/******************************************************************************
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
* USA
*
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.GPL.
*
* Contact Information:
* Intel Linux Wireless <ilw@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
* BSD LICENSE
*
* Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
#include <linux/slab.h>
#include <net/mac80211.h>
#include "common.h"
#include "4965.h"
/*****************************************************************************
* INIT calibrations framework
*****************************************************************************/
struct stats_general_data {
u32 beacon_silence_rssi_a;
u32 beacon_silence_rssi_b;
u32 beacon_silence_rssi_c;
u32 beacon_energy_a;
u32 beacon_energy_b;
u32 beacon_energy_c;
};
/*****************************************************************************
* RUNTIME calibrations framework
*****************************************************************************/
/* "false alarms" are signals that our DSP tries to lock onto,
* but then determines that they are either noise, or transmissions
* from a distant wireless network (also "noise", really) that get
* "stepped on" by stronger transmissions within our own network.
* This algorithm attempts to set a sensitivity level that is high
* enough to receive all of our own network traffic, but not so
* high that our DSP gets too busy trying to lock onto non-network
* activity/noise. */
static int
il4965_sens_energy_cck(struct il_priv *il, u32 norm_fa, u32 rx_enable_time,
struct stats_general_data *rx_info)
{
u32 max_nrg_cck = 0;
int i = 0;
u8 max_silence_rssi = 0;
u32 silence_ref = 0;
u8 silence_rssi_a = 0;
u8 silence_rssi_b = 0;
u8 silence_rssi_c = 0;
u32 val;
/* "false_alarms" values below are cross-multiplications to assess the
* numbers of false alarms within the measured period of actual Rx
* (Rx is off when we're txing), vs the min/max expected false alarms
* (some should be expected if rx is sensitive enough) in a
* hypothetical listening period of 200 time units (TU), 204.8 msec:
*
* MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
*
* */
u32 false_alarms = norm_fa * 200 * 1024;
u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
struct il_sensitivity_data *data = NULL;
const struct il_sensitivity_ranges *ranges = il->hw_params.sens;
data = &(il->sensitivity_data);
data->nrg_auto_corr_silence_diff = 0;
/* Find max silence rssi among all 3 receivers.
* This is background noise, which may include transmissions from other
* networks, measured during silence before our network's beacon */
silence_rssi_a =
(u8) ((rx_info->beacon_silence_rssi_a & ALL_BAND_FILTER) >> 8);
silence_rssi_b =
(u8) ((rx_info->beacon_silence_rssi_b & ALL_BAND_FILTER) >> 8);
silence_rssi_c =
(u8) ((rx_info->beacon_silence_rssi_c & ALL_BAND_FILTER) >> 8);
val = max(silence_rssi_b, silence_rssi_c);
max_silence_rssi = max(silence_rssi_a, (u8) val);
/* Store silence rssi in 20-beacon history table */
data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
data->nrg_silence_idx++;
if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
data->nrg_silence_idx = 0;
/* Find max silence rssi across 20 beacon history */
for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
val = data->nrg_silence_rssi[i];
silence_ref = max(silence_ref, val);
}
D_CALIB("silence a %u, b %u, c %u, 20-bcn max %u\n", silence_rssi_a,
silence_rssi_b, silence_rssi_c, silence_ref);
/* Find max rx energy (min value!) among all 3 receivers,
* measured during beacon frame.
* Save it in 10-beacon history table. */
i = data->nrg_energy_idx;
val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
data->nrg_energy_idx++;
if (data->nrg_energy_idx >= 10)
data->nrg_energy_idx = 0;
/* Find min rx energy (max value) across 10 beacon history.
* This is the minimum signal level that we want to receive well.
* Add backoff (margin so we don't miss slightly lower energy frames).
* This establishes an upper bound (min value) for energy threshold. */
max_nrg_cck = data->nrg_value[0];
for (i = 1; i < 10; i++)
max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
max_nrg_cck += 6;
D_CALIB("rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
rx_info->beacon_energy_a, rx_info->beacon_energy_b,
rx_info->beacon_energy_c, max_nrg_cck - 6);
/* Count number of consecutive beacons with fewer-than-desired
* false alarms. */
if (false_alarms < min_false_alarms)
data->num_in_cck_no_fa++;
else
data->num_in_cck_no_fa = 0;
D_CALIB("consecutive bcns with few false alarms = %u\n",
data->num_in_cck_no_fa);
/* If we got too many false alarms this time, reduce sensitivity */
if (false_alarms > max_false_alarms &&
data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK) {
D_CALIB("norm FA %u > max FA %u\n", false_alarms,
max_false_alarms);
D_CALIB("... reducing sensitivity\n");
data->nrg_curr_state = IL_FA_TOO_MANY;
/* Store for "fewer than desired" on later beacon */
data->nrg_silence_ref = silence_ref;
/* increase energy threshold (reduce nrg value)
* to decrease sensitivity */
data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
/* Else if we got fewer than desired, increase sensitivity */
} else if (false_alarms < min_false_alarms) {
data->nrg_curr_state = IL_FA_TOO_FEW;
/* Compare silence level with silence level for most recent
* healthy number or too many false alarms */
data->nrg_auto_corr_silence_diff =
(s32) data->nrg_silence_ref - (s32) silence_ref;
D_CALIB("norm FA %u < min FA %u, silence diff %d\n",
false_alarms, min_false_alarms,
data->nrg_auto_corr_silence_diff);
/* Increase value to increase sensitivity, but only if:
* 1a) previous beacon did *not* have *too many* false alarms
* 1b) AND there's a significant difference in Rx levels
* from a previous beacon with too many, or healthy # FAs
* OR 2) We've seen a lot of beacons (100) with too few
* false alarms */
if (data->nrg_prev_state != IL_FA_TOO_MANY &&
(data->nrg_auto_corr_silence_diff > NRG_DIFF ||
data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA)) {
D_CALIB("... increasing sensitivity\n");
/* Increase nrg value to increase sensitivity */
val = data->nrg_th_cck + NRG_STEP_CCK;
data->nrg_th_cck = min((u32) ranges->min_nrg_cck, val);
} else {
D_CALIB("... but not changing sensitivity\n");
}
/* Else we got a healthy number of false alarms, keep status quo */
} else {
D_CALIB(" FA in safe zone\n");
data->nrg_curr_state = IL_FA_GOOD_RANGE;
/* Store for use in "fewer than desired" with later beacon */
data->nrg_silence_ref = silence_ref;
/* If previous beacon had too many false alarms,
* give it some extra margin by reducing sensitivity again
* (but don't go below measured energy of desired Rx) */
if (IL_FA_TOO_MANY == data->nrg_prev_state) {
D_CALIB("... increasing margin\n");
if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
data->nrg_th_cck -= NRG_MARGIN;
else
data->nrg_th_cck = max_nrg_cck;
}
}
/* Make sure the energy threshold does not go above the measured
* energy of the desired Rx signals (reduced by backoff margin),
* or else we might start missing Rx frames.
* Lower value is higher energy, so we use max()!
*/
data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
D_CALIB("new nrg_th_cck %u\n", data->nrg_th_cck);
data->nrg_prev_state = data->nrg_curr_state;
/* Auto-correlation CCK algorithm */
if (false_alarms > min_false_alarms) {
/* increase auto_corr values to decrease sensitivity
* so the DSP won't be disturbed by the noise
*/
if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
else {
val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
data->auto_corr_cck =
min((u32) ranges->auto_corr_max_cck, val);
}
val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
data->auto_corr_cck_mrc =
min((u32) ranges->auto_corr_max_cck_mrc, val);
} else if (false_alarms < min_false_alarms &&
(data->nrg_auto_corr_silence_diff > NRG_DIFF ||
data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA)) {
/* Decrease auto_corr values to increase sensitivity */
val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
data->auto_corr_cck = max((u32) ranges->auto_corr_min_cck, val);
val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
data->auto_corr_cck_mrc =
max((u32) ranges->auto_corr_min_cck_mrc, val);
}
return 0;
}
static int
il4965_sens_auto_corr_ofdm(struct il_priv *il, u32 norm_fa, u32 rx_enable_time)
{
u32 val;
u32 false_alarms = norm_fa * 200 * 1024;
u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
struct il_sensitivity_data *data = NULL;
const struct il_sensitivity_ranges *ranges = il->hw_params.sens;
data = &(il->sensitivity_data);
/* If we got too many false alarms this time, reduce sensitivity */
if (false_alarms > max_false_alarms) {
D_CALIB("norm FA %u > max FA %u)\n", false_alarms,
max_false_alarms);
val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
data->auto_corr_ofdm =
min((u32) ranges->auto_corr_max_ofdm, val);
val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
data->auto_corr_ofdm_mrc =
min((u32) ranges->auto_corr_max_ofdm_mrc, val);
val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
data->auto_corr_ofdm_x1 =
min((u32) ranges->auto_corr_max_ofdm_x1, val);
val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
data->auto_corr_ofdm_mrc_x1 =
min((u32) ranges->auto_corr_max_ofdm_mrc_x1, val);
}
/* Else if we got fewer than desired, increase sensitivity */
else if (false_alarms < min_false_alarms) {
D_CALIB("norm FA %u < min FA %u\n", false_alarms,
min_false_alarms);
val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
data->auto_corr_ofdm =
max((u32) ranges->auto_corr_min_ofdm, val);
val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
data->auto_corr_ofdm_mrc =
max((u32) ranges->auto_corr_min_ofdm_mrc, val);
val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
data->auto_corr_ofdm_x1 =
max((u32) ranges->auto_corr_min_ofdm_x1, val);
val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
data->auto_corr_ofdm_mrc_x1 =
max((u32) ranges->auto_corr_min_ofdm_mrc_x1, val);
} else {
D_CALIB("min FA %u < norm FA %u < max FA %u OK\n",
min_false_alarms, false_alarms, max_false_alarms);
}
return 0;
}
static void
il4965_prepare_legacy_sensitivity_tbl(struct il_priv *il,
struct il_sensitivity_data *data,
__le16 *tbl)
{
tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_IDX] =
cpu_to_le16((u16) data->auto_corr_ofdm);
tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_IDX] =
cpu_to_le16((u16) data->auto_corr_ofdm_mrc);
tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_IDX] =
cpu_to_le16((u16) data->auto_corr_ofdm_x1);
tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_IDX] =
cpu_to_le16((u16) data->auto_corr_ofdm_mrc_x1);
tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_IDX] =
cpu_to_le16((u16) data->auto_corr_cck);
tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_IDX] =
cpu_to_le16((u16) data->auto_corr_cck_mrc);
tbl[HD_MIN_ENERGY_CCK_DET_IDX] = cpu_to_le16((u16) data->nrg_th_cck);
tbl[HD_MIN_ENERGY_OFDM_DET_IDX] = cpu_to_le16((u16) data->nrg_th_ofdm);
tbl[HD_BARKER_CORR_TH_ADD_MIN_IDX] =
cpu_to_le16(data->barker_corr_th_min);
tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_IDX] =
cpu_to_le16(data->barker_corr_th_min_mrc);
tbl[HD_OFDM_ENERGY_TH_IN_IDX] = cpu_to_le16(data->nrg_th_cca);
D_CALIB("ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
data->nrg_th_ofdm);
D_CALIB("cck: ac %u mrc %u thresh %u\n", data->auto_corr_cck,
data->auto_corr_cck_mrc, data->nrg_th_cck);
}
/* Prepare a C_SENSITIVITY, send to uCode if values have changed */
static int
il4965_sensitivity_write(struct il_priv *il)
{
struct il_sensitivity_cmd cmd;
struct il_sensitivity_data *data = NULL;
struct il_host_cmd cmd_out = {
.id = C_SENSITIVITY,
.len = sizeof(struct il_sensitivity_cmd),
.flags = CMD_ASYNC,
.data = &cmd,
};
data = &(il->sensitivity_data);
memset(&cmd, 0, sizeof(cmd));
il4965_prepare_legacy_sensitivity_tbl(il, data, &cmd.table[0]);
/* Update uCode's "work" table, and copy it to DSP */
cmd.control = C_SENSITIVITY_CONTROL_WORK_TBL;
/* Don't send command to uCode if nothing has changed */
if (!memcmp
(&cmd.table[0], &(il->sensitivity_tbl[0]),
sizeof(u16) * HD_TBL_SIZE)) {
D_CALIB("No change in C_SENSITIVITY\n");
return 0;
}
/* Copy table for comparison next time */
memcpy(&(il->sensitivity_tbl[0]), &(cmd.table[0]),
sizeof(u16) * HD_TBL_SIZE);
return il_send_cmd(il, &cmd_out);
}
void
il4965_init_sensitivity(struct il_priv *il)
{
int ret = 0;
int i;
struct il_sensitivity_data *data = NULL;
const struct il_sensitivity_ranges *ranges = il->hw_params.sens;
if (il->disable_sens_cal)
return;
D_CALIB("Start il4965_init_sensitivity\n");
/* Clear driver's sensitivity algo data */
data = &(il->sensitivity_data);
if (ranges == NULL)
return;
memset(data, 0, sizeof(struct il_sensitivity_data));
data->num_in_cck_no_fa = 0;
data->nrg_curr_state = IL_FA_TOO_MANY;
data->nrg_prev_state = IL_FA_TOO_MANY;
data->nrg_silence_ref = 0;
data->nrg_silence_idx = 0;
data->nrg_energy_idx = 0;
for (i = 0; i < 10; i++)
data->nrg_value[i] = 0;
for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
data->nrg_silence_rssi[i] = 0;
data->auto_corr_ofdm = ranges->auto_corr_min_ofdm;
data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1;
data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
data->nrg_th_cck = ranges->nrg_th_cck;
data->nrg_th_ofdm = ranges->nrg_th_ofdm;
data->barker_corr_th_min = ranges->barker_corr_th_min;
data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
data->nrg_th_cca = ranges->nrg_th_cca;
data->last_bad_plcp_cnt_ofdm = 0;
data->last_fa_cnt_ofdm = 0;
data->last_bad_plcp_cnt_cck = 0;
data->last_fa_cnt_cck = 0;
ret |= il4965_sensitivity_write(il);
D_CALIB("<<return 0x%X\n", ret);
}
void
il4965_sensitivity_calibration(struct il_priv *il, void *resp)
{
u32 rx_enable_time;
u32 fa_cck;
u32 fa_ofdm;
u32 bad_plcp_cck;
u32 bad_plcp_ofdm;
u32 norm_fa_ofdm;
u32 norm_fa_cck;
struct il_sensitivity_data *data = NULL;
struct stats_rx_non_phy *rx_info;
struct stats_rx_phy *ofdm, *cck;
unsigned long flags;
struct stats_general_data statis;
if (il->disable_sens_cal)
return;
data = &(il->sensitivity_data);
if (!il_is_any_associated(il)) {
D_CALIB("<< - not associated\n");
return;
}
spin_lock_irqsave(&il->lock, flags);
rx_info = &(((struct il_notif_stats *)resp)->rx.general);
ofdm = &(((struct il_notif_stats *)resp)->rx.ofdm);
cck = &(((struct il_notif_stats *)resp)->rx.cck);
if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
D_CALIB("<< invalid data.\n");
spin_unlock_irqrestore(&il->lock, flags);
return;
}
/* Extract Statistics: */
rx_enable_time = le32_to_cpu(rx_info->channel_load);
fa_cck = le32_to_cpu(cck->false_alarm_cnt);
fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
bad_plcp_cck = le32_to_cpu(cck->plcp_err);
bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
statis.beacon_silence_rssi_a =
le32_to_cpu(rx_info->beacon_silence_rssi_a);
statis.beacon_silence_rssi_b =
le32_to_cpu(rx_info->beacon_silence_rssi_b);
statis.beacon_silence_rssi_c =
le32_to_cpu(rx_info->beacon_silence_rssi_c);
statis.beacon_energy_a = le32_to_cpu(rx_info->beacon_energy_a);
statis.beacon_energy_b = le32_to_cpu(rx_info->beacon_energy_b);
statis.beacon_energy_c = le32_to_cpu(rx_info->beacon_energy_c);
spin_unlock_irqrestore(&il->lock, flags);
D_CALIB("rx_enable_time = %u usecs\n", rx_enable_time);
if (!rx_enable_time) {
D_CALIB("<< RX Enable Time == 0!\n");
return;
}
/* These stats increase monotonically, and do not reset
* at each beacon. Calculate difference from last value, or just
* use the new stats value if it has reset or wrapped around. */
if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
data->last_bad_plcp_cnt_cck = bad_plcp_cck;
else {
bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
data->last_bad_plcp_cnt_cck += bad_plcp_cck;
}
if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
else {
bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
}
if (data->last_fa_cnt_ofdm > fa_ofdm)
data->last_fa_cnt_ofdm = fa_ofdm;
else {
fa_ofdm -= data->last_fa_cnt_ofdm;
data->last_fa_cnt_ofdm += fa_ofdm;
}
if (data->last_fa_cnt_cck > fa_cck)
data->last_fa_cnt_cck = fa_cck;
else {
fa_cck -= data->last_fa_cnt_cck;
data->last_fa_cnt_cck += fa_cck;
}
/* Total aborted signal locks */
norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
norm_fa_cck = fa_cck + bad_plcp_cck;
D_CALIB("cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck,
bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
il4965_sens_auto_corr_ofdm(il, norm_fa_ofdm, rx_enable_time);
il4965_sens_energy_cck(il, norm_fa_cck, rx_enable_time, &statis);
il4965_sensitivity_write(il);
}
static inline u8
il4965_find_first_chain(u8 mask)
{
if (mask & ANT_A)
return CHAIN_A;
if (mask & ANT_B)
return CHAIN_B;
return CHAIN_C;
}
/**
* Run disconnected antenna algorithm to find out which antennas are
* disconnected.
*/
static void
il4965_find_disconn_antenna(struct il_priv *il, u32 * average_sig,
struct il_chain_noise_data *data)
{
u32 active_chains = 0;
u32 max_average_sig;
u16 max_average_sig_antenna_i;
u8 num_tx_chains;
u8 first_chain;
u16 i = 0;
average_sig[0] =
data->chain_signal_a /
il->cfg->chain_noise_num_beacons;
average_sig[1] =
data->chain_signal_b /
il->cfg->chain_noise_num_beacons;
average_sig[2] =
data->chain_signal_c /
il->cfg->chain_noise_num_beacons;
if (average_sig[0] >= average_sig[1]) {
max_average_sig = average_sig[0];
max_average_sig_antenna_i = 0;
active_chains = (1 << max_average_sig_antenna_i);
} else {
max_average_sig = average_sig[1];
max_average_sig_antenna_i = 1;
active_chains = (1 << max_average_sig_antenna_i);
}
if (average_sig[2] >= max_average_sig) {
max_average_sig = average_sig[2];
max_average_sig_antenna_i = 2;
active_chains = (1 << max_average_sig_antenna_i);
}
D_CALIB("average_sig: a %d b %d c %d\n", average_sig[0], average_sig[1],
average_sig[2]);
D_CALIB("max_average_sig = %d, antenna %d\n", max_average_sig,
max_average_sig_antenna_i);
/* Compare signal strengths for all 3 receivers. */
for (i = 0; i < NUM_RX_CHAINS; i++) {
if (i != max_average_sig_antenna_i) {
s32 rssi_delta = (max_average_sig - average_sig[i]);
/* If signal is very weak, compared with
* strongest, mark it as disconnected. */
if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
data->disconn_array[i] = 1;
else
active_chains |= (1 << i);
D_CALIB("i = %d rssiDelta = %d "
"disconn_array[i] = %d\n", i, rssi_delta,
data->disconn_array[i]);
}
}
/*
* The above algorithm sometimes fails when the ucode
* reports 0 for all chains. It's not clear why that
* happens to start with, but it is then causing trouble
* because this can make us enable more chains than the
* hardware really has.
*
* To be safe, simply mask out any chains that we know
* are not on the device.
*/
active_chains &= il->hw_params.valid_rx_ant;
num_tx_chains = 0;
for (i = 0; i < NUM_RX_CHAINS; i++) {
/* loops on all the bits of
* il->hw_setting.valid_tx_ant */
u8 ant_msk = (1 << i);
if (!(il->hw_params.valid_tx_ant & ant_msk))
continue;
num_tx_chains++;
if (data->disconn_array[i] == 0)
/* there is a Tx antenna connected */
break;
if (num_tx_chains == il->hw_params.tx_chains_num &&
data->disconn_array[i]) {
/*
* If all chains are disconnected
* connect the first valid tx chain
*/
first_chain =
il4965_find_first_chain(il->cfg->valid_tx_ant);
data->disconn_array[first_chain] = 0;
active_chains |= BIT(first_chain);
D_CALIB("All Tx chains are disconnected"
"- declare %d as connected\n", first_chain);
break;
}
}
if (active_chains != il->hw_params.valid_rx_ant &&
active_chains != il->chain_noise_data.active_chains)
D_CALIB("Detected that not all antennas are connected! "
"Connected: %#x, valid: %#x.\n", active_chains,
il->hw_params.valid_rx_ant);
/* Save for use within RXON, TX, SCAN commands, etc. */
data->active_chains = active_chains;
D_CALIB("active_chains (bitwise) = 0x%x\n", active_chains);
}
static void
il4965_gain_computation(struct il_priv *il, u32 * average_noise,
u16 min_average_noise_antenna_i, u32 min_average_noise,
u8 default_chain)
{
int i, ret;
struct il_chain_noise_data *data = &il->chain_noise_data;
data->delta_gain_code[min_average_noise_antenna_i] = 0;
for (i = default_chain; i < NUM_RX_CHAINS; i++) {
s32 delta_g = 0;
if (!data->disconn_array[i] &&
data->delta_gain_code[i] ==
CHAIN_NOISE_DELTA_GAIN_INIT_VAL) {
delta_g = average_noise[i] - min_average_noise;
data->delta_gain_code[i] = (u8) ((delta_g * 10) / 15);
data->delta_gain_code[i] =
min(data->delta_gain_code[i],
(u8) CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
data->delta_gain_code[i] =
(data->delta_gain_code[i] | (1 << 2));
} else {
data->delta_gain_code[i] = 0;
}
}
D_CALIB("delta_gain_codes: a %d b %d c %d\n", data->delta_gain_code[0],
data->delta_gain_code[1], data->delta_gain_code[2]);
/* Differential gain gets sent to uCode only once */
if (!data->radio_write) {
struct il_calib_diff_gain_cmd cmd;
data->radio_write = 1;
memset(&cmd, 0, sizeof(cmd));
cmd.hdr.op_code = IL_PHY_CALIBRATE_DIFF_GAIN_CMD;
cmd.diff_gain_a = data->delta_gain_code[0];
cmd.diff_gain_b = data->delta_gain_code[1];
cmd.diff_gain_c = data->delta_gain_code[2];
ret = il_send_cmd_pdu(il, C_PHY_CALIBRATION, sizeof(cmd), &cmd);
if (ret)
D_CALIB("fail sending cmd " "C_PHY_CALIBRATION\n");
/* TODO we might want recalculate
* rx_chain in rxon cmd */
/* Mark so we run this algo only once! */
data->state = IL_CHAIN_NOISE_CALIBRATED;
}
}
/*
* Accumulate 16 beacons of signal and noise stats for each of
* 3 receivers/antennas/rx-chains, then figure out:
* 1) Which antennas are connected.
* 2) Differential rx gain settings to balance the 3 receivers.
*/
void
il4965_chain_noise_calibration(struct il_priv *il, void *stat_resp)
{
struct il_chain_noise_data *data = NULL;
u32 chain_noise_a;
u32 chain_noise_b;
u32 chain_noise_c;
u32 chain_sig_a;
u32 chain_sig_b;
u32 chain_sig_c;
u32 average_sig[NUM_RX_CHAINS] = { INITIALIZATION_VALUE };
u32 average_noise[NUM_RX_CHAINS] = { INITIALIZATION_VALUE };
u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
u16 i = 0;
u16 rxon_chnum = INITIALIZATION_VALUE;
u16 stat_chnum = INITIALIZATION_VALUE;
u8 rxon_band24;
u8 stat_band24;
unsigned long flags;
struct stats_rx_non_phy *rx_info;
if (il->disable_chain_noise_cal)
return;
data = &(il->chain_noise_data);
/*
* Accumulate just the first "chain_noise_num_beacons" after
* the first association, then we're done forever.
*/
if (data->state != IL_CHAIN_NOISE_ACCUMULATE) {
if (data->state == IL_CHAIN_NOISE_ALIVE)
D_CALIB("Wait for noise calib reset\n");
return;
}
spin_lock_irqsave(&il->lock, flags);
rx_info = &(((struct il_notif_stats *)stat_resp)->rx.general);
if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
D_CALIB(" << Interference data unavailable\n");
spin_unlock_irqrestore(&il->lock, flags);
return;
}
rxon_band24 = !!(il->staging.flags & RXON_FLG_BAND_24G_MSK);
rxon_chnum = le16_to_cpu(il->staging.channel);
stat_band24 =
!!(((struct il_notif_stats *)stat_resp)->
flag & STATS_REPLY_FLG_BAND_24G_MSK);
stat_chnum =
le32_to_cpu(((struct il_notif_stats *)stat_resp)->flag) >> 16;
/* Make sure we accumulate data for just the associated channel
* (even if scanning). */
if (rxon_chnum != stat_chnum || rxon_band24 != stat_band24) {
D_CALIB("Stats not from chan=%d, band24=%d\n", rxon_chnum,
rxon_band24);
spin_unlock_irqrestore(&il->lock, flags);
return;
}
/*
* Accumulate beacon stats values across
* "chain_noise_num_beacons"
*/
chain_noise_a =
le32_to_cpu(rx_info->beacon_silence_rssi_a) & IN_BAND_FILTER;
chain_noise_b =
le32_to_cpu(rx_info->beacon_silence_rssi_b) & IN_BAND_FILTER;
chain_noise_c =
le32_to_cpu(rx_info->beacon_silence_rssi_c) & IN_BAND_FILTER;
chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
spin_unlock_irqrestore(&il->lock, flags);
data->beacon_count++;
data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
D_CALIB("chan=%d, band24=%d, beacon=%d\n", rxon_chnum, rxon_band24,
data->beacon_count);
D_CALIB("chain_sig: a %d b %d c %d\n", chain_sig_a, chain_sig_b,
chain_sig_c);
D_CALIB("chain_noise: a %d b %d c %d\n", chain_noise_a, chain_noise_b,
chain_noise_c);
/* If this is the "chain_noise_num_beacons", determine:
* 1) Disconnected antennas (using signal strengths)
* 2) Differential gain (using silence noise) to balance receivers */
if (data->beacon_count != il->cfg->chain_noise_num_beacons)
return;
/* Analyze signal for disconnected antenna */
il4965_find_disconn_antenna(il, average_sig, data);
/* Analyze noise for rx balance */
average_noise[0] =
data->chain_noise_a / il->cfg->chain_noise_num_beacons;
average_noise[1] =
data->chain_noise_b / il->cfg->chain_noise_num_beacons;
average_noise[2] =
data->chain_noise_c / il->cfg->chain_noise_num_beacons;
for (i = 0; i < NUM_RX_CHAINS; i++) {
if (!data->disconn_array[i] &&
average_noise[i] <= min_average_noise) {
/* This means that chain i is active and has
* lower noise values so far: */
min_average_noise = average_noise[i];
min_average_noise_antenna_i = i;
}
}
D_CALIB("average_noise: a %d b %d c %d\n", average_noise[0],
average_noise[1], average_noise[2]);
D_CALIB("min_average_noise = %d, antenna %d\n", min_average_noise,
min_average_noise_antenna_i);
il4965_gain_computation(il, average_noise, min_average_noise_antenna_i,
min_average_noise,
il4965_find_first_chain(il->cfg->valid_rx_ant));
/* Some power changes may have been made during the calibration.
* Update and commit the RXON
*/
if (il->ops->update_chain_flags)
il->ops->update_chain_flags(il);
data->state = IL_CHAIN_NOISE_DONE;
il_power_update_mode(il, false);
}
void
il4965_reset_run_time_calib(struct il_priv *il)
{
int i;
memset(&(il->sensitivity_data), 0, sizeof(struct il_sensitivity_data));
memset(&(il->chain_noise_data), 0, sizeof(struct il_chain_noise_data));
for (i = 0; i < NUM_RX_CHAINS; i++)
il->chain_noise_data.delta_gain_code[i] =
CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
/* Ask for stats now, the uCode will send notification
* periodically after association */
il_send_stats_request(il, CMD_ASYNC, true);
}