/*
* Common code for mac80211 Prism54 drivers
*
* Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
* Copyright (c) 2007, Christian Lamparter <chunkeey@web.de>
*
* Based on the islsm (softmac prism54) driver, which is:
* Copyright 2004-2006 Jean-Baptiste Note <jbnote@gmail.com>, et al.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/init.h>
#include <linux/firmware.h>
#include <linux/etherdevice.h>
#include <net/mac80211.h>
#include "p54.h"
#include "p54common.h"
MODULE_AUTHOR("Michael Wu <flamingice@sourmilk.net>");
MODULE_DESCRIPTION("Softmac Prism54 common code");
MODULE_LICENSE("GPL");
MODULE_ALIAS("prism54common");
static struct ieee80211_rate p54_rates[] = {
{ .bitrate = 10, .hw_value = 0, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 20, .hw_value = 1, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 55, .hw_value = 2, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 110, .hw_value = 3, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 60, .hw_value = 4, },
{ .bitrate = 90, .hw_value = 5, },
{ .bitrate = 120, .hw_value = 6, },
{ .bitrate = 180, .hw_value = 7, },
{ .bitrate = 240, .hw_value = 8, },
{ .bitrate = 360, .hw_value = 9, },
{ .bitrate = 480, .hw_value = 10, },
{ .bitrate = 540, .hw_value = 11, },
};
static struct ieee80211_channel p54_channels[] = {
{ .center_freq = 2412, .hw_value = 1, },
{ .center_freq = 2417, .hw_value = 2, },
{ .center_freq = 2422, .hw_value = 3, },
{ .center_freq = 2427, .hw_value = 4, },
{ .center_freq = 2432, .hw_value = 5, },
{ .center_freq = 2437, .hw_value = 6, },
{ .center_freq = 2442, .hw_value = 7, },
{ .center_freq = 2447, .hw_value = 8, },
{ .center_freq = 2452, .hw_value = 9, },
{ .center_freq = 2457, .hw_value = 10, },
{ .center_freq = 2462, .hw_value = 11, },
{ .center_freq = 2467, .hw_value = 12, },
{ .center_freq = 2472, .hw_value = 13, },
{ .center_freq = 2484, .hw_value = 14, },
};
static struct ieee80211_supported_band band_2GHz = {
.channels = p54_channels,
.n_channels = ARRAY_SIZE(p54_channels),
.bitrates = p54_rates,
.n_bitrates = ARRAY_SIZE(p54_rates),
};
int p54_parse_firmware(struct ieee80211_hw *dev, const struct firmware *fw)
{
struct p54_common *priv = dev->priv;
struct bootrec_exp_if *exp_if;
struct bootrec *bootrec;
u32 *data = (u32 *)fw->data;
u32 *end_data = (u32 *)fw->data + (fw->size >> 2);
u8 *fw_version = NULL;
size_t len;
int i;
if (priv->rx_start)
return 0;
while (data < end_data && *data)
data++;
while (data < end_data && !*data)
data++;
bootrec = (struct bootrec *) data;
while (bootrec->data <= end_data &&
(bootrec->data + (len = le32_to_cpu(bootrec->len))) <= end_data) {
u32 code = le32_to_cpu(bootrec->code);
switch (code) {
case BR_CODE_COMPONENT_ID:
priv->fw_interface = be32_to_cpup(bootrec->data);
switch (priv->fw_interface) {
case FW_FMAC:
printk(KERN_INFO "p54: FreeMAC firmware\n");
break;
case FW_LM20:
printk(KERN_INFO "p54: LM20 firmware\n");
break;
case FW_LM86:
printk(KERN_INFO "p54: LM86 firmware\n");
break;
case FW_LM87:
printk(KERN_INFO "p54: LM87 firmware\n");
break;
default:
printk(KERN_INFO "p54: unknown firmware\n");
break;
}
break;
case BR_CODE_COMPONENT_VERSION:
/* 24 bytes should be enough for all firmwares */
if (strnlen((unsigned char*)bootrec->data, 24) < 24)
fw_version = (unsigned char*)bootrec->data;
break;
case BR_CODE_DESCR: {
struct bootrec_desc *desc =
(struct bootrec_desc *)bootrec->data;
priv->rx_start = le32_to_cpu(desc->rx_start);
/* FIXME add sanity checking */
priv->rx_end = le32_to_cpu(desc->rx_end) - 0x3500;
priv->headroom = desc->headroom;
priv->tailroom = desc->tailroom;
if (bootrec->len == 11)
priv->rx_mtu = (size_t) le16_to_cpu(
(__le16)bootrec->data[10]);
else
priv->rx_mtu = (size_t)
0x620 - priv->tx_hdr_len;
break;
}
case BR_CODE_EXPOSED_IF:
exp_if = (struct bootrec_exp_if *) bootrec->data;
for (i = 0; i < (len * sizeof(*exp_if) / 4); i++)
if (exp_if[i].if_id == cpu_to_le16(0x1a))
priv->fw_var = le16_to_cpu(exp_if[i].variant);
break;
case BR_CODE_DEPENDENT_IF:
break;
case BR_CODE_END_OF_BRA:
case LEGACY_BR_CODE_END_OF_BRA:
end_data = NULL;
break;
default:
break;
}
bootrec = (struct bootrec *)&bootrec->data[len];
}
if (fw_version)
printk(KERN_INFO "p54: FW rev %s - Softmac protocol %x.%x\n",
fw_version, priv->fw_var >> 8, priv->fw_var & 0xff);
if (priv->fw_var >= 0x300) {
/* Firmware supports QoS, use it! */
priv->tx_stats[4].limit = 3;
priv->tx_stats[5].limit = 4;
priv->tx_stats[6].limit = 3;
priv->tx_stats[7].limit = 1;
dev->queues = 4;
}
return 0;
}
EXPORT_SYMBOL_GPL(p54_parse_firmware);
static int p54_convert_rev0(struct ieee80211_hw *dev,
struct pda_pa_curve_data *curve_data)
{
struct p54_common *priv = dev->priv;
struct p54_pa_curve_data_sample *dst;
struct pda_pa_curve_data_sample_rev0 *src;
size_t cd_len = sizeof(*curve_data) +
(curve_data->points_per_channel*sizeof(*dst) + 2) *
curve_data->channels;
unsigned int i, j;
void *source, *target;
priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
if (!priv->curve_data)
return -ENOMEM;
memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
source = curve_data->data;
target = priv->curve_data->data;
for (i = 0; i < curve_data->channels; i++) {
__le16 *freq = source;
source += sizeof(__le16);
*((__le16 *)target) = *freq;
target += sizeof(__le16);
for (j = 0; j < curve_data->points_per_channel; j++) {
dst = target;
src = source;
dst->rf_power = src->rf_power;
dst->pa_detector = src->pa_detector;
dst->data_64qam = src->pcv;
/* "invent" the points for the other modulations */
#define SUB(x,y) (u8)((x) - (y)) > (x) ? 0 : (x) - (y)
dst->data_16qam = SUB(src->pcv, 12);
dst->data_qpsk = SUB(dst->data_16qam, 12);
dst->data_bpsk = SUB(dst->data_qpsk, 12);
dst->data_barker = SUB(dst->data_bpsk, 14);
#undef SUB
target += sizeof(*dst);
source += sizeof(*src);
}
}
return 0;
}
static int p54_convert_rev1(struct ieee80211_hw *dev,
struct pda_pa_curve_data *curve_data)
{
struct p54_common *priv = dev->priv;
struct p54_pa_curve_data_sample *dst;
struct pda_pa_curve_data_sample_rev1 *src;
size_t cd_len = sizeof(*curve_data) +
(curve_data->points_per_channel*sizeof(*dst) + 2) *
curve_data->channels;
unsigned int i, j;
void *source, *target;
priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
if (!priv->curve_data)
return -ENOMEM;
memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
source = curve_data->data;
target = priv->curve_data->data;
for (i = 0; i < curve_data->channels; i++) {
__le16 *freq = source;
source += sizeof(__le16);
*((__le16 *)target) = *freq;
target += sizeof(__le16);
for (j = 0; j < curve_data->points_per_channel; j++) {
memcpy(target, source, sizeof(*src));
target += sizeof(*dst);
source += sizeof(*src);
}
source++;
}
return 0;
}
const char* p54_rf_chips[] = { "NULL", "Indigo?", "Duette",
"Frisbee", "Xbow", "Longbow" };
int p54_parse_eeprom(struct ieee80211_hw *dev, void *eeprom, int len)
{
struct p54_common *priv = dev->priv;
struct eeprom_pda_wrap *wrap = NULL;
struct pda_entry *entry;
unsigned int data_len, entry_len;
void *tmp;
int err;
u8 *end = (u8 *)eeprom + len;
DECLARE_MAC_BUF(mac);
wrap = (struct eeprom_pda_wrap *) eeprom;
entry = (void *)wrap->data + le16_to_cpu(wrap->len);
/* verify that at least the entry length/code fits */
while ((u8 *)entry <= end - sizeof(*entry)) {
entry_len = le16_to_cpu(entry->len);
data_len = ((entry_len - 1) << 1);
/* abort if entry exceeds whole structure */
if ((u8 *)entry + sizeof(*entry) + data_len > end)
break;
switch (le16_to_cpu(entry->code)) {
case PDR_MAC_ADDRESS:
SET_IEEE80211_PERM_ADDR(dev, entry->data);
break;
case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS:
if (data_len < 2) {
err = -EINVAL;
goto err;
}
if (2 + entry->data[1]*sizeof(*priv->output_limit) > data_len) {
err = -EINVAL;
goto err;
}
priv->output_limit = kmalloc(entry->data[1] *
sizeof(*priv->output_limit), GFP_KERNEL);
if (!priv->output_limit) {
err = -ENOMEM;
goto err;
}
memcpy(priv->output_limit, &entry->data[2],
entry->data[1]*sizeof(*priv->output_limit));
priv->output_limit_len = entry->data[1];
break;
case PDR_PRISM_PA_CAL_CURVE_DATA: {
struct pda_pa_curve_data *curve_data =
(struct pda_pa_curve_data *)entry->data;
if (data_len < sizeof(*curve_data)) {
err = -EINVAL;
goto err;
}
switch (curve_data->cal_method_rev) {
case 0:
err = p54_convert_rev0(dev, curve_data);
break;
case 1:
err = p54_convert_rev1(dev, curve_data);
break;
default:
printk(KERN_ERR "p54: unknown curve data "
"revision %d\n",
curve_data->cal_method_rev);
err = -ENODEV;
break;
}
if (err)
goto err;
}
case PDR_PRISM_ZIF_TX_IQ_CALIBRATION:
priv->iq_autocal = kmalloc(data_len, GFP_KERNEL);
if (!priv->iq_autocal) {
err = -ENOMEM;
goto err;
}
memcpy(priv->iq_autocal, entry->data, data_len);
priv->iq_autocal_len = data_len / sizeof(struct pda_iq_autocal_entry);
break;
case PDR_INTERFACE_LIST:
tmp = entry->data;
while ((u8 *)tmp < entry->data + data_len) {
struct bootrec_exp_if *exp_if = tmp;
if (le16_to_cpu(exp_if->if_id) == 0xF)
priv->rxhw = le16_to_cpu(exp_if->variant) & 0x07;
tmp += sizeof(struct bootrec_exp_if);
}
break;
case PDR_HARDWARE_PLATFORM_COMPONENT_ID:
priv->version = *(u8 *)(entry->data + 1);
break;
case PDR_END:
/* make it overrun */
entry_len = len;
break;
default:
printk(KERN_INFO "p54: unknown eeprom code : 0x%x\n",
le16_to_cpu(entry->code));
break;
}
entry = (void *)entry + (entry_len + 1)*2;
}
if (!priv->iq_autocal || !priv->output_limit || !priv->curve_data) {
printk(KERN_ERR "p54: not all required entries found in eeprom!\n");
err = -EINVAL;
goto err;
}
switch (priv->rxhw) {
case 4: /* XBow */
case 1: /* Indigo? */
case 2: /* Duette */
/* TODO: 5GHz initialization goes here */
case 3: /* Frisbee */
case 5: /* Longbow */
dev->wiphy->bands[IEEE80211_BAND_2GHZ] = &band_2GHz;
break;
default:
printk(KERN_ERR "%s: unsupported RF-Chip\n",
wiphy_name(dev->wiphy));
err = -EINVAL;
goto err;
}
if (!is_valid_ether_addr(dev->wiphy->perm_addr)) {
u8 perm_addr[ETH_ALEN];
printk(KERN_WARNING "%s: Invalid hwaddr! Using randomly generated MAC addr\n",
wiphy_name(dev->wiphy));
random_ether_addr(perm_addr);
SET_IEEE80211_PERM_ADDR(dev, perm_addr);
}
printk(KERN_INFO "%s: hwaddr %s, MAC:isl38%02x RF:%s\n",
wiphy_name(dev->wiphy),
print_mac(mac, dev->wiphy->perm_addr),
priv->version, p54_rf_chips[priv->rxhw]);
return 0;
err:
if (priv->iq_autocal) {
kfree(priv->iq_autocal);
priv->iq_autocal = NULL;
}
if (priv->output_limit) {
kfree(priv->output_limit);
priv->output_limit = NULL;
}
if (priv->curve_data) {
kfree(priv->curve_data);
priv->curve_data = NULL;
}
printk(KERN_ERR "p54: eeprom parse failed!\n");
return err;
}
EXPORT_SYMBOL_GPL(p54_parse_eeprom);
static void p54_rx_data(struct ieee80211_hw *dev, struct sk_buff *skb)
{
struct p54_rx_hdr *hdr = (struct p54_rx_hdr *) skb->data;
struct ieee80211_rx_status rx_status = {0};
u16 freq = le16_to_cpu(hdr->freq);
rx_status.signal = hdr->rssi;
/* XX correct? */
rx_status.qual = (100 * hdr->rssi) / 127;
rx_status.rate_idx = hdr->rate & 0xf;
rx_status.freq = freq;
rx_status.band = IEEE80211_BAND_2GHZ;
rx_status.antenna = hdr->antenna;
rx_status.mactime = le64_to_cpu(hdr->timestamp);
rx_status.flag |= RX_FLAG_TSFT;
skb_pull(skb, sizeof(*hdr));
skb_trim(skb, le16_to_cpu(hdr->len));
ieee80211_rx_irqsafe(dev, skb, &rx_status);
}
static void inline p54_wake_free_queues(struct ieee80211_hw *dev)
{
struct p54_common *priv = dev->priv;
int i;
for (i = 0; i < dev->queues; i++)
if (priv->tx_stats[i + 4].len < priv->tx_stats[i + 4].limit)
ieee80211_wake_queue(dev, i);
}
static void p54_rx_frame_sent(struct ieee80211_hw *dev, struct sk_buff *skb)
{
struct p54_common *priv = dev->priv;
struct p54_control_hdr *hdr = (struct p54_control_hdr *) skb->data;
struct p54_frame_sent_hdr *payload = (struct p54_frame_sent_hdr *) hdr->data;
struct sk_buff *entry = (struct sk_buff *) priv->tx_queue.next;
u32 addr = le32_to_cpu(hdr->req_id) - priv->headroom;
struct memrecord *range = NULL;
u32 freed = 0;
u32 last_addr = priv->rx_start;
unsigned long flags;
spin_lock_irqsave(&priv->tx_queue.lock, flags);
while (entry != (struct sk_buff *)&priv->tx_queue) {
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(entry);
range = (void *)info->driver_data;
if (range->start_addr == addr) {
struct p54_control_hdr *entry_hdr;
struct p54_tx_control_allocdata *entry_data;
int pad = 0;
if (entry->next != (struct sk_buff *)&priv->tx_queue) {
struct ieee80211_tx_info *ni;
struct memrecord *mr;
ni = IEEE80211_SKB_CB(entry->next);
mr = (struct memrecord *)ni->driver_data;
freed = mr->start_addr - last_addr;
} else
freed = priv->rx_end - last_addr;
last_addr = range->end_addr;
__skb_unlink(entry, &priv->tx_queue);
spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
memset(&info->status, 0, sizeof(info->status));
entry_hdr = (struct p54_control_hdr *) entry->data;
entry_data = (struct p54_tx_control_allocdata *) entry_hdr->data;
if ((entry_hdr->magic1 & cpu_to_le16(0x4000)) != 0)
pad = entry_data->align[0];
priv->tx_stats[entry_data->hw_queue].len--;
if (!(info->flags & IEEE80211_TX_CTL_NO_ACK)) {
if (!(payload->status & 0x01))
info->flags |= IEEE80211_TX_STAT_ACK;
else
info->status.excessive_retries = 1;
}
info->status.retry_count = payload->retries - 1;
info->status.ack_signal = le16_to_cpu(payload->ack_rssi);
skb_pull(entry, sizeof(*hdr) + pad + sizeof(*entry_data));
ieee80211_tx_status_irqsafe(dev, entry);
goto out;
} else
last_addr = range->end_addr;
entry = entry->next;
}
spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
out:
if (freed >= IEEE80211_MAX_RTS_THRESHOLD + 0x170 +
sizeof(struct p54_control_hdr))
p54_wake_free_queues(dev);
}
static void p54_rx_eeprom_readback(struct ieee80211_hw *dev,
struct sk_buff *skb)
{
struct p54_control_hdr *hdr = (struct p54_control_hdr *) skb->data;
struct p54_eeprom_lm86 *eeprom = (struct p54_eeprom_lm86 *) hdr->data;
struct p54_common *priv = dev->priv;
if (!priv->eeprom)
return ;
memcpy(priv->eeprom, eeprom->data, eeprom->len);
complete(&priv->eeprom_comp);
}
static void p54_rx_control(struct ieee80211_hw *dev, struct sk_buff *skb)
{
struct p54_control_hdr *hdr = (struct p54_control_hdr *) skb->data;
switch (le16_to_cpu(hdr->type)) {
case P54_CONTROL_TYPE_TXDONE:
p54_rx_frame_sent(dev, skb);
break;
case P54_CONTROL_TYPE_BBP:
break;
case P54_CONTROL_TYPE_EEPROM_READBACK:
p54_rx_eeprom_readback(dev, skb);
break;
default:
printk(KERN_DEBUG "%s: not handling 0x%02x type control frame\n",
wiphy_name(dev->wiphy), le16_to_cpu(hdr->type));
break;
}
}
/* returns zero if skb can be reused */
int p54_rx(struct ieee80211_hw *dev, struct sk_buff *skb)
{
u8 type = le16_to_cpu(*((__le16 *)skb->data)) >> 8;
switch (type) {
case 0x00:
case 0x01:
p54_rx_data(dev, skb);
return -1;
case 0x4d:
/* TODO: do something better... but then again, I've never seen this happen */
printk(KERN_ERR "%s: Received fault. Probably need to restart hardware now..\n",
wiphy_name(dev->wiphy));
break;
case 0x80:
p54_rx_control(dev, skb);
break;
default:
printk(KERN_ERR "%s: unknown frame RXed (0x%02x)\n",
wiphy_name(dev->wiphy), type);
break;
}
return 0;
}
EXPORT_SYMBOL_GPL(p54_rx);
/*
* So, the firmware is somewhat stupid and doesn't know what places in its
* memory incoming data should go to. By poking around in the firmware, we
* can find some unused memory to upload our packets to. However, data that we
* want the card to TX needs to stay intact until the card has told us that
* it is done with it. This function finds empty places we can upload to and
* marks allocated areas as reserved if necessary. p54_rx_frame_sent frees
* allocated areas.
*/
static void p54_assign_address(struct ieee80211_hw *dev, struct sk_buff *skb,
struct p54_control_hdr *data, u32 len)
{
struct p54_common *priv = dev->priv;
struct sk_buff *entry = priv->tx_queue.next;
struct sk_buff *target_skb = NULL;
u32 last_addr = priv->rx_start;
u32 largest_hole = 0;
u32 target_addr = priv->rx_start;
unsigned long flags;
unsigned int left;
len = (len + priv->headroom + priv->tailroom + 3) & ~0x3;
spin_lock_irqsave(&priv->tx_queue.lock, flags);
left = skb_queue_len(&priv->tx_queue);
while (left--) {
u32 hole_size;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(entry);
struct memrecord *range = (void *)info->driver_data;
hole_size = range->start_addr - last_addr;
if (!target_skb && hole_size >= len) {
target_skb = entry->prev;
hole_size -= len;
target_addr = last_addr;
}
largest_hole = max(largest_hole, hole_size);
last_addr = range->end_addr;
entry = entry->next;
}
if (!target_skb && priv->rx_end - last_addr >= len) {
target_skb = priv->tx_queue.prev;
largest_hole = max(largest_hole, priv->rx_end - last_addr - len);
if (!skb_queue_empty(&priv->tx_queue)) {
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(target_skb);
struct memrecord *range = (void *)info->driver_data;
target_addr = range->end_addr;
}
} else
largest_hole = max(largest_hole, priv->rx_end - last_addr);
if (skb) {
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct memrecord *range = (void *)info->driver_data;
range->start_addr = target_addr;
range->end_addr = target_addr + len;
__skb_queue_after(&priv->tx_queue, target_skb, skb);
if (largest_hole < priv->rx_mtu + priv->headroom +
priv->tailroom +
sizeof(struct p54_control_hdr))
ieee80211_stop_queues(dev);
}
spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
data->req_id = cpu_to_le32(target_addr + priv->headroom);
}
int p54_read_eeprom(struct ieee80211_hw *dev)
{
struct p54_common *priv = dev->priv;
struct p54_control_hdr *hdr = NULL;
struct p54_eeprom_lm86 *eeprom_hdr;
size_t eeprom_size = 0x2020, offset = 0, blocksize;
int ret = -ENOMEM;
void *eeprom = NULL;
hdr = (struct p54_control_hdr *)kzalloc(sizeof(*hdr) +
sizeof(*eeprom_hdr) + EEPROM_READBACK_LEN, GFP_KERNEL);
if (!hdr)
goto free;
priv->eeprom = kzalloc(EEPROM_READBACK_LEN, GFP_KERNEL);
if (!priv->eeprom)
goto free;
eeprom = kzalloc(eeprom_size, GFP_KERNEL);
if (!eeprom)
goto free;
hdr->magic1 = cpu_to_le16(0x8000);
hdr->type = cpu_to_le16(P54_CONTROL_TYPE_EEPROM_READBACK);
hdr->retry1 = hdr->retry2 = 0;
eeprom_hdr = (struct p54_eeprom_lm86 *) hdr->data;
while (eeprom_size) {
blocksize = min(eeprom_size, (size_t)EEPROM_READBACK_LEN);
hdr->len = cpu_to_le16(blocksize + sizeof(*eeprom_hdr));
eeprom_hdr->offset = cpu_to_le16(offset);
eeprom_hdr->len = cpu_to_le16(blocksize);
p54_assign_address(dev, NULL, hdr, hdr->len + sizeof(*hdr));
priv->tx(dev, hdr, hdr->len + sizeof(*hdr), 0);
if (!wait_for_completion_interruptible_timeout(&priv->eeprom_comp, HZ)) {
printk(KERN_ERR "%s: device does not respond!\n",
wiphy_name(dev->wiphy));
ret = -EBUSY;
goto free;
}
memcpy(eeprom + offset, priv->eeprom, blocksize);
offset += blocksize;
eeprom_size -= blocksize;
}
ret = p54_parse_eeprom(dev, eeprom, offset);
free:
kfree(priv->eeprom);
priv->eeprom = NULL;
kfree(hdr);
kfree(eeprom);
return ret;
}
EXPORT_SYMBOL_GPL(p54_read_eeprom);
static int p54_tx(struct ieee80211_hw *dev, struct sk_buff *skb)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_tx_queue_stats *current_queue;
struct p54_common *priv = dev->priv;
struct p54_control_hdr *hdr;
struct ieee80211_hdr *ieee80211hdr = (struct ieee80211_hdr *)skb->data;
struct p54_tx_control_allocdata *txhdr;
size_t padding, len;
u8 rate;
u8 cts_rate = 0x20;
current_queue = &priv->tx_stats[skb_get_queue_mapping(skb) + 4];
if (unlikely(current_queue->len > current_queue->limit))
return NETDEV_TX_BUSY;
current_queue->len++;
current_queue->count++;
if (current_queue->len == current_queue->limit)
ieee80211_stop_queue(dev, skb_get_queue_mapping(skb));
padding = (unsigned long)(skb->data - (sizeof(*hdr) + sizeof(*txhdr))) & 3;
len = skb->len;
txhdr = (struct p54_tx_control_allocdata *)
skb_push(skb, sizeof(*txhdr) + padding);
hdr = (struct p54_control_hdr *) skb_push(skb, sizeof(*hdr));
if (padding)
hdr->magic1 = cpu_to_le16(0x4010);
else
hdr->magic1 = cpu_to_le16(0x0010);
hdr->len = cpu_to_le16(len);
hdr->type = (info->flags & IEEE80211_TX_CTL_NO_ACK) ? 0 : cpu_to_le16(1);
hdr->retry1 = hdr->retry2 = info->control.retry_limit;
/* TODO: add support for alternate retry TX rates */
rate = ieee80211_get_tx_rate(dev, info)->hw_value;
if (info->flags & IEEE80211_TX_CTL_SHORT_PREAMBLE) {
rate |= 0x10;
cts_rate |= 0x10;
}
if (info->flags & IEEE80211_TX_CTL_USE_RTS_CTS) {
rate |= 0x40;
cts_rate |= ieee80211_get_rts_cts_rate(dev, info)->hw_value;
} else if (info->flags & IEEE80211_TX_CTL_USE_CTS_PROTECT) {
rate |= 0x20;
cts_rate |= ieee80211_get_rts_cts_rate(dev, info)->hw_value;
}
memset(txhdr->rateset, rate, 8);
txhdr->key_type = 0;
txhdr->key_len = 0;
txhdr->hw_queue = skb_get_queue_mapping(skb) + 4;
txhdr->tx_antenna = (info->antenna_sel_tx == 0) ?
2 : info->antenna_sel_tx - 1;
txhdr->output_power = 0x7f; // HW Maximum
txhdr->cts_rate = (info->flags & IEEE80211_TX_CTL_NO_ACK) ?
0 : cts_rate;
if (padding)
txhdr->align[0] = padding;
/* FIXME: The sequence that follows is needed for this driver to
* work with mac80211 since "mac80211: fix TX sequence numbers".
* As with the temporary code in rt2x00, changes will be needed
* to get proper sequence numbers on beacons. In addition, this
* patch places the sequence number in the hardware state, which
* limits us to a single virtual state.
*/
if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
priv->seqno += 0x10;
ieee80211hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
ieee80211hdr->seq_ctrl |= cpu_to_le16(priv->seqno);
}
/* modifies skb->cb and with it info, so must be last! */
p54_assign_address(dev, skb, hdr, skb->len);
priv->tx(dev, hdr, skb->len, 0);
return 0;
}
static int p54_set_filter(struct ieee80211_hw *dev, u16 filter_type,
const u8 *dst, const u8 *src, u8 antenna,
u32 magic3, u32 magic8, u32 magic9)
{
struct p54_common *priv = dev->priv;
struct p54_control_hdr *hdr;
struct p54_tx_control_filter *filter;
hdr = kzalloc(sizeof(*hdr) + sizeof(*filter) +
priv->tx_hdr_len, GFP_ATOMIC);
if (!hdr)
return -ENOMEM;
hdr = (void *)hdr + priv->tx_hdr_len;
filter = (struct p54_tx_control_filter *) hdr->data;
hdr->magic1 = cpu_to_le16(0x8001);
hdr->len = cpu_to_le16(sizeof(*filter));
p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + sizeof(*filter));
hdr->type = cpu_to_le16(P54_CONTROL_TYPE_FILTER_SET);
filter->filter_type = cpu_to_le16(filter_type);
memcpy(filter->dst, dst, ETH_ALEN);
if (!src)
memset(filter->src, ~0, ETH_ALEN);
else
memcpy(filter->src, src, ETH_ALEN);
filter->antenna = antenna;
filter->magic3 = cpu_to_le32(magic3);
filter->rx_addr = cpu_to_le32(priv->rx_end);
filter->max_rx = cpu_to_le16(priv->rx_mtu);
filter->rxhw = cpu_to_le16(priv->rxhw);
filter->magic8 = cpu_to_le16(magic8);
filter->magic9 = cpu_to_le16(magic9);
priv->tx(dev, hdr, sizeof(*hdr) + sizeof(*filter), 1);
return 0;
}
static int p54_set_freq(struct ieee80211_hw *dev, __le16 freq)
{
struct p54_common *priv = dev->priv;
struct p54_control_hdr *hdr;
struct p54_tx_control_channel *chan;
unsigned int i;
void *entry;
hdr = kzalloc(sizeof(*hdr) + sizeof(*chan) +
priv->tx_hdr_len, GFP_KERNEL);
if (!hdr)
return -ENOMEM;
hdr = (void *)hdr + priv->tx_hdr_len;
chan = (struct p54_tx_control_channel *) hdr->data;
hdr->magic1 = cpu_to_le16(0x8001);
hdr->len = cpu_to_le16(sizeof(*chan));
hdr->type = cpu_to_le16(P54_CONTROL_TYPE_CHANNEL_CHANGE);
p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + sizeof(*chan));
chan->flags = cpu_to_le16(0x1);
chan->dwell = cpu_to_le16(0x0);
for (i = 0; i < priv->iq_autocal_len; i++) {
if (priv->iq_autocal[i].freq != freq)
continue;
memcpy(&chan->iq_autocal, &priv->iq_autocal[i],
sizeof(*priv->iq_autocal));
break;
}
if (i == priv->iq_autocal_len)
goto err;
for (i = 0; i < priv->output_limit_len; i++) {
if (priv->output_limit[i].freq != freq)
continue;
chan->val_barker = 0x38;
chan->val_bpsk = chan->dup_bpsk =
priv->output_limit[i].val_bpsk;
chan->val_qpsk = chan->dup_qpsk =
priv->output_limit[i].val_qpsk;
chan->val_16qam = chan->dup_16qam =
priv->output_limit[i].val_16qam;
chan->val_64qam = chan->dup_64qam =
priv->output_limit[i].val_64qam;
break;
}
if (i == priv->output_limit_len)
goto err;
entry = priv->curve_data->data;
for (i = 0; i < priv->curve_data->channels; i++) {
if (*((__le16 *)entry) != freq) {
entry += sizeof(__le16);
entry += sizeof(struct p54_pa_curve_data_sample) *
priv->curve_data->points_per_channel;
continue;
}
entry += sizeof(__le16);
chan->pa_points_per_curve =
min(priv->curve_data->points_per_channel, (u8) 8);
memcpy(chan->curve_data, entry, sizeof(*chan->curve_data) *
chan->pa_points_per_curve);
break;
}
chan->rssical_mul = cpu_to_le16(130);
chan->rssical_add = cpu_to_le16(0xfe70); /* -400 */
priv->tx(dev, hdr, sizeof(*hdr) + sizeof(*chan), 1);
return 0;
err:
printk(KERN_ERR "%s: frequency change failed\n", wiphy_name(dev->wiphy));
kfree(hdr);
return -EINVAL;
}
static int p54_set_leds(struct ieee80211_hw *dev, int mode, int link, int act)
{
struct p54_common *priv = dev->priv;
struct p54_control_hdr *hdr;
struct p54_tx_control_led *led;
hdr = kzalloc(sizeof(*hdr) + sizeof(*led) +
priv->tx_hdr_len, GFP_KERNEL);
if (!hdr)
return -ENOMEM;
hdr = (void *)hdr + priv->tx_hdr_len;
hdr->magic1 = cpu_to_le16(0x8001);
hdr->len = cpu_to_le16(sizeof(*led));
hdr->type = cpu_to_le16(P54_CONTROL_TYPE_LED);
p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + sizeof(*led));
led = (struct p54_tx_control_led *) hdr->data;
led->mode = cpu_to_le16(mode);
led->led_permanent = cpu_to_le16(link);
led->led_temporary = cpu_to_le16(act);
led->duration = cpu_to_le16(1000);
priv->tx(dev, hdr, sizeof(*hdr) + sizeof(*led), 1);
return 0;
}
#define P54_SET_QUEUE(queue, ai_fs, cw_min, cw_max, _txop) \
do { \
queue.aifs = cpu_to_le16(ai_fs); \
queue.cwmin = cpu_to_le16(cw_min); \
queue.cwmax = cpu_to_le16(cw_max); \
queue.txop = cpu_to_le16(_txop); \
} while(0)
static void p54_init_vdcf(struct ieee80211_hw *dev)
{
struct p54_common *priv = dev->priv;
struct p54_control_hdr *hdr;
struct p54_tx_control_vdcf *vdcf;
/* all USB V1 adapters need a extra headroom */
hdr = (void *)priv->cached_vdcf + priv->tx_hdr_len;
hdr->magic1 = cpu_to_le16(0x8001);
hdr->len = cpu_to_le16(sizeof(*vdcf));
hdr->type = cpu_to_le16(P54_CONTROL_TYPE_DCFINIT);
hdr->req_id = cpu_to_le32(priv->rx_start);
vdcf = (struct p54_tx_control_vdcf *) hdr->data;
P54_SET_QUEUE(vdcf->queue[0], 0x0002, 0x0003, 0x0007, 47);
P54_SET_QUEUE(vdcf->queue[1], 0x0002, 0x0007, 0x000f, 94);
P54_SET_QUEUE(vdcf->queue[2], 0x0003, 0x000f, 0x03ff, 0);
P54_SET_QUEUE(vdcf->queue[3], 0x0007, 0x000f, 0x03ff, 0);
}
static void p54_set_vdcf(struct ieee80211_hw *dev)
{
struct p54_common *priv = dev->priv;
struct p54_control_hdr *hdr;
struct p54_tx_control_vdcf *vdcf;
hdr = (void *)priv->cached_vdcf + priv->tx_hdr_len;
p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + sizeof(*vdcf));
vdcf = (struct p54_tx_control_vdcf *) hdr->data;
if (dev->conf.flags & IEEE80211_CONF_SHORT_SLOT_TIME) {
vdcf->slottime = 9;
vdcf->magic1 = 0x10;
vdcf->magic2 = 0x00;
} else {
vdcf->slottime = 20;
vdcf->magic1 = 0x0a;
vdcf->magic2 = 0x06;
}
/* (see prism54/isl_oid.h for further details) */
vdcf->frameburst = cpu_to_le16(0);
priv->tx(dev, hdr, sizeof(*hdr) + sizeof(*vdcf), 0);
}
static int p54_start(struct ieee80211_hw *dev)
{
struct p54_common *priv = dev->priv;
int err;
if (!priv->cached_vdcf) {
priv->cached_vdcf = kzalloc(sizeof(struct p54_tx_control_vdcf)+
priv->tx_hdr_len + sizeof(struct p54_control_hdr),
GFP_KERNEL);
if (!priv->cached_vdcf)
return -ENOMEM;
}
err = priv->open(dev);
if (!err)
priv->mode = IEEE80211_IF_TYPE_MNTR;
p54_init_vdcf(dev);
return err;
}
static void p54_stop(struct ieee80211_hw *dev)
{
struct p54_common *priv = dev->priv;
struct sk_buff *skb;
while ((skb = skb_dequeue(&priv->tx_queue)))
kfree_skb(skb);
priv->stop(dev);
priv->mode = IEEE80211_IF_TYPE_INVALID;
}
static int p54_add_interface(struct ieee80211_hw *dev,
struct ieee80211_if_init_conf *conf)
{
struct p54_common *priv = dev->priv;
if (priv->mode != IEEE80211_IF_TYPE_MNTR)
return -EOPNOTSUPP;
switch (conf->type) {
case IEEE80211_IF_TYPE_STA:
priv->mode = conf->type;
break;
default:
return -EOPNOTSUPP;
}
memcpy(priv->mac_addr, conf->mac_addr, ETH_ALEN);
p54_set_filter(dev, 0, priv->mac_addr, NULL, 0, 1, 0, 0xF642);
p54_set_filter(dev, 0, priv->mac_addr, NULL, 1, 0, 0, 0xF642);
switch (conf->type) {
case IEEE80211_IF_TYPE_STA:
p54_set_filter(dev, 1, priv->mac_addr, NULL, 0, 0x15F, 0x1F4, 0);
break;
default:
BUG(); /* impossible */
break;
}
p54_set_leds(dev, 1, 0, 0);
return 0;
}
static void p54_remove_interface(struct ieee80211_hw *dev,
struct ieee80211_if_init_conf *conf)
{
struct p54_common *priv = dev->priv;
priv->mode = IEEE80211_IF_TYPE_MNTR;
memset(priv->mac_addr, 0, ETH_ALEN);
p54_set_filter(dev, 0, priv->mac_addr, NULL, 2, 0, 0, 0);
}
static int p54_config(struct ieee80211_hw *dev, struct ieee80211_conf *conf)
{
int ret;
struct p54_common *priv = dev->priv;
mutex_lock(&priv->conf_mutex);
ret = p54_set_freq(dev, cpu_to_le16(conf->channel->center_freq));
p54_set_vdcf(dev);
mutex_unlock(&priv->conf_mutex);
return ret;
}
static int p54_config_interface(struct ieee80211_hw *dev,
struct ieee80211_vif *vif,
struct ieee80211_if_conf *conf)
{
struct p54_common *priv = dev->priv;
mutex_lock(&priv->conf_mutex);
p54_set_filter(dev, 0, priv->mac_addr, conf->bssid, 0, 1, 0, 0xF642);
p54_set_filter(dev, 0, priv->mac_addr, conf->bssid, 2, 0, 0, 0);
p54_set_leds(dev, 1, !is_multicast_ether_addr(conf->bssid), 0);
memcpy(priv->bssid, conf->bssid, ETH_ALEN);
mutex_unlock(&priv->conf_mutex);
return 0;
}
static void p54_configure_filter(struct ieee80211_hw *dev,
unsigned int changed_flags,
unsigned int *total_flags,
int mc_count, struct dev_mc_list *mclist)
{
struct p54_common *priv = dev->priv;
*total_flags &= FIF_BCN_PRBRESP_PROMISC;
if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
if (*total_flags & FIF_BCN_PRBRESP_PROMISC)
p54_set_filter(dev, 0, priv->mac_addr,
NULL, 2, 0, 0, 0);
else
p54_set_filter(dev, 0, priv->mac_addr,
priv->bssid, 2, 0, 0, 0);
}
}
static int p54_conf_tx(struct ieee80211_hw *dev, u16 queue,
const struct ieee80211_tx_queue_params *params)
{
struct p54_common *priv = dev->priv;
struct p54_tx_control_vdcf *vdcf;
vdcf = (struct p54_tx_control_vdcf *)(((struct p54_control_hdr *)
((void *)priv->cached_vdcf + priv->tx_hdr_len))->data);
if ((params) && !(queue > 4)) {
P54_SET_QUEUE(vdcf->queue[queue], params->aifs,
params->cw_min, params->cw_max, params->txop);
} else
return -EINVAL;
p54_set_vdcf(dev);
return 0;
}
static int p54_get_stats(struct ieee80211_hw *dev,
struct ieee80211_low_level_stats *stats)
{
/* TODO */
return 0;
}
static int p54_get_tx_stats(struct ieee80211_hw *dev,
struct ieee80211_tx_queue_stats *stats)
{
struct p54_common *priv = dev->priv;
memcpy(stats, &priv->tx_stats[4], sizeof(stats[0]) * dev->queues);
return 0;
}
static const struct ieee80211_ops p54_ops = {
.tx = p54_tx,
.start = p54_start,
.stop = p54_stop,
.add_interface = p54_add_interface,
.remove_interface = p54_remove_interface,
.config = p54_config,
.config_interface = p54_config_interface,
.configure_filter = p54_configure_filter,
.conf_tx = p54_conf_tx,
.get_stats = p54_get_stats,
.get_tx_stats = p54_get_tx_stats
};
struct ieee80211_hw *p54_init_common(size_t priv_data_len)
{
struct ieee80211_hw *dev;
struct p54_common *priv;
dev = ieee80211_alloc_hw(priv_data_len, &p54_ops);
if (!dev)
return NULL;
priv = dev->priv;
priv->mode = IEEE80211_IF_TYPE_INVALID;
skb_queue_head_init(&priv->tx_queue);
dev->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING | /* not sure */
IEEE80211_HW_RX_INCLUDES_FCS |
IEEE80211_HW_SIGNAL_UNSPEC;
dev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
dev->channel_change_time = 1000; /* TODO: find actual value */
dev->max_signal = 127;
priv->tx_stats[0].limit = 1;
priv->tx_stats[1].limit = 1;
priv->tx_stats[2].limit = 1;
priv->tx_stats[3].limit = 1;
priv->tx_stats[4].limit = 5;
dev->queues = 1;
dev->extra_tx_headroom = sizeof(struct p54_control_hdr) + 4 +
sizeof(struct p54_tx_control_allocdata);
mutex_init(&priv->conf_mutex);
init_completion(&priv->eeprom_comp);
return dev;
}
EXPORT_SYMBOL_GPL(p54_init_common);
void p54_free_common(struct ieee80211_hw *dev)
{
struct p54_common *priv = dev->priv;
kfree(priv->iq_autocal);
kfree(priv->output_limit);
kfree(priv->curve_data);
kfree(priv->cached_vdcf);
}
EXPORT_SYMBOL_GPL(p54_free_common);
static int __init p54_init(void)
{
return 0;
}
static void __exit p54_exit(void)
{
}
module_init(p54_init);
module_exit(p54_exit);