/*
* core.c -- Voltage/Current Regulator framework.
*
* Copyright 2007, 2008 Wolfson Microelectronics PLC.
* Copyright 2008 SlimLogic Ltd.
*
* Author: Liam Girdwood <lrg@slimlogic.co.uk>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/debugfs.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/async.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
#include <linux/delay.h>
#include <linux/gpio.h>
#include <linux/of.h>
#include <linux/regmap.h>
#include <linux/regulator/of_regulator.h>
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
#include <linux/module.h>
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>
#include "dummy.h"
#define rdev_crit(rdev, fmt, ...) \
pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_err(rdev, fmt, ...) \
pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...) \
pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...) \
pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...) \
pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_list);
static LIST_HEAD(regulator_map_list);
static bool has_full_constraints;
static bool board_wants_dummy_regulator;
static struct dentry *debugfs_root;
/*
* struct regulator_map
*
* Used to provide symbolic supply names to devices.
*/
struct regulator_map {
struct list_head list;
const char *dev_name; /* The dev_name() for the consumer */
const char *supply;
struct regulator_dev *regulator;
};
/*
* struct regulator
*
* One for each consumer device.
*/
struct regulator {
struct device *dev;
struct list_head list;
unsigned int always_on:1;
unsigned int bypass:1;
int uA_load;
int min_uV;
int max_uV;
char *supply_name;
struct device_attribute dev_attr;
struct regulator_dev *rdev;
struct dentry *debugfs;
};
static int _regulator_is_enabled(struct regulator_dev *rdev);
static int _regulator_disable(struct regulator_dev *rdev);
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
static void _notifier_call_chain(struct regulator_dev *rdev,
unsigned long event, void *data);
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
int min_uV, int max_uV);
static struct regulator *create_regulator(struct regulator_dev *rdev,
struct device *dev,
const char *supply_name);
static const char *rdev_get_name(struct regulator_dev *rdev)
{
if (rdev->constraints && rdev->constraints->name)
return rdev->constraints->name;
else if (rdev->desc->name)
return rdev->desc->name;
else
return "";
}
/**
* of_get_regulator - get a regulator device node based on supply name
* @dev: Device pointer for the consumer (of regulator) device
* @supply: regulator supply name
*
* Extract the regulator device node corresponding to the supply name.
* retruns the device node corresponding to the regulator if found, else
* returns NULL.
*/
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
struct device_node *regnode = NULL;
char prop_name[32]; /* 32 is max size of property name */
dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
snprintf(prop_name, 32, "%s-supply", supply);
regnode = of_parse_phandle(dev->of_node, prop_name, 0);
if (!regnode) {
dev_dbg(dev, "Looking up %s property in node %s failed",
prop_name, dev->of_node->full_name);
return NULL;
}
return regnode;
}
static int _regulator_can_change_status(struct regulator_dev *rdev)
{
if (!rdev->constraints)
return 0;
if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
return 1;
else
return 0;
}
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
int *min_uV, int *max_uV)
{
BUG_ON(*min_uV > *max_uV);
if (!rdev->constraints) {
rdev_err(rdev, "no constraints\n");
return -ENODEV;
}
if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
rdev_err(rdev, "operation not allowed\n");
return -EPERM;
}
if (*max_uV > rdev->constraints->max_uV)
*max_uV = rdev->constraints->max_uV;
if (*min_uV < rdev->constraints->min_uV)
*min_uV = rdev->constraints->min_uV;
if (*min_uV > *max_uV) {
rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
*min_uV, *max_uV);
return -EINVAL;
}
return 0;
}
/* Make sure we select a voltage that suits the needs of all
* regulator consumers
*/
static int regulator_check_consumers(struct regulator_dev *rdev,
int *min_uV, int *max_uV)
{
struct regulator *regulator;
list_for_each_entry(regulator, &rdev->consumer_list, list) {
/*
* Assume consumers that didn't say anything are OK
* with anything in the constraint range.
*/
if (!regulator->min_uV && !regulator->max_uV)
continue;
if (*max_uV > regulator->max_uV)
*max_uV = regulator->max_uV;
if (*min_uV < regulator->min_uV)
*min_uV = regulator->min_uV;
}
if (*min_uV > *max_uV)
return -EINVAL;
return 0;
}
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
int *min_uA, int *max_uA)
{
BUG_ON(*min_uA > *max_uA);
if (!rdev->constraints) {
rdev_err(rdev, "no constraints\n");
return -ENODEV;
}
if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
rdev_err(rdev, "operation not allowed\n");
return -EPERM;
}
if (*max_uA > rdev->constraints->max_uA)
*max_uA = rdev->constraints->max_uA;
if (*min_uA < rdev->constraints->min_uA)
*min_uA = rdev->constraints->min_uA;
if (*min_uA > *max_uA) {
rdev_err(rdev, "unsupportable current range: %d-%duA\n",
*min_uA, *max_uA);
return -EINVAL;
}
return 0;
}
/* operating mode constraint check */
static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
{
switch (*mode) {
case REGULATOR_MODE_FAST:
case REGULATOR_MODE_NORMAL:
case REGULATOR_MODE_IDLE:
case REGULATOR_MODE_STANDBY:
break;
default:
rdev_err(rdev, "invalid mode %x specified\n", *mode);
return -EINVAL;
}
if (!rdev->constraints) {
rdev_err(rdev, "no constraints\n");
return -ENODEV;
}
if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
rdev_err(rdev, "operation not allowed\n");
return -EPERM;
}
/* The modes are bitmasks, the most power hungry modes having
* the lowest values. If the requested mode isn't supported
* try higher modes. */
while (*mode) {
if (rdev->constraints->valid_modes_mask & *mode)
return 0;
*mode /= 2;
}
return -EINVAL;
}
/* dynamic regulator mode switching constraint check */
static int regulator_check_drms(struct regulator_dev *rdev)
{
if (!rdev->constraints) {
rdev_err(rdev, "no constraints\n");
return -ENODEV;
}
if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
rdev_err(rdev, "operation not allowed\n");
return -EPERM;
}
return 0;
}
static ssize_t regulator_uV_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
ssize_t ret;
mutex_lock(&rdev->mutex);
ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
mutex_unlock(&rdev->mutex);
return ret;
}
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
static ssize_t regulator_uA_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
static ssize_t regulator_name_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return sprintf(buf, "%s\n", rdev_get_name(rdev));
}
static ssize_t regulator_print_opmode(char *buf, int mode)
{
switch (mode) {
case REGULATOR_MODE_FAST:
return sprintf(buf, "fast\n");
case REGULATOR_MODE_NORMAL:
return sprintf(buf, "normal\n");
case REGULATOR_MODE_IDLE:
return sprintf(buf, "idle\n");
case REGULATOR_MODE_STANDBY:
return sprintf(buf, "standby\n");
}
return sprintf(buf, "unknown\n");
}
static ssize_t regulator_opmode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
static ssize_t regulator_print_state(char *buf, int state)
{
if (state > 0)
return sprintf(buf, "enabled\n");
else if (state == 0)
return sprintf(buf, "disabled\n");
else
return sprintf(buf, "unknown\n");
}
static ssize_t regulator_state_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
ssize_t ret;
mutex_lock(&rdev->mutex);
ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
mutex_unlock(&rdev->mutex);
return ret;
}
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
static ssize_t regulator_status_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
int status;
char *label;
status = rdev->desc->ops->get_status(rdev);
if (status < 0)
return status;
switch (status) {
case REGULATOR_STATUS_OFF:
label = "off";
break;
case REGULATOR_STATUS_ON:
label = "on";
break;
case REGULATOR_STATUS_ERROR:
label = "error";
break;
case REGULATOR_STATUS_FAST:
label = "fast";
break;
case REGULATOR_STATUS_NORMAL:
label = "normal";
break;
case REGULATOR_STATUS_IDLE:
label = "idle";
break;
case REGULATOR_STATUS_STANDBY:
label = "standby";
break;
case REGULATOR_STATUS_BYPASS:
label = "bypass";
break;
case REGULATOR_STATUS_UNDEFINED:
label = "undefined";
break;
default:
return -ERANGE;
}
return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
static ssize_t regulator_min_uA_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
if (!rdev->constraints)
return sprintf(buf, "constraint not defined\n");
return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
static ssize_t regulator_max_uA_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
if (!rdev->constraints)
return sprintf(buf, "constraint not defined\n");
return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
static ssize_t regulator_min_uV_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
if (!rdev->constraints)
return sprintf(buf, "constraint not defined\n");
return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
static ssize_t regulator_max_uV_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
if (!rdev->constraints)
return sprintf(buf, "constraint not defined\n");
return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
static ssize_t regulator_total_uA_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
struct regulator *regulator;
int uA = 0;
mutex_lock(&rdev->mutex);
list_for_each_entry(regulator, &rdev->consumer_list, list)
uA += regulator->uA_load;
mutex_unlock(&rdev->mutex);
return sprintf(buf, "%d\n", uA);
}
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
static ssize_t regulator_num_users_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", rdev->use_count);
}
static ssize_t regulator_type_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
switch (rdev->desc->type) {
case REGULATOR_VOLTAGE:
return sprintf(buf, "voltage\n");
case REGULATOR_CURRENT:
return sprintf(buf, "current\n");
}
return sprintf(buf, "unknown\n");
}
static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
regulator_suspend_mem_uV_show, NULL);
static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
regulator_suspend_disk_uV_show, NULL);
static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
regulator_suspend_standby_uV_show, NULL);
static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return regulator_print_opmode(buf,
rdev->constraints->state_mem.mode);
}
static DEVICE_ATTR(suspend_mem_mode, 0444,
regulator_suspend_mem_mode_show, NULL);
static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return regulator_print_opmode(buf,
rdev->constraints->state_disk.mode);
}
static DEVICE_ATTR(suspend_disk_mode, 0444,
regulator_suspend_disk_mode_show, NULL);
static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return regulator_print_opmode(buf,
rdev->constraints->state_standby.mode);
}
static DEVICE_ATTR(suspend_standby_mode, 0444,
regulator_suspend_standby_mode_show, NULL);
static ssize_t regulator_suspend_mem_state_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return regulator_print_state(buf,
rdev->constraints->state_mem.enabled);
}
static DEVICE_ATTR(suspend_mem_state, 0444,
regulator_suspend_mem_state_show, NULL);
static ssize_t regulator_suspend_disk_state_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return regulator_print_state(buf,
rdev->constraints->state_disk.enabled);
}
static DEVICE_ATTR(suspend_disk_state, 0444,
regulator_suspend_disk_state_show, NULL);
static ssize_t regulator_suspend_standby_state_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return regulator_print_state(buf,
rdev->constraints->state_standby.enabled);
}
static DEVICE_ATTR(suspend_standby_state, 0444,
regulator_suspend_standby_state_show, NULL);
static ssize_t regulator_bypass_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
const char *report;
bool bypass;
int ret;
ret = rdev->desc->ops->get_bypass(rdev, &bypass);
if (ret != 0)
report = "unknown";
else if (bypass)
report = "enabled";
else
report = "disabled";
return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
regulator_bypass_show, NULL);
/*
* These are the only attributes are present for all regulators.
* Other attributes are a function of regulator functionality.
*/
static struct device_attribute regulator_dev_attrs[] = {
__ATTR(name, 0444, regulator_name_show, NULL),
__ATTR(num_users, 0444, regulator_num_users_show, NULL),
__ATTR(type, 0444, regulator_type_show, NULL),
__ATTR_NULL,
};
static void regulator_dev_release(struct device *dev)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
kfree(rdev);
}
static struct class regulator_class = {
.name = "regulator",
.dev_release = regulator_dev_release,
.dev_attrs = regulator_dev_attrs,
};
/* Calculate the new optimum regulator operating mode based on the new total
* consumer load. All locks held by caller */
static void drms_uA_update(struct regulator_dev *rdev)
{
struct regulator *sibling;
int current_uA = 0, output_uV, input_uV, err;
unsigned int mode;
err = regulator_check_drms(rdev);
if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
(!rdev->desc->ops->get_voltage &&
!rdev->desc->ops->get_voltage_sel) ||
!rdev->desc->ops->set_mode)
return;
/* get output voltage */
output_uV = _regulator_get_voltage(rdev);
if (output_uV <= 0)
return;
/* get input voltage */
input_uV = 0;
if (rdev->supply)
input_uV = regulator_get_voltage(rdev->supply);
if (input_uV <= 0)
input_uV = rdev->constraints->input_uV;
if (input_uV <= 0)
return;
/* calc total requested load */
list_for_each_entry(sibling, &rdev->consumer_list, list)
current_uA += sibling->uA_load;
/* now get the optimum mode for our new total regulator load */
mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
output_uV, current_uA);
/* check the new mode is allowed */
err = regulator_mode_constrain(rdev, &mode);
if (err == 0)
rdev->desc->ops->set_mode(rdev, mode);
}
static int suspend_set_state(struct regulator_dev *rdev,
struct regulator_state *rstate)
{
int ret = 0;
/* If we have no suspend mode configration don't set anything;
* only warn if the driver implements set_suspend_voltage or
* set_suspend_mode callback.
*/
if (!rstate->enabled && !rstate->disabled) {
if (rdev->desc->ops->set_suspend_voltage ||
rdev->desc->ops->set_suspend_mode)
rdev_warn(rdev, "No configuration\n");
return 0;
}
if (rstate->enabled && rstate->disabled) {
rdev_err(rdev, "invalid configuration\n");
return -EINVAL;
}
if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
ret = rdev->desc->ops->set_suspend_enable(rdev);
else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
ret = rdev->desc->ops->set_suspend_disable(rdev);
else /* OK if set_suspend_enable or set_suspend_disable is NULL */
ret = 0;
if (ret < 0) {
rdev_err(rdev, "failed to enabled/disable\n");
return ret;
}
if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
if (ret < 0) {
rdev_err(rdev, "failed to set voltage\n");
return ret;
}
}
if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
if (ret < 0) {
rdev_err(rdev, "failed to set mode\n");
return ret;
}
}
return ret;
}
/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
if (!rdev->constraints)
return -EINVAL;
switch (state) {
case PM_SUSPEND_STANDBY:
return suspend_set_state(rdev,
&rdev->constraints->state_standby);
case PM_SUSPEND_MEM:
return suspend_set_state(rdev,
&rdev->constraints->state_mem);
case PM_SUSPEND_MAX:
return suspend_set_state(rdev,
&rdev->constraints->state_disk);
default:
return -EINVAL;
}
}
static void print_constraints(struct regulator_dev *rdev)
{
struct regulation_constraints *constraints = rdev->constraints;
char buf[80] = "";
int count = 0;
int ret;
if (constraints->min_uV && constraints->max_uV) {
if (constraints->min_uV == constraints->max_uV)
count += sprintf(buf + count, "%d mV ",
constraints->min_uV / 1000);
else
count += sprintf(buf + count, "%d <--> %d mV ",
constraints->min_uV / 1000,
constraints->max_uV / 1000);
}
if (!constraints->min_uV ||
constraints->min_uV != constraints->max_uV) {
ret = _regulator_get_voltage(rdev);
if (ret > 0)
count += sprintf(buf + count, "at %d mV ", ret / 1000);
}
if (constraints->uV_offset)
count += sprintf(buf, "%dmV offset ",
constraints->uV_offset / 1000);
if (constraints->min_uA && constraints->max_uA) {
if (constraints->min_uA == constraints->max_uA)
count += sprintf(buf + count, "%d mA ",
constraints->min_uA / 1000);
else
count += sprintf(buf + count, "%d <--> %d mA ",
constraints->min_uA / 1000,
constraints->max_uA / 1000);
}
if (!constraints->min_uA ||
constraints->min_uA != constraints->max_uA) {
ret = _regulator_get_current_limit(rdev);
if (ret > 0)
count += sprintf(buf + count, "at %d mA ", ret / 1000);
}
if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
count += sprintf(buf + count, "fast ");
if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
count += sprintf(buf + count, "normal ");
if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
count += sprintf(buf + count, "idle ");
if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
count += sprintf(buf + count, "standby");
if (!count)
sprintf(buf, "no parameters");
rdev_info(rdev, "%s\n", buf);
if ((constraints->min_uV != constraints->max_uV) &&
!(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
rdev_warn(rdev,
"Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
}
static int machine_constraints_voltage(struct regulator_dev *rdev,
struct regulation_constraints *constraints)
{
struct regulator_ops *ops = rdev->desc->ops;
int ret;
/* do we need to apply the constraint voltage */
if (rdev->constraints->apply_uV &&
rdev->constraints->min_uV == rdev->constraints->max_uV) {
ret = _regulator_do_set_voltage(rdev,
rdev->constraints->min_uV,
rdev->constraints->max_uV);
if (ret < 0) {
rdev_err(rdev, "failed to apply %duV constraint\n",
rdev->constraints->min_uV);
return ret;
}
}
/* constrain machine-level voltage specs to fit
* the actual range supported by this regulator.
*/
if (ops->list_voltage && rdev->desc->n_voltages) {
int count = rdev->desc->n_voltages;
int i;
int min_uV = INT_MAX;
int max_uV = INT_MIN;
int cmin = constraints->min_uV;
int cmax = constraints->max_uV;
/* it's safe to autoconfigure fixed-voltage supplies
and the constraints are used by list_voltage. */
if (count == 1 && !cmin) {
cmin = 1;
cmax = INT_MAX;
constraints->min_uV = cmin;
constraints->max_uV = cmax;
}
/* voltage constraints are optional */
if ((cmin == 0) && (cmax == 0))
return 0;
/* else require explicit machine-level constraints */
if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
rdev_err(rdev, "invalid voltage constraints\n");
return -EINVAL;
}
/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
for (i = 0; i < count; i++) {
int value;
value = ops->list_voltage(rdev, i);
if (value <= 0)
continue;
/* maybe adjust [min_uV..max_uV] */
if (value >= cmin && value < min_uV)
min_uV = value;
if (value <= cmax && value > max_uV)
max_uV = value;
}
/* final: [min_uV..max_uV] valid iff constraints valid */
if (max_uV < min_uV) {
rdev_err(rdev, "unsupportable voltage constraints\n");
return -EINVAL;
}
/* use regulator's subset of machine constraints */
if (constraints->min_uV < min_uV) {
rdev_dbg(rdev, "override min_uV, %d -> %d\n",
constraints->min_uV, min_uV);
constraints->min_uV = min_uV;
}
if (constraints->max_uV > max_uV) {
rdev_dbg(rdev, "override max_uV, %d -> %d\n",
constraints->max_uV, max_uV);
constraints->max_uV = max_uV;
}
}
return 0;
}
/**
* set_machine_constraints - sets regulator constraints
* @rdev: regulator source
* @constraints: constraints to apply
*
* Allows platform initialisation code to define and constrain
* regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
* Constraints *must* be set by platform code in order for some
* regulator operations to proceed i.e. set_voltage, set_current_limit,
* set_mode.
*/
static int set_machine_constraints(struct regulator_dev *rdev,
const struct regulation_constraints *constraints)
{
int ret = 0;
struct regulator_ops *ops = rdev->desc->ops;
if (constraints)
rdev->constraints = kmemdup(constraints, sizeof(*constraints),
GFP_KERNEL);
else
rdev->constraints = kzalloc(sizeof(*constraints),
GFP_KERNEL);
if (!rdev->constraints)
return -ENOMEM;
ret = machine_constraints_voltage(rdev, rdev->constraints);
if (ret != 0)
goto out;
/* do we need to setup our suspend state */
if (rdev->constraints->initial_state) {
ret = suspend_prepare(rdev, rdev->constraints->initial_state);
if (ret < 0) {
rdev_err(rdev, "failed to set suspend state\n");
goto out;
}
}
if (rdev->constraints->initial_mode) {
if (!ops->set_mode) {
rdev_err(rdev, "no set_mode operation\n");
ret = -EINVAL;
goto out;
}
ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
if (ret < 0) {
rdev_err(rdev, "failed to set initial mode: %d\n", ret);
goto out;
}
}
/* If the constraints say the regulator should be on at this point
* and we have control then make sure it is enabled.
*/
if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
ops->enable) {
ret = ops->enable(rdev);
if (ret < 0) {
rdev_err(rdev, "failed to enable\n");
goto out;
}
}
if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
if (ret < 0) {
rdev_err(rdev, "failed to set ramp_delay\n");
goto out;
}
}
print_constraints(rdev);
return 0;
out:
kfree(rdev->constraints);
rdev->constraints = NULL;
return ret;
}
/**
* set_supply - set regulator supply regulator
* @rdev: regulator name
* @supply_rdev: supply regulator name
*
* Called by platform initialisation code to set the supply regulator for this
* regulator. This ensures that a regulators supply will also be enabled by the
* core if it's child is enabled.
*/
static int set_supply(struct regulator_dev *rdev,
struct regulator_dev *supply_rdev)
{
int err;
rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
if (rdev->supply == NULL) {
err = -ENOMEM;
return err;
}
supply_rdev->open_count++;
return 0;
}
/**
* set_consumer_device_supply - Bind a regulator to a symbolic supply
* @rdev: regulator source
* @consumer_dev_name: dev_name() string for device supply applies to
* @supply: symbolic name for supply
*
* Allows platform initialisation code to map physical regulator
* sources to symbolic names for supplies for use by devices. Devices
* should use these symbolic names to request regulators, avoiding the
* need to provide board-specific regulator names as platform data.
*/
static int set_consumer_device_supply(struct regulator_dev *rdev,
const char *consumer_dev_name,
const char *supply)
{
struct regulator_map *node;
int has_dev;
if (supply == NULL)
return -EINVAL;
if (consumer_dev_name != NULL)
has_dev = 1;
else
has_dev = 0;
list_for_each_entry(node, ®ulator_map_list, list) {
if (node->dev_name && consumer_dev_name) {
if (strcmp(node->dev_name, consumer_dev_name) != 0)
continue;
} else if (node->dev_name || consumer_dev_name) {
continue;
}
if (strcmp(node->supply, supply) != 0)
continue;
pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
consumer_dev_name,
dev_name(&node->regulator->dev),
node->regulator->desc->name,
supply,
dev_name(&rdev->dev), rdev_get_name(rdev));
return -EBUSY;
}
node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
if (node == NULL)
return -ENOMEM;
node->regulator = rdev;
node->supply = supply;
if (has_dev) {
node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
if (node->dev_name == NULL) {
kfree(node);
return -ENOMEM;
}
}
list_add(&node->list, ®ulator_map_list);
return 0;
}
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
struct regulator_map *node, *n;
list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
if (rdev == node->regulator) {
list_del(&node->list);
kfree(node->dev_name);
kfree(node);
}
}
}
#define REG_STR_SIZE 64
static struct regulator *create_regulator(struct regulator_dev *rdev,
struct device *dev,
const char *supply_name)
{
struct regulator *regulator;
char buf[REG_STR_SIZE];
int err, size;
regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
if (regulator == NULL)
return NULL;
mutex_lock(&rdev->mutex);
regulator->rdev = rdev;
list_add(®ulator->list, &rdev->consumer_list);
if (dev) {
regulator->dev = dev;
/* Add a link to the device sysfs entry */
size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
dev->kobj.name, supply_name);
if (size >= REG_STR_SIZE)
goto overflow_err;
regulator->supply_name = kstrdup(buf, GFP_KERNEL);
if (regulator->supply_name == NULL)
goto overflow_err;
err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
buf);
if (err) {
rdev_warn(rdev, "could not add device link %s err %d\n",
dev->kobj.name, err);
/* non-fatal */
}
} else {
regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
if (regulator->supply_name == NULL)
goto overflow_err;
}
regulator->debugfs = debugfs_create_dir(regulator->supply_name,
rdev->debugfs);
if (!regulator->debugfs) {
rdev_warn(rdev, "Failed to create debugfs directory\n");
} else {
debugfs_create_u32("uA_load", 0444, regulator->debugfs,
®ulator->uA_load);
debugfs_create_u32("min_uV", 0444, regulator->debugfs,
®ulator->min_uV);
debugfs_create_u32("max_uV", 0444, regulator->debugfs,
®ulator->max_uV);
}
/*
* Check now if the regulator is an always on regulator - if
* it is then we don't need to do nearly so much work for
* enable/disable calls.
*/
if (!_regulator_can_change_status(rdev) &&
_regulator_is_enabled(rdev))
regulator->always_on = true;
mutex_unlock(&rdev->mutex);
return regulator;
overflow_err:
list_del(®ulator->list);
kfree(regulator);
mutex_unlock(&rdev->mutex);
return NULL;
}
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
if (!rdev->desc->ops->enable_time)
return rdev->desc->enable_time;
return rdev->desc->ops->enable_time(rdev);
}
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
const char *supply,
int *ret)
{
struct regulator_dev *r;
struct device_node *node;
struct regulator_map *map;
const char *devname = NULL;
/* first do a dt based lookup */
if (dev && dev->of_node) {
node = of_get_regulator(dev, supply);
if (node) {
list_for_each_entry(r, ®ulator_list, list)
if (r->dev.parent &&
node == r->dev.of_node)
return r;
} else {
/*
* If we couldn't even get the node then it's
* not just that the device didn't register
* yet, there's no node and we'll never
* succeed.
*/
*ret = -ENODEV;
}
}
/* if not found, try doing it non-dt way */
if (dev)
devname = dev_name(dev);
list_for_each_entry(r, ®ulator_list, list)
if (strcmp(rdev_get_name(r), supply) == 0)
return r;
list_for_each_entry(map, ®ulator_map_list, list) {
/* If the mapping has a device set up it must match */
if (map->dev_name &&
(!devname || strcmp(map->dev_name, devname)))
continue;
if (strcmp(map->supply, supply) == 0)
return map->regulator;
}
return NULL;
}
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
int exclusive)
{
struct regulator_dev *rdev;
struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
const char *devname = NULL;
int ret;
if (id == NULL) {
pr_err("get() with no identifier\n");
return regulator;
}
if (dev)
devname = dev_name(dev);
mutex_lock(®ulator_list_mutex);
rdev = regulator_dev_lookup(dev, id, &ret);
if (rdev)
goto found;
if (board_wants_dummy_regulator) {
rdev = dummy_regulator_rdev;
goto found;
}
#ifdef CONFIG_REGULATOR_DUMMY
if (!devname)
devname = "deviceless";
/* If the board didn't flag that it was fully constrained then
* substitute in a dummy regulator so consumers can continue.
*/
if (!has_full_constraints) {
pr_warn("%s supply %s not found, using dummy regulator\n",
devname, id);
rdev = dummy_regulator_rdev;
goto found;
}
#endif
mutex_unlock(®ulator_list_mutex);
return regulator;
found:
if (rdev->exclusive) {
regulator = ERR_PTR(-EPERM);
goto out;
}
if (exclusive && rdev->open_count) {
regulator = ERR_PTR(-EBUSY);
goto out;
}
if (!try_module_get(rdev->owner))
goto out;
regulator = create_regulator(rdev, dev, id);
if (regulator == NULL) {
regulator = ERR_PTR(-ENOMEM);
module_put(rdev->owner);
goto out;
}
rdev->open_count++;
if (exclusive) {
rdev->exclusive = 1;
ret = _regulator_is_enabled(rdev);
if (ret > 0)
rdev->use_count = 1;
else
rdev->use_count = 0;
}
out:
mutex_unlock(®ulator_list_mutex);
return regulator;
}
/**
* regulator_get - lookup and obtain a reference to a regulator.
* @dev: device for regulator "consumer"
* @id: Supply name or regulator ID.
*
* Returns a struct regulator corresponding to the regulator producer,
* or IS_ERR() condition containing errno.
*
* Use of supply names configured via regulator_set_device_supply() is
* strongly encouraged. It is recommended that the supply name used
* should match the name used for the supply and/or the relevant
* device pins in the datasheet.
*/
struct regulator *regulator_get(struct device *dev, const char *id)
{
return _regulator_get(dev, id, 0);
}
EXPORT_SYMBOL_GPL(regulator_get);
static void devm_regulator_release(struct device *dev, void *res)
{
regulator_put(*(struct regulator **)res);
}
/**
* devm_regulator_get - Resource managed regulator_get()
* @dev: device for regulator "consumer"
* @id: Supply name or regulator ID.
*
* Managed regulator_get(). Regulators returned from this function are
* automatically regulator_put() on driver detach. See regulator_get() for more
* information.
*/
struct regulator *devm_regulator_get(struct device *dev, const char *id)
{
struct regulator **ptr, *regulator;
ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
if (!ptr)
return ERR_PTR(-ENOMEM);
regulator = regulator_get(dev, id);
if (!IS_ERR(regulator)) {
*ptr = regulator;
devres_add(dev, ptr);
} else {
devres_free(ptr);
}
return regulator;
}
EXPORT_SYMBOL_GPL(devm_regulator_get);
/**
* regulator_get_exclusive - obtain exclusive access to a regulator.
* @dev: device for regulator "consumer"
* @id: Supply name or regulator ID.
*
* Returns a struct regulator corresponding to the regulator producer,
* or IS_ERR() condition containing errno. Other consumers will be
* unable to obtain this reference is held and the use count for the
* regulator will be initialised to reflect the current state of the
* regulator.
*
* This is intended for use by consumers which cannot tolerate shared
* use of the regulator such as those which need to force the
* regulator off for correct operation of the hardware they are
* controlling.
*
* Use of supply names configured via regulator_set_device_supply() is
* strongly encouraged. It is recommended that the supply name used
* should match the name used for the supply and/or the relevant
* device pins in the datasheet.
*/
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
return _regulator_get(dev, id, 1);
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);
/**
* regulator_put - "free" the regulator source
* @regulator: regulator source
*
* Note: drivers must ensure that all regulator_enable calls made on this
* regulator source are balanced by regulator_disable calls prior to calling
* this function.
*/
void regulator_put(struct regulator *regulator)
{
struct regulator_dev *rdev;
if (regulator == NULL || IS_ERR(regulator))
return;
mutex_lock(®ulator_list_mutex);
rdev = regulator->rdev;
debugfs_remove_recursive(regulator->debugfs);
/* remove any sysfs entries */
if (regulator->dev)
sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
kfree(regulator->supply_name);
list_del(®ulator->list);
kfree(regulator);
rdev->open_count--;
rdev->exclusive = 0;
module_put(rdev->owner);
mutex_unlock(®ulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);
static int devm_regulator_match(struct device *dev, void *res, void *data)
{
struct regulator **r = res;
if (!r || !*r) {
WARN_ON(!r || !*r);
return 0;
}
return *r == data;
}
/**
* devm_regulator_put - Resource managed regulator_put()
* @regulator: regulator to free
*
* Deallocate a regulator allocated with devm_regulator_get(). Normally
* this function will not need to be called and the resource management
* code will ensure that the resource is freed.
*/
void devm_regulator_put(struct regulator *regulator)
{
int rc;
rc = devres_release(regulator->dev, devm_regulator_release,
devm_regulator_match, regulator);
if (rc != 0)
WARN_ON(rc);
}
EXPORT_SYMBOL_GPL(devm_regulator_put);
static int _regulator_do_enable(struct regulator_dev *rdev)
{
int ret, delay;
/* Query before enabling in case configuration dependent. */
ret = _regulator_get_enable_time(rdev);
if (ret >= 0) {
delay = ret;
} else {
rdev_warn(rdev, "enable_time() failed: %d\n", ret);
delay = 0;
}
trace_regulator_enable(rdev_get_name(rdev));
if (rdev->ena_gpio) {
gpio_set_value_cansleep(rdev->ena_gpio,
!rdev->ena_gpio_invert);
rdev->ena_gpio_state = 1;
} else if (rdev->desc->ops->enable) {
ret = rdev->desc->ops->enable(rdev);
if (ret < 0)
return ret;
} else {
return -EINVAL;
}
/* Allow the regulator to ramp; it would be useful to extend
* this for bulk operations so that the regulators can ramp
* together. */
trace_regulator_enable_delay(rdev_get_name(rdev));
if (delay >= 1000) {
mdelay(delay / 1000);
udelay(delay % 1000);
} else if (delay) {
udelay(delay);
}
trace_regulator_enable_complete(rdev_get_name(rdev));
return 0;
}
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
int ret;
/* check voltage and requested load before enabling */
if (rdev->constraints &&
(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
drms_uA_update(rdev);
if (rdev->use_count == 0) {
/* The regulator may on if it's not switchable or left on */
ret = _regulator_is_enabled(rdev);
if (ret == -EINVAL || ret == 0) {
if (!_regulator_can_change_status(rdev))
return -EPERM;
ret = _regulator_do_enable(rdev);
if (ret < 0)
return ret;
} else if (ret < 0) {
rdev_err(rdev, "is_enabled() failed: %d\n", ret);
return ret;
}
/* Fallthrough on positive return values - already enabled */
}
rdev->use_count++;
return 0;
}
/**
* regulator_enable - enable regulator output
* @regulator: regulator source
*
* Request that the regulator be enabled with the regulator output at
* the predefined voltage or current value. Calls to regulator_enable()
* must be balanced with calls to regulator_disable().
*
* NOTE: the output value can be set by other drivers, boot loader or may be
* hardwired in the regulator.
*/
int regulator_enable(struct regulator *regulator)
{
struct regulator_dev *rdev = regulator->rdev;
int ret = 0;
if (regulator->always_on)
return 0;
if (rdev->supply) {
ret = regulator_enable(rdev->supply);
if (ret != 0)
return ret;
}
mutex_lock(&rdev->mutex);
ret = _regulator_enable(rdev);
mutex_unlock(&rdev->mutex);
if (ret != 0 && rdev->supply)
regulator_disable(rdev->supply);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);
static int _regulator_do_disable(struct regulator_dev *rdev)
{
int ret;
trace_regulator_disable(rdev_get_name(rdev));
if (rdev->ena_gpio) {
gpio_set_value_cansleep(rdev->ena_gpio,
rdev->ena_gpio_invert);
rdev->ena_gpio_state = 0;
} else if (rdev->desc->ops->disable) {
ret = rdev->desc->ops->disable(rdev);
if (ret != 0)
return ret;
}
trace_regulator_disable_complete(rdev_get_name(rdev));
_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
NULL);
return 0;
}
/* locks held by regulator_disable() */
static int _regulator_disable(struct regulator_dev *rdev)
{
int ret = 0;
if (WARN(rdev->use_count <= 0,
"unbalanced disables for %s\n", rdev_get_name(rdev)))
return -EIO;
/* are we the last user and permitted to disable ? */
if (rdev->use_count == 1 &&
(rdev->constraints && !rdev->constraints->always_on)) {
/* we are last user */
if (_regulator_can_change_status(rdev)) {
ret = _regulator_do_disable(rdev);
if (ret < 0) {
rdev_err(rdev, "failed to disable\n");
return ret;
}
}
rdev->use_count = 0;
} else if (rdev->use_count > 1) {
if (rdev->constraints &&
(rdev->constraints->valid_ops_mask &
REGULATOR_CHANGE_DRMS))
drms_uA_update(rdev);
rdev->use_count--;
}
return ret;
}
/**
* regulator_disable - disable regulator output
* @regulator: regulator source
*
* Disable the regulator output voltage or current. Calls to
* regulator_enable() must be balanced with calls to
* regulator_disable().
*
* NOTE: this will only disable the regulator output if no other consumer
* devices have it enabled, the regulator device supports disabling and
* machine constraints permit this operation.
*/
int regulator_disable(struct regulator *regulator)
{
struct regulator_dev *rdev = regulator->rdev;
int ret = 0;
if (regulator->always_on)
return 0;
mutex_lock(&rdev->mutex);
ret = _regulator_disable(rdev);
mutex_unlock(&rdev->mutex);
if (ret == 0 && rdev->supply)
regulator_disable(rdev->supply);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);
/* locks held by regulator_force_disable() */
static int _regulator_force_disable(struct regulator_dev *rdev)
{
int ret = 0;
/* force disable */
if (rdev->desc->ops->disable) {
/* ah well, who wants to live forever... */
ret = rdev->desc->ops->disable(rdev);
if (ret < 0) {
rdev_err(rdev, "failed to force disable\n");
return ret;
}
/* notify other consumers that power has been forced off */
_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
REGULATOR_EVENT_DISABLE, NULL);
}
return ret;
}
/**
* regulator_force_disable - force disable regulator output
* @regulator: regulator source
*
* Forcibly disable the regulator output voltage or current.
* NOTE: this *will* disable the regulator output even if other consumer
* devices have it enabled. This should be used for situations when device
* damage will likely occur if the regulator is not disabled (e.g. over temp).
*/
int regulator_force_disable(struct regulator *regulator)
{
struct regulator_dev *rdev = regulator->rdev;
int ret;
mutex_lock(&rdev->mutex);
regulator->uA_load = 0;
ret = _regulator_force_disable(regulator->rdev);
mutex_unlock(&rdev->mutex);
if (rdev->supply)
while (rdev->open_count--)
regulator_disable(rdev->supply);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);
static void regulator_disable_work(struct work_struct *work)
{
struct regulator_dev *rdev = container_of(work, struct regulator_dev,
disable_work.work);
int count, i, ret;
mutex_lock(&rdev->mutex);
BUG_ON(!rdev->deferred_disables);
count = rdev->deferred_disables;
rdev->deferred_disables = 0;
for (i = 0; i < count; i++) {
ret = _regulator_disable(rdev);
if (ret != 0)
rdev_err(rdev, "Deferred disable failed: %d\n", ret);
}
mutex_unlock(&rdev->mutex);
if (rdev->supply) {
for (i = 0; i < count; i++) {
ret = regulator_disable(rdev->supply);
if (ret != 0) {
rdev_err(rdev,
"Supply disable failed: %d\n", ret);
}
}
}
}
/**
* regulator_disable_deferred - disable regulator output with delay
* @regulator: regulator source
* @ms: miliseconds until the regulator is disabled
*
* Execute regulator_disable() on the regulator after a delay. This
* is intended for use with devices that require some time to quiesce.
*
* NOTE: this will only disable the regulator output if no other consumer
* devices have it enabled, the regulator device supports disabling and
* machine constraints permit this operation.
*/
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
struct regulator_dev *rdev = regulator->rdev;
int ret;
if (regulator->always_on)
return 0;
if (!ms)
return regulator_disable(regulator);
mutex_lock(&rdev->mutex);
rdev->deferred_disables++;
mutex_unlock(&rdev->mutex);
ret = schedule_delayed_work(&rdev->disable_work,
msecs_to_jiffies(ms));
if (ret < 0)
return ret;
else
return 0;
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);
/**
* regulator_is_enabled_regmap - standard is_enabled() for regmap users
*
* @rdev: regulator to operate on
*
* Regulators that use regmap for their register I/O can set the
* enable_reg and enable_mask fields in their descriptor and then use
* this as their is_enabled operation, saving some code.
*/
int regulator_is_enabled_regmap(struct regulator_dev *rdev)
{
unsigned int val;
int ret;
ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
if (ret != 0)
return ret;
return (val & rdev->desc->enable_mask) != 0;
}
EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
/**
* regulator_enable_regmap - standard enable() for regmap users
*
* @rdev: regulator to operate on
*
* Regulators that use regmap for their register I/O can set the
* enable_reg and enable_mask fields in their descriptor and then use
* this as their enable() operation, saving some code.
*/
int regulator_enable_regmap(struct regulator_dev *rdev)
{
return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
rdev->desc->enable_mask,
rdev->desc->enable_mask);
}
EXPORT_SYMBOL_GPL(regulator_enable_regmap);
/**
* regulator_disable_regmap - standard disable() for regmap users
*
* @rdev: regulator to operate on
*
* Regulators that use regmap for their register I/O can set the
* enable_reg and enable_mask fields in their descriptor and then use
* this as their disable() operation, saving some code.
*/
int regulator_disable_regmap(struct regulator_dev *rdev)
{
return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
rdev->desc->enable_mask, 0);
}
EXPORT_SYMBOL_GPL(regulator_disable_regmap);
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
/* A GPIO control always takes precedence */
if (rdev->ena_gpio)
return rdev->ena_gpio_state;
/* If we don't know then assume that the regulator is always on */
if (!rdev->desc->ops->is_enabled)
return 1;
return rdev->desc->ops->is_enabled(rdev);
}
/**
* regulator_is_enabled - is the regulator output enabled
* @regulator: regulator source
*
* Returns positive if the regulator driver backing the source/client
* has requested that the device be enabled, zero if it hasn't, else a
* negative errno code.
*
* Note that the device backing this regulator handle can have multiple
* users, so it might be enabled even if regulator_enable() was never
* called for this particular source.
*/
int regulator_is_enabled(struct regulator *regulator)
{
int ret;
if (regulator->always_on)
return 1;
mutex_lock(®ulator->rdev->mutex);
ret = _regulator_is_enabled(regulator->rdev);
mutex_unlock(®ulator->rdev->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);
/**
* regulator_count_voltages - count regulator_list_voltage() selectors
* @regulator: regulator source
*
* Returns number of selectors, or negative errno. Selectors are
* numbered starting at zero, and typically correspond to bitfields
* in hardware registers.
*/
int regulator_count_voltages(struct regulator *regulator)
{
struct regulator_dev *rdev = regulator->rdev;
return rdev->desc->n_voltages ? : -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);
/**
* regulator_list_voltage_linear - List voltages with simple calculation
*
* @rdev: Regulator device
* @selector: Selector to convert into a voltage
*
* Regulators with a simple linear mapping between voltages and
* selectors can set min_uV and uV_step in the regulator descriptor
* and then use this function as their list_voltage() operation,
*/
int regulator_list_voltage_linear(struct regulator_dev *rdev,
unsigned int selector)
{
if (selector >= rdev->desc->n_voltages)
return -EINVAL;
return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
}
EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
/**
* regulator_list_voltage_table - List voltages with table based mapping
*
* @rdev: Regulator device
* @selector: Selector to convert into a voltage
*
* Regulators with table based mapping between voltages and
* selectors can set volt_table in the regulator descriptor
* and then use this function as their list_voltage() operation.
*/
int regulator_list_voltage_table(struct regulator_dev *rdev,
unsigned int selector)
{
if (!rdev->desc->volt_table) {
BUG_ON(!rdev->desc->volt_table);
return -EINVAL;
}
if (selector >= rdev->desc->n_voltages)
return -EINVAL;
return rdev->desc->volt_table[selector];
}
EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
/**
* regulator_list_voltage - enumerate supported voltages
* @regulator: regulator source
* @selector: identify voltage to list
* Context: can sleep
*
* Returns a voltage that can be passed to @regulator_set_voltage(),
* zero if this selector code can't be used on this system, or a
* negative errno.
*/
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
struct regulator_dev *rdev = regulator->rdev;
struct regulator_ops *ops = rdev->desc->ops;
int ret;
if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
return -EINVAL;
mutex_lock(&rdev->mutex);
ret = ops->list_voltage(rdev, selector);
mutex_unlock(&rdev->mutex);
if (ret > 0) {
if (ret < rdev->constraints->min_uV)
ret = 0;
else if (ret > rdev->constraints->max_uV)
ret = 0;
}
return ret;
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);
/**
* regulator_is_supported_voltage - check if a voltage range can be supported
*
* @regulator: Regulator to check.
* @min_uV: Minimum required voltage in uV.
* @max_uV: Maximum required voltage in uV.
*
* Returns a boolean or a negative error code.
*/
int regulator_is_supported_voltage(struct regulator *regulator,
int min_uV, int max_uV)
{
struct regulator_dev *rdev = regulator->rdev;
int i, voltages, ret;
/* If we can't change voltage check the current voltage */
if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
ret = regulator_get_voltage(regulator);
if (ret >= 0)
return (min_uV >= ret && ret <= max_uV);
else
return ret;
}
ret = regulator_count_voltages(regulator);
if (ret < 0)
return ret;
voltages = ret;
for (i = 0; i < voltages; i++) {
ret = regulator_list_voltage(regulator, i);
if (ret >= min_uV && ret <= max_uV)
return 1;
}
return 0;
}
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
/**
* regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
*
* @rdev: regulator to operate on
*
* Regulators that use regmap for their register I/O can set the
* vsel_reg and vsel_mask fields in their descriptor and then use this
* as their get_voltage_vsel operation, saving some code.
*/
int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
{
unsigned int val;
int ret;
ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
if (ret != 0)
return ret;
val &= rdev->desc->vsel_mask;
val >>= ffs(rdev->desc->vsel_mask) - 1;
return val;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
/**
* regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
*
* @rdev: regulator to operate on
* @sel: Selector to set
*
* Regulators that use regmap for their register I/O can set the
* vsel_reg and vsel_mask fields in their descriptor and then use this
* as their set_voltage_vsel operation, saving some code.
*/
int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
{
sel <<= ffs(rdev->desc->vsel_mask) - 1;
return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
rdev->desc->vsel_mask, sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
/**
* regulator_map_voltage_iterate - map_voltage() based on list_voltage()
*
* @rdev: Regulator to operate on
* @min_uV: Lower bound for voltage
* @max_uV: Upper bound for voltage
*
* Drivers implementing set_voltage_sel() and list_voltage() can use
* this as their map_voltage() operation. It will find a suitable
* voltage by calling list_voltage() until it gets something in bounds
* for the requested voltages.
*/
int regulator_map_voltage_iterate(struct regulator_dev *rdev,
int min_uV, int max_uV)
{
int best_val = INT_MAX;
int selector = 0;
int i, ret;
/* Find the smallest voltage that falls within the specified
* range.
*/
for (i = 0; i < rdev->desc->n_voltages; i++) {
ret = rdev->desc->ops->list_voltage(rdev, i);
if (ret < 0)
continue;
if (ret < best_val && ret >= min_uV && ret <= max_uV) {
best_val = ret;
selector = i;
}
}
if (best_val != INT_MAX)
return selector;
else
return -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
/**
* regulator_map_voltage_linear - map_voltage() for simple linear mappings
*
* @rdev: Regulator to operate on
* @min_uV: Lower bound for voltage
* @max_uV: Upper bound for voltage
*
* Drivers providing min_uV and uV_step in their regulator_desc can
* use this as their map_voltage() operation.
*/
int regulator_map_voltage_linear(struct regulator_dev *rdev,
int min_uV, int max_uV)
{
int ret, voltage;
/* Allow uV_step to be 0 for fixed voltage */
if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
return 0;
else
return -EINVAL;
}
if (!rdev->desc->uV_step) {
BUG_ON(!rdev->desc->uV_step);
return -EINVAL;
}
if (min_uV < rdev->desc->min_uV)
min_uV = rdev->desc->min_uV;
ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
if (ret < 0)
return ret;
/* Map back into a voltage to verify we're still in bounds */
voltage = rdev->desc->ops->list_voltage(rdev, ret);
if (voltage < min_uV || voltage > max_uV)
return -EINVAL;
return ret;
}
EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
int min_uV, int max_uV)
{
int ret;
int delay = 0;
int best_val = 0;
unsigned int selector;
int old_selector = -1;
trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
min_uV += rdev->constraints->uV_offset;
max_uV += rdev->constraints->uV_offset;
/*
* If we can't obtain the old selector there is not enough
* info to call set_voltage_time_sel().
*/
if (_regulator_is_enabled(rdev) &&
rdev->desc->ops->set_voltage_time_sel &&
rdev->desc->ops->get_voltage_sel) {
old_selector = rdev->desc->ops->get_voltage_sel(rdev);
if (old_selector < 0)
return old_selector;
}
if (rdev->desc->ops->set_voltage) {
ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
&selector);
if (ret >= 0) {
if (rdev->desc->ops->list_voltage)
best_val = rdev->desc->ops->list_voltage(rdev,
selector);
else
best_val = _regulator_get_voltage(rdev);
}
} else if (rdev->desc->ops->set_voltage_sel) {
if (rdev->desc->ops->map_voltage) {
ret = rdev->desc->ops->map_voltage(rdev, min_uV,
max_uV);
} else {
if (rdev->desc->ops->list_voltage ==
regulator_list_voltage_linear)
ret = regulator_map_voltage_linear(rdev,
min_uV, max_uV);
else
ret = regulator_map_voltage_iterate(rdev,
min_uV, max_uV);
}
if (ret >= 0) {
best_val = rdev->desc->ops->list_voltage(rdev, ret);
if (min_uV <= best_val && max_uV >= best_val) {
selector = ret;
ret = rdev->desc->ops->set_voltage_sel(rdev,
ret);
} else {
ret = -EINVAL;
}
}
} else {
ret = -EINVAL;
}
/* Call set_voltage_time_sel if successfully obtained old_selector */
if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
rdev->desc->ops->set_voltage_time_sel) {
delay = rdev->desc->ops->set_voltage_time_sel(rdev,
old_selector, selector);
if (delay < 0) {
rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
delay);
delay = 0;
}
/* Insert any necessary delays */
if (delay >= 1000) {
mdelay(delay / 1000);
udelay(delay % 1000);
} else if (delay) {
udelay(delay);
}
}
if (ret == 0 && best_val >= 0) {
unsigned long data = best_val;
_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
(void *)data);
}
trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
return ret;
}
/**
* regulator_set_voltage - set regulator output voltage
* @regulator: regulator source
* @min_uV: Minimum required voltage in uV
* @max_uV: Maximum acceptable voltage in uV
*
* Sets a voltage regulator to the desired output voltage. This can be set
* during any regulator state. IOW, regulator can be disabled or enabled.
*
* If the regulator is enabled then the voltage will change to the new value
* immediately otherwise if the regulator is disabled the regulator will
* output at the new voltage when enabled.
*
* NOTE: If the regulator is shared between several devices then the lowest
* request voltage that meets the system constraints will be used.
* Regulator system constraints must be set for this regulator before
* calling this function otherwise this call will fail.
*/
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
struct regulator_dev *rdev = regulator->rdev;
int ret = 0;
mutex_lock(&rdev->mutex);
/* If we're setting the same range as last time the change
* should be a noop (some cpufreq implementations use the same
* voltage for multiple frequencies, for example).
*/
if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
goto out;
/* sanity check */
if (!rdev->desc->ops->set_voltage &&
!rdev->desc->ops->set_voltage_sel) {
ret = -EINVAL;
goto out;
}
/* constraints check */
ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
if (ret < 0)
goto out;
regulator->min_uV = min_uV;
regulator->max_uV = max_uV;
ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
if (ret < 0)
goto out;
ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
out:
mutex_unlock(&rdev->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);
/**
* regulator_set_voltage_time - get raise/fall time
* @regulator: regulator source
* @old_uV: starting voltage in microvolts
* @new_uV: target voltage in microvolts
*
* Provided with the starting and ending voltage, this function attempts to
* calculate the time in microseconds required to rise or fall to this new
* voltage.
*/
int regulator_set_voltage_time(struct regulator *regulator,
int old_uV, int new_uV)
{
struct regulator_dev *rdev = regulator->rdev;
struct regulator_ops *ops = rdev->desc->ops;
int old_sel = -1;
int new_sel = -1;
int voltage;
int i;
/* Currently requires operations to do this */
if (!ops->list_voltage || !ops->set_voltage_time_sel
|| !rdev->desc->n_voltages)
return -EINVAL;
for (i = 0; i < rdev->desc->n_voltages; i++) {
/* We only look for exact voltage matches here */
voltage = regulator_list_voltage(regulator, i);
if (voltage < 0)
return -EINVAL;
if (voltage == 0)
continue;
if (voltage == old_uV)
old_sel = i;
if (voltage == new_uV)
new_sel = i;
}
if (old_sel < 0 || new_sel < 0)
return -EINVAL;
return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
/**
* regulator_set_voltage_time_sel - get raise/fall time
* @rdev: regulator source device
* @old_selector: selector for starting voltage
* @new_selector: selector for target voltage
*
* Provided with the starting and target voltage selectors, this function
* returns time in microseconds required to rise or fall to this new voltage
*
* Drivers providing ramp_delay in regulation_constraints can use this as their
* set_voltage_time_sel() operation.
*/
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
unsigned int old_selector,
unsigned int new_selector)
{
unsigned int ramp_delay = 0;
int old_volt, new_volt;
if (rdev->constraints->ramp_delay)
ramp_delay = rdev->constraints->ramp_delay;
else if (rdev->desc->ramp_delay)
ramp_delay = rdev->desc->ramp_delay;
if (ramp_delay == 0) {
rdev_warn(rdev, "ramp_delay not set\n");
return 0;
}
/* sanity check */
if (!rdev->desc->ops->list_voltage)
return -EINVAL;
old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
/**
* regulator_sync_voltage - re-apply last regulator output voltage
* @regulator: regulator source
*
* Re-apply the last configured voltage. This is intended to be used
* where some external control source the consumer is cooperating with
* has caused the configured voltage to change.
*/
int regulator_sync_voltage(struct regulator *regulator)
{
struct regulator_dev *rdev = regulator->rdev;
int ret, min_uV, max_uV;
mutex_lock(&rdev->mutex);
if (!rdev->desc->ops->set_voltage &&
!rdev->desc->ops->set_voltage_sel) {
ret = -EINVAL;
goto out;
}
/* This is only going to work if we've had a voltage configured. */
if (!regulator->min_uV && !regulator->max_uV) {
ret = -EINVAL;
goto out;
}
min_uV = regulator->min_uV;
max_uV = regulator->max_uV;
/* This should be a paranoia check... */
ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
if (ret < 0)
goto out;
ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
if (ret < 0)
goto out;
ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
out:
mutex_unlock(&rdev->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
int sel, ret;
if (rdev->desc->ops->get_voltage_sel) {
sel = rdev->desc->ops->get_voltage_sel(rdev);
if (sel < 0)
return sel;
ret = rdev->desc->ops->list_voltage(rdev, sel);
} else if (rdev->desc->ops->get_voltage) {
ret = rdev->desc->ops->get_voltage(rdev);
} else if (rdev->desc->ops->list_voltage) {
ret = rdev->desc->ops->list_voltage(rdev, 0);
} else {
return -EINVAL;
}
if (ret < 0)
return ret;
return ret - rdev->constraints->uV_offset;
}
/**
* regulator_get_voltage - get regulator output voltage
* @regulator: regulator source
*
* This returns the current regulator voltage in uV.
*
* NOTE: If the regulator is disabled it will return the voltage value. This
* function should not be used to determine regulator state.
*/
int regulator_get_voltage(struct regulator *regulator)
{
int ret;
mutex_lock(®ulator->rdev->mutex);
ret = _regulator_get_voltage(regulator->rdev);
mutex_unlock(®ulator->rdev->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);
/**
* regulator_set_current_limit - set regulator output current limit
* @regulator: regulator source
* @min_uA: Minimuum supported current in uA
* @max_uA: Maximum supported current in uA
*
* Sets current sink to the desired output current. This can be set during
* any regulator state. IOW, regulator can be disabled or enabled.
*
* If the regulator is enabled then the current will change to the new value
* immediately otherwise if the regulator is disabled the regulator will
* output at the new current when enabled.
*
* NOTE: Regulator system constraints must be set for this regulator before
* calling this function otherwise this call will fail.
*/
int regulator_set_current_limit(struct regulator *regulator,
int min_uA, int max_uA)
{
struct regulator_dev *rdev = regulator->rdev;
int ret;
mutex_lock(&rdev->mutex);
/* sanity check */
if (!rdev->desc->ops->set_current_limit) {
ret = -EINVAL;
goto out;
}
/* constraints check */
ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
if (ret < 0)
goto out;
ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
mutex_unlock(&rdev->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);
static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
int ret;
mutex_lock(&rdev->mutex);
/* sanity check */
if (!rdev->desc->ops->get_current_limit) {
ret = -EINVAL;
goto out;
}
ret = rdev->desc->ops->get_current_limit(rdev);
out:
mutex_unlock(&rdev->mutex);
return ret;
}
/**
* regulator_get_current_limit - get regulator output current
* @regulator: regulator source
*
* This returns the current supplied by the specified current sink in uA.
*
* NOTE: If the regulator is disabled it will return the current value. This
* function should not be used to determine regulator state.
*/
int regulator_get_current_limit(struct regulator *regulator)
{
return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);
/**
* regulator_set_mode - set regulator operating mode
* @regulator: regulator source
* @mode: operating mode - one of the REGULATOR_MODE constants
*
* Set regulator operating mode to increase regulator efficiency or improve
* regulation performance.
*
* NOTE: Regulator system constraints must be set for this regulator before
* calling this function otherwise this call will fail.
*/
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
struct regulator_dev *rdev = regulator->rdev;
int ret;
int regulator_curr_mode;
mutex_lock(&rdev->mutex);
/* sanity check */
if (!rdev->desc->ops->set_mode) {
ret = -EINVAL;
goto out;
}
/* return if the same mode is requested */
if (rdev->desc->ops->get_mode) {
regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
if (regulator_curr_mode == mode) {
ret = 0;
goto out;
}
}
/* constraints check */
ret = regulator_mode_constrain(rdev, &mode);
if (ret < 0)
goto out;
ret = rdev->desc->ops->set_mode(rdev, mode);
out:
mutex_unlock(&rdev->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
int ret;
mutex_lock(&rdev->mutex);
/* sanity check */
if (!rdev->desc->ops->get_mode) {
ret = -EINVAL;
goto out;
}
ret = rdev->desc->ops->get_mode(rdev);
out:
mutex_unlock(&rdev->mutex);
return ret;
}
/**
* regulator_get_mode - get regulator operating mode
* @regulator: regulator source
*
* Get the current regulator operating mode.
*/
unsigned int regulator_get_mode(struct regulator *regulator)
{
return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);
/**
* regulator_set_optimum_mode - set regulator optimum operating mode
* @regulator: regulator source
* @uA_load: load current
*
* Notifies the regulator core of a new device load. This is then used by
* DRMS (if enabled by constraints) to set the most efficient regulator
* operating mode for the new regulator loading.
*
* Consumer devices notify their supply regulator of the maximum power
* they will require (can be taken from device datasheet in the power
* consumption tables) when they change operational status and hence power
* state. Examples of operational state changes that can affect power
* consumption are :-
*
* o Device is opened / closed.
* o Device I/O is about to begin or has just finished.
* o Device is idling in between work.
*
* This information is also exported via sysfs to userspace.
*
* DRMS will sum the total requested load on the regulator and change
* to the most efficient operating mode if platform constraints allow.
*
* Returns the new regulator mode or error.
*/
int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
{
struct regulator_dev *rdev = regulator->rdev;
struct regulator *consumer;
int ret, output_uV, input_uV = 0, total_uA_load = 0;
unsigned int mode;
if (rdev->supply)
input_uV = regulator_get_voltage(rdev->supply);
mutex_lock(&rdev->mutex);
/*
* first check to see if we can set modes at all, otherwise just
* tell the consumer everything is OK.
*/
regulator->uA_load = uA_load;
ret = regulator_check_drms(rdev);
if (ret < 0) {
ret = 0;
goto out;
}
if (!rdev->desc->ops->get_optimum_mode)
goto out;
/*
* we can actually do this so any errors are indicators of
* potential real failure.
*/
ret = -EINVAL;
if (!rdev->desc->ops->set_mode)
goto out;
/* get output voltage */
output_uV = _regulator_get_voltage(rdev);
if (output_uV <= 0) {
rdev_err(rdev, "invalid output voltage found\n");
goto out;
}
/* No supply? Use constraint voltage */
if (input_uV <= 0)
input_uV = rdev->constraints->input_uV;
if (input_uV <= 0) {
rdev_err(rdev, "invalid input voltage found\n");
goto out;
}
/* calc total requested load for this regulator */
list_for_each_entry(consumer, &rdev->consumer_list, list)
total_uA_load += consumer->uA_load;
mode = rdev->desc->ops->get_optimum_mode(rdev,
input_uV, output_uV,
total_uA_load);
ret = regulator_mode_constrain(rdev, &mode);
if (ret < 0) {
rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
total_uA_load, input_uV, output_uV);
goto out;
}
ret = rdev->desc->ops->set_mode(rdev, mode);
if (ret < 0) {
rdev_err(rdev, "failed to set optimum mode %x\n", mode);
goto out;
}
ret = mode;
out:
mutex_unlock(&rdev->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
/**
* regulator_set_bypass_regmap - Default set_bypass() using regmap
*
* @rdev: device to operate on.
* @enable: state to set.
*/
int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
{
unsigned int val;
if (enable)
val = rdev->desc->bypass_mask;
else
val = 0;
return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
rdev->desc->bypass_mask, val);
}
EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
/**
* regulator_get_bypass_regmap - Default get_bypass() using regmap
*
* @rdev: device to operate on.
* @enable: current state.
*/
int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
{
unsigned int val;
int ret;
ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
if (ret != 0)
return ret;
*enable = val & rdev->desc->bypass_mask;
return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
/**
* regulator_allow_bypass - allow the regulator to go into bypass mode
*
* @regulator: Regulator to configure
* @allow: enable or disable bypass mode
*
* Allow the regulator to go into bypass mode if all other consumers
* for the regulator also enable bypass mode and the machine
* constraints allow this. Bypass mode means that the regulator is
* simply passing the input directly to the output with no regulation.
*/
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
struct regulator_dev *rdev = regulator->rdev;
int ret = 0;
if (!rdev->desc->ops->set_bypass)
return 0;
if (rdev->constraints &&
!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
return 0;
mutex_lock(&rdev->mutex);
if (enable && !regulator->bypass) {
rdev->bypass_count++;
if (rdev->bypass_count == rdev->open_count) {
ret = rdev->desc->ops->set_bypass(rdev, enable);
if (ret != 0)
rdev->bypass_count--;
}
} else if (!enable && regulator->bypass) {
rdev->bypass_count--;
if (rdev->bypass_count != rdev->open_count) {
ret = rdev->desc->ops->set_bypass(rdev, enable);
if (ret != 0)
rdev->bypass_count++;
}
}
if (ret == 0)
regulator->bypass = enable;
mutex_unlock(&rdev->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);
/**
* regulator_register_notifier - register regulator event notifier
* @regulator: regulator source
* @nb: notifier block
*
* Register notifier block to receive regulator events.
*/
int regulator_register_notifier(struct regulator *regulator,
struct notifier_block *nb)
{
return blocking_notifier_chain_register(®ulator->rdev->notifier,
nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);
/**
* regulator_unregister_notifier - unregister regulator event notifier
* @regulator: regulator source
* @nb: notifier block
*
* Unregister regulator event notifier block.
*/
int regulator_unregister_notifier(struct regulator *regulator,
struct notifier_block *nb)
{
return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
/* notify regulator consumers and downstream regulator consumers.
* Note mutex must be held by caller.
*/
static void _notifier_call_chain(struct regulator_dev *rdev,
unsigned long event, void *data)
{
/* call rdev chain first */
blocking_notifier_call_chain(&rdev->notifier, event, data);
}
/**
* regulator_bulk_get - get multiple regulator consumers
*
* @dev: Device to supply
* @num_consumers: Number of consumers to register
* @consumers: Configuration of consumers; clients are stored here.
*
* @return 0 on success, an errno on failure.
*
* This helper function allows drivers to get several regulator
* consumers in one operation. If any of the regulators cannot be
* acquired then any regulators that were allocated will be freed
* before returning to the caller.
*/
int regulator_bulk_get(struct device *dev, int num_consumers,
struct regulator_bulk_data *consumers)
{
int i;
int ret;
for (i = 0; i < num_consumers; i++)
consumers[i].consumer = NULL;
for (i = 0; i < num_consumers; i++) {
consumers[i].consumer = regulator_get(dev,
consumers[i].supply);
if (IS_ERR(consumers[i].consumer)) {
ret = PTR_ERR(consumers[i].consumer);
dev_err(dev, "Failed to get supply '%s': %d\n",
consumers[i].supply, ret);
consumers[i].consumer = NULL;
goto err;
}
}
return 0;
err:
while (--i >= 0)
regulator_put(consumers[i].consumer);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);
/**
* devm_regulator_bulk_get - managed get multiple regulator consumers
*
* @dev: Device to supply
* @num_consumers: Number of consumers to register
* @consumers: Configuration of consumers; clients are stored here.
*
* @return 0 on success, an errno on failure.
*
* This helper function allows drivers to get several regulator
* consumers in one operation with management, the regulators will
* automatically be freed when the device is unbound. If any of the
* regulators cannot be acquired then any regulators that were
* allocated will be freed before returning to the caller.
*/
int devm_regulator_bulk_get(struct device *dev, int num_consumers,
struct regulator_bulk_data *consumers)
{
int i;
int ret;
for (i = 0; i < num_consumers; i++)
consumers[i].consumer = NULL;
for (i = 0; i < num_consumers; i++) {
consumers[i].consumer = devm_regulator_get(dev,
consumers[i].supply);
if (IS_ERR(consumers[i].consumer)) {
ret = PTR_ERR(consumers[i].consumer);
dev_err(dev, "Failed to get supply '%s': %d\n",
consumers[i].supply, ret);
consumers[i].consumer = NULL;
goto err;
}
}
return 0;
err:
for (i = 0; i < num_consumers && consumers[i].consumer; i++)
devm_regulator_put(consumers[i].consumer);
return ret;
}
EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
struct regulator_bulk_data *bulk = data;
bulk->ret = regulator_enable(bulk->consumer);
}
/**
* regulator_bulk_enable - enable multiple regulator consumers
*
* @num_consumers: Number of consumers
* @consumers: Consumer data; clients are stored here.
* @return 0 on success, an errno on failure
*
* This convenience API allows consumers to enable multiple regulator
* clients in a single API call. If any consumers cannot be enabled
* then any others that were enabled will be disabled again prior to
* return.
*/
int regulator_bulk_enable(int num_consumers,
struct regulator_bulk_data *consumers)
{
ASYNC_DOMAIN_EXCLUSIVE(async_domain);
int i;
int ret = 0;
for (i = 0; i < num_consumers; i++) {
if (consumers[i].consumer->always_on)
consumers[i].ret = 0;
else
async_schedule_domain(regulator_bulk_enable_async,
&consumers[i], &async_domain);
}
async_synchronize_full_domain(&async_domain);
/* If any consumer failed we need to unwind any that succeeded */
for (i = 0; i < num_consumers; i++) {
if (consumers[i].ret != 0) {
ret = consumers[i].ret;
goto err;
}
}
return 0;
err:
pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
while (--i >= 0)
regulator_disable(consumers[i].consumer);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);
/**
* regulator_bulk_disable - disable multiple regulator consumers
*
* @num_consumers: Number of consumers
* @consumers: Consumer data; clients are stored here.
* @return 0 on success, an errno on failure
*
* This convenience API allows consumers to disable multiple regulator
* clients in a single API call. If any consumers cannot be disabled
* then any others that were disabled will be enabled again prior to
* return.
*/
int regulator_bulk_disable(int num_consumers,
struct regulator_bulk_data *consumers)
{
int i;
int ret, r;
for (i = num_consumers - 1; i >= 0; --i) {
ret = regulator_disable(consumers[i].consumer);
if (ret != 0)
goto err;
}
return 0;
err:
pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
for (++i; i < num_consumers; ++i) {
r = regulator_enable(consumers[i].consumer);
if (r != 0)
pr_err("Failed to reename %s: %d\n",
consumers[i].supply, r);
}
return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);
/**
* regulator_bulk_force_disable - force disable multiple regulator consumers
*
* @num_consumers: Number of consumers
* @consumers: Consumer data; clients are stored here.
* @return 0 on success, an errno on failure
*
* This convenience API allows consumers to forcibly disable multiple regulator
* clients in a single API call.
* NOTE: This should be used for situations when device damage will
* likely occur if the regulators are not disabled (e.g. over temp).
* Although regulator_force_disable function call for some consumers can
* return error numbers, the function is called for all consumers.
*/
int regulator_bulk_force_disable(int num_consumers,
struct regulator_bulk_data *consumers)
{
int i;
int ret;
for (i = 0; i < num_consumers; i++)
consumers[i].ret =
regulator_force_disable(consumers[i].consumer);
for (i = 0; i < num_consumers; i++) {
if (consumers[i].ret != 0) {
ret = consumers[i].ret;
goto out;
}
}
return 0;
out:
return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
/**
* regulator_bulk_free - free multiple regulator consumers
*
* @num_consumers: Number of consumers
* @consumers: Consumer data; clients are stored here.
*
* This convenience API allows consumers to free multiple regulator
* clients in a single API call.
*/
void regulator_bulk_free(int num_consumers,
struct regulator_bulk_data *consumers)
{
int i;
for (i = 0; i < num_consumers; i++) {
regulator_put(consumers[i].consumer);
consumers[i].consumer = NULL;
}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);
/**
* regulator_notifier_call_chain - call regulator event notifier
* @rdev: regulator source
* @event: notifier block
* @data: callback-specific data.
*
* Called by regulator drivers to notify clients a regulator event has
* occurred. We also notify regulator clients downstream.
* Note lock must be held by caller.
*/
int regulator_notifier_call_chain(struct regulator_dev *rdev,
unsigned long event, void *data)
{
_notifier_call_chain(rdev, event, data);
return NOTIFY_DONE;
}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
/**
* regulator_mode_to_status - convert a regulator mode into a status
*
* @mode: Mode to convert
*
* Convert a regulator mode into a status.
*/
int regulator_mode_to_status(unsigned int mode)
{
switch (mode) {
case REGULATOR_MODE_FAST:
return REGULATOR_STATUS_FAST;
case REGULATOR_MODE_NORMAL:
return REGULATOR_STATUS_NORMAL;
case REGULATOR_MODE_IDLE:
return REGULATOR_STATUS_IDLE;
case REGULATOR_MODE_STANDBY:
return REGULATOR_STATUS_STANDBY;
default:
return REGULATOR_STATUS_UNDEFINED;
}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);
/*
* To avoid cluttering sysfs (and memory) with useless state, only
* create attributes that can be meaningfully displayed.
*/
static int add_regulator_attributes(struct regulator_dev *rdev)
{
struct device *dev = &rdev->dev;
struct regulator_ops *ops = rdev->desc->ops;
int status = 0;
/* some attributes need specific methods to be displayed */
if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
(ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
(ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
status = device_create_file(dev, &dev_attr_microvolts);
if (status < 0)
return status;
}
if (ops->get_current_limit) {
status = device_create_file(dev, &dev_attr_microamps);
if (status < 0)
return status;
}
if (ops->get_mode) {
status = device_create_file(dev, &dev_attr_opmode);
if (status < 0)
return status;
}
if (ops->is_enabled) {
status = device_create_file(dev, &dev_attr_state);
if (status < 0)
return status;
}
if (ops->get_status) {
status = device_create_file(dev, &dev_attr_status);
if (status < 0)
return status;
}
if (ops->get_bypass) {
status = device_create_file(dev, &dev_attr_bypass);
if (status < 0)
return status;
}
/* some attributes are type-specific */
if (rdev->desc->type == REGULATOR_CURRENT) {
status = device_create_file(dev, &dev_attr_requested_microamps);
if (status < 0)
return status;
}
/* all the other attributes exist to support constraints;
* don't show them if there are no constraints, or if the
* relevant supporting methods are missing.
*/
if (!rdev->constraints)
return status;
/* constraints need specific supporting methods */
if (ops->set_voltage || ops->set_voltage_sel) {
status = device_create_file(dev, &dev_attr_min_microvolts);
if (status < 0)
return status;
status = device_create_file(dev, &dev_attr_max_microvolts);
if (status < 0)
return status;
}
if (ops->set_current_limit) {
status = device_create_file(dev, &dev_attr_min_microamps);
if (status < 0)
return status;
status = device_create_file(dev, &dev_attr_max_microamps);
if (status < 0)
return status;
}
status = device_create_file(dev, &dev_attr_suspend_standby_state);
if (status < 0)
return status;
status = device_create_file(dev, &dev_attr_suspend_mem_state);
if (status < 0)
return status;
status = device_create_file(dev, &dev_attr_suspend_disk_state);
if (status < 0)
return status;
if (ops->set_suspend_voltage) {
status = device_create_file(dev,
&dev_attr_suspend_standby_microvolts);
if (status < 0)
return status;
status = device_create_file(dev,
&dev_attr_suspend_mem_microvolts);
if (status < 0)
return status;
status = device_create_file(dev,
&dev_attr_suspend_disk_microvolts);
if (status < 0)
return status;
}
if (ops->set_suspend_mode) {
status = device_create_file(dev,
&dev_attr_suspend_standby_mode);
if (status < 0)
return status;
status = device_create_file(dev,
&dev_attr_suspend_mem_mode);
if (status < 0)
return status;
status = device_create_file(dev,
&dev_attr_suspend_disk_mode);
if (status < 0)
return status;
}
return status;
}
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
if (!rdev->debugfs) {
rdev_warn(rdev, "Failed to create debugfs directory\n");
return;
}
debugfs_create_u32("use_count", 0444, rdev->debugfs,
&rdev->use_count);
debugfs_create_u32("open_count", 0444, rdev->debugfs,
&rdev->open_count);
debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
&rdev->bypass_count);
}
/**
* regulator_register - register regulator
* @regulator_desc: regulator to register
* @config: runtime configuration for regulator
*
* Called by regulator drivers to register a regulator.
* Returns 0 on success.
*/
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
const struct regulator_config *config)
{
const struct regulation_constraints *constraints = NULL;
const struct regulator_init_data *init_data;
static atomic_t regulator_no = ATOMIC_INIT(0);
struct regulator_dev *rdev;
struct device *dev;
int ret, i;
const char *supply = NULL;
if (regulator_desc == NULL || config == NULL)
return ERR_PTR(-EINVAL);
dev = config->dev;
WARN_ON(!dev);
if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
return ERR_PTR(-EINVAL);
if (regulator_desc->type != REGULATOR_VOLTAGE &&
regulator_desc->type != REGULATOR_CURRENT)
return ERR_PTR(-EINVAL);
/* Only one of each should be implemented */
WARN_ON(regulator_desc->ops->get_voltage &&
regulator_desc->ops->get_voltage_sel);
WARN_ON(regulator_desc->ops->set_voltage &&
regulator_desc->ops->set_voltage_sel);
/* If we're using selectors we must implement list_voltage. */
if (regulator_desc->ops->get_voltage_sel &&
!regulator_desc->ops->list_voltage) {
return ERR_PTR(-EINVAL);
}
if (regulator_desc->ops->set_voltage_sel &&
!regulator_desc->ops->list_voltage) {
return ERR_PTR(-EINVAL);
}
init_data = config->init_data;
rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
if (rdev == NULL)
return ERR_PTR(-ENOMEM);
mutex_lock(®ulator_list_mutex);
mutex_init(&rdev->mutex);
rdev->reg_data = config->driver_data;
rdev->owner = regulator_desc->owner;
rdev->desc = regulator_desc;
if (config->regmap)
rdev->regmap = config->regmap;
else if (dev_get_regmap(dev, NULL))
rdev->regmap = dev_get_regmap(dev, NULL);
else if (dev->parent)
rdev->regmap = dev_get_regmap(dev->parent, NULL);
INIT_LIST_HEAD(&rdev->consumer_list);
INIT_LIST_HEAD(&rdev->list);
BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
/* preform any regulator specific init */
if (init_data && init_data->regulator_init) {
ret = init_data->regulator_init(rdev->reg_data);
if (ret < 0)
goto clean;
}
/* register with sysfs */
rdev->dev.class = ®ulator_class;
rdev->dev.of_node = config->of_node;
rdev->dev.parent = dev;
dev_set_name(&rdev->dev, "regulator.%d",
atomic_inc_return(®ulator_no) - 1);
ret = device_register(&rdev->dev);
if (ret != 0) {
put_device(&rdev->dev);
goto clean;
}
dev_set_drvdata(&rdev->dev, rdev);
if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
ret = gpio_request_one(config->ena_gpio,
GPIOF_DIR_OUT | config->ena_gpio_flags,
rdev_get_name(rdev));
if (ret != 0) {
rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
config->ena_gpio, ret);
goto clean;
}
rdev->ena_gpio = config->ena_gpio;
rdev->ena_gpio_invert = config->ena_gpio_invert;
if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
rdev->ena_gpio_state = 1;
if (rdev->ena_gpio_invert)
rdev->ena_gpio_state = !rdev->ena_gpio_state;
}
/* set regulator constraints */
if (init_data)
constraints = &init_data->constraints;
ret = set_machine_constraints(rdev, constraints);
if (ret < 0)
goto scrub;
/* add attributes supported by this regulator */
ret = add_regulator_attributes(rdev);
if (ret < 0)
goto scrub;
if (init_data && init_data->supply_regulator)
supply = init_data->supply_regulator;
else if (regulator_desc->supply_name)
supply = regulator_desc->supply_name;
if (supply) {
struct regulator_dev *r;
r = regulator_dev_lookup(dev, supply, &ret);
if (!r) {
dev_err(dev, "Failed to find supply %s\n", supply);
ret = -EPROBE_DEFER;
goto scrub;
}
ret = set_supply(rdev, r);
if (ret < 0)
goto scrub;
/* Enable supply if rail is enabled */
if (_regulator_is_enabled(rdev)) {
ret = regulator_enable(rdev->supply);
if (ret < 0)
goto scrub;
}
}
/* add consumers devices */
if (init_data) {
for (i = 0; i < init_data->num_consumer_supplies; i++) {
ret = set_consumer_device_supply(rdev,
init_data->consumer_supplies[i].dev_name,
init_data->consumer_supplies[i].supply);
if (ret < 0) {
dev_err(dev, "Failed to set supply %s\n",
init_data->consumer_supplies[i].supply);
goto unset_supplies;
}
}
}
list_add(&rdev->list, ®ulator_list);
rdev_init_debugfs(rdev);
out:
mutex_unlock(®ulator_list_mutex);
return rdev;
unset_supplies:
unset_regulator_supplies(rdev);
scrub:
if (rdev->supply)
regulator_put(rdev->supply);
if (rdev->ena_gpio)
gpio_free(rdev->ena_gpio);
kfree(rdev->constraints);
device_unregister(&rdev->dev);
/* device core frees rdev */
rdev = ERR_PTR(ret);
goto out;
clean:
kfree(rdev);
rdev = ERR_PTR(ret);
goto out;
}
EXPORT_SYMBOL_GPL(regulator_register);
/**
* regulator_unregister - unregister regulator
* @rdev: regulator to unregister
*
* Called by regulator drivers to unregister a regulator.
*/
void regulator_unregister(struct regulator_dev *rdev)
{
if (rdev == NULL)
return;
if (rdev->supply)
regulator_put(rdev->supply);
mutex_lock(®ulator_list_mutex);
debugfs_remove_recursive(rdev->debugfs);
flush_work(&rdev->disable_work.work);
WARN_ON(rdev->open_count);
unset_regulator_supplies(rdev);
list_del(&rdev->list);
kfree(rdev->constraints);
if (rdev->ena_gpio)
gpio_free(rdev->ena_gpio);
device_unregister(&rdev->dev);
mutex_unlock(®ulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_unregister);
/**
* regulator_suspend_prepare - prepare regulators for system wide suspend
* @state: system suspend state
*
* Configure each regulator with it's suspend operating parameters for state.
* This will usually be called by machine suspend code prior to supending.
*/
int regulator_suspend_prepare(suspend_state_t state)
{
struct regulator_dev *rdev;
int ret = 0;
/* ON is handled by regulator active state */
if (state == PM_SUSPEND_ON)
return -EINVAL;
mutex_lock(®ulator_list_mutex);
list_for_each_entry(rdev, ®ulator_list, list) {
mutex_lock(&rdev->mutex);
ret = suspend_prepare(rdev, state);
mutex_unlock(&rdev->mutex);
if (ret < 0) {
rdev_err(rdev, "failed to prepare\n");
goto out;
}
}
out:
mutex_unlock(®ulator_list_mutex);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
/**
* regulator_suspend_finish - resume regulators from system wide suspend
*
* Turn on regulators that might be turned off by regulator_suspend_prepare
* and that should be turned on according to the regulators properties.
*/
int regulator_suspend_finish(void)
{
struct regulator_dev *rdev;
int ret = 0, error;
mutex_lock(®ulator_list_mutex);
list_for_each_entry(rdev, ®ulator_list, list) {
struct regulator_ops *ops = rdev->desc->ops;
mutex_lock(&rdev->mutex);
if ((rdev->use_count > 0 || rdev->constraints->always_on) &&
ops->enable) {
error = ops->enable(rdev);
if (error)
ret = error;
} else {
if (!has_full_constraints)
goto unlock;
if (!ops->disable)
goto unlock;
if (!_regulator_is_enabled(rdev))
goto unlock;
error = ops->disable(rdev);
if (error)
ret = error;
}
unlock:
mutex_unlock(&rdev->mutex);
}
mutex_unlock(®ulator_list_mutex);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_finish);
/**
* regulator_has_full_constraints - the system has fully specified constraints
*
* Calling this function will cause the regulator API to disable all
* regulators which have a zero use count and don't have an always_on
* constraint in a late_initcall.
*
* The intention is that this will become the default behaviour in a
* future kernel release so users are encouraged to use this facility
* now.
*/
void regulator_has_full_constraints(void)
{
has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
/**
* regulator_use_dummy_regulator - Provide a dummy regulator when none is found
*
* Calling this function will cause the regulator API to provide a
* dummy regulator to consumers if no physical regulator is found,
* allowing most consumers to proceed as though a regulator were
* configured. This allows systems such as those with software
* controllable regulators for the CPU core only to be brought up more
* readily.
*/
void regulator_use_dummy_regulator(void)
{
board_wants_dummy_regulator = true;
}
EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
/**
* rdev_get_drvdata - get rdev regulator driver data
* @rdev: regulator
*
* Get rdev regulator driver private data. This call can be used in the
* regulator driver context.
*/
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);
/**
* regulator_get_drvdata - get regulator driver data
* @regulator: regulator
*
* Get regulator driver private data. This call can be used in the consumer
* driver context when non API regulator specific functions need to be called.
*/
void *regulator_get_drvdata(struct regulator *regulator)
{
return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);
/**
* regulator_set_drvdata - set regulator driver data
* @regulator: regulator
* @data: data
*/
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);
/**
* regulator_get_id - get regulator ID
* @rdev: regulator
*/
int rdev_get_id(struct regulator_dev *rdev)
{
return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);
void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
#ifdef CONFIG_DEBUG_FS
static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
size_t count, loff_t *ppos)
{
char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
ssize_t len, ret = 0;
struct regulator_map *map;
if (!buf)
return -ENOMEM;
list_for_each_entry(map, ®ulator_map_list, list) {
len = snprintf(buf + ret, PAGE_SIZE - ret,
"%s -> %s.%s\n",
rdev_get_name(map->regulator), map->dev_name,
map->supply);
if (len >= 0)
ret += len;
if (ret > PAGE_SIZE) {
ret = PAGE_SIZE;
break;
}
}
ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
kfree(buf);
return ret;
}
#endif
static const struct file_operations supply_map_fops = {
#ifdef CONFIG_DEBUG_FS
.read = supply_map_read_file,
.llseek = default_llseek,
#endif
};
static int __init regulator_init(void)
{
int ret;
ret = class_register(®ulator_class);
debugfs_root = debugfs_create_dir("regulator", NULL);
if (!debugfs_root)
pr_warn("regulator: Failed to create debugfs directory\n");
debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
&supply_map_fops);
regulator_dummy_init();
return ret;
}
/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
static int __init regulator_init_complete(void)
{
struct regulator_dev *rdev;
struct regulator_ops *ops;
struct regulation_constraints *c;
int enabled, ret;
/*
* Since DT doesn't provide an idiomatic mechanism for
* enabling full constraints and since it's much more natural
* with DT to provide them just assume that a DT enabled
* system has full constraints.
*/
if (of_have_populated_dt())
has_full_constraints = true;
mutex_lock(®ulator_list_mutex);
/* If we have a full configuration then disable any regulators
* which are not in use or always_on. This will become the
* default behaviour in the future.
*/
list_for_each_entry(rdev, ®ulator_list, list) {
ops = rdev->desc->ops;
c = rdev->constraints;
if (!ops->disable || (c && c->always_on))
continue;
mutex_lock(&rdev->mutex);
if (rdev->use_count)
goto unlock;
/* If we can't read the status assume it's on. */
if (ops->is_enabled)
enabled = ops->is_enabled(rdev);
else
enabled = 1;
if (!enabled)
goto unlock;
if (has_full_constraints) {
/* We log since this may kill the system if it
* goes wrong. */
rdev_info(rdev, "disabling\n");
ret = ops->disable(rdev);
if (ret != 0) {
rdev_err(rdev, "couldn't disable: %d\n", ret);
}
} else {
/* The intention is that in future we will
* assume that full constraints are provided
* so warn even if we aren't going to do
* anything here.
*/
rdev_warn(rdev, "incomplete constraints, leaving on\n");
}
unlock:
mutex_unlock(&rdev->mutex);
}
mutex_unlock(®ulator_list_mutex);
return 0;
}
late_initcall(regulator_init_complete);