/* ZD1211 USB-WLAN driver for Linux
*
* Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
* Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
* Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
* Copyright (C) 2007-2008 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/slab.h>
#include <linux/usb.h>
#include <linux/jiffies.h>
#include <net/ieee80211_radiotap.h>
#include "zd_def.h"
#include "zd_chip.h"
#include "zd_mac.h"
#include "zd_rf.h"
struct zd_reg_alpha2_map {
u32 reg;
char alpha2[2];
};
static struct zd_reg_alpha2_map reg_alpha2_map[] = {
{ ZD_REGDOMAIN_FCC, "US" },
{ ZD_REGDOMAIN_IC, "CA" },
{ ZD_REGDOMAIN_ETSI, "DE" }, /* Generic ETSI, use most restrictive */
{ ZD_REGDOMAIN_JAPAN, "JP" },
{ ZD_REGDOMAIN_JAPAN_ADD, "JP" },
{ ZD_REGDOMAIN_SPAIN, "ES" },
{ ZD_REGDOMAIN_FRANCE, "FR" },
};
/* This table contains the hardware specific values for the modulation rates. */
static const struct ieee80211_rate zd_rates[] = {
{ .bitrate = 10,
.hw_value = ZD_CCK_RATE_1M, },
{ .bitrate = 20,
.hw_value = ZD_CCK_RATE_2M,
.hw_value_short = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT,
.flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 55,
.hw_value = ZD_CCK_RATE_5_5M,
.hw_value_short = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT,
.flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 110,
.hw_value = ZD_CCK_RATE_11M,
.hw_value_short = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT,
.flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 60,
.hw_value = ZD_OFDM_RATE_6M,
.flags = 0 },
{ .bitrate = 90,
.hw_value = ZD_OFDM_RATE_9M,
.flags = 0 },
{ .bitrate = 120,
.hw_value = ZD_OFDM_RATE_12M,
.flags = 0 },
{ .bitrate = 180,
.hw_value = ZD_OFDM_RATE_18M,
.flags = 0 },
{ .bitrate = 240,
.hw_value = ZD_OFDM_RATE_24M,
.flags = 0 },
{ .bitrate = 360,
.hw_value = ZD_OFDM_RATE_36M,
.flags = 0 },
{ .bitrate = 480,
.hw_value = ZD_OFDM_RATE_48M,
.flags = 0 },
{ .bitrate = 540,
.hw_value = ZD_OFDM_RATE_54M,
.flags = 0 },
};
/*
* Zydas retry rates table. Each line is listed in the same order as
* in zd_rates[] and contains all the rate used when a packet is sent
* starting with a given rates. Let's consider an example :
*
* "11 Mbits : 4, 3, 2, 1, 0" means :
* - packet is sent using 4 different rates
* - 1st rate is index 3 (ie 11 Mbits)
* - 2nd rate is index 2 (ie 5.5 Mbits)
* - 3rd rate is index 1 (ie 2 Mbits)
* - 4th rate is index 0 (ie 1 Mbits)
*/
static const struct tx_retry_rate zd_retry_rates[] = {
{ /* 1 Mbits */ 1, { 0 }},
{ /* 2 Mbits */ 2, { 1, 0 }},
{ /* 5.5 Mbits */ 3, { 2, 1, 0 }},
{ /* 11 Mbits */ 4, { 3, 2, 1, 0 }},
{ /* 6 Mbits */ 5, { 4, 3, 2, 1, 0 }},
{ /* 9 Mbits */ 6, { 5, 4, 3, 2, 1, 0}},
{ /* 12 Mbits */ 5, { 6, 3, 2, 1, 0 }},
{ /* 18 Mbits */ 6, { 7, 6, 3, 2, 1, 0 }},
{ /* 24 Mbits */ 6, { 8, 6, 3, 2, 1, 0 }},
{ /* 36 Mbits */ 7, { 9, 8, 6, 3, 2, 1, 0 }},
{ /* 48 Mbits */ 8, {10, 9, 8, 6, 3, 2, 1, 0 }},
{ /* 54 Mbits */ 9, {11, 10, 9, 8, 6, 3, 2, 1, 0 }}
};
static const struct ieee80211_channel zd_channels[] = {
{ .center_freq = 2412, .hw_value = 1 },
{ .center_freq = 2417, .hw_value = 2 },
{ .center_freq = 2422, .hw_value = 3 },
{ .center_freq = 2427, .hw_value = 4 },
{ .center_freq = 2432, .hw_value = 5 },
{ .center_freq = 2437, .hw_value = 6 },
{ .center_freq = 2442, .hw_value = 7 },
{ .center_freq = 2447, .hw_value = 8 },
{ .center_freq = 2452, .hw_value = 9 },
{ .center_freq = 2457, .hw_value = 10 },
{ .center_freq = 2462, .hw_value = 11 },
{ .center_freq = 2467, .hw_value = 12 },
{ .center_freq = 2472, .hw_value = 13 },
{ .center_freq = 2484, .hw_value = 14 },
};
static void housekeeping_init(struct zd_mac *mac);
static void housekeeping_enable(struct zd_mac *mac);
static void housekeeping_disable(struct zd_mac *mac);
static int zd_reg2alpha2(u8 regdomain, char *alpha2)
{
unsigned int i;
struct zd_reg_alpha2_map *reg_map;
for (i = 0; i < ARRAY_SIZE(reg_alpha2_map); i++) {
reg_map = ®_alpha2_map[i];
if (regdomain == reg_map->reg) {
alpha2[0] = reg_map->alpha2[0];
alpha2[1] = reg_map->alpha2[1];
return 0;
}
}
return 1;
}
int zd_mac_preinit_hw(struct ieee80211_hw *hw)
{
int r;
u8 addr[ETH_ALEN];
struct zd_mac *mac = zd_hw_mac(hw);
r = zd_chip_read_mac_addr_fw(&mac->chip, addr);
if (r)
return r;
SET_IEEE80211_PERM_ADDR(hw, addr);
return 0;
}
int zd_mac_init_hw(struct ieee80211_hw *hw)
{
int r;
struct zd_mac *mac = zd_hw_mac(hw);
struct zd_chip *chip = &mac->chip;
char alpha2[2];
u8 default_regdomain;
r = zd_chip_enable_int(chip);
if (r)
goto out;
r = zd_chip_init_hw(chip);
if (r)
goto disable_int;
ZD_ASSERT(!irqs_disabled());
r = zd_read_regdomain(chip, &default_regdomain);
if (r)
goto disable_int;
spin_lock_irq(&mac->lock);
mac->regdomain = mac->default_regdomain = default_regdomain;
spin_unlock_irq(&mac->lock);
/* We must inform the device that we are doing encryption/decryption in
* software at the moment. */
r = zd_set_encryption_type(chip, ENC_SNIFFER);
if (r)
goto disable_int;
r = zd_reg2alpha2(mac->regdomain, alpha2);
if (r)
goto disable_int;
r = regulatory_hint(hw->wiphy, alpha2);
disable_int:
zd_chip_disable_int(chip);
out:
return r;
}
void zd_mac_clear(struct zd_mac *mac)
{
flush_workqueue(zd_workqueue);
zd_chip_clear(&mac->chip);
ZD_ASSERT(!spin_is_locked(&mac->lock));
ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
}
static int set_rx_filter(struct zd_mac *mac)
{
unsigned long flags;
u32 filter = STA_RX_FILTER;
spin_lock_irqsave(&mac->lock, flags);
if (mac->pass_ctrl)
filter |= RX_FILTER_CTRL;
spin_unlock_irqrestore(&mac->lock, flags);
return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter);
}
static int set_mc_hash(struct zd_mac *mac)
{
struct zd_mc_hash hash;
zd_mc_clear(&hash);
return zd_chip_set_multicast_hash(&mac->chip, &hash);
}
static int zd_op_start(struct ieee80211_hw *hw)
{
struct zd_mac *mac = zd_hw_mac(hw);
struct zd_chip *chip = &mac->chip;
struct zd_usb *usb = &chip->usb;
int r;
if (!usb->initialized) {
r = zd_usb_init_hw(usb);
if (r)
goto out;
}
r = zd_chip_enable_int(chip);
if (r < 0)
goto out;
r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
if (r < 0)
goto disable_int;
r = set_rx_filter(mac);
if (r)
goto disable_int;
r = set_mc_hash(mac);
if (r)
goto disable_int;
r = zd_chip_switch_radio_on(chip);
if (r < 0)
goto disable_int;
r = zd_chip_enable_rxtx(chip);
if (r < 0)
goto disable_radio;
r = zd_chip_enable_hwint(chip);
if (r < 0)
goto disable_rxtx;
housekeeping_enable(mac);
return 0;
disable_rxtx:
zd_chip_disable_rxtx(chip);
disable_radio:
zd_chip_switch_radio_off(chip);
disable_int:
zd_chip_disable_int(chip);
out:
return r;
}
static void zd_op_stop(struct ieee80211_hw *hw)
{
struct zd_mac *mac = zd_hw_mac(hw);
struct zd_chip *chip = &mac->chip;
struct sk_buff *skb;
struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue;
/* The order here deliberately is a little different from the open()
* method, since we need to make sure there is no opportunity for RX
* frames to be processed by mac80211 after we have stopped it.
*/
zd_chip_disable_rxtx(chip);
housekeeping_disable(mac);
flush_workqueue(zd_workqueue);
zd_chip_disable_hwint(chip);
zd_chip_switch_radio_off(chip);
zd_chip_disable_int(chip);
while ((skb = skb_dequeue(ack_wait_queue)))
dev_kfree_skb_any(skb);
}
/**
* zd_mac_tx_status - reports tx status of a packet if required
* @hw - a &struct ieee80211_hw pointer
* @skb - a sk-buffer
* @flags: extra flags to set in the TX status info
* @ackssi: ACK signal strength
* @success - True for successful transmission of the frame
*
* This information calls ieee80211_tx_status_irqsafe() if required by the
* control information. It copies the control information into the status
* information.
*
* If no status information has been requested, the skb is freed.
*/
static void zd_mac_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
int ackssi, struct tx_status *tx_status)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
int i;
int success = 1, retry = 1;
int first_idx;
const struct tx_retry_rate *retries;
ieee80211_tx_info_clear_status(info);
if (tx_status) {
success = !tx_status->failure;
retry = tx_status->retry + success;
}
if (success) {
/* success */
info->flags |= IEEE80211_TX_STAT_ACK;
} else {
/* failure */
info->flags &= ~IEEE80211_TX_STAT_ACK;
}
first_idx = info->status.rates[0].idx;
ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
retries = &zd_retry_rates[first_idx];
ZD_ASSERT(1 <= retry && retry <= retries->count);
info->status.rates[0].idx = retries->rate[0];
info->status.rates[0].count = 1; // (retry > 1 ? 2 : 1);
for (i=1; i<IEEE80211_TX_MAX_RATES-1 && i<retry; i++) {
info->status.rates[i].idx = retries->rate[i];
info->status.rates[i].count = 1; // ((i==retry-1) && success ? 1:2);
}
for (; i<IEEE80211_TX_MAX_RATES && i<retry; i++) {
info->status.rates[i].idx = retries->rate[retry - 1];
info->status.rates[i].count = 1; // (success ? 1:2);
}
if (i<IEEE80211_TX_MAX_RATES)
info->status.rates[i].idx = -1; /* terminate */
info->status.ack_signal = ackssi;
ieee80211_tx_status_irqsafe(hw, skb);
}
/**
* zd_mac_tx_failed - callback for failed frames
* @dev: the mac80211 wireless device
*
* This function is called if a frame couldn't be successfully
* transferred. The first frame from the tx queue, will be selected and
* reported as error to the upper layers.
*/
void zd_mac_tx_failed(struct urb *urb)
{
struct ieee80211_hw * hw = zd_usb_to_hw(urb->context);
struct zd_mac *mac = zd_hw_mac(hw);
struct sk_buff_head *q = &mac->ack_wait_queue;
struct sk_buff *skb;
struct tx_status *tx_status = (struct tx_status *)urb->transfer_buffer;
unsigned long flags;
int success = !tx_status->failure;
int retry = tx_status->retry + success;
int found = 0;
int i, position = 0;
q = &mac->ack_wait_queue;
spin_lock_irqsave(&q->lock, flags);
skb_queue_walk(q, skb) {
struct ieee80211_hdr *tx_hdr;
struct ieee80211_tx_info *info;
int first_idx, final_idx;
const struct tx_retry_rate *retries;
u8 final_rate;
position ++;
/* if the hardware reports a failure and we had a 802.11 ACK
* pending, then we skip the first skb when searching for a
* matching frame */
if (tx_status->failure && mac->ack_pending &&
skb_queue_is_first(q, skb)) {
continue;
}
tx_hdr = (struct ieee80211_hdr *)skb->data;
/* we skip all frames not matching the reported destination */
if (unlikely(memcmp(tx_hdr->addr1, tx_status->mac, ETH_ALEN))) {
continue;
}
/* we skip all frames not matching the reported final rate */
info = IEEE80211_SKB_CB(skb);
first_idx = info->status.rates[0].idx;
ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
retries = &zd_retry_rates[first_idx];
if (retry <= 0 || retry > retries->count)
continue;
final_idx = retries->rate[retry - 1];
final_rate = zd_rates[final_idx].hw_value;
if (final_rate != tx_status->rate) {
continue;
}
found = 1;
break;
}
if (found) {
for (i=1; i<=position; i++) {
skb = __skb_dequeue(q);
zd_mac_tx_status(hw, skb,
mac->ack_pending ? mac->ack_signal : 0,
i == position ? tx_status : NULL);
mac->ack_pending = 0;
}
}
spin_unlock_irqrestore(&q->lock, flags);
}
/**
* zd_mac_tx_to_dev - callback for USB layer
* @skb: a &sk_buff pointer
* @error: error value, 0 if transmission successful
*
* Informs the MAC layer that the frame has successfully transferred to the
* device. If an ACK is required and the transfer to the device has been
* successful, the packets are put on the @ack_wait_queue with
* the control set removed.
*/
void zd_mac_tx_to_dev(struct sk_buff *skb, int error)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_hw *hw = info->rate_driver_data[0];
struct zd_mac *mac = zd_hw_mac(hw);
ieee80211_tx_info_clear_status(info);
skb_pull(skb, sizeof(struct zd_ctrlset));
if (unlikely(error ||
(info->flags & IEEE80211_TX_CTL_NO_ACK))) {
/*
* FIXME : do we need to fill in anything ?
*/
ieee80211_tx_status_irqsafe(hw, skb);
} else {
struct sk_buff_head *q = &mac->ack_wait_queue;
skb_queue_tail(q, skb);
while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS) {
zd_mac_tx_status(hw, skb_dequeue(q),
mac->ack_pending ? mac->ack_signal : 0,
NULL);
mac->ack_pending = 0;
}
}
}
static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length)
{
/* ZD_PURE_RATE() must be used to remove the modulation type flag of
* the zd-rate values.
*/
static const u8 rate_divisor[] = {
[ZD_PURE_RATE(ZD_CCK_RATE_1M)] = 1,
[ZD_PURE_RATE(ZD_CCK_RATE_2M)] = 2,
/* Bits must be doubled. */
[ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11,
[ZD_PURE_RATE(ZD_CCK_RATE_11M)] = 11,
[ZD_PURE_RATE(ZD_OFDM_RATE_6M)] = 6,
[ZD_PURE_RATE(ZD_OFDM_RATE_9M)] = 9,
[ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12,
[ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18,
[ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24,
[ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36,
[ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48,
[ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54,
};
u32 bits = (u32)tx_length * 8;
u32 divisor;
divisor = rate_divisor[ZD_PURE_RATE(zd_rate)];
if (divisor == 0)
return -EINVAL;
switch (zd_rate) {
case ZD_CCK_RATE_5_5M:
bits = (2*bits) + 10; /* round up to the next integer */
break;
case ZD_CCK_RATE_11M:
if (service) {
u32 t = bits % 11;
*service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
if (0 < t && t <= 3) {
*service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
}
}
bits += 10; /* round up to the next integer */
break;
}
return bits/divisor;
}
static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
struct ieee80211_hdr *header,
struct ieee80211_tx_info *info)
{
/*
* CONTROL TODO:
* - if backoff needed, enable bit 0
* - if burst (backoff not needed) disable bit 0
*/
cs->control = 0;
/* First fragment */
if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
/* No ACK expected (multicast, etc.) */
if (info->flags & IEEE80211_TX_CTL_NO_ACK)
cs->control |= ZD_CS_NO_ACK;
/* PS-POLL */
if (ieee80211_is_pspoll(header->frame_control))
cs->control |= ZD_CS_PS_POLL_FRAME;
if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
cs->control |= ZD_CS_RTS;
if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
cs->control |= ZD_CS_SELF_CTS;
/* FIXME: Management frame? */
}
static int zd_mac_config_beacon(struct ieee80211_hw *hw, struct sk_buff *beacon)
{
struct zd_mac *mac = zd_hw_mac(hw);
int r;
u32 tmp, j = 0;
/* 4 more bytes for tail CRC */
u32 full_len = beacon->len + 4;
r = zd_iowrite32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, 0);
if (r < 0)
return r;
r = zd_ioread32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, &tmp);
if (r < 0)
return r;
while (tmp & 0x2) {
r = zd_ioread32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, &tmp);
if (r < 0)
return r;
if ((++j % 100) == 0) {
printk(KERN_ERR "CR_BCN_FIFO_SEMAPHORE not ready\n");
if (j >= 500) {
printk(KERN_ERR "Giving up beacon config.\n");
return -ETIMEDOUT;
}
}
msleep(1);
}
r = zd_iowrite32(&mac->chip, CR_BCN_FIFO, full_len - 1);
if (r < 0)
return r;
if (zd_chip_is_zd1211b(&mac->chip)) {
r = zd_iowrite32(&mac->chip, CR_BCN_LENGTH, full_len - 1);
if (r < 0)
return r;
}
for (j = 0 ; j < beacon->len; j++) {
r = zd_iowrite32(&mac->chip, CR_BCN_FIFO,
*((u8 *)(beacon->data + j)));
if (r < 0)
return r;
}
for (j = 0; j < 4; j++) {
r = zd_iowrite32(&mac->chip, CR_BCN_FIFO, 0x0);
if (r < 0)
return r;
}
r = zd_iowrite32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, 1);
if (r < 0)
return r;
/* 802.11b/g 2.4G CCK 1Mb
* 802.11a, not yet implemented, uses different values (see GPL vendor
* driver)
*/
return zd_iowrite32(&mac->chip, CR_BCN_PLCP_CFG, 0x00000400 |
(full_len << 19));
}
static int fill_ctrlset(struct zd_mac *mac,
struct sk_buff *skb)
{
int r;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
unsigned int frag_len = skb->len + FCS_LEN;
unsigned int packet_length;
struct ieee80211_rate *txrate;
struct zd_ctrlset *cs = (struct zd_ctrlset *)
skb_push(skb, sizeof(struct zd_ctrlset));
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
ZD_ASSERT(frag_len <= 0xffff);
txrate = ieee80211_get_tx_rate(mac->hw, info);
cs->modulation = txrate->hw_value;
if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
cs->modulation = txrate->hw_value_short;
cs->tx_length = cpu_to_le16(frag_len);
cs_set_control(mac, cs, hdr, info);
packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
ZD_ASSERT(packet_length <= 0xffff);
/* ZD1211B: Computing the length difference this way, gives us
* flexibility to compute the packet length.
*/
cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ?
packet_length - frag_len : packet_length);
/*
* CURRENT LENGTH:
* - transmit frame length in microseconds
* - seems to be derived from frame length
* - see Cal_Us_Service() in zdinlinef.h
* - if macp->bTxBurstEnable is enabled, then multiply by 4
* - bTxBurstEnable is never set in the vendor driver
*
* SERVICE:
* - "for PLCP configuration"
* - always 0 except in some situations at 802.11b 11M
* - see line 53 of zdinlinef.h
*/
cs->service = 0;
r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation),
le16_to_cpu(cs->tx_length));
if (r < 0)
return r;
cs->current_length = cpu_to_le16(r);
cs->next_frame_length = 0;
return 0;
}
/**
* zd_op_tx - transmits a network frame to the device
*
* @dev: mac80211 hardware device
* @skb: socket buffer
* @control: the control structure
*
* This function transmit an IEEE 802.11 network frame to the device. The
* control block of the skbuff will be initialized. If necessary the incoming
* mac80211 queues will be stopped.
*/
static int zd_op_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
{
struct zd_mac *mac = zd_hw_mac(hw);
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
int r;
r = fill_ctrlset(mac, skb);
if (r)
goto fail;
info->rate_driver_data[0] = hw;
r = zd_usb_tx(&mac->chip.usb, skb);
if (r)
goto fail;
return 0;
fail:
dev_kfree_skb(skb);
return 0;
}
/**
* filter_ack - filters incoming packets for acknowledgements
* @dev: the mac80211 device
* @rx_hdr: received header
* @stats: the status for the received packet
*
* This functions looks for ACK packets and tries to match them with the
* frames in the tx queue. If a match is found the frame will be dequeued and
* the upper layers is informed about the successful transmission. If
* mac80211 queues have been stopped and the number of frames still to be
* transmitted is low the queues will be opened again.
*
* Returns 1 if the frame was an ACK, 0 if it was ignored.
*/
static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr,
struct ieee80211_rx_status *stats)
{
struct zd_mac *mac = zd_hw_mac(hw);
struct sk_buff *skb;
struct sk_buff_head *q;
unsigned long flags;
int found = 0;
int i, position = 0;
if (!ieee80211_is_ack(rx_hdr->frame_control))
return 0;
q = &mac->ack_wait_queue;
spin_lock_irqsave(&q->lock, flags);
skb_queue_walk(q, skb) {
struct ieee80211_hdr *tx_hdr;
position ++;
if (mac->ack_pending && skb_queue_is_first(q, skb))
continue;
tx_hdr = (struct ieee80211_hdr *)skb->data;
if (likely(!memcmp(tx_hdr->addr2, rx_hdr->addr1, ETH_ALEN)))
{
found = 1;
break;
}
}
if (found) {
for (i=1; i<position; i++) {
skb = __skb_dequeue(q);
zd_mac_tx_status(hw, skb,
mac->ack_pending ? mac->ack_signal : 0,
NULL);
mac->ack_pending = 0;
}
mac->ack_pending = 1;
mac->ack_signal = stats->signal;
}
spin_unlock_irqrestore(&q->lock, flags);
return 1;
}
int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length)
{
struct zd_mac *mac = zd_hw_mac(hw);
struct ieee80211_rx_status stats;
const struct rx_status *status;
struct sk_buff *skb;
int bad_frame = 0;
__le16 fc;
int need_padding;
int i;
u8 rate;
if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ +
FCS_LEN + sizeof(struct rx_status))
return -EINVAL;
memset(&stats, 0, sizeof(stats));
/* Note about pass_failed_fcs and pass_ctrl access below:
* mac locking intentionally omitted here, as this is the only unlocked
* reader and the only writer is configure_filter. Plus, if there were
* any races accessing these variables, it wouldn't really matter.
* If mac80211 ever provides a way for us to access filter flags
* from outside configure_filter, we could improve on this. Also, this
* situation may change once we implement some kind of DMA-into-skb
* RX path. */
/* Caller has to ensure that length >= sizeof(struct rx_status). */
status = (struct rx_status *)
(buffer + (length - sizeof(struct rx_status)));
if (status->frame_status & ZD_RX_ERROR) {
if (mac->pass_failed_fcs &&
(status->frame_status & ZD_RX_CRC32_ERROR)) {
stats.flag |= RX_FLAG_FAILED_FCS_CRC;
bad_frame = 1;
} else {
return -EINVAL;
}
}
stats.freq = zd_channels[_zd_chip_get_channel(&mac->chip) - 1].center_freq;
stats.band = IEEE80211_BAND_2GHZ;
stats.signal = status->signal_strength;
rate = zd_rx_rate(buffer, status);
/* todo: return index in the big switches in zd_rx_rate instead */
for (i = 0; i < mac->band.n_bitrates; i++)
if (rate == mac->band.bitrates[i].hw_value)
stats.rate_idx = i;
length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status);
buffer += ZD_PLCP_HEADER_SIZE;
/* Except for bad frames, filter each frame to see if it is an ACK, in
* which case our internal TX tracking is updated. Normally we then
* bail here as there's no need to pass ACKs on up to the stack, but
* there is also the case where the stack has requested us to pass
* control frames on up (pass_ctrl) which we must consider. */
if (!bad_frame &&
filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats)
&& !mac->pass_ctrl)
return 0;
fc = get_unaligned((__le16*)buffer);
need_padding = ieee80211_is_data_qos(fc) ^ ieee80211_has_a4(fc);
skb = dev_alloc_skb(length + (need_padding ? 2 : 0));
if (skb == NULL)
return -ENOMEM;
if (need_padding) {
/* Make sure the the payload data is 4 byte aligned. */
skb_reserve(skb, 2);
}
/* FIXME : could we avoid this big memcpy ? */
memcpy(skb_put(skb, length), buffer, length);
memcpy(IEEE80211_SKB_RXCB(skb), &stats, sizeof(stats));
ieee80211_rx_irqsafe(hw, skb);
return 0;
}
static int zd_op_add_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct zd_mac *mac = zd_hw_mac(hw);
/* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */
if (mac->type != NL80211_IFTYPE_UNSPECIFIED)
return -EOPNOTSUPP;
switch (vif->type) {
case NL80211_IFTYPE_MONITOR:
case NL80211_IFTYPE_MESH_POINT:
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_ADHOC:
mac->type = vif->type;
break;
default:
return -EOPNOTSUPP;
}
return zd_write_mac_addr(&mac->chip, vif->addr);
}
static void zd_op_remove_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct zd_mac *mac = zd_hw_mac(hw);
mac->type = NL80211_IFTYPE_UNSPECIFIED;
zd_set_beacon_interval(&mac->chip, 0);
zd_write_mac_addr(&mac->chip, NULL);
}
static int zd_op_config(struct ieee80211_hw *hw, u32 changed)
{
struct zd_mac *mac = zd_hw_mac(hw);
struct ieee80211_conf *conf = &hw->conf;
return zd_chip_set_channel(&mac->chip, conf->channel->hw_value);
}
static void zd_process_intr(struct work_struct *work)
{
u16 int_status;
struct zd_mac *mac = container_of(work, struct zd_mac, process_intr);
int_status = le16_to_cpu(*(__le16 *)(mac->intr_buffer+4));
if (int_status & INT_CFG_NEXT_BCN)
dev_dbg_f_limit(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n");
else
dev_dbg_f(zd_mac_dev(mac), "Unsupported interrupt\n");
zd_chip_enable_hwint(&mac->chip);
}
static void set_multicast_hash_handler(struct work_struct *work)
{
struct zd_mac *mac =
container_of(work, struct zd_mac, set_multicast_hash_work);
struct zd_mc_hash hash;
spin_lock_irq(&mac->lock);
hash = mac->multicast_hash;
spin_unlock_irq(&mac->lock);
zd_chip_set_multicast_hash(&mac->chip, &hash);
}
static void set_rx_filter_handler(struct work_struct *work)
{
struct zd_mac *mac =
container_of(work, struct zd_mac, set_rx_filter_work);
int r;
dev_dbg_f(zd_mac_dev(mac), "\n");
r = set_rx_filter(mac);
if (r)
dev_err(zd_mac_dev(mac), "set_rx_filter_handler error %d\n", r);
}
static u64 zd_op_prepare_multicast(struct ieee80211_hw *hw,
struct netdev_hw_addr_list *mc_list)
{
struct zd_mac *mac = zd_hw_mac(hw);
struct zd_mc_hash hash;
struct netdev_hw_addr *ha;
zd_mc_clear(&hash);
netdev_hw_addr_list_for_each(ha, mc_list) {
dev_dbg_f(zd_mac_dev(mac), "mc addr %pM\n", ha->addr);
zd_mc_add_addr(&hash, ha->addr);
}
return hash.low | ((u64)hash.high << 32);
}
#define SUPPORTED_FIF_FLAGS \
(FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)
static void zd_op_configure_filter(struct ieee80211_hw *hw,
unsigned int changed_flags,
unsigned int *new_flags,
u64 multicast)
{
struct zd_mc_hash hash = {
.low = multicast,
.high = multicast >> 32,
};
struct zd_mac *mac = zd_hw_mac(hw);
unsigned long flags;
/* Only deal with supported flags */
changed_flags &= SUPPORTED_FIF_FLAGS;
*new_flags &= SUPPORTED_FIF_FLAGS;
/*
* If multicast parameter (as returned by zd_op_prepare_multicast)
* has changed, no bit in changed_flags is set. To handle this
* situation, we do not return if changed_flags is 0. If we do so,
* we will have some issue with IPv6 which uses multicast for link
* layer address resolution.
*/
if (*new_flags & (FIF_PROMISC_IN_BSS | FIF_ALLMULTI))
zd_mc_add_all(&hash);
spin_lock_irqsave(&mac->lock, flags);
mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL);
mac->pass_ctrl = !!(*new_flags & FIF_CONTROL);
mac->multicast_hash = hash;
spin_unlock_irqrestore(&mac->lock, flags);
/* XXX: these can be called here now, can sleep now! */
queue_work(zd_workqueue, &mac->set_multicast_hash_work);
if (changed_flags & FIF_CONTROL)
queue_work(zd_workqueue, &mac->set_rx_filter_work);
/* no handling required for FIF_OTHER_BSS as we don't currently
* do BSSID filtering */
/* FIXME: in future it would be nice to enable the probe response
* filter (so that the driver doesn't see them) until
* FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd
* have to schedule work to enable prbresp reception, which might
* happen too late. For now we'll just listen and forward them all the
* time. */
}
static void set_rts_cts_work(struct work_struct *work)
{
struct zd_mac *mac =
container_of(work, struct zd_mac, set_rts_cts_work);
unsigned long flags;
unsigned int short_preamble;
mutex_lock(&mac->chip.mutex);
spin_lock_irqsave(&mac->lock, flags);
mac->updating_rts_rate = 0;
short_preamble = mac->short_preamble;
spin_unlock_irqrestore(&mac->lock, flags);
zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble);
mutex_unlock(&mac->chip.mutex);
}
static void zd_op_bss_info_changed(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *bss_conf,
u32 changes)
{
struct zd_mac *mac = zd_hw_mac(hw);
unsigned long flags;
int associated;
dev_dbg_f(zd_mac_dev(mac), "changes: %x\n", changes);
if (mac->type == NL80211_IFTYPE_MESH_POINT ||
mac->type == NL80211_IFTYPE_ADHOC) {
associated = true;
if (changes & BSS_CHANGED_BEACON) {
struct sk_buff *beacon = ieee80211_beacon_get(hw, vif);
if (beacon) {
zd_mac_config_beacon(hw, beacon);
kfree_skb(beacon);
}
}
if (changes & BSS_CHANGED_BEACON_ENABLED) {
u32 interval;
if (bss_conf->enable_beacon)
interval = BCN_MODE_IBSS |
bss_conf->beacon_int;
else
interval = 0;
zd_set_beacon_interval(&mac->chip, interval);
}
} else
associated = is_valid_ether_addr(bss_conf->bssid);
spin_lock_irq(&mac->lock);
mac->associated = associated;
spin_unlock_irq(&mac->lock);
/* TODO: do hardware bssid filtering */
if (changes & BSS_CHANGED_ERP_PREAMBLE) {
spin_lock_irqsave(&mac->lock, flags);
mac->short_preamble = bss_conf->use_short_preamble;
if (!mac->updating_rts_rate) {
mac->updating_rts_rate = 1;
/* FIXME: should disable TX here, until work has
* completed and RTS_CTS reg is updated */
queue_work(zd_workqueue, &mac->set_rts_cts_work);
}
spin_unlock_irqrestore(&mac->lock, flags);
}
}
static u64 zd_op_get_tsf(struct ieee80211_hw *hw)
{
struct zd_mac *mac = zd_hw_mac(hw);
return zd_chip_get_tsf(&mac->chip);
}
static const struct ieee80211_ops zd_ops = {
.tx = zd_op_tx,
.start = zd_op_start,
.stop = zd_op_stop,
.add_interface = zd_op_add_interface,
.remove_interface = zd_op_remove_interface,
.config = zd_op_config,
.prepare_multicast = zd_op_prepare_multicast,
.configure_filter = zd_op_configure_filter,
.bss_info_changed = zd_op_bss_info_changed,
.get_tsf = zd_op_get_tsf,
};
struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf)
{
struct zd_mac *mac;
struct ieee80211_hw *hw;
hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops);
if (!hw) {
dev_dbg_f(&intf->dev, "out of memory\n");
return NULL;
}
mac = zd_hw_mac(hw);
memset(mac, 0, sizeof(*mac));
spin_lock_init(&mac->lock);
mac->hw = hw;
mac->type = NL80211_IFTYPE_UNSPECIFIED;
memcpy(mac->channels, zd_channels, sizeof(zd_channels));
memcpy(mac->rates, zd_rates, sizeof(zd_rates));
mac->band.n_bitrates = ARRAY_SIZE(zd_rates);
mac->band.bitrates = mac->rates;
mac->band.n_channels = ARRAY_SIZE(zd_channels);
mac->band.channels = mac->channels;
hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &mac->band;
hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
IEEE80211_HW_SIGNAL_UNSPEC;
hw->wiphy->interface_modes =
BIT(NL80211_IFTYPE_MESH_POINT) |
BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_ADHOC);
hw->max_signal = 100;
hw->queues = 1;
hw->extra_tx_headroom = sizeof(struct zd_ctrlset);
/*
* Tell mac80211 that we support multi rate retries
*/
hw->max_rates = IEEE80211_TX_MAX_RATES;
hw->max_rate_tries = 18; /* 9 rates * 2 retries/rate */
skb_queue_head_init(&mac->ack_wait_queue);
mac->ack_pending = 0;
zd_chip_init(&mac->chip, hw, intf);
housekeeping_init(mac);
INIT_WORK(&mac->set_multicast_hash_work, set_multicast_hash_handler);
INIT_WORK(&mac->set_rts_cts_work, set_rts_cts_work);
INIT_WORK(&mac->set_rx_filter_work, set_rx_filter_handler);
INIT_WORK(&mac->process_intr, zd_process_intr);
SET_IEEE80211_DEV(hw, &intf->dev);
return hw;
}
#define LINK_LED_WORK_DELAY HZ
static void link_led_handler(struct work_struct *work)
{
struct zd_mac *mac =
container_of(work, struct zd_mac, housekeeping.link_led_work.work);
struct zd_chip *chip = &mac->chip;
int is_associated;
int r;
spin_lock_irq(&mac->lock);
is_associated = mac->associated;
spin_unlock_irq(&mac->lock);
r = zd_chip_control_leds(chip,
is_associated ? ZD_LED_ASSOCIATED : ZD_LED_SCANNING);
if (r)
dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);
queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
LINK_LED_WORK_DELAY);
}
static void housekeeping_init(struct zd_mac *mac)
{
INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler);
}
static void housekeeping_enable(struct zd_mac *mac)
{
dev_dbg_f(zd_mac_dev(mac), "\n");
queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
0);
}
static void housekeeping_disable(struct zd_mac *mac)
{
dev_dbg_f(zd_mac_dev(mac), "\n");
cancel_rearming_delayed_workqueue(zd_workqueue,
&mac->housekeeping.link_led_work);
zd_chip_control_leds(&mac->chip, ZD_LED_OFF);
}