf[i++] = 0;
buf[i++] = qc->tf.command;
buf[i++] = ADMA_REGS_COMMAND | rEND;
buf[3] = (i >> 3) - 2; /* cLEN */
*(__le32 *)(buf+8) = cpu_to_le32(pkt_dma + i); /* cPRD */
i = adma_fill_sg(qc);
wmb(); /* flush PRDs and pkt to memory */
#if 0
/* dump out CPB + PRDs for debug */
{
int j, len = 0;
static char obuf[2048];
for (j = 0; j < i; ++j) {
len += sprintf(obuf+len, "%02x ", buf[j]);
if ((j & 7) == 7) {
printk("%s\n", obuf);
len = 0;
}
}
if (len)
printk("%s\n", obuf);
}
#endif
}
static inline void adma_packet_start(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
void __iomem *chan = ADMA_REGS(ap->host_set->mmio_base, ap->port_no);
VPRINTK("ENTER, ap %p\n", ap);
/* fire up the ADMA engine */
writew(aPIOMD4 | aGO, chan + ADMA_CONTROL);
}
static int adma_qc_issue(struct ata_queued_cmd *qc)
{
struct adma_port_priv *pp = qc->ap->private_data;
switch (qc->tf.protocol) {
case ATA_PROT_DMA:
pp->state = adma_state_pkt;
adma_packet_start(qc);
return 0;
case ATA_PROT_ATAPI_DMA:
BUG();
break;
default:
break;
}
pp->state = adma_state_mmio;
return ata_qc_issue_prot(qc);
}
static inline unsigned int adma_intr_pkt(struct ata_host_set *host_set)
{
unsigned int handled = 0, port_no;
u8 __iomem *mmio_base = host_set->mmio_base;
for (port_no = 0; port_no < host_set->n_ports; ++port_no) {
struct ata_port *ap = host_set->ports[port_no];
struct adma_port_priv *pp;
struct ata_queued_cmd *qc;
void __iomem *chan = ADMA_REGS(mmio_base, port_no);
u8 status = readb(chan + ADMA_STATUS);
if (status == 0)
continue;
handled = 1;
adma_enter_reg_mode(ap);
if (ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))
continue;
pp = ap->private_data;
if (!pp || pp->state != adma_state_pkt)
continue;
qc = ata_qc_from_tag(ap, ap->active_tag);
if (qc && (!(qc->tf.ctl & ATA_NIEN))) {
if ((status & (aPERR | aPSD | aUIRQ)))
qc->err_mask |= AC_ERR_OTHER;
else if (pp->pkt[0] != cDONE)
qc->err_mask |= AC_ERR_OTHER;
ata_qc_complete(qc);
}
}
return handled;
}
static inline unsigned int adma_intr_mmio(struct ata_host_set *host_set)
{
unsigned int handled = 0, port_no;
for (port_no = 0; port_no < host_set->n_ports; ++port_no) {
struct ata_port *ap;
ap = host_set->ports[port_no];
if (ap && (!(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR)))) {
struct ata_queued_cmd *qc;
struct adma_port_priv *pp = ap->private_data;
if (!pp || pp->state != adma_state_mmio)
continue;
qc = ata_qc_from_tag(ap, ap->active_tag);
if (qc && (!(qc->tf.ctl & ATA_NIEN))) {
/* check main status, clearing INTRQ */
u8 status = ata_check_status(ap);
if ((status & ATA_BUSY))
continue;
DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
ap->id, qc->tf.protocol, status);
/* complete taskfile transaction */
pp->state = adma_state_idle;
qc->err_mask |= ac_err_mask(status);
ata_qc_complete(qc);
handled = 1;
}
}
}
return handled;
}
static irqreturn_t adma_intr(int irq, void *dev_instance, struct pt_regs *regs)
{
struct ata_host_set *host_set = dev_instance;
unsigned int handled = 0;
VPRINTK("ENTER\n");
spin_lock(&host_set->lock);
handled = adma_intr_pkt(host_set) | adma_intr_mmio(host_set);
spin_unlock(&host_set->lock);
VPRINTK("EXIT\n");
return IRQ_RETVAL(handled);
}
static void adma_ata_setup_port(struct ata_ioports *port, unsigned long base)
{
port->cmd_addr =
port->data_addr = base + 0x000;
port->error_addr =
port->feature_addr = base + 0x004;
port->nsect_addr = base + 0x008;
port->lbal_addr = base + 0x00c;
port->lbam_addr = base + 0x010;
port->lbah_addr = base + 0x014;
port->device_addr = base + 0x018;
port->status_addr =
port->command_addr = base + 0x01c;
port->altstatus_addr =
port->ctl_addr = base + 0x038;
}
static int adma_port_start(struct ata_port *ap)
{
struct device *dev = ap->host_set->dev;
struct adma_port_priv *pp;
int rc;
rc = ata_port_start(ap);
if (rc)
return rc;
adma_enter_reg_mode(ap);
rc = -ENOMEM;
pp = kcalloc(1, sizeof(*pp), GFP_KERNEL);
if (!pp)
goto err_out;
pp->pkt = dma_alloc_coherent(dev, ADMA_PKT_BYTES, &pp->pkt_dma,
GFP_KERNEL);
if (!pp->pkt)
goto err_out_kfree;
/* paranoia? */
if ((pp->pkt_dma & 7) != 0) {
printk("bad alignment for pp->pkt_dma: %08x\n",
(u32)pp->pkt_dma);
dma_free_coherent(dev, ADMA_PKT_BYTES,
pp->pkt, pp->pkt_dma);
goto err_out_kfree;
}
memset(pp->pkt, 0, ADMA_PKT_BYTES);
ap->private_data = pp;
adma_reinit_engine(ap);
return 0;
err_out_kfree:
kfree(pp);
err_out:
ata_port_stop(ap);
return rc;
}
static void adma_port_stop(struct ata_port *ap)
{
struct device *dev = ap->host_set->dev;
struct adma_port_priv *pp = ap->private_data;
adma_reset_engine(ADMA_REGS(ap->host_set->mmio_base, ap->port_no));
if (pp != NULL) {
ap->private_data = NULL;
if (pp->pkt != NULL)
dma_free_coherent(dev, ADMA_PKT_BYTES,
pp->pkt, pp->pkt_dma);
kfree(pp);
}
ata_port_stop(ap);
}
static void adma_host_stop(struct ata_host_set *host_set)
{
unsigned int port_no;
for (port_no = 0; port_no < ADMA_PORTS; ++port_no)
adma_reset_engine(ADMA_REGS(host_set->mmio_base, port_no));
ata_pci_host_stop(host_set);
}
static void adma_host_init(unsigned int chip_id,
struct ata_probe_ent *probe_ent)
{
unsigned int port_no;
void __iomem *mmio_base = probe_ent->mmio_base;
/* enable/lock aGO operation */
writeb(7, mmio_base + ADMA_MODE_LOCK);
/* reset the ADMA logic */
for (port_no = 0; port_no < ADMA_PORTS; ++port_no)
adma_reset_engine(ADMA_REGS(mmio_base, port_no));
}
static int adma_set_dma_masks(struct pci_dev *pdev, void __iomem *mmio_base)
{
int rc;
rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
if (rc) {
dev_printk(KERN_ERR, &pdev->dev,
"32-bit DMA enable failed\n");
return rc;
}
rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
if (rc) {
dev_printk(KERN_ERR, &pdev->dev,
"32-bit consistent DMA enable failed\n");
return rc;
}
return 0;
}
static int adma_ata_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
static int printed_version;
struct ata_probe_ent *probe_ent = NULL;
void __iomem *mmio_base;
unsigned int board_idx = (unsigned int) ent->driver_data;
int rc, port_no;
if (!printed_version++)
dev_printk(KERN_DEBUG, &pdev->dev, "version " DRV_VERSION "\n");
rc = pci_enable_device(pdev);
if (rc)
return rc;
rc = pci_request_regions(pdev, DRV_NAME);
if (rc)
goto err_out;
if ((pci_resource_flags(pdev, 4) & IORESOURCE_MEM) == 0) {
rc = -ENODEV;
goto err_out_regions;
}
mmio_base = pci_iomap(pdev, 4, 0);
if (mmio_base == NULL) {
rc = -ENOMEM;
goto err_out_regions;
}
rc = adma_set_dma_masks(pdev, mmio_base);
if (rc)
goto err_out_iounmap;
probe_ent = kcalloc(1, sizeof(*probe_ent), GFP_KERNEL);
if (probe_ent == NULL) {
rc = -ENOMEM;
goto err_out_iounmap;
}
probe_ent->dev = pci_dev_to_dev(pdev);
INIT_LIST_HEAD(&probe_ent->node);
probe_ent->sht = adma_port_info[board_idx].sht;
probe_ent->host_flags = adma_port_info[board_idx].host_flags;
probe_ent->pio_mask = adma_port_info[board_idx].pio_mask;
probe_ent->mwdma_mask = adma_port_info[board_idx].mwdma_mask;
probe_ent->udma_mask = adma_port_info[board_idx].udma_mask;
probe_ent->port_ops = adma_port_info[board_idx].port_ops;
probe_ent->irq = pdev->irq;
probe_ent->irq_flags = SA_SHIRQ;
probe_ent->mmio_base = mmio_base;
probe_ent->n_ports = ADMA_PORTS;
for (port_no = 0; port_no < probe_ent->n_ports; ++port_no) {
adma_ata_setup_port(&probe_ent->port[port_no],
ADMA_ATA_REGS((unsigned long)mmio_base, port_no));
}
pci_set_master(pdev);
/* initialize adapter */
adma_host_init(board_idx, probe_ent);
rc = ata_device_add(probe_ent);
kfree(probe_ent);
if (rc != ADMA_PORTS)
goto err_out_iounmap;
return 0;
err_out_iounmap:
pci_iounmap(pdev, mmio_base);
err_out_regions:
pci_release_regions(pdev);
err_out:
pci_disable_device(pdev);
return rc;
}
static int __init adma_ata_init(void)
{
return pci_module_init(&adma_ata_pci_driver);
}
static void __exit adma_ata_exit(void)
{
pci_unregister_driver(&adma_ata_pci_driver);
}
MODULE_AUTHOR("Mark Lord");
MODULE_DESCRIPTION("Pacific Digital Corporation ADMA low-level driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, adma_ata_pci_tbl);
MODULE_VERSION(DRV_VERSION);
module_init(adma_ata_init);
module_exit(adma_ata_exit);